WO2019181689A1 - 太陽電池モジュール、ガラス建材、及び太陽電池モジュールの製造方法 - Google Patents

太陽電池モジュール、ガラス建材、及び太陽電池モジュールの製造方法 Download PDF

Info

Publication number
WO2019181689A1
WO2019181689A1 PCT/JP2019/010291 JP2019010291W WO2019181689A1 WO 2019181689 A1 WO2019181689 A1 WO 2019181689A1 JP 2019010291 W JP2019010291 W JP 2019010291W WO 2019181689 A1 WO2019181689 A1 WO 2019181689A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
surface side
receiving surface
light receiving
extending
Prior art date
Application number
PCT/JP2019/010291
Other languages
English (en)
French (fr)
Inventor
澤田 徹
賢吾 前田
直樹 門田
牧野 司
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to KR1020207029568A priority Critical patent/KR102448204B1/ko
Priority to JP2020508269A priority patent/JP7079318B2/ja
Priority to CN201980020268.2A priority patent/CN111886705B/zh
Publication of WO2019181689A1 publication Critical patent/WO2019181689A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell module, a glass building material, and a method for manufacturing a solar cell module.
  • Patent Document 1 discloses a configuration in which a light receiving surface glass and a back surface sealing glass are disposed to face each other, and a plurality of solar cells are disposed between the light receiving surface glass and the back surface sealing glass. Has been. The space between the light-receiving surface glass and the back surface sealing glass is sealed with a sealing material (EVA: ethylene / vinyl acetate copolymer).
  • EVA ethylene / vinyl acetate copolymer
  • the present disclosure has been made in view of the above-described problems, and an object thereof is to suppress misalignment of solar cells in a solar cell module in which a plurality of solar cells are sealed using a sealing material. It is in.
  • a solar cell module of the present disclosure is arranged with a first solar cell extending in a first direction and a space between the first solar cell and a direction intersecting the first direction,
  • a solar cell group including a second solar cell extending in a first direction; a first glass substrate covering a back surface side of the solar cell group; and a second glass layer covering a light receiving surface side of the solar cell group.
  • a light-transmitting part disposed therebetween, and a heat deformation temperature of a material constituting the first facing part, the second facing part, and the connecting part is that of the material constituting the sealing material Higher than the melting point.
  • the first solar cell and the second solar cell may be a double-sided solar cell, and the fixing member may include a reflective member.
  • the fixing member has a plurality of openings provided in a direction extending in the first direction and intersecting the first direction, and the opening is It is the said translucent part, and may be arrange
  • the fixing member extends in the first direction on the translucent sheet and the back side of the translucent sheet, and faces the first solar cell.
  • a part of the translucent sheet disposed between the first solar cell and the first reflector constitutes the first facing portion, and the second solar cell and the A part of the translucent sheet disposed between the second reflecting members constitutes the second facing portion, and the heat deformation temperature of the material constituting the translucent sheet is the sealing material. It is good also as a structure higher than melting
  • the material constituting the sealing material includes at least one of EVA and ionomer, and constitutes the first facing portion, the second facing portion, and the connecting portion.
  • EVA and ionomer e.g., EVA-ethylene terephthalate, a polycarbonate, and a polyimide.
  • the first solar cell is provided on a first solar cell extending in the first direction, and on a light receiving surface side of the first solar cell, A first light-receiving surface-side collector electrode extending in the direction of 1, and one end of the first light-receiving surface-side collector electrode, and extending in a direction intersecting the first direction in the light-receiving surface And a first light receiving surface side connection electrode.
  • the first solar cell is provided on a semiconductor substrate, the light receiving surface side of the semiconductor substrate, a semiconductor layer having a conductivity type opposite to the semiconductor substrate, and the light receiving surface.
  • a side surface disposed between the back surfaces and extending in the first direction; a laser processing region disposed on the side surface and formed by laser processing; and the side surface closer to the light receiving surface than the laser processing region.
  • a width of the laser processing region in a direction perpendicular to the light receiving surface is 40% or less of the thickness of the first solar battery cell. It may be.
  • the first solar cell is provided on a semiconductor substrate, the light receiving surface side of the semiconductor substrate, a semiconductor layer having a conductivity type opposite to the semiconductor substrate, and the light receiving surface.
  • a side surface disposed between the back surfaces and extending in the first direction; a back surface region disposed on the side surface and having a first surface roughness;
  • a light receiving surface side region disposed near the surface and having a second surface roughness smaller than the first surface roughness, and the width of the back surface side region in the direction perpendicular to the light receiving surface is It may be 40% or less of the thickness of the first solar battery cell.
  • the first solar cell constitutes an outer shape of the first solar cell as viewed from the light receiving surface side, and extends in the first direction. It is good also as a structure which the edge part of the said 1st light-receiving surface side connection electrode overlaps with said 1st edge
  • a first back surface side collecting electrode provided on a back surface side of the first solar cell and extending in the first direction, and the first back surface side collecting electrode.
  • a first back surface side connection electrode that extends in a direction intersecting the first direction on the back surface, wherein the first back surface side connection electrode is the first back surface side connection electrode. It is good also as a structure arrange
  • the first solar cell constitutes an outer shape of the first solar cell as viewed from the back side, and has a third side extending in the first direction. It is good also as a structure which the edge part of the said 1st back surface side connection electrode overlaps with the said 3rd side seeing from the said back surface side.
  • the first solar cell is provided on a second solar cell extending in the first direction, and on a back surface side of the second solar cell, and the first solar cell is provided with the first solar cell.
  • the second back side current collecting electrode extending in the direction of the second side and the other end side of the second back side current collecting electrode, and extending in the direction intersecting the first direction in the back side. It is good also as a structure further including the 2nd back surface side connection electrode electrically connected with the 1st light reception surface side connection electrode.
  • the first light receiving surface side connection electrode and the second back surface side connection electrode may be electrically connected by a conductive adhesive.
  • the material constituting the sealing material includes an ethylene / ⁇ -olefin copolymer, and constitutes the first facing portion, the second facing portion, and the connecting portion.
  • the material to be formed may include at least one of polyethylene terephthalate, polycarbonate, and polyimide.
  • the glass building material of the present disclosure includes the solar cell module and a window frame, and the connection portion is disposed so as to overlap the window frame when viewed from the light receiving surface side.
  • the solar cell group further includes a wiring that electrically connects the first solar cell and the second solar cell, and the wiring is from the light receiving surface side. It is good also as a structure arrange
  • the manufacturing method of the solar cell module of the present disclosure includes a first glass substrate, a first sealing material sheet, a fixing member, an adhesive member, a solar cell group, a second sealing material sheet, and a second
  • the glass substrate is placed so as to be arranged in this order, and a heating step of heating the first sealing material sheet and the second sealing material sheet is sequentially performed, and the solar cell group Is disposed in a direction intersecting the first direction with a space between the first solar cell and the first solar cell extending in the first direction, and extending in the first direction.
  • a double-sided light receiving type second solar cell that extends, wherein the fixing member extends in the first direction, and a second facing portion extends in the first direction.
  • the material constituting the first sealing material sheet and the second sealing material sheet includes at least one of EVA and ionomer, and the first facing portion.
  • the material constituting the second facing portion and the connecting portion may include at least one of polyethylene terephthalate, polycarbonate, and polyimide.
  • the method further includes a step of preparing the solar cell group, and the step of preparing the solar cell group includes a conductive type opposite to the semiconductor substrate on a light receiving surface side of the semiconductor substrate.
  • a first light-receiving surface-side collector electrode extending in the first direction on the light-receiving surface side of the semiconductor layer after the steps of forming a semiconductor layer and forming the semiconductor layer; After the step of forming two light receiving surface side current collecting electrodes and the step of forming the semiconductor layer, one end side of the first light receiving surface side current collecting electrode and the second light receiving surface side current collecting electrode And after the step of forming the light receiving surface side connection electrode extending in a direction intersecting the first direction in plan view and the step of forming the light receiving surface side connection electrode, Between the light receiving surface side collector electrode and the second light receiving surface side collector electrode, the first After the step of irradiating a laser beam from the back side of the semiconductor substrate along the dividing line extending in the direction and forming
  • the depth of the groove in a direction perpendicular to the light receiving surface is 40% or less of the thickness of the first solar cell. It may be.
  • a first back surface side collecting electrode extending in the first direction on the back surface side of the semiconductor substrate, and a first Forming a second back side current collecting electrode, connected to the other end side of the first back side current collecting electrode and the second back side current collecting electrode, and intersecting the first direction in plan view Forming a back-side connection electrode extending in a direction of extending the back-side connection electrode, and the back-side connection electrode is disposed so as not to face the light-receiving surface-side connection electrode via the first solar cell. May be.
  • the first light-receiving surface side collecting electrode and the second back surface collecting electrode are made of a conductive adhesive. You may further include the process of connecting.
  • a material constituting the first sealing material sheet and the second sealing material sheet includes an ethylene / ⁇ -olefin copolymer
  • the material constituting the facing portion, the second facing portion, and the connecting portion may include at least one of polyethylene terephthalate, polycarbonate, and polyimide.
  • FIG. 1 is a schematic plan view showing a state in which the solar cell according to the first embodiment is placed on a fixing member.
  • FIG. 2 is a cross-sectional view of the solar cell module according to the first embodiment.
  • FIG. 3 is a schematic plan view showing the light receiving surface side of the solar battery cell included in the solar battery according to the first embodiment.
  • FIG. 4 is a schematic plan view showing the back side of the solar battery cell according to the first embodiment.
  • FIG. 5 is a schematic plan view showing a state in which the first solar battery cell and the second solar battery cell according to the first embodiment are connected.
  • FIG. 6 is a schematic side view showing a state in which the first solar cell and the second solar cell according to the first embodiment are connected.
  • FIG. 7 is a schematic side view in which the portion A in FIG.
  • FIG. 6 is enlarged.
  • FIG. 8 is a schematic side view in which the portion A of FIG. 6 is enlarged.
  • FIG. 9 is a schematic plan view showing a glass building material in which the solar cell module shown in the first embodiment is installed in a window.
  • FIG. 10 is a schematic plan view showing a state in which a solar cell is placed on a fixing member according to another example of the first embodiment.
  • FIG. 11 is a cross-sectional view of a solar cell module according to another example of the first embodiment.
  • FIG. 12 is a plan view showing a light receiving surface side of a rectangular solar battery cell used in the method for manufacturing a solar battery module in the first embodiment.
  • FIG. 13 is a plan view showing the back side of the rectangular solar battery cell according to the first embodiment.
  • FIG. 14 is a flowchart showing a method for manufacturing the solar cell module according to the first embodiment.
  • FIG. 15 is a schematic cross-sectional view showing the mounting process in the first embodiment.
  • FIG. 16 is a schematic cross-sectional view showing a mounting process in the first embodiment.
  • FIG. 17 is a schematic plan view showing the method for manufacturing the solar cell module in the first embodiment.
  • FIG. 18 is a schematic plan view showing the method for manufacturing the solar cell module in the first embodiment.
  • FIG. 19 is a schematic plan view showing the method for manufacturing the solar cell module in the first embodiment.
  • FIG. 1 is a schematic plan view showing a state in which the solar cell according to the present embodiment is placed on a fixing member.
  • FIG. 2 is a cross-sectional view of the solar cell module according to the present embodiment, and shows a cross section corresponding to the line II-II in FIG.
  • the solar cell module 100 includes a solar cell group 110 including a plurality of solar cells 10, and the solar cell group 110 extends in a first direction.
  • One solar cell 10A and a second solar cell 10B are included.
  • the first solar cell 10A and the second solar cell 10B are arranged with a space in a direction intersecting the first direction.
  • the first solar cell 10A and the second solar cell 10B are double-sided light receiving solar cells.
  • the first solar cell 10A and the second solar cell 10B are described. It is not an essential requirement that is a double-sided solar cell.
  • the fixing member 70 is disposed on the back side of the solar cell group 110 so as to face the back side of the solar cell group 110.
  • the fixing member 70 faces the first solar cell 10A and faces the first facing portion 71A extending in the first direction and the second solar cell 10B, and the first direction.
  • a second opposing portion 71B extending in the direction and a connecting portion 72 extending in a direction crossing the first direction and connecting the first opposing portion 71A and the second opposing portion 71B.
  • the opening part as the translucent part 75 is provided between the 1st opposing part 71A and the 2nd opposing part 71B, and this opening part is a 1st solar cell.
  • the fixing member 70 includes a plurality of facing portions 71 extending in the first direction in addition to the first facing portion 71A and the second facing portion 71B, and the connecting portion. 72 couples the plurality of facing portions 71.
  • the first glass substrate 21 is disposed on the back surface side of the solar cell group 110, and the first glass substrate 21 covers the back surface side of the solar cell group 110.
  • the second glass substrate 22 is disposed on the light receiving surface side of the solar cell group 110, and the second glass substrate 22 covers the light receiving surface side of the solar cell group 110.
  • the fixing member 70 described above is interposed between the solar cell group 110 and the first glass substrate 21, and the adhesive member 80 is interposed between the solar cell group 110 and the fixing member 70. .
  • the adhesive member 80 bonds the solar cell group 110 and the fixing member 70 together.
  • the space between the first glass substrate 21 and the second glass substrate 22 is sealed with a sealing material 90, and the sealing material 90 is between the first solar cell 10A and the second solar cell 10B. It is also configured to intervene.
  • the light 40 that has passed through the second glass substrate 22 and entered the light receiving surfaces of the plurality of solar cells 10 is directly absorbed by the light receiving surfaces of the solar cells 10 and contributes to power generation.
  • the fixing member 70 includes a reflecting member
  • the light 41 incident on the light receiving surface of the solar cell 10 and transmitted without being absorbed by the solar cell 10 is on the back side of the solar cell 10.
  • the solar cell 10 is reflected by the fixing member 70 disposed on the surface of the solar cell 10, reaches the back surface of the solar cell 10, is absorbed by the back surface of the solar cell 10, and contributes to power generation.
  • part of the light 42 incident between the plurality of solar cells 10 is also reflected by the fixing member 70 disposed on the back surface side of the solar cell 10, reaches the back surface of the solar cell 10, and Absorbed on the back surface and contributes to power generation.
  • the heat deformation temperature of the first facing portion 71A, the second facing portion 71B, and the connecting portion 72 constituting the fixing member 70 is higher than the melting point of the sealing material 90.
  • the sealing material 90 Even if the solar cell module 100 is heated to the melting point of the sealing material 90 in order to soften the temperature, the temperature can be made lower than the heat deformation temperature of the fixing member 70, and the shape of the fixing member 70 is large. Deformation can be suppressed. As a result, the solar cell 10 can be prevented from being displaced due to the flow of the sealing material 90 due to the presence of the fixing member 70 bonded to the solar cell 10 via the adhesive member 80.
  • the sealing material 90 for example, a thermoplastic resin can be used.
  • EVA thermoplastic resin
  • a material having a thermal deformation temperature higher than this temperature is used to form the first facing portion 71A of the fixing member 70, A second facing portion 71B and a connecting portion 72 are formed.
  • the heat distortion temperature of polycarbonate is 130 to 140 ° C.
  • the heat deformation temperature of polyethylene terephthalate is 240 to 245 ° C., which satisfies this condition.
  • the sealing material 90 Even when an ionomer is used as the sealing material 90, since the melting point of the ionomer is 86 to 100 ° C., the first opposing portion 71A, the second opposing portion 71B, and the connecting portion 72 of the fixing member 70 are used. Polycarbonate and polyethylene terephthalate can be used. Moreover, since polyimide has a high heat distortion temperature, this condition is satisfied. Further, when an ethylene / ⁇ -olefin copolymer is used as the sealing material 90, the melting point of the ethylene / ⁇ -olefin copolymer is 80 to 90 ° C., and thus the same as described above.
  • the fixing member 70 is preferably an insulating member from the viewpoint of preventing an electrical short circuit.
  • the fixing member 70 when the fixing member 70 includes a reflecting member, the first facing portion 71A, the second In the facing portion 71B and other facing portions 71, for example, an insulating powder such as white or silver is kneaded into at least one of polycarbonate, polyethylene terephthalate, and polyimide.
  • the fixing member 70 is also reflected when at least one of polycarbonate, polyethylene terephthalate, and polyimide is coated with an insulating coating having reflection characteristics. It becomes possible to function as a member.
  • the fixing member 70 includes the reflecting member.
  • the fixing member 70 is used as the reflecting member. Having a function is not an essential requirement. If the fixing member 70 does not require a function as a reflecting member, a translucent member made of at least one of polycarbonate, polyethylene terephthalate, and polyimide may be used as the fixing member 70, for example. It is also possible to use such a translucent member that is provided with an insulating coating. Further, a light-transmitting member including coloring made of polyimide, or a material having low light-transmitting property such as polyimide containing an insulating black powder may be used as the fixing member 70.
  • the first facing portion 71A and the second facing portion 71B of the fixing member 70 have a reflectance of 80 in at least a part of the absorption wavelength region of the solar cell 10.
  • a material having an average reflectance of 80% or more in a wavelength region of 700 nm to 1100 nm is defined as exhibiting a function as a reflecting member.
  • the translucent portion 75 in the fixing member 70 has a configuration in which the transmittance in at least a part of the visible light region of the solar cell 10 is 80% or more.
  • a wavelength region of 500 to 600 nm is used.
  • a material having an average transmittance of 80% or more is defined as exhibiting the function as the transmission part 75.
  • the difference between the thermal expansion coefficient of the material constituting the first opposing portion 71A and the second opposing portion 71B of the fixing member 70 and the thermal expansion coefficient of the material constituting the solar cell 10 is small. .
  • produce can be reduced.
  • the polycarbonate exemplified above and polyethylene terephthalate are compared, since the thermal expansion coefficient of polyethylene terephthalate is closer to the thermal expansion coefficient of silicon constituting the solar cell 10, the first facing of the fixing member 70 It is desirable to use polyethylene terephthalate as a material constituting the portion 71A and the second facing portion 71B.
  • the width W1 of each facing portion 71 included in the fixing member 70 is configured to be larger than the width W2 of each solar cell 10.
  • the width W1 of the facing portion 71 means the length of the facing portion 71 in the second direction orthogonal to the first direction in the light receiving surface of the solar cell 10
  • the width W2 of the solar cell 10 Means the length of the solar cell 10 in the second direction.
  • each facing portion 71 included in the fixing member 70 is larger than the width W2 of each solar cell 10
  • the back surface side of the solar cell 10 can be hidden by the facing portion 71, and the back surface There is a design advantage seen from the side.
  • each solar cell 10 is configured by electrically connecting a plurality of solar cells 11 extending in a first direction.
  • FIG. 3 is a schematic plan view showing the light receiving surface side of one solar battery cell 11 included in the solar battery 10.
  • the solar battery cell 11 has a shape extending in the first direction.
  • the long side extending in the first direction and the second side orthogonal to the first direction in the light receiving surface. It has a substantially rectangular shape having a short side extending in the direction.
  • the light receiving surface side collecting electrode 12 extending in the first direction is disposed on the light receiving surface side of the solar battery cell 11 and plays a role of collecting carriers generated by photoelectric conversion in the solar battery cell 11.
  • the light receiving surface side collecting electrode 12 in the present embodiment is configured to include two finger electrodes.
  • the side connection electrode 14 is disposed and electrically connected to the light receiving surface side collecting electrode 12.
  • the light receiving surface side connection electrode 14 is an electrode for electrical connection with other solar cells.
