WO2019172185A1 - 変性液状ジエン系重合体およびゴム組成物 - Google Patents

変性液状ジエン系重合体およびゴム組成物 Download PDF

Info

Publication number
WO2019172185A1
WO2019172185A1 PCT/JP2019/008405 JP2019008405W WO2019172185A1 WO 2019172185 A1 WO2019172185 A1 WO 2019172185A1 JP 2019008405 W JP2019008405 W JP 2019008405W WO 2019172185 A1 WO2019172185 A1 WO 2019172185A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid diene
polymer
modified liquid
diene polymer
rubber
Prior art date
Application number
PCT/JP2019/008405
Other languages
English (en)
French (fr)
Inventor
さとみ 太田
神原 浩
大輔 香田
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2020505017A priority Critical patent/JP7132322B2/ja
Priority to RU2020131780A priority patent/RU2788390C2/ru
Priority to EP19764978.3A priority patent/EP3763744A4/en
Priority to US16/978,188 priority patent/US11970561B2/en
Priority to CN201980017374.5A priority patent/CN111801356B/zh
Priority to BR112020017663-0A priority patent/BR112020017663A2/pt
Priority to KR1020207025269A priority patent/KR102651219B1/ko
Priority to CA3093210A priority patent/CA3093210A1/en
Publication of WO2019172185A1 publication Critical patent/WO2019172185A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/20Incorporating sulfur atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/34Introducing sulfur atoms or sulfur-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a modified liquid diene polymer and a rubber composition.
  • a rubber composition in which mechanical strength is improved by blending a filler such as silica or carbon black with a rubber component such as natural rubber or styrene butadiene rubber is a tire that requires wear resistance and mechanical strength.
  • a filler such as silica or carbon black
  • a rubber component such as natural rubber or styrene butadiene rubber
  • the dispersion state of the filler in the crosslinked product of the rubber composition containing the filler may affect the physical properties of the crosslinked product (for example, wet grip, wear resistance, etc.).
  • the rubber composition containing this filler does not necessarily have high affinity between the rubber and the filler, and interaction between the fillers occurs, if the dispersibility of the filler is not sufficient, the physical properties of the crosslinked product are improved. May not be the ideal distributed state for.
  • the present invention has been made in view of the above circumstances, and the dispersion state of the filler in the cross-linked product obtained from the rubber composition is ideal for improving physical properties, and further, wet grip, wear resistance, etc.
  • a modified liquid diene polymer, a rubber composition containing the modified liquid diene polymer, and the crosslinked product, and a tire partially using the composition or the crosslinked product are provided. To do.
  • the rubber composition contains a specific modified liquid diene polymer containing two types of polymer blocks having different reactivities to specific silane compounds.
  • the dispersed state of the filler is ideal for improving the physical properties, and furthermore, it has been found that the wet grip and the wear resistance are excellent, and the present invention has been completed. That is, the present invention relates to the following [1] to [15].
  • a silane in which a liquid diene block copolymer (B′1) containing a polymer block (b′1) containing a butadiene unit and a polymer block (b′2) is represented by the following formula (1)
  • a modified liquid diene which is a modified liquid diene polymer (B1) having a functional group derived from the silane compound represented by the formula (1), which is modified by a compound, and satisfies the following (i) to (iv): -Based polymer (B1).
  • the weight average molecular weight (Mw) of the modified liquid diene rubber is 1,000 to 120,000.
  • the vinyl content of butadiene units in the polymer block (b′1) is 40 to 100 mol%.
  • the polymer block (b′2) contains butadiene units having a vinyl content of 0 to 25 mol%.
  • Modified liquid diene polymer (B1) The average number of functional groups per molecule is 1-20.
  • R 1 is a divalent alkylene group having 1 to 6 carbon atoms
  • R 2 , R 3 and R 4 are each independently methoxy, ethoxy, phenoxy, methyl, ethyl, A group or a phenyl group, provided that at least one of R 2 , R 3 and R 4 is a methoxy group, an ethoxy group or a phenoxy group.
  • the modified liquid diene polymer (B1) is a linear polymer, and the polymer block (b′1) is attached to one end or both ends of the liquid diene block copolymer (B′1).
  • a modified liquid diene which is a modified liquid diene polymer (B2) having a functional group derived from the silane compound represented by the formula (1), which is modified by a compound, and satisfies the following (v) to (vii): -Based polymer (B2).
  • the weight average molecular weight (Mw) of the modified liquid diene polymer (B2) is 1,000 to 120,000.
  • the polymer block (b "2) contains at least one monomer unit selected from the group consisting of conjugated diene units other than butadiene and aromatic vinyl compound units.
  • Modified liquid diene polymer (B2) The average number of functional groups per molecule is 1-20. [4]
  • the modified liquid diene polymer (B2) is a linear polymer, and the polymer block (b "1) of the liquid diene block copolymer (B'2) is at one or both ends.
  • the modified liquid diene polymer (B1) or (B2) is a linear polymer, and among functional groups derived from the silane compound in the modified liquid diene polymer (B1) or (B2)
  • the modified liquid diene polymer (B1) according to any one of [1] to [4], wherein 65% or more thereof is present in the range of 45% in total of the total chain length from one end or both ends, or ( B2).
  • the filler (C) is at least one selected from carbon black having an average particle diameter of 5 to 100 nm and silica having an average particle diameter of 0.5 to 200 nm.
  • the solid rubber (A) is a styrene butadiene rubber having a weight average molecular weight of 100,000 to 2,500,000.
  • the dispersion state of the filler is ideal for improving the physical properties, and further excellent in wet grip, wear resistance, etc. .
  • this composition or crosslinked material is useful for a tire, for example.
  • the modified liquid diene polymer of the present invention is a silane in which a polymer block containing a butadiene unit and an unmodified liquid diene block copolymer containing a polymer block different from this are represented by the above formula (1). It is a polymer modified with a compound, and the polymer has a functional group derived from the silane compound represented by the formula (1), and further needs to satisfy a specific condition.
  • modified liquid diene polymer of the present invention is generically referred to as a modified liquid diene polymer (B), and the unmodified liquid diene block copolymer as a raw material is generically referred to as unmodified.
  • a liquid diene block copolymer (B ′) the silane compound represented by the formula (1) is referred to as a silane compound (1).
  • the modified liquid diene polymer (B) of the present invention obtained from a specific unmodified liquid diene block copolymer (B ′) has desired physical properties because the unmodified liquid diene block copolymer It is considered that there is a difference in reactivity of the silane compound (1) between the two polymer blocks contained in the polymer (B ′).
  • Unmodified liquid diene block copolymer (B ′) As a raw material of the modified liquid diene polymer (B) will be described.
  • Examples of the unmodified liquid diene block copolymer (B ′) include the following unmodified liquid diene block copolymer (B′1) and unmodified liquid diene block copolymer (B′2). Can be mentioned.
  • the modified liquid diene polymer (B1) which is the first embodiment of the modified liquid diene polymer (B) of the present invention comprises a polymer block (b′1) and a polymer block (b′2) containing butadiene units.
  • the unmodified liquid diene block copolymer (B′1) containing silane is modified with the silane compound (1) and has a functional group derived from the silane compound (1). iv) is satisfied.
  • the weight average molecular weight (Mw) of the modified liquid diene rubber (B1) is 1,000 to 120,000.
  • the vinyl content of butadiene units in the polymer block (b′1) is 40 to 100 mol%.
  • the polymer block (b′2) contains butadiene units having a vinyl content of 0 to 25 mol%.
  • Modified liquid diene polymer (B1) The average number of functional groups per molecule is 1-20.
  • the raw material of the modified liquid diene polymer (B1) is an unmodified liquid diene block copolymer (B′1) and contains a polymer block (b′1) and a polymer block (b′2). .
  • the polymer block (b′1) contains butadiene units having a vinyl content of 40 to 100 mol%.
  • a butadiene unit having a vinyl content in a specific range is excellent in reactivity with the silane compound (1).
  • the “vinyl content” refers to a total of 100 mol% of butadiene units and conjugated diene units other than butadiene units contained in a target portion (for example, the entire polymer block and liquid diene rubber). , 2-bond, and 3,4-bond conjugated diene units (conjugated diene units bonded other than 1,4-bond).
  • a target portion for example, the entire polymer block and liquid diene rubber.
  • 2-bond, and 3,4-bond conjugated diene units conjugated diene units bonded other than 1,4-bond.
  • the vinyl content is determined based on the peaks derived from conjugated diene units bonded by 1,2-bonds and 3,4-bonds and conjugated diene units bonded by 1,4-bonds. It can be calculated from the area ratio of the peak derived.
  • the vinyl content of the butadiene unit contained in the polymer block (b′1) is 40 to 100 mol%.
  • the reactivity with the silane compound represented by the formula (1) is high, and it becomes easy to introduce a plurality of functional groups into the polymer block (b′1).
  • it is preferably 50 to 100 mol%, and 55 to 100 mol%. More preferably, it is more preferably 60 to 100 mol%.
  • the vinyl content of the conjugated diene unit such as a butadiene unit of the polymer block (b′1) is, for example, the type of solvent used in preparing the polymer block (b′1), and the polarity used as necessary.
  • the desired value can be obtained by controlling the compound, the polymerization temperature and the like.
  • the content of the butadiene unit in the polymer block (b′1) is high in reactivity with the silane compound represented by the formula (1), and a plurality of functional groups are easily added to the polymer block (b′1). From the viewpoint of introduction, it is preferably 50 to 100% by mass, more preferably 60 to 100% by mass, and more preferably 70 to 100% by mass with respect to all monomer units of the polymer block (b′1). % Is more preferable, and it may be substantially 100% by mass.
  • the polymer block (b′1) may contain other monomer units.
  • examples of other monomers include conjugated dienes other than butadiene, aromatic vinyl compounds, and the like.
  • conjugated dienes other than butadiene examples include isoprene, 2,3-dimethylbutadiene, 2-phenylbutadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 1,3- Examples include octadiene, 1,3-cyclohexadiene, 2-methyl-1,3-octadiene, 1,3,7-octatriene, myrcene, and chloroprene. Of the conjugated dienes other than butadiene, isoprene is preferred.
  • the vinyl content of the conjugated diene units other than butadiene is 40 to 100 mol%. It is preferably 50 to 100 mol%, more preferably 55 to 100 mol%, and particularly preferably 60 to 100 mol%.
  • aromatic vinyl compound examples include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 4-tert-butylstyrene, 4-cyclohexylstyrene, 4- Dodecylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 2,4,6-trimethylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, 1-vinylnaphthalene, 2- Examples thereof include vinyl naphthalene, vinyl anthracene, N, N-diethyl-4-aminoethylstyrene, vinylpyridine, 4-methoxystyrene, monochlorostyrene, dichlorostyrene, and divinylbenzen
  • the content of monomer units other than butadiene units in the polymer block (b′1) is preferably 50% by mass or less, more preferably 40% by mass or less, and 30% by mass or less. More preferably, it may be 0% by mass.
  • the unmodified liquid diene block copolymer (B′1) may contain one polymer block (b′1) or two or more polymer blocks (b′1). Further, when a plurality of polymer blocks (b′1) are contained, the properties of the polymer block (b′1) (for example, the type of monomer unit, the monomer unit composition, the polymer block Length etc.) may be the same or different.
  • the polymer block (b′2) contains butadiene units having a vinyl content of 0 to 25 mol%.
  • the reactivity of the butadiene unit (b′2) having a vinyl content within a specific range is suppressed with respect to the silane compound (1) as compared with the polymer block (b′1).
  • the vinyl content of the butadiene unit contained in the polymer block (b′2) is preferably 0 to 20 mol% from the viewpoint of suppressing reactivity with the silane compound represented by the formula (1). It is more preferably ⁇ 15 mol%, further preferably 0 to 10 mol%.
  • the vinyl content of the conjugated diene unit such as a butadiene unit in the polymer block (b′2) is, for example, the type of solvent used in preparing the polymer block (b′2), and the polarity used as necessary.
  • the desired value can be obtained by controlling the compound, the polymerization temperature and the like.
  • the content of the butadiene unit in the polymer block (b′2) is selected from the viewpoint of improving the wear resistance in the DIN abrasion test of the crosslinked product of the rubber composition containing the modified liquid diene polymer (B1).
  • the amount is preferably 50 to 100% by mass, more preferably 60 to 100% by mass, and still more preferably 70 to 100% by mass with respect to the total monomer units of the block (b′2).
  • the amount may be substantially 100% by mass.
  • the polymer block (b′2) may contain other monomer units.
  • examples of other monomers include conjugated dienes other than butadiene, aromatic vinyl compounds, and the like.
  • conjugated dienes other than butadiene are the same as conjugated dienes other than butadiene that can be other monomer units of the polymer block (b′1). Of the conjugated dienes other than butadiene, isoprene is preferred.
  • the vinyl content of the conjugated diene unit other than butadiene is 0 to 25 mol%. It is preferably 0 to 20 mol%, more preferably 0 to 15 mol%, and particularly preferably 0 to 10 mol%.
  • aromatic vinyl compound examples are the same as those of the aromatic vinyl compound that can be another monomer unit of the polymer block (b′1). Of these aromatic vinyl compounds, styrene, ⁇ -methylstyrene, and 4-methylstyrene are preferable.
  • the content of monomer units other than butadiene units in the polymer block (b′2) is preferably 50% by mass or less, more preferably 40% by mass or less, and 30% by mass or less. More preferably, it may be 0% by mass.
  • the unmodified liquid diene block copolymer (B′1) may contain one polymer block (b′2) or two or more polymer blocks (b′2).
  • the properties of the polymer block (b′2) for example, the type of monomer unit, the monomer unit composition, the polymer block Length etc. may be the same or different.
  • the unmodified liquid diene block copolymer (B′1) may have a polymer block (b′3) other than the polymer blocks (b′1) and (b′2).
  • the monomer that can be a monomer unit contained in the polymer block (b′3) include conjugated dienes other than butadiene and aromatic vinyl compounds. Specific examples of these compounds are the same as those of conjugated dienes other than butadiene and aromatic vinyl compounds which can be other monomer units of the polymer block (b′1).
  • the properties of the polymer block (b′3) (for example, the type of monomer unit, the monomer unit composition, the length of the polymer block, etc.) ) May be the same or different.
  • the resulting modified liquid diene polymer is a linear polymer.
  • the unmodified block copolymer (B′1) is preferably a linear block copolymer.
  • the polymer block (b′1) is preferably present at one or both ends of the liquid diene block copolymer (B′1). Derived from the silane compound (1) contained in the resulting modified liquid diene polymer (B1) by the presence of the polymer block (b′1) at the end of the unmodified block copolymer (B′1).
  • the functional group is unevenly distributed in the polymer block at the terminal portion. For example, when the modified liquid diene polymer (B1) is used as one component of the rubber composition described later, the affinity with the filler And the wear resistance of the crosslinked product of the rubber composition containing the modified liquid diene polymer (B1) tends to be improved.
  • the length occupied by the polymer block (b′1) is preferably 45% or less of the total chain length of the unmodified liquid diene block copolymer (B′1), and preferably 40% or less. More preferably, the total is further preferably 30% or less, and particularly preferably 25% or less.
  • a modified liquid diene polymer (B1) obtained using such an unmodified liquid block copolymer (B′1) as a raw material is, for example, a modified liquid diene polymer (as a component of a rubber composition described later).
  • the range of total X% of the total chain length means that when a plurality of polymer blocks (b′1) are included in the entire polymer, the chain length of the total polymer blocks Means X%.
  • the length occupied by the polymer block in the block copolymer is calculated from the number of each monomer unit contained in each block copolymer by 1 H-NMR measurement, and the carbon in the main chain of the block copolymer is calculated. It can be determined by calculating assuming that the bond length of the carbon single bond is 150 pm, the bond length of the carbon-carbon double bond is 135 pm, and the bond angle is 120 °.
  • the bonding form of the unmodified block copolymer (B′1) the polymer block (b′1) is “b′1” and the polymer block (b′2) is “b′2”.
  • a linear diblock copolymer and a linear triblock copolymer represented by the following general formula are preferred.
  • the resulting crosslinked product has better wear resistance.
  • the polymer chain length extending from the bonding point between the silanol group on the silica surface and the modified liquid diene rubber (B1) becomes longer when the diblock copolymer is used, and the modified liquid diene This is considered to be because stress concentration at the bonding point when the entire rubber, which is a crosslinked product of the rubber composition containing the polymer (B1), is strained can be prevented.
  • the rolling resistance performance of the crosslinked material of the rubber composition containing the modified liquid diene polymer (B1) becomes better.
  • the polymer chain length extending from the bonding point between the silanol group on the silica surface and the modified liquid diene rubber (B1) is shortened by using a triblock copolymer, and the resulting crosslinking This is probably because the energy loss of the object is reduced and tan ⁇ is reduced.
  • the content of the polymer block (b′1) in the unmodified linear block copolymer (B′1) is from the standpoint that the properties of the resulting modified liquid diene rubber are more excellent.
  • the content of the polymer block (b'2) is preferably from 55% by mass to 45% by mass, and preferably from 55% by mass to 99.95% by mass.
  • the content of the polymer block (b′2) is more preferably 60% by mass to 40% by mass, and more preferably 60% by mass to 99.95% by mass.
  • the contents of the polymer blocks (b′1) and (b′2) in the unmodified linear block copolymer (B′1) can be determined by 1 H-NMR measurement or the like.
  • the content of the polymer block (b′1) is as follows: This means the total amount of all polymer blocks (b′1) contained in the unmodified linear block copolymer (B′1) (the same applies to the content of the polymer block (b′2)). .)
  • the modified liquid diene polymer (B2) which is the second embodiment of the modified liquid diene polymer (B) of the present invention includes a polymer block (b "1) and a polymer block (b" 2) containing butadiene units.
  • the unmodified liquid diene block copolymer (B′2) containing silane is modified with the silane compound (1) and has a functional group derived from the silane compound (1). vii) is satisfied.
  • the weight average molecular weight (Mw) of the modified liquid diene polymer (B2) is 1,000 to 120,000.
  • the polymer block (b "2) contains at least one monomer unit selected from the group consisting of conjugated diene units other than butadiene and aromatic vinyl compound units.
  • Modified liquid diene polymer (B2) The average number of functional groups per molecule is 1-20.
  • the raw material of the modified liquid diene polymer (B2) is an unmodified liquid diene block copolymer (B′2), which contains a polymer block (b ′′ 1) and a polymer block (b ′′ 2). .
  • the polymer block (b ′′ 1) contains a butadiene unit.
  • the polymer block (b ′′ 1) is superior in reactivity to the silane compound (1) compared to the polymer block (b ′′ 2).
  • the content of the butadiene unit in the polymer block (b "1) is high in reactivity with the silane compound represented by the formula (1), and a plurality of functional groups are easily added to the polymer block (b" 1). From the viewpoint of introduction, it is preferably 50 to 100% by mass, more preferably 60 to 100% by mass, and more preferably 70 to 100% by mass with respect to all monomer units of the polymer block (b ′′ 1). % Is more preferable, and it may be substantially 100% by mass.
  • the vinyl content of the butadiene unit contained in the polymer block (b "1) is high in reactivity with the silane compound represented by the formula (1), and a plurality of functional groups are added to the polymer block (b" 1). From the viewpoint of easy introduction, it is preferably 1 to 80 mol%, more preferably 10 to 80 mol%, further preferably 25 to 80 mol%, more preferably 30 to 80 mol%. Is particularly preferred.
  • the vinyl content of the conjugated diene unit such as a butadiene unit in the polymer block (b "1) is, for example, the type of solvent used in preparing the polymer block (b" 1), and the polarity used as necessary.
  • the desired value can be obtained by controlling the compound, the polymerization temperature and the like.
  • the polymer block (b ′′ 1) may contain other monomer units.
  • the other monomer include conjugated dienes other than butadiene, aromatic vinyl compounds, and the like.
  • conjugated dienes other than butadiene are the same as conjugated dienes other than butadiene which can be other monomer units of the polymer block (b′1) of the unmodified liquid diene block copolymer (B′1). is there.
  • isoprene is preferred.
  • the vinyl content of the conjugated diene units other than butadiene is 1 to 80 mol%. It is preferably 10 to 80 mol%, more preferably 25 to 80 mol%, particularly preferably 30 to 80 mol%.
  • aromatic vinyl compound examples are the same as those of the aromatic vinyl compound that can be another monomer unit of the polymer block (b′1) of the unmodified liquid diene block copolymer (B′1).
  • aromatic vinyl compounds styrene, ⁇ -methylstyrene, and 4-methylstyrene are preferable.
  • the content of monomer units other than the butadiene unit in the polymer block (b "1) is preferably 50% by mass or less, more preferably 40% by mass or less, and 30% by mass or less. More preferably, it may be 0% by mass.
  • the unmodified liquid diene block copolymer (B′2) may contain one polymer block (b ′′ 1) or two or more polymer blocks.
  • the properties of the polymer block (b ′′ 1) for example, the type of monomer unit, the monomer unit composition, the length of the polymer block, etc. are May be the same or different.
  • the polymer block (b ′′ 2) contains at least one monomer unit selected from the group consisting of conjugated diene units other than butadiene and aromatic vinyl compound units.
  • the polymer block (b ′′ 2) is a polymer. Compared with the block (b "1), the reactivity with respect to the silane compound (1) is suppressed.
  • conjugated dienes other than butadiene are the same as conjugated dienes other than butadiene that can be other monomer units of the polymer block (b "1). Of the conjugated dienes other than butadiene, isoprene is preferred.
  • the polymer block (b ′′ 2) contains conjugated diene units as other monomer units, the vinyl content is preferably 0 to 60 mol%, and 0 to 50 mol%. More preferably, it is 0 to 45 mol%, further preferably 0 to 40 mol%.
  • aromatic vinyl compound examples are the same as those of the aromatic vinyl compound that can be another monomer unit of the polymer block (b "1).
  • aromatic vinyl compounds styrene, ⁇ -methylstyrene, And 4-methylstyrene are preferred.
  • the content of at least one monomer unit selected from the group consisting of conjugated diene units other than butadiene and aromatic vinyl compound units in the polymer block (b ′′ 2) is the silane compound represented by the formula (1): From the standpoint of suppressing reactivity, the amount is preferably 50 to 100% by mass, more preferably 60 to 100% by mass, based on all monomer units of the polymer block (b ′′ 2). More preferably, it is 70 to 100% by mass, and it may be substantially 100% by mass.
  • the unmodified liquid diene block copolymer (B′2) may contain one polymer block (b ′′ 2) or two or more polymer blocks (b).
  • the properties of the polymer block (b ′′ 2) (for example, the type of monomer unit, the monomer unit composition, the length of the polymer block, etc.) are May be the same or different.
  • the resulting modified liquid diene polymer is a linear polymer.
  • the unmodified block copolymer (B′2) is preferably a linear block copolymer.
  • the polymer block (b ′′ 1) is preferably present at one or both ends of the liquid diene block copolymer (B′2).
  • the functional group derived from the silane compound (1) contained in the modified liquid diene polymer (B2) obtained by the presence of (b "1) at the terminal of the unmodified block copolymer (B'2).
  • the affinity with the filler is further increased.
  • the rubber composition tends to improve the wear resistance of the crosslinked product.
  • the length occupied by the polymer block (b ′′ 1) is preferably 45% or less in total of the total chain length of the unmodified liquid diene block copolymer (B′2), and preferably 30% or less in total. More preferably, the total is not more than 20%, and particularly preferably not more than 15%
  • the modified liquid diene rubber obtained from such an unmodified liquid block copolymer (B′2) as a raw material (B2) is, for example, a portion having a high affinity for solid rubber and a portion having a high affinity for filler when the modified liquid diene polymer (B2) is used as one component of a rubber composition described later.
  • the resulting crosslinked product has better wear resistance.
  • the polymer chain length extending from the bonding point between the silanol group on the silica surface and the modified liquid diene rubber (B2) becomes longer when the diblock copolymer is used. This is thought to be because stress concentration at the bonding point when the entire rubber, which is a crosslinked product of the rubber composition containing the polymer (B2), is strained can be prevented.
  • the rolling resistance performance of the crosslinked material of the rubber composition containing the modified liquid diene polymer (B2) becomes better.
  • the polymer chain length extending from the bonding point between the silanol group on the silica surface and the modified liquid diene rubber (B2) is shortened when a triblock copolymer is used, and the resulting crosslinks are obtained. This is probably because the energy loss of the object is reduced and tan ⁇ is reduced.
  • the content of the polymer block (b "1) in the unmodified linear block copolymer (B'2) is from the standpoint that the properties of the resulting modified liquid diene rubber are more excellent.
  • the content of the polymer block (b ′′ 2) is preferably from 55% by mass to 45% by mass, and the content of the polymer block (b ′′ 1) is preferably from 0.5% by mass to 99.95% by mass.
  • the content of the polymer block (b ′′ 2) is more preferably from 0.05% by mass to 30% by mass, and more preferably from 70% by mass to 99.95% by mass, and the content of the polymer block (b ′′ 1) is 0%.
  • the content of the polymer block (b ′′ 2) is more preferably 80% by mass to 99.95% by mass.
  • the contents of the polymer blocks (b ′′ 1) and (b ′′ 2) in the unmodified linear block copolymer (B′2) can be determined by 1 H-NMR measurement or the like.
  • the content of the polymer block (b ′′ 1) is as follows: This means the total amount of all polymer blocks (b ′′ 1) contained in the unmodified linear block copolymer (B′2) (the same applies to the content of the polymer block (b ′′ 2)). .
