WO2019172258A1 - 太陽電池モジュール、ガラス建材、及び太陽電池モジュールの製造方法 - Google Patents

太陽電池モジュール、ガラス建材、及び太陽電池モジュールの製造方法 Download PDF

Info

Publication number
WO2019172258A1
WO2019172258A1 PCT/JP2019/008645 JP2019008645W WO2019172258A1 WO 2019172258 A1 WO2019172258 A1 WO 2019172258A1 JP 2019008645 W JP2019008645 W JP 2019008645W WO 2019172258 A1 WO2019172258 A1 WO 2019172258A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving surface
light receiving
solar cell
surface side
extending
Prior art date
Application number
PCT/JP2019/008645
Other languages
English (en)
French (fr)
Inventor
賢吾 前田
直樹 門田
秀樹 松尾
牧野 司
昭彦 中島
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN201980017598.6A priority Critical patent/CN111868934B/zh
Priority to JP2020505050A priority patent/JP7085613B2/ja
Priority to KR1020207028373A priority patent/KR102504652B1/ko
Publication of WO2019172258A1 publication Critical patent/WO2019172258A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module, a glass building material, and a method for manufacturing a solar cell module.
  • Patent Document 1 discloses a daylighting solar cell module that is assumed to be installed on a window glass or the like.
  • the solar cell module includes a plurality of solar cells arranged in one direction, and the solar cells have two bus bar electrodes extending in the connection direction on the light receiving surface and the back surface. Of two adjacent solar cells, a bus bar electrode provided on one light receiving surface and a bus bar electrode provided on the other back surface are connected by an interconnector.
  • the present disclosure has been made in view of the above problems, and an object thereof is to further improve the productivity of the daylighting type solar cell module.
  • the solar cell module according to the present disclosure is provided on the first solar cell extending in the first direction and the light receiving surface side of the first solar cell, and extends in the first direction.
  • a first light-receiving surface-side collecting electrode and a first light-receiving surface connected to one end of the first light-receiving-surface-side collecting electrode and extending in a direction intersecting the first direction in the light-receiving surface A side connection electrode and an interconnector connected to the first light receiving surface side connection electrode.
  • the first solar cell is provided on a semiconductor substrate, the light receiving surface side of the semiconductor substrate, and a semiconductor film having a conductivity type opposite to that of the semiconductor substrate;
  • the side surface disposed between the light receiving surface and the back surface and extending in the first direction, the laser processing region disposed on the side surface and formed by laser processing, and the side surface, the laser processing region more than the laser processing region
  • a width of the laser processing region in a direction perpendicular to the light receiving surface is equal to the thickness of the first solar cell. It is good also as a structure which is 40% or less.
  • the first solar cell is provided on a semiconductor substrate and the light receiving surface side of the semiconductor substrate, and has a conductivity type opposite to that of the semiconductor substrate.
  • the side surface disposed between the light receiving surface and the back surface and extending in the first direction, the back surface region disposed on the side surface and having the first surface roughness, and the side surface, A light receiving surface side region that is disposed closer to the light receiving surface than the back surface side region and has a second surface roughness smaller than the first surface roughness, and the back surface in a direction perpendicular to the light receiving surface
  • the width of the side region may be 40% or less of the thickness of the first solar battery cell.
  • the first solar cell constitutes an outer shape of the first solar cell as viewed from the light receiving surface side, and the first solar cell A first side extending in the direction may be provided, and an end portion of the first light receiving surface side connection electrode may overlap with the first side when viewed from the light receiving surface side.
  • the first solar cell constitutes an outer shape of the first solar cell as viewed from the light receiving surface side, and the first solar cell A first side extending in a direction and an outer shape of the first solar cell as viewed from the light receiving surface side, and a second direction extending in a second direction orthogonal to the first direction on the light receiving surface. And a value obtained by dividing the length of the first side by the length of the second side is more than 5 and less than 100.
  • the solar cell module in (1) to (5) above is provided on the back surface side of the first solar battery cell, and the first back surface side collecting electrode extending in the first direction;
  • a first back-side connection electrode connected to the other end side of the first back-side current collecting electrode and extending in a direction intersecting the first direction on the back side; It is good also as a structure arrange
  • the first solar cell constitutes an outer shape of the first solar cell when viewed from the back surface side, and extends in the first direction. It is good also as a structure which has 3 edge
  • the interconnector may be colored in the same color as the color of the first solar cell.
  • the solar cell module in the above (7) to (8) is provided on the second solar cell extending in the first direction and on the back side of the second solar cell, and the first A second back side current collecting electrode extending in the direction of the second side, and connected to the other end side of the second back side current collecting electrode, and extending in a direction intersecting the first direction in plan view, It is good also as a structure further including the 2nd back surface side connection electrode connected with the connector.
  • the light receiving surface side of the first solar battery cell intersects the first direction other than the first light receiving surface side connection electrode. It is good also as a structure without the electrode extended
  • the solar cell module according to (9) is an electrode extending in a direction intersecting the first direction on the back side of the second solar battery cell, in addition to the second back side connection electrode. It is good also as a structure which does not exist.
  • a glass building material of the present disclosure includes a window frame, a window glass disposed on the inner peripheral side of the window frame, and the solar cell module according to any one of (1) to (11) above, Electrically connecting the solar cell module, the second solar cell module arranged side by side in a direction intersecting the first direction, the solar cell module, and the second solar cell module; Wiring extending in a direction intersecting the first direction, and the solar cell module and the second solar cell module are arranged so as to overlap the window glass as viewed from the light receiving surface side, The wiring is arranged so as to overlap the window frame when viewed from the light receiving surface side.
  • the first light receiving surface side current collecting electrode and the second light receiving electrode A gap between the light receiving surface side collector electrode and the semiconductor substrate along the dividing line extending in the first direction.
  • the semiconductor substrate is bent along the dividing line, and the first light receiving surface side Forming a first solar cell having a current collecting electrode and a second solar cell having the second light receiving surface side current collecting electrode.
  • the depth of the groove in the direction perpendicular to the light receiving surface is the first solar cell. It is good also as a manufacturing method which is 40% or less of the thickness.
  • the method for extending the first direction toward the back side of the semiconductor substrate is performed before the step of irradiating with the laser light.
  • the first light-receiving surface side collecting electrode and the second back surface collecting electrode are disposed after the bending cutting step.
  • the manufacturing method may further include a step of connecting with an interconnector.
  • the method for manufacturing a solar cell module according to (16) may be a method further including a step of coloring the interconnector to a color similar to the color of the first solar cell.
  • FIG. 1 is a schematic plan view showing the light receiving surface side of the solar cell module according to the first embodiment.
  • FIG. 2 is a schematic plan view showing the back side of the solar cell module according to the first embodiment.
  • FIG. 3 is a schematic plan view showing the light receiving surface side of the solar cell module according to the first embodiment.
  • FIG. 4 is a schematic view showing a side surface of the solar cell module according to the first embodiment.
  • FIG. 5 is a schematic plan view showing the glass building material according to the first embodiment.
  • FIG. 6 is a schematic side view in which the portion A in FIG. 4 is enlarged.
  • FIG. 7 is a schematic side view in which part A of FIG. 4 is enlarged.
  • FIG. 8 is a plan view showing the light-receiving surface side of a rectangular solar cell used in the method for manufacturing a solar cell module according to the first embodiment.
  • FIG. 9 is a plan view showing the back side of a rectangular solar battery cell used in the method for manufacturing a solar battery module in the first embodiment.
  • FIG. 10 is a flowchart showing a method for manufacturing the solar cell module according to the first embodiment.
  • FIG. 1 is a schematic plan view showing the light receiving surface side of the solar cell module 100 according to the present embodiment.
  • the solar battery cell 10 has a shape extending in the first direction.
  • the long side extending in the first direction and the second side orthogonal to the first direction in the light receiving surface. It has a substantially rectangular shape having a short side extending in the direction.
  • the light receiving surface side collector electrode 12 extending in the first direction is disposed on the light receiving surface side of the solar battery cell 10 and plays a role of collecting carriers generated by photoelectric conversion in the solar battery cell 10.
  • the light receiving surface side collecting electrode 12 in the present embodiment is configured to include two finger electrodes.
  • the side connection electrode 14 is disposed and electrically connected to the light receiving surface side collecting electrode 12.
  • the light receiving surface side connection electrode 14 is an electrode for electrical connection with another solar battery cell, and is an electrode directly connected to the interconnector 21.
  • the extending direction of the light-receiving surface side connection electrode 14 is not necessarily orthogonal to the first direction.
  • the light receiving surface side connection electrode 14 may be connected to one end side of the light receiving surface side current collecting electrode 12, and is not necessarily connected to the end portion of the light receiving surface side current collecting electrode 12. In the present disclosure, if the light receiving surface side connection electrode 14 is disposed within the range of less than 10% of the length of the light receiving surface side current collecting electrode 12 from the end of the light receiving surface side current collecting electrode 12, It is assumed that the light receiving surface side collecting electrode 12 is disposed on one end side.
  • the interconnector 21 is connected to the entire light receiving surface side collecting electrode 12, when the position of the interconnector 21 is shifted, the interconnector 21 and the light receiving surface side collecting electrode 12 are not connected.
  • the interconnector 21 creates a shadow on the light receiving surface side of the solar battery cell 10 and lowers the conversion efficiency.
  • the presence of the interconnector 21 creates a shadow on the light receiving surface side of the solar battery cell 10. Can reduce the risk.
  • the light-receiving surface side connection electrode 14 extends to the long side of the solar battery cell 10. That is, the end portion of the light receiving surface side connection electrode 14 has a first side extending in the first direction among the sides constituting the outer shape of the solar battery cell 10 when viewed from the light receiving surface side, and the light receiving surface side. It is configured to overlap as seen. With such a configuration, the contact area between the light receiving surface side connection electrode 14 and the interconnector 21 is ensured, and high-precision position control is not required, thereby further improving productivity. That is, even if the position of the interconnector 21 is shifted in the second direction orthogonal to the first direction, the light receiving surface side connection electrode 14 extends to the long side of the solar battery cell 10. By setting it as a structure, the contact area of the electrode 14 for light-receiving surface side connection and the interconnector 21 can be ensured.
  • FIG. 2 is a schematic plan view showing the back side of the solar cell module 100 according to the present embodiment.
  • a back side current collecting electrode 16 extending in the first direction is disposed, and plays a role of collecting carriers generated by photoelectric conversion in the solar cell 10.
  • the back surface side collecting electrode 16 in the present embodiment is configured to include two finger electrodes.
  • the other end side (the left end side in the example shown in FIG. 2) of the back surface side collecting electrode 16 on the back surface side of the solar battery cell 10 is connected to the back surface side that extends in the direction intersecting the first direction.
  • the electrode 18 is disposed and is electrically connected to the back side collecting electrode 16.
  • the back surface side connection electrode 18 is an electrode for electrical connection with other solar cells, and is an electrode directly connected to the interconnector 21.
  • the light receiving surface side collecting electrode 12 is arranged on one end side of the solar battery cell 10 (right end side in the example shown in FIG. 1).
  • the back surface side connection electrode 18 is arranged on the other end side of the solar battery cell 10 (the left end side in the example shown in FIG. 2), The electric electrode 12 and the back surface side connection electrode 18 are arranged at positions that do not face each other with the solar battery cell 10 interposed therebetween.
  • the extending direction of the back surface side connection electrode 18 is not necessarily orthogonal to the first direction. Further, the back surface side connection electrode 18 may be connected to the other end side of the back surface side collecting electrode 16, and is not necessarily connected to the end portion of the back surface side collecting electrode 16. In the present disclosure, if the back surface side connection electrode 18 is disposed within the range of less than 10% of the length of the back surface side current collecting electrode 16 from the end portion of the back surface side current collecting electrode 16, It is assumed that the collector electrode 16 is disposed on the other end side.