  • the extending direction of the light-receiving surface side connection electrode 14 is not necessarily orthogonal to the first direction.
  • the light receiving surface side connection electrode 14 may be connected to one end side of the light receiving surface side current collecting electrode 12, and is not necessarily connected to the end portion of the light receiving surface side current collecting electrode 12. In the present disclosure, if the light receiving surface side connection electrode 14 is disposed within the range of less than 10% of the length of the light receiving surface side current collecting electrode 12 from the end of the light receiving surface side current collecting electrode 12, It is assumed that the light receiving surface side collecting electrode 12 is disposed on one end side.
  • the shape of the solar battery cell 11 is extended in the first direction that is the connection direction with other solar battery cells. It becomes possible. That is, according to the above configuration, the light receiving surface side connection electrode 14 for connecting to another solar battery cell 11 is connected to one end side of the light receiving surface side current collecting electrode 12, so that, for example, an interconnector or the like is provided. Therefore, it is not necessary to connect to the entire light receiving surface side collecting electrode 12, and highly accurate position control is not required. As a result, further improvement in productivity can be realized.
  • the contact area between the interconnector and the light receiving surface side collecting electrode 12 is increased when the position of the interconnector is shifted.
  • the interconnector creates a shadow on the light receiving surface side of the solar battery cell 11 and reduces conversion efficiency.
  • the light-receiving surface side connection electrode 14 extends to the long side of the solar battery cell 11. That is, the end portion of the light receiving surface side connection electrode 14 has a first side extending in the first direction among the sides constituting the outer shape of the solar battery cell 11 when viewed from the light receiving surface side, and the light receiving surface side. It is configured to overlap as seen.
  • the contact area between the light-receiving surface side connection electrode 14 and the connection electrode in the other solar battery cell 11 is ensured, and highly precise position control is not required, and further productivity is improved. Improvements can be made.
  • the light-receiving surface side connection electrode 14 is longer than the length of the solar battery cell 11.
  • FIG. 4 is a schematic plan view showing the back side of the solar battery cell 11 according to this embodiment.
  • a back side current collecting electrode 16 extending in the first direction is disposed, and plays a role of collecting carriers generated by photoelectric conversion in the solar cell 11.
  • the back surface side collecting electrode 16 in the present embodiment is configured to include two finger electrodes.
  • the other end side (left end side in the example shown in FIG. 4) of the back surface side collecting electrode 16 on the back surface side of the solar battery cell 11 is connected to the back surface side extending in the direction intersecting the first direction in the back surface.
  • the electrode 18 is disposed and is electrically connected to the back side collecting electrode 16.
  • the back surface side connection electrode 18 is an electrode for electrical connection with other solar cells.
  • the light-receiving surface side connection electrode 14 is arranged on one end side of the solar battery cell 11 (right end side in the example shown in FIG. 3).
  • the back surface side connection electrode 18 is disposed on the other end side of the solar battery cell 11 (left end side in the example shown in FIG. 4).
  • the electrode 14 for back surface and the electrode 18 for back side connection are arrange
  • the extending direction of the back surface side connection electrode 18 is not necessarily orthogonal to the first direction. Further, the back surface side connection electrode 18 may be connected to the other end side of the back surface side collecting electrode 16, and is not necessarily connected to the end portion of the back surface side collecting electrode 16. In the present disclosure, if the back surface side connection electrode 18 is disposed within the range of less than 10% of the length of the back surface side current collecting electrode 16 from the end portion of the back surface side current collecting electrode 16, It is assumed that the collector electrode 16 is disposed on the other end side.
  • the back-side connection electrode 18 extends to the long side of the solar battery cell 11. That is, the end of the back-side connection electrode 18 overlaps with the third side extending in the first direction among the sides constituting the outer shape of the solar battery cell 11 when viewed from the back side and viewed from the back side. It is configured to do.
  • the contact area between the back-side connection electrode 18 and the connection electrode in the other solar battery cell 11 is ensured, and high-precision position control is not required, thereby further improving productivity.
  • FIG. 5 is a schematic plan view showing a state in which the first solar cell and the second solar cell according to the present embodiment are connected.
  • FIG. 6 is a schematic side view showing a state in which the first solar battery cell and the second solar battery cell according to the present embodiment are connected.
  • the first solar cell 11A and the second solar cell 11B are solar cells 11 included in the first solar cell 10A shown in FIG.
  • the first solar cell 11 ⁇ / b> A and the second solar cell 11 ⁇ / b> B are connected to each other on the short side. That is, the first solar cell 11A and the second solar cell 11B are arranged side by side so that their long sides extend in the first direction, and are electrically connected to each other on the short side. It is the composition which becomes.
  • the first light receiving surface side collecting electrode 12 ⁇ / b> A extending in the first direction is disposed on the light receiving surface side of the first solar cell 11 ⁇ / b> A.
  • the first light-receiving surface side that extends in the direction intersecting the first direction in the light-receiving surface is on one end side (right end side in the example shown in FIG. 6) of the first light-receiving-surface-side collecting electrode 12A.
  • a connection electrode 14A is disposed and is electrically connected to the first light receiving surface side collector electrode 12A.
  • the first back surface side collecting electrode 16A extending in the first direction is disposed on the back surface side of the first solar battery cell 11A, and the other end side of the first back surface side collecting electrode 16A (see FIG. In the example shown in FIG. 4, the first back surface side connection electrode 18A extending in the direction intersecting the first direction in the back surface is disposed on the left end side).
  • the first light receiving surface side connection electrode 14A provided in the first solar cell 11A is one end side on the light receiving surface side of the first solar cell 11A (example shown in FIG. 6).
  • the first back surface side connection electrode 18A is disposed on the other end side (the left end side in the example shown in FIG. 6) on the back surface side of the first solar cell 11A. . That is, the first light receiving surface side connection electrode 14A and the first back surface side connection electrode 18A are configured not to face each other with the first solar battery cell 11A interposed therebetween.
  • the second light receiving surface side collector electrode 12 ⁇ / b> B extending in the first direction is formed on the light receiving surface side of the second solar cell 11 ⁇ / b> B. Is disposed on one end side (right end side in the example shown in FIG. 6) of the second light receiving surface side collecting electrode 12B and extends in a direction intersecting the first direction in the light receiving surface.
  • a surface-side connection electrode 14B is disposed and electrically connected to the second light-receiving surface-side collector electrode 12B.
  • stretched to a 1st direction is arrange
  • the second rear surface side connection electrode 18 ⁇ / b> B extending in the direction intersecting the first direction in the rear surface is disposed on the left end side).
  • the second light receiving surface side connection electrode 14B provided in the second solar cell 11B is one end side on the light receiving surface side of the second solar cell 11B (example shown in FIG. 6).
  • the second back surface side connection electrode 18B is disposed on the other end side (the left end side in the example shown in FIG. 6) on the back surface side of the second solar battery cell 11B. . That is, the second light receiving surface side connection electrode 14B and the second back surface side connection electrode 18B are configured not to face each other with the second solar battery cell 11B interposed therebetween.
  • the first solar cell 11 ⁇ / b> A and the second solar cell 11 ⁇ / b> B are electrically connected by a conductive adhesive 88.
  • the conductive adhesive 88 applied to the light receiving surface side of the first light receiving surface side connection electrode 14A in the first solar battery cell 11A is a second adhesive in the second solar battery cell 11B. It is electrically connected to the back side of the back side connection electrode 18B.
  • the conductive adhesive 88 for example, a mixture of metal fine particles mainly composed of silver, copper, nickel or the like and an epoxy resin can be used.
  • the productivity of the solar cell module 100 in which the shapes of the first solar cell 11A and the second solar cell 11B are extended in the first direction, which is the connection direction of both, is achieved. Further improvement can be realized. That is, according to the above configuration, the first light receiving surface side connection electrode 14A and the second back surface side connection electrode 18B are electrically connected by the conductive adhesive 88. It is not necessary to connect to the entire light receiving surface side collecting electrode 12A and the second back side collecting electrode 16B, and high-precision position control is not necessary. As a result, further improvement in productivity can be realized.
  • the interconnector when the interconnector is connected to the entire first light receiving surface side collecting electrode 12A, if the position of the interconnector is shifted, the interconnector and the first light receiving surface side collecting electrode are disposed. Not only the problem that the contact area with 12A is not secured and the contact resistance increases, but also the interconnector creates a shadow on the light receiving surface side of the first solar cell 11A, thereby reducing the conversion efficiency. However, in the configuration of the present disclosure, it is not necessary to provide the interconnector over the entire first light receiving surface side collecting electrode 12A. The risk of creating a shadow on the light receiving surface side of 11A can be reduced.
  • the first light receiving surface side connection electrode 14A extends to the long side of the first solar cell 11A
  • the second back surface side connection electrode 18B is the second solar cell. It is set as the structure extended even to the long side of 11B. That is, the first side of the first light receiving surface side connection electrode 14A extending in the first direction among the sides constituting the outer shape of the first solar cell 11A when viewed from the light receiving surface side. And the end portion of the second back surface side connection electrode 18B as viewed from the light receiving surface side, the side constituting the outer shape of the second solar battery cell 11B as viewed from the light receiving surface side, The first side extending in the first direction overlaps the first side when viewed from the back side.
  • the contact area between the first light receiving surface side connection electrode 14A and the second back surface side connection electrode 18B is secured, and highly accurate position control is not required, and further production is achieved. It is possible to improve the performance. That is, even if the relative position of the second solar cell 11B with respect to the first solar cell 11A is shifted in the second direction, the first light receiving surface side connection electrode 14A and the first solar cell 11B The contact area with the back surface side connection electrode 18B of 2 can be ensured.
  • the example in which the first light receiving surface side connection electrode 14A and the second back surface side connection electrode 18B are electrically connected by the conductive adhesive 88 has been described.
  • the disclosure is not limited to this.
  • the interconnector is connected to the first light receiving surface. It is possible to obtain a merit that it is not necessary to connect the entire side current collecting electrode 12A and the second back surface side current collecting electrode 16B.
  • first light receiving surface side connection electrode 14A and the second back surface side connection electrode 18B are electrically connected via an interconnector, a step of bending the interconnector, The step of connecting the first light receiving surface side connection electrode 14A and the step of connecting the interconnector and the second back surface side connecting electrode 18B are necessary. If the back surface side connection electrode 18 ⁇ / b> B is electrically connected by the conductive adhesive 88, such a process is unnecessary.
  • the solar battery cell 11 is connected to one end side of the light receiving surface side current collecting electrode 12, the back surface side current collecting electrode 16, and the light receiving surface side current collecting electrode 12 extending in the first direction.
  • the structure including the light receiving surface side connection electrode 14 and the back surface side connection electrode 18 connected to the other end side of the back surface side collecting electrode 16 is illustrated, the structure of various electrodes is not limited to the above-described one.
  • the solar battery cell 11 has a finger electrode extending in a first direction and a bus bar electrode extending in a second direction, and the plurality of solar battery cells 11 in the solar battery 10 are electrically connected by the finger electrode.
  • a connection may be made, and the bus bar electrode may be configured to be electrically connected to another solar cell 10 arranged in the second direction.
  • the bus bar electrode is provided between the plurality of solar cells 10. This is desirable without disturbing the daylighting, and is also preferable from the viewpoint of appearance.
  • FIG. 7 and 8 are schematic side views in which the portion A of FIG. 6 is enlarged, and each shows an example of a side surface extending in the first direction in the solar battery cell of the present embodiment.
  • 11 A of 1st photovoltaic cells have the semiconductor substrate 50 and the 1st semiconductor layer 52 provided in the light-receiving surface side of the semiconductor substrate 50, and the semiconductor substrate 50 and a reverse conductivity type.
  • an n-type single crystal silicon substrate is used as the semiconductor substrate 50, and a first semiconductor having a conductivity type opposite to that of the n-type single crystal silicon substrate is provided on the light receiving surface side of the n-type single crystal silicon substrate.
  • a p-type amorphous silicon layer is formed as the layer 52. Further, in the example shown in FIG.
  • a first i-type amorphous silicon layer 51 is provided between the semiconductor substrate 50 and the first semiconductor layer 52, and the light receiving surface side of the first semiconductor layer 52 is further increased.
  • a first transparent electrode layer 53 is provided on the back surface side of the semiconductor substrate 50.
  • a second i-type amorphous silicon layer 54, a second semiconductor layer 55 of the same conductivity type as the semiconductor substrate 50, and a second transparent conductive layer 56 are provided in this order.
  • an n-type amorphous silicon layer is used as the second semiconductor layer 55.
  • the thickness of the semiconductor substrate 50 is, for example, about 200 ⁇ m, and the first i-type amorphous silicon layer 51, the first semiconductor layer 52, the second i-type amorphous silicon layer 54, and the second
  • the film thickness of the semiconductor layer 55 is, for example, less than 0.01 ⁇ m, and the film thicknesses of the first transparent electrode layer 53 and the second transparent conductive layer 56 are, for example, about 0.1 ⁇ m. Therefore, the thickness of the semiconductor substrate 50 occupies most of the thickness of the first solar battery cell 11A, and the PN junction formed by the semiconductor substrate 50 and the first semiconductor layer 52 is It is formed in a small area on the light receiving surface side.
  • the side surface extended in the 1st direction in 11 A of 1st photovoltaic cells is the laser processing region 60 formed by laser processing, and bending cutting. And a bent cutting region 62 formed.
  • the laser processing region 60 is disposed closer to the back surface than the bending cutting region 62, and the bending cutting region 62 is disposed closer to the light receiving surface than the laser processing region 60.
  • the width of the laser processing region 60 in the direction perpendicular to the light receiving surface, that is, the stacking direction is set to 40% or less of the thickness of the first solar battery cell 11A.
  • the laser processing region 60 has a first surface roughness
  • the bent cutting region 62 has a second surface roughness
  • the second surface roughness is higher than the first surface roughness. It has a small configuration. That is, the surface roughness of the bent cutting region 62 is smaller than the surface roughness of the laser processing region 60.
  • a p-type single crystal silicon substrate is used as the semiconductor substrate 50 ⁇ / b> A.
  • An n-type crystalline silicon layer is formed as the semiconductor layer 52A.
  • an insulating film 58 having an opening is provided on the light receiving surface side of the first semiconductor layer 52A, and the first light receiving surface side collector is provided through the opening.
  • the electric electrode 12A is connected to the first semiconductor layer 52A.
  • a p + -type crystalline silicon layer is provided as a second semiconductor layer 55A of the same conductivity type as the semiconductor substrate 50.
  • the side surface extending in the first direction in the first solar battery cell 11 ⁇ / b> A has a laser processing region 60 formed by laser processing and a bending cutting region 62 formed by bending cutting. And having.
  • the laser processing region 60 is disposed on the back surface side, and the bent cutting region 62 is disposed on the light receiving surface side.
  • the width of the laser processing region 60 in the direction perpendicular to the light receiving surface, that is, the stacking direction is set to 40% or less of the thickness of the first solar battery cell 11A.
  • the second solar cell 11B also has the same configuration as the first solar cell 11A described above.
  • the solar cells 11 (the first solar cells 11A and the second solar cells 11B) form the outer shape of the first side (long) extending in the first direction. Side) and a second side (short side) extending in a second direction orthogonal to the first direction in the light receiving surface, and the length of the long side is the length of the short side
  • the divided value is greater than 5 and less than 100.
  • the present disclosure is configured such that the value obtained by dividing the length of the first side extending in the first direction by the length of the second side extending in the second direction exceeds 5.
  • a blind tone design can be obtained, which is preferable from the viewpoint of design.
  • the value obtained by dividing the length of the first side extending in the first direction by the length of the second side extending in the second direction is less than 100. That is, the mechanical strength of the solar battery cell 11 can be ensured by adopting a configuration in which the solar battery cell 11 is not too long.
  • this embodiment has a configuration in which the value obtained by dividing the length of the long side by the length of the short side exceeds 5, the solar battery cell 11 (first solar battery cell 11A, second solar battery) In the light receiving surface side and the back surface side of the cell 11B), in addition to the light receiving surface side connection electrode 14 and the back surface side connection electrode 18, a configuration in which there is no electrode extending in the direction intersecting the first direction is adopted. Is possible. That is, since the value obtained by dividing the length of the long side by the length of the short side exceeds 5, the light receiving surface side collecting electrode 12 extending in the first direction which is the long side direction, and the back side Most of the carriers generated in the solar battery cell 11 can be collected by the connection electrode 18. Therefore, it is possible to adopt a configuration in which a current collecting electrode is not provided in a direction intersecting the first direction. As a result, productivity can be further improved, and it is also preferable from the viewpoint of appearance.
  • FIG. 9 is a schematic plan view showing a glass building material in which the solar cell module 100 shown in the present embodiment is installed in a window.
  • the glass building material 200 includes a window frame 30 and a window glass 32 disposed on the inner peripheral side of the window frame 30.
  • a plurality of solar cells 10 are arranged so as to overlap with the window glass 32 when viewed from the light receiving surface side, and each solar cell 11 included in the solar cell 10 extends in the first direction, The solar cells 11 are connected by a conductive adhesive 88.
  • the some solar cell 10 is arranged side by side in the direction which cross
  • the connecting portion 72 of the fixing member 70 is disposed in the region overlapping with the window frame 30 when viewed from the light receiving surface side. Further, in the region overlapping with the window frame 30, an interconnector as a wiring 34 that electrically connects the plurality of solar cells 10 is disposed.
  • the wiring 34 extends in a direction intersecting the first direction, and is disposed so as to overlap with the connecting portion 72 when viewed from the light receiving surface side.
  • the wiring 34 extending in the direction intersecting the first direction is overlapped with the window frame 30 so as not to be visually recognized by the user, and in the region visually recognized by the user, the first It is possible to realize a configuration in which only the plurality of solar cells 10 that are arranged in the direction intersecting the first direction and arranged in the direction intersecting the first direction are exposed. As a result, a plurality of solar cells 10 that are electrically connected to each other can be formed on the entire window glass 32, and a blind design can be realized.
  • the light receiving surface side current collecting electrode 12 and the back surface side current collecting electrode 16 exemplify a configuration including two finger electrodes, respectively.
  • the light receiving surface side current collecting electrode 12 and the back surface side current collecting electrode are illustrated.
  • the number of finger electrodes constituting the electrode 16 is not limited to this.
  • the lengths of the long side and the short side of the solar battery cell 11 are not limited to the values described above.
  • the shape of the photovoltaic cell 11 is not limited to a rectangular shape, and may be a parallelogram or other shapes.
  • FIG. 10 is a schematic plan view showing a state in which a solar cell is placed on a fixing member 70 according to another example of the present embodiment.
  • FIG. 11 is a cross-sectional view of a solar cell module according to another example of the present embodiment, and shows a cross section corresponding to the line XI-XI in FIG.
  • the fixing member 70 is constituted by the translucent sheet 73 and the reflective material 74 applied to the back surface side of the translucent sheet 73.