  • the production method of the unmodified liquid diene block copolymer (B′1) or (B′2) is not particularly limited. However, other monomers other than the conjugated diene and the conjugated diene contained as necessary may be used. It is preferable to produce by a solution polymerization method. According to the solution polymerization method, the unmodified block copolymer (B′1) or (B′2) can be easily produced by sequentially polymerizing each polymer block.
  • a known method or a method according to a known method can be applied.
  • a Ziegler catalyst a metallocene catalyst, an anion-polymerizable active metal or an active metal compound in a solvent
  • a monomer containing a conjugated diene is polymerized in the presence of a polar compound as necessary.
  • the solvent examples include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; benzene, Aromatic hydrocarbons such as toluene and xylene are exemplified.
  • aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane
  • alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane
  • benzene Aromatic hydrocarbons such as toluene and xylene are exemplified.
  • anion-polymerizable active metal examples include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium; lanthanoid rare earth metals such as lanthanum and neodymium .
  • alkali metals and alkaline earth metals are preferable, and alkali metals are more preferable.
  • an organic alkali metal compound As the active metal compound capable of anion polymerization, an organic alkali metal compound is preferable.
  • the organic alkali metal compound include organic monolithium compounds such as methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium and stilbenelithium; dilithiomethane, dilithionaphthalene Polyfunctional organolithium compounds such as 1,4-dilithiobutane, 1,4-dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene; sodium naphthalene, potassium naphthalene and the like.
  • organic alkali metal compounds organic lithium compounds are preferable, and organic monolithium compounds are more preferable.
  • the amount of the organic alkali metal compound used is appropriately determined according to the melt viscosity, molecular weight, etc. of the unmodified block copolymer (B′1) or (B′2) and the modified liquid diene polymer (B1) or (B2). Although it can be set, it is usually used in an amount of 0.01 to 3 parts by mass with respect to 100 parts by mass of all monomers including the conjugated diene.
  • the organic alkali metal compound can be used as an organic alkali metal amide by reacting with a secondary amine such as dibutylamine, dihexylamine, dibenzylamine and the like.
  • Polar compounds are usually used in anionic polymerization to adjust the microstructure of the conjugated diene moiety (eg, vinyl content) without deactivating the reaction.
  • the polar compound include ether compounds such as dibutyl ether, tetrahydrofuran and ethylene glycol diethyl ether; tertiary amines such as tetramethylethylenediamine and trimethylamine; alkali metal alkoxides and phosphine compounds.
  • the polar compound is usually used in an amount of 0.01 to 1000 mol with respect to 1 mol of the organic alkali metal compound.
  • the temperature of solution polymerization is usually in the range of ⁇ 80 to 150 ° C., preferably in the range of 0 to 100 ° C., more preferably in the range of 10 to 90 ° C.
  • the polymerization mode may be either batch or continuous.
  • the polymerization reaction can be stopped by adding a polymerization terminator.
  • the polymerization terminator include alcohols such as methanol and isopropanol.
  • the obtained polymerization reaction liquid is poured into a poor solvent such as methanol to precipitate the unmodified liquid diene block copolymer (B′1) or (B′2), or the polymerization reaction liquid is washed with water, After separation, the unmodified liquid diene block copolymer (B′1) or (B′2) can be isolated by drying.
  • the unmodified liquid diene block copolymer (B′1) or (B′2) obtained in this way is converted into a silane compound represented by the formula (1) described below as it is (without hydrogenation). Modification by the derived functional group may be performed, but modification may be performed after hydrogenation of at least a part of unsaturated bonds contained in the liquid diene rubber.
  • the unmodified unmodified liquid diene block copolymer (B′1) or (B′2) more preferably has the characteristics of a functional group derived from a silane compound represented by the formula (1) described later. From the point of exhibiting in a state, it is preferable that the functional group (for example, a hydroxyl group) is not modified.
  • the stability of the modified liquid diene polymer (B1) or (B2) obtained by not modifying the unmodified liquid diene block copolymer (B′1) or (B′2) with other functional groups Tend to be more excellent.
  • the interaction (for example, reactivity) to the filler (for example, silica) of the functional group derived from the silane compound represented by the formula (1) included in the modified liquid diene polymer (B1) or (B2) is more. It tends to be excellent.
  • the unmodified liquid diene block copolymer (B′1) or (B′2) is a functional group derived from a silane compound represented by the following formula (1) (hereinafter also referred to as silane compound (1)). And is used as a modified liquid diene polymer (B1) or (B2).
  • R ⁇ 1 > is a C1-C6 bivalent alkylene group.
  • the divalent alkylene group having 1 to 6 carbon atoms include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, and a hexylene group.
  • R 2 , R 3 and R 4 each independently represents a methoxy group, an ethoxy group, a phenoxy group, a methyl group, an ethyl group or a phenyl group. However, at least one of R 2 , R 3 and R 4 is a methoxy group, an ethoxy group or a phenoxy group.
  • silane compound (1) examples include mercaptomethylenemethyldiethoxysilane, mercaptomethylenetriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 2-mercaptoethylmethoxydimethylsilane, 2- Mercaptoethylethoxydimethylsilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyldimethoxymethylsilane, 3-mercaptopropyldiethoxymethylsilane, 3-mercaptopropyldimethoxyethylsilane, 3-mercapto Examples thereof include propyldiethoxyethylsilane, 3-mercaptopropylmethoxydimethylsilane, and 3-mercaptopropylethoxydimethylsilane. These silane compounds may be used alone or in combination of two or more.
  • the mercapto group (—SH) of the silane compound (1) undergoes a radical addition reaction to the carbon-carbon unsaturated bond contained in the unmodified liquid diene block copolymer (B′1) or (B′2).
  • a modified liquid diene polymer (B1) or (B2) having a functional group derived from the silane compound (1), specifically, a partial structure represented by the following formula (2) as a functional group is obtained.
  • R 1, R 2, R 3 and R 4 in the formula (2) is defined and specific examples of R 1, R 2, R 3 and R 4 in the formula (1) or the like and Are the same.
  • Functional group derived from silane compound (1) modified liquid diene polymer (B1) or (B2) The average number of functional groups per molecule is 1 to 20, preferably 1 to 15 and 1 to 10 Is more preferable, 1 to 9 is more preferable, and 1 to 4 is particularly preferable.
  • the average number of functional groups is less than 1, when the modified liquid diene polymer (B1) or (B2) is used as one component of the rubber composition described later, the affinity with the filler (C) is low, When the filler dispersibility in the rubber composition cannot be improved, and the crosslinked product obtained from the rubber composition does not have the desired physical property improvement, for example, the pain effect may not be sufficiently reduced. .
  • the modified liquid diene polymer is introduced in the vicinity of the filler (C) by introducing an appropriate amount of functional groups into the modified liquid diene polymer (B1) or (B2). It is presumed that the reinforcing effect of the filler (C) is increased and the resulting crosslinked product is improved in wear resistance.
  • the affinity between the solid rubber (A) and the filler (C) is improved, and a dispersed state of the filler (C) in the rubber composition is obtained. It is ideal for the physical properties of the resulting crosslinked product, for example, it is estimated that the dispersibility is improved.
  • the filler in the rubber composition is caused by the interaction between the modified liquid diene polymer (B1) or (B2) adsorbed on the filler (C).
  • the filler (C) may be agglomerated, and the modified liquid diene polymer may be a solid rubber.
  • the modified liquid diene polymer (B1) or (B2) of a functional group derived from the silane compound (1) per molecule The average number of functional groups is preferably 1 to 9.
  • the average number of functional groups per molecule of the modified liquid diene polymer (B1) or (B2) is equivalent to the functional group equivalent (g / eq) of the modified liquid diene polymer (B1) or (B2) and the number in terms of styrene. It can be determined from the average molecular weight Mn.
  • Average number of functional groups per molecule [(Number average molecular weight Mn) / (Molecular weight of styrene unit) ⁇ (Average molecular weight of conjugated diene and other monomer units other than conjugated diene if necessary)] / (Equivalent functional group)
  • the equivalent of the functional group of the modified liquid diene polymer (B1) or (B2) is a conjugated diene bonded per functional group and other monomers other than the conjugated diene contained as necessary.
  • Means the mass of The equivalent of the functional group can be calculated from the area ratio of the peak derived from the functional group and the peak derived from the polymer main chain using 1 H-NMR or 13 C-NMR.
  • the peak derived from a functional group refers to the peak derived from an alkoxy group.
  • the addition amount of the silane compound (1) in the modified liquid diene polymer (B1) or (B2) is 1 with respect to 100 parts by mass of the unmodified liquid diene block copolymer (B′1) or (B′2). -60 parts by mass is preferable, 1-50 parts by mass is more preferable, and 1-40 parts by mass is more preferable.
  • the amount of the modifying compound added is more than 60 parts by mass, the dispersibility effect of the filler (C) is poor and the desired physical properties of the resulting crosslinked product are not improved, for example, the Payne effect is not sufficiently reduced. Also, the wear resistance tends to decrease.
  • the addition amount of the silane compound (1) added in the modified liquid diene polymer (B1) or (B2) can be determined using various analytical instruments such as nuclear magnetic resonance spectroscopy.
  • the method for adding the silane compound (1) to the unmodified liquid diene block copolymer (B′1) or (B′2) is not particularly limited.
  • the unmodified liquid diene block copolymer (B A method of heating in the presence or absence of an organic solvent by adding the silane compound (1) and, if necessary, a radical catalyst in '1) or (B'2) can be employed.
  • a radical catalyst in '1) or (B'2) can be employed.
  • organic peroxide examples include methyl ethyl ketone peroxide, cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide, methylcyclohexanone peroxide, acetylacetone peroxide, 1,1-bis (t-butylperoxy).
  • Examples of the azo compound include 2,2′-azobisisobutyronitrile, 1,1′-azobis (cyclohexane-1-carbonitrile), and 2,2′-azobis (2-methylbutyronitrile).
  • the organic solvent used in the above method includes a hydrocarbon solvent and a halogenated hydrocarbon solvent.
  • hydrocarbon solvents such as n-butane, n-hexane, n-heptane, cyclohexane, benzene, toluene and xylene are preferable.
  • Preferred anti-aging agents used at this time include, for example, 2,6-di-t-butyl-4-methylphenol (BHT), 2,2′-methylenebis (4-methyl-6-t-butylphenol), 4,4 '-Thiobis (3-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert-butylphenol) (AO-40), 3,9-bis [1,1-dimethyl- 2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane (AO-80), 2,4-bis [(octylthio) methyl] -6-methylphenol (Irganox 1520L), 2,4-bis [
  • the said anti-aging agent may be used individually by 1 type, and may use 2 or more types together.
  • the addition amount of the antioxidant is preferably 0 to 10 parts by mass, more preferably 0 to 5 parts by mass with respect to 100 parts by mass of the unmodified liquid diene block copolymer (B′1) or (B′2). .
  • the position at which the functional group is introduced may be a polymerization terminal or a side chain of the polymer chain. From the viewpoint that can be easily introduced, it is preferably a side chain of a polymer chain.
  • the said functional group may be contained individually by 1 type, and may be contained 2 or more types. Therefore, the modified liquid diene polymer (B1) or (B2) may be modified with one modified compound, or may be modified with two or more modified compounds.
  • the mixing ratio of the unmodified liquid diene block copolymer (B′1) or (B′2) and the silane compound (1) is, for example, per modified liquid diene polymer (B1) or (B2) per molecule. May be appropriately set so that the average number of functional groups is a desired value.
  • the mass ratio of the unmodified liquid diene block copolymer (B′1) or (B′2) and the silane compound (1) What is necessary is just to mix so that (B'1) / (1) (or (B'2) / (1)) may become 0.3-50.
  • the reaction of radical addition of the silane compound (1) is allowed to react at an appropriate reaction temperature for a sufficient reaction time.
  • the temperature in the reaction of adding the silane compound (1) to the unmodified liquid diene block copolymer (B′1) or (B′2) is preferably 10 to 200 ° C., more preferably 50 to 180 ° C.
  • the reaction time is preferably 1 to 200 hours, more preferably 1 to 100 hours, and further preferably 1 to 50 hours.
  • the melt viscosity of the modified liquid diene polymer (B1) or (B2) measured at 38 ° C. is preferably 0.1 to 4,000 Pa ⁇ s, more preferably 0.1 to 3,500 Pa ⁇ s, and 0 More preferably, it is 1 to 3,000 Pa ⁇ s. If the melt viscosity of the modified liquid diene polymer (B1) or (B2) is within the above range, it becomes easy to handle because it is in a liquid form at room temperature, and the flexibility of the resulting rubber composition is improved. Workability is improved.
  • the melt viscosity of the liquid diene polymer (B1) or (B2) is a value measured with a Brookfield viscometer at 38 ° C.
  • the weight average molecular weight (Mw) of the modified liquid diene polymer (B1) or (B2) is 1,000 to 120,000, preferably 2,000 to 100,000, and preferably 3,000 to 80,000. The following is more preferable.
  • Mw of the liquid diene polymer (B1) or (B2) is a weight average molecular weight in terms of polystyrene determined from measurement by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the processability of the rubber composition of the present invention is improved, and the affinity of the filler (C) described later in the resulting rubber composition is improved. It becomes ideal for the manifestation of the physical properties of the crosslinked product that tends to be present in the vicinity, and as a result the dispersion state of the filler (C) in the rubber composition is obtained (for example, to improve the dispersibility of the filler (C)) To contribute). Therefore, in some cases, the pane effect of the cross-linked product becomes sufficiently small, and the dispersibility of the filler (C) in the cross-linked product is excellent.
  • modified liquid polymer (B1) or (B2) is likely to be present in the vicinity of the filler (C)
  • a crosslinked product having excellent wear resistance is obtained.
  • a tire made of the crosslinked product has good wet grip and the like.
  • two or more kinds of modified liquid diene polymers (B1) or (B2) having different Mw may be used in combination.
  • Two or more liquid diene polymers (B1) and (B2) may be used in combination.
  • the molecular weight distribution (Mw / Mn) of the modified liquid diene polymer (B1) or (B2) is preferably 1.0 to 20.0, more preferably 1.0 to 15.0, and more preferably 1.0 to 10.0. Is more preferable, 1.0 to 5.0 is more preferable, and 1.0 to 2.0 is particularly preferable. It is more preferable that Mw / Mn is within the above range because the resulting modified liquid diene polymer (B1) or (B2) has a small variation in viscosity.
  • a radical catalyst is added during the modification reaction, and the reaction temperature is low and the reaction time is short. Is effective.
  • molecular weight distribution (Mw / Mn) means the ratio of weight average molecular weight (Mw) / number average molecular weight (Mn) in terms of standard polystyrene determined by GPC measurement.
  • the modified liquid diene polymer (B1) or (B2) of the present invention has a functional group derived from the silane compound represented by the formula (1), and the modified liquid diene polymer (B) of the functional group.
  • the average number of functional groups per molecule is in the range of 1 to 20, but the modified liquid diene polymer (B) is a linear polymer, and the silane compound in the modified liquid diene polymer (B) It is preferable that 65% or more of the functional groups derived from is present in a total range of 45% from one end or both ends.
  • the length occupied by the polymer block in the block copolymer is calculated from the number of each monomer unit contained in each block copolymer by 1 H-NMR measurement, and the carbon in the main chain of the block copolymer is calculated. It can be determined by calculating assuming that the bond length of the carbon single bond is 150 pm, the bond length of the carbon-carbon double bond is 135 pm, and the bond angle is 120 °.
  • the functional groups derived from the silane compound in the modified liquid diene polymer (B) the proportion existing in a range of 45% of the total chain length from one end or both ends is highly reactive with the silane compound.
  • the ratio of the number of 1,2-bonded butadiene units existing in the above range can be determined by calculating from 1 H-NMR measurement.
  • the modified liquid diene polymer (B1) or (B2) has high affinity with the filler (C) described later and is concentrated in the vicinity of the filler (C) and is excellent in the reinforcing property of the filler (C). Moreover, it is estimated that it contributes also to the compatibility improvement of a filler (C) and solid rubber (A). Therefore, the dispersion state of the filler (C) in the rubber composition is ideal for expressing the physical properties of the crosslinked product obtained from the rubber composition. For example, the dispersibility of the filler (C) in the rubber composition is improved. In some cases, the pain effect of the crosslinked product obtained from the rubber composition is sufficiently reduced. Further, the cross-linked product is excellent in mechanical strength such as wear resistance and wet grip. Therefore, for example, when the crosslinked product is used as a tire or the like, these physical properties are excellent.
  • the modified liquid diene polymer (B1) or (B2) may be used alone or in combination of two or more.
  • the modified liquid diene polymers (B1) and (B2) may be used in combination.
  • the amount of catalyst residue derived from the polymerization catalyst used for the production thereof is preferably in the range of 0 to 200 ppm in terms of metal.
  • an organic alkali metal such as an organic lithium compound
  • the metal used as the standard of the catalyst residue amount is an alkali metal such as lithium.
  • the amount of catalyst residue derived from the polymerization catalyst used in the production of the modified liquid diene polymer (B) is more preferably 0 to 150 ppm, and still more preferably 0 to 100 ppm in terms of metal.
  • the amount of catalyst residue can be measured by using, for example, a polarized Zeeman atomic absorption spectrophotometer.
  • the modified liquid diene polymer (B1) or (B2) or the unmodified liquid diene polymer (B ′) as a raw material is used.
  • examples thereof include a method of purifying 1) or (B′2) and sufficiently removing catalyst residues.
  • a purification method washing with water or warm water, an organic solvent typified by methanol, acetone or the like or supercritical fluid carbon dioxide is preferable.
  • the number of washings is preferably 1 to 20 times and more preferably 1 to 10 times from the economical viewpoint.
  • the washing temperature is preferably 20 to 100 ° C., more preferably 40 to 90 ° C.
  • the amount of polymerization catalyst required can be reduced, The amount of catalyst residue can be reduced.
  • the amount of catalyst residue in the rubber composition containing the solid rubber (A), the modified liquid diene polymer (B1) or (B2) and the filler (C) of the present invention is a metal. It is preferably 0 to 200 ppm in terms of conversion, more preferably 0 to 150 ppm, and even more preferably 0 to 100 ppm.
  • the catalyst residue amount in this case is a catalyst derived from the polymerization catalyst used for the production of the solid rubber (A), the modified liquid diene polymer (B1) or (B2) and / or other optional components contained in the rubber composition.
  • the amount of residue may be sufficient.
  • the rubber composition of the present invention contains 100 parts by mass of the solid rubber (A), 0.1 to 50 parts by mass of the modified liquid diene polymer (B), and 20 to 200 parts by mass of the filler (C).
  • Solid rubber (A) used in the rubber composition of the present invention means a rubber that can be handled in a solid state at 20 ° C., and the Mooney viscosity ML 1 + 4 at 100 ° C. of the solid rubber (A) is usually 20 to 200. It is in the range.
  • the solid rubber (A) include natural rubber, styrene butadiene rubber (hereinafter also referred to as “SBR”), butadiene rubber, isoprene rubber, butyl rubber, halogenated butyl rubber, ethylene propylene diene rubber, and butadiene acrylonitrile copolymer.
  • SBR styrene butadiene rubber
  • Examples thereof include rubber, chloroprene rubber, acrylic rubber, fluorine rubber, and urethane rubber.
  • solid rubbers (A) natural rubber, SBR, butadiene rubber, and isoprene rubber are preferable, and natural rubber and SBR are more preferable.
  • These solid rubbers (A) may be used alone or in combination of two or more.
  • the number average molecular weight (Mn) of the solid rubber (A) is preferably 80,000 or more from the viewpoint of sufficiently exhibiting the characteristics of the obtained rubber composition and crosslinked product, and is 100,000 to 3,000. More preferably, it is within the range of 1,000.
  • the number average molecular weight in this specification is a number average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the natural rubber is generally used in the tire industry such as SMR (Malaysia TSR), SIR (Indonesian TSR), STR (Thailand TSR), and other TSR (Technically Specialized Rubber) and RSS (Ribbed Smoked Sheet).
  • SMR Melia TSR
  • SIR Indonesian TSR
  • STR Thailand TSR
  • RSS Rabbed Smoked Sheet
  • modified natural rubber such as natural rubber, high-purity natural rubber, epoxidized natural rubber, hydroxylated natural rubber, hydrogenated natural rubber, and grafted natural rubber.
  • SMR20, STR20, and RSS # 3 are preferable from the viewpoint of little variation in quality and easy availability.
  • These natural rubbers may be used alone or in combination of two or more.
  • the SBR those commonly used for tire applications can be used. Specifically, those having a styrene content of 0.1 to 70% by mass are preferred, those having a styrene content of 5 to 50% by mass are more preferred, and 15 More preferable is 35% by mass.
  • the vinyl content is preferably 0.1 to 60% by mass, more preferably 0.1 to 55% by mass.
  • the weight average molecular weight (Mw) of SBR is preferably 100,000 to 2,500,000, more preferably 150,000 to 2,000,000, and 200,000 to 1,500,000. More preferably it is. When it is in the above range, both workability and mechanical strength can be achieved.
  • the weight average molecular weight in this specification is the weight average molecular weight of polystyrene conversion calculated
  • the glass transition temperature obtained by differential thermal analysis of SBR used in the present invention is preferably ⁇ 95 to 0 ° C., more preferably ⁇ 95 to ⁇ 5 ° C. By setting the glass transition temperature in the above range, the viscosity of the SBR can be set in a range that is easy to handle.
  • SBR that can be used in the present invention is obtained by copolymerizing styrene and butadiene.
  • SBR there is no particular limitation on the production method of SBR, and any of an emulsion polymerization method, a solution polymerization method, a gas phase polymerization method, and a bulk polymerization method can be used. Among these production methods, an emulsion polymerization method and a solution polymerization method are preferable. .
  • Emulsion-polymerized styrene butadiene rubber (hereinafter also referred to as E-SBR) can be produced by a conventional emulsion polymerization method known in the art or in accordance with a known method. For example, it can be obtained by emulsifying and dispersing a predetermined amount of styrene and butadiene monomer in the presence of an emulsifier, and emulsion polymerization with a radical polymerization initiator.
  • a solution-polymerized styrene butadiene rubber (hereinafter also referred to as S-SBR) can be produced by an ordinary solution polymerization method.
  • S-SBR styrene butadiene rubber
  • an active metal capable of anion polymerization in a solvent is used, and optionally in the presence of a polar compound. Polymerizes styrene and butadiene.
  • the solvent examples include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; benzene, And aromatic hydrocarbons such as toluene.
  • aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane
  • alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane
  • benzene And aromatic hydrocarbons such as toluene.
  • These solvents are usually preferably used in a range where the monomer concentration is 1 to 50% by mass.
  • anion-polymerizable active metal examples include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium; lanthanoid rare earth metals such as lanthanum and neodymium .
  • alkali metals and alkaline earth metals are preferable, and alkali metals are more preferable.
  • organic alkali metal compounds are more preferably used.
  • organic alkali metal compound examples include organic monolithium compounds such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium and stilbenelithium; dilithiomethane, 1,4-dilithiobutane, 1,4 -Polyfunctional organolithium compounds such as dilithio-2-ethylcyclohexane and 1,3,5-trilithiobenzene; sodium naphthalene, potassium naphthalene and the like.
  • organic lithium compound is preferable, and an organic monolithium compound is more preferable.
  • the amount of the organic alkali metal compound used is appropriately determined depending on the required molecular weight of S-SBR.
  • the organic alkali metal compound can also be used as an organic alkali metal amide by reacting with a secondary amine such as dibutylamine, dihexylamine, and dibenzylamine.
  • the polar compound is not particularly limited as long as it is usually used for adjusting the microstructure of the butadiene site and the distribution in the copolymer chain of styrene without deactivating the reaction in anionic polymerization.
  • examples include ether compounds such as dibutyl ether, tetrahydrofuran and ethylene glycol diethyl ether; tertiary amines such as tetramethylethylenediamine and trimethylamine; alkali metal alkoxides and phosphine compounds.
  • the temperature of the polymerization reaction is usually in the range of ⁇ 80 to 150 ° C., preferably 0 to 100 ° C., more preferably 30 to 90 ° C.
  • the polymerization mode may be either a batch type or a continuous type.
  • styrene and butadiene are continuously or intermittently supplied into the reaction solution so that the composition ratio of styrene and butadiene in the polymerization system falls within a specific range. Is preferred.
  • the polymerization reaction can be stopped by adding an alcohol such as methanol or isopropanol as a polymerization terminator.
  • the target S-SBR can be recovered by separating the solvent by direct drying, steam stripping or the like.
  • the polymerization solution and the extending oil may be mixed in advance and recovered as an oil-extended rubber.
  • a modified SBR in which a functional group is introduced into the SBR may be used as long as the effects of the present invention are not impaired.
  • the functional group include an amino group, an alkoxysilyl group, a hydroxyl group, an epoxy group, and a carboxyl group.
  • the modified SBR for example, before adding a polymerization terminator, tin tetrachloride, tetrachlorosilane, dimethyldichlorosilane, dimethyldiethoxysilane, tetramethoxysilane, tetraethoxysilane, which can react with a polymerization active terminal, Coupling agents such as 3-aminopropyltriethoxysilane, tetraglycidyl-1,3-bisaminomethylcyclohexane, 2,4-tolylene diisocyanate, 4,4′-bis (diethylamino) benzophenone, N-vinylpyrrolidone, etc. And a method of adding other modifiers described in JP2011-132298A.