  • the back surface side connection electrode 18 extends to the long side of the solar battery cell 10. That is, the end portion of the back surface side connection electrode 18 overlaps with the third side extending in the first direction among the sides constituting the outer shape of the solar battery cell 10 when viewed from the back surface side and viewed from the back surface side. It is configured to do. With such a configuration, the contact area between the back-side connection electrode 18 and the interconnector 21 is ensured, and high-precision position control is not required, thereby further improving productivity. That is, even when the position of the interconnector 21 is shifted in the second direction orthogonal to the first direction, the back surface side connection electrode 18 extends to the long side of the solar battery cell 10. By doing, the contact area of the electrode 18 for back side connection and the interconnector 21 can be ensured.
  • FIG. 3 is a schematic plan view showing the light receiving surface side of the solar cell module 100 according to the present embodiment.
  • FIG. 4 is a schematic diagram showing a side surface of the solar cell module 100 according to the present embodiment.
  • the solar cell module 100 includes a first solar cell 10A and a second solar cell 10B.
  • the first solar cell 10A and the second solar cell 10B are respectively It is configured to be connected on the short side. That is, the first solar cell 10A and the second solar cell 10B are arranged side by side so that their long sides extend in the first direction, and are electrically connected to each other on the short side. It is the composition which becomes.
  • the first light receiving surface side collecting electrode 12 ⁇ / b> A extending in the first direction is disposed on the light receiving surface side of the first solar cell 10 ⁇ / b> A.
  • the first light receiving surface side of the first light receiving surface side collecting electrode 12A (the right end side in the example shown in FIG. 4) extends in the direction intersecting the first direction in the light receiving surface.
  • a connection electrode 14A is disposed and is electrically connected to the first light receiving surface side collector electrode 12A.
  • a first back surface side collecting electrode 16A extending in the first direction is disposed on the back surface side of the first solar battery cell 10A, and the other end side of the first back surface side collecting electrode 16A (see FIG. In the example shown in FIG. 4, the first back surface side connection electrode 18A extending in the direction intersecting the first direction in the back surface is disposed on the left end side).
  • the first light receiving surface side connection electrode 14A provided in the first solar cell 10A is one end side on the light receiving surface side of the first solar cell 10A (example shown in FIG. 4).
  • the first back surface side connection electrode 18A is disposed on the other end side (the left end side in the example shown in FIG. 4) on the back surface side of the first solar cell 10A. . That is, the first light receiving surface side connection electrode 14A and the first back surface side connection electrode 18A are configured not to face each other through the first solar battery cell 10A.
  • the second light receiving surface side collector electrode 12 ⁇ / b> B extending in the first direction is formed on the light receiving surface side of the second solar cell 10 ⁇ / b> B. Is arranged on one end side (right end side in the example shown in FIG. 4) of the second light receiving surface side collecting electrode 12B and extends in a direction intersecting the first direction in the light receiving surface.
  • a surface-side connection electrode 14B is disposed and electrically connected to the second light-receiving surface-side collector electrode 12B.
  • a second back surface side collecting electrode 16B extending in the first direction is disposed on the back surface side of the second solar battery cell 10B, and the other end side of the second back surface side collecting electrode 16B (see FIG. In the example shown in FIG. 4, the second back surface side connection electrode 18B extending in the direction intersecting the first direction in the back surface is disposed on the left end side).
  • the second light receiving surface side connection electrode 14B provided in the second solar cell 10B is one end side on the light receiving surface side of the second solar cell 10B (example shown in FIG. 4).
  • the second back surface side connection electrode 18B is disposed on the other end side (the left end side in the example shown in FIG. 4) on the back surface side of the second solar cell 10B. . That is, the second light receiving surface side connection electrode 14B and the second back surface side connection electrode 18B are configured not to face each other with the second solar battery cell 10B interposed therebetween.
  • an interconnector 21 is disposed between the first solar cell 10A and the second solar cell 10B.
  • the interconnector 21 is electrically connected to the first light receiving surface side connection electrode 14A on the light receiving surface side of the first solar cell 10A, and the side surface of the first solar cell 10A and the second solar cell. It is routed to the back surface side of the second solar battery cell 10B via the space between the side surfaces of the cell 10B.
  • the interconnector 21 is electrically connected to the second back surface side connection electrode 18B on the back surface side of the second solar battery cell 10B.
  • the interconnector 21 is formed using a material having high conductivity such as copper.
  • the productivity of the solar cell module 100 in which the shapes of the first solar cell 10A and the second solar cell 10B are extended in the first direction, which is the connection direction of both, is achieved. Further improvement can be realized. That is, according to the above configuration, since the interconnector 21 is connected to the first light receiving surface side connection electrode 14A and the second back surface side connection electrode 18B, the interconnector 21 is connected to the first light receiving surface. There is no need to connect to the entire surface-side collector electrode 12A and the second back-side collector electrode 16B, and highly accurate position control is not required. As a result, further improvement in productivity can be realized.
  • the first light receiving surface side connection electrode 14A and the second back surface side connection electrode 18B extend in a direction intersecting the first direction, the position of the interconnector 21 is in the first direction. Even if it deviates in the intersecting direction, it is possible to connect to the first light receiving surface side connection electrode 14A and the second back surface side connection electrode 18. Therefore, further improvement in productivity can be realized.
  • the first solar battery cell 10A and the second solar battery cell 10B have a shape extending in the first direction that is the connection direction as in the present embodiment, the first light receiving surface side current collection is performed.
  • the electrode 12A and the second back side collecting electrode 16B are also configured to extend in the first direction.
  • the interconnector 21 is connected to the entire first light receiving surface side collecting electrode 12A, when the position of the interconnector 21 is shifted, the interconnector 21 and the first light receiving surface side are connected. Not only is the contact area with the current collecting electrode 12A not guaranteed and the contact resistance increases, but also the interconnector 21 creates a shadow on the light receiving surface side of the first solar cell 10A, resulting in conversion efficiency. However, in the configuration of the present disclosure, it is not necessary to provide the interconnector 21 over the entire first light receiving surface side collecting electrode 12A. The risk of creating a shadow on the light receiving surface side of one solar battery cell 10A can be reduced.
  • the first light receiving surface side connection electrode 14A extends to the long side of the first solar cell 10A
  • the second back surface side connection electrode 18B is the second solar cell. It is set as the structure extended even to the long side of 10B. That is, the first side of the first light receiving surface side connection electrode 14A extending in the first direction among the sides constituting the outer shape of the first solar cell 10A when viewed from the light receiving surface side. And the end portion of the second back surface side connection electrode 18B as viewed from the light receiving surface side, the side constituting the outer shape of the second solar battery cell 10B as viewed from the light receiving surface side, The first side extending in the first direction overlaps the first side when viewed from the back side.
  • the contact area between the first light receiving surface side connection electrode 14A and the second back surface side connection electrode 18B and the interconnector 21 is secured, and highly accurate position control is performed. Can be eliminated, and the productivity can be further improved. That is, even when the position of the interconnector 21 is shifted in the second direction orthogonal to the first direction, the first light receiving surface side connection electrode 14A and the second back surface side connection electrode The contact area between 18B and the interconnector 21 can be secured.
  • FIGS. 6 and 7 are schematic side views in which the portion A in FIG. 4 is enlarged, and each shows an example of a side surface extending in the first direction in the solar battery cell of the present embodiment.
  • the first solar cell 10 ⁇ / b> A includes a semiconductor substrate 50 and a first semiconductor layer 52 that is provided on the light receiving surface side of the semiconductor substrate 50 and has a reverse conductivity type.
  • an n-type single crystal silicon substrate is used as the semiconductor substrate 50, and a first semiconductor having a conductivity type opposite to that of the n-type single crystal silicon substrate is provided on the light receiving surface side of the n-type single crystal silicon substrate.
  • a p-type amorphous silicon layer is formed as the layer 52.
  • a first i-type amorphous silicon layer 51 is provided between the semiconductor substrate 50 and the first semiconductor layer 52, and the light receiving surface side of the first semiconductor layer 52 is further increased.
  • a first transparent electrode layer 53 is provided.
  • a second i-type amorphous silicon layer 54, a second semiconductor layer 55 of the same conductivity type as the semiconductor substrate 50, and a second transparent conductive layer 56 are provided in this order.
  • an n-type amorphous silicon layer is used as the second semiconductor layer 55.
  • the thickness of the semiconductor substrate 50 is, for example, about 200 ⁇ m, and the first i-type amorphous silicon layer 51, the first semiconductor layer 52, the second i-type amorphous silicon layer 54, and the second
  • the film thickness of the semiconductor layer 55 is, for example, less than 0.01 ⁇ m, and the film thicknesses of the first transparent electrode layer 53 and the second transparent conductive layer 56 are, for example, about 0.1 ⁇ m. Therefore, the film thickness of the semiconductor substrate 50 occupies most of the film thickness of the first solar cell 10A, and the PN junction formed by the semiconductor substrate 50 and the first semiconductor layer 52 is It is formed in a small area on the light receiving surface side.
  • the side surface extended in the 1st direction in the 1st photovoltaic cell 10A is the laser processing field 60 formed by laser processing, and bending cutting. And a bent cutting region 62 formed.
  • the laser processing region 60 is disposed closer to the back surface than the bending cutting region 62, and the bending cutting region 62 is disposed closer to the light receiving surface than the laser processing region 60.
  • the width of the laser processing region 60 in the direction perpendicular to the light receiving surface, that is, the stacking direction is set to 40% or less of the thickness of the first solar cell 10A.
  • the laser processing region 60 has a first surface roughness
  • the bent cutting region 62 has a second surface roughness
  • the second surface roughness is higher than the first surface roughness. It has a small configuration. That is, the surface roughness of the bent cutting region 62 is smaller than the surface roughness of the laser processing region 60.
  • a p-type single crystal silicon substrate is used as the semiconductor substrate 50 ⁇ / b> A, and a first conductive layer having a conductivity type opposite to that of the p-type single crystal silicon substrate is provided on the light receiving surface side of the p-type single crystal silicon substrate.
  • An n-type crystalline silicon layer is formed as the semiconductor layer 52A.
  • an insulating film 58 having an opening is provided on the light receiving surface side of the first semiconductor layer 52A, and the first light receiving surface side collector is provided through the opening.
  • the electric electrode 12A is connected to the first semiconductor layer 52A.
  • a p + -type crystalline silicon layer is provided as a second semiconductor layer 55A of the same conductivity type as the semiconductor substrate 50.
  • the side surface extending in the first direction in the first solar battery cell 10 ⁇ / b> A has a laser processing region 60 formed by laser processing and a bending cutting region 62 formed by bending cutting. And having.
  • the laser processing region 60 is disposed on the back surface side, and the bent cutting region 62 is disposed on the light receiving surface side.
  • the width of the laser processing region 60 in the direction perpendicular to the light receiving surface, that is, the stacking direction is set to 40% or less of the thickness of the first solar cell 10A.
  • the second solar cell 10B also has the same configuration as the above-described first solar cell 10A.
  • the solar cell 10 (the first solar cell 10A, the second solar cell 10B) constitutes its outer shape and extends in the first direction (long side). Side) and a second side (short side) extending in a second direction orthogonal to the first direction in the light receiving surface, and the length of the long side is the length of the short side
  • the divided value is greater than 5 and less than 100.
  • the present disclosure is configured such that the value obtained by dividing the length of the first side extending in the first direction by the length of the second side extending in the second direction exceeds 5.
  • a blind tone design can be obtained, which is preferable from the viewpoint of design.
  • the value obtained by dividing the length of the first side extending in the first direction by the length of the second side extending in the second direction is less than 100. That is, the mechanical strength of the solar battery cell 10 can be ensured by adopting a configuration in which the solar battery cell 10 is not too long.
  • this embodiment has a configuration in which the value obtained by dividing the length of the long side by the length of the short side exceeds 5, the solar cell 10 (first solar cell 10A, second solar cell) In the light receiving surface side and the back surface side of the cell 10B), in addition to the light receiving surface side connection electrode 14 and the back surface side connection electrode 18, there is adopted a configuration in which there is no electrode extending in the direction intersecting the first direction.
  • the connection electrode 18 since the value obtained by dividing the length of the long side by the length of the short side exceeds 5, the light receiving surface side collecting electrode 12 extending in the first direction which is the long side direction, and the back side Most of the carriers generated in the solar battery cell 10 can be collected by the connection electrode 18. Therefore, it is possible to adopt a configuration in which a current collecting electrode is not provided in a direction intersecting the first direction. As a result, the productivity can be further improved, and it is also preferable from the viewpoint of design.