  • a plurality of solar cells 10 extending in the first direction are placed on the light receiving surface side of the translucent sheet 73, and an adhesive member 80 is interposed between the solar cell 10 and the translucent sheet 73.
  • the adhesive member 80 is interposed between the solar cell 10 and the translucent sheet 73.
  • a reflective material 74 is applied to the back surface side of the translucent sheet 73 so as to face the solar cell 10, and the reflective material 74 plays a role of reflecting incident sunlight.
  • a first reflector 74A is applied so as to face the first solar cell 10A.
  • the 2nd reflective material 74B is apply
  • the translucent sheet 73 fulfills the function as the connecting portion 72 described above and also the function as the translucent portion 75. Further, the portion of the translucent sheet 73 that is interposed between the solar cell 10 and the reflective material 74 constitutes the facing portion 71. A part of the translucent sheet 73 disposed between the first solar cell 10A and the first reflector 74A constitutes a first facing portion 71A, and the second solar cell 10B and the second A part of the translucent sheet 73 arranged between the reflecting material 74B constitutes a second facing portion 71B. Therefore, the translucent sheet 73 must fulfill the function of suppressing the displacement of the solar cell 10 when the sealing material 90 is softened.
  • EVA ethylene / vinyl acetate copolymer
  • the melting point of EVA is 60 to 61 ° C.
  • heat higher than this temperature is required.
  • the translucent sheet 73 is formed using a material having a deformation temperature.
  • the heat distortion temperature of polycarbonate is 130 to 140 ° C.
  • the heat deformation temperature of polyethylene terephthalate is 240 to 245 ° C., which satisfies this condition.
  • the sealing material 90 even when an ionomer is used as the sealing material 90, since the melting point of the ionomer is 86 to 100 ° C., polycarbonate and polyethylene terephthalate can be used as the translucent sheet 73. Moreover, since polyimide has a high heat distortion temperature, this condition is satisfied. Further, when an ethylene / ⁇ -olefin copolymer is used as the sealing material 90, the melting point of the ethylene / ⁇ -olefin copolymer is 80 to 90 ° C., and thus the same as described above.
  • the solar cell module 100 of the present disclosure may be disposed with the light receiving surface side facing the indoor side, or may be disposed with the light receiving surface side facing the outdoor side.
  • the process of preparing a solar cell group is included.
  • the step of preparing the solar cell group may be performed before the mounting step described later, or the step of preparing the solar cell group may be performed in the middle of performing the mounting step.
  • the process of preparing a solar cell group is performed before performing a mounting process.
  • FIG. 12 is a plan view showing a light receiving surface side of a rectangular solar battery cell used in the method for manufacturing a solar battery module in the present embodiment
  • FIG. 13 is a plan view showing a back surface side of the rectangular solar battery cell.
  • FIG. 14 is a flowchart which shows the manufacturing method of the solar cell module in this embodiment.
  • the solar cell module manufacturing method in the present embodiment is a rectangular solar cell including the plurality of solar cells 11 (first solar cell 11A, second solar cell 11B) described above.
  • a process S100 for manufacturing the cell 1000 and a process S200 for dividing the rectangular solar battery cell 1000 into a plurality of solar battery cells 11 are included.
  • step S100 for manufacturing the rectangular solar battery cell 1000 the step S101 for forming the first semiconductor layer 52, the first light receiving surface side current collecting electrode 12A, and the second light receiving surface side current collecting electrode 12B.
  • Step S102 for forming the light receiving surface side connection electrode 14Z Step S104 for forming the first back side current collecting electrode 16A and the second back side current collecting electrode 16B, and the back side And step S105 of forming the connection electrode 18Z.
  • step S101 for forming the first semiconductor layer 52 the first semiconductor layer 52 having a conductivity type opposite to that of the semiconductor substrates 50 and 50A is formed on the light receiving surface side of the semiconductor substrates 50 and 50A described above with reference to FIGS. , 52A.
  • the first semiconductor layer 52 can be formed by, for example, a CVD (chemical vapor deposition) method. By this step, a PN junction is formed on the light receiving surface side of the semiconductor substrate 50.
  • step S102 for forming the first light receiving surface side current collecting electrode 12A and the second light receiving surface side current collecting electrode 12B is performed.
  • step S102 of forming the first light receiving surface side collecting electrode 12A and the second light receiving surface side current collecting electrode 12B the first light receiving surface side of the first semiconductor layer 52 is formed on the first light receiving surface side as shown in FIG.
  • the first light receiving surface side collector electrode 12A and the second light receiving surface side collector electrode 12B extending in the direction are formed.
  • a plurality of light-receiving surface side collecting electrodes 12 provided in other solar cells 11 may be formed simultaneously.
  • step S103 for forming the light receiving surface side connection electrode 14 is performed.
  • the first light receiving surface side collecting electrode 12A and the second light receiving surface side collecting electrode 12B are connected to one end side (the right end side in FIG. 12), A light receiving surface side connection electrode 14 extending in a direction intersecting the first direction in plan view is formed.
  • the light receiving surface side connection electrode 14 may be separately formed for each solar battery cell 11 formed in the step S200 for dividing into a plurality of solar battery cells 11 described later.
  • a common light receiving surface side connection electrode 14 ⁇ / b> Z is formed in each solar battery cell 11.
  • the light receiving surface side connection electrode 14Z is disposed in the first light receiving surface side connection electrode 14A and the second solar cell 11B which are disposed in the first solar cell 11A in a dividing step S200 described later.
  • the second light receiving surface side connection electrode 14 ⁇ / b> B and the other light receiving surface side connection electrode 14 disposed in the solar battery cell 11 are separated.
  • step S104 the step of forming the first back side current collecting electrode 16A and the second back side current collecting electrode 16B on the back side of the semiconductor substrate 50.
  • step S104 of forming the first back-side current collecting electrode 16A and the second back-side current collecting electrode 16B as shown in FIG. 13, on the back side of the first semiconductor layer 52 in the first direction.
  • a first back side current collecting electrode 16A and a second back side current collecting electrode 16B are formed.
  • a plurality of back surface side collecting electrodes 16 provided in other solar cells 11 may be formed simultaneously.
  • step S105 for forming the back side connection electrode 18 is performed.
  • the first back-side current collecting electrode 16A and the second back-side current collecting electrode 16B are connected to the other end side (left side in FIG. 13), and the first The back side connection electrode 18 is formed to extend in a direction intersecting with the direction in plan view.
  • the back surface side connection electrode 18 may be formed separately for each solar battery cell 11 formed in the step S200 for dividing into a plurality of solar battery cells 11 to be described later, in this embodiment, The back side connection electrode 18Z common to the solar cells 11 is formed.
  • This back surface side connection electrode 18Z is the second back surface side connection electrode 18A and the second solar cell 11B that are disposed in the first solar cell 11A, in the dividing step S200 described later.
  • the back surface side connection electrode 18 ⁇ / b> B and the back surface side connection electrode 18 disposed in the other solar battery cell 11 are separated.
  • the front-rear relationship between the step S104 for forming the collecting electrode 16A and the second back side collecting electrode 16B and the step S105 for forming the back side connecting electrode 18Z is not limited.
  • process S200 which divides
  • the process S ⁇ b> 200 for dividing the plurality of solar cells 11 includes a laser irradiation process S ⁇ b> 201 and a bending process S ⁇ b> 202.
  • the dividing line extending in the first direction between the first light receiving surface side collecting electrode 12A and the second light receiving surface side collecting electrode 12B. This is a step of forming a groove by irradiating a laser beam along the CL from the back side of the semiconductor substrate 50.
  • the depth of the groove to be formed is 40% or less of the thickness of the solar battery cell 11.
  • the material which comprises the photovoltaic cell 11 is sublimated, and this sublimated material may adhere to the side surface of the photovoltaic cell 11 exposed from the formed groove
  • channel. is there.
  • a semiconductor material constituting the semiconductor substrate 50 and a metal material constituting the back surface side connection electrode 18 ⁇ / b> Z are sublimated and adhere to the side surface of the solar battery cell 11.
  • a PN junction is arranged on the light receiving surface side of the solar battery cell 11, and the semiconductor substrate 50 and the first semiconductor layer 52 constituting the PN junction are arranged. The boundary is prevented from being exposed from the groove formed from the back surface side. Therefore, the sublimated material does not adhere to the boundary, and the occurrence of leakage current can be suppressed.
  • laser light is irradiated from the back side of the semiconductor substrate 50 not only along the dividing line CL extending in the first direction but also along the dividing line CL2 extending in the second direction.
  • Grooves are formed. Specifically, on the one end side (right end side in FIG. 12) from the light receiving surface side connection electrode 14Z and the other end side (left end side in FIG. 13) from the back surface side connection electrode 18Z, the first Also in the parting line CL2 extending in the second direction orthogonal to the direction, a groove is formed by laser light irradiation.
  • the bending step S202 is performed after the laser light irradiation step S201.
  • the semiconductor substrate 50 is bent and cut along the dividing line CL, the first solar cell 11A having the first light receiving surface side collecting electrode 12A, and the second light receiving surface side collector. And a second solar battery cell 11B having the electric electrode 12B.
  • process S200 which divides
  • the extending side surface has a laser processing region 60 formed by laser processing and a bending cutting region 62 formed by bending cutting, and the laser processing region 60 is disposed on the back surface side and bending cutting is performed.
  • the region 62 is arranged on the light receiving surface side.
  • the laser processing region 60 has a first surface roughness
  • the bent cutting region 62 has a second surface roughness
  • the second surface roughness is higher than the first surface roughness. It has a small configuration.
  • the depth of the groove to be formed is 40% or less of the thickness of the solar battery cell 11, so that the productivity of the folding step S202 can be improved. That is, when the elongated solar battery cell 11 extending in the first direction as shown in the present disclosure is divided using the bending step S202, even if only a desired dividing line CL is to be bent, another dividing line CL There is also a possibility that stress will be applied and the material will be divided. However, in this embodiment, since the depth of the groove to be formed is 40% or less of the thickness of the solar battery cell 11, it can be bent and divided for each desired dividing line CL. Productivity of the music process S202 can be improved.
  • the process S200 for dividing the rectangular solar battery cell 1000 into a plurality of solar battery cells 11 is configured in two stages, that is, a laser light irradiation process S201 and a bending process S202.
  • a laser light irradiation process S201 is configured in two stages, that is, a laser light irradiation process S201 and a bending process S202.
  • the electrode formation S103 and the back surface side connection electrode formation S105 after forming the common light receiving surface side connection electrode 14Z and the back surface side connection electrode 18Z, in the step S200 of dividing into a plurality of solar cells.
  • the light receiving surface side connection electrode 14Z and the back surface side connection electrode 18Z are configured as described above.
  • the metal material is sublimated and adheres to the side surface of the solar battery cell 11.
  • the laser irradiation step S201 and the bending step S202 are included in two stages, and the semiconductor substrate 50 and the first semiconductor layer 52 that form the PN junction in the laser irradiation step S201 The boundary surface is not exposed from the groove. Therefore, the sublimated material does not adhere to the boundary between the semiconductor substrate 50 forming the PN junction and the first semiconductor layer 52, and the occurrence of leakage current can be suppressed.
  • the plurality of light receiving surface side connection electrodes 14 and the plurality of back surfaces Since the method of dividing into the side connection electrode 18 can be adopted, a configuration in which the light receiving surface side connection electrode 14 and the back surface side connection electrode 18 are extended to the long side of the solar battery cell 11 is realized. Can do. That is, the ends of the light-receiving surface side connection electrode 14 and the back surface side connection electrode 18 have a first side extending in the first direction among the sides constituting the outer shape of the solar battery cell 11 and the back surface side. It is possible to realize a configuration that overlaps when viewed.
  • the contact area between the light receiving surface side connection electrode 14 and the back surface side connection electrode 18 and the connection electrodes of the other solar cells 11 is ensured, and highly accurate position control is not required.
  • Productivity can be improved. That is, even when the relative position with respect to the other solar cells 11 is shifted in the second direction orthogonal to the first direction, the light-receiving surface side connection electrode 14 and the back surface side connection electrode 18.
  • the contact area of the electrode 14 for light-receiving surface side connection, the electrode 18 for back side connection, and the connection electrode of the other photovoltaic cell 11 is made. Can be secured.
  • one end side (right end side in FIG. 12) from the light receiving surface side connection electrode 14Z and the other end side from the back surface side connection electrode 18Z On the left end side in FIG. 13, a groove was also formed by laser light irradiation on the dividing line CL2 extending in the second direction orthogonal to the first direction.
  • the dividing line CL2 extending in the second direction is also divided in the bending step S202.
  • the first light receiving surface side connection electrode 14A is disposed on one end side, and on the back surface of the first solar cell 11A, on the other end side.
  • the first back side connection electrode 18A can be arranged.
  • FIGS. 15 and 16 are schematic cross-sectional views showing the mounting process in the present embodiment.
  • the first glass substrate 21, the first sealing material sheet 91, the fixing member 70, the adhesive member 80, the solar cell group 110, and the second sealing material sheet. 92 and the second glass substrate 22 are placed so as to be arranged in this order.
  • each member may be placed on the light receiving surface side of the first glass substrate 21 in order from the first glass substrate 21, or in order from the second glass substrate 22. It is good also as a method of mounting each member on the back surface side of 2 glass substrates.
  • the adhesive member 80 is first applied to the light receiving surface side of the fixing member 70 and the stacked body configured by placing the solar cell group 110 on the light receiving surface side is formed, the first sealing material sheet is formed.
  • the laminated body may be placed on the light receiving surface side 91 or the back side of the second sealing material sheet 92.
  • the interconnector as the wiring 34 is placed in a state where the adhesive member 80 is applied to the light receiving surface side of the fixing member 70.
  • the fixing member 70 extends in a direction intersecting the first direction with a plurality of facing portions 71 (first facing portion 71A, second facing portion 71B) extending in the first direction, and each facing portion 71 And an opening as a translucent part 75 is provided between the opposing parts 71.
  • a conductive adhesive 88 is applied to the other end side (left end side in FIG. 17) of the interconnector placed on the light receiving surface side of the fixing member 70.
  • the adhesive member 80 for example, one in which an adhesive acrylic resin is pasted on both surfaces of a polyethylene terephthalate base material, and as the conductive adhesive 88, metal fine particles mainly composed of silver, copper, nickel or the like are used. What mixed the epoxy resin can be used.
  • the solar battery cell 11 is placed so that the conductive adhesive 88 applied to the interconnector and the back-side connection electrode 18 are electrically connected.
  • the back surface side connection electrode 18 of one solar battery cell 11 is placed so as to face the light receiving surface side connection electrode 14 of the other solar battery cell 11.
  • electrical connection is established by interposing a conductive adhesive 88 between them.
  • a plurality of solar cells 10 extending in the first direction are arranged with a space in a direction intersecting the first direction.
  • each solar cell 10 is disposed so as to face the facing portion 71 of the fixing member 70.
  • the first solar cell 10A faces the first facing portion 71A
  • the second solar cell 10B faces the second facing portion 71B.
  • the space disposed between the two solar cells 10 faces the light transmitting portion 75 disposed between the two facing portions 71.
  • the interconnector as the wiring 34 which connects the some solar cell 10 is provided.
  • the conductive adhesive 88 is applied to the light receiving surface side of the interconnector formed at the end of the solar cell 10, and the interconnector serving as the wiring 34 is placed on the light receiving surface side, whereby the wiring 34.
  • the solar cell 10 is electrically connected.
  • the interconnector as the wiring 34 is disposed so as to face the connecting portion 72 of the fixing member 70 and extends in a direction intersecting the first direction.
  • the adhesive member 80 is applied or disposed at the position where the plurality of solar cells 10 are placed on the light receiving surface side of the translucent sheet 73, and further the light receiving surface.
  • a plurality of solar cells 10 extending in the first direction are placed on the side.
  • a reflective material 74 is applied to the back side of the translucent sheet 73 so as to face the solar cell 10.
  • a reflective material 74 is applied to the back surface side of the first solar cell 10A so as to face the first solar cell 10A, and the second solar cell 10B is opposed to the back surface side of the second solar cell 10B. Then, the reflective material 74 is applied.
  • the translucent sheet 73 for example, polyethylene terephthalate can be used, and as the reflective material 74, for example, titanium oxide fine particles can be used.
  • the adhesive member 80 an adhesive tape can be used, and as the adhesive tape, one obtained by sticking an adhesive acrylic resin to both surfaces of a polyethylene terephthalate base material can be used.
  • such a laminated body including the fixing member 70, the adhesive member 80, and the solar cell group 110 is placed on the light receiving surface side of the first glass substrate 21, as shown in FIGS.
  • the first sealing material sheet 91 is placed on the light receiving surface side.
  • the 2nd sealing material sheet 92 is mounted in the light-receiving surface side of the solar cell group 110, and the 2nd glass substrate 22 is mounted in the light-receiving surface side of the 2nd sealing material sheet 92 after that.
  • Heating process A heating process is performed after the mounting process mentioned above.
  • the melting point of the first sealing material sheet 91 and the second sealing material sheet 92 is equal to or higher than the melting point of the first sealing material 71 and the second opposing material 71B and the connecting material 72. Heat below the heat distortion temperature.
  • the sheet-like first sealing material sheet 91 and the second sealing material sheet 92 shown in FIGS. 15 and 16 are softened to become the sealing material 90 shown in FIGS.
  • the heat deformation temperature thereof is the first sealing material sheet 91, the second sealing material sheet.
  • a material having a melting point higher than 92 is used.
  • EVA ethylene / vinyl acetate copolymer
  • a material having a heat distortion temperature higher than this temperature is used.
  • the heat distortion temperature of polycarbonate is 130 to 140 ° C.
  • the heat deformation temperature of polyethylene terephthalate is 240 to 245 ° C., which satisfies this condition.
  • the sealing material 90 since the melting point of the ionomer is 86 to 100 ° C., the first opposing portion 71A, the second opposing portion 71B, and the connecting portion 72 of the fixing member 70 are used.
  • Polycarbonate and polyethylene terephthalate can be used.
  • polyimide has a high heat distortion temperature, this condition is satisfied.
  • the melting point of the ethylene / ⁇ -olefin copolymer is 80 to 90 ° C., and thus the same as described above.
  • the thermal deformation temperature thereof is the first sealing material sheet 91, the second sealing material sheet. Since a material higher than the melting point of the material constituting the material 92 is used, it is possible to suppress the occurrence of displacement of the plurality of solar cells 10 even in this heating step. That is, in order to soften the 1st sealing material sheet 91 and the 2nd sealing material sheet 92, and to be in the state of the sealing material 90 shown in FIG. Even if 100 is heated, the temperature can be made equal to or lower than the heat deformation temperature of the fixing member 70, and the shape of the fixing member 70 can be prevented from being greatly deformed. As a result, the solar cell 10 can be prevented from being displaced due to the flow of the sealing material 90 by the fixing member 70 bonded to the solar cell 10 via the adhesive member 80.
  • the difference between the thermal expansion coefficient of the material constituting the first opposing portion 71A and the second opposing portion 71B of the fixing member 70 and the thermal expansion coefficient of the material constituting the solar cell 10 is small. .
  • polyethylene terephthalate has a thermal expansion coefficient closer to the thermal expansion coefficient of silicon constituting the solar cell 10, so that the first facing portion 71A of the fixing member 70, It is desirable to use polyethylene terephthalate as a material constituting the second facing portion 71B.
  • the first encapsulant sheet 91 and the second encapsulant sheet 92 in the laminate shown in FIGS. 15 and 16 are softened and flow as the encapsulant 90, It is also interposed between the solar cell 10A and the second solar cell 10B. And between the 1st glass substrate 21 and the 2nd glass substrate 22 can be sealed, and the solar cell module 100 shown to FIG. 2, 11 can be obtained, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本開示に係る太陽電池モジュールは、第1の方向に延伸する第1の太陽電池、第2の太陽電池を含む太陽電池群と、太陽電池群の裏面側を覆う第1のガラス基板と、太陽電池群の受光面側を覆う第2のガラス基板と、太陽電池群の裏面側と対向して配置され、太陽電池群と第1のガラス基板との間に配置された固定部材と、太陽電池群と固定部材との間に介在する接着部材と、第1の太陽電池と第2の太陽電池との間に介在する封止材と、を含み、固定部材は、第1の太陽電池と対向し、第1の方向に延伸する第1の対向部と、第2の太陽電池と対向し、第1の方向に延伸する第2の対向部と、第1の対向部と、第2の対向部と、を連結する連結部と、第1の対向部と第2の対向部との間に配置された透光部と、を含み、第1の対向部、第2の対向部、及び連結部を構成する材料の熱変形温度が、封止材を構成する材料の融点よりも高い。