  • the position of the polymer into which the functional group is introduced may be a polymerization terminal or a side chain of the polymer chain.
  • butadiene rubber examples include Ziegler catalysts such as titanium tetrahalide-trialkylaluminum, diethylaluminum chloride-cobalt, trialkylaluminum-boron trifluoride-nickel, and diethylaluminum chloride-nickel;
  • Ziegler catalysts such as titanium tetrahalide-trialkylaluminum, diethylaluminum chloride-cobalt, trialkylaluminum-boron trifluoride-nickel, and diethylaluminum chloride-nickel
  • a lanthanoid rare earth metal catalyst such as an aluminum-organic acid neodymium-Lewis acid type or the like, or an organic alkali metal compound in the same manner as S-SBR can be used.
  • Butadiene rubber polymerized with a Ziegler catalyst is preferred because of its high cis isomer content.
  • the vinyl content of the butadiene rubber is preferably 50% by mass or less, more preferably 40% by mass or less, and still more preferably 30% by mass or less. When the vinyl content exceeds 50% by mass, the rolling resistance performance tends to deteriorate.
  • the lower limit of the vinyl content is not particularly limited.
  • the glass transition temperature varies depending on the vinyl content, but is preferably ⁇ 40 ° C. or lower, and more preferably ⁇ 50 ° C. or lower.
  • the weight average molecular weight (Mw) of the butadiene rubber is preferably 90,000 to 2,000,000, and more preferably 150,000 to 1,500,000. When Mw is in the above range, workability and mechanical strength are good.
  • the butadiene rubber has a polyfunctional modifier, for example, tin tetrachloride, silicon tetrachloride, alkoxysilane having an epoxy group in the molecule, or amino group, as long as the effects of the present invention are not impaired.
  • a modifier such as alkoxysilane, it may have a branched structure or a polar functional group.
  • isoprene rubber examples include Ziegler catalysts such as titanium tetrahalide-trialkylaluminum, diethylaluminum chloride-cobalt, trialkylaluminum-boron trifluoride-nickel, and diethylaluminum chloride-nickel;
  • Ziegler catalysts such as titanium tetrahalide-trialkylaluminum, diethylaluminum chloride-cobalt, trialkylaluminum-boron trifluoride-nickel, and diethylaluminum chloride-nickel
  • a commercially available isoprene rubber polymerized with an lanthanoid rare earth metal catalyst such as an aluminum-organic acid neodymium-Lewis acid system or an organic alkali metal compound in the same manner as S-SBR can be used.
  • Isoprene rubber polymerized with a Ziegler catalyst is preferred because of its high cis isomer content.
  • the vinyl content of the isoprene rubber is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less. When the vinyl content exceeds 50% by mass, the rolling resistance performance tends to deteriorate.
  • the lower limit of the vinyl content is not particularly limited.
  • the glass transition temperature varies depending on the vinyl content, but is preferably ⁇ 20 ° C. or lower, more preferably ⁇ 30 ° C. or lower.
  • the weight average molecular weight (Mw) of the isoprene rubber is preferably 90,000 to 2,000,000, and more preferably 150,000 to 1,500,000. When Mw is in the above range, workability and mechanical strength are good.
  • a part thereof is a polyfunctional modifier, such as tin tetrachloride, silicon tetrachloride, alkoxysilane having an epoxy group in the molecule, or amino group-containing
  • a modifier such as alkoxysilane, it may have a branched structure or a polar functional group.
  • the content of the modified liquid diene polymer (B) with respect to 100 parts by mass of the solid rubber (A) is 0.1 to 50 parts by mass, and 0.1 to 45 parts by mass. Preferably, it is 0.5 to 40 parts by mass, more preferably 1 to 40 parts by mass, and even more preferably 2 to 40 parts by mass.
  • the dispersion state of the filler (C) in the rubber composition becomes ideal (for example, reduction of the Pain effect in the resulting crosslinked product). Effect), wear resistance is improved, and for example, steering stability and rolling resistance performance of tires and the like are improved.
  • filler (C) for example, carbon black, silica, clay, mica, calcium carbonate, magnesium hydroxide, aluminum hydroxide, barium sulfate, titanium oxide, glass fiber, fibrous filler, examples thereof include inorganic fillers such as glass balloons; organic fillers such as resin particles, wood powder, and cork powder.
  • inorganic fillers such as glass balloons
  • organic fillers such as resin particles, wood powder, and cork powder.
  • carbon black and silica are preferable from the viewpoint of improving physical properties such as improvement of mechanical strength.
  • Examples of the carbon black include furnace black, channel black, thermal black, acetylene black, and ketjen black. Of these carbon blacks, furnace black is preferable from the viewpoint of improving the crosslinking speed and mechanical strength. These carbon blacks may be used alone or in combination of two or more.
  • the average particle size of the carbon black is preferably 5 to 100 nm, more preferably 5 to 80 nm, and further preferably 5 to 70 nm from the viewpoint of improving dispersibility, mechanical strength, hardness and the like.
  • the average particle size of carbon black can be determined by measuring the particle diameter with a transmission electron microscope and calculating the average value.
  • Examples of commercially available products of the furnace black include Mitsubishi Chemical Corporation “Diamond Black” and Tokai Carbon Co., Ltd. “Seast”.
  • Examples of commercially available acetylene black include “DENKA BLACK” manufactured by Denki Kagaku Kogyo Co., Ltd.
  • Examples of commercially available ketjen black include “ECP600JD” manufactured by Lion Corporation.
  • the above carbon black is subjected to acid treatment with nitric acid, sulfuric acid, hydrochloric acid or a mixed acid thereof, or surface oxidation treatment by heat treatment in the presence of air. May be performed.
  • heat treatment may be performed at 2,000 to 3,000 ° C. in the presence of a graphitization catalyst.
  • Examples of the graphitization catalyst include boron, boron oxide (for example, B 2 O 2 , B 2 O 3 , B 4 O 3 , B 4 O 5 ), boron oxoacid (for example, orthoboric acid, metaboric acid, Tetraboric acid etc.) and salts thereof, boron carbide (eg B 4 C, B 6 C etc.), boron nitride (BN), and other boron compounds are preferably used.
  • boron oxide for example, B 2 O 2 , B 2 O 3 , B 4 O 3 , B 4 O 5
  • boron oxoacid for example, orthoboric acid, metaboric acid, Tetraboric acid etc.
  • boron carbide eg B 4 C, B 6 C etc.
  • BN boron nitride
  • other boron compounds are preferably used.
  • the carbon black can be used after adjusting the particle size by pulverization or the like.
  • high-speed rotary pulverizer hammer mill, pin mill, cage mill
  • various ball mills rolling mill, vibration mill, planetary mill
  • stirring mill be used for carbon black pulverization.
  • silica examples include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate and the like.
  • wet silica is preferable from the viewpoint of further improving processability, mechanical strength, and wear resistance.
  • These silicas may be used alone or in combination of two or more.
  • the average particle diameter of silica is preferably 0.5 to 200 nm, more preferably 5 to 150 nm, and even more preferably 10 to 100 nm from the viewpoint of improving processability, rolling resistance performance, mechanical strength, and wear resistance.
  • the average particle diameter of silica can be determined by measuring the diameter of the particles with a transmission electron microscope and calculating the average value.
  • the filler (C) contains silica.
  • the content of the filler (C) with respect to 100 parts by mass of the solid rubber (A) is 20 to 200 parts by mass, preferably 20 to 180 parts by mass, and more preferably 25 to 150 parts by mass.
  • the content of the filler (C) is within the above range, workability, rolling resistance performance, mechanical strength and wear resistance are improved.
  • the content thereof is preferably 20 to 120 parts by mass, and 20 to 90 parts by mass with respect to 100 parts by mass of the solid rubber (A). Is more preferable, and 20 to 80 parts by mass is even more preferable.
  • These fillers (C) may be used alone or in combination of two or more.
  • the rubber composition of the present invention may further contain a crosslinking agent (D) in order to crosslink the rubber.
  • a crosslinking agent (D) include sulfur, sulfur compounds, oxygen, organic peroxides, phenol resins, amino resins, quinone and quinone dioxime derivatives, halogen compounds, aldehyde compounds, alcohol compounds, epoxy compounds, metal halides. And organometallic halides and silane compounds.
  • the sulfur compound include morpholine disulfide and alkylphenol disulfide.
  • organic peroxide examples include cyclohexanone peroxide, methyl acetoacetate peroxide, t-butyl peroxyisobutyrate, t-butyl peroxybenzoate, benzoyl peroxide, lauroyl peroxide, dicumyl peroxide, and di-t-oxide. -Butyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene and the like.
  • These crosslinking agents (D) may be used individually by 1 type, and may use 2 or more types together.
  • the crosslinking agent (D) is usually 0.1 to 10 parts by mass, preferably 0.5 to 10 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of the solid rubber (A) from the viewpoint of mechanical properties of the crosslinked product. 0.8 to 5 parts by mass is contained.
  • the rubber composition of the present invention further contains a vulcanization accelerator (E) when sulfur, a sulfur compound or the like is contained as a crosslinking agent (D) for crosslinking (vulcanizing) rubber, for example.
  • a vulcanization accelerator (E) examples include guanidine compounds, sulfenamide compounds, thiazole compounds, thiuram compounds, thiourea compounds, dithiocarbamic acid compounds, aldehyde-amine compounds, aldehyde-ammonia compounds. Imidazoline compounds, xanthate compounds, and the like.
  • These vulcanization accelerators (E) may be used alone or in combination of two or more.
  • the vulcanization accelerator (E) is usually contained in an amount of 0.1 to 15 parts by mass, preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the solid rubber (A).
  • the rubber composition of the present invention further contains a vulcanization aid (F), for example, when sulfur, sulfur compounds, etc. are contained as a crosslinking agent (D) for crosslinking (vulcanizing) rubber. It may be.
  • a vulcanization aid (F) include fatty acids such as stearic acid, metal oxides such as zinc white, and fatty acid metal salts such as zinc stearate. These vulcanization aids (F) may be used alone or in combination of two or more.
  • the vulcanization aid (F) is usually contained in an amount of 0.1 to 15 parts by weight, preferably 1 to 10 parts by weight, per 100 parts by weight of the solid rubber (A).
  • silica when silica is contained as the filler (C), it is a preferable embodiment that a silane coupling agent is contained.
  • the silane coupling agent include sulfide compounds, mercapto compounds, vinyl compounds, amino compounds, glycidoxy compounds, nitro compounds, chloro compounds, and the like.
  • sulfide compounds include bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, and bis (2-trimethoxy).
  • Silylethyl) tetrasulfide bis (3-triethoxysilylpropyl) trisulfide, bis (3-trimethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, bis (3-trimethoxysilylpropyl) Disulfide, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 2-trimethoxysilylethyl-N N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazole tetrasulfide, 3-triethoxysilylpropylbenzothiazole tetrasulfide, 3-trieth
  • Examples of the mercapto compound include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, and 2-mercaptoethyltriethoxysilane.
  • Examples of vinyl compounds include vinyl triethoxysilane and vinyl trimethoxysilane.
  • Examples of amino compounds include 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethyl) aminopropyltriethoxysilane, and 3- (2-aminoethyl) aminopropyltrimethyl. And methoxysilane.
  • glycidoxy compounds include ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and ⁇ -glycidoxypropylmethyldimethoxysilane. Is mentioned.
  • Examples of the nitro compound include 3-nitropropyltrimethoxysilane and 3-nitropropyltriethoxysilane.
  • Examples of the chloro compound include 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, 2-chloroethyltrimethoxysilane, and 2-chloroethyltriethoxysilane.
  • Examples of other compounds include octyltriethoxysilane, methyltriethoxysilane, methyltrimethoxysilane, hexadecyltrimethoxysilane, and the like.
  • silane coupling agents may be used alone or in combination of two or more.
  • silane coupling agents bis (3-triethoxysilylpropyl) disulfide, bis (3-triethoxysilylpropyl) tetrasulfide, and 3-mercaptopropyltrimethoxysilane are used from the viewpoint of high addition effect and cost. Is preferred.
  • the silane coupling agent is preferably contained in an amount of 0.1 to 30 parts by mass, more preferably 0.5 to 20 parts by mass, and further preferably 1 to 15 parts by mass with respect to 100 parts by mass of silica.
  • content of the silane coupling agent is within the above range, dispersibility, coupling effect, reinforcing property, and wear resistance are improved.
  • the rubber composition of the present invention is intended to improve processability, fluidity, etc. within a range that does not impair the effects of the present invention, and if necessary, silicone oil, aroma oil, TDAE (Treated Distilled Aromatic Extracts), MES ( Process oils such as Mild Extracted Solvates, RAE (Residual Aromatic Extracts), paraffin oil, naphthenic oil, aliphatic hydrocarbon resins, alicyclic hydrocarbon resins, C9 resins, rosin resins, coumarone-indene resins, phenols
  • a resin component such as a resin may be contained as a softening agent.
  • the content is preferably less than 50 parts by mass with respect to 100 parts by mass of the solid rubber (A).
  • the rubber composition of the present invention is an anti-aging agent, a wax, an antioxidant, a lubricant, if necessary for the purpose of improving weather resistance, heat resistance, oxidation resistance, etc., as long as the effects of the present invention are not impaired.
  • Light stabilizers, scorch inhibitors, processing aids, colorants such as pigments and dyes, flame retardants, antistatic agents, matting agents, antiblocking agents, UV absorbers, mold release agents, foaming agents, antibacterial agents, and antibacterial agents You may contain additives, such as a mold agent and a fragrance
  • the antioxidant include hindered phenol compounds, phosphorus compounds, lactone compounds, hydroxyl compounds, and the like.
  • the antiaging agent include amine-ketone compounds, imidazole compounds, amine compounds, phenol compounds, sulfur compounds, and phosphorus compounds. These additives may be used alone or in combination of two or more.
  • the manufacturing method of the rubber composition of this invention will not be specifically limited if said each component can be mixed uniformly.
  • a tangential or meshing type closed kneader such as a kneader ruder, a brabender, a banbury mixer, an internal mixer, a single screw extruder, a twin screw extruder, a mixing roll, etc. , And rollers.
  • the rubber composition can be produced usually in the temperature range of 70 to 270 ° C.
  • a crosslinked product can be obtained by crosslinking the rubber composition of the present invention.
  • the crosslinking conditions of the rubber composition can be appropriately set according to the use and the like. For example, when sulfur or a sulfur compound is used as a cross-linking agent and the rubber composition is cross-linked (vulcanized) with a mold, the cross-linking temperature is usually 120 to 200 ° C., and the pressurizing condition is usually 0.5 to 2.0 MPa. Can be crosslinked (vulcanized).
  • the extraction rate of the modified liquid diene polymer (B) from the crosslinked product is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less.
  • the extraction rate can be calculated from the amount of the modified liquid diene polymer (B) that is obtained by immersing 2 g of the crosslinked product in 400 mL of toluene and extracting it in toluene after 48 hours at 23 ° C.
  • the rubber composition of the present invention and the crosslinked product of the rubber composition can also be used as at least a part of a tire.
  • the tire thus obtained has an ideal dispersed state of filler (C) (for example, the Pain effect is sufficiently reduced), so that it has excellent rolling resistance performance and wear resistance. Good properties.
  • Examples of the tire portion where the rubber composition and the crosslinked product of the rubber composition can be used include treads (cap treads, under treads), sidewalls, rubber reinforcing layers (liners, etc.) for run-flat tires, rim cushions, and beads.
  • Examples include fillers, bead insulation, bead apex, clinch apex, belt, belt cushion, breaker, breaker cushion, chafer, chafer pad, strip apex and the like.
  • Production Example 1 Production of modified liquid diene polymer (B-1, B-2) A sufficiently dried 5 L autoclave was purged with nitrogen, 1860 g of cyclohexane and 61 g of s-butyllithium (1.0 mol / L, cyclohexane solution) The mixture was heated to 50 ° C., and then 5.8 g of tetrahydrofuran was added under stirring conditions. Then, 1175 g of isoprene and 219 g of butadiene were successively added to carry out polymerization while controlling the polymerization temperature to be 50 ° C. Thereafter, methanol was added to stop the polymerization reaction to obtain a polymer solution.
  • a modified liquid diene polymer (B-2), which is a diblock copolymer composed of a linear isoprene homopolymer block and a butadiene homopolymer block, modified in step (1) was obtained.
  • the butadiene homopolymer block is preferentially modified with a functional group derived from the silane compound (1) due to a difference in reactivity with the silane compound (1).
  • Production Example 2 Production of Modified Liquid Diene Polymer (B-3, B-13) A sufficiently dried 5 L autoclave was purged with nitrogen, 1860 g of cyclohexane and 57 g of s-butyllithium (1.1 mol / L, cyclohexane solution) After adding 5.8 g of tetrahydrofuran under stirring conditions, 116 g of butadiene, 1087 g of isoprene and 83 g of butadiene were successively added while controlling the polymerization temperature to be 50 ° C. did. Thereafter, methanol was added to stop the polymerization reaction to obtain a polymer solution.
  • the butadiene homopolymer block is preferentially modified with a functional group derived from the silane compound (1) due to a difference in reactivity with the silane compound (1).
  • (B-13) (3-mercaptopropyl) triethoxysilane not radically added was washed away with methanol, and the average number of functional groups per molecule calculated from 1 H-NMR was 15. I understood.
  • the butadiene homopolymer block is preferentially modified with a functional group derived from the silane compound (1) due to a difference in reactivity with the silane compound (1).
  • Production Example 3 Production of Modified Liquid Diene Polymer (B-4) A well-dried 5 L autoclave was purged with nitrogen and charged with 1850 g of cyclohexane and 69 g of s-butyllithium (1.1 mol / L, cyclohexane solution). After the temperature was raised to 0 ° C., 823 g of butadiene was successively added while controlling the polymerization temperature to 50 ° C. under stirring conditions, and then 3.4 g of N, N, N ′, N′-tetramethylethylenediamine was added. Then, 550 g of butadiene was sequentially added and polymerized.
  • the high vinyl content butadiene homopolymer block is preferentially modified with a functional group derived from the silane compound (1) due to a difference in reactivity with the silane compound (1).
  • Production Example 4 Production of Modified Liquid Diene Polymer (B-5) A well-dried 1 L autoclave was purged with nitrogen, and 65 g of cyclohexane, 76 g of s-butyllithium (1.1 mol / L, cyclohexane solution), and 13 g of triethylamine were added. The temperature was raised to 50 ° C. Under stirring conditions, 8.3 g of 1,3-bis (1-methylethenyl) benzene was added and stirred at 70 ° C. The resulting reaction solution was cooled to 25 ° C., 23 g of butadiene was added all at once under stirring conditions, the temperature was raised to 50 ° C. and stirred for 30 minutes, and then cooled to 25 ° C.
  • a fully dried 5 L autoclave was purged with nitrogen, charged with 2060 g of cyclohexane and the total amount of the above reaction solution, heated to 50 ° C., and 352 g of butadiene was added under stirring conditions while controlling the polymerization temperature to be 50 ° C.
  • 3.4 g of N, N, N ′, N′-tetramethylethylenediamine was added, and 198 g of butadiene was sequentially added for polymerization.
  • methanol was added to stop the polymerization reaction to obtain a polymer solution. Water was added to the resulting polymer solution and stirred, and the polymer solution was washed with water.
  • a modified liquid diene polymer which is a triblock copolymer composed of a linear high vinyl content butadiene homopolymer block modified with a low vinyl content butadiene homopolymer block and a high vinyl content butadiene homopolymer block ( B-5) was obtained.
  • the high vinyl content butadiene homopolymer block is preferentially modified with a functional group derived from the silane compound (1) due to a difference in reactivity with the silane compound (1).
  • the high vinyl content butadiene homopolymer block is preferentially modified with a functional group derived from the silane compound (1) due to a difference in reactivity with the silane compound (1).
  • Production Example 8 Production of Modified Liquid Diene Polymer (B-9) A well-dried 5 L autoclave was purged with nitrogen and charged with 1660 g of cyclohexane and 262 g of s-butyllithium (1.2 mol / L, cyclohexane solution). After the temperature was raised to 0 ° C., 964 g of isoprene was sequentially added while controlling the polymerization temperature to 50 ° C. under stirring conditions, and then 14.7 g of N, N, N ′, N′-tetramethylethylenediamine was added Then, 275 g of butadiene was sequentially added and polymerized.
  • the butadiene homopolymer block is preferentially modified with a functional group derived from the silane compound (1) due to a difference in reactivity with the silane compound (1).
  • unmodified liquid diene polymer (B′-10) was charged into a 1 L autoclave and degassed with stirring at 60 ° C. for 3 hours.
  • Functional group derived from silane compound (1) by adding 4.3 g of 1,1-bis (t-hexylperoxy) cyclohexane and 56 g of (3-mercaptopropyl) triethoxysilane and reacting at 105 ° C. for 8 hours.
  • An unmodified liquid diene polymer (B-11) which is a triblock copolymer composed of a linear butadiene homopolymer block, an isoprene homopolymer block, and a butadiene homopolymer block modified with 1. In such a block copolymer, the butadiene homopolymer block is preferentially modified with a functional group derived from the silane compound (1) due to a difference in reactivity with the silane compound (1).
  • Production Example 11 Production of Modified Liquid Diene Rubber (B-12) A well-dried 5 L autoclave was purged with nitrogen, charged with 1150 g of hexane and 154 g of n-butyllithium (17% by mass hexane solution) and heated to 50 ° C. Thereafter, 10 g of N, N, N ′, N′-tetramethylethylenediamine was added under stirring conditions, and then 1250 g of butadiene was successively added to carry out polymerization while controlling the polymerization temperature to be 50 ° C. Thereafter, methanol was added to stop the polymerization reaction to obtain a polymer solution.
  • Mw of the modified liquid diene polymer (B) was determined by GPC (gel permeation chromatography) as a standard polystyrene equivalent molecular weight.
  • the measuring apparatus and conditions are as follows. ⁇ Equipment: GPC device “HLC-8320GPC” manufactured by Tosoh Corporation Separation column: “TSKgelSuperHZ4000 ⁇ 2” manufactured by Tosoh Corporation ⁇ Eluent: Tetrahydrofuran ⁇ Eluent flow rate: 0.35 mL / min ⁇ Sample concentration: 5 mg / 10 mL -Column temperature: 40 ° C
  • Glass-transition temperature 10 mg of the modified liquid diene polymer (B) is collected in an aluminum pan, and a thermogram is measured by a differential scanning calorimetry (DSC) at a heating rate of 10 ° C./min. The peak top value of the DDSC is converted into a glass transition. It was temperature.
  • melt viscosity at 38 ° C. The melt viscosity at 38 ° C. of the modified liquid diene polymer (B) was measured with a Brookfield viscometer (BROOKFIELD ENGINEERING LAB. INC.).
  • the equivalent of the functional group of the modified liquid diene polymer (B) means the mass of the conjugated diene bonded per functional group and the monomer other than the conjugated diene contained if necessary. To do.
  • the equivalent of the functional group can be calculated from the area ratio of the peak derived from the functional group and the peak derived from the polymer main chain using 1 H-NMR or 13 C-NMR.
  • the peak derived from a functional group refers to the peak derived from an alkoxy group.
  • the ratio of the length occupied by the polymer block (b′1) or (b ′′ 1) in the unmodified liquid diene block copolymer (B′1) or (B′2) is the total proportion of the block copolymer. It can be determined from the chain length and the length occupied by the polymer block in the block copolymer. The length occupied by the polymer block in the block copolymer is the amount of each monomer contained in each block copolymer.
  • the number of body units is calculated from 1 H-NMR measurement, the bond length of the carbon-carbon single bond in the main chain of the block copolymer is 150 pm, the bond length of the carbon-carbon double bond is 135 pm, and the bond angle is 120 °.
  • the total chain length of the block copolymer can be obtained from the total number of monomer units contained in each block copolymer obtained above. it can.
  • the physical properties of the modified liquid diene polymers (B-1) to (B-13) obtained in Production Examples 1 to 11 are summarized below in Table 1.
  • the bonding modes of the unmodified liquid diene block copolymers (B′-1) to (B′-11) as raw materials for the modified liquid diene polymers (B-1) to (B-13) are shown. Sum it up in two.
  • Examples 1 to 18 and Comparative Examples 1 to 5 According to the blending ratio (parts by mass) described in Tables 3 to 6, solid rubber (A), modified liquid diene polymer (B), filler (C), TDAE, silane coupling agent, zinc white, stearic acid, The wax and the anti-aging agent were respectively put into a closed Banbury mixer and kneaded for 6 minutes so that the starting temperature was 60 ° C. and the resin temperature was 150 ° C., then taken out of the mixer and cooled to room temperature.
  • this mixture was put into a Banbury mixer again, and a rubber composition was obtained by adding a vulcanizing agent and a vulcanization accelerator and kneading for 75 seconds such that the starting temperature was 50 ° C. and the ultimate temperature was 100 ° C.
  • the obtained rubber composition was press-molded (160 ° C., 30 to 50 minutes) to produce a vulcanized rubber sheet (thickness 2 mm). Based on the following methods, the Payne effect, Mooney viscosity, rolling resistance performance, Abrasion resistance, wet grip, tensile breaking elongation, and tensile breaking strength were evaluated. The results are shown in Tables 3-6. In addition, the measuring method of each evaluation is as follows.
  • Mooney viscosity According to JIS K 6300, the Mooney viscosity (ML 1 + 4 ) of the rubber composition before vulcanization was measured at 130 ° C.
  • the numerical values of the examples and comparative examples in Table 3 are the values when the value of Comparative Example 2 is 100, and the numerical values of the Examples and Comparative Examples in Table 6 are the relative values when the value of Comparative Example 4 is 100. Value. It shows that the processability of a rubber composition is so favorable that a numerical value is small.
  • Examples 12 to 18 using the modified liquid diene polymer of the present invention have good dispersibility of silica, rolling resistance performance, wear resistance, and fracture characteristics.
  • the rubber composition of the present invention is not only excellent in processability and filler dispersibility, but also when a crosslinkable rubber composition is added by adding a crosslinking agent, the filler is dispersed in the crosslinked product obtained from the composition.
  • Is ideal for improving physical properties for example, a reduction in the Payne effect is seen
  • gives an excellent crosslinked product with improved wear resistance, etc. so that it is used for tires, industrial belts, industrial rubber hoses.
  • It can use suitably for industrial member uses, such as.
  • a crosslinked product is used for a tire application or the like, it is useful because wet grip performance, wear resistance, and the like are improved.