  • the interconnector 21 is configured to be colored in the same color as the solar battery cell 10 (first solar battery cell 10A, second solar battery cell 10B). With such a configuration, the interconnector 21 does not stand out in the solar cell module 100, which is preferable from the viewpoint of design.
  • FIG. 5 is a schematic plan view showing a glass building material in which the solar cell module 100 shown in the present embodiment is installed in a window.
  • the glass building material 200 includes a window frame 30 and a window glass 32 disposed on the inner peripheral side of the window frame 30.
  • the plurality of solar battery modules 100 are arranged so as to overlap with the window glass 32 when viewed from the light receiving surface side, and each solar battery cell 10 included in the solar battery module 100 extends in the first direction.
  • Each solar battery cell 10 is connected by an interconnector 21.
  • the some solar cell module 100 is arranged side by side in the direction which cross
  • wirings 34 that electrically connect the plurality of solar cell modules 100 are arranged, and the wirings 34 intersect with the first direction. Is included.
  • the wiring 34 extending in the direction intersecting the first direction is overlapped with the window frame 30 so as not to be visually recognized by the user, and in the region visually recognized by the user, the first It is possible to realize a configuration in which only the plurality of solar cell modules 100 that are arranged in the direction that intersects the first direction and that are arranged side by side are exposed. As a result, a plurality of solar cell modules 100 that are electrically connected to each other can be formed on the entire window glass 32, and a blind design can be realized.
  • the light receiving surface side current collecting electrode 12 and the back surface side current collecting electrode 16 exemplify a configuration including two finger electrodes, respectively.
  • the light receiving surface side current collecting electrode 12 and the back surface side current collecting electrode are illustrated.
  • the number of finger electrodes constituting the electrode 16 is not limited to this.
  • the lengths of the long side and the short side of the solar battery cell 10 are not limited to the values described above.
  • the shape of the photovoltaic cell 10 is not limited to a rectangular shape, and may be a parallelogram or other shapes.
  • the solar cell module 100 of the present disclosure may be disposed with the light receiving surface side facing the indoor side, or may be disposed with the light receiving surface side facing the outdoor side.
  • FIG. 8 is a plan view showing a light receiving surface side of a rectangular solar battery cell used in the method for manufacturing a solar battery module in the present embodiment
  • FIG. 9 is a plan view showing a back surface side of the rectangular solar battery cell.
  • FIG. 10 is a flowchart which shows the manufacturing method of the solar cell module in this embodiment.
  • the manufacturing method of the solar cell module in the present embodiment is a rectangular solar cell including the plurality of solar cells 10 (first solar cell 10A, second solar cell 10B) described above.
  • a process S100 for manufacturing the cell 1000 and a process S200 for dividing the rectangular solar battery cell 1000 into a plurality of solar battery cells 10 are included.
  • step S100 for manufacturing the rectangular solar battery cell 1000 the step S101 for forming the first semiconductor layer 52, the first light receiving surface side current collecting electrode 12A, and the second light receiving surface side current collecting electrode 12B.
  • Step S102 for forming the light receiving surface side connection electrode 14Z Step S104 for forming the first back side current collecting electrode 16A and the second back side current collecting electrode 16B, and the back side And step S105 of forming the connection electrode 18Z.
  • the first semiconductor layer 52 having a conductivity type opposite to that of the semiconductor substrates 50 and 50A is formed on the light receiving surface side of the semiconductor substrates 50 and 50A described above with reference to FIGS. , 52A.
  • the first semiconductor layers 52 and 52A can be formed by a chemical vapor deposition (CVD) method, for example.
  • CVD chemical vapor deposition
  • step S102 for forming the first light receiving surface side current collecting electrode 12A and the second light receiving surface side current collecting electrode 12B is performed.
  • step S102 of forming the first light receiving surface side current collecting electrode 12A and the second light receiving surface side current collecting electrode 12B the first light receiving surface side of the first semiconductor layer 52 is formed on the first light receiving surface side as shown in FIG.
  • the first light receiving surface side collector electrode 12A and the second light receiving surface side collector electrode 12B extending in the direction are formed.
  • a plurality of light receiving surface side collecting electrodes 12 provided in other solar cells 10 may be formed simultaneously.
  • step S103 for forming the light receiving surface side connection electrode 14 is performed.
  • the first light receiving surface side collecting electrode 12A and the second light receiving surface side collecting electrode 12B are connected to one end side (the right end side in FIG. 8), A light receiving surface side connection electrode 14 extending in a direction intersecting the first direction in plan view is formed.
  • the light receiving surface side connection electrode 14 may be separately formed for each solar battery cell 10 formed in the step S200 that is divided into a plurality of solar battery cells 10 described later.
  • a common light receiving surface side connection electrode 14 ⁇ / b> Z is formed in each solar battery cell 10.
  • the light receiving surface side connection electrode 14Z is disposed in the first light receiving surface side connection electrode 14A and the second solar cell 10B disposed in the first solar cell 10A in a dividing step S200 described later.
  • the second light receiving surface side connection electrode 14 ⁇ / b> B and the other light receiving surface side connection electrode 14 disposed in the solar battery cell 10 are separated.
  • step S104 the step of forming the first back side current collecting electrode 16A and the second back side current collecting electrode 16B on the back side of the semiconductor substrate 50.
  • a first back side current collecting electrode 16A and a second back side current collecting electrode 16B are formed.
  • a plurality of back surface side collecting electrodes 16 provided on other solar cells 10 may be formed simultaneously.
  • step S105 for forming the back side connection electrode 18 is performed.
  • the first back side current collecting electrode 16A and the second back side current collecting electrode 16B are connected to the other end side (the left end side in FIG. 9),
  • the back side connection electrode 18 is formed to extend in a direction intersecting with the direction in plan view.
  • the back surface side connection electrode 18 may be formed separately for each solar battery cell 10 formed in the step S200 for dividing into a plurality of solar battery cells 10 to be described later.
  • the back side connection electrode 18Z common to the solar battery cells 10 is formed.
  • This back surface side connection electrode 18Z is the second back surface side connection electrode 18A and the second solar cell 10B that are disposed in the first solar cell 10A in the dividing step S200 described later.
  • the back surface side connection electrode 18 ⁇ / b> B and the back surface side connection electrode 18 disposed in the other solar battery cell 10 are separated.
  • the front-rear relationship between the step S104 for forming the collecting electrode 16A and the second back side collecting electrode 16B and the step S105 for forming the back side connecting electrode 18Z is not limited.
  • the step S200 for dividing the plurality of solar cells 10 includes a laser irradiation step S201 and a bending step S202.
  • a dividing line CL extending in the first direction is formed between the first light receiving surface side collector electrode 12A and the second light receiving surface side collector electrode 12B.
  • a laser beam is irradiated from the back side of the semiconductor substrate 50 to form a groove.
  • the depth of the groove to be formed is 40% or less of the thickness of the solar battery cell 10.
  • the material which comprises the photovoltaic cell 10 is sublimated, and this sublimated material may adhere to the side surface of the photovoltaic cell 10 exposed from the formed groove
  • channel. is there.
  • the semiconductor material constituting the semiconductor substrate 50 and the metal material constituting the back surface side connection electrode 18 ⁇ / b> Z may be sublimated and adhere to the side surface of the solar battery cell 10.
  • a PN junction is arranged on the light receiving surface side of the solar battery cell 10, and the semiconductor substrate 50 and the first semiconductor layer 52 constituting the PN junction are arranged. The boundary is prevented from being exposed from the groove formed from the back surface side. Therefore, the sublimated material does not adhere to the boundary, and the occurrence of leakage current can be suppressed.
  • laser light is irradiated from the back side of the semiconductor substrate 50 not only along the dividing line CL extending in the first direction but also along the dividing line CL2 extending in the second direction.
  • Grooves are formed. Specifically, on the one end side (right end side in FIG. 8) from the light receiving surface side connection electrode 14Z and the other end side (left end side in FIG. 9) from the back side connection electrode 18Z, the first Also in the parting line CL2 extending in the second direction orthogonal to the direction, a groove is formed by laser light irradiation.
  • the bending step S202 is performed after the laser light irradiation step S201.
  • the semiconductor substrate 50 is bent and cut along the dividing line CL, and the first solar cell 10A having the first light receiving surface side current collecting electrode 12A and the second light receiving surface side current collector. This is a step of forming the second solar battery cell 10B having the electric electrode 12B.
  • process S200 which divides
  • the extending side surface has a laser processing region 60 formed by laser processing and a bending cutting region 62 formed by bending cutting, and the laser processing region 60 is disposed on the back surface side and bending cutting is performed.
  • the region 62 is arranged on the light receiving surface side.
  • the laser processing region 60 has a first surface roughness
  • the bent cutting region 62 has a second surface roughness
  • the second surface roughness is higher than the first surface roughness. It has a small configuration.
  • the depth of the groove to be formed is 40% or less of the thickness of the solar battery cell 10, so that the productivity of the bending step S202 can be improved. That is, when the elongated solar battery cell 10 extending in the first direction as shown in the present disclosure is divided using the bending step S202, even if only a desired dividing line CL is to be bent, another dividing line CL There is also a possibility that stress will be applied and the material will be divided. However, in this embodiment, since the depth of the groove to be formed is 40% or less of the thickness of the solar battery cell 10, it can be bent and divided for each desired dividing line CL. Productivity of the music process S202 can be improved.
  • the step S200 for dividing the rectangular solar cell 1000 into a plurality of solar cells 10 is configured in two stages, a laser light irradiation step S201 and a bending step S202, so that the light receiving surface side connection is performed.
  • a plurality of A method of dividing the light receiving surface side connection electrode 14 and the plurality of back surface side connection electrodes 18 can be employed.
  • the light receiving surface side connection electrode 14Z and the back surface side connection electrode 18Z are configured as described above.
  • the metal material is sublimated and adheres to the side surface of the solar battery cell 10.
  • the laser irradiation step S201 and the bending step S202 are included in two stages, and the semiconductor substrate 50 and the first semiconductor layer 52 that form the PN junction in the laser irradiation step S201 The boundary surface is not exposed from the groove. Therefore, the sublimated material does not adhere to the boundary between the semiconductor substrate 50 forming the PN junction and the first semiconductor layer 52, and the occurrence of leakage current can be suppressed.
  • the plurality of light receiving surface side connection electrodes 14 and the plurality of back surfaces Since the method of dividing into the side connection electrode 18 can be adopted, a configuration in which the light receiving surface side connection electrode 14 and the back surface side connection electrode 18 are extended to the long side of the solar battery cell 10 is realized. Can do. That is, the ends of the light-receiving surface side connection electrode 14 and the back surface side connection electrode 18 have a first side extending in the first direction among the sides constituting the outer shape of the solar battery cell 10, and the back surface side. It is possible to realize a configuration that overlaps when viewed.
  • the contact area of the light receiving surface side connection electrode 14, the back surface side connection electrode 18, and the interconnector 21 is ensured, and highly accurate position control is not required, thereby further improving productivity. be able to. That is, even when the position of the interconnector 21 is shifted in the second direction orthogonal to the first direction, the light receiving surface side connection electrode 14 and the back surface side connection electrode 18 are connected to the solar cell 10. By adopting a configuration that extends to the long side, the contact area between the light receiving surface side connection electrode 14, the back surface side connection electrode 18, and the interconnector 21 can be secured.
  • one end side (right end side in FIG. 8) from the light receiving surface side connection electrode 14Z and the other end side from the back surface side connection electrode 18Z ( On the left end side in FIG. 9, a groove was also formed by laser light irradiation in the dividing line CL2 extending in the second direction orthogonal to the first direction.
  • the dividing line CL2 extending in the second direction is also divided in the bending step S202.
  • the first light receiving surface side connection electrode 14A is arranged on one end side, and on the back surface of the first solar cell 10A, on the other end side.
  • the first back side connection electrode 18A can be arranged.
  • the solar cell module 100 can be manufactured by connecting the back surface side collecting electrode 16 ⁇ / b> B with the interconnector 21.
  • this interconnector 21 may further include the process of coloring this interconnector 21 in the color similar to the color of 10 A of 1st photovoltaic cells.
  • This coloring step may be performed before step S100 for manufacturing rectangular solar cells, or may be performed after step S200 for dividing the solar cells into a plurality of solar cells, and a step for manufacturing rectangular solar cells. You may perform between S100 and process S200 which divides