Description

太陽電池モジュール、ガラス建材、及び太陽電池モジュールの製造方法
 本発明は、太陽電池モジュール、ガラス建材、及び太陽電池モジュールの製造方法に関する。
 下記特許文献1には、受光面ガラスと、裏面封止ガラスとを対向して配置し、この受光面ガラスと、裏面封止ガラスとの間に、複数の太陽電池セルを配置する構成が開示されている。また、受光面ガラスと、裏面封止ガラスとの間は、封止材(EVA:エチレン・酢酸ビニル共重合体)を用いて封止されている。
特開2001―339087号公報
 上記従来の構成においては、複数の太陽電池に位置ずれが発生することが課題となっていた。即ち、上記従来の構成において、封止材を複数の太陽電池間にまで介在させるためには、封止材を加熱して軟化させる必要がある。その際、封止材の流動により、複数の太陽電池の位置ずれが発生することが課題となっていた。
 本開示は、上記問題点に鑑みてなされたものであり、その目的は、複数の太陽電池が、封止材を用いて封止された太陽電池モジュールにおける、太陽電池の位置ずれ抑制を図ることにある。
 (1)本開示の太陽電池モジュールは、第1の方向に延伸する第1の太陽電池と、前記第1の方向に交差する方向に前記第1の太陽電池とスペースを空けて配置され、前記第1の方向に延伸する第2の太陽電池と、を含む太陽電池群と、前記太陽電池群の裏面側を覆う第1のガラス基板と、前記太陽電池群の受光面側を覆う第2のガラス基板と、前記太陽電池群の裏面側と対向して配置され、前記太陽電池群と前記第1のガラス基板との間に配置された固定部材と、前記太陽電池群と前記固定部材との間に介在する接着部材と、前記第1の太陽電池と前記第2の太陽電池との間に介在する封止材と、を含み、前記固定部材は、前記第1の太陽電池と対向し、前記第1の方向に延伸する第1の対向部と、前記第2の太陽電池と対向し、前記第1の方向に延伸する第2の対向部と、前記第1の対向部と、前記第2の対向部と、を連結する連結部と、前記第1の対向部と前記第2の対向部との間に配置された透光部と、を含み、前記第1の対向部、前記第2の対向部、及び前記連結部を構成する材料の熱変形温度が、前記封止材を構成する材料の融点よりも高い。
 (2)上記太陽電池モジュールにおいて、前記第1の太陽電池と、前記第2の太陽電池は、両面受光型の太陽電池であり、前記固定部材が反射部材を含んで構成されてもよい。
 (3)上記太陽電池モジュールにおいて、前記固定部材は、前記第1の方向に延伸し、前記第1の方向に交差する方向に並べて設けられた複数の開口部を有し、前記開口部が、前記透光部であり、前記第1の太陽電池と前記第2の太陽電池との間に配置された前記スペースと対向して配置されてもよい。
 (4)上記太陽電池モジュールにおいて、前記固定部材が、透光性シートと、前記透光性シートの裏面側において、前記第1の方向に延伸し、前記第1の太陽電池と対向するように配置された第1の反射材と、前記透光性シートの裏面側において、前記第1の方向に延伸し、前記第2の太陽電池と対向するように配置された第2の反射材と、を含み、前記第1の太陽電池と前記第1の反射材の間に配置された前記透光性シートの一部が、前記第1の対向部を構成し、前記第2の太陽電池と前記第2の反射材の間に配置された前記透光性シートの一部が、前記第2の対向部を構成し、前記透光性シートを構成する材料の熱変形温度が、前記封止材を構成する材料の融点よりも高い構成としてもよい。
 (5)上記太陽電池モジュールにおいて、前記封止材を構成する材料が、EVA、アイオノマーの少なくとも一方を含み、前記第1の対向部、前記第2の対向部、及び前記連結部を構成する材料が、ポリエチレンテレフタレート、ポリカーボネイト、及びポリイミドの内の少なくともいずれか一つを含む構成としてもよい。
 (6)上記太陽電池モジュールにおいて、前記第1の太陽電池は、前記第1の方向に延伸する第1の太陽電池セルと、前記第1の太陽電池セルの受光面側に設けられ、前記第1の方向に延伸する第1の受光面側集電電極と、前記第1の受光面側集電電極の一端側に接続され、前記受光面内において前記第1の方向と交差する方向に延伸する第1の受光面側接続用電極と、を含む構成としてもよい。
 (7)上記太陽電池モジュールにおいて、前記第1の太陽電池セルは、半導体基板と、前記半導体基板の前記受光面側に設けられ、前記半導体基板と逆導電型の半導体層と、前記受光面と前記裏面の間に配置され、前記第1の方向に延伸する側面と、前記側面に配置され、レーザ加工によって形成されたレーザ加工領域と、前記側面において、前記レーザ加工領域よりも前記受光面寄りに配置され、折曲切断によって形成された折曲切断領域と、を含み、前記受光面に垂直な方向における、前記レーザ加工領域の幅が、前記第1の太陽電池セルの厚みの40%以下であってもよい。
 (8)上記太陽電池モジュールにおいて、前記第1の太陽電池セルは、半導体基板と、前記半導体基板の前記受光面側に設けられ、前記半導体基板と逆導電型の半導体層と、前記受光面と前記裏面の間に配置され、前記第1の方向に延伸する側面と、前記側面に配置され、第1の表面粗さを有する裏面側領域と、前記側面において、前記裏面側領域よりも前記受光面寄りに配置され、前記第1の表面粗さよりも小さな第2の表面粗さを有する受光面側領域と、を含み、前記受光面に垂直な方向における、前記裏面側領域の幅が、前記第1の太陽電池セルの厚みの40%以下であってもよい。
 (9)上記太陽電池モジュールにおいて、前記第1の太陽電池セルは、前記受光面側から見て前記第1の太陽電池セルの外形を構成し、前記第1の方向に延伸する第1の辺を有し、前記第1の受光面側接続用電極の端部が、前記受光面側から見て、前記第1の辺と重畳する構成としてもよい。
 (10)上記太陽電池モジュールにおいて、前記第1の太陽電池セルの裏面側に設けられ、前記第1の方向に延伸する第1の裏面側集電電極と、前記第1の裏面側集電電極の他端側に接続され、前記裏面において前記第1の方向と交差する方向に延伸する第1の裏面側接続用電極と、を更に含み、前記第1の裏面側接続用電極が、前記第1の受光面側接続用電極と前記第1の太陽電池セルを介して対向しないよう配置された構成としてもよい。
 (11)上記太陽電池モジュールにおいて、前記第1の太陽電池セルは、前記裏面側から見て前記第1の太陽電池セルの外形を構成し、前記第1の方向に延伸する第3の辺を有し、前記第1の裏面側接続用電極の端部が、前記裏面側から見て、前記第3の辺と重畳する構成としてもよい。
 (12)上記太陽電池モジュールにおいて、前記第1の太陽電池は、前記第1の方向に延伸する第2の太陽電池セルと、前記第2の太陽電池セルの裏面側に設けられ、前記第1の方向に延伸する第2の裏面側集電電極と、前記第2の裏面側集電電極の他端側に接続され、前記裏面内において前記第1の方向と交差する方向に延伸し、前記第1の受光面側接続用電極と電気的に接続された第2の裏面側接続用電極と、を更に含む構成としてもよい。
 (13)上記太陽電池モジュールにおいて、前記第1の受光面側接続用電極と前記第2の裏面側接続用電極とは、導電性接着剤により電気的に接続された構成としてもよい。
 (14)上記太陽電池モジュールにおいて、前記封止材を構成する材料が、エチレン・α-オレフィン共重合体を含み、前記第1の対向部、前記第2の対向部、及び前記連結部を構成する材料が、ポリエチレンテレフタレート、ポリカーボネイト、及びポリイミドの内の少なくともいずれか一つを含む構成としてもよい。
 (15)本開示のガラス建材は、上記太陽電池モジュールと、窓枠と、を含み、前記連結部が、前記受光面側から見て、前記窓枠と重畳するように配置されている。
 (16)上記ガラス建材において、前記太陽電池群は、前記第1の太陽電池と、前記第2の太陽電池と、を電気的に接続する配線を更に含み、前記配線が、前記受光面側から見て、前記連結部と重畳するように配置された構成としてもよい。
 (17)本開示の太陽電池モジュールの製造方法は、第1のガラス基板、第1の封止材シート、固定部材、接着部材、太陽電池群、第2の封止材シート、及び第2のガラス基板が、この順に配置されるよう載置する載置工程と、前記第1の封止材シート、前記第2の封止材シートを加熱する加熱工程と、を順次行い、前記太陽電池群が、第1の方向に延伸する両面受光型の第1の太陽電池と、前記第1の方向に交差する方向に前記第1の太陽電池とスペースを空けて配置され、前記第1の方向に延伸する両面受光型の第2の太陽電池と、を含み、前記固定部材が、前記第1の方向に延伸する第1の対向部と、前記第1の方向に延伸する第2の対向部と、前記第1の対向部と前記第2の対向部とを連結する連結部と、前記第1の対向部と前記第2の対向部との間に配置された透光部と、を含み、前記載置工程において、前記第1の太陽電池が、前記第1の対向部と対向し、前記第2の太陽電池が、前記第2の対向部と対向するよう配置され、前記加熱工程において、前記第1の封止材シート、前記第2の封止材シートを構成する材料の融点以上、且つ前記第1の対向部、前記第2の対向部、及び前記連結部を構成する材料の熱変形温度以下で加熱する。
 (18)上記太陽電池モジュールの製造方法において、前記第1の封止材シート、前記第2の封止材シートを構成する材料が、EVA、アイオノマーの少なくとも一方を含み、前記第1の対向部、前記第2の対向部、及び前記連結部を構成する材料が、ポリエチレンテレフタレート、ポリカーボネイト、及びポリイミドの内の少なくともいずれか一つを含んでもよい。
 (19)上記太陽電池モジュールの製造方法において、前記太陽電池群を準備する工程を更に含み、前記太陽電池群を準備する工程は、半導体基板の受光面側に、前記半導体基板と逆導電型の半導体層を製膜する工程と、前記半導体層を製膜する工程の後で、前記半導体層の受光面側に、前記第1の方向に延伸する第1の受光面側集電電極、及び第2の受光面側集電電極を形成する工程と、前記半導体層を製膜する工程の後で、前記第1の受光面側集電電極、前記第2の受光面側集電電極の一端側に接続され、前記第1の方向に平面視で交差する方向に延伸する受光面側接続用電極を形成する工程と、前記受光面側接続用電極を形成する工程の後で、前記第1の受光面側集電電極と前記第2の受光面側集電電極との間において、前記第1の方向に延伸する分断ラインに沿って、前記半導体基板の裏面側からレーザ光を照射し、溝を形成する工程と、前記レーザ光を照射する工程の後で、前記分断ラインに沿って、前記半導体基板を折曲切断し、前記第1の受光面側集電電極を有する第1の太陽電池セルと、前記第2の受光面側集電電極を有する第2の太陽電池セルと、を形成する工程と、を含んでもよい。
 (20)上記太陽電池モジュールの製造方法において、前記レーザ光を照射する工程において、前記受光面に垂直な方向における、前記溝の深さは、前記第1の太陽電池セルの厚みの40%以下であってもよい。
 (21)上記太陽電池モジュールの製造方法において、前記レーザ光を照射する工程の前に、前記半導体基板の裏面側に、前記第1の方向に延伸する第1の裏面側集電電極、及び第2の裏面側集電電極を形成する工程と、前記第1の裏面側集電電極、前記第2の裏面側集電電極の他端側に接続され、前記第1の方向に平面視で交差する方向に延伸する裏面側接続用電極を形成する工程と、を更に含み、前記裏面側接続用電極は、前記受光面側接続用電極と前記第1の太陽電池セルを介して対向しないよう配置されてもよい。
 (22)上記太陽電池モジュールの製造方法において、前記折曲切断する工程の後で、前記第1の受光面側集電電極と前記第2の裏面側集電電極とを、導電性接着剤により接続する工程を更に含んでもよい。
 (23)上記太陽電池モジュールの製造方法において、前記第1の封止材シート、前記第2の封止材シートを構成する材料が、エチレン・α-オレフィン共重合体を含み、前記第1の対向部、前記第2の対向部、及び前記連結部を構成する材料が、ポリエチレンテレフタレート、ポリカーボネイト、及びポリイミドの内の少なくともいずれか一つを含んでもよい。
図1は第1の実施形態に係る太陽電池が固定部材に載置された状態を示す模式的な平面図である。 図2は第1の実施形態に係る太陽電池モジュールの断面図である。 図3は第1の実施形態に係る太陽電池に含まれる太陽電池セルの受光面側を示す模式的な平面図である。 図4は第1の実施形態に係る太陽電池セルの裏面側を示す模式的な平面図である。 図5は第1の実施形態に係る第1の太陽電池セルと第2の太陽電池セルを接続した状態を示す模式的な平面図である。 図6は第1の実施形態に係る第1の太陽電池セルと第2の太陽電池セルを接続した状態を示す模式的な側面図である。 図7は図6のA部を拡大した模式的な側面図である。 図8は図6のA部を拡大した模式的な側面図である。 図9は第1の実施形態に示した太陽電池モジュールを窓に設置したガラス建材を示す模式的な平面図であるである。 図10は第1の実施形態の他の実施例に係る固定部材に太陽電池が載置された状態を示す模式的な平面図である。 図11は第1の実施形態の他の実施例に係る太陽電池モジュールの断面図である。 図12は第1の実施形態における太陽電池モジュールの製造方法で用いる矩形の太陽電池セルの受光面側を示す平面図である。 図13は第1の実施形態における矩形の太陽電池セルの裏面側を示す平面図である。 図14は第1の実施形態における太陽電池モジュールの製造方法を示すフローチャートである。 図15は第1の実施形態における載置工程を示す模式的な断面図である。 図16は第1の実施形態における載置工程を示す模式的な断面図である。 図17は第1の実施形態における太陽電池モジュールの製造方法を示す模式的な平面図である。 図18は第1の実施形態における太陽電池モジュールの製造方法を示す模式的な平面図である。 図19は第1の実施形態における太陽電池モジュールの製造方法を示す模式的な平面図である。
 本開示の第1の実施形態について、図面を用いて以下に説明する。
[太陽電池モジュール]
 図1は、本実施形態に係る太陽電池が固定部材に載置された状態を示す模式的な平面図である。図2は、本実施形態に係る太陽電池モジュールの断面図であり、図1のII-II線に対応する断面を示す。
 図1、図2に示すように、本実施形態における太陽電池モジュール100は、複数の太陽電池10を含む太陽電池群110を含み、当該太陽電池群110には、第1の方向に延伸する第1の太陽電池10Aと、第2の太陽電池10Bが含まれる。第1の太陽電池10Aと第2の太陽電池10Bは、第1の方向に交差する方向に、スペースをあけて配置されている。なお、本実施形態においては、第1の太陽電池10Aと第2の太陽電池10Bとが両面受光型の太陽電池である例を説明するが、第1の太陽電池10Aと第2の太陽電池10Bとが両面受光型の太陽電池であることは必須の要件ではない。
 太陽電池群110の裏面側には、太陽電池群110の裏面側と対向するように固定部材70が配置されている。本実施形態においては、固定部材70が、第1の太陽電池10Aと対向し、第1の方向に延伸する第1の対向部71Aと、第2の太陽電池10Bと対向し、第1の方向に延伸する第2の対向部71Bと、第1の方向に交差する方向に延伸し、第1の対向部71Aと第2の対向部71Bとを連結する連結部72と、を含む。また、本実施形態においては、第1の対向部71Aと第2の対向部71Bとの間には、透光部75としての開口部を設けており、この開口部が、第1の太陽電池10Aと第2の太陽電池10Bとの間に配置されたスペースと対向する。なお、開口部は、第1の方向に延伸し、第1の方向に直交する第2の方向に幅を有する。なお、本実施形態においては、固定部材70が、第1の対向部71A、第2の対向部71B以外にも、第1の方向に延伸する複数の対向部71を有しており、連結部72が、複数の対向部71を連結している。
 図2に示すように、太陽電池群110の裏面側には、第1のガラス基板21が配置されており、第1のガラス基板21は、太陽電池群110の裏面側を覆っている。また、太陽電池群110の受光面側には、第2のガラス基板22が配置されており、第2のガラス基板22は、太陽電池群110の受光面側を覆っている。
 太陽電池群110と第1のガラス基板21との間には、上述した固定部材70が介在しており、太陽電池群110と固定部材70との間には、接着部材80が介在している。この接着部材80が、太陽電池群110と固定部材70とを接着している。
 第1のガラス基板21と第2のガラス基板22との間は、封止材90により封止されており、封止材90が、第1の太陽電池10Aと第2の太陽電池10Bの間にも介在する構成となっている。
 第2のガラス基板22を通過し、複数の太陽電池10の受光面側に入射した光40は、そのまま太陽電池10の受光面において吸収され、発電に寄与する。また、固定部材70が反射部材を含む構成とするような場合には、太陽電池10の受光面に入射し、太陽電池10に吸収されずに透過した光41については、太陽電池10の裏面側に配置された固定部材70によって反射され、太陽電池10の裏面に到達し、太陽電池10の裏面において吸収され、発電に寄与する。また、複数の太陽電池10の間に入射した光42の一部についても、太陽電池10の裏面側に配置された固定部材70によって反射され、太陽電池10の裏面に到達し、太陽電池10の裏面において吸収され、発電に寄与する。