Abstract

ゴム組成物から得られる架橋物中のフィラーの分散状態が物性向上のためには理想的であり、さらにウェットグリップ及び耐摩耗性等に優れる架橋物が得られる変性液状ジエン系重合体、該変性液状ジエン系重合体を含むゴム組成物及び該架橋物、ならびに、該組成物又は該架橋物を一部に用いたタイヤを提供する。 ブタジエン単位を含む重合体ブロック(b'1)または(b"1)および重合体ブロック(b'2)または(b"2)を含有する液状ジエン系ブロック共重合体が特定のシラン化合物により変性された、該シラン化合物に由来する官能基を有する変性液状ジエン系重合体であり、さらに特定の条件を満たす、変性液状ジエン系重合体。

Description

変性液状ジエン系重合体およびゴム組成物
 本発明は変性液状ジエン系重合体およびゴム組成物に関する。
 従来から、天然ゴムやスチレンブタジエンゴム等のゴム成分に対してシリカやカーボンブラック等のフィラーを配合することにより機械強度を向上させたゴム組成物が、耐摩耗性や機械強度を必要とするタイヤ用途などに広く使用されている。このフィラーが配合されたゴム組成物の架橋物中のフィラーの分散状態が、その架橋物の物性(例えば、ウェットグリップ、及び耐摩耗性など)に影響している可能性が指摘されている。しかし、このフィラーを配合したゴム組成物は、ゴムとフィラーとの親和性は必ずしも高くないため、またフィラー同士で相互作用が生じるため、フィラーの分散性が十分でない場合、架橋物の物性の向上のための理想的な分散状態でない場合がある。
 ゴム組成物中のフィラー分散性を向上する手段として、官能基を有する液状ゴムを使用する方法が種々検討されている(例えば特許文献1及び2参照。)。
 しかし、ゴム組成物から得られる架橋物の物性(例えば、ウェットグリップ及び耐摩耗性)については、従来技術ではいまだ改善の余地があった。
 また、この物性の向上にはその架橋物中のフィラーの分散状態が関与する可能性があるが、例えば、ゴム組成物中のフィラーの分散性向上の指標となるペイン効果の低減を十分に達成するという視点では、従来の技術ではいまだ改善の余地があった。
特開2000-344949号公報 特開2013-249359号公報
 本発明は、上記の実情に鑑みてなされたものであり、ゴム組成物から得られる架橋物中のフィラーの分散状態が物性向上のためには理想的であり、さらにウェットグリップ及び耐摩耗性等に優れる架橋物が得られる、変性液状ジエン系重合体、該変性液状ジエン系重合体を含むゴム組成物及び該架橋物、ならびに、該組成物又は該架橋物を一部に用いたタイヤを提供する。
 本発明者らが、鋭意検討を行った結果、特定のシラン化合物への反応性が異なる2種の重合体ブロックを含む特定の変性液状ジエン系重合体をゴム組成物に含有させることにより、そのゴム組成物から得られた架橋物ではフィラーの分散状態が物性向上のためには理想的であり、さらに、ウェットグリップ及び耐摩耗性等に優れることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下〔1〕~〔15〕に関する。
 〔1〕ブタジエン単位を含む重合体ブロック(b'1)および重合体ブロック(b'2)を含有する液状ジエン系ブロック共重合体(B'1)が下記式(1)で表されるシラン化合物により変性された、該式(1)で表されるシラン化合物に由来する官能基を有する変性液状ジエン系重合体(B1)であり、下記(i)~(iv)を満たす、変性液状ジエン系重合体(B1)。
(i)変性液状ジエン系ゴムの重量平均分子量(Mw)が1,000~120,000。
(ii)重合体ブロック(b'1)のブタジエン単位のビニル含量が40~100モル%。
(iii)重合体ブロック(b'2)が、ビニル含量が0~25モル%のブタジエン単位を含む。
(iv)変性液状ジエン系重合体(B1)一分子当たりの平均官能基数が1~20個。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、R1は炭素数1から6の2価のアルキレン基であり、R2、R3及びR4はそれぞれ独立に、メトキシ基、エトキシ基、フェノキシ基、メチル基、エチル基又はフェニル基を示す。ただし、R2、R3及びR4の少なくとも1つはメトキシ基、エトキシ基又はフェノキシ基である。)
 〔2〕変性液状ジエン系重合体(B1)が直鎖状の重合体であり、重合体ブロック(b'1)が液状ジエン系ブロック共重合体(B'1)の片末端または両末端に存在し、重合体ブロック(b'1)の占める長さが液状ジエン系ブロック共重合体(B'1)全鎖長の合計45%以下である、〔1〕に記載の変性液状ジエン系重合体(B1)。
 〔3〕ブタジエン単位を含む重合体ブロック(b"1)および重合体ブロック(b"2)を含有する液状ジエン系ブロック共重合体(B'2)が前記式(1)で表されるシラン化合物により変性された、該式(1)で表されるシラン化合物に由来する官能基を有する変性液状ジエン系重合体(B2)であり、下記(v)~(vii)を満たす、変性液状ジエン系重合体(B2)。
(v)変性液状ジエン系重合体(B2)の重量平均分子量(Mw)が1,000~120,000。
(vi)重合体ブロック(b"2)がブタジエン以外の共役ジエン単位および芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む。
(vii)変性液状ジエン系重合体(B2)一分子当たりの平均官能基数が1~20個。
 〔4〕変性液状ジエン系重合体(B2)が直鎖状の重合体であり、液状ジエン系ブロック共重合体(B'2)の重合体ブロック(b"1)が片末端または両末端に存在し、重合体ブロック(b"1)の占める長さが液状ジエン系ブロック共重合体(B'2)全鎖長の合計45%以下である、〔3〕に記載の変性液状ジエン系重合体(B2)。
 〔5〕変性液状ジエン系重合体(B1)または(B2)が直鎖状の重合体であり、変性液状ジエン系重合体(B1)または(B2)中のシラン化合物に由来する官能基のうち、その65%以上が、片末端または両末端から全鎖長の合計45%の範囲に存在する、〔1〕~〔4〕のいずれかに記載の変性液状ジエン系重合体(B1)または(B2)。
 〔6〕38℃における溶融粘度が0.1~4,000Pa・sである、〔1〕~〔5〕のいずれかに記載の変性液状ジエン系重合体(B1)または(B2)。
 〔7〕固形ゴム(A)100質量部、〔1〕~〔6〕のいずれかに記載の変性液状ジエン系重合体(B1)または(B2)0.1~50質量部、及びフィラー(C)20~200質量部を含有する、ゴム組成物。
 〔8〕前記フィラー(C)が、カーボンブラック及びシリカから選ばれる少なくとも1種である、〔7〕に記載のゴム組成物。
 〔9〕前記フィラー(C)が、平均粒径5~100nmのカーボンブラック及び平均粒径が0.5~200nmのシリカから選ばれる少なくとも1種である、〔8〕に記載のゴム組成物。
 〔10〕前記フィラー(C)がシリカを含み、シリカ100質量部に対し、シランカップリング剤を0.1~30質量部含有する、〔8〕又は〔9〕に記載のゴム組成物。
 〔11〕前記固形ゴム(A)が、天然ゴム、スチレンブタジエンゴム、ブタジエンゴム及びイソプレンゴムから選ばれる少なくとも1種である、〔7〕~〔10〕のいずれかに記載のゴム組成物。
 〔12〕前記固形ゴム(A)が、重量平均分子量が100,000~2,500,000のスチレンブタジエンゴムである、〔11〕に記載のゴム組成物。
 〔13〕前記固形ゴム(A)が、スチレン含量が0.1~70質量%であるスチレンブタジエンゴムである、〔11〕又は〔12〕に記載のゴム組成物。
 〔14〕〔7〕~〔13〕のいずれかに記載のゴム組成物を架橋させた架橋物。
 〔15〕〔7〕~〔13〕のいずれかに記載のゴム組成物又は〔14〕に記載の架橋物を少なくとも一部に用いたタイヤ。
 本発明により得られる特定の変性液状ジエン系重合体を含有するゴム組成物から得られる架橋物では、フィラーの分散状態が物性向上には理想的であり、さらにウェットグリップ、耐摩耗性等に優れる。また、該組成物又は架橋物は、例えば、タイヤに有用である。
 [変性液状ジエン系重合体]
 本発明の変性液状ジエン系重合体は、ブタジエン単位を含む重合体ブロックおよびこれとは異なる重合体ブロックを含有する未変性の液状ジエン系ブロック共重合体が前記式(1)で表されるシラン化合物により変性された重合体であり、その重合体は前記式(1)で表されるシラン化合物に由来する官能基を有し、さらに特定の条件を満たすことが必要である。
 以下、本発明の変性液状ジエン系重合体を総称して変性液状ジエン系重合体(B)と称し、また、その原料となる未変性の液状ジエン系ブロック共重合体を総称して、未変性液状ジエン系ブロック共重合体(B')とも称し、式(1)で表されるシラン化合物をシラン化合物(1)と称する。特定の未変性液状ジエン系ブロック共重合体(B')から得られる本発明の変性液状ジエン系重合体(B)は所望の物性を有するが、その理由は、未変性液状ジエン系ブロック共重合体(B')に含まれる2種の重合体ブロック間のシラン化合物(1)の反応性差にあると考えられる。
 [未変性液状ジエン系ブロック共重合体(B')]
 以下、変性液状ジエン系重合体(B)の原料となる未変性液状ジエン系ブロック共重合体(B')について説明をする。未変性液状ジエン系ブロック共重合体(B')としては、例えば、下記の未変性液状ジエン系ブロック共重合体(B'1)および未変性液状ジエン系ブロック共重合体(B'2)が挙げられる。
 [未変性液状ジエン系ブロック共重合体(B'1)]
 本発明の変性液状ジエン系重合体(B)の第1態様である変性液状ジエン系重合体(B1)は、ブタジエン単位を含む重合体ブロック(b'1)および重合体ブロック(b'2)を含有する未変性液状ジエン系ブロック共重合体(B'1)がシラン化合物(1)により変性され、シラン化合物(1)に由来する官能基を有しており、さらに下記(i)~(iv)を満たしている。
(i)変性液状ジエン系ゴム(B1)の重量平均分子量(Mw)が1,000~120,000。
(ii)重合体ブロック(b'1)のブタジエン単位のビニル含量が40~100モル%。
(iii)重合体ブロック(b'2)が、ビニル含量が0~25モル%のブタジエン単位を含む。
(iv)変性液状ジエン系重合体(B1)一分子当たりの平均官能基数が1~20個。
 この変性液状ジエン系重合体(B1)の原料が未変性液状ジエン系ブロック共重合体(B'1)であり、重合体ブロック(b'1)および重合体ブロック(b'2)を含有する。
 重合体ブロック(b'1)は、ビニル含量が40~100モル%のブタジエン単位を含む。ビニル含量が特定の範囲にあるブタジエン単位は、シラン化合物(1)に対する反応性に優れる。
 本発明において、「ビニル含量」とは、対象となる部分(例えば、重合体ブロック、液状ジエン系ゴム全体)に含まれる、ブタジエン単位、ブタジエン単位以外の共役ジエン単位の合計100モル%中、1,2-結合、3,4-結合をしている共役ジエン単位(1,4-結合以外で結合をしている共役ジエン単位)の合計モル%を意味する。ビニル含量は、1H-NMRを用いて1,2-結合、3,4-結合で結合をしている共役ジエン単位由来のピークと1,4-結合で結合をしている共役ジエン単位に由来するピークの面積比から算出することができる。
 重合体ブロック(b'1)に含まれるブタジエン単位のビニル含量は、40~100モル%である。ビニル含量がこの範囲にあることにより、式(1)で表されるシラン化合物との反応性が高く、重合体ブロック(b'1)に複数の官能基を導入しやすくなる。式(1)で表されるシラン化合物との反応性をより高くし、複数の官能基をより容易に導入できる点からは、50~100モル%であることが好ましく、55~100モル%であることがより好ましく、60~100モル%であることがさらに好ましい。
 重合体ブロック(b'1)のブタジエン単位等の共役ジエン単位のビニル含量は、例えば、重合体ブロック(b'1)を作製する際に使用する溶媒の種類、必要に応じて使用される極性化合物、重合温度などを制御することにより所望の値とすることができる。
 重合体ブロック(b'1)のブタジエン単位の含有量は、式(1)で表されるシラン化合物との反応性の高さ、重合体ブロック(b'1)に複数の官能基を容易に導入できる点から、重合体ブロック(b'1)の全単量体単位に対して、50~100質量%であることが好ましく、60~100質量%であることがより好ましく、70~100質量%であることがさらに好ましく、実質的に100質量%であってもよい。
 重合体ブロック(b'1)は、他の単量体単位を含んでいてもよい。他の単量体としては、例えば、ブタジエン以外の共役ジエン、芳香族ビニル化合物などが挙げられる。
 ブタジエン以外の共役ジエンとしては、例えば、イソプレン、2,3-ジメチルブタジエン、2-フェニルブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、1,3-オクタジエン、1,3-シクロヘキサジエン、2-メチル-1,3-オクタジエン、1,3,7-オクタトリエン、ミルセン、及びクロロプレンなどが挙げられる。ブタジエン以外の共役ジエンの中でも、イソプレンが好ましい。なお、重合体ブロック(b'1)に他の単量体単位として、ブタジエン以外の共役ジエン単位が含まれる場合には、ブタジエン以外の共役ジエン単位のビニル含量は、40~100モル%であることが好ましく、50~100モル%であることがより好ましく、55~100モル%であることがさらに好ましく、60~100モル%であることが特に好ましい。
 芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-プロピルスチレン、4-t-ブチルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、2,4,6-トリメチルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、1-ビニルナフタレン、2-ビニルナフタレン、ビニルアントラセン、N,N-ジエチル-4-アミノエチルスチレン、ビニルピリジン、4-メトキシスチレン、モノクロロスチレン、ジクロロスチレン、及びジビニルベンゼンなどが挙げられる。これら芳香族ビニル化合物の中でも、スチレン、α-メチルスチレン、及び4-メチルスチレンが好ましい。
 上記重合体ブロック(b'1)におけるブタジエン単位以外の他の単量体単位の含有量は、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることがさらに好ましく、0質量%であってもよい。
 なお、未変性液状ジエン系ブロック共重合体(B'1)は、重合体ブロック(b'1)が1つ含まれていてもよく、2以上含まれていてもよい。また、重合体ブロック(b'1)が複数含まれている場合は、その重合体ブロック(b'1)の性状(例えば、単量体単位の種類、単量体単位組成、重合体ブロックの長さなど)は、同一でも異なっていてもよい。
 重合体ブロック(b'2)は、ビニル含量が0~25モル%のブタジエン単位を含む。ビニル含量が特定の範囲にあるブタジエン単位(b'2)は、重合体ブロック(b'1)と比較して、シラン化合物(1)との反応性が抑制される。
 重合体ブロック(b'2)に含まれるブタジエン単位のビニル含量は、式(1)で表されるシラン化合物との反応性抑制などの点から、0~20モル%であることが好ましく、0~15モル%であることがより好ましく、0~10モル%であることがさらに好ましい。
 重合体ブロック(b'2)のブタジエン単位等の共役ジエン単位のビニル含量は、例えば、重合体ブロック(b'2)を作製する際に使用する溶媒の種類、必要に応じて使用される極性化合物、重合温度などを制御することにより所望の値とすることができる。
 重合体ブロック(b'2)のブタジエン単位の含有量は、変性液状ジエン系重合体(B1)を含むゴム組成物の架橋物のDIN摩耗試験における耐摩耗性を改善する点からは、重合体ブロック(b'2)の全単量体単位に対して、50~100質量%であることが好ましく、60~100質量%であることがより好ましく、70~100質量%であることがさらに好ましく、実質的に100質量%であってもよい。
 重合体ブロック(b'2)は、他の単量体単位を含んでいてもよい。他の単量体としては、例えば、ブタジエン以外の共役ジエン、芳香族ビニル化合物などが挙げられる。
 ブタジエン以外の共役ジエンの具体例は、重合体ブロック(b'1)の他の単量体単位となり得るブタジエン以外の共役ジエンと同様である。ブタジエン以外の共役ジエンの中でも、イソプレンが好ましい。なお、重合体ブロック(b'2)に他の単量体単位として、ブタジエン以外の共役ジエン単位が含まれる場合には、ブタジエン以外の共役ジエン単位のビニル含量は、0~25モル%であることが好ましく、0~20モル%であることがより好ましく、0~15モル%であることがさらに好ましく、0~10モル%であることが特に好ましい。
 芳香族ビニル化合物の具体例は、重合体ブロック(b'1)の他の単量体単位となり得る芳香族ビニル化合物と同様である。これら芳香族ビニル化合物の中でも、スチレン、α-メチルスチレン、及び4-メチルスチレンが好ましい。
 上記重合体ブロック(b'2)におけるブタジエン単位以外の他の単量体単位の含有量は、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることがさらに好ましく、0質量%であってもよい。
 なお、未変性液状ジエン系ブロック共重合体(B'1)は、重合体ブロック(b'2)が1つ含まれていてもよく、2以上含まれていてもよい。また、重合体ブロック(b'2)が複数含まれている場合は、その重合体ブロック(b'2)の性状(例えば、単量体単位の種類、単量体単位組成、重合体ブロックの長さなど)は、同一でも異なっていてもよい。
 未変性液状ジエン系ブロック共重合体(B'1)は、重合体ブロック(b'1)および(b'2)以外の重合体ブロック(b'3)を有していてもよい。重合体ブロック(b'3)に含まれる単量体単位となり得る単量体としては、例えば、ブタジエン以外の共役ジエン、芳香族ビニル化合物が挙げられる。これら化合物の具体例は、重合体ブロック(b'1)の他の単量体単位となり得るブタジエン以外の共役ジエンおよび芳香族ビニル化合物と同様である。なお、重合体ブロック(b'3)が複数含まれる場合は、重合体ブロック(b'3)の性状(例えば、単量体単位の種類、単量体単位組成、重合体ブロックの長さなど)は同一でもよく異なるものでもよい。
 シリカとの相互作用等の点から、得られる変性液状ジエン系重合体を直鎖状の重合体とすることが望ましい。直鎖状の変性液状ジエン系重合体を作製する点からは、未変性ブロック共重合体(B'1)は直鎖状のブロック共重合体であることが好ましい。
 未変性ブロック共重合体(B'1)では、重合体ブロック(b'1)が液状ジエン系ブロック共重合体(B'1)の片末端または両末端に存在することが好ましい。重合体ブロック(b'1)が未変性ブロック共重合体(B'1)の末端に存在することにより、得られる変性液状ジエン系重合体(B1)に含まれるシラン化合物(1)に由来する官能基が、この末端部分の重合体ブロックに偏在することになり、例えば後述するゴム組成物の一成分として、変性液状ジエン系重合体(B1)を用いた場合には、フィラーとの親和性がより高まり、変性液状ジエン系重合体(B1)を含むゴム組成物の架橋物の耐摩耗性を向上させる傾向にある。
 重合体ブロック(b'1)の占める長さは、未変性液状ジエン系ブロック共重合体(B'1)全鎖長の合計45%以下であることが好ましく、合計40%以下であることがより好ましく、合計30%以下であることがさらに好ましく、合計25%以下であることが特に好ましい。このような未変性液状ブロック共重合体(B'1)を原料として得られた、変性液状ジエン系重合体(B1)は、例えば後述するゴム組成物の一成分として変性液状ジエン系重合体(B1)を用いた場合には、固形ゴムとの親和性が高い部分と、フィラーとの親和性が高い部分の場所を区別することができるため、変性液状ジエン系重合体(B1)と固形ゴムの親和性、および変性液状ジエン系重合体(B1)とフィラーの親和性がより高まり、変性液状ジエン系重合体(B1)を含むゴム組成物の架橋物の耐摩耗性を向上させる傾向にある。ここで、「全鎖長の合計X%の範囲」とは、重合体全体の中で複数の重合体ブロック(b'1)が含まれる場合には、その合計された重合体ブロックの鎖長がX%であることを意味する。ブロック共重合体中の重合体ブロックの占める長さは、それぞれのブロック共重合体に含まれる各単量体単位の数を1H-NMR測定より算出し、ブロック共重合体の主鎖における炭素-炭素単結合の結合長を150pm、炭素-炭素二重結合の結合長を135pm、結合角を120°と仮定し計算することで、求めることができる。
 未変性ブロック共重合体(B'1)の結合形態としては、重合体ブロック(b'1)を「b'1」、重合体ブロック(b'2)を「b'2」としたときに、下記一般式で表される、直鎖状ジブロック共重合体、および直鎖状トリブロック共重合体が好ましい。
直鎖状ジブロック共重合体:b'1-b'2
直鎖状トリブロック共重合体:b'1-b'2-b'1
 このうち、直鎖状ジブロック共重合体を用いる場合は、得られる架橋物の耐摩耗性がより良好となる。その理由の詳細は不明であるが、シリカ表面上のシラノール基と変性液状ジエン系ゴム(B1)との結合点から伸びるポリマー鎖長が、ジブロック共重合体を用いると長くなり、変性液状ジエン系重合体(B1)を含むゴム組成物の架橋物であるゴム全体にひずみがかかった際の結合点への応力集中を防ぐことができるためと考えられる。また、直鎖状トリブロック共重合体を用いる場合は、変性液状ジエン系重合体(B1)を含むゴム組成物の架橋物の転がり抵抗性能がより良好となる。その理由の詳細は不明であるが、シリカ表面上のシラノール基と変性液状ジエン系ゴム(B1)との結合点から伸びるポリマー鎖長が、トリブロック共重合体を用いると短くなり、得られる架橋物のエネルギーロスが減りtanδが小さくなるためと考えられる。
 得られる変性液状ジエン系ゴムの特性がより優れたものとなる点などから、未変性直鎖状ブロック共重合体(B'1)中の重合体ブロック(b'1)の含有量は0.05質量%~45質量%であり重合体ブロック(b'2)の含有量は55質量%~99.95質量%であることが好ましく、重合体ブロック(b'1)の含有量は0.05質量%~40質量%であり重合体ブロック(b'2)の含有量は60質量%~99.95質量%であることがより好ましい。未変性直鎖状ブロック共重合体(B'1)中の重合体ブロック(b'1)および(b'2)の含有量は、1H-NMR測定等により求めることができる。なお、未変性直鎖状ブロック共重合体(B'1)中に、複数の重合体ブロック(b'1)が含まれる場合には、上記重合体ブロック(b'1)の含有量は、未変性直鎖状ブロック共重合体(B'1)に含まれるすべての重合体ブロック(b'1)の合計量を意味する(重合体ブロック(b'2)の含有量についても同様である。)。
 [未変性液状ジエン系ブロック共重合体(B'2)]
 本発明の変性液状ジエン系重合体(B)の第2態様である変性液状ジエン系重合体(B2)は、ブタジエン単位を含む重合体ブロック(b"1)および重合体ブロック(b"2)を含有する未変性液状ジエン系ブロック共重合体(B'2)がシラン化合物(1)により変性され、シラン化合物(1)に由来する官能基を有しており、さらに下記(v)~(vii)を満たしている。
(v)変性液状ジエン系重合体(B2)の重量平均分子量(Mw)が1,000~120,000。
(vi)重合体ブロック(b"2)がブタジエン以外の共役ジエン単位および芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む。
(vii)変性液状ジエン系重合体(B2)一分子当たりの平均官能基数が1~20個。
 この変性液状ジエン系重合体(B2)の原料が未変性液状ジエン系ブロック共重合体(B'2)であり、重合体ブロック(b"1)および重合体ブロック(b"2)を含有する。
 重合体ブロック(b"1)は、ブタジエン単位を含む。重合体ブロック(b"1)は、重合体ブロック(b"2)と比較して、シラン化合物(1)に対する反応性に優れる。
 重合体ブロック(b"1)のブタジエン単位の含有量は、式(1)で表されるシラン化合物との反応性の高さ、重合体ブロック(b"1)に複数の官能基を容易に導入できる点から、重合体ブロック(b"1)の全単量体単位に対して、50~100質量%であることが好ましく、60~100質量%であることがより好ましく、70~100質量%であることがさらに好ましく、実質的に100質量%であってもよい。
 重合体ブロック(b"1)に含まれるブタジエン単位のビニル含量は、式(1)で表されるシラン化合物との反応性の高さ、重合体ブロック(b"1)に複数の官能基を容易に導入できる点から、1~80モル%であることが好ましく、10~80モル%であることがより好ましく、25~80モル%であることがさらに好ましく、30~80モル%であることが特に好ましい。
 重合体ブロック(b"1)のブタジエン単位等の共役ジエン単位のビニル含量は、例えば、重合体ブロック(b"1)を作製する際に使用する溶媒の種類、必要に応じて使用される極性化合物、重合温度などを制御することにより所望の値とすることができる。
 重合体ブロック(b"1)は、他の単量体単位を含んでいてもよい。他の単量体としては、例えば、ブタジエン以外の共役ジエン、芳香族ビニル化合物などが挙げられる。
 ブタジエン以外の共役ジエンの具体例は、未変性液状ジエン系ブロック共重合体(B'1)の重合体ブロック(b'1)の他の単量体単位となり得るブタジエン以外の共役ジエンと同様である。ブタジエン以外の共役ジエンの中でも、イソプレンが好ましい。なお、重合体ブロック(b"1)に他の単量体単位として、ブタジエン以外の共役ジエン単位が含まれる場合には、ブタジエン以外の共役ジエン単位のビニル含量は、1~80モル%であることが好ましく、10~80モル%であることがより好ましく、25~80モル%であることがさらに好ましく、30~80モル%が特に好ましい。
 芳香族ビニル化合物の具体例は、未変性液状ジエン系ブロック共重合体(B'1)の重合体ブロック(b'1)の他の単量体単位となり得る芳香族ビニル化合物と同様である。これら芳香族ビニル化合物の中でも、スチレン、α-メチルスチレン、及び4-メチルスチレンが好ましい。
 上記重合体ブロック(b"1)におけるブタジエン単位以外の他の単量体単位の含有量は、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることがさらに好ましく、0質量%であってもよい。
 なお、未変性液状ジエン系ブロック共重合体(B'2)は、重合体ブロック(b"1)が1つ含まれていてもよく、2以上含まれていてもよい。また、重合体ブロック(b"1)が複数含まれている場合は、その重合体ブロック(b"1)の性状(例えば、単量体単位の種類、単量体単位組成、重合体ブロックの長さなど)は、同一でも異なっていてもよい。
 重合体ブロック(b"2)は、ブタジエン以外の共役ジエン単位および芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む。重合体ブロック(b"2)は、重合体ブロック(b"1)と比較して、シラン化合物(1)に対する反応性が抑制される。
 ブタジエン以外の共役ジエンの具体例は、重合体ブロック(b"1)の他の単量体単位となり得るブタジエン以外の共役ジエンと同様である。ブタジエン以外の共役ジエンの中でも、イソプレンが好ましい。なお、重合体ブロック(b"2)に他の単量体単位として共役ジエン単位が含まれる場合には、そのビニル含量は、0~60モル%であることが好ましく、0~50モル%であることがより好ましく、0~45モル%であることがさらに好ましく、0~40モル%が特に好ましい。
 芳香族ビニル化合物の具体例は、重合体ブロック(b"1)の他の単量体単位となり得る芳香族ビニル化合物と同様である。これら芳香族ビニル化合物の中でも、スチレン、α-メチルスチレン、及び4-メチルスチレンが好ましい。
 重合体ブロック(b"2)のブタジエン以外の共役ジエン単位および芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位の含有量は、式(1)で表されるシラン化合物との反応性抑制などの点から、重合体ブロック(b"2)の全単量体単位に対して、50~100質量%であることが好ましく、60~100質量%であることがより好ましく、70~100質量%であることがさらに好ましく、実質的に100質量%であってもよい。
 なお、未変性液状ジエン系ブロック共重合体(B'2)は、重合体ブロック(b"2)が1つ含まれていてもよく、2以上含まれていてもよい。また、重合体ブロック(b"2)が複数含まれている場合は、その重合体ブロック(b"2)の性状(例えば、単量体単位の種類、単量体単位組成、重合体ブロックの長さなど)は、同一でも異なっていてもよい。
 シリカとの相互作用等の点から、得られる変性液状ジエン系重合体を直鎖状の重合体とすることが望ましい。直鎖状の変性液状ジエン系重合体を作製する点からは、未変性ブロック共重合体(B'2)は直鎖状のブロック共重合体であることが好ましい。