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本開示に係る太陽電池モジュール(100)は、第1の方向に延伸する第1の太陽電池セル(10)と、前記第1の太陽電池セル(10)の受光面側に設けられ、前記第1の方向に延伸する第1の受光面側集電電極(12)と、前記第1の受光面側集電電極(12)の一端側に接続され、前記受光面内において前記第1の方向と交差する方向に延伸する第1の受光面側接続用電極(14)と、前記第1の受光面側接続用電極(14)に接続されたインターコネクタ(21)と、を含む。

Description

太陽電池モジュール、ガラス建材、及び太陽電池モジュールの製造方法
 本発明は、太陽電池モジュール、ガラス建材、及び太陽電池モジュールの製造方法に関する。
 下記特許文献1には、窓ガラス等に設置することを想定した採光型太陽電池モジュールが開示されている。当該太陽電池モジュールは、一方向に並べられた複数の太陽電池セルを含み、当該太陽電池セルは、接続方向に延伸する2本のバスバー電極を、受光面及び裏面に有する。隣り合う二つの太陽電池セルの内、一方の受光面に設けられたバスバー電極と、他方の裏面に設けられたバスバー電極と、がインターコネクタにより接続されている。
特開2001―339087号公報
 上記従来の構成においては、生産性の更なる向上が課題となっていた。即ち、上記従来の構成においては、インターコネクタとバスバー電極との接触面積を担保する必要があるため、インターコネクタを、上記接続方向に延伸するバスバー電極全体と重畳するように配置する必要があった。そのため、高精度な位置制御が必要となり、生産性の更なる向上が必要となっていた。
 本開示は、上記問題点に鑑みてなされたものであり、その目的は、採光型の太陽電池モジュールにおける更なる生産性の向上を図ることにある。
 (1)本開示に係る太陽電池モジュールは、第1の方向に延伸する第1の太陽電池セルと、前記第1の太陽電池セルの受光面側に設けられ、前記第1の方向に延伸する第1の受光面側集電電極と、前記第1の受光面側集電電極の一端側に接続され、前記受光面内において前記第1の方向と交差する方向に延伸する第1の受光面側接続用電極と、前記第1の受光面側接続用電極に接続されたインターコネクタと、を含む。
 (2)上記(1)における太陽電池モジュールにおいて、前記第1の太陽電池セルは、半導体基板と、前記半導体基板の前記受光面側に設けられ、前記半導体基板と逆導電型の半導体膜と、前記受光面と裏面の間に配置され、前記第1の方向に延伸する側面と、前記側面に配置され、レーザ加工によって形成されたレーザ加工領域と、前記側面において、前記レーザ加工領域よりも前記受光面寄りに配置され、折曲切断によって形成された折曲切断領域と、を含み、前記受光面に垂直な方向における、前記レーザ加工領域の幅が、前記第1の太陽電池セルの厚みの40%以下である構成としてもよい。
 (3)上記(1)~(2)における太陽電池モジュールにおいて、前記第1の太陽電池セルは、半導体基板と、前記半導体基板の前記受光面側に設けられ、前記半導体基板と逆導電型の半導体膜と、前記受光面と裏面の間に配置され、前記第1の方向に延伸する側面と、前記側面に配置され、第1の表面粗さを有する裏面側領域と、前記側面において、前記裏面側領域よりも前記受光面寄りに配置され、前記第1の表面粗さよりも小さな第2の表面粗さを有する受光面側領域と、を含み、前記受光面に垂直な方向における、前記裏面側領域の幅が、前記第1の太陽電池セルの厚みの40%以下である構成としてもよい。
 (4)上記(1)~(3)における太陽電池モジュールにおいて、前記第1の太陽電池セルは、前記受光面側から見て前記第1の太陽電池セルの外形を構成し、前記第1の方向に延伸する第1の辺を有し、前記第1の受光面側接続用電極の端部が、前記受光面側から見て、前記第1の辺と重畳する構成としてもよい。
 (5)上記(1)~(4)における太陽電池モジュールにおいて、前記第1の太陽電池セルが、前記受光面側から見て前記第1の太陽電池セルの外形を構成し、前記第1の方向に延伸する第1の辺と、前記受光面側から見て前記第1の太陽電池セルの外形を構成し、前記受光面において前記第1の方向に直交する第2の方向に延伸する第2の辺と、を有し、前記第1の辺の長さを前記第2の辺の長さで割った値が5を超え、且つ100未満である構成としてもよい。
 (6)上記(1)~(5)における太陽電池モジュールは、前記第1の太陽電池セルの裏面側に設けられ、前記第1の方向に延伸する第1の裏面側集電電極と、前記第1の裏面側集電電極の他端側に接続され、前記裏面において前記第1の方向と交差する方向に延伸する第1の裏面側接続用電極と、を更に含み、前記裏面側接続用電極が、前記第1の受光面側接続用電極と前記第1の太陽電池セルを介して対向しないよう配置された構成としてもよい。
 (7)上記(6)における太陽電池モジュールにおいて、前記第1の太陽電池セルは、前記裏面側から見て前記第1の太陽電池セルの外形を構成し、前記第1の方向に延伸する第3の辺を有し、前記第1の裏面側接続用電極の端部が、前記裏面側から見て、前記第3の辺と重畳する構成としてもよい。
 (8)上記(1)~(7)における太陽電池モジュールにおいて、前記インターコネクタが、前記第1の太陽電池セルの色と同系色に着色された構成としてもよい。
 (9)上記(7)~(8)における太陽電池モジュールは、前記第1の方向に延伸する第2の太陽電池セルと、前記第2の太陽電池セルの裏面側に設けられ、前記第1の方向に延伸する第2の裏面側集電電極と、前記第2の裏面側集電電極の他端側に接続され、前記第1の方向に平面視で交差する方向に延伸し、前記インターコネクタと接続された第2の裏面側接続用電極と、を更に含む構成としてもよい。
 (10)上記(1)~(9)における太陽電池モジュールは、前記第1の太陽電池セルの受光面側において、前記第1の受光面側接続用電極以外に、前記第1の方向に交差する方向に延伸する電極が存在しない構成としてもよい。
 (11)上記(9)における太陽電池モジュールは、前記第2の太陽電池セルの裏面側において、前記第2の裏面側接続用電極以外に、前記第1の方向に交差する方向に延伸する電極が存在しない構成としてもよい。
 (12)本開示のガラス建材は、窓枠と、前記窓枠の内周側に配置された窓ガラスと、上記(1)~(11)のいずれか一つに記載の太陽電池モジュールと、前記太陽電池モジュールと、前記第1方向に交差する方向に並べて配置された第2の太陽電池モジュールと、前記太陽電池モジュールと、前記第2の太陽電池モジュールと、を電気的に接続し、前記第1の方向に交差する方向に延伸する配線と、を含み、前記太陽電池モジュールと前記第2の太陽電池モジュールとが、前記受光面側から見て前記窓ガラスと重畳するよう配置され、前記配線が、前記受光面側から見て前記窓枠と重畳するよう配置されている。
 (13)本開示の太陽電池モジュールの製造方法は、半導体基板の受光面側に、前記半導体基板と逆導電型の半導体層を製膜する工程と、前記半導体層を製膜する工程の後で、前記半導体層の受光面側に、第1の方向に延伸する第1の受光面側集電電極、及び第2の受光面側集電電極を含む複数の受光面側集電電極を形成する工程と、前記半導体層を製膜する工程の後で、前記第1の受光面側集電電極、前記第2の受光面側集電電極の一端側に接続され、前記第1の方向に平面視で交差する方向に延伸する受光面側接続用電極を形成する工程と、前記受光面側接続用電極を形成する工程の後で、前記第1の受光面側集電電極と前記第2の受光面側集電電極との間において、前記第1の方向に延伸する分断ラインに沿って、前記半導体基板の裏面側からレーザ光を照射し、溝を形成する工程と、前記レーザ光を照射する工程の後で、前記分断ラインに沿って、前記半導体基板を折曲切断し、前記第1の受光面側集電電極を有する第1の太陽電池セルと、前記第2の受光面側集電電極を有する第2の太陽電池セルと、を形成する工程と、を含む。
 (14)上記(13)に記載の太陽電池モジュールの製造方法は、前記レーザ光を照射する工程において、前記受光面に垂直な方向における、前記溝の深さは、前記第1の太陽電池セルの厚みの40%以下である製造方法としてもよい。
 (15)上記(13)、(14)に記載の太陽電池モジュールの製造方法は、前記レーザ光を照射する工程の前に、前記半導体基板の裏面側に、前記第1の方向に延伸する第1の裏面側集電電極、及び第2の裏面側集電電極を形成する工程と、前記第1の裏面側集電電極、前記第2の裏面側集電電極の他端側に接続され、前記第1の方向に平面視で交差する方向に延伸する裏面側接続用電極を形成する工程と、を更に含み、前記裏面側接続用電極は、前記受光面側接続用電極と前記第1の太陽電池セルを介して対向しないよう配置される製造方法としてもよい。
 (16)上記(15)に記載の太陽電池モジュールの製造方法は、前記折曲切断する工程の後で、前記第1の受光面側集電電極と前記第2の裏面側集電電極とを、インターコネクタにより接続する工程を更に含む製造方法としてもよい。
 (17)上記(16)に記載の太陽電池モジュールの製造方法は、前記インターコネクタを、前記第1の太陽電池セルの色と同系色に着色する工程を更に含む製造方法としてもよい。
図1は第1の実施形態に係る太陽電池モジュールの受光面側を示す模式的な平面図である。 図2は第1の実施形態に係る太陽電池モジュールの裏面側を示す模式的な平面図である。 図3は第1の実施形態に係る太陽電池モジュールの受光面側を示す模式的な平面図である。 図4は第1の実施形態に係る太陽電池モジュールの側面を示す模式図である。 図5は第1の実施形態に係るガラス建材を示す模式的な平面図である。 図6は図4のA部を拡大した模式的な側面図である。 図7は図4のA部を拡大した模式的な側面図である。 図8は第1の本実施形態における太陽電池モジュールの製造方法で用いる矩形の太陽電池セルの受光面側を示す平面図である。 図9は第1の本実施形態における太陽電池モジュールの製造方法で用いる矩形の太陽電池セルの裏面側を示す平面図である。 図10は第1の実施形態における太陽電池モジュールの製造方法を示すフローチャートである。
 本開示の第1の実施形態について、図面を用いて以下に説明する。
[太陽電池モジュール]
 図1は、本実施形態に係る太陽電池モジュール100の受光面側を示す模式的な平面図である。太陽電池セル10は、第1の方向に延伸する形状を有しており、本実施形態においては、第1の方向に延伸する長辺と、受光面内において第1の方向に直交する第2の方向に延伸する短辺と、を有する略長方形状を有している。
 太陽電池セル10の受光面側には、第1の方向に延伸する受光面側集電電極12が配置されており、太陽電池セル10における光電変換により発生したキャリアを集める役割を果たす。本実施形態における受光面側集電電極12は、2本のフィンガー電極を含んで構成されている。