 ここで、固定部材70を構成する第1の対向部71A、第2の対向部71B、及び連結部72の熱変形温度が、封止材90の融点よりも高い構成としている。このような構成とすることにより、製造工程中において、封止材90を流動させる工程が含まれていても、複数の太陽電池10の位置ずれが発生するのを抑制することができる。即ち、固定部材70を構成する第1の対向部71A、第2の対向部71B、及び連結部72の熱変形温度が、封止材90の融点よりも高い構成としているため、封止材90を軟化させるために、封止材90の融点まで太陽電池モジュール100を加熱しても、その温度を、固定部材70の熱変形温度以下とすることが可能であり、固定部材70の形状が大きく変形することを抑制することができる。その結果、太陽電池10が、封止材90の流動によって位置ずれすることを、この太陽電池10に接着部材80を介して接着された固定部材70の存在によって抑制することができる。
 封止材90としては、例えば熱可塑性樹脂を用いることができる。封止材90として、例えばEVAを用いる場合、EVAの融点は60~61℃であるため、この温度よりも高い熱変形温度を有する材料を用いて、固定部材70の第1の対向部71A、第2の対向部71B、及び連結部72を形成する。例えば、ポリカーボネイトの熱変形温度は130~140℃であり、ポリエチレンテレフタレートの熱変形温度は240~245℃であるため、この条件を満たす。また、封止材90としてアイオノマーを用いた場合においても、アイオノマーの融点は86~100℃であるため、固定部材70の第1の対向部71A、第2の対向部71B、及び連結部72として、ポリカーボネイト、及びポリエチレンテレフタレートを用いることができる。また、ポリイミドも高い熱変形温度を有するため、この条件を満たす。さらに、封止材90としてエチレン・α-オレフィン共重合体を用いた場合にも、エチレン・α-オレフィン共重合体の融点は80~90℃であるため、上記と同様である。
 固定部材70としては、電気的な短絡を防止する観点から、絶縁性の部材であることが望ましい。固定部材70として、ポリカーボネイト、ポリエチレンテレフタレート、及びポリイミドの内の少なくともいずれか一つを用いる場合において、固定部材70が反射部材を含む構成とする場合には、第1の対向部71A、第2の対向部71B、及びその他の対向部71においては、例えば白色、銀色等の絶縁性の粉末をポリカーボネイト、ポリエチレンテレフタレート、及びポリイミドの内の少なくともいずれか一つに練りこんでおく。その他、固定部材70として、ポリカーボネイト、ポリエチレンテレフタレート、及びポリイミドの内の少なくともいずれか一つに、反射特性を有する絶縁性の塗装が施されたような物を用いた場合も、固定部材70を反射部材として機能させることが可能となる。なお、本実施形態においては、固定部材70が反射部材を含む構成を例に挙げて説明するが、太陽電池の位置ずれ抑制を図る目的を達成する上では、固定部材70が、反射部材としての機能を有することは必須の要件ではない。固定部材70に対し、反射部材としての機能を求めない場合であれば、例えば固定部材70として、ポリカーボネイト、ポリエチレンテレフタレート、及びポリイミドの内の少なくともいずれか一つからなる透光性部材を用いてもよく、このような透光性部材に絶縁性の塗装が施されたような物を用いてもよい。また、ポリイミドからなる着色を含んだ透光性部材や、ポリイミドに絶縁性の黒色等の粉末を含ませたような透光性が少ない物を、固定部材70として用いてもよい。
 なお、固定部材70に反射部材としての機能を求める場合、固定部材70における第1の対向部71A、第2の対向部71Bは、太陽電池10の吸収波長域の少なくとも一部における反射率が80%以上である構成とすることが望ましく、本開示においては、700nm~1100nmの波長域における平均反射率が80%以上のものを反射部材としての機能を発揮するものと定義する。
 また、固定部材70における透光部75は、太陽電池10の可視光領域の少なくとも一部における透過率が80%以上である構成とすることが望ましく、本開示においては、500~600nmの波長域における平均透過率が80%以上のものを透過部75としての機能を発揮するものと定義する。
 なお、固定部材70の第1の対向部71A、第2の対向部71Bを構成する材料の熱膨張率と太陽電池10を構成する材料の熱膨張率との差が小さい構成とすることが望ましい。このような構成とすることにより、上述した封止材90を流動させるための加熱工程において、太陽電池10の割れが発生する可能性を低減することができる。上記で例示したポリカーボネイトと、ポリエチレンテレフタレートとを比較した場合、ポリエチレンテレフタレートの方が、その熱膨張率が、太陽電池10を構成するシリコンの熱膨張率と近いため、固定部材70の第1の対向部71A、第2の対向部71Bを構成する材料として、ポリエチレンテレフタレートを用いることが望ましい。
 なお、本実施形態においては、固定部材70に含まれる各対向部71の幅W1が、各太陽電池10の幅W2よりも大きい構成としている。ここで、対向部71の幅W1とは、太陽電池10の受光面内において、第1の方向に直交する第2の方向における対向部71の長さを意味し、太陽電池10の幅W2とは、第2の方向における太陽電池10の長さを意味する。このような構成とすることにより、対向部71に入射した光41、42を、より効率よく太陽電池10の裏面側に受光させることができる。更に、固定部材70に含まれる各対向部71の幅W1が、各太陽電池10の幅W2よりも大きい構成とすることにより、太陽電池10の裏面側を対向部71で隠すことができ、裏面側から見たデザイン上のメリットがある。
 続いて、本実施形態における各太陽電池10の構成について説明する。各太陽電池10(第1の太陽電池10A、第2の太陽電池10B)は、第1の方向に延伸する複数の太陽電池セル11が電気的に接続されて構成されている。
 図3は、太陽電池10に含まれる一つの太陽電池セル11の受光面側を示す模式的な平面図である。太陽電池セル11は、第1の方向に延伸する形状を有しており、本実施形態においては、第1の方向に延伸する長辺と、受光面内において第1の方向に直交する第2の方向に延伸する短辺と、を有する略長方形状を有している。
 太陽電池セル11の受光面側には、第1の方向に延伸する受光面側集電電極12が配置されており、太陽電池セル11における光電変換により発生したキャリアを集める役割を果たす。本実施形態における受光面側集電電極12は、2本のフィンガー電極を含んで構成されている。
 太陽電池セル11の受光面側における受光面側集電電極12の一端側(図3に示す例では、右端側)には、受光面内において第1の方向と交差する方向に延伸する受光面側接続用電極14が配置され、受光面側集電電極12と電気的に接続されている。当該受光面側接続用電極14は、他の太陽電池セルとの電気的接続を行うための電極である。
 なお、受光面側接続用電極14の延伸方向は、必ずしも第1の方向と直交する必要はない。また、受光面側接続用電極14は、受光面側集電電極12の一端側に接続されていればよく、必ずしも受光面側集電電極12の端部に接続されている必要はない。本開示においては、受光面側集電電極12の端部から、受光面側集電電極12の長さの10%未満の範囲内に受光面側接続用電極14が配置されていれば、それは、受光面側集電電極12の一端側に配置されているものとする。
 このような構成により、太陽電池セル11の形状を、他の太陽電池セルとの接続方向である第1の方向に延伸させた形状とした太陽電池モジュール100の生産性の更なる向上を実現させることが可能となる。即ち、上記構成によれば、他の太陽電池セル11と接続するための受光面側接続用電極14が、受光面側集電電極12の一端側に接続されているため、例えばインターコネクタなどを、受光面側集電電極12の全体に接続する必要がなくなり、高精度な位置制御が不要となる。その結果として、生産性の更なる向上を実現することができる。
 更に、インターコネクタを受光面側集電電極12の全体に接続するような場合においては、当該インターコネクタの位置がずれた場合には、インターコネクタと受光面側集電電極12との接触面積が担保されず、接触抵抗が上がってしまうという課題のみならず、インターコネクタが、太陽電池セル11の受光面側に影を作ってしまい、変換効率を低下させてしまう課題があったが、本開示の構成であれば、インターコネクタを受光面側集電電極12の全体にわたって設ける必要がないため、インターコネクタの存在により、太陽電池セル11の受光面側に影を作ってしまうリスクを低減することができる。
 なお、本実施形態においては、受光面側接続用電極14が、太陽電池セル11の長辺にまで延伸する構成としている。即ち、受光面側接続用電極14の端部が、受光面側から見て太陽電池セル11の外形を構成する辺の内、第1の方向に延伸する第1の辺と、受光面側から見て重畳する構成としている。このような構成とすることにより、受光面側接続用電極14と他の太陽電池セル11における接続用電極との接触面積を担保するとともに、高精度な位置制御が不要となり、更なる生産性の向上を図ることができる。即ち、太陽電池セル11と他の太陽電池セル11との相対的な位置が、第2の方向にずれるような場合であっても、受光面側接続用電極14が、太陽電池セル11の長辺にまで延伸する構成とすることにより、受光面側接続用電極14と他の太陽電池セル11における接続用電極との接触面積を担保することができる。
 図4は、本実施形態に係る太陽電池セル11の裏面側を示す模式的な平面図である。太陽電池セル11の裏面側には、第1の方向に延伸する裏面側集電電極16が配置されており、太陽電池セル11における光電変換により発生したキャリアを集める役割を果たす。本実施形態における裏面側集電電極16は、2本のフィンガー電極を含んで構成されている。
 太陽電池セル11の裏面側における裏面側集電電極16の他端側(図4に示す例では、左端側)には、裏面内において第1の方向と交差する方向に延伸する裏面側接続用電極18が配置され、裏面側集電電極16と電気的に接続されている。当該裏面側接続用電極18は、他の太陽電池セルとの電気的接続を行うための電極である。
 ここで、図3に示すように、受光面側接続用電極14を、太陽電池セル11の一端側(図3に示す例では右端側)に配置している。これに対して、図4に示すように、裏面側接続用電極18を、太陽電池セル11の他端側(図4に示す例では、左端側)に配置しているため、受光面側接続用電極14と裏面側接続用電極18とは、太陽電池セル11を介して対向しない位置に配置されている。
 なお、裏面側接続用電極18の延伸方向は、必ずしも第1の方向と直交する必要はない。また、裏面側接続用電極18は、裏面側集電電極16の他端側に接続されていればよく、必ずしも裏面側集電電極16の端部に接続されている必要はない。本開示においては、裏面側集電電極16の端部から、裏面側集電電極16の長さの10%未満の範囲内に裏面側接続用電極18が配置されていれば、それは、裏面側集電電極16の他端側に配置されているものとする。
 なお、本実施形態においては、裏面側接続用電極18が、太陽電池セル11の長辺にまで延伸する構成としている。即ち、裏面側接続用電極18の端部が、裏面側から見て太陽電池セル11の外形を構成する辺の内、第1の方向に延伸する第3の辺と、裏面側から見て重畳する構成としている。このような構成とすることにより、裏面側接続用電極18と他の太陽電池セル11における接続用電極の接触面積を担保するとともに、高精度な位置制御が不要となり、更なる生産性の向上を図ることができる。即ち、太陽電池セル11と他の太陽電池セル11との相対的な位置が、第2の方向にずれるような場合であっても、裏面側接続用電極18が、太陽電池セル11の長辺にまで延伸する構成とすることにより、裏面側接続用電極18と、他の太陽電池11の受光面側接続用電極14との接触面積を担保することができる。
 図5は、本実施形態に係る第1の太陽電池セルと第2の太陽電池セルを接続した状態を示す模式的な平面図である。図6は、本実施形態に係る第1の太陽電池セルと第2の太陽電池セルを接続した状態を示す模式的な側面図である。第1の太陽電池セル11Aと第2の太陽電池セル11Bは、図1に示した第1の太陽電池10Aに含まれる太陽電池セル11である。
 図5、6に示すように、第1の太陽電池セル11Aと第2の太陽電池セル11Bとは、それぞれの短辺側において接続される構成となっている。即ち、第1の太陽電池セル11Aと第2の太陽電池セル11Bとは、それぞれの長辺が、第1の方向に延伸するように並べて配置され、その短辺側において互いに電気的に接続される構成となっている。
 図3、4を用いて上述した太陽電池セル11と同様に、第1の太陽電池セル11Aの受光面側には、第1の方向に延伸する第1の受光面側集電電極12Aが配置され、第1の受光面側集電電極12Aの一端側(図6に示す例では、右端側)には、受光面内において第1の方向と交差する方向に延伸する第1の受光面側接続用電極14Aが配置され、第1の受光面側集電電極12Aと電気的に接続されている。また、第1の太陽電池セル11Aの裏面側には、第1の方向に延伸する第1の裏面側集電電極16Aが配置され、第1の裏面側集電電極16Aの他端側(図4に示す例では、左端側)には、裏面内において第1の方向と交差する方向に延伸する第1の裏面側接続用電極18Aが配置されている。
 図6に示すように、第1の太陽電池セル11Aに設けられた第1の受光面側接続用電極14Aは、第1の太陽電池セル11Aの受光面側における一端側(図6に示す例では右端側)に配置されており、第1の裏面側接続用電極18Aは、第1の太陽電池セル11Aの裏面側における他端側(図6に示す例では左端側)に配置されている。即ち、第1の受光面側接続用電極14Aと第1の裏面側接続用電極18Aとは、第1の太陽電池セル11Aを介して互いに対向しない構成となっている。
 また、図3、4を用いて上述した太陽電池セル11と同様に、第2の太陽電池セル11Bの受光面側には、第1の方向に延伸する第2の受光面側集電電極12Bが配置され、第2の受光面側集電電極12Bの一端側(図6に示す例では、右端側)には、受光面内において第1の方向と交差する方向に延伸する第2の受光面側接続用電極14Bが配置され、第2の受光面側集電電極12Bと電気的に接続されている。また、第2の太陽電池セル11Bの裏面側には、第1の方向に延伸する第2の裏面側集電電極16Bが配置され、第2の裏面側集電電極16Bの他端側(図6に示す例では、左端側)には、裏面内において第1の方向と交差する方向に延伸する第2の裏面側接続用電極18Bが配置されている。
 図6に示すように、第2の太陽電池セル11Bに設けられた第2の受光面側接続用電極14Bは、第2の太陽電池セル11Bの受光面側における一端側(図6に示す例では右端側)に配置されており、第2の裏面側接続用電極18Bは、第2の太陽電池セル11Bの裏面側における他端側(図6に示す例では左端側)に配置されている。即ち、第2の受光面側接続用電極14Bと第2の裏面側接続用電極18Bとは、第2の太陽電池セル11Bを介して互いに対向しない構成となっている。
 図5、6に示すように、第1の太陽電池セル11Aと第2の太陽電池セル11Bとは、導電性接着剤88により電気的に接続されている。より具体的には、第1の太陽電池セル11Aにおける第1の受光面側接続用電極14Aの受光面側に塗布された導電性接着剤88が、第2の太陽電池セル11Bにおける第2の裏面側接続用電極18Bの裏面側と電気的に接続されている。導電性接着剤88としては、例えば銀、銅、ニッケル等を主成分とする金属微粒子とエポキシ樹脂を混合したものなどを用いることができる。
 このような構成により、第1の太陽電池セル11A、第2の太陽電池セル11Bの形状を、両者の接続方向である第1の方向に延伸させた形状とした太陽電池モジュール100の生産性の更なる向上を実現させることが可能となる。即ち、上記構成によれば、導電性接着剤88により、第1の受光面側接続用電極14Aと第2の裏面側接続用電極18Bとが電気的に接続されるため、インターコネクタを、第1の受光面側集電電極12A、及び第2の裏面側集電電極16Bの全体に接続する必要がなくなり、高精度な位置制御が不要となる。その結果として、生産性の更なる向上を実現することができる。
 更に、インターコネクタを第1の受光面側集電電極12Aの全体に接続するような場合においては、当該インターコネクタの位置がずれた場合には、インターコネクタと第1の受光面側集電電極12Aとの接触面積が担保されず、接触抵抗が上がってしまうという課題のみならず、インターコネクタが、第1の太陽電池セル11Aの受光面側に影を作ってしまい、変換効率を低下させてしまう課題があったが、本開示の構成であれば、インターコネクタを第1の受光面側集電電極12Aの全体にわったって設ける必要がないため、インターコネクタの存在により第1の太陽電池セル11Aの受光面側に影を作ってしまうリスクを低減することができる。