 未変性ブロック共重合体(B'2)では、重合体ブロック(b"1)が液状ジエン系ブロック共重合体(B'2)の片末端または両末端に存在することが好ましい。重合体ブロック(b"1)が未変性ブロック共重合体(B'2)の末端に存在することにより、得られる変性液状ジエン系重合体(B2)に含まれるシラン化合物(1)に由来する官能基が、この末端部分の重合体ブロックに偏在することになり、例えば後述するゴム組成物の一成分として、変性液状ジエン系重合体(B2)を用いた場合には、フィラーとの親和性がより高まり、そのゴム組成物の架橋物の耐摩耗性を向上させる傾向にある。
 重合体ブロック(b"1)の占める長さは、未変性液状ジエン系ブロック共重合体(B'2)全鎖長の合計45%以下であることが好ましく、合計30%以下であることがより好ましく、合計20%以下であることがさらに好ましく、合計15%以下であることが特に好ましい。このような未変性液状ブロック共重合体(B'2)を原料として得られた、変性液状ジエンゴム(B2)は、例えば後述するゴム組成物の一成分として変性液状ジエン系重合体(B2)を用いた場合には、固形ゴムとの親和性が高い部分と、フィラーとの親和性が高い部分の場所を区別することができるため、変性液状ジエン系重合体(B2)と固形ゴムの親和性、および変性液状ジエン系重合体(B2)とフィラーの親和性がより高まり、変性液状ジエン系重合体(B2)を含むゴム組成物の架橋物の耐摩耗性を向上させる傾向にある。
 未変性ブロック共重合体(B'2)の結合形態としては、重合体ブロック(b"1)を「b"1」、重合体ブロック(b"2)を「b"2」としたときに、下記一般式で表される、直鎖状ジブロック共重合体、および直鎖状トリブロック共重合体が好ましい。
直鎖状ジブロック共重合体:b"1-b"2
直鎖状トリブロック共重合体:b"1-b"2-b"1
 このうち、直鎖状ジブロック共重合体を用いる場合は、得られる架橋物の耐摩耗性がより良好となる。その理由の詳細は不明であるが、シリカ表面上のシラノール基と変性液状ジエン系ゴム(B2)との結合点から伸びるポリマー鎖長が、ジブロック共重合体を用いると長くなり、変性液状ジエン系重合体(B2)を含むゴム組成物の架橋物であるゴム全体にひずみがかかった際の結合点への応力集中を防ぐことができるためと考えられる。また、直鎖状トリブロック共重合体を用いる場合は、変性液状ジエン系重合体(B2)を含むゴム組成物の架橋物の転がり抵抗性能がより良好となる。その理由の詳細は不明であるが、シリカ表面上のシラノール基と変性液状ジエン系ゴム(B2)との結合点から伸びるポリマー鎖長が、トリブロック共重合体を用いると短くなり、得られる架橋物のエネルギーロスが減りtanδが小さくなるためと考えられる。
 得られる変性液状ジエン系ゴムの特性がより優れたものとなる点などから、未変性直鎖状ブロック共重合体(B'2)中の重合体ブロック(b"1)の含有量は0.05質量%~45質量%であり重合体ブロック(b"2)の含有量は55質量%~99.95質量%であることが好ましく、重合体ブロック(b"1)の含有量は0.05質量%~30質量%であり重合体ブロック(b"2)の含有量は70質量%~99.95質量%であることがより好ましく、重合体ブロック(b"1)の含有量は0.05質量%~20質量%であり重合体ブロック(b"2)の含有量は80質量%~99.95質量%であることがさらに好ましい。未変性直鎖状ブロック共重合体(B'2)中の重合体ブロック(b"1)および(b"2)の含有量は、1H-NMR測定等により求めることができる。なお、未変性直鎖状ブロック共重合体(B'2)中に、複数の重合体ブロック(b"1)が含まれる場合には、上記重合体ブロック(b"1)の含有量は、未変性直鎖状ブロック共重合体(B'2)に含まれるすべての重合体ブロック(b"1)の合計量を意味する(重合体ブロック(b"2)の含有量についても同様である。)。
 上記未変性液状ジエン系ブロック共重合体(B'1)または(B'2)の製造方法は特に制限はないが、共役ジエン及び必要に応じて含まれる共役ジエン以外の他の単量体を、溶液重合法により製造することが好ましい。溶液重合法によれば、未変性ブロック共重合体(B'1)または(B'2)は、各重合体ブロックを逐次重合することにより、容易に製造できる。
 上記溶液重合法としては、公知又は公知に準ずる方法を適用できる。例えば、溶媒中で、チーグラー系触媒、メタロセン系触媒、アニオン重合可能な活性金属又は活性金属化合物を使用して、必要に応じて極性化合物の存在下で、共役ジエンを含む単量体を重合する。
 溶媒としては、例えば、n-ブタン、n-ペンタン、イソペンタン、n-ヘキサン、n-ヘプタン、イソオクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素などが挙げられる。
 アニオン重合可能な活性金属としては、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属;ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属;ランタン、ネオジム等のランタノイド系希土類金属等が挙げられる。アニオン重合可能な活性金属の中でもアルカリ金属及びアルカリ土類金属が好ましく、アルカリ金属がより好ましい。
 アニオン重合可能な活性金属化合物としては、有機アルカリ金属化合物が好ましい。有機アルカリ金属化合物としては、例えば、メチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウム等の有機モノリチウム化合物;ジリチオメタン、ジリチオナフタレン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン等の多官能性有機リチウム化合物;ナトリウムナフタレン、カリウムナフタレン等が挙げられる。これら有機アルカリ金属化合物の中でも有機リチウム化合物が好ましく、有機モノリチウム化合物がより好ましい。
 有機アルカリ金属化合物の使用量は、未変性ブロック共重合体(B'1)または(B'2)及び変性液状ジエン系重合体(B1)または(B2)の溶融粘度、分子量などに応じて適宜設定できるが、共役ジエンを含む全単量体100質量部に対して、通常0.01~3質量部の量で使用される。
 上記有機アルカリ金属化合物は、ジブチルアミン、ジヘキシルアミン、ジベンジルアミンなどの第2級アミンと反応させて、有機アルカリ金属アミドとして使用することもできる。
 極性化合物は、アニオン重合において、通常、反応を失活させず、共役ジエン部位のミクロ構造(例えば、ビニル含量)を調整するため用いられる。極性化合物としては、例えば、ジブチルエーテル、テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル化合物;テトラメチルエチレンジアミン、トリメチルアミン等の3級アミン;アルカリ金属アルコキシド、ホスフィン化合物などが挙げられる。極性化合物は、有機アルカリ金属化合物1モルに対して、通常0.01~1000モルの量で使用される。
 溶液重合の温度は、通常-80~150℃の範囲、好ましくは0~100℃の範囲、より好ましくは10~90℃の範囲である。重合様式は回分式あるいは連続式のいずれでもよい。
 重合反応は、重合停止剤の添加により停止できる。重合停止剤としては、例えば、メタノール、イソプロパノール等のアルコールが挙げられる。得られた重合反応液をメタノール等の貧溶媒に注いで、未変性液状ジエン系ブロック共重合体(B'1)または(B'2)を析出させるか、重合反応液を水で洗浄し、分離後、乾燥することにより上記未変性液状ジエン系ブロック共重合体(B'1)または(B'2)を単離できる。
 このようにして得られた未変性液状ジエン系ブロック共重合体(B'1)または(B'2)は、そのまま(水素添加されない状態で)後述する式(1)で表されるシラン化合物に由来する官能基による変性が行われてもよいが、その液状ジエン系ゴム中に含まれる不飽和結合の少なくとも一部を水素添加した後に変性が行われてもよい。
 また、上記未変性の未変性液状ジエン系ブロック共重合体(B'1)または(B'2)は、後述する式(1)で表されるシラン化合物に由来する官能基の特性をより好ましい状態で発揮させる点から、官能基(例えば、水酸基など)で変性されていないことが好ましい一態様である。未変性液状ジエン系ブロック共重合体(B'1)または(B'2)が他の官能基で変性されていないことにより、得られる変性液状ジエン系重合体(B1)または(B2)の安定性がより優れる傾向にある。また、変性液状ジエン系重合体(B1)または(B2)に含まれる式(1)で表されるシラン化合物に由来する官能基のフィラー(例えばシリカ)への相互作用(例えば反応性)がより優れる傾向にある。
 上記未変性液状ジエン系ブロック共重合体(B'1)または(B'2)は下記式(1)で表されるシラン化合物(以下、シラン化合物(1)とも称する。)に由来する官能基により変性され、変性液状ジエン系重合体(B1)または(B2)として用いられる。
Figure JPOXMLDOC01-appb-C000004
 上記式(1)中、R1は炭素数1から6の2価のアルキレン基である。二価の炭素数1~6のアルキレン基としては、例えばメチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基が挙げられる。R2、R3及びR4はそれぞれ独立に、メトキシ基、エトキシ基、フェノキシ基、メチル基、エチル基又はフェニル基を示す。ただし、R2、R3及びR4の少なくとも1つはメトキシ基、エトキシ基又はフェノキシ基である。
 上記シラン化合物(1)としては、例えば、メルカプトメチレンメチルジエトキシシラン、メルカプトメチレントリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、2-メルカプトエチルメトキシジメチルシラン、2-メルカプトエチルエトキシジメチルシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルジメトキシメチルシラン、3-メルカプトプロピルジエトキシメチルシラン、3-メルカプトプロピルジメトキシエチルシラン、3-メルカプトプロピルジエトキシエチルシラン、3-メルカプトプロピルメトキシジメチルシラン、3-メルカプトプロピルエトキシジメチルシランなどが挙げられる。これらシラン化合物は1種単独で用いてもよく、2種以上を併用してもよい。
 シラン化合物(1)のメルカプト基(-SH)が、未変性液状ジエン系ブロック共重合体(B'1)または(B'2)に含まれる炭素-炭素不飽和結合にラジカル付加反応することにより、シラン化合物(1)に由来する官能基、具体的には下記式(2)で示される部分構造を官能基として有する、変性液状ジエン系重合体(B1)または(B2)が得られる。このラジカル付加反応の際に、未変性液状ジエン系ブロック共重合体(B'1)の場合には、重合体ブロック(b'1)に含有される1,2-結合をしているブタジエン単位に含まれる炭素-炭素不飽和結合に優先的にラジカル付加反応が起こるものと推定され、未変性液状ジエン系ブロック共重合体(B'2)の場合には、重合体ブロック(b"1)に含有されるブタジエン単位、特に1,2-結合をしているブタジエン単位に含まれる炭素-炭素不飽和結合に優先的にラジカル付加反応が起こるものと推定される。その結果、重合体鎖中の特定の場所にシラン化合物(1)に由来する官能基が偏在化した変性液状ジエン系重合体(B1)または(B2)が得られる。
Figure JPOXMLDOC01-appb-C000005
 上記式(2)中のR1、R2、R3及びR4の定義及び具体例等は、式(1)中のR1、R2、R3及びR4の定義及び具体例等と同一である。
 シラン化合物(1)に由来する官能基の変性液状ジエン系重合体(B1)または(B2)一分子当たりの平均官能基数は1~20個であり、1~15個が好ましく、1~10個がより好ましく、1~9個がさらに好ましく、1~4個が特に好ましい。平均官能基数が1未満である場合には、変性液状ジエン系重合体(B1)または(B2)を後述するゴム組成物の一成分として用いた場合、フィラー(C)との親和性が低く、ゴム組成物中のフィラー分散性を改善することができず、そのゴム組成物から得られる架橋物では、所望の物性向上がない場合、例えば、ペイン効果の低減が十分に得られない場合がある。一方平均官能基数が20を超える場合には、変性液状ジエン系重合体(B1)または(B2)に含まれる官能基の偏在の度合いが低くなり、そのゴム組成物から得られる架橋物でも所望の物性向上がなく悪化する傾向、例えばペイン効果の低減は見られず、また耐摩耗性も悪化する傾向にある。その詳細なメカニズムは不明であるが、変性液状ジエン系重合体(B1)または(B2)に適切な量の官能基が導入されていることにより、変性液状ジエン系重合体がフィラー(C)近傍に集中しやすくなり、フィラー(C)の補強効果が大きくなり、得られる架橋物の耐摩耗性の向上につながると推定される。また、変性液状重合体(B1)または(B2)を介することで、固形ゴム(A)とフィラー(C)との親和性が向上し、ゴム組成物中のフィラー(C)の分散状態が得られる架橋物の物性発現のためには理想的になる、例えば、分散性が改善されると推定される。一方、変性液状ジエン系重合体としてその官能基数が大きくなり過ぎると、フィラー(C)に吸着した変性液状ジエン系重合体(B1)または(B2)同士の相互作用により、ゴム組成物中のフィラー(C)の分散状態が得られる架橋物の物性発現のためには理想的な状態とならず、例えばフィラー(C)を凝集させてしまう場合があり、変性液状ジエン系重合体が、固形ゴムとフィラー(C)との親和性向上に寄与しないものと推定される。耐摩耗性の向上した架橋物、転がり抵抗性能が向上したタイヤが得られる点からは、シラン化合物(1)に由来する官能基の変性液状ジエン系重合体(B1)または(B2)一分子当たりの平均官能基数は1~9個が好ましい。
 変性液状ジエン系重合体(B1)または(B2)一分子当たりの平均官能基数は、変性液状ジエン系重合体(B1)または(B2)の官能基の当量(g/eq)とスチレン換算の数平均分子量Mnより求めることができる。
(一分子当たりの平均官能基数)=[(数平均分子量Mn)/(スチレン単位の分子量)×(共役ジエン及び必要に応じて含まれる共役ジエン以外の他の単量体単位の平均分子量)]/(官能基の当量)
 なお、変性液状ジエン系重合体(B1)または(B2)の官能基の当量は、官能基1個当たりに結合している共役ジエン及び必要に応じて含まれる共役ジエン以外の他の単量体の質量を意味する。官能基の当量は、1H-NMR又は13C-NMRを用いて官能基由来のピークと重合体主鎖に由来するピークの面積比から算出することができる。なお、官能基由来のピークとは、アルコキシ基由来のピークを指す。
 変性液状ジエン系重合体(B1)または(B2)におけるシラン化合物(1)の付加量は、未変性液状ジエン系ブロック共重合体(B'1)または(B'2)100質量部に対し1~60質量部が好ましく、1~50質量部がより好ましく、1~40質量部がさらに好ましい。付加された変性化合物量が60質量部より多い場合には、フィラー(C)の分散性効果に乏しく、得られる架橋物の所望の物性向上がない傾向、例えば、ペイン効果が十分に小さくならない傾向、また耐摩耗性も低下する傾向にある。1質量部より低い場合には、フィラー(C)の分散性効果に乏しく、フィラー(C)の分散状態が得られる架橋物の物性発現のためには理想的にならない傾向、例えばペイン効果の低減効果が十分に得られない傾向にある。なお、変性液状ジエン系重合体(B1)または(B2)中に付加されたシラン化合物(1)の付加量は、例えば、核磁気共鳴分光法等の各種分析機器を用いて求めることができる。
 シラン化合物(1)を、未変性液状ジエン系ブロック共重合体(B'1)または(B'2)に付加させる方法は特に限定されず、例えば、未変性液状ジエン系ブロック共重合体(B'1)または(B'2)中にシラン化合物(1)、さらに必要に応じてラジカル触媒を加えて、有機溶媒の存在下又は非存在下に加熱する方法を採用することができる。使用するラジカル発生剤には特に制限はなく、通常市販されている有機過酸化物、アゾ系化合物、過酸化水素等が使用できる。
 上記有機過酸化物としては、例えば、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、3,3,5-トリメチルシクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド、アセチルアセトンパーオキサイド、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、2,2-ビス(t-ブチルパーオキシ)ブタン、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド、2,5-ジメチルヘキサン2,5-ジハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、ジt-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、ビス(t-ブチルパーオキシイソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2.5-ヘキサノイルパーオキサイド、ラウロイルパーオキサイド、過酸化こはく酸、過酸化ベンゾイル及びその置換体、2,4-ジクロロベンゾイルパーオキサイド、メタトルオイルパーオキサイド、ジイソプロピルパーオキシジカーボネート、t-ブチル-2-エチルヘキサノエート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジメトキシイソプロピルパーオキシカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、t-ブチルパーオキシアセテート、t-ブチルパーオキシピバレート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシオクタノエート、t-ブチルパーオキシ3,3,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシカーボネート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソブチレート、n-ブチル-4,4-ジ(t-ブチルぺルオキシ)バレレート、t-ヘキシルぺルオキシイソプロピルモノカーボネート等が挙げられる。
 上記アゾ系化合物としては、例えば、2,2'-アゾビスイソブチロニトリル、1,1'-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2'-アゾビス(2-メチルブチロニトリル)、2,2'-アゾビス(2,4-ジメチルバレロニトリル)、2,2'-アゾビス(2,4-ジメチル-4-メトキシバレロニトリル)、2,2'-アゾビス(2-(2-イミダゾリン-2-イル)プロパン)、2,2'-アゾビス(2,4,4-トリメチルペンタン)、2,2'-アゾビス(2-メチルプロパン)、2,2'-アゾビス(2-ヒドロキシメチルプロピオンニトリル)、4,4'-アゾビス(4-シアノバレリックアシッド)、ジメチル2,2'-アゾビス(2-メチルプロピオネート)、2-シアノ-2-プロピルアゾホルムアミド、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル等が挙げられる。
 上記方法で使用される有機溶媒としては、一般的には炭化水素系溶媒、ハロゲン化炭化水素系溶媒が挙げられる。これら有機溶媒の中でも、n-ブタン、n-ヘキサン、n-ヘプタン、シクロヘキサン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒が好ましい。
 さらに、上記方法により変性化合物を付加する反応を行う時には、副反応を抑制する観点等から老化防止剤を添加してもよい。
 この時に用いる好ましい老化防止剤としては、例えば、2,6-ジt-ブチル-4-メチルフェノール(BHT)、2,2'-メチレンビス(4-メチル-6-t-ブチルフェノール)、4,4'-チオビス(3-メチル-6-t-ブチルフェノール)、4,4'-ブチリデンビス(3-メチル-6-t-ブチルフェノール)(AO-40)、3,9-ビス[1,1-ジメチル-2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン(AO-80)、2,4-ビス[(オクチルチオ)メチル]-6-メチルフェノール(Irganox1520L)、2,4-ビス[(ドデシルチオ)メチル]-6-メチルフェノール(Irganox1726)、2-[1-(2-ヒドロキシ-3,5-ジt-ペンチルフェニル)エチル]-4,6-ジt-ペンチルフェニルアクリレート(SumilizerGS)、2-tブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(SumilizerGM)、6-t-ブチル-4-[3-(2,4,8,10-テトラ-t-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イルオキシ)プロピル]-2-メチルフェノール(SumilizerGP)、亜りん酸トリス(2,4-ジt-ブチルフェニル)(Irgafos168)、ジオクタデシル3,3'-ジチオビスプロピオネート、ヒドロキノン、p-メトキシフェノール、N-フェニル-N'-(1,3-ジメチルブチル)-p-フェニレンジアミン(ノクラック6C)、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート(LA-77Y)、N,N-ジオクタデシルヒドロキシルアミン(IrgastabFS042)、ビス(4-t-オクチルフェニル)アミン(Irganox5057)などが挙げられる。上記老化防止剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 老化防止剤の添加量は、未変性液状ジエン系ブロック共重合体(B'1)または(B'2)100質量部に対して0~10質量部が好ましく、0~5質量部がより好ましい。
 この変性液状ジエン系重合体(B1)または(B2)において、官能基が導入される位置については重合末端であってもよく、重合体鎖の側鎖であってもよいが、複数の官能基を容易に導入できるという観点で、重合鎖の側鎖であることが好ましい。また上記官能基は1種単独で含まれていてもよく2種以上含まれていてもよい。したがって、変性液状ジエン系重合体(B1)または(B2)は、変性化合物1種により変性されたものであってもよく、また2種以上の変性化合物で変性されていてもよい。
 未変性液状ジエン系ブロック共重合体(B'1)または(B'2)とシラン化合物(1)との混合割合は、例えば、変性液状ジエン系重合体(B1)または(B2)一分子当たりの平均官能基数が所望の値になるように適宜設定すればよいが、例えば未変性液状ジエン系ブロック共重合体(B'1)または(B'2)とシラン化合物(1)との質量比(B'1)/(1)(または(B'2)/(1))が0.3~50となるように混合すればよい。
 特定の性状を有する変性液状ジエン系重合体(B1)または(B2)を製造する手法としては、シラン化合物(1)をラジカル付加する反応を適切な反応温度において、充分な反応時間で反応させることが有効である。例えば、未変性液状ジエン系ブロック共重合体(B'1)または(B'2)にシラン化合物(1)を付加させる反応における温度は10~200℃が好ましく、50℃~180℃がより好ましい。また反応時間は1~200時間が好ましく、1~100時間がより好ましく、1~50時間がさらに好ましい。
 上記変性液状ジエン系重合体(B1)または(B2)の38℃で測定した溶融粘度は、0.1~4,000Pa・sが好ましく、0.1~3,500Pa・sがより好ましく、0.1~3,000Pa・sがさらに好ましい。変性液状ジエン系重合体(B1)または(B2)の溶融粘度が前記範囲内であると、室温下で液状の形態となるため扱いやすく、また得られるゴム組成物の柔軟性が向上するため、加工性が向上する。このような特定の溶融粘度にある液状ジエン系重合体(B1)または(B2)を合成する手法としては、変性反応時にラジカル触媒を添加し、反応温度を低温で、また短時間で行うことが有効である。なお、本発明において液状ジエン系重合体(B1)または(B2)の溶融粘度は、38℃においてブルックフィールド型粘度計により測定した値である。
 変性液状ジエン系重合体(B1)または(B2)の重量平均分子量(Mw)は1,000以上120,000以下であり、2,000以上100,000以下が好ましく、3,000以上80,000以下がより好ましい。本発明において液状ジエン系重合体(B1)または(B2)のMwは、ゲルパーミエーションクロマトグラフィー(GPC)の測定から求めたポリスチレン換算の重量平均分子量である。上記変性液状ジエン系重合体(B1)または(B2)のMwが前記範囲内であると、室温下で液状の形態となるため扱いやすく、製造時の工程通過性に優れ、経済性が良好となる。また、本発明のゴム組成物の加工性が良好となり、また得られるゴム組成物中の後述するフィラー(C)の親和性が向上するため、ゴム組成物を作製する際にフィラー(C)の近傍に存在しやすくなり、その結果ゴム組成物中のフィラー(C)の分散状態が得られる架橋物の物性発現のためには理想的になる(例えば、フィラー(C)の分散性の向上に寄与する)と推定される。そのため、場合によっては、その架橋物のペイン効果が十分小さくなり、架橋物でのフィラー(C)の分散性に優れる。また、その変性液状重合体(B1)または(B2)がフィラー(C)の近傍に存在しやすくなる結果、耐摩耗性に優れる架橋物が得られる。これらのことから、例えば、その架橋物からなるタイヤ等は、ウェットグリップなどが良好となる。本発明においては、Mwが異なる2種以上の変性液状ジエン系重合体(B1)または(B2)を組み合わせて用いてもよい。また、2種以上の液状ジエン系重合体(B1)および(B2)を組み合わせて用いてもよい。
 変性液状ジエン系重合体(B1)または(B2)の分子量分布(Mw/Mn)は1.0~20.0が好ましく、1.0~15.0がより好ましく、1.0~10.0がより好ましく、1.0~5.0がさらに好ましく、1.0~2.0が特に好ましい。Mw/Mnが前記範囲内であると、得られる変性液状ジエン系重合体(B1)または(B2)の粘度のばらつきが小さく、より好ましい。このような特定のMw/Mnにある液状ジエン系重合体(B1)または(B2)を合成する手法としては、変性反応時にラジカル触媒を添加し、反応温度を低温で、また短時間で行うことが有効である。なお、分子量分布(Mw/Mn)は、GPCの測定により求めた標準ポリスチレン換算の重量平均分子量(Mw)/数平均分子量(Mn)の比を意味する。
 本発明の変性液状ジエン系重合体(B1)または(B2)では、式(1)で表されるシラン化合物に由来する官能基を有し、その官能基の変性液状ジエン系重合体(B)一分子当たりの平均官能基数が1~20個の範囲にあるが、変性液状ジエン系重合体(B)が直鎖状の重合体であり、変性液状ジエン系重合体(B)中のシラン化合物に由来する官能基のうち、その65%以上が、片末端または両末端から全鎖長の合計45%の範囲に存在することが好ましい。ここで、「全鎖長の合計X%の範囲」とは、直鎖状の重合体の一方の末端からX1%の範囲と、他方の末端からX2%の範囲との合計、X=X1+X2を意味し、X1またはX2のいずれかは0%であってもよい。ブロック共重合体中の重合体ブロックの占める長さは、それぞれのブロック共重合体に含まれる各単量体単位の数を1H-NMR測定より算出し、ブロック共重合体の主鎖における炭素-炭素単結合の結合長を150pm、炭素-炭素二重結合の結合長を135pm、結合角を120°と仮定し計算することで、求めることができる。変性液状ジエン系重合体(B)中のシラン化合物に由来する官能基のうち、片末端または両末端から全鎖長の合計45%の範囲に存在する割合は、シラン化合物との反応性が高い1,2-結合をしているブタジエン単位数の、上記範囲内に存在する割合を1H-NMR測定より算出することで求めることができる。
 本発明のゴム組成物において変性液状ジエン系重合体(B1)または(B2)は後述するフィラー(C)との親和性が高くフィラー(C)近傍に集中しフィラー(C)の補強性に優れ、またフィラー(C)と固形ゴム(A)との相溶性向上にも寄与すると推定される。そのため、ゴム組成物中のフィラー(C)の分散状態が、ゴム組成物から得られる架橋物の物性発現のために理想的であり、例えば、ゴム組成物中のフィラー(C)の分散性に優れ、そのゴム組成物から得られる架橋物のペイン効果が十分に低減する場合がある。また、その架橋物の、耐摩耗性等の機械強度及びウェットグリップに優れる。そのため、例えば該架橋物をタイヤ等として用いた場合には、これら物性に優れる。
 上記変性液状ジエン系重合体(B1)または(B2)は、1種単独で用いられてもよく、2種以上を併用してもよい。また、変性液状ジエン系重合体(B1)および(B2)はこれらを組み合わせて用いてもよい。
 上記変性液状ジエン系重合体(B1)または(B2)は、その製造に用いる重合触媒に由来する触媒残渣量が、金属換算で0~200ppmの範囲にあることが好ましい。例えば、変性液状ジエン系重合体(B)の原料となる未変性の液状ジエン系重合体(B')を製造するための重合触媒として有機リチウム化合物等の有機アルカリ金属を用いた場合には、触媒残渣量の基準となる金属は、リチウム等のアルカリ金属になる。触媒残渣量が上記範囲にあることにより、加工等する際にタックが低下せず、また本発明のゴム組成物から得られる架橋物の耐熱性、タイヤの転がり抵抗性能が向上する。変性液状ジエン系重合体(B)の製造に用いる重合触媒に由来する触媒残渣量としては、金属換算で、より好ましくは0~150ppm、さらに好ましくは0~100ppmである。なお、触媒残渣量は、例えば偏光ゼーマン原子吸光分光光度計を用いることにより測定できる。