 太陽電池セル10の受光面側における受光面側集電電極12の一端側(図1に示す例では、右端側)には、受光面内において第1の方向と交差する方向に延伸する受光面側接続用電極14が配置され、受光面側集電電極12と電気的に接続されている。当該受光面側接続用電極14は、他の太陽電池セルとの電気的接続を行うための電極であり、インターコネクタ21と直接的に接続される電極である。
 なお、受光面側接続用電極14の延伸方向は、必ずしも第1の方向と直交する必要はない。また、受光面側接続用電極14は、受光面側集電電極12の一端側に接続されていればよく、必ずしも受光面側集電電極12の端部に接続されている必要はない。本開示においては、受光面側集電電極12の端部から、受光面側集電電極12の長さの10%未満の範囲内に受光面側接続用電極14が配置されていれば、それは、受光面側集電電極12の一端側に配置されているものとする。
 このような構成により、太陽電池セル10の形状を、他の太陽電池セルとの接続方向である第1の方向に延伸させた形状とした太陽電池モジュール100の生産性の更なる向上を実現させることが可能となる。即ち、上記構成によれば、インターコネクタ21と受光面側接続用電極14とが接続されるため、インターコネクタ21を受光面側集電電極12の全体に接続する必要がなくなり、高精度な位置制御が不要となる。その結果として、生産性の更なる向上を実現することができる。
 更に、インターコネクタ21を受光面側集電電極12の全体に接続するような場合においては、当該インターコネクタ21の位置がずれた場合には、インターコネクタ21と受光面側集電電極12との接触面積が担保されず、接触抵抗が上がってしまうという課題のみならず、インターコネクタ21が、太陽電池セル10の受光面側に影を作ってしまい、変換効率を低下させてしまう課題があったが、本開示の構成であれば、インターコネクタ21を受光面側集電電極12の全体にわたって設ける必要がないため、インターコネクタ21の存在により、太陽電池セル10の受光面側に影を作ってしまうリスクを低減することができる。
 なお、本実施形態においては、受光面側接続用電極14が、太陽電池セル10の長辺にまで延伸する構成としている。即ち、受光面側接続用電極14の端部が、受光面側から見て太陽電池セル10の外形を構成する辺の内、第1の方向に延伸する第1の辺と、受光面側から見て重畳する構成としている。このような構成とすることにより、受光面側接続用電極14とインターコネクタ21との接触面積を担保するとともに、高精度な位置制御が不要となり、更なる生産性の向上を図ることができる。即ち、インターコネクタ21の位置が、第1の方向に直交する第2の方向にずれるような場合であっても、受光面側接続用電極14が、太陽電池セル10の長辺にまで延伸する構成とすることにより、受光面側接続用電極14とインターコネクタ21との接触面積を担保することができる。
 図2は、本実施形態に係る太陽電池モジュール100の裏面側を示す模式的な平面図である。太陽電池セル10の裏面側には、第1の方向に延伸する裏面側集電電極16が配置されており、太陽電池セル10における光電変換により発生したキャリアを集める役割を果たす。本実施形態における裏面側集電電極16は、2本のフィンガー電極を含んで構成されている。
 太陽電池セル10の裏面側における裏面側集電電極16の他端側(図2に示す例では、左端側)には、裏面内において第1の方向と交差する方向に延伸する裏面側接続用電極18が配置され、裏面側集電電極16と電気的に接続されている。当該裏面側接続用電極18は、他の太陽電池セルとの電気的接続を行うための電極であり、インターコネクタ21と直接的に接続される電極である。
 ここで、図1に示すように、受光面側集電電極12を、太陽電池セル10の一端側(図1に示す例では右端側)に配置している。これに対して、図2に示すように、裏面側接続用電極18を、太陽電池セル10の他端側(図2に示す例では、左端側)に配置しているため、受光面側集電電極12と裏面側接続用電極18とは、太陽電池セル10を介して対向しない位置に配置されている。
 なお、裏面側接続用電極18の延伸方向は、必ずしも第1の方向と直交する必要はない。また、裏面側接続用電極18は、裏面側集電電極16の他端側に接続されていればよく、必ずしも裏面側集電電極16の端部に接続されている必要はない。本開示においては、裏面側集電電極16の端部から、裏面側集電電極16の長さの10%未満の範囲内に裏面側接続用電極18が配置されていれば、それは、裏面側集電電極16の他端側に配置されているものとする。
 なお、本実施形態においては、裏面側接続用電極18が、太陽電池セル10の長辺にまで延伸する構成としている。即ち、裏面側接続用電極18の端部が、裏面側から見て太陽電池セル10の外形を構成する辺の内、第1の方向に延伸する第3の辺と、裏面側から見て重畳する構成としている。このような構成とすることにより、裏面側接続用電極18とインターコネクタ21との接触面積を担保するとともに、高精度な位置制御が不要となり、更なる生産性の向上を図ることができる。即ち、インターコネクタ21の位置が、第1の方向に直交する第2の方向にずれるような場合であっても、裏面側接続用電極18が、太陽電池セル10の長辺にまで延伸する構成とすることにより、裏面側接続用電極18とインターコネクタ21との接触面積を担保することができる。
 図3は、本実施形態に係る太陽電池モジュール100の受光面側を示す模式的な平面図である。図4は、本実施形態に係る太陽電池モジュール100の側面を示す模式図である。以下、図3、4を用いて、本実施形態に係る太陽電池モジュール100の構成について説明する。
 本実施形態において太陽電池モジュール100は、第1の太陽電池セル10A、第2の太陽電池セル10Bと、を含み、第1の太陽電池セル10Aと第2の太陽電池セル10Bとは、それぞれの短辺側において接続される構成となっている。即ち、第1の太陽電池セル10Aと第2の太陽電池セル10Bとは、それぞれの長辺が、第1の方向に延伸するように並べて配置され、その短辺側において互いに電気的に接続される構成となっている。
 図1、2を用いて上述した太陽電池セル10と同様に、第1の太陽電池セル10Aの受光面側には、第1の方向に延伸する第1の受光面側集電電極12Aが配置され、第1の受光面側集電電極12Aの一端側(図4に示す例では、右端側)には、受光面内において第1の方向と交差する方向に延伸する第1の受光面側接続用電極14Aが配置され、第1の受光面側集電電極12Aと電気的に接続されている。また、第1の太陽電池セル10Aの裏面側には、第1の方向に延伸する第1の裏面側集電電極16Aが配置され、第1の裏面側集電電極16Aの他端側(図4に示す例では、左端側)には、裏面内において第1の方向と交差する方向に延伸する第1の裏面側接続用電極18Aが配置されている。
 図4に示すように、第1の太陽電池セル10Aに設けられた第1の受光面側接続用電極14Aは、第1の太陽電池セル10Aの受光面側における一端側(図4に示す例では右端側)に配置されており、第1の裏面側接続用電極18Aは、第1の太陽電池セル10Aの裏面側における他端側(図4に示す例では左端側)に配置されている。即ち、第1の受光面側接続用電極14Aと第1の裏面側接続用電極18Aとは、第1の太陽電池セル10Aを介して互いに対向しない構成となっている。
 また、図1、2を用いて上述した太陽電池セル10と同様に、第2の太陽電池セル10Bの受光面側には、第1の方向に延伸する第2の受光面側集電電極12Bが配置され、第2の受光面側集電電極12Bの一端側(図4に示す例では、右端側)には、受光面内において第1の方向と交差する方向に延伸する第2の受光面側接続用電極14Bが配置され、第2の受光面側集電電極12Bと電気的に接続されている。また、第2の太陽電池セル10Bの裏面側には、第1の方向に延伸する第2の裏面側集電電極16Bが配置され、第2の裏面側集電電極16Bの他端側(図4に示す例では、左端側)には、裏面内において第1の方向と交差する方向に延伸する第2の裏面側接続用電極18Bが配置されている。
 図4に示すように、第2の太陽電池セル10Bに設けられた第2の受光面側接続用電極14Bは、第2の太陽電池セル10Bの受光面側における一端側(図4に示す例では右端側)に配置されており、第2の裏面側接続用電極18Bは、第2の太陽電池セル10Bの裏面側における他端側(図4に示す例では左端側)に配置されている。即ち、第2の受光面側接続用電極14Bと第2の裏面側接続用電極18Bとは、第2の太陽電池セル10Bを介して互いに対向しない構成となっている。
 図3、4に示すように、第1の太陽電池セル10Aと第2の太陽電池セル10Bとの間には、インターコネクタ21が配置されている。インターコネクタ21は、第1の太陽電池セル10Aの受光面側において、第1の受光面側接続用電極14Aに電気的に接続され、第1の太陽電池セル10Aの側面と第2の太陽電池セル10Bの側面との間を経由し、第2の太陽電池セル10Bの裏面側に引き回されている。インターコネクタ21は、第2の太陽電池セル10Bの裏面側において、第2の裏面側接続用電極18Bに電気的に接続される。本実施形態においては、このインターコネクタ21は、銅などの高い導電率を有する材料を用いて形成している。
 このような構成により、第1の太陽電池セル10A、第2の太陽電池セル10Bの形状を、両者の接続方向である第1の方向に延伸させた形状とした太陽電池モジュール100の生産性の更なる向上を実現させることが可能となる。即ち、上記構成によれば、インターコネクタ21と、第1の受光面側接続用電極14A、及び第2の裏面側接続用電極18Bとが接続されるため、インターコネクタ21を、第1の受光面側集電電極12A、及び第2の裏面側集電電極16Bの全体に接続する必要がなくなり、高精度な位置制御が不要となる。その結果として、生産性の更なる向上を実現することができる。また、第1の受光面側接続用電極14A、及び第2の裏面側接続用電極18Bが、第1の方向に交差する方向に延伸するため、インターコネクタ21の位置が、第1の方向に交差する方向にずれても、第1の受光面側接続用電極14A、及び第2の裏面側接続用電極18と接続することが可能となる。そのため、生産性の更なる向上を実現することができる。特に、本実施形態のように、第1の太陽電池セル10A、第2の太陽電池セル10Bが、接続方向である第1の方向に延伸する形状である場合、第1の受光面側集電電極12A、及び第2の裏面側集電電極16Bも第1の方向に延伸する構成となる。そのため、当該第1の受光面側集電電極12A、及び第2の裏面側集電電極16B全体にインターコネクタ21を接続するためには、より高精度な位置制御が必要になるが、上記構成とすることにより、このような高精度な位置制御が不要となり、生産性の更なる向上を実現することができる。
 更に、インターコネクタ21を第1の受光面側集電電極12Aの全体に接続するような場合においては、当該インターコネクタ21の位置がずれた場合には、インターコネクタ21と第1の受光面側集電電極12Aとの接触面積が担保されず、接触抵抗が上がってしまうという課題のみならず、インターコネクタ21が、第1の太陽電池セル10Aの受光面側に影を作ってしまい、変換効率を低下させてしまう課題があったが、本開示の構成であれば、インターコネクタ21を第1の受光面側集電電極12Aの全体にわたって設ける必要がないため、インターコネクタ21の存在により、第1の太陽電池セル10Aの受光面側に影を作ってしまうリスクを低減することができる。