 また、本実施形態においては、第1の受光面側接続用電極14Aが第1の太陽電池セル11Aの長辺にまで延伸し、第2の裏面側接続用電極18Bが第2の太陽電池セル11Bの長辺にまで延伸する構成としている。即ち、第1の受光面側接続用電極14Aの端部が、受光面側から見て第1の太陽電池セル11Aの外形を構成する辺の内、第1の方向に延伸する第1の辺と受光面側から見て重畳する構成とするとともに、第2の裏面側接続用電極18Bの端部が、受光面側から見て第2の太陽電池セル11Bの外形を構成する辺の内、第1の方向に延伸する第1の辺と、裏面側から見て重畳する構成としている。このような構成とすることにより、第1の受光面側接続用電極14Aと第2の裏面側接続用電極18Bとの接触面積を担保するとともに、高精度な位置制御が不要となり、更なる生産性の向上を図ることができる。即ち、第1の太陽電池セル11Aに対する第2の太陽電池セル11Bの相対的な位置が、第2の方向にずれるような場合であっても、第1の受光面側接続用電極14Aと第2の裏面側接続用電極18Bとの接触面積を担保することができる。
 なお、本実施形態においては、第1の受光面側接続用電極14Aと第2の裏面側接続用電極18Bとが、導電性接着剤88により電気的に接続される例について説明したが、本開示はこれに限定されない。例えば、第1の受光面側接続用電極14Aと第2の裏面側接続用電極18Bとの間を、インターコネクタを介して電気的に接続する構成としても、当該インターコネクタを第1の受光面側集電電極12A、及び第2の裏面側集電電極16Bの全体に接続する必要がないメリットを得ることは可能である。ただし、上述したように、第1の受光面側接続用電極14Aと第2の裏面側接続用電極18Bとが、導電性接着剤88により電気的に接続される構成とする方が、より生産性を高めることができ望ましい。即ち、第1の受光面側接続用電極14Aと第2の裏面側接続用電極18Bとの間を、インターコネクタを介して電気的に接続する場合、当該インターコネクタを折り曲げる工程、インターコネクタと第1の受光面側接続用電極14Aとを接続する工程、インターコネクタと第2の裏面側接続用電極18Bとを接続する工程が必要になるが、第1の受光面側接続用電極14Aと第2の裏面側接続用電極18Bとが、導電性接着剤88により電気的に接続される構成であれば、そのような工程が不要となる。
 なお、本実施形態においては、太陽電池セル11が、第1の方向に延伸する受光面側集電電極12、裏面側集電電極16、受光面側集電電極12の一端側に接続された受光面側接続用電極14、及び裏面側集電電極16の他端側に接続された裏面側接続用電極18を備える構成を例示したが、各種電極の構造は上述したものに限定されない。例えば、太陽電池セル11が、第1の方向に延伸するフィンガー電極と、第2の方向に延伸するバスバー電極とを有し、フィンガー電極により太陽電池10内の複数の太陽電池セル11の電気的接続を図り、バスバー電極により、第2の方向に並べて配置された他の太陽電池10との電気的接続を図る構成としても構わない。ただし、上述した電極構造とすることにより、第2の方向に並べて配置された複数の太陽電池10を接続するバスバー電極を設ける必要がないため、当該バスバー電極が、複数の太陽電池10の間からの採光を妨げることが無く望ましく、また、外観上の観点からも好ましい。
 図7、8は、図6のA部を拡大した模式的な側面図であり、それぞれ本実施形態の太陽電池セルにおける第1の方向に延伸する側面の一例を示す。
 第1の太陽電池セル11Aは、半導体基板50と、半導体基板50の受光面側に設けられ、半導体基板50と逆導電型の第1の半導体層52と、を有する。図7に示す例では、半導体基板50としてn型単結晶シリコン基板を用いており、このn型単結晶シリコン基板の受光面側に、n型単結晶シリコン基板と逆導電型の第1の半導体層52としてのp型アモルファスシリコン層を形成している。更に、図7に示す例においては、半導体基板50と第1の半導体層52との間に、第1のi型アモルファスシリコン層51を設けており、第1の半導体層52の更に受光面側においては、第1の透明電極層53を設けている。半導体基板50の裏面側には、第2のi型アモルファスシリコン層54、半導体基板50と同導電型の第2の半導体層55、及び第2の透明導電層56を、この順に設けている。第2の半導体層55としては、例えばn型アモルファスシリコン層を用いる。
 本実施形態において、半導体基板50の膜厚は、例えば200μm程度であり、第1のi型アモルファスシリコン層51、第1の半導体層52、第2のi型アモルファスシリコン層54、及び第2の半導体層55の膜厚は、例えば0.01μm未満、第1の透明電極層53、第2の透明導電層56の膜厚は、例えば0.1μm程度としている。そのため、半導体基板50の膜厚が、第1の太陽電池セル11Aの膜厚の大部分を占める構成となっており、半導体基板50と第1の半導体層52とで形成されるPN接合は、受光面側のわずかな領域において形成されることとなる。
 詳しくは、太陽電池モジュールの製造方法の欄で後述するが、第1の太陽電池セル11Aにおける第1の方向に延伸する側面は、レーザ加工によって形成されたレーザ加工領域60と、折曲切断によって形成された折曲切断領域62と、を有する。レーザ加工領域60は、折曲切断領域62よりも裏面寄りに配置され、折曲切断領域62は、レーザ加工領域60よりも受光面寄りに配置されている。本実施形態において、受光面に垂直な方向、即ち積層方向におけるレーザ加工領域60の幅は、第1の太陽電池セル11Aの厚みの40%以下としている。
 レーザ加工領域60は、第1の表面粗さを有し、折曲切断領域62は、第2の表面粗さを有しており、第2の表面粗さが、第1の表面粗さよりも小さい構成としている。即ち、折曲切断領域62の表面粗さが、レーザ加工領域60の表面粗さよりも小さい構成となっている。
 図8に示す例においては、半導体基板50Aとしてp型単結晶シリコン基板を用いており、このp型単結晶シリコン基板の受光面側に、p型単結晶シリコン基板と逆導電型の第1の半導体層52Aとしてのn型結晶シリコン層を形成している。更に、図8に示す例においては、第1の半導体層52Aの更に受光面側においては、開口部を有する絶縁膜58を設けており、当該開口部を介して、第1の受光面側集電電極12Aが第1の半導体層52Aと接続されている。半導体基板50Aの裏面側には、半導体基板50と同導電型の第2の半導体層55Aとして、p+型結晶シリコン層を設けている。
 図8に示す例においても、第1の太陽電池セル11Aにおける第1の方向に延伸する側面は、レーザ加工によって形成されたレーザ加工領域60と、折曲切断によって形成された折曲切断領域62と、を有する。レーザ加工領域60は、裏面側に配置され、折曲切断領域62は、受光面側に配置されている。本実施形態において、受光面に垂直な方向、即ち積層方向におけるレーザ加工領域60の幅は、第1の太陽電池セル11Aの厚みの40%以下としている。
 なお、本実施形態においては、第2の太陽電池セル11Bも、上述した第1の太陽電池セル11Aと同様の構成を有する。
 なお、本実施形態においては、太陽電池セル11(第1の太陽電池セル11A、第2の太陽電池セル11B)が、その外形を構成し、第1の方向に延伸する第1の辺(長辺)と、受光面内において第1の方向に直交する第2の方向に延伸する第2の辺(短辺)と、を有し、この長辺の長さを、短辺の長さで割った値が5を超え、且つ100未満となる構成としている。
 このように、第1の方向に延伸する第1の辺の長さを、第2の方向に延伸する第2の辺の長さで割った値が5を超える構成とすることにより、本開示の太陽電池モジュール100を複数本、並走するように配置した場合、ブラインド調のデザインとすることができ、意匠性の観点から好ましい。
 また、第1の方向に延伸する第1の辺の長さを、第2の方向に延伸する第2の辺の長さで割った値が100未満であることが望ましい。即ち、太陽電池セル11があまりにも細長くなりすぎない構成とすることにより、太陽電池セル11の機械的強度を担保することができる。
 また、本実施形態が、長辺の長さを、短辺の長さで割った値が5を超える構成としているため、太陽電池セル11(第1の太陽電池セル11A、第2の太陽電池セル11B)の受光面側、及び裏面側において、受光面側接続用電極14、裏面側接続用電極18以外に、第1の方向に交差する方向に延伸する電極が存在しない構成を採用することが可能となる。即ち、長辺の長さを、短辺の長さで割った値が5を超える構成としているため、長辺方向である第1の方向に延伸する受光面側集電電極12、及び裏面側接続用電極18により、太陽電池セル11で発生したキャリアの多くを集めることができる。そのため、別途、第1の方向に交差する方向に集電用の電極を設けない構成を採用することが可能となる。その結果として、更なる生産性の向上を図ることができ、また、外観上の観点からも好ましい。
 図9は、本実施形態に示した太陽電池モジュール100を窓に設置したガラス建材を示す模式的な平面図である。図9に示すように、ガラス建材200は、窓枠30と、窓枠30の内周側に配置された窓ガラス32と、を有する。複数の太陽電池10が、その受光面側から見て窓ガラス32と重畳するよう配置しており、太陽電池10に含まれる各太陽電池セル11は、第1の方向に延伸しており、各太陽電池セル11が導電性接着剤88により接続されている。また、複数の太陽電池10が第1の方向に交差する方向に、並べて配置されている。
 受光面側から見て、窓枠30と重畳する領域においては、固定部材70の連結部72が配置されている。また、この窓枠30と重畳する領域においては、複数の太陽電池10を電気的に接続する配線34としてのインターコネクタが配置されている。当該配線34は、第1の方向と交差する方向に延伸し、受光面側から見て、連結部72と重畳するように配置されている。
 このような構成とすることにより、第1の方向に交差する方向に延伸する配線34を窓枠30と重畳させ、ユーザから視認されないよう配置すると共に、ユーザから視認される領域においては、第1の方向に延伸し、第1の方向に交差する方向に並べて配置された複数の太陽電池10のみが露出される構成を実現することができる。その結果、互いに電気的に接続された複数の太陽電池10を窓ガラス32全体に形成し、且つブラインド調のデザインを実現することが可能となる。
 なお、本実施形態においては、受光面側集電電極12、裏面側集電電極16が、それぞれ2本のフィンガー電極を含む構成を例示したが、受光面側集電電極12、裏面側集電電極16を構成するフィンガー電極の本数はこれに限定されない。
 また、太陽電池セル11の長辺、短辺の長さは、上述した値に限定されない。また、太陽電池セル11の形状は、長方形状に限定されず、平行四辺形や、その他の形状であっても構わない。
 なお、上述した固定部材70の構成は一例であり、その他の構成を用いてもよい。図10は、本実施形態の他の実施例に係る固定部材70に太陽電池が載置された状態を示す模式的な平面図である。図11は、本実施形態の他の実施例に係る太陽電池モジュールの断面図であり、図10のXI-XI線に対応する断面を示す。
 図10、11に示す例においては、透光性シート73と、透光性シート73の裏面側に塗布された反射材74とにより、固定部材70を構成している。透光性シート73の受光面側には、第1の方向に延伸する複数の太陽電池10を載置しており、太陽電池10と透光性シート73との間には、接着部材80が介在し、接着部材80が、太陽電池10と透光性シート73とを接着している。透光性シート73の裏面側には、太陽電池10と対向するように反射材74が塗布されており、この反射材74が、入射する太陽光を反射する役割を担う。第1の太陽電池10Aの裏面側には、第1の太陽電池10Aと対向するように第1の反射材74Aが塗布されている。同様に、第2の太陽電池10Bの裏面側には、第2の太陽電池10Bと対向するように第2の反射材74Bが塗布されている。
 透光性シート73は、上述した連結部72としての機能を果たしつつ、且つ透光部75としての機能も果たしている。また、透光性シート73における、太陽電池10と反射材74との間に介在する部分は、対向部71を構成する。第1の太陽電池10Aと第1の反射材74Aとの間に配置された透光性シート73の一部は、第1の対向部71Aを構成し、第2の太陽電池10Bと第2の反射材74Bとの間に配置された透光性シート73の一部は、第2の対向部71Bを構成する。従って、透光性シート73は、封止材90を軟化させる際に、太陽電池10の位置ずれを抑制する機能を果たさなければならない。そのため、封止材90として、例えばEVA(エチレン・酢酸ビニル共重合体)を用いる場合、EVA(エチレン・酢酸ビニル共重合体)の融点は60~61℃であるため、この温度よりも高い熱変形温度を有する材料を用いて、透光性シート73を形成する。例えば、ポリカーボネイトの熱変形温度は130~140℃であり、ポリエチレンテレフタレートの熱変形温度は240~245℃であるため、この条件を満たす。また、封止材90としてアイオノマーを用いた場合においても、アイオノマーの融点は86~100℃であるため、透光性シート73として、ポリカーボネイト、及びポリエチレンテレフタレートを用いることができる。また、ポリイミドも高い熱変形温度を有するため、この条件を満たす。さらに、封止材90としてエチレン・α-オレフィン共重合体を用いた場合にも、エチレン・α-オレフィン共重合体の融点は80~90℃であるため、上記と同様である。
 なお、本開示の太陽電池モジュール100は、その受光面側を室内側に向けて配置してもよく、その受光面側を室外側に向けて配置してもよい。
[太陽電池モジュールの製造方法]
 以下、本実施形態における太陽電池モジュールの製造方法を説明する。
[太陽電池群を準備する工程]
 本実施形態においては、太陽電池群を準備する工程を含む。当該太陽電池群を準備する工程は、後述する載置工程よりも前に行ってもよく、載置工程を行う途中で、太陽電池群を準備する工程を行ってもよい。本実施形態においては、載置工程を行う前に太陽電池群を準備する工程を行う。
 図12は、本実施形態における太陽電池モジュールの製造方法で用いる矩形の太陽電池セルの受光面側を示す平面図であり、図13は、矩形の太陽電池セルの裏面側を示す平面図である。また、図14は、本実施形態における太陽電池モジュールの製造方法を示すフローチャートである。
 図14に示すように、本実施形態における太陽電池モジュールの製造方法は、上述した複数の太陽電池セル11(第1の太陽電池セル11A、第2の太陽電池セル11B)を含む矩形の太陽電池セル1000を製造する工程S100と、矩形の太陽電池セル1000を、複数の太陽電池セル11に分断する工程S200と、を含む。
 矩形の太陽電池セル1000を製造する工程S100には、第1の半導体層52を製膜する工程S101と、第1の受光面側集電電極12A、及び第2の受光面側集電電極12Bを形成する工程S102と、受光面側接続用電極14Zを形成する工程S103と、第1の裏面側集電電極16A、及び第2の裏面側集電電極16Bを形成する工程S104と、裏面側接続用電極18Zを形成する工程S105と、が含まれる。
 第1の半導体層52を製膜する工程S101では、図7、8を用いて上述した半導体基板50、50Aの受光面側に、半導体基板50、50Aと逆導電型の第1の半導体層52、52Aを製膜する。第1の半導体層52は、例えばCVD(chemical vapor deposition)法により製膜することができる。この工程により、半導体基板50の受光面側に、PN接合が形成されることとなる。
 第1の半導体層52を製膜する工程S101の後で、第1の受光面側集電電極12A、及び第2の受光面側集電電極12Bを形成する工程S102を行う。第1の受光面側集電電極12A、及び第2の受光面側集電電極12Bを形成する工程S102では、図12に示すように、第1の半導体層52の受光面側に、第1の方向に延伸する第1の受光面側集電電極12A、及び第2の受光面側集電電極12Bを形成する。この工程において、他の太陽電池セル11に設ける受光面側集電電極12を複数同時に形成してもよい。
 第1の半導体層52を製膜する工程S101の後で、受光面側接続用電極14を形成する工程S103を行う。受光面側接続用電極14を形成する工程S103では、第1の受光面側集電電極12A、第2の受光面側集電電極12Bの一端側(図12においては右端側)に接続され、前記第1の方向に平面視で交差する方向に延伸する受光面側接続用電極14を形成する。受光面側接続用電極14は、後述する複数の太陽電池セル11に分断する工程S200において形成される太陽電池セル11毎に、別箇独立に形成してもよいが、本実施形態においては、各太陽電池セル11に共通の受光面側接続用電極14Zを形成する。この受光面側接続用電極14Zは、後述する分断工程S200において、第1の太陽電池セル11Aに配置される第1の受光面側接続用電極14A、第2の太陽電池セル11Bに配置される第2の受光面側接続用電極14B、及びその他の太陽電池セル11に配置される受光面側接続用電極14に分離される。