 液状ジエン系重合体の触媒残渣量をこのような特定の量とする方法としては、変性液状ジエン系重合体(B1)または(B2)又は原料となる未変性の液状ジエン系重合体(B'1)または(B'2)を精製し、触媒残渣を十分に除去する方法などが挙げられる。精製する方法としては、水若しくは温水、又はメタノール、アセトンなどに代表される有機溶媒若しくは超臨界流体二酸化炭素による洗浄が好ましい。洗浄回数としては、経済的な観点から1~20回が好ましく、1~10回がより好ましい。また、洗浄温度としては、20~100℃が好ましく、40~90℃がより好ましい。また重合反応前に、重合の阻害を行うような不純物を蒸留や吸着剤により除去し、単量体の純度を高めた後に重合を行うことによっても、必要な重合触媒量が少なくてすむため、触媒残渣量を低減することができる。また、上記と同様の観点から、本発明の固形ゴム(A)、変性液状ジエン系重合体(B1)または(B2)及びフィラー(C)を含有するゴム組成物中の触媒残渣量が、金属換算で0~200ppmであることが好ましく、0~150ppmがより好ましく、0~100ppmがさらに好ましい。この場合の触媒残渣量は固形ゴム(A)、変性液状ジエン系重合体(B1)または(B2)及び/又は該ゴム組成物中に含まれるその他任意成分の製造に用いる重合触媒に由来する触媒残渣量であってもよい。
 [ゴム組成物]
 本発明のゴム組成物は、固形ゴム(A)100質量部、上記変性液状ジエン系重合体(B)0.1~50質量部、及びフィラー(C)20~200質量部を含有する。
 [固形ゴム(A)]
 本発明のゴム組成物で用いる固形ゴム(A)とは、20℃において固形状で取り扱うことができるゴムをいい、固形ゴム(A)の100℃におけるムーニー粘度ML1+4は通常20~200の範囲にある。上記固形ゴム(A)としては、例えば、天然ゴム、スチレンブタジエンゴム(以下、「SBR」ともいう。)、ブタジエンゴム、イソプレンゴム、ブチルゴム、ハロゲン化ブチルゴム、エチレンプロピレンジエンゴム、ブタジエンアクリロニトリル共重合体ゴム、クロロプレンゴム、アクリルゴム、フッ素ゴム、及びウレタンゴム等が挙げられる。これら固形ゴム(A)の中でも、天然ゴム、SBR、ブタジエンゴム、及びイソプレンゴムが好ましく、天然ゴム、及びSBRがさらに好ましい。これら固形ゴム(A)は、1種単独で用いてもよく、2種以上を併用してもよい。
 上記固形ゴム(A)の数平均分子量(Mn)は、得られるゴム組成物及び架橋物における特性を十分に発揮させる観点から、80,000以上であることが好ましく、100,000~3,000,000の範囲内であることがより好ましい。なお、本明細書における数平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の数平均分子量である。
 上記天然ゴムとしては、例えばSMR(マレーシア産TSR)、SIR(インドネシア産TSR)、STR(タイ産TSR)等のTSR(Technically Specified Rubber)やRSS(Ribbed Smoked Sheet)等のタイヤ工業において一般的に用いられる天然ゴム、高純度天然ゴム、エポキシ化天然ゴム、水酸基化天然ゴム、水素添加天然ゴム、グラフト化天然ゴム等の改質天然ゴムが挙げられる。中でも、品質のばらつきが少ない点、及び入手容易性の点から、SMR20、STR20やRSS#3が好ましい。これら天然ゴムは1種単独で用いてもよく、2種以上を併用してもよい。
 SBRとしては、タイヤ用途に用いられる一般的なものを使用できるが、具体的には、スチレン含量が0.1~70質量%のものが好ましく、5~50質量%のものがより好ましく、15~35質量%のものがさらに好ましい。また、ビニル含量が0.1~60質量%のものが好ましく、0.1~55質量%のものがより好ましい。
 SBRの重量平均分子量(Mw)は100,000~2,500,000であることが好ましく、150,000~2,000,000であることがより好ましく、200,000~1,500,000であることがさらに好ましい。上記の範囲である場合、加工性と機械強度を両立することができる。なお、本明細書における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)の測定から求めたポリスチレン換算の重量平均分子量である。
 本発明において使用するSBRの示差熱分析法により求めたガラス転移温度は、-95~0℃であることが好ましく、-95~-5℃であることがより好ましい。ガラス転移温度を上記範囲にすることによって、SBRの粘度を取り扱いが容易な範囲とできる。
 本発明において用いることができるSBRは、スチレンとブタジエンとを共重合して得られる。SBRの製造方法について特に制限はなく、乳化重合法、溶液重合法、気相重合法、バルク重合法のいずれも用いることができるが、これら製造方法の中でも、乳化重合法、溶液重合法が好ましい。
 乳化重合スチレンブタジエンゴム(以下、E-SBRともいう。)は、公知又は公知に準ずる通常の乳化重合法により製造できる。例えば、所定量のスチレン及びブタジエン単量体を乳化剤の存在下に乳化分散し、ラジカル重合開始剤により乳化重合することにより得られる。
 溶液重合スチレンブタジエンゴム(以下、S-SBRともいう。)は、通常の溶液重合法により製造でき、例えば、溶媒中でアニオン重合可能な活性金属を使用して、所望により極性化合物の存在下、スチレン及びブタジエンを重合する。
 溶媒としては、例えば、n-ブタン、n-ペンタン、イソペンタン、n-ヘキサン、n-ヘプタン、イソオクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン等の芳香族炭化水素等が挙げられる。これらの溶媒は通常、単量体濃度が1~50質量%となる範囲で用いることが好ましい。
 アニオン重合可能な活性金属としては、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属;ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属;ランタン、ネオジム等のランタノイド系希土類金属等が挙げられる。これら活性金属の中でもアルカリ金属及びアルカリ土類金属が好ましく、アルカリ金属がより好ましい。さらにアルカリ金属の中でも、有機アルカリ金属化合物がより好ましく用いられる。
 有機アルカリ金属化合物としては、例えば、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウム等の有機モノリチウム化合物;ジリチオメタン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン等の多官能性有機リチウム化合物;ナトリウムナフタレン、カリウムナフタレン等が挙げられる。中でも有機リチウム化合物が好ましく、有機モノリチウム化合物がより好ましい。有機アルカリ金属化合物の使用量は、要求されるS-SBRの分子量によって適宜決められる。有機アルカリ金属化合物は、ジブチルアミン、ジヘキシルアミン、ジベンジルアミン等の第2級アミンと反応させて、有機アルカリ金属アミドとして使用することもできる。
 極性化合物としては、アニオン重合において、反応を失活させず、ブタジエン部位のミクロ構造やスチレンの共重合体鎖中の分布を調整するために通常用いられるものであれば特に制限はなく、例えば、ジブチルエーテル、テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル化合物;テトラメチルエチレンジアミン、トリメチルアミン等の3級アミン;アルカリ金属アルコキシド、ホスフィン化合物等が挙げられる。
 重合反応の温度は、通常-80~150℃、好ましくは0~100℃、さらに好ましくは30~90℃の範囲である。重合様式は、回分式あるいは連続式のいずれでもよい。また、スチレン及びブタジエンのランダム共重合性を向上させるため、重合系中のスチレン及びブタジエンの組成比が特定範囲になるように、反応液中にスチレン及びブタジエンを連続的あるいは断続的に供給することが好ましい。
 重合反応は、重合停止剤としてメタノール、イソプロパノール等のアルコールを添加して停止できる。重合反応停止後の重合溶液は、直接乾燥やスチームストリッピング等により溶媒を分離して、目的のS-SBRを回収できる。なお、溶媒を除去する前に、予め重合溶液と伸展油とを混合し、油展ゴムとして回収してもよい。
 上記SBRとしては、本発明の効果を損ねない範囲であれば、SBRに官能基が導入された変性SBRを用いてもよい。官能基としては、例えばアミノ基、アルコキシシリル基、水酸基、エポキシ基、カルボキシル基等が挙げられる。
 変性SBRの製造方法としては、例えば、重合停止剤を添加する前に、重合活性末端と反応し得る四塩化錫、テトラクロロシラン、ジメチルジクロロシラン、ジメチルジエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、3-アミノプロピルトリエトキシシラン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン、2,4-トリレンジイソシアネート等のカップリング剤や、4,4'-ビス(ジエチルアミノ)ベンゾフェノン、N-ビニルピロリドン等の重合末端変性剤、又は特開2011-132298号公報に記載のその他の変性剤を添加する方法が挙げられる。この変性SBRにおいて、官能基が導入される重合体の位置については重合末端であってもよく、重合体鎖の側鎖であってもよい。
 上記ブタジエンゴムとしては、例えば、四ハロゲン化チタン-トリアルキルアルミニウム系、ジエチルアルミニウムクロライド-コバルト系、トリアルキルアルミニウム-三弗化ホウ素-ニッケル系、ジエチルアルミニウムクロライド-ニッケル系等のチーグラー系触媒;トリエチルアルミニウム-有機酸ネオジム-ルイス酸系等のランタノイド系希土類金属触媒、又はS-SBRと同様に有機アルカリ金属化合物を用いて重合された、市販のブタジエンゴムを用いることができる。チーグラー系触媒により重合されたブタジエンゴムが、シス体含量が高く好ましい。また、ランタノイド系希土類金属触媒を用いて得られる超高シス体含量のブタジエンゴムを用いてもよい。
 ブタジエンゴムのビニル含量は、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下である。ビニル含量が50質量%を超えると転がり抵抗性能が悪化する傾向にある。ビニル含量の下限は特に限定されない。またガラス転移温度はビニル含量によって変化するが、-40℃以下であることが好ましく、-50℃以下であることがより好ましい。
 ブタジエンゴムの重量平均分子量(Mw)は90,000~2,000,000であることが好ましく、150,000~1,500,000であることがより好ましい。Mwが上記範囲にある場合、加工性と機械強度が良好となる。
 上記ブタジエンゴムは、本発明の効果を損ねない範囲であれば、その一部が多官能型変性剤、例えば四塩化錫、四塩化珪素、エポキシ基を分子内に有するアルコキシシラン、又はアミノ基含有アルコキシシランのような変性剤を用いることにより分岐構造又は極性官能基を有していてもよい。
 上記イソプレンゴムとしては、例えば、四ハロゲン化チタン-トリアルキルアルミニウム系、ジエチルアルミニウムクロライド-コバルト系、トリアルキルアルミニウム-三弗化ホウ素-ニッケル系、ジエチルアルミニウムクロライド-ニッケル系等のチーグラー系触媒;トリエチルアルミニウム-有機酸ネオジム-ルイス酸系等のランタノイド系希土類金属触媒、又はS-SBRと同様に有機アルカリ金属化合物を用いて重合された、市販のイソプレンゴムを用いることができる。チーグラー系触媒により重合されたイソプレンゴムが、シス体含量が高く好ましい。また、ランタノイド系希土類金属触媒を用いて得られる超高シス体含量のイソプレンゴムを用いてもよい。
 イソプレンゴムのビニル含量は好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下である。ビニル含量が50質量%を超えると転がり抵抗性能が悪化する傾向にある。ビニル含量の下限は特に限定されない。またガラス転移温度はビニル含量によって変化するが、-20℃以下であることが好ましく、-30℃以下であることがより好ましい。
 イソプレンゴムの重量平均分子量(Mw)は90,000~2,000,000であることが好ましく、150,000~1,500,000であることがより好ましい。Mwが上記範囲にある場合、加工性と機械強度が良好となる。
 上記イソプレンゴムは、本発明の効果を損ねない範囲であれば、その一部が多官能型変性剤、例えば四塩化錫、四塩化珪素、エポキシ基を分子内に有するアルコキシシラン、又はアミノ基含有アルコキシシランのような変性剤を用いることにより分岐構造又は極性官能基を有していてもよい。
 本発明のゴム組成物において、固形ゴム(A)100質量部に対する上記変性液状ジエン系重合体(B)の含有量は、0.1~50質量部であり、0.1~45質量部が好ましく、0.5~40質量部がより好ましく、1~40質量部がさらに好ましく、2~40質量部がよりさらに好ましい。変性液状ジエン系重合体(B)の含有量が上記範囲内であると、ゴム組成物中でのフィラー(C)の分散状態が理想的となり(例えば、得られる架橋物でのペイン効果の低減効果)、耐摩耗性の向上が見られ、例えばタイヤ等の操縦安定性、転がり抵抗性能などが良好となる。
[フィラー(C)]
 本発明のゴム組成物で用いるフィラー(C)としては、例えば、カーボンブラック、シリカ、クレー、マイカ、炭酸カルシウム、水酸化マグネシウム、水酸化アルミニウム、硫酸バリウム、酸化チタン、ガラス繊維、繊維状フィラー、ガラスバルーン等の無機フィラー;樹脂粒子、木粉、及びコルク粉等の有機フィラーなどが挙げられる。このようなフィラーがゴム組成物に含まれることにより、機械強度、耐熱性、又は耐候性等の物性の改善、硬度の調整、ゴムの増量をすることができる。機械強度の向上等の物性の改善などの観点からは、上記フィラー(C)の中でも、カーボンブラック及びシリカが好ましい。
 上記カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、サーマルブラック、アセチレンブラック、及びケッチェンブラックなどが挙げられる。架橋速度や機械強度向上の観点からは、これらカーボンブラックの中でも、ファーネスブラックが好ましい。これらカーボンブラックは、1種単独で用いてもよく、2種以上を併用してもよい。
 前記カーボンブラックの平均粒径としては、分散性、機械強度、硬度などを向上させる観点から5~100nmが好ましく、5~80nmがより好ましく、5~70nmがさらに好ましい。なお、カーボンブラックの平均粒径は、透過型電子顕微鏡により粒子の直径を測定してその平均値を算出することにより求めることができる。
 上記ファーネスブラックの市販品としては、例えば、三菱化学株式会社「ダイヤブラック」、東海カーボン株式会社製「シースト」などが挙げられる。アセチレンブラックの市販品としては、例えば、電気化学工業株式会社製「デンカブラック」などが挙げられる。ケッチェンブラックの市販品としては、例えば、ライオン株式会社製「ECP600JD」などが挙げられる。
 上記カーボンブラックは、固形ゴム(A)への濡れ性、分散性などを向上させる観点から、硝酸、硫酸、塩酸又はこれらの混合酸等による酸処理や、空気存在下での熱処理による表面酸化処理を行ってもよい。また、本発明のゴム組成物及びこの組成物から得られる架橋物の機械強度向上の観点から、黒鉛化触媒の存在下に2,000~3,000℃で熱処理を行ってもよい。なお、黒鉛化触媒としては、ホウ素、ホウ素酸化物(例えば、B22、B23、B43、B45等)、ホウ素オキソ酸(例えば、オルトホウ酸、メタホウ酸、四ホウ酸等)及びその塩、ホウ素炭化物(例えば、B4C、B6C等)、窒化ホウ素(BN)、その他のホウ素化合物が好適に用いられる。
 上記カーボンブラックは、粉砕等により粒度を調整した後、用いることもできる。カーボンブラックの粉砕には、高速回転粉砕機(ハンマーミル、ピンミル、ケージミル)や各種ボールミル(転動ミル、振動ミル、遊星ミル)、撹拌ミル(ビーズミル、アトライター、流通管型ミル、アニュラーミル)等が使用できる。
 上記シリカとしては、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等を挙げることができる。これらシリカの中でも、加工性、機械強度及び耐摩耗性を一層向上させる観点から、湿式シリカが好ましい。これらシリカは、1種単独で用いてもよく、2種以上を併用してもよい。
 シリカの平均粒径は、加工性、転がり抵抗性能、機械強度、及び耐摩耗性を向上する観点から、0.5~200nmが好ましく、5~150nmがより好ましく、10~100nmがさらに好ましい。なお、シリカの平均粒径は、透過型電子顕微鏡により粒子の直径を測定して、その平均値を算出することにより求めることができる。
 得られるゴム組成物及びその架橋物の転がり抵抗性能向上等の観点からは、フィラー(C)としてはシリカを含むことがより好ましい。
 本発明のゴム組成物において、固形ゴム(A)100質量部に対するフィラー(C)の含有量は20~200質量部であり、20~180質量部が好ましく、25~150質量部がより好ましい。フィラー(C)の含有量が前記範囲内であると、加工性、転がり抵抗性能、機械強度及び耐摩耗性が向上する。
 またフィラー(C)として、シリカ及びカーボンブラック以外のフィラーを用いる場合には、その含有量は、固形ゴム(A)100質量部に対して、20~120質量部が好ましく、20~90質量部がより好ましく、20~80質量部がさらに好ましい。
 これらフィラー(C)は1種単独で用いてもよく、2種以上を併用してもよい。
[その他の成分]
 本発明のゴム組成物は、そのゴムを架橋するために、さらに架橋剤(D)を含有していてもよい。架橋剤(D)としては、例えば、硫黄、硫黄化合物、酸素、有機過酸化物、フェノール樹脂、アミノ樹脂、キノン及びキノンジオキシム誘導体、ハロゲン化合物、アルデヒド化合物、アルコール化合物、エポキシ化合物、金属ハロゲン化物及び有機金属ハロゲン化物、及びシラン化合物などが挙げられる。硫黄化合物としては、例えば、モルホリンジスルフィド、及びアルキルフェノールジスルフィドなどが挙げられる。有機過酸化物としては、例えば、シクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシベンゾエート、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、ジクミルパーオキサイド、ジt-ブチルパーオキサイド、及び1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼンなどが挙げられる。これら架橋剤(D)は1種単独で用いてもよく、2種以上を併用してもよい。上記架橋剤(D)は、架橋物の力学物性の観点から、固形ゴム(A)100質量部に対し、通常0.1~10質量部、好ましくは0.5~10質量部、より好ましくは0.8~5質量部含有される。
 本発明のゴム組成物は、例えばゴムを架橋(加硫)するための架橋剤(D)として硫黄、硫黄化合物等が含まれている場合には、さらに加硫促進剤(E)を含有していてもよい。加硫促進剤(E)としては、例えば、グアニジン系化合物、スルフェンアミド系化合物、チアゾール系化合物、チウラム系化合物、チオウレア系化合物、ジチオカルバミン酸系化合物、アルデヒド-アミン系化合物、アルデヒド-アンモニア系化合物、イミダゾリン系化合物、及びキサンテート系化合物などが挙げられる。これら加硫促進剤(E)は1種単独で用いてもよく、2種以上を併用してもよい。上記加硫促進剤(E)は、固形ゴム(A)100質量部に対し、通常0.1~15質量部、好ましくは0.1~10質量部含有される。
 本発明のゴム組成物は、例えばゴムを架橋(加硫)するための架橋剤(D)として硫黄、硫黄化合物等が含まれている場合には、さらに加硫助剤(F)を含有していてもよい。加硫助剤(F)としては、例えば、ステアリン酸等の脂肪酸、亜鉛華等の金属酸化物、ステアリン酸亜鉛等の脂肪酸金属塩が挙げられる。これら加硫助剤(F)は1種単独で用いてもよく、2種以上を併用してもよい。上記加硫助剤(F)は、固形ゴム(A)100質量部に対し、通常0.1~15質量部、好ましくは1~10質量部含有される。
 本発明のゴム組成物では、フィラー(C)としてシリカを含有する場合は、シランカップリング剤を含有することが好ましい一態様である。シランカップリング剤としては、例えば、スルフィド系化合物、メルカプト系化合物、ビニル系化合物、アミノ系化合物、グリシドキシ系化合物、ニトロ系化合物、クロロ系化合物等が挙げられる。
 スルフィド系化合物としては、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリメトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリメトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、3-オクタノイルチオ-1-プロピルトリエトキシシランなどが挙げられる。
 メルカプト系化合物としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、及び2-メルカプトエチルトリエトキシシランなどが挙げられる。
 ビニル系化合物としては、例えばビニルトリエトキシシラン、及びビニルトリメトキシシランなどが挙げられる。
 アミノ系化合物としては、例えば、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリエトキシシラン、及び3-(2-アミノエチル)アミノプロピルトリメトキシシランなどが挙げられる。
 グリシドキシ系化合物としては、例えば、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、及びγ-グリシドキシプロピルメチルジメトキシシランなどが挙げられる。
 ニトロ系化合物としては、例えば、3-ニトロプロピルトリメトキシシラン、及び3-ニトロプロピルトリエトキシシラン等が挙げられる。
 クロロ系化合物としては、例えば、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、2-クロロエチルトリメトキシシラン、及び2-クロロエチルトリエトキシシランなどが挙げられる。
 その他の化合物としては、例えば、オクチルトリエトキシシラン、メチルトリエトキシシラン、メチルトリメトキシシラン、ヘキサデシルトリメトキシシランなどが挙げられる。
 これらシランカップリング剤は、1種単独で用いてもよく、2種以上を併用してもよい。これらシランカップリング剤の中でも、添加効果が大きい観点及びコストの観点から、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、及び3-メルカプトプロピルトリメトキシシランが好ましい。
 上記シランカップリング剤は、シリカ100質量部に対して好ましくは0.1~30質量部、より好ましくは0.5~20質量部、さらに好ましくは1~15質量部含有される。シランカップリング剤の含有量が前記範囲内であると、分散性、カップリング効果、補強性、耐摩耗性が向上する。
 本発明のゴム組成物は、本発明の効果を阻害しない範囲で、加工性、流動性等の改良を目的とし、必要に応じてシリコンオイル、アロマオイル、TDAE(Treated Distilled Aromatic Extracts)、MES(Mild Extracted Solvates)、RAE(Residual Aromatic Extracts)、パラフィンオイル、ナフテンオイル等のプロセスオイル、脂肪族炭化水素樹脂、脂環族炭化水素樹脂、C9系樹脂、ロジン系樹脂、クマロン・インデン系樹脂、フェノール系樹脂等の樹脂成分を軟化剤として含有していてもよい。本発明のゴム組成物が上記プロセスオイルを軟化剤として含有する場合には、その含有量は、固形ゴム(A)100質量部に対して50質量部より少ないことが好ましい。
 本発明のゴム組成物は、本発明の効果を阻害しない範囲で、耐候性、耐熱性、耐酸化性等の向上を目的として、必要に応じて老化防止剤、ワックス、酸化防止剤、滑剤、光安定剤、スコーチ防止剤、加工助剤、顔料や色素等の着色剤、難燃剤、帯電防止剤、艶消し剤、ブロッキング防止剤、紫外線吸収剤、離型剤、発泡剤、抗菌剤、防カビ剤、香料等の添加剤を含有してもよい。酸化防止剤としては、例えば、ヒンダードフェノール系化合物、リン系化合物、ラクトン系化合物、ヒドロキシル系化合物等が挙げられる。老化防止剤としては、例えば、アミン-ケトン系化合物、イミダゾール系化合物、アミン系化合物、フェノール系化合物、硫黄系化合物及びリン系化合物等が挙げられる。これら添加剤は、1種単独で用いられてもよく、2種以上を併用してもよい。
[ゴム組成物の製造方法]
 本発明のゴム組成物の製造方法は、上記各成分を均一に混合できれば特に限定されない。ゴム組成物の製造に用いる装置としては、例えば、ニーダールーダー、ブラベンダー、バンバリーミキサー、インターナルミキサー等の接線式又は噛合式の密閉式混練機、単軸押出機、二軸押出機、ミキシングロール、及びローラーなどが挙げられる。上記ゴム組成物を製造は、通常70~270℃の温度範囲で行うことができる。
[架橋物]
 本発明のゴム組成物を架橋することにより、架橋物を得ることができる。ゴム組成物の架橋条件は、その用途等に応じて適宜設定できる。例えば、硫黄又は硫黄化合物を架橋剤とし、ゴム組成物を金型により架橋(加硫)する場合には、架橋温度は通常120~200℃、加圧条件は通常0.5~2.0MPaとし、架橋(加硫)することができる。
 架橋物中からの、変性液状ジエン系重合体(B)の抽出率は、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましい。
 なお、上記抽出率は、架橋物2gをトルエン400mL中に浸漬し、23℃で48時間後にトルエン中に抽出された変性液状ジエン系重合体(B)の量から算出することができる。
 本発明のゴム組成物及び該ゴム組成物の架橋物は、タイヤの少なくとも一部として用いることもできる。このようにして得られるタイヤは、フィラ―(C)の分散状態が理想的な状態となっている(例えば、ペイン効果が十分に低減している)ため、転がり抵抗性能に優れ、また耐摩耗性が良好である。
 上記ゴム組成物及び該ゴム組成物の架橋物を使用できるタイヤの部位としては、例えばトレッド(キャップトレッド、アンダートレッド)、サイドウォール、ランフラットタイヤ用ゴム補強層(ライナーなど)、リムクッション、ビードフィラー、ビードインシュレーション、ビードエイペックス、クリンチエイペックス、ベルト、ベルトクッション、ブレーカー、ブレーカークッション、チェーファー、チェーファーパッド、ストリップエイペックスなどが挙げられる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 本実施例及び比較例において使用した各成分は以下のとおりである。
<固形ゴム(A)>
溶液重合スチレンブタジエンゴム:HPR355(JSR株式会社製、アルコキシシリル基を末端に導入、スチレン含量:28質量%、ビニル含量56質量%)
ブタジエンゴム:BR01(JSR株式会社製、Mw:55万、シス体含有量95質量%)
<変性液状ジエン系重合体(B)>
後述の製造例1~11で得られた変性液状ジエン系重合体
<フィラー(C)>
シリカ:ULTRASIL7000GR(エボニック デグサ ジャパン製、湿式シリカ、平均粒径14nm)
<架橋剤(D)>
硫黄(微粉硫黄200メッシュ、鶴見化学工業株式会社製)
<加硫促進剤(E)>
加硫促進剤(1):ノクセラーCZ-G (大内新興化学工業株式会社製)
加硫促進剤(2):ノクセラーD    (大内新興化学工業株式会社製)
加硫促進剤(3):ノクセラーTBT-N(大内新興化学工業株式会社製)
<加硫助剤(F)>
ステアリン酸:ルナックS-20(花王株式会社製)
亜鉛華:酸化亜鉛(堺化学工業株式会社製)
<任意成分>
TDAE:VivaTec500(H&R社製)
シランカップリング剤(1):Si-75(エボニック デグサ ジャパン製)
老化防止剤(1):ノクラック6C(大内新興化学工業株式会社製)
ワックス:サンタイトS(精工化学株式会社製)
 製造例1:変性液状ジエン系重合体(B-1、B-2)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン1860g及びs-ブチルリチウム(1.0mol/L、シクロヘキサン溶液)61gを仕込み、50℃に昇温した後、撹拌条件下、テトラヒドロフラン5.8gを添加した後、重合温度を50℃となるように制御しながら、イソプレン1175gとブタジエン219gを逐次添加して重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を140℃で3時間乾燥することにより、直鎖状のイソプレン単独重合体ブロック-ブタジエン単独重合体ブロックからなるジブロック共重合体である未変性液状ジエン系重合体(B'-1)を得た。