 また、本実施形態においては、第1の受光面側接続用電極14Aが第1の太陽電池セル10Aの長辺にまで延伸し、第2の裏面側接続用電極18Bが第2の太陽電池セル10Bの長辺にまで延伸する構成としている。即ち、第1の受光面側接続用電極14Aの端部が、受光面側から見て第1の太陽電池セル10Aの外形を構成する辺の内、第1の方向に延伸する第1の辺と受光面側から見て重畳する構成とするとともに、第2の裏面側接続用電極18Bの端部が、受光面側から見て第2の太陽電池セル10Bの外形を構成する辺の内、第1の方向に延伸する第1の辺と、裏面側から見て重畳する構成としている。このような構成とすることにより、第1の受光面側接続用電極14A、及び第2の裏面側接続用電極18Bと、インターコネクタ21と、の接触面積を担保するとともに、高精度な位置制御が不要となり、更なる生産性の向上を図ることができる。即ち、インターコネクタ21の位置が、第1の方向に直交する第2の方向にずれるような場合であっても、第1の受光面側接続用電極14A、及び第2の裏面側接続用電極18Bと、インターコネクタ21と、の接触面積を担保することができる。
 図6、7は、図4のA部を拡大した模式的な側面図であり、それぞれ本実施形態の太陽電池セルにおける第1の方向に延伸する側面の一例を示す。
 第1の太陽電池セル10Aは、半導体基板50と、半導体基板50の受光面側に設けられ、半導体基板50と逆導電型の第1の半導体層52と、を有する。図6に示す例では、半導体基板50としてn型単結晶シリコン基板を用いており、このn型単結晶シリコン基板の受光面側に、n型単結晶シリコン基板と逆導電型の第1の半導体層52としてのp型アモルファスシリコン層を形成している。更に、図6に示す例においては、半導体基板50と第1の半導体層52との間に、第1のi型アモルファスシリコン層51を設けており、第1の半導体層52の更に受光面側においては、第1の透明電極層53を設けている。半導体基板50の裏面側には、第2のi型アモルファスシリコン層54、半導体基板50と同導電型の第2の半導体層55、及び第2の透明導電層56を、この順に設けている。第2の半導体層55としては、例えばn型アモルファスシリコン層を用いる。
 本実施形態において、半導体基板50の膜厚は、例えば200μm程度であり、第1のi型アモルファスシリコン層51、第1の半導体層52、第2のi型アモルファスシリコン層54、及び第2の半導体層55の膜厚は、例えば0.01μm未満、第1の透明電極層53、第2の透明導電層56の膜厚は、例えば0.1μm程度としている。そのため、半導体基板50の膜厚が、第1の太陽電池セル10Aの膜厚の大部分を占める構成となっており、半導体基板50と第1の半導体層52とで形成されるPN接合は、受光面側のわずかな領域において形成されることとなる。
 詳しくは、太陽電池モジュールの製造方法の欄で後述するが、第1の太陽電池セル10Aにおける第1の方向に延伸する側面は、レーザ加工によって形成されたレーザ加工領域60と、折曲切断によって形成された折曲切断領域62と、を有する。レーザ加工領域60は、折曲切断領域62よりも裏面寄りに配置され、折曲切断領域62は、レーザ加工領域60よりも受光面寄りに配置されている。本実施形態において、受光面に垂直な方向、即ち積層方向におけるレーザ加工領域60の幅は、第1の太陽電池セル10Aの厚みの40%以下としている。
 レーザ加工領域60は、第1の表面粗さを有し、折曲切断領域62は、第2の表面粗さを有しており、第2の表面粗さが、第1の表面粗さよりも小さい構成としている。即ち、折曲切断領域62の表面粗さが、レーザ加工領域60の表面粗さよりも小さい構成となっている。
 図7に示す例においては、半導体基板50Aとしてp型単結晶シリコン基板を用いており、このp型単結晶シリコン基板の受光面側に、p型単結晶シリコン基板と逆導電型の第1の半導体層52Aとしてのn型結晶シリコン層を形成している。更に、図7に示す例においては、第1の半導体層52Aの更に受光面側においては、開口部を有する絶縁膜58を設けており、当該開口部を介して、第1の受光面側集電電極12Aが第1の半導体層52Aと接続されている。半導体基板50Aの裏面側には、半導体基板50と同導電型の第2の半導体層55Aとして、p+型結晶シリコン層を設けている。
 図7に示す例においても、第1の太陽電池セル10Aにおける第1の方向に延伸する側面は、レーザ加工によって形成されたレーザ加工領域60と、折曲切断によって形成された折曲切断領域62と、を有する。レーザ加工領域60は、裏面側に配置され、折曲切断領域62は、受光面側に配置されている。本実施形態において、受光面に垂直な方向、即ち積層方向におけるレーザ加工領域60の幅は、第1の太陽電池セル10Aの厚みの40%以下としている。
 なお、本実施形態においては、第2の太陽電池セル10Bも、上述した第1の太陽電池セル10Aと同様の構成を有する。
 なお、本実施形態においては、太陽電池セル10(第1の太陽電池セル10A、第2の太陽電池セル10B)が、その外形を構成し、第1の方向に延伸する第1の辺(長辺)と、受光面内において第1の方向に直交する第2の方向に延伸する第2の辺(短辺)と、を有し、この長辺の長さを、短辺の長さで割った値が5を超え、且つ100未満となる構成としている。
 このように、第1の方向に延伸する第1の辺の長さを、第2の方向に延伸する第2の辺の長さで割った値が5を超える構成とすることにより、本開示の太陽電池モジュール100を複数本、並走するように配置した場合、ブラインド調のデザインとすることができ、意匠性の観点から好ましい。
 また、第1の方向に延伸する第1の辺の長さを、第2の方向に延伸する第2の辺の長さで割った値が5を超える構成、即ち太陽電池セル10が第1の方向に延伸する細長い構成とすることにより、インターコネクタ21の第2の方向の幅を小さくすることができるため、インターコネクタ21を屈曲させやすく、生産性の観点からも望ましい。
 更に、第1の方向に延伸する第1の辺の長さを、第2の方向に延伸する第2の辺の長さで割った値が100未満であることが望ましい。即ち、太陽電池セル10があまりにも細長くなりすぎない構成とすることにより、太陽電池セル10の機械的強度を担保することができる。
 また、本実施形態が、長辺の長さを、短辺の長さで割った値が5を超える構成としているため、太陽電池セル10(第1の太陽電池セル10A、第2の太陽電池セル10B)の受光面側、及び裏面側において、受光面側接続用電極14、裏面側接続用電極18以外に、第1の方向に交差する方向に延伸する電極が存在しない構成を採用することが可能となる。即ち、長辺の長さを、短辺の長さで割った値が5を超える構成としているため、長辺方向である第1の方向に延伸する受光面側集電電極12、及び裏面側接続用電極18により、太陽電池セル10で発生したキャリアの多くを集めることができる。そのため、別途、第1の方向に交差する方向に集電用の電極を設けない構成を採用することが可能となる。その結果として、更なる生産性の向上を図ることができ、また、意匠性の観点からも好ましい。
 また、本実施形態においては、インターコネクタ21を、太陽電池セル10(第1の太陽電池セル10A、第2の太陽電池セル10B)と同系色に着色する構成としている。このような構成とすることにより、太陽電池モジュール100においてインターコネクタ21が目立たなくなるため、意匠性の観点から好ましい。
 図5は、本実施形態に示した太陽電池モジュール100を窓に設置したガラス建材を示す模式的な平面図である。図5に示すように、ガラス建材200は、窓枠30と、窓枠30の内周側に配置された窓ガラス32と、を有する。複数の太陽電池モジュール100が、その受光面側から見て窓ガラス32と重畳するよう配置しており、太陽電池モジュール100に含まれる各太陽電池セル10は、第1の方向に延伸しており、各太陽電池セル10がインターコネクタ21により接続されている。また、複数の太陽電池モジュール100が第1の方向に交差する方向に、並べて配置されている。
 受光面側から見て、窓枠30と重畳する領域においては、複数の太陽電池モジュール100を電気的に接続する配線34が配置されており、当該配線34は、第1の方向と交差する方向に延伸するものが含まれている。
 このような構成とすることにより、第1の方向に交差する方向に延伸する配線34を窓枠30と重畳させ、ユーザから視認されないよう配置すると共に、ユーザから視認される領域においては、第1の方向に延伸し、第1の方向に交差する方向に並べて配置された複数の太陽電池モジュール100のみが露出される構成を実現することができる。その結果、互いに電気的に接続された複数の太陽電池モジュール100を窓ガラス32全体に形成し、且つブラインド調のデザインを実現することが可能となる。
 なお、本実施形態においては、受光面側集電電極12、裏面側集電電極16が、それぞれ2本のフィンガー電極を含む構成を例示したが、受光面側集電電極12、裏面側集電電極16を構成するフィンガー電極の本数はこれに限定されない。
 また、太陽電池セル10の長辺、短辺の長さは、上述した値に限定されない。また、太陽電池セル10の形状は、長方形状に限定されず、平行四辺形や、その他の形状であっても構わない。
 なお、本開示の太陽電池モジュール100は、その受光面側を室内側に向けて配置してもよく、その受光面側を室外側に向けて配置してもよい。
[太陽電池モジュールの製造方法]
 以下、図8、9、10を用いて、本実施形態における太陽電池モジュールの製造方法を説明する。図8は、本実施形態における太陽電池モジュールの製造方法で用いる矩形の太陽電池セルの受光面側を示す平面図であり、図9は、矩形の太陽電池セルの裏面側を示す平面図である。また、図10は、本実施形態における太陽電池モジュールの製造方法を示すフローチャートである。
 図10に示すように、本実施形態における太陽電池モジュールの製造方法は、上述した複数の太陽電池セル10(第1の太陽電池セル10A、第2の太陽電池セル10B)を含む矩形の太陽電池セル1000を製造する工程S100と、矩形の太陽電池セル1000を、複数の太陽電池セル10に分断する工程S200と、を含む。
 矩形の太陽電池セル1000を製造する工程S100には、第1の半導体層52を製膜する工程S101と、第1の受光面側集電電極12A、及び第2の受光面側集電電極12Bを形成する工程S102と、受光面側接続用電極14Zを形成する工程S103と、第1の裏面側集電電極16A、及び第2の裏面側集電電極16Bを形成する工程S104と、裏面側接続用電極18Zを形成する工程S105と、が含まれる。