 更に、第1の半導体層52を製膜する工程S101の後で、半導体基板50の裏面側において、第1の裏面側集電電極16A、及び第2の裏面側集電電極16Bを形成する工程S104を行う。第1の裏面側集電電極16A、及び第2の裏面側集電電極16Bを形成する工程S104では、図13に示すように、第1の半導体層52の裏面側に、第1の方向に延伸する第1の裏面側集電電極16A、及び第2の裏面側集電電極16Bを形成する。この工程において、他の太陽電池セル11に設ける裏面側集電電極16を複数同時に形成してもよい。
 第1の半導体層52を製膜する工程S101の後で、裏面側接続用電極18を形成する工程S105を行う。裏面側接続用電極18を形成する工程S105では、第1の裏面側集電電極16A、第2の裏面側集電電極16Bの他端側(図13においては左端側)に接続され、第1の方向に平面視で交差する方向に延伸する裏面側接続用電極18を形成する。裏面側接続用電極18は、後述する複数の太陽電池セル11に分断する工程S200において形成される太陽電池セル11毎に、別箇独立に形成してもよいが、本実施形態においては、各太陽電池セル11に共通の裏面側接続用電極18Zを形成する。この裏面側接続用電極18Zは、後述する分断工程S200において、第1の太陽電池セル11Aに配置される第1の裏面側接続用電極18A、第2の太陽電池セル11Bに配置される第2の裏面側接続用電極18B、及びその他の太陽電池セル11に配置される裏面側接続用電極18に分離される。
 なお、第1の受光面側集電電極12A、及び第2の受光面側集電電極12Bを形成する工程S102と、受光面側接続用電極14を形成する工程S103と、第1の裏面側集電電極16A、及び第2の裏面側集電電極16Bを形成する工程S104と、裏面側接続用電極18Zを形成する工程S105と、の前後関係は問わない。
 次に、複数の太陽電池セル11に分断する工程S200について説明する。図14に示すように、複数の太陽電池セル11に分断する工程S200には、レーザ照射工程S201と、折曲工程S202と、が含まれる。
 レーザ照射工程S201は、図12、13に示すように、第1の受光面側集電電極12Aと第2の受光面側集電電極12Bとの間において、第1の方向に延伸する分断ラインCLに沿って、半導体基板50の裏面側からレーザ光を照射し、溝を形成する工程である。
 このレーザ光照射工程S201において、形成する溝の深さは、太陽電池セル11の厚みの40%以下としている。
 ここで、このレーザ照射工程S201においては、太陽電池セル11を構成する材料が昇華され、形成された溝から露出される太陽電池セル11の側面に、この昇華された材料が付着する可能性がある。たとえば、半導体基板50を構成する半導体材料や、裏面側接続用電極18Zを構成する金属材料が昇華され、太陽電池セル11の側面に付着する可能性がある。しかし、本実施形態においては、上述した通り、太陽電池セル11の受光面側にPN接合が配置されるようにしており、このPN接合を構成する半導体基板50と第1の半導体層52との境界が、裏面側から形成された溝から露出されないようにしている。そのため、昇華された材料が、当該境界に付着することが無く、漏れ電流が発生するのを抑制することができる。
 なお、本実施形態においては、第1の方向に延伸する分断ラインCLのみならず、第2の方向に延伸する分断ラインCL2に沿っても、半導体基板50の裏面側からレーザ光を照射し、溝を形成する。具体的には、受光面側接続用電極14Zよりも一端側(図12においては右端側)、及び裏面側接続用電極18Zよりも他端側(図13においては左端側)において、第1の方向と直交する第2の方向に延伸する分断ラインCL2においても、レーザ光照射により溝を形成する。
 レーザ光照射工程S201の後で、折曲工程S202を行う。折曲工程S202は、分断ラインCLに沿って、半導体基板50を折曲切断し、第1の受光面側集電電極12Aを有する第1の太陽電池セル11Aと、第2の受光面側集電電極12Bを有する第2の太陽電池セル11Bと、を形成する工程である。
 このように、複数の太陽電池セル11に分断する工程S200が、レーザ照射工程S201と、折曲工程S202の2段階で構成されているため、第1の太陽電池セル11Aにおける第1の方向に延伸する側面が、レーザ加工によって形成されたレーザ加工領域60と、折曲切断によって形成された折曲切断領域62と、を有し、レーザ加工領域60が、裏面側に配置され、折曲切断領域62が、受光面側に配置される構成となる。レーザ加工領域60は、第1の表面粗さを有し、折曲切断領域62は、第2の表面粗さを有しており、第2の表面粗さが、第1の表面粗さよりも小さい構成となっている。
 なお、上述したレーザ光照射工程S201において、形成する溝の深さは、太陽電池セル11の厚みの40%以下としているため、この折曲工程S202の生産性を向上させることができる。即ち、本開示に示すような第1の方向に延伸する細長い太陽電池セル11を、折曲工程S202を用いて分断する場合、所望の分断ラインCLのみを折り曲げようとしても、他の分断ラインCLにおいても応力が加わってしまい、分断されてしまう可能性がある。しかし、本実施形態においては、形成する溝の深さは、太陽電池セル11の厚みの40%以下としているため、所望の分断ラインCLごとに折り曲げ、分断することが可能となるため、この折曲工程S202の生産性を向上させることができる。
 なお、矩形の太陽電池セル1000を、複数の太陽電池セル11に分断する工程S200が、レーザ光照射工程S201と、折曲工程S202の2段階で構成されていることにより、受光面側接続用電極形成S103、及び裏面側接続用電極形成S105において、共通の受光面側接続用電極14Z、裏面側接続用電極18Zを形成した後、この複数の太陽電池セルに分断する工程S200において、複数の受光面側接続用電極14、及び複数の裏面側接続用電極18に分断する方法を採用することができる。即ち、レーザ照射工程S201のみを用いて、矩形の太陽電池セル1000を複数の太陽電池セル11に分断する場合、上述した通り、受光面側接続用電極14Z、裏面側接続用電極18Zを構成する金属材料が昇華され、太陽電池セル11の側面に付着する可能性がある。しかし、本実施形態においては、上述した通り、レーザ照射工程S201と、折曲工程S202の2段階を含み、レーザ照射工程S201においてPN接合を形成する半導体基板50と第1の半導体層52との境界面が、溝から露出されない方法としている。そのため、昇華された材料が、PN接合を形成する半導体基板50と第1の半導体層52との境界に付着することが無く、漏れ電流が発生するのを抑制することができる。
 そして、共通の受光面側接続用電極14Z、裏面側接続用電極18Zを形成した後、この複数の太陽電池セルに分断する工程S200において、複数の受光面側接続用電極14、及び複数の裏面側接続用電極18に分断する方法を採用することができるため、受光面側接続用電極14と裏面側接続用電極18とを、太陽電池セル11の長辺にまで延伸する構成を実現することができる。即ち、受光面側接続用電極14と裏面側接続用電極18の端部が、太陽電池セル11の外形を構成する辺の内、第1の方向に延伸する第1の辺と、裏面側から見て重畳する構成を実現することができる。その結果として、受光面側接続用電極14、裏面側接続用電極18と、他の太陽電池セル11の接続用電極と、の接触面積を担保するとともに、高精度な位置制御が不要となり、更なる生産性の向上を図ることができる。即ち、他の太陽電池セル11に対する相対的な位置が、第1の方向に直交する第2の方向にずれるような場合であっても、受光面側接続用電極14、裏面側接続用電極18が、太陽電池セル11の長辺にまで延伸する構成とすることにより、受光面側接続用電極14、裏面側接続用電極18と、他の太陽電池セル11の接続用電極との接触面積を担保することができる。
 なお、本実施形態においては、上述したレーザ光照射工程S201において、受光面側接続用電極14Zよりも一端側(図12においては右端側)、及び裏面側接続用電極18Zよりも他端側(図13においては左端側)において、第1の方向と直交する第2の方向に延伸する分断ラインCL2においても、レーザ光照射により溝を形成していた。この第2の方向に延伸する分断ラインCL2においても、この折曲工程S202において分断する。その結果として、第1の太陽電池セル11Aの受光面において、より一端側に第1の受光面側接続用電極14Aを配置し、第1の太陽電池セル11Aの裏面において、より他端側に第1の裏面側接続用電極18Aを配置することが可能となる。
[載置工程]
 次に、載置工程を行う。図15、16は、本実施形態における載置工程を示す模式的な断面図である。図15、16に示すように、載置工程では、第1のガラス基板21、第1の封止材シート91、固定部材70、接着部材80、太陽電池群110、第2の封止材シート92、及び第2のガラス基板22が、この順に配置されるよう載置する。
 この載置工程では、第1のガラス基板21から順に、第1のガラス基板21の受光面側に各部材を載置していく方法としてもよいし、第2のガラス基板22から順に、第2のガラス基板の裏面側に各部材を載置していく方法としてもよい。また、先に固定部材70の受光面側に接着部材80を塗布し、太陽電池群110をその受光面側に載置して構成される積層体を形成した後に、第1の封止材シート91の受光面側、又は第2の封止材シート92の裏面側に、この積層体を載置してもよい。
 ここで、固定部材70、接着部材80、及び太陽電池群110からなる積層体を形成する方法について説明する。図17に示すように、固定部材70の受光面側に接着部材80を塗布した状態で、配線34としてのインターコネクタを載置する。固定部材70は、第1の方向に延伸する複数の対向部71(第1の対向部71A、第2の対向部71B)と、第1の方向に交差する方向に延伸し、各対向部71を連結する連結部72と、を有し、各対向部71の間は透光部75としての開口部が設けられている。固定部材70の受光面側に載置されるインターコネクタの受光面側における他端側(図17においては左端側)には、導電性接着剤88を塗布しておく。
 なお、接着部材80としては、例えばポリエチレンテレフタレート基材の両面に粘着性のアクリル樹脂を貼り付けたものを、導電性接着剤88としては、銀、銅、ニッケル等を主成分とする金属微粒子とエポキシ樹脂を混合したものを用いることができる。
 次に、図18に示すように、インターコネクタに塗布した導電性接着剤88と、裏面側接続用電極18とが電気的に接続されるように、太陽電池セル11を載置する。
 その後、図19、及び図6に示すように、一方の太陽電池セル11の裏面側接続用電極18が、他方の太陽電池セル11の受光面側接続用電極14と対向するように載置するとともに、両者の間に導電性接着剤88を介在させることによって電気的に接続する。これを繰り返し、第1の方向に延伸する一つの太陽電池10を形成することができる。
 更に、図1に示すように、第1の方向に延伸する複数の太陽電池10を、第1の方向に交差する方向に、スペースを空けて配置していく。このとき、各太陽電池10が、固定部材70における対向部71と対向するように配置する。第1の太陽電池10Aは、第1の対向部71Aと対向し、第2の太陽電池10Bは、第2の対向部71Bと対向する。また、二つの太陽電池10の間に配置されたスペースが、二つの対向部71の間に配置された透光部75と対向する。
 そして図1に示すように、複数の太陽電池10を接続する配線34としてのインターコネクタを設ける。例えば、太陽電池10の端部に形成されたインターコネクタの受光面側に導電性接着剤88を塗布しておき、その受光面側に配線34としてのインターコネクタを載置することにより、配線34としてのインターコネクタと太陽電池10との電気的な接続を行う。配線34としてのインターコネクタは、固定部材70の連結部72と対向するように配置され、第1の方向に交差する方向に延伸する。
 なお、図10に示した実施例においては、まず透光性シート73の受光面側における、複数の太陽電池10を載置する位置に、接着部材80を塗布、又は配置し、その更に受光面側に、第1の方向に延伸する複数の太陽電池10を載置する。また、透光性シート73の裏面側には、太陽電池10と対向するように反射材74を塗布する。第1の太陽電池10Aの裏面側には、第1の太陽電池10Aと対向するように反射材74を塗布し、第2の太陽電池10Bの裏面側には、第2の太陽電池10Bと対向するように反射材74を塗布する。
 なお、透光性シート73としては、例えばポリエチレンテレフタレートを用いることができ、反射材74としては、例えば酸化チタン微粒子を用いることができる。また、接着部材80としては、接着テープを用いることができ、当該接着テープとしては、ポリエチレンテレフタレート基材の両面に粘着性のアクリル樹脂を貼り付けたものを用いることができる。
 本実施形態においては、このような固定部材70、接着部材80、及び太陽電池群110を含む積層体を、図15、16に示すように、第1のガラス基板21の受光面側に載置された第1の封止材シート91の受光面側に載置する。その後、太陽電池群110の受光面側に第2の封止材シート92を載置し、その後、第2の封止材シート92の受光面側に第2のガラス基板22を載置する。
 以上により、載置工程を終了する。
[加熱工程]
 上述した載置工程の後に、加熱工程を行う。この加熱工程では、第1の封止材シート91、第2の封止材シート92の融点以上、且つ第1の対向部71A、第2の対向部71B、及び連結部72を構成する材料の熱変形温度以下で加熱する。この加熱工程により、図15、16に示したシート状の第1の封止材シート91、第2の封止材シート92が軟化され、図2、11に示した封止材90となる。
 本実施形態においては、第1の対向部71A、第2の対向部71B、及び連結部72の材料として、その熱変形温度が、第1の封止材シート91、第2の封止材シート92の融点よりも高い材料を用いている。具体例として、封止材90として、例えばEVA(エチレン・酢酸ビニル共重合体)を用いる場合、EVAの融点は60~61℃であるため、この温度よりも高い熱変形温度を有する材料を用いて、固定部材70の第1の対向部71A、第2の対向部71B、及び連結部72を形成する。例えば、ポリカーボネイトの熱変形温度は130~140℃であり、ポリエチレンテレフタレートの熱変形温度は240~245℃であるため、この条件を満たす。また、封止材90としてアイオノマーを用いた場合においても、アイオノマーの融点は86~100℃であるため、固定部材70の第1の対向部71A、第2の対向部71B、及び連結部72として、ポリカーボネイト、及びポリエチレンテレフタレートを用いることができる。また、ポリイミドも高い熱変形温度を有するため、この条件を満たす。さらに、封止材90としてエチレン・α-オレフィン共重合体を用いた場合にも、エチレン・α-オレフィン共重合体の融点は80~90℃であるため、上記と同様である。
 このように、第1の対向部71A、第2の対向部71B、及び連結部72を構成する材料として、その熱変形温度が、第1の封止材シート91、第2の封止材シート92を構成する材料の融点よりも高い材料を用いているため、この加熱工程においても、複数の太陽電池10の位置ずれが発生するのを抑制することができる。即ち、第1の封止材シート91、第2の封止材シート92を軟化させ、図2、11に示した封止材90の状態とするため、封止材90の融点まで太陽電池モジュール100を加熱しても、その温度を、固定部材70の熱変形温度以下とすることが可能であり、固定部材70の形状が大きく変形することを抑制することができる。その結果、太陽電池10が、封止材90の流動によって位置ずれすることを、この太陽電池10に接着部材80を介して接着された固定部材70が抑制することができる。
 なお、固定部材70の第1の対向部71A、第2の対向部71Bを構成する材料の熱膨張率と太陽電池10を構成する材料の熱膨張率との差が小さい構成とすることが望ましい。このような構成とすることにより、上述した封止材90を流動させるための加熱工程において、太陽電池10の割れが発生する可能性を低減することができる。上記で例示したポリカーボネイト、ポリエチレンテレフタレートであれば、ポリエチレンテレフタレートの方が、その熱膨張率が、太陽電池10を構成するシリコンの熱膨張率と近いため、固定部材70の第1の対向部71A、第2の対向部71Bを構成する材料として、ポリエチレンテレフタレートを用いることが望ましい。
 この加熱工程を経て、図15、16に示した積層体における第1の封止材シート91、第2の封止材シート92が軟化され、封止材90となって流動し、第1の太陽電池10A、第2の太陽電池10Bの間にも介在する。そして、第1のガラス基板21と第2のガラス基板22との間を封止することができ、それぞれ図2、11に示した太陽電池モジュール100を得ることができる。