 続いて、容量1Lのオートクレーブ中に、得られた未変性液状ジエン系重合体(B'-1)490gを仕込み、60℃で3時間撹拌をしながら窒素脱気をした。1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン1.8gと(3-メルカプトプロピル)トリエトキシシラン28gを添加し、105℃で8時間反応させて、シラン化合物(1)に由来する官能基で変性された直鎖状のイソプレン単独重合体ブロック-ブタジエン単独重合体ブロックからなるジブロック共重合体である変性液状ジエン系重合体(B-1)を得た。なお、かかるブロック共重合体では、シラン化合物(1)に対する反応性差から、ブタジエン単独重合体ブロックが、シラン化合物(1)に由来する官能基で優先的に変性されている。
 上述の(B-1)の製造に用いたオートクレーブとは別の容量1Lのオートクレーブ中に、得られた未変性液状ジエン系重合体(B'-1)440gを仕込み、60℃で3時間撹拌をしながら窒素脱気をした。1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン1.6gと(3-メルカプトプロピル)トリエトキシシラン21gを添加し、105℃で8時間反応させて、シラン化合物(1)に由来する官能基で変性された、直鎖状のイソプレン単独重合体ブロック-ブタジエン単独重合体ブロックからなるジブロック共重合体である変性液状ジエン系重合体(B-2)を得た。なお、かかるブロック共重合体では、シラン化合物(1)に対する反応性差から、ブタジエン単独重合体ブロックが、シラン化合物(1)に由来する官能基で優先的に変性されている。
 製造例2:変性液状ジエン系重合体(B-3、B-13)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン1860g及びs-ブチルリチウム(1.1mol/L、シクロヘキサン溶液)57gを仕込み、50℃に昇温した後、撹拌条件下、テトラヒドロフラン5.8gを添加した後、重合温度を50℃となるように制御しながらブタジエン116g、イソプレン1087g、ブタジエン83gを逐次添加して重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を140℃で3時間乾燥することにより、直鎖状のブタジエン単独重合体ブロック-イソプレン単独重合体ブロック-ブタジエン単独重合体ブロックからなるトリブロック共重合体である未変性液状ジエン系重合体(B'-2)を得た。
 続いて、容量1Lのオートクレーブ中に、得られた未変性液状ジエン系重合体(B'-2)490gを仕込み、60℃で3時間撹拌をしながら窒素脱気をした。1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン2.5gと(3-メルカプトプロピル)トリエトキシシラン29gを添加し、105℃で8時間反応させて、シラン化合物(1)に由来する官能基で変性された直鎖状のブタジエン単独重合体ブロック-イソプレン単独重合体ブロック-ブタジエン単独重合体ブロックからなるトリブロック共重合体である変性液状ジエン系重合体(B-3)を得た。なお、かかるブロック共重合体では、シラン化合物(1)に対する反応性差から、ブタジエン単独重合体ブロックが、シラン化合物(1)に由来する官能基で優先的に変性されている。
 上述の(B-3)の製造に用いたオートクレーブとは別の容量1Lのオートクレーブ中に、得られた未変性液状ジエン系重合体(B'-2)177gを仕込み、60℃で3時間撹拌をしながら窒素脱気をした。t-ブチルパーオキシピバレート3.4gと(3-メルカプトプロピル)トリエトキシシラン56gを添加し、72℃で8時間反応させて、シラン化合物(1)に由来する官能基で変性された、直鎖状のブタジエン単独重合体ブロック-イソプレン単独重合体ブロック-ブタジエン単独重合体ブロックからなるトリブロック共重合体である変性液状ジエン系重合体(B-13)を得た。(B-13)にラジカル付加していない(3-メルカプトプロピル)トリエトキシシランをメタノールで洗浄除去した後、1H-NMRより一分子当たりの平均官能基数を算出したところ、15個であることが分かった。なお、かかるブロック共重合体では、シラン化合物(1)に対する反応性差から、ブタジエン単独重合体ブロックが、シラン化合物(1)に由来する官能基で優先的に変性されている。
 製造例3:変性液状ジエン系重合体(B-4)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン1850g及びs-ブチルリチウム(1.1mol/L、シクロヘキサン溶液)69gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、ブタジエン823gを逐次添加した後、N,N,N',N'-テトラメチルエチレンジアミン3.4gを添加し、ブタジエン550gを逐次添加して重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を140℃で3時間乾燥することにより、直鎖状の低ビニル含量ブタジエン単独重合体ブロック-高ビニル含量ブタジエン単独重合体ブロックからなるジブロック共重合体である未変性液状ジエン系重合体(B'-3)を得た。
 続いて、容量1Lのオートクレーブ中に、得られた未変性液状ジエン系重合体(B'-3)378gを仕込み、60℃で3時間撹拌をしながら窒素脱気をした。1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン0.2gと(3-メルカプトプロピル)トリエトキシシラン27gを添加し、105℃で8時間反応させて、シラン化合物(1)に由来する官能基で変性された直鎖状の高ビニル含量ブタジエン単独重合体ブロック-低ビニル含量ブタジエン単独重合体ブロックからなるジブロック共重合体である変性液状ジエン系重合体(B-4)を得た。なお、かかるブロック共重合体では、シラン化合物(1)に対する反応性差から、高ビニル含量ブタジエン単独重合体ブロックが、シラン化合物(1)に由来する官能基で優先的に変性されている。
 製造例4:変性液状ジエン系重合体(B-5)の製造
 十分に乾燥した1Lオートクレーブを窒素置換し、シクロヘキサン65g、s-ブチルリチウム(1.1mol/L、シクロヘキサン溶液)76g、トリエチルアミン13gを仕込み、50℃に昇温した。撹拌条件下、1,3-ビス(1-メチルエテニル)ベンゼン8.3gを添加し、70℃で撹拌した。得られた反応液を25℃まで冷却し、撹拌条件下、ブタジエン23gを一括添加し、50℃に昇温して30分撹拌した後、25℃まで冷却した。
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン2060gと上記の反応溶液全量を仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、ブタジエン352gを逐次添加した後、N,N,N',N'-テトラメチルエチレンジアミン3.4gを添加し、ブタジエン198gを逐次添加して重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を140℃で3時間乾燥することにより、直鎖状の高ビニル含量ブタジエン単独重合体ブロック-低ビニル含量ブタジエン単独重合体ブロック-高ビニル含量ブタジエン単独重合体ブロックからなるトリブロック共重合体である未変性液状ジエン系重合体(B'-4)を得た。
 続いて、容量1Lのオートクレーブ中に、得られた未変性液状ジエン系重合体(B'-4)297gを仕込み、60℃で3時間撹拌をしながら窒素脱気をした。1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン0.1gと(3-メルカプトプロピル)トリエトキシシラン21gを添加し、105℃で8時間反応させて、シラン化合物(1)に由来する官能基で変性された直鎖状の高ビニル含量ブタジエン単独重合体ブロック-低ビニル含量ブタジエン単独重合体ブロック-高ビニル含量ブタジエン単独重合体ブロックからなるトリブロック共重合体である変性液状ジエン系重合体(B-5)を得た。なお、かかるブロック共重合体では、シラン化合物(1)に対する反応性差から、高ビニル含量ブタジエン単独重合体ブロックが、シラン化合物(1)に由来する官能基で優先的に変性されている。
 製造例5:変性液状ジエン系重合体(B-6)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン1860g及びs-ブチルリチウム(1.0mol/L、シクロヘキサン溶液)61gを仕込み、50℃に昇温した後、撹拌条件下、テトラヒドロフラン5.8gを添加した後、重合温度を50℃となるように制御しながら予め調製したブタジエン、イソプレンの混合物(ブタジエン166gとイソプレン1120gとをボンベ内で混合)1286gを逐次添加して重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を140℃で3時間乾燥することにより、イソプレン/ブタジエンランダム共重合体である未変性液状ジエン系重合体(B'-5)を得た。
 続いて、容量1Lのオートクレーブ中に、得られた未変性液状ジエン系重合体(B'-5)505gを仕込み、60℃で3時間撹拌をしながら窒素脱気をした。1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン3.7gと(3-メルカプトプロピル)トリエトキシシラン30gを添加し、105℃で8時間反応させて、イソプレン/ブタジエンランダム共重合体である変性液状ジエン系重合体(B-6)を得た。
 製造例6:変性液状ジエン系重合体(B-7)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン1850g及びs-ブチルリチウム(1.1mol/L、シクロヘキサン溶液)69gを仕込み、50℃に昇温した後、撹拌条件下、テトラヒドロフラン3.8gを添加した後、重合温度を50℃となるように制御しながらブタジエン1363gを逐次添加して重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を140℃で3時間乾燥することにより、ブタジエン単独重合体からなる未変性液状ジエン系重合体(B'-6)を得た。
 続いて、容量1Lのオートクレーブ中に、得られた未変性液状ジエン系重合体(B'-6)409gを仕込み、60℃で3時間撹拌をしながら窒素脱気をした。1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン0.2gと(3-メルカプトプロピル)トリエトキシシラン27gを添加し、105℃で8時間反応させて、変性液状ジエン系重合体(B-7)を得た。
 製造例7:変性液状ジエン系重合体(B-8)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン1570g及びs-ブチルリチウム(0.99mol/L、シクロヘキサン溶液)347gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、ブタジエン797gを逐次添加した後、N,N,N',N'-テトラメチルエチレンジアミン10.8gを添加し、ブタジエン522gを逐次添加して重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を140℃で3時間乾燥することにより、直鎖状の低ビニル含量ブタジエン単独重合体ブロック-高ビニル含量ブタジエン単独重合体ブロックからなるジブロック共重合体である未変性液状ジエン系重合体(B'-7)を得た。
 続いて、容量1Lのオートクレーブ中に、得られた未変性液状ジエン系重合体(B'-7)444gを仕込み、60℃で3時間撹拌をしながら窒素脱気をした。1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン0.4gと(3-メルカプトプロピル)トリエトキシシラン51gを添加し、105℃で8時間反応させて、シラン化合物(1)に由来する官能基で変性された直鎖状の低ビニル含量ブタジエン単独重合体ブロック-高ビニル含量ブタジエン単独重合体ブロックからなるジブロック共重合体である変性液状ジエン系重合体(B-8)を得た。なお、かかるブロック共重合体では、シラン化合物(1)に対する反応性差から、高ビニル含量ブタジエン単独重合体ブロックが、シラン化合物(1)に由来する官能基で優先的に変性されている。
 製造例8:変性液状ジエン系重合体(B-9)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン1660g及びs-ブチルリチウム(1.2mol/L、シクロヘキサン溶液)262gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、イソプレン964gを逐次添加した後、N,N,N',N'-テトラメチルエチレンジアミン14.7gを添加し、ブタジエン275gを逐次添加して重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を140℃で3時間乾燥することにより、直鎖状のイソプレン単独重合体ブロック-ブタジエン単独重合体ブロックからなるジブロック共重合体である未変性液状ジエン系重合体(B'-8)を得た。
 続いて、容量1Lのオートクレーブ中に、得られた未変性液状ジエン系重合体(B'-8)375gを仕込み、60℃で3時間撹拌をしながら窒素脱気をした。1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン4.6gと(3-メルカプトプロピル)トリエトキシシラン43gを添加し、105℃で8時間反応させて、シラン化合物(1)に由来する官能基で変性された直鎖状のイソプレン単独重合体ブロック-ブタジエン単独重合体ブロックからなるジブロック共重合体である変性液状ジエン系重合体(B-9)を得た。なお、かかるブロック共重合体では、シラン化合物(1)に対する反応性差から、ブタジエン単独重合体ブロックが、シラン化合物(1)に由来する官能基で優先的に変性されている。
 製造例9:変性液状ジエン系重合体(B-10)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン1580g及びs-ブチルリチウム(0.99mol/L、シクロヘキサン溶液)336gを仕込み、50℃に昇温した後、撹拌条件下、テトラヒドロフラン23.4gを添加した後、重合温度を50℃となるように制御しながらブタジエン218g、イソプレン776g、ブタジエン234gを逐次添加して重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を140℃で3時間乾燥することにより、直鎖状のブタジエン単独重合体ブロック-イソプレン単独重合体ブロック-ブタジエン単独重合体ブロックからなるトリブロック共重合体である未変性液状ジエン系重合体(B'-9)を得た。
 続いて、容量1Lのオートクレーブ中に、得られた未変性液状ジエン系重合体(B'-9)481gを仕込み、60℃で3時間撹拌をしながら窒素脱気をした。1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン4.9gと(3-メルカプトプロピル)トリエトキシシラン79gを添加し、105℃で8時間反応させて、シラン化合物(1)に由来する官能基で変性された直鎖状のブタジエン単独重合体ブロック-イソプレン単独重合体ブロック-ブタジエン単独重合体ブロックからなるトリブロック共重合体である変性液状ジエン系重合体(B-10)を得た。なお、かかるブロック共重合体では、シラン化合物(1)に対する反応性差から、ブタジエン単独重合体ブロックが、シラン化合物(1)に由来する官能基で優先的に変性されている。
 製造例10:変性液状ジエン系重合体(B-11)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン1570g及びs-ブチルリチウム(0.99mol/L、シクロヘキサン溶液)336gを仕込み、50℃に昇温した後、撹拌条件下、テトラヒドロフラン11.3gを添加した後、重合温度を50℃となるように制御しながらブタジエン205g、イソプレン732g、ブタジエン275gを逐次添加して重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を140℃で3時間乾燥することにより、直鎖状のブタジエン単独重合体ブロック-イソプレン単独重合体ブロック-ブタジエン単独重合体ブロックからなるトリブロック共重合体である未変性液状ジエン系重合体(B'-10)を得た。
 続いて、容量1Lのオートクレーブ中に、得られた未変性液状ジエン系重合体(B'-10)339gを仕込み、60℃で3時間撹拌をしながら窒素脱気をした。1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン4.3gと(3-メルカプトプロピル)トリエトキシシラン56gを添加し、105℃で8時間反応させて、シラン化合物(1)に由来する官能基で変性された直鎖状のブタジエン単独重合体ブロック-イソプレン単独重合体ブロック-ブタジエン単独重合体ブロックからなるトリブロック共重合体である未変性液状ジエン系重合体(B-11)を得た。なお、かかるブロック共重合体では、シラン化合物(1)に対する反応性差から、ブタジエン単独重合体ブロックが、シラン化合物(1)に由来する官能基で優先的に変性されている。
 製造例11:変性液状ジエン系ゴム(B-12)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、ヘキサン1150g及びn-ブチルリチウム(17質量%ヘキサン溶液)154gを仕込み、50℃に昇温した後、撹拌条件下、N,N,N',N'-テトラメチルエチレンジアミン10gを添加した後、重合温度を50℃となるように制御しながらブタジエン1250gを逐次添加して重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、ブタジエン単独重合体からなる未変性液状ジエン系重合体(B'-11)を得た。
 続いて、容量1Lのオートクレーブ中に、得られた未変性液状ジエン系ゴム(B'-11)700gを仕込み、60℃で3時間撹拌をしながら窒素脱気をした。1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン0.2gと(3-メルカプトプロピル)トリエトキシシラン130gを添加し、105℃で8時間反応させて、変性液状ジエン系重合体(B-12)を得た。
 なお、製造例で得られた変性液状ジエン系重合体等の各物性の測定方法及び算出方法は以下の通りである。
 (重量平均分子量の測定方法)
 変性液状ジエン系重合体(B)のMwは、GPC(ゲルパーミエーションクロマトグラフィー)により標準ポリスチレン換算分子量で求めた。測定装置及び条件は、以下の通りである。
・装置    :東ソー株式会社製GPC装置「HLC-8320GPC」
・分離カラム :東ソー株式会社製「TSKgelSuperHZ4000×2」
・溶離液   :テトラヒドロフラン
・溶離液流量 :0.35mL/分
・サンプル濃度:5mg/10mL
・カラム温度 :40℃
 (ビニル含量)
 変性液状ジエン系重合体(B)、重合体ブロック(b'1)または(b"1)、重合体ブロック(b'2)または(b"2)のビニル含量を、日本電子株式会社製1H-NMR(500MHz)を使用し、サンプル/重クロロホルム=50mg/1mLの濃度、積算回数32回で測定した。得られたスペクトルの1,2-結合、3,4-結合で結合をしている共役ジエン単位由来のピークと、1,4-結合で結合をしている共役ジエン単位に由来するピークとの面積比から、ビニル含量を算出した。
 (ガラス転移温度)
 変性液状ジエン系重合体(B)10mgをアルミパンに採取し、示差走査熱量測定(DSC)により10℃/分の昇温速度条件においてサーモグラムを測定し、DDSCのピークトップの値をガラス転移温度とした。
 (38℃における溶融粘度の測定方法)
 変性液状ジエン系重合体(B)の38℃における溶融粘度をブルックフィールド型粘度計(BROOKFIELD ENGINEERING LABS.INC.製)により測定した。
 (一分子当たりの平均官能基数)
 変性液状ジエン系重合体(B)一分子当たりの平均官能基数は、変性液状ジエン系重合体(B)の官能基の当量(g/eq)とスチレン換算の数平均分子量Mnより求めることができる。
(一分子当たりの平均官能基数)=[(数平均分子量Mn)/(スチレン単位の分子量)×(共役ジエン及び必要に応じて含まれる共役ジエン以外の他の単量体単位の平均分子量)]/(官能基の当量)
 なお、変性液状ジエン系重合体(B)の官能基の当量は、官能基1個当たりに結合している共役ジエン及び必要に応じて含まれる共役ジエン以外の他の単量体の質量を意味する。官能基の当量は、1H-NMR又は13C-NMRを用いて官能基由来のピークと重合体主鎖に由来するピークの面積比から算出することができる。なお、官能基由来のピークとは、アルコキシ基由来のピークを指す。
 ((b'1)または(b"1)が占める長さの割合)
 未変性液状ジエン系ブロック共重合体(B'1)または(B'2)中の重合体ブロック(b'1)または(b"1)が占める長さの割合は、ブロック共重合体の全鎖長と、ブロック共重合体中の重合体ブロックの占める長さから求めることができる。ブロック共重合体中の重合体ブロックの占める長さは、それぞれのブロック共重合体に含まれる各単量体単位の数を1H-NMR測定より算出し、ブロック共重合体の主鎖における炭素-炭素単結合の結合長を150pm、炭素-炭素二重結合の結合長を135pm、結合角を120°と仮定し計算することで、求めることができる。また、ブロック共重合体の全鎖長は上記で得られるそれぞれのブロック共重合体に含まれる各単量体単位の数の合計から求めることができる。
 以下、製造例1~11で得られた変性液状ジエン系重合体(B-1)~(B-13)の物性を表1にまとめる。また、変性液状ジエン系重合体(B-1)~(B-13)の原料となる未変性液状ジエン系ブロック共重合体(B'-1)~(B'-11)の結合様式を表2にまとめる。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 実施例1~18及び比較例1~5
 表3~6に記載した配合割合(質量部)にしたがって、固形ゴム(A)、変性液状ジエン系重合体(B)、フィラー(C)、TDAE、シランカップリング剤、亜鉛華、ステアリン酸、ワックス、及び老化防止剤を、それぞれ密閉式バンバリーミキサーに投入して開始温度60℃、樹脂温度が150℃となるように6分間混練した後、ミキサー外に取り出して室温まで冷却した。次いで、この混合物を再度バンバリーミキサーに入れ、加硫剤及び加硫促進剤を加えて開始温度50℃、到達温度100℃となるように75秒混練することでゴム組成物を得た。
 また、得られたゴム組成物をプレス成形(160℃、30~50分)して加硫ゴムシート(厚み2mm)を作製し、下記の方法に基づき、ペイン効果、ムーニー粘度、転がり抵抗性能、耐摩耗性、ウェットグリップ、引張破断伸度、引張破断強度を評価した。その結果を表3~6に示す。
 なお、各評価の測定方法は以下のとおりである。
 (ペイン効果)
 実施例及び比較例で作製したゴム組成物のシートから縦40mm×横5mmの試験片を切り出し、GABO社製動的粘弾性測定装置を用いて、測定温度25℃、歪0.5%の貯蔵弾性率E'(0.5%)と、歪5.0%の貯蔵弾性率E'(5.0%)を測定し、E'(0.5%)とE'(5.0%)の差(絶対値)を算出した。表3における各実施例及び比較例の数値は、比較例2の値を100とした際の、表5における各実施例及び比較例の数値は、比較例5の値を100とした際の相対値である。数値が小さいほどペイン効果が低減され、ゴム組成物のシリカの分散性が良好であることを示す。
 (ムーニー粘度)
 JIS K 6300に準拠して、加硫前のゴム組成物のムーニー粘度(ML1+4)を130℃で測定した。表3における各実施例及び比較例の数値は、比較例2の値を100とした際の、表6における各実施例及び比較例の数値は、比較例4の値を100とした際の相対値である。数値が小さいほどゴム組成物の加工性が良好であることを示す。
 (転がり抵抗性能)
 実施例及び比較例で作製したゴム組成物のシートから縦40mm×横5mmの試験片を切り出し、GABO社製動的粘弾性測定装置を用いて、測定温度60℃、周波数10Hz、静的歪み10%、動的歪み2%の条件で、tanδを測定し、転がり抵抗性能の指標とした。表3における各実施例及び比較例の数値は、比較例2の値を100とした際の、表5における各実施例及び比較例の数値は、比較例5の値を100とした際の相対値である。数値が小さいほどゴム組成物の転がり抵抗性能が良好であることを示す。
 (耐摩耗性、DIN摩耗試験機)
 JIS K 6264に準拠して、10N荷重下、摩耗距離40mでのDIN摩耗量を測定した。表3における各実施例及び比較例の数値は、DIN摩耗量の逆数において比較例2の値を100とした際の、表5における各実施例及び比較例の数値は、DIN摩耗量の逆数において比較例5の値を100とした際の相対値である。数値が大きいほど摩耗量が少なく耐摩耗性が良好であることを示す。
 (耐摩耗性、FPS摩耗試験機)
 実施例及び比較例で作製したゴム組成物から直径50mm、厚み10mmの専用芯金大の穴が開いた試験片を作製し、上島製作所製FPS摩耗試験機を用いて、摩耗路面として株式会社ノリタケコーテッドアブレーシブ社製のMETABRIT(粒度240、砥粒A)、試料速度80m/分、荷重40N、タルクフィーダ0.4rpm、設定温度35℃、スリップ率3%の条件で、FPS摩耗量を測定した。表4における各実施例及び比較例の数値は、FPS摩耗量の逆数において比較例4の値を100とした際の相対値である。数値が大きいほど摩耗量が少なく耐摩耗性が良好であることを示す。
 (ウェットグリップ)
 実施例及び比較例で作製したゴム組成物のシートから縦40mm×横5mmの試験片を切り出し、GABO社製動的粘弾性測定装置を用いて、測定温度0℃、周波数10Hz、静的歪み10%、動的歪み2%の条件で、tanδを測定し、ウェットグリップの指標とした。表4及び6における各実施例及び比較例の数値は、比較例4の値を100とした際の相対値である。数値が大きいほどゴム組成物のウェットグリップが良好であることを示す。
 (引張破断伸度)
 実施例及び比較例で作製したゴム組成物をプレス成形した加硫ゴムシートからJISダンベル状3号形試験片を打ち抜き、インストロン社製引張試験機を用いて、JIS K 6251に準じて引張破断伸度を測定した。表5における各実施例及び比較例の数値は、比較例5の値を100とした際の相対値である。数値が大きいほど、破断特性が良好であることを示す。
 (引張破断強度)
 実施例及び比較例で作製したゴム組成物をプレス成形した加硫ゴムシートからJISダンベル状3号形試験片を打ち抜き、インストロン社製引張試験機を用いて、JIS K 6251に準じて引張破断強度を測定した。表5における各実施例及び比較例の数値は、比較例5の値を100とした際の相対値である。数値が大きいほど、破断特性が良好であることを示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表3、4の結果から、本発明の変性液状ジエン系重合体を用いた実施例1~11においてはシリカの分散性、加工性、転がり抵抗性能、耐摩耗性、ウェットグリップ性能が改善されることがわかる。表4において、本発明の変性液状ジエン系重合体のうち、異なるビニル含量のブロックを持つブタジエン重合体を変性させた変性液状ジエン系重合体(B-4)および(B-5)を用いた実施例7~10は、ビニル含量が一様なブタジエン単独重合体を変性させた変性液状ジエン系重合体(B-7)を用いた比較例4よりも、耐摩耗性、ウェットグリップ性能が改善されることがわかる。
Figure JPOXMLDOC01-appb-T000010
 表5の結果から、本発明の変性液状ジエン系重合体を用いた実施例12~18は、シリカの分散性、転がり抵抗性能、耐摩耗性、破断特性が良好であることがわかる。
Figure JPOXMLDOC01-appb-T000011
 表6の結果から、比較例3及び4に対し、本発明の変性液状ジエン系重合体を用いた実施例12~18は、ウェットグリップ性能に優れていることがわかる。また、変性液状ジエン系重合体を同量添加した例を比較すると、比較例3及び4に対し、実施例13、15、17、18は、ムーニー粘度が低下して加工性に優れている。
 本発明のゴム組成物は加工性、フィラー分散性に優れるだけでなく、架橋剤を加えるなどして架橋性のゴム組成物とした場合、その組成物から得られる架橋物中のフィラーの分散状態が物性向上のためには理想的であり(例えば、ペイン効果の低減が見られ)、耐摩耗性の向上等が見られる優れる架橋物を与えることから、タイヤ用途、工業用ベルト、工業用ゴムホース等の工業用部材用途などに好適に用いることができる。特に、タイヤ用途等に架橋物を用いた場合には、ウェットグリップ性能、耐摩耗性等が向上するため有用である。