 第1の半導体層52を製膜する工程S101では、図6、7を用いて上述した半導体基板50、50Aの受光面側に、半導体基板50、50Aと逆導電型の第1の半導体層52、52Aを製膜する。第1の半導体層52、52Aは、例えばCVD(chemical vapor deposition)法により製膜することができる。この工程により、半導体基板50の受光面側に、PN接合が形成されることとなる。
 第1の半導体層52を製膜する工程S101の後で、第1の受光面側集電電極12A、及び第2の受光面側集電電極12Bを形成する工程S102を行う。第1の受光面側集電電極12A、及び第2の受光面側集電電極12Bを形成する工程S102では、図8に示すように、第1の半導体層52の受光面側に、第1の方向に延伸する第1の受光面側集電電極12A、及び第2の受光面側集電電極12Bを形成する。この工程において、他の太陽電池セル10に設ける受光面側集電電極12を複数同時に形成してもよい。
 第1の半導体層52を製膜する工程S101の後で、受光面側接続用電極14を形成する工程S103を行う。受光面側接続用電極14を形成する工程S103では、第1の受光面側集電電極12A、第2の受光面側集電電極12Bの一端側(図8においては右端側)に接続され、前記第1の方向に平面視で交差する方向に延伸する受光面側接続用電極14を形成する。受光面側接続用電極14は、後述する複数の太陽電池セル10に分断する工程S200において形成される太陽電池セル10毎に、別箇独立に形成してもよいが、本実施形態においては、各太陽電池セル10に共通の受光面側接続用電極14Zを形成する。この受光面側接続用電極14Zは、後述する分断工程S200において、第1の太陽電池セル10Aに配置される第1の受光面側接続用電極14A、第2の太陽電池セル10Bに配置される第2の受光面側接続用電極14B、及びその他の太陽電池セル10に配置される受光面側接続用電極14に分離される。
 更に、第1の半導体層52を製膜する工程S101の後で、半導体基板50の裏面側において、第1の裏面側集電電極16A、及び第2の裏面側集電電極16Bを形成する工程S104を行う。第1の裏面側集電電極16A、及び第2の裏面側集電電極16Bを形成する工程S104では、図9に示すように、第1の半導体層52の裏面側に、第1の方向に延伸する第1の裏面側集電電極16A、及び第2の裏面側集電電極16Bを形成する。この工程において、他の太陽電池セル10に設ける裏面側集電電極16を複数同時に形成してもよい。
 第1の半導体層52を製膜する工程S101の後で、裏面側接続用電極18を形成する工程S105を行う。裏面側接続用電極18を形成する工程S105では、第1の裏面側集電電極16A、第2の裏面側集電電極16Bの他端側(図9においては左端側)に接続され、第1の方向に平面視で交差する方向に延伸する裏面側接続用電極18を形成する。裏面側接続用電極18は、後述する複数の太陽電池セル10に分断する工程S200において形成される太陽電池セル10毎に、別箇独立に形成してもよいが、本実施形態においては、各太陽電池セル10に共通の裏面側接続用電極18Zを形成する。この裏面側接続用電極18Zは、後述する分断工程S200において、第1の太陽電池セル10Aに配置される第1の裏面側接続用電極18A、第2の太陽電池セル10Bに配置される第2の裏面側接続用電極18B、及びその他の太陽電池セル10に配置される裏面側接続用電極18に分離される。
 なお、第1の受光面側集電電極12A、及び第2の受光面側集電電極12Bを形成する工程S102と、受光面側接続用電極14を形成する工程S103と、第1の裏面側集電電極16A、及び第2の裏面側集電電極16Bを形成する工程S104と、裏面側接続用電極18Zを形成する工程S105と、の前後関係は問わない。
 次に、複数の太陽電池セル10に分断する工程S200について説明する。図10に示すように、複数の太陽電池セル10に分断する工程S200には、レーザ照射工程S201と、折曲工程S202と、が含まれる。
 レーザ照射工程S201は、図8に示すように、第1の受光面側集電電極12Aと第2の受光面側集電電極12Bとの間において、第1の方向に延伸する分断ラインCLに沿って、半導体基板50の裏面側からレーザ光を照射し、溝を形成する工程である。
 このレーザ光照射工程S201において、形成する溝の深さは、太陽電池セル10の厚みの40%以下としている。
 ここで、このレーザ照射工程S201においては、太陽電池セル10を構成する材料が昇華され、形成された溝から露出される太陽電池セル10の側面に、この昇華された材料が付着する可能性がある。たとえば、半導体基板50を構成する半導体材料や、裏面側接続用電極18Zを構成する金属材料が昇華され、太陽電池セル10の側面に付着する可能性がある。しかし、本実施形態においては、上述した通り、太陽電池セル10の受光面側にPN接合が配置されるようにしており、このPN接合を構成する半導体基板50と第1の半導体層52との境界が、裏面側から形成された溝から露出されないようにしている。そのため、昇華された材料が、当該境界に付着することが無く、漏れ電流が発生するのを抑制することができる。
 なお、本実施形態においては、第1の方向に延伸する分断ラインCLのみならず、第2の方向に延伸する分断ラインCL2に沿っても、半導体基板50の裏面側からレーザ光を照射し、溝を形成する。具体的には、受光面側接続用電極14Zよりも一端側(図8においては右端側)、及び裏面側接続用電極18Zよりも他端側(図9においては左端側)において、第1の方向と直交する第2の方向に延伸する分断ラインCL2においても、レーザ光照射により溝を形成する。
 レーザ光照射工程S201の後で、折曲工程S202を行う。折曲工程S202は、分断ラインCLに沿って、半導体基板50を折曲切断し、第1の受光面側集電電極12Aを有する第1の太陽電池セル10Aと、第2の受光面側集電電極12Bを有する第2の太陽電池セル10Bと、を形成する工程である。
 このように、複数の太陽電池セル10に分断する工程S200が、レーザ照射工程S201と、折曲工程S202の2段階で構成されているため、第1の太陽電池セル10Aにおける第1の方向に延伸する側面が、レーザ加工によって形成されたレーザ加工領域60と、折曲切断によって形成された折曲切断領域62と、を有し、レーザ加工領域60が、裏面側に配置され、折曲切断領域62が、受光面側に配置される構成となる。レーザ加工領域60は、第1の表面粗さを有し、折曲切断領域62は、第2の表面粗さを有しており、第2の表面粗さが、第1の表面粗さよりも小さい構成となっている。
 なお、上述したレーザ光照射工程S201において、形成する溝の深さは、太陽電池セル10の厚みの40%以下としているため、この折曲工程S202の生産性を向上させることができる。即ち、本開示に示すような第1の方向に延伸する細長い太陽電池セル10を、折曲工程S202を用いて分断する場合、所望の分断ラインCLのみを折り曲げようとしても、他の分断ラインCLにおいても応力が加わってしまい、分断されてしまう可能性がある。しかし、本実施形態においては、形成する溝の深さは、太陽電池セル10の厚みの40%以下としているため、所望の分断ラインCLごとに折り曲げ、分断することが可能となるため、この折曲工程S202の生産性を向上させることができる。
 なお、矩形の太陽電池セル1000を、複数の太陽電池セル10に分断する工程S200が、レーザ光照射工程S201と、折曲工程S202の2段階で構成されていることにより、受光面側接続用電極形成S103、及び裏面側接続用電極形成S105において、共通の受光面側接続用電極14Z、裏面側接続用電極18Zを形成した後、この複数の太陽電池セルに分断する工程S200において、複数の受光面側接続用電極14、及び複数の裏面側接続用電極18に分断する方法を採用することができる。即ち、レーザ照射工程S201のみを用いて、矩形の太陽電池セル1000を複数の太陽電池セル10に分断する場合、上述した通り、受光面側接続用電極14Z、裏面側接続用電極18Zを構成する金属材料が昇華され、太陽電池セル10の側面に付着する可能性がある。しかし、本実施形態においては、上述した通り、レーザ照射工程S201と、折曲工程S202の2段階を含み、レーザ照射工程S201においてPN接合を形成する半導体基板50と第1の半導体層52との境界面が、溝から露出されない方法としている。そのため、昇華された材料が、PN接合を形成する半導体基板50と第1の半導体層52との境界に付着することが無く、漏れ電流が発生するのを抑制することができる。
 そして、共通の受光面側接続用電極14Z、裏面側接続用電極18Zを形成した後、この複数の太陽電池セルに分断する工程S200において、複数の受光面側接続用電極14、及び複数の裏面側接続用電極18に分断する方法を採用することができるため、受光面側接続用電極14と裏面側接続用電極18とを、太陽電池セル10の長辺にまで延伸する構成を実現することができる。即ち、受光面側接続用電極14と裏面側接続用電極18の端部が、太陽電池セル10の外形を構成する辺の内、第1の方向に延伸する第1の辺と、裏面側から見て重畳する構成を実現することができる。その結果として、受光面側接続用電極14、裏面側接続用電極18と、インターコネクタ21と、の接触面積を担保するとともに、高精度な位置制御が不要となり、更なる生産性の向上を図ることができる。即ち、インターコネクタ21の位置が、第1の方向に直交する第2の方向にずれるような場合であっても、受光面側接続用電極14、裏面側接続用電極18が、太陽電池セル10の長辺にまで延伸する構成とすることにより、受光面側接続用電極14、裏面側接続用電極18と、インターコネクタ21との接触面積を担保することができる。
 なお、本実施形態においては、上述したレーザ光照射工程S201において、受光面側接続用電極14Zよりも一端側(図8においては右端側)、及び裏面側接続用電極18Zよりも他端側(図9においては左端側)において、第1の方向と直交する第2の方向に延伸する分断ラインCL2においても、レーザ光照射により溝を形成していた。この第2の方向に延伸する分断ラインCL2においても、この折曲工程S202において分断する。その結果として、第1の太陽電池セル10Aの受光面において、より一端側に第1の受光面側接続用電極14Aを配置し、第1の太陽電池セル10Aの裏面において、より他端側に第1の裏面側接続用電極18Aを配置することが可能となる。
 複数の太陽電池セルに分断する工程S200の後、第1の太陽電池セル10Aに形成された第1の受光面側集電電極12Aと、第2の太陽電池セル10Bに形成された第2の裏面側集電電極16Bとを、インターコネクタ21により接続し、太陽電池モジュール100を製造することができる。
 また、このインターコネクタ21を、第1の太陽電池セル10Aの色と同系色に着色する工程を更に含めてもよい。この着色工程は、矩形の太陽電池セルを製造する工程S100よりも前に行ってもよく、複数の太陽電池セルに分断する工程S200の後に行ってもよく、矩形の太陽電池セルを製造する工程S100と、複数の太陽電池セルに分断する工程S200との間に行ってもよい。