 

Claims (24)

  1.  第1の方向に延伸する第1の太陽電池と、前記第1の方向に交差する方向に前記第1の太陽電池とスペースを空けて配置され、前記第1の方向に延伸する第2の太陽電池と、を含む太陽電池群と、
     前記太陽電池群の裏面側を覆う第1のガラス基板と、
     前記太陽電池群の受光面側を覆う第2のガラス基板と、
     前記太陽電池群の裏面側と対向して配置され、前記太陽電池群と前記第1のガラス基板との間に配置された固定部材と、
     前記太陽電池群と前記固定部材との間に介在する接着部材と、
     前記第1の太陽電池と前記第2の太陽電池との間に介在する封止材と、を含み、
     前記固定部材は、
     前記第1の太陽電池と対向し、前記第1の方向に延伸する第1の対向部と、
     前記第2の太陽電池と対向し、前記第1の方向に延伸する第2の対向部と、
     前記第1の対向部と、前記第2の対向部と、を連結する連結部と、
     前記第1の対向部と前記第2の対向部との間に配置された透光部と、を含み、
     前記第1の対向部、前記第2の対向部、及び前記連結部を構成する材料の熱変形温度が、前記封止材を構成する材料の融点よりも高い、
     太陽電池モジュール。
  2.  前記第1の太陽電池と、前記第2の太陽電池は、両面受光型の太陽電池であり、
     前記固定部材が反射部材を含んで構成された、
     請求項1に記載の太陽電池モジュール。
  3.  前記固定部材は、前記第1の方向に延伸し、前記第1の方向に交差する方向に並べて設けられた複数の開口部を有し、
     前記開口部が、前記透光部であり、前記第1の太陽電池と前記第2の太陽電池との間に配置された前記スペースと対向して配置された、
     請求項1又は2に記載の太陽電池モジュール。
  4.  前記固定部材が、
     透光性シートと、
     前記透光性シートの裏面側において、前記第1の方向に延伸し、前記第1の太陽電池と対向するように配置された第1の反射材と、
     前記透光性シートの裏面側において、前記第1の方向に延伸し、前記第2の太陽電池と対向するように配置された第2の反射材と、を含み、
     前記第1の太陽電池と前記第1の反射材の間に配置された前記透光性シートの一部が、前記第1の対向部を構成し、
     前記第2の太陽電池と前記第2の反射材の間に配置された前記透光性シートの一部が、前記第2の対向部を構成し、
     前記透光性シートを構成する材料の熱変形温度が、前記封止材を構成する材料の融点よりも高い、
     請求項1に記載の太陽電池モジュール。
  5.  前記封止材を構成する材料が、EVA、アイオノマーの少なくとも一方を含み、
     前記第1の対向部、前記第2の対向部、及び前記連結部を構成する材料が、ポリエチレンテレフタレート、ポリカーボネイト、及びポリイミドの内の少なくともいずれか一つを含む、
     請求項1乃至4のいずれか一つに記載の太陽電池モジュール。
  6.  前記第1の太陽電池は、
     前記第1の方向に延伸する第1の太陽電池セルと、
     前記第1の太陽電池セルの受光面側に設けられ、前記第1の方向に延伸する第1の受光面側集電電極と、
     前記第1の受光面側集電電極の一端側に接続され、前記受光面内において前記第1の方向と交差する方向に延伸する第1の受光面側接続用電極と、
     を含む、
     請求項1乃至5のいずれか一つに記載の太陽電池モジュール。
  7.  前記第1の太陽電池セルは、
     半導体基板と、
     前記半導体基板の前記受光面側に設けられ、前記半導体基板と逆導電型の半導体層と、
     前記受光面と前記裏面の間に配置され、前記第1の方向に延伸する側面と、
     前記側面に配置され、レーザ加工によって形成されたレーザ加工領域と、
     前記側面において、前記レーザ加工領域よりも前記受光面寄りに配置され、折曲切断によって形成された折曲切断領域と、
     を含み、
     前記受光面に垂直な方向における、前記レーザ加工領域の幅が、前記第1の太陽電池セルの厚みの40%以下である、
     請求項6に記載の太陽電池モジュール。
  8.  前記第1の太陽電池セルは、
     半導体基板と、
     前記半導体基板の前記受光面側に設けられ、前記半導体基板と逆導電型の半導体層と、
     前記受光面と前記裏面の間に配置され、前記第1の方向に延伸する側面と、
     前記側面に配置され、第1の表面粗さを有する裏面側領域と、
     前記側面において、前記裏面側領域よりも前記受光面寄りに配置され、前記第1の表面粗さよりも小さな第2の表面粗さを有する受光面側領域と、
     を含み、
     前記受光面に垂直な方向における、前記裏面側領域の幅が、前記第1の太陽電池セルの厚みの40%以下である、
     請求項6又は7に記載の太陽電池モジュール。
  9.  前記第1の太陽電池セルは、前記受光面側から見て前記第1の太陽電池セルの外形を構成し、前記第1の方向に延伸する第1の辺を有し、
     前記第1の受光面側接続用電極の端部が、前記受光面側から見て、前記第1の辺と重畳する、
     請求項6乃至8のいずれか一つに記載の太陽電池モジュール。
  10.  前記第1の太陽電池セルの裏面側に設けられ、前記第1の方向に延伸する第1の裏面側集電電極と、
     前記第1の裏面側集電電極の他端側に接続され、前記裏面において前記第1の方向と交差する方向に延伸する第1の裏面側接続用電極と、を更に含み、
     前記第1の裏面側接続用電極が、前記第1の受光面側接続用電極と前記第1の太陽電池セルを介して対向しないよう配置された、
     請求項6乃至9のいずれか一つに記載の太陽電池モジュール。
  11.  前記第1の太陽電池セルは、前記裏面側から見て前記第1の太陽電池セルの外形を構成し、前記第1の方向に延伸する第3の辺を有し、
     前記第1の裏面側接続用電極の端部が、前記裏面側から見て、前記第3の辺と重畳する、
     請求項10に記載の太陽電池モジュール。
  12.  前記第1の太陽電池は、
     前記第1の方向に延伸する第2の太陽電池セルと、
     前記第2の太陽電池セルの裏面側に設けられ、前記第1の方向に延伸する第2の裏面側集電電極と、
     前記第2の裏面側集電電極の他端側に接続され、前記裏面内において前記第1の方向と交差する方向に延伸し、前記第1の受光面側接続用電極と電気的に接続された第2の裏面側接続用電極と、
     を更に含む、請求項6乃至11のいずれか一つに記載の太陽電池モジュール。
  13.  前記第1の受光面側接続用電極と前記第2の裏面側接続用電極とは、導電性接着剤により電気的に接続された、
     請求項12に記載の太陽電池モジュール。
  14.  前記封止材を構成する材料が、エチレン・α-オレフィン共重合体を含み、
     前記第1の対向部、前記第2の対向部、及び前記連結部を構成する材料が、ポリエチレンテレフタレート、ポリカーボネイト、及びポリイミドの内の少なくともいずれか一つを含む、
     請求項1乃至13のいずれか一つに記載の太陽電池モジュール。
  15.  請求項1乃至13のいずれか一つに記載の太陽電池モジュールと、
     窓枠と、を含み、
     前記連結部が、前記受光面側から見て、前記窓枠と重畳するように配置された、
     ガラス建材。
  16.  前記太陽電池群は、前記第1の太陽電池と、前記第2の太陽電池と、を電気的に接続する配線を更に含み、
     前記配線が、前記受光面側から見て、前記連結部と重畳するように配置された、
     請求項15に記載のガラス建材。
  17.  第1のガラス基板、第1の封止材シート、固定部材、接着部材、太陽電池群、第2の封止材シート、及び第2のガラス基板が、この順に配置されるよう載置する載置工程と、
     前記第1の封止材シート、前記第2の封止材シートを加熱する加熱工程と、
     を順次行い、
     前記太陽電池群が、
     第1の方向に延伸する両面受光型の第1の太陽電池と、
     前記第1の方向に交差する方向に前記第1の太陽電池とスペースを空けて配置され、前記第1の方向に延伸する両面受光型の第2の太陽電池と、を含み、
     前記固定部材が、
     前記第1の方向に延伸する第1の対向部と、
     前記第1の方向に延伸する第2の対向部と、
     前記第1の対向部と前記第2の対向部とを連結する連結部と、
     前記第1の対向部と前記第2の対向部との間に配置された透光部と、を含み、
     前記載置工程において、前記第1の太陽電池が、前記第1の対向部と対向し、前記第2の太陽電池が、前記第2の対向部と対向するよう配置され、
     前記加熱工程において、前記第1の封止材シート、前記第2の封止材シートを構成する材料の融点以上、且つ前記第1の対向部、前記第2の対向部、及び前記連結部を構成する材料の熱変形温度以下で加熱する、
     太陽電池モジュールの製造方法。
  18.  前記第1の封止材シート、前記第2の封止材シートを構成する材料が、EVA、アイオノマーの少なくとも一方を含み、
     前記第1の対向部、前記第2の対向部、及び前記連結部を構成する材料が、ポリエチレンテレフタレート、ポリカーボネイト、及びポリイミドの内の少なくともいずれか一つを含む、
     請求項17に記載の太陽電池モジュールの製造方法。
  19.  前記太陽電池群を準備する工程を更に含み、
     前記太陽電池群を準備する工程は、
     半導体基板の受光面側に、前記半導体基板と逆導電型の半導体層を製膜する工程と、
     前記半導体層を製膜する工程の後で、前記半導体層の受光面側に、前記第1の方向に延伸する第1の受光面側集電電極、及び第2の受光面側集電電極を形成する工程と、
     前記半導体層を製膜する工程の後で、前記第1の受光面側集電電極、前記第2の受光面側集電電極の一端側に接続され、前記第1の方向に平面視で交差する方向に延伸する受光面側接続用電極を形成する工程と、
     前記受光面側接続用電極を形成する工程の後で、前記第1の受光面側集電電極と前記第2の受光面側集電電極との間において、前記第1の方向に延伸する分断ラインに沿って、前記半導体基板の裏面側からレーザ光を照射し、溝を形成する工程と、
     前記レーザ光を照射する工程の後で、前記分断ラインに沿って、前記半導体基板を折曲切断し、前記第1の受光面側集電電極を有する第1の太陽電池セルと、前記第2の受光面側集電電極を有する第2の太陽電池セルと、を形成する工程と、
     を含む、
     請求項17又は18に記載の太陽電池モジュールの製造方法。
  20.  前記レーザ光を照射する工程において、前記受光面に垂直な方向における、前記溝の深さは、前記第1の太陽電池セルの厚みの40%以下である、
     請求項19に記載の太陽電池モジュールの製造方法。
  21.  前記レーザ光を照射する工程の前に、前記半導体基板の裏面側に、前記第1の方向に延伸する第1の裏面側集電電極、及び第2の裏面側集電電極を形成する工程と、
     前記第1の裏面側集電電極、前記第2の裏面側集電電極の他端側に接続され、前記第1の方向に平面視で交差する方向に延伸する裏面側接続用電極を形成する工程と、
     を更に含み、
     前記裏面側接続用電極は、前記受光面側接続用電極と前記第1の太陽電池セルを介して対向しないよう配置される、
     請求項19又は20に記載の太陽電池モジュールの製造方法。
  22.  前記折曲切断する工程の後で、前記第1の受光面側集電電極と前記第2の裏面側集電電極とを、導電性接着剤により接続する工程を更に含む、
     請求項21に記載の太陽電池モジュールの製造方法。
  23.  前記第1の封止材シート、前記第2の封止材シートを構成する材料が、エチレン・α-オレフィン共重合体を含み、
     前記第1の対向部、前記第2の対向部、及び前記連結部を構成する材料が、ポリエチレンテレフタレート、ポリカーボネイト、及びポリイミドの内の少なくともいずれか一つを含む、
     請求項17に記載の太陽電池モジュールの製造方法。
  24.  請求項14に記載の太陽電池モジュールと、
     窓枠と、を含み、
     前記連結部が、前記受光面側から見て、前記窓枠と重畳するように配置された、
     ガラス建材。

     
PCT/JP2019/010291 2018-03-20 2019-03-13 太陽電池モジュール、ガラス建材、及び太陽電池モジュールの製造方法 WO2019181689A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207029568A KR102448204B1 (ko) 2018-03-20 2019-03-13 태양 전지 모듈, 유리 건재 및 태양 전지 모듈의 제조 방법
JP2020508269A JP7079318B2 (ja) 2018-03-20 2019-03-13 太陽電池モジュール、ガラス建材、及び太陽電池モジュールの製造方法
CN201980020268.2A CN111886705B (zh) 2018-03-20 2019-03-13 太阳能电池模块、玻璃建材、以及太阳能电池模块的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-052358 2018-03-20
JP2018052358 2018-03-20

Publications (1)

Publication Number Publication Date
WO2019181689A1 true WO2019181689A1 (ja) 2019-09-26

Family

ID=67986167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010291 WO2019181689A1 (ja) 2018-03-20 2019-03-13 太陽電池モジュール、ガラス建材、及び太陽電池モジュールの製造方法

Country Status (4)

Country Link
JP (1) JP7079318B2 (ja)
KR (1) KR102448204B1 (ja)
CN (1) CN111886705B (ja)
WO (1) WO2019181689A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021200418A1 (ja) * 2020-03-30 2021-10-07

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298029A (ja) * 1998-04-14 1999-10-29 Sanyo Electric Co Ltd 太陽電池モジュール及び複層ガラスモジュール
JP2002158368A (ja) * 2000-11-21 2002-05-31 Sanyo Electric Co Ltd 太陽電池モジュール
JP2005259952A (ja) * 2004-03-11 2005-09-22 Sharp Corp 太陽電池モジュール
JP2008060205A (ja) * 2006-08-30 2008-03-13 Sanyo Electric Co Ltd 太陽電池セル及びその製造方法
WO2015152020A1 (ja) * 2014-03-31 2015-10-08 株式会社カネカ 太陽電池モジュールおよびその製造方法
JP2017502525A (ja) * 2014-01-13 2017-01-19 ソーラーシティ コーポレーション 低抵抗率電極を備えた太陽電池のモジュール製作
WO2017200487A1 (en) * 2016-05-20 2017-11-23 National University Of Singapore Photovoltaic module
CN207116454U (zh) * 2017-07-17 2018-03-16 君泰创新(北京)科技有限公司 一种太阳能发电组件
WO2018056286A1 (ja) * 2016-09-20 2018-03-29 株式会社カネカ ガラス建材

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3715511B2 (ja) 2000-05-26 2005-11-09 シャープ株式会社 採光型太陽電池モジュールおよび採光型太陽電池システム
JP2012191196A (ja) * 2011-02-25 2012-10-04 Mitsubishi Rayon Co Ltd 太陽電池モジュール用封止材、太陽電池モジュールおよびその製造方法
KR101400206B1 (ko) * 2013-11-20 2014-05-28 주식회사 이건창호 단열용 태양전지 구조물의 제조방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298029A (ja) * 1998-04-14 1999-10-29 Sanyo Electric Co Ltd 太陽電池モジュール及び複層ガラスモジュール
JP2002158368A (ja) * 2000-11-21 2002-05-31 Sanyo Electric Co Ltd 太陽電池モジュール
JP2005259952A (ja) * 2004-03-11 2005-09-22 Sharp Corp 太陽電池モジュール
JP2008060205A (ja) * 2006-08-30 2008-03-13 Sanyo Electric Co Ltd 太陽電池セル及びその製造方法
JP2017502525A (ja) * 2014-01-13 2017-01-19 ソーラーシティ コーポレーション 低抵抗率電極を備えた太陽電池のモジュール製作
WO2015152020A1 (ja) * 2014-03-31 2015-10-08 株式会社カネカ 太陽電池モジュールおよびその製造方法
WO2017200487A1 (en) * 2016-05-20 2017-11-23 National University Of Singapore Photovoltaic module
WO2018056286A1 (ja) * 2016-09-20 2018-03-29 株式会社カネカ ガラス建材
CN207116454U (zh) * 2017-07-17 2018-03-16 君泰创新(北京)科技有限公司 一种太阳能发电组件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021200418A1 (ja) * 2020-03-30 2021-10-07

Also Published As

Publication number Publication date
JP7079318B2 (ja) 2022-06-01
CN111886705A (zh) 2020-11-03
KR20200123845A (ko) 2020-10-30
JPWO2019181689A1 (ja) 2020-12-10
CN111886705B (zh) 2024-01-02
KR102448204B1 (ko) 2022-09-28

Similar Documents

Publication Publication Date Title
EP2169725B1 (en) Solar cell module manufacturing method
JP4989549B2 (ja) 太陽電池及び太陽電池モジュール
JP5016342B2 (ja) 太陽電池モジュール
JP2012023408A (ja) 太陽電池モジュール及びその製造方法
US20190123229A1 (en) Solar cell module
JP7004513B2 (ja) 太陽電池モジュール
WO2016031232A1 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
EP2141747B2 (en) Solar cell module
US11302837B2 (en) Solar cell panel and method for manufacturing the same
JP2010272725A (ja) 薄膜太陽電池モジュールとその製造方法
JP2019050375A (ja) 太陽電池パネル
KR102504652B1 (ko) 태양 전지 모듈, 유리 건축재 및 태양 전지 모듈의 제조 방법
KR20190097991A (ko) 태양 전지 패널
JP2011029273A (ja) 太陽電池モジュール
WO2019181689A1 (ja) 太陽電池モジュール、ガラス建材、及び太陽電池モジュールの製造方法
KR101614166B1 (ko) 태양 전지 모듈 및 그 제조 방법
CN116741860A (zh) 光伏组件及其制备方法
CN115732580A (zh) 光伏组件
JP6735472B2 (ja) 太陽電池モジュール
JP7179779B2 (ja) 太陽電池セル用の接続部材セット、並びにそれを用いた太陽電池ストリング及び太陽電池モジュール
WO2016031231A1 (ja) 太陽電池モジュール
US20190198695A1 (en) Bifacial solar cell module
WO2015072241A1 (ja) 光電変換素子モジュール及び光電変換素子モジュールの製造方法
JPH11298020A (ja) 薄膜太陽電池モジュール
JP6313005B2 (ja) 光電変換素子及び太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508269

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207029568

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19771851

Country of ref document: EP

Kind code of ref document: A1