Claims (15)

  1.  ブタジエン単位を含む重合体ブロック(b'1)および重合体ブロック(b'2)を含有する液状ジエン系ブロック共重合体(B'1)が下記式(1)で表されるシラン化合物により変性された、該式(1)で表されるシラン化合物に由来する官能基を有する変性液状ジエン系重合体(B1)であり、下記(i)~(iv)を満たす、変性液状ジエン系重合体(B1)。
    (i)変性液状ジエン系重合体(B1)の重量平均分子量(Mw)が1,000~120,000。
    (ii)重合体ブロック(b'1)のブタジエン単位のビニル含量が40~100モル%。
    (iii)重合体ブロック(b'2)が、ビニル含量が0~25モル%のブタジエン単位を含む。
    (iv)変性液状ジエン系重合体(B1)一分子当たりの平均官能基数が1~20個。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R1は炭素数1から6の2価のアルキレン基であり、R2、R3及びR4はそれぞれ独立に、メトキシ基、エトキシ基、フェノキシ基、メチル基、エチル基又はフェニル基を示す。ただし、R2、R3及びR4の少なくとも1つはメトキシ基、エトキシ基又はフェノキシ基である。)
  2.  変性液状ジエン系重合体(B1)が直鎖状の重合体であり、重合体ブロック(b'1)が液状ジエン系ブロック共重合体(B'1)の片末端または両末端に存在し、重合体ブロック(b'1)の占める長さが液状ジエン系ブロック共重合体(B'1)全鎖長の合計45%以下である、請求項1に記載の変性液状ジエン系重合体(B1)。
  3.  ブタジエン単位を含む重合体ブロック(b"1)および重合体ブロック(b"2)を含有する液状ジエン系ブロック共重合体(B'2)が下記式(1)で表されるシラン化合物により変性された、該式(1)で表されるシラン化合物に由来する官能基を有する変性液状ジエン系重合体(B2)であり、下記(v)~(vii)を満たす、変性液状ジエン系重合体(B2)。
    (v)変性液状ジエン系重合体(B2)の重量平均分子量(Mw)が1,000~120,000。
    (vi)重合体ブロック(b"2)がブタジエン以外の共役ジエン単位および芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む。
    (vii)変性液状ジエン系重合体(B2)一分子当たりの平均官能基数が1~20個。
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、R1は炭素数1から6の2価のアルキレン基であり、R2、R3及びR4はそれぞれ独立に、メトキシ基、エトキシ基、フェノキシ基、メチル基、エチル基又はフェニル基を示す。ただし、R2、R3及びR4の少なくとも1つはメトキシ基、エトキシ基又はフェノキシ基である。)
  4.  変性液状ジエン系重合体(B2)が直鎖状の重合体であり、液状ジエン系ブロック共重合体(B'2)の重合体ブロック(b"1)が片末端または両末端に存在し、重合体ブロック(b"1)の占める長さが液状ジエン系ブロック共重合体(B'2)全鎖長の合計45%以下である、請求項3に記載の変性液状ジエン系重合体(B2)。
  5.  変性液状ジエン系重合体(B1)または(B2)が直鎖状の重合体であり、変性液状ジエン系重合体(B1)または(B2)中のシラン化合物に由来する官能基のうち、その65%以上が、片末端または両末端から全鎖長の合計45%の範囲に存在する、請求項1~4のいずれか1項に記載の変性液状ジエン系重合体(B1)または(B2)。
  6.  38℃における溶融粘度が0.1~4,000Pa・sである、請求項1~5のいずれか1項に記載の変性液状ジエン系重合体(B1)または(B2)。
  7.  固形ゴム(A)100質量部、請求項1~6のいずれか1項に記載の変性液状ジエン系重合体(B1)または(B2)0.1~50質量部、及びフィラー(C)20~200質量部を含有する、ゴム組成物。
  8.  前記フィラー(C)が、カーボンブラック及びシリカから選ばれる少なくとも1種である、請求項7に記載のゴム組成物。
  9.  前記フィラー(C)が、平均粒径5~100nmのカーボンブラック及び平均粒径が0.5~200nmのシリカから選ばれる少なくとも1種である、請求項8に記載のゴム組成物。
  10.  前記フィラー(C)がシリカを含み、シリカ100質量部に対し、シランカップリング剤を0.1~30質量部含有する、請求項8又は9に記載のゴム組成物。
  11.  前記固形ゴム(A)が、天然ゴム、スチレンブタジエンゴム、ブタジエンゴム及びイソプレンゴムから選ばれる少なくとも1種である、請求項7~10のいずれか1項に記載のゴム組成物。
  12.  前記固形ゴム(A)が、重量平均分子量が100,000~2,500,000のスチレンブタジエンゴムである、請求項11に記載のゴム組成物。
  13.  前記固形ゴム(A)が、スチレン含量が0.1~70質量%であるスチレンブタジエンゴムである、請求項11又は12に記載のゴム組成物。
  14.  請求項7~13のいずれか1項に記載のゴム組成物を架橋させた架橋物。
  15.  請求項7~13のいずれか1項に記載のゴム組成物又は請求項14に記載の架橋物を少なくとも一部に用いたタイヤ。
PCT/JP2019/008405 2018-03-07 2019-03-04 変性液状ジエン系重合体およびゴム組成物 WO2019172185A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2020505017A JP7132322B2 (ja) 2018-03-07 2019-03-04 変性液状ジエン系重合体およびゴム組成物
RU2020131780A RU2788390C2 (ru) 2018-03-07 2019-03-04 Модифицированный жидкий диеновый полимер и каучуковая композиция
EP19764978.3A EP3763744A4 (en) 2018-03-07 2019-03-04 MODIFIED LIQUID SERVICE POLYMER AND RUBBER COMPOSITION
US16/978,188 US11970561B2 (en) 2018-03-07 2019-03-04 Modified liquid diene polymer and rubber composition
CN201980017374.5A CN111801356B (zh) 2018-03-07 2019-03-04 改性液体二烯系聚合物和橡胶组合物
BR112020017663-0A BR112020017663A2 (pt) 2018-03-07 2019-03-04 Polímero de dieno líquido modificado e composição de borracha
KR1020207025269A KR102651219B1 (ko) 2018-03-07 2019-03-04 변성 액상 디엔계 중합체 및 고무 조성물
CA3093210A CA3093210A1 (en) 2018-03-07 2019-03-04 Modified liquid diene polymer and rubber composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018040832 2018-03-07
JP2018-040832 2018-03-07
JP2018-073362 2018-04-05
JP2018073362 2018-04-05

Publications (1)

Publication Number Publication Date
WO2019172185A1 true WO2019172185A1 (ja) 2019-09-12

Family

ID=67847179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008405 WO2019172185A1 (ja) 2018-03-07 2019-03-04 変性液状ジエン系重合体およびゴム組成物

Country Status (9)

Country Link
US (1) US11970561B2 (ja)
EP (1) EP3763744A4 (ja)
JP (1) JP7132322B2 (ja)
KR (1) KR102651219B1 (ja)
CN (1) CN111801356B (ja)
BR (1) BR112020017663A2 (ja)
CA (1) CA3093210A1 (ja)
TW (1) TWI794431B (ja)
WO (1) WO2019172185A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021088657A (ja) * 2019-12-04 2021-06-10 横浜ゴム株式会社 ゴム組成物及びタイヤ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7357842B2 (ja) * 2019-12-13 2023-10-10 Toyo Tire株式会社 インナーライナー用ゴム組成物、及びそれを用いた空気入りタイヤ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344949A (ja) 1999-03-31 2000-12-12 Nippon Mitsubishi Oil Corp 自動車タイヤトレッド用ゴム組成物
JP2011132298A (ja) 2009-12-22 2011-07-07 Sumitomo Rubber Ind Ltd 変性共重合体、それを用いたゴム組成物および空気入りタイヤ
WO2013081053A1 (ja) * 2011-12-01 2013-06-06 Jsr株式会社 ゴム組成物、ゴム弾性体およびタイヤ並びにブロック共重合体
JP2013249359A (ja) 2012-05-31 2013-12-12 Bridgestone Corp ゴム組成物及びタイヤ
JP2014105294A (ja) * 2012-11-28 2014-06-09 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ
JP2014162809A (ja) * 2013-02-21 2014-09-08 Yokohama Rubber Co Ltd:The ゴム組成物および空気入りタイヤ
JP2015113425A (ja) * 2013-12-12 2015-06-22 旭化成ケミカルズ株式会社 変性共役ジエン系重合体組成物の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140278A (en) * 1960-03-25 1964-07-07 Exxon Research Engineering Co Block homopolymers of 1, 3 dienes
US4255296A (en) * 1977-12-02 1981-03-10 Bridgestone Tire Company Limited Polybutadiene rubber composition
US5633415A (en) 1990-01-16 1997-05-27 Mobil Oil Corporation Dispersants and dispersant viscosity index improvers from selectively hydrogenated polymers
US8080308B2 (en) 2003-03-11 2011-12-20 H.B. Fuller Company One-part moisture curable hot melt silane functional poly-alpha-olefin sealant composition
JP5401988B2 (ja) * 2006-10-03 2014-01-29 日本ゼオン株式会社 変性共役ジエン重合体の製造方法
KR102047639B1 (ko) 2012-04-04 2019-11-21 주식회사 쿠라레 공중합체, 그것을 사용한 고무 조성물 및 타이어
WO2013151069A1 (ja) * 2012-04-04 2013-10-10 株式会社クラレ 共重合体、それを用いたゴム組成物及びタイヤ
US20140121316A1 (en) * 2012-11-01 2014-05-01 Cray Valley Usa, Llc Silane functionalized oligomer and rubber compound comprising the same
JP6208422B2 (ja) * 2012-11-26 2017-10-04 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP6004081B2 (ja) 2013-02-28 2016-10-05 Jsr株式会社 タイヤ用部材、及び、重合体組成物
US20170009065A1 (en) 2014-03-14 2017-01-12 Kuraray Co., Ltd. Rubber compositions
CN106164160B (zh) * 2014-03-14 2019-05-14 株式会社可乐丽 橡胶组合物
CN106032395B (zh) 2015-03-17 2018-10-16 中国石油化工股份有限公司 一种官能化弹性体和改性沥青及其制备方法
BR112018001141A2 (pt) 2015-07-22 2018-09-11 Jsr Corp polímero, método para produzir um polímero, composição de polímero, e, pneu
DE102016210267A1 (de) * 2016-06-10 2017-12-14 Continental Reifen Deutschland Gmbh Schwefelvernetzbare Kautschukmischung und Fahrzeugluftreifen
CN107586362B (zh) 2016-07-08 2021-03-16 中国石油化工股份有限公司 改性的共轭二烯烃聚合物及其制备方法和丁苯橡胶

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344949A (ja) 1999-03-31 2000-12-12 Nippon Mitsubishi Oil Corp 自動車タイヤトレッド用ゴム組成物
JP2011132298A (ja) 2009-12-22 2011-07-07 Sumitomo Rubber Ind Ltd 変性共重合体、それを用いたゴム組成物および空気入りタイヤ
WO2013081053A1 (ja) * 2011-12-01 2013-06-06 Jsr株式会社 ゴム組成物、ゴム弾性体およびタイヤ並びにブロック共重合体
JP2013249359A (ja) 2012-05-31 2013-12-12 Bridgestone Corp ゴム組成物及びタイヤ
JP2014105294A (ja) * 2012-11-28 2014-06-09 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ
JP2014162809A (ja) * 2013-02-21 2014-09-08 Yokohama Rubber Co Ltd:The ゴム組成物および空気入りタイヤ
JP2015113425A (ja) * 2013-12-12 2015-06-22 旭化成ケミカルズ株式会社 変性共役ジエン系重合体組成物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3763744A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021088657A (ja) * 2019-12-04 2021-06-10 横浜ゴム株式会社 ゴム組成物及びタイヤ
JP7343775B2 (ja) 2019-12-04 2023-09-13 横浜ゴム株式会社 ゴム組成物及びタイヤ

Also Published As

Publication number Publication date
TW201938599A (zh) 2019-10-01
JP7132322B2 (ja) 2022-09-06
TWI794431B (zh) 2023-03-01
CN111801356A (zh) 2020-10-20
CA3093210A1 (en) 2019-09-12
KR102651219B1 (ko) 2024-03-25
JPWO2019172185A1 (ja) 2021-03-04
US20210017320A1 (en) 2021-01-21
KR20200130274A (ko) 2020-11-18
EP3763744A1 (en) 2021-01-13
EP3763744A4 (en) 2021-12-15
CN111801356B (zh) 2023-02-21
US11970561B2 (en) 2024-04-30
RU2020131780A3 (ja) 2022-04-12
BR112020017663A2 (pt) 2020-12-22
RU2020131780A (ru) 2022-04-12

Similar Documents

Publication Publication Date Title
JP5922850B2 (ja) ゴム組成物
JP7112406B2 (ja) タイヤ用ゴム組成物
EP3508526B1 (en) Rubber composition
JP7112405B2 (ja) タイヤ用ゴム組成物
WO2018043700A1 (ja) ゴム組成物
JP7112407B2 (ja) 高グリップタイヤ用ゴム組成物
JP7112408B2 (ja) 重荷重タイヤ用ゴム組成物およびタイヤ
TWI770259B (zh) 重負載輪胎用橡膠組成物及輪胎
JP7153654B2 (ja) 高グリップタイヤ用ゴム組成物
JP7132322B2 (ja) 変性液状ジエン系重合体およびゴム組成物
JP6581746B1 (ja) 変性液状ジエン系重合体
JP7270035B2 (ja) ジエン系ゴム及びゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505017

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3093210

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019764978

Country of ref document: EP

Effective date: 20201007

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020017663

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020017663

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200828