 

Claims (17)

  1.  第1の方向に延伸する第1の太陽電池セルと、
     前記第1の太陽電池セルの受光面側に設けられ、前記第1の方向に延伸する第1の受光面側集電電極と、
     前記第1の受光面側集電電極の一端側に接続され、前記受光面内において前記第1の方向と交差する方向に延伸する第1の受光面側接続用電極と、
     前記第1の受光面側接続用電極に接続されたインターコネクタと、
     を含む、太陽電池モジュール。
  2.  前記第1の太陽電池セルは、
     半導体基板と、
     前記半導体基板の前記受光面側に設けられ、前記半導体基板と逆導電型の半導体膜と、
     前記受光面と裏面の間に配置され、前記第1の方向に延伸する側面と、
     前記側面に配置され、レーザ加工によって形成されたレーザ加工領域と、
     前記側面において、前記レーザ加工領域よりも前記受光面寄りに配置され、折曲切断によって形成された折曲切断領域と、
     を含み、
     前記受光面に垂直な方向における、前記レーザ加工領域の幅が、前記第1の太陽電池セルの厚みの40%以下である、
     請求項1に記載の太陽電池モジュール。
  3.  前記第1の太陽電池セルは、
     半導体基板と、
     前記半導体基板の前記受光面側に設けられ、前記半導体基板と逆導電型の半導体膜と、
     前記受光面と裏面の間に配置され、前記第1の方向に延伸する側面と、
     前記側面に配置され、第1の表面粗さを有する裏面側領域と、
     前記側面において、前記裏面側領域よりも前記受光面寄りに配置され、前記第1の表面粗さよりも小さな第2の表面粗さを有する受光面側領域と、
     を含み、
     前記受光面に垂直な方向における、前記裏面側領域の幅が、前記第1の太陽電池セルの厚みの40%以下である、
     請求項1又は2に記載の太陽電池モジュール。
  4.  前記第1の太陽電池セルは、前記受光面側から見て前記第1の太陽電池セルの外形を構成し、前記第1の方向に延伸する第1の辺を有し、
     前記第1の受光面側接続用電極の端部が、前記受光面側から見て、前記第1の辺と重畳する、
     請求項1乃至3のいずれか一つに記載の太陽電池モジュール。
  5.  前記第1の太陽電池セルが、
     前記受光面側から見て前記第1の太陽電池セルの外形を構成し、前記第1の方向に延伸する第1の辺と、
     前記受光面側から見て前記第1の太陽電池セルの外形を構成し、前記受光面において前記第1の方向に直交する第2の方向に延伸する第2の辺と、を有し、
     前記第1の辺の長さを前記第2の辺の長さで割った値が5を超え、且つ100未満である、
     請求項1乃至4のいずれか一つに記載の太陽電池モジュール。
  6.  前記第1の太陽電池セルの裏面側に設けられ、前記第1の方向に延伸する第1の裏面側集電電極と、
     前記第1の裏面側集電電極の他端側に接続され、前記裏面において前記第1の方向と交差する方向に延伸する第1の裏面側接続用電極と、を更に含み、
     前記裏面側接続用電極が、前記第1の受光面側接続用電極と前記第1の太陽電池セルを介して対向しないよう配置された、
     請求項1乃至5のいずれか一つに記載の太陽電池モジュール。
  7.  前記第1の太陽電池セルは、前記裏面側から見て前記第1の太陽電池セルの外形を構成し、前記第1の方向に延伸する第3の辺を有し、
     前記第1の裏面側接続用電極の端部が、前記裏面側から見て、前記第3の辺と重畳する、
     請求項6に記載の太陽電池モジュール。
  8.  前記インターコネクタが、前記第1の太陽電池セルの色と同系色に着色された、
     請求項1乃至7のいずれか一つに記載の太陽電池モジュール。
  9.  前記第1の方向に延伸する第2の太陽電池セルと、
     前記第2の太陽電池セルの裏面側に設けられ、前記第1の方向に延伸する第2の裏面側集電電極と、
     前記第2の裏面側集電電極の他端側に接続され、前記第1の方向に平面視で交差する方向に延伸し、前記インターコネクタと接続された第2の裏面側接続用電極と、
     を更に含む、請求項1乃至8のいずれか一つに記載の太陽電池モジュール。
  10.  前記第1の太陽電池セルの受光面側において、前記第1の受光面側接続用電極以外に、前記第1の方向に交差する方向に延伸する電極が存在しない、
     請求項1乃至9のいずれか一つに記載の太陽電池モジュール。
  11.  前記第2の太陽電池セルの裏面側において、前記第2の裏面側接続用電極以外に、前記第1の方向に交差する方向に延伸する電極が存在しない、
     請求項9に記載の太陽電池モジュール。
  12.  窓枠と、
     前記窓枠の内周側に配置された窓ガラスと、
     請求項1乃至11のいずれか一つに記載の太陽電池モジュールと、
     前記太陽電池モジュールと、前記第1方向に交差する方向に並べて配置された第2の太陽電池モジュールと、
     前記太陽電池モジュールと、前記第2の太陽電池モジュールと、を電気的に接続し、前記第1の方向に交差する方向に延伸する配線と、を含み、
     前記太陽電池モジュールと前記第2の太陽電池モジュールとが、前記受光面側から見て前記窓ガラスと重畳するよう配置され、
     前記配線が、前記受光面側から見て前記窓枠と重畳するよう配置された、
     ガラス建材。
  13.  半導体基板の受光面側に、前記半導体基板と逆導電型の半導体層を製膜する工程と、
     前記半導体層を製膜する工程の後で、前記半導体層の受光面側に、第1の方向に延伸する第1の受光面側集電電極、及び第2の受光面側集電電極を含む複数の受光面側集電電極を形成する工程と、
     前記半導体層を製膜する工程の後で、前記第1の受光面側集電電極、前記第2の受光面側集電電極の一端側に接続され、前記第1の方向に平面視で交差する方向に延伸する受光面側接続用電極を形成する工程と、
     前記受光面側接続用電極を形成する工程の後で、前記第1の受光面側集電電極と前記第2の受光面側集電電極との間において、前記第1の方向に延伸する分断ラインに沿って、前記半導体基板の裏面側からレーザ光を照射し、溝を形成する工程と、
     前記レーザ光を照射する工程の後で、前記分断ラインに沿って、前記半導体基板を折曲切断し、前記第1の受光面側集電電極を有する第1の太陽電池セルと、前記第2の受光面側集電電極を有する第2の太陽電池セルと、を形成する工程と、
     を含む、
     太陽電池モジュールの製造方法。
  14.  前記レーザ光を照射する工程において、前記受光面に垂直な方向における、前記溝の深さは、前記第1の太陽電池セルの厚みの40%以下である、
     請求項13に記載の太陽電池モジュールの製造方法。
  15.  前記レーザ光を照射する工程の前に、前記半導体基板の裏面側に、前記第1の方向に延伸する第1の裏面側集電電極、及び第2の裏面側集電電極を形成する工程と、
     前記第1の裏面側集電電極、前記第2の裏面側集電電極の他端側に接続され、前記第1の方向に平面視で交差する方向に延伸する裏面側接続用電極を形成する工程と、
     を更に含み、
     前記裏面側接続用電極は、前記受光面側接続用電極と前記第1の太陽電池セルを介して対向しないよう配置される、
     請求項13又は14に記載の太陽電池モジュールの製造方法。
  16.  前記折曲切断する工程の後で、前記第1の受光面側集電電極と前記第2の裏面側集電電極とを、インターコネクタにより接続する工程を更に含む、
     請求項15に記載の太陽電池モジュールの製造方法。
  17.  前記インターコネクタを、前記第1の太陽電池セルの色と同系色に着色する工程を更に含む、
     請求項16に記載の太陽電池モジュールの製造方法。
     

     
PCT/JP2019/008645 2018-03-08 2019-03-05 太陽電池モジュール、ガラス建材、及び太陽電池モジュールの製造方法 WO2019172258A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980017598.6A CN111868934B (zh) 2018-03-08 2019-03-05 玻璃建材
JP2020505050A JP7085613B2 (ja) 2018-03-08 2019-03-05 太陽電池モジュール、ガラス建材、及び太陽電池モジュールの製造方法
KR1020207028373A KR102504652B1 (ko) 2018-03-08 2019-03-05 태양 전지 모듈, 유리 건축재 및 태양 전지 모듈의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018042004 2018-03-08
JP2018-042004 2018-03-08

Publications (1)

Publication Number Publication Date
WO2019172258A1 true WO2019172258A1 (ja) 2019-09-12

Family

ID=67846136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008645 WO2019172258A1 (ja) 2018-03-08 2019-03-05 太陽電池モジュール、ガラス建材、及び太陽電池モジュールの製造方法

Country Status (4)

Country Link
JP (1) JP7085613B2 (ja)
KR (1) KR102504652B1 (ja)
CN (1) CN111868934B (ja)
WO (1) WO2019172258A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021200418A1 (ja) * 2020-03-30 2021-10-07
WO2021206135A1 (ja) * 2020-04-09 2021-10-14 株式会社カネカ 太陽電池モジュール
EP3940794A4 (en) * 2019-03-15 2023-03-15 Kaneka Corporation SOLAR BATTERY MODULE MANUFACTURING PROCESS, SOLAR BATTERY MODULE AND RAW MATERIAL SOLAR BATTERY CELL

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093125A (ja) * 1996-09-13 1998-04-10 Sanyo Electric Co Ltd 太陽電池モジュール
JP2002076421A (ja) * 2000-08-30 2002-03-15 Miyachi Kk 太陽電池モジュール及びその太陽電池モジュールを屋根材として使用した建造物
JP2006286673A (ja) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd 光起電力装置及びその製造方法
JP2008060205A (ja) * 2006-08-30 2008-03-13 Sanyo Electric Co Ltd 太陽電池セル及びその製造方法
WO2013042222A1 (ja) * 2011-09-21 2013-03-28 三洋電機株式会社 太陽電池の製造方法及び太陽電池
JP2017502525A (ja) * 2014-01-13 2017-01-19 ソーラーシティ コーポレーション 低抵抗率電極を備えた太陽電池のモジュール製作
CN106784105A (zh) * 2017-02-13 2017-05-31 晶澳(扬州)太阳能科技有限公司 一种高抗机械载荷太阳能电池组件及其制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3715511B2 (ja) 2000-05-26 2005-11-09 シャープ株式会社 採光型太陽電池モジュールおよび採光型太陽電池システム
KR100923219B1 (ko) * 2009-06-11 2009-10-27 (주)선우 발코니 난간 대용 태양전지 셀이 구비된 창호

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093125A (ja) * 1996-09-13 1998-04-10 Sanyo Electric Co Ltd 太陽電池モジュール
JP2002076421A (ja) * 2000-08-30 2002-03-15 Miyachi Kk 太陽電池モジュール及びその太陽電池モジュールを屋根材として使用した建造物
JP2006286673A (ja) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd 光起電力装置及びその製造方法
JP2008060205A (ja) * 2006-08-30 2008-03-13 Sanyo Electric Co Ltd 太陽電池セル及びその製造方法
WO2013042222A1 (ja) * 2011-09-21 2013-03-28 三洋電機株式会社 太陽電池の製造方法及び太陽電池
JP2017502525A (ja) * 2014-01-13 2017-01-19 ソーラーシティ コーポレーション 低抵抗率電極を備えた太陽電池のモジュール製作
CN106784105A (zh) * 2017-02-13 2017-05-31 晶澳(扬州)太阳能科技有限公司 一种高抗机械载荷太阳能电池组件及其制作方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3940794A4 (en) * 2019-03-15 2023-03-15 Kaneka Corporation SOLAR BATTERY MODULE MANUFACTURING PROCESS, SOLAR BATTERY MODULE AND RAW MATERIAL SOLAR BATTERY CELL
JPWO2021200418A1 (ja) * 2020-03-30 2021-10-07
WO2021200418A1 (ja) * 2020-03-30 2021-10-07 株式会社カネカ 太陽電池モジュール
WO2021206135A1 (ja) * 2020-04-09 2021-10-14 株式会社カネカ 太陽電池モジュール
JPWO2021206135A1 (ja) * 2020-04-09 2021-10-14
JP7441937B2 (ja) 2020-04-09 2024-03-01 株式会社カネカ 太陽電池モジュール

Also Published As

Publication number Publication date
KR102504652B1 (ko) 2023-03-02
JP7085613B2 (ja) 2022-06-16
CN111868934A (zh) 2020-10-30
JPWO2019172258A1 (ja) 2020-12-10
KR20200122394A (ko) 2020-10-27
CN111868934B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
CN102959723B (zh) 太阳能电池模块及其制造方法
US20180019349A1 (en) Gridless photovoltaic cells and methods of producing a string using the same
JP5714080B2 (ja) 太陽電池モジュール
WO2019172258A1 (ja) 太陽電池モジュール、ガラス建材、及び太陽電池モジュールの製造方法
US8941160B2 (en) Photoelectric conversion module and method of manufacturing the same
US20190123229A1 (en) Solar cell module
US9634606B2 (en) Offset building integrable photovoltaic structures and assemblies having multi-conductor return lines
EP3096360A1 (en) Solar cell and solar cell module
JP7278831B2 (ja) 太陽電池セルの製造方法および割断用太陽電池セル
WO2016158299A1 (ja) 太陽電池およびその製造方法、太陽電池モジュール、ならびに配線シート
KR20150145148A (ko) 태양 전지 모듈
KR20190041268A (ko) 태양 전지 및 이를 포함하는 태양 전지 패널
JP2015230985A (ja) 太陽電池セルおよびその製造方法、太陽電池パネル
KR20200049120A (ko) 태양 전지 모듈
KR101816181B1 (ko) 태양 전지 모듈
JP2015029069A (ja) 太陽電池モジュール
WO2017038733A1 (ja) 光電変換素子
WO2019181689A1 (ja) 太陽電池モジュール、ガラス建材、及び太陽電池モジュールの製造方法
KR20190043295A (ko) 분할셀을 이용한 기와 적층 형태의 태양전지 모듈
JP6313005B2 (ja) 光電変換素子及び太陽電池モジュール
KR20190029421A (ko) 태양 전지 패널
KR20180055161A (ko) 태양 전지 모듈
JPH06177408A (ja) 薄膜太陽電池およびその製造方法
JP6333139B2 (ja) 光電変換素子および光電変換素子の製造方法
JP6602242B2 (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505050

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207028373

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19764414

Country of ref document: EP

Kind code of ref document: A1