WO2019169922A1 - 螺杆压缩机及空调机组 - Google Patents

螺杆压缩机及空调机组 Download PDF

Info

Publication number
WO2019169922A1
WO2019169922A1 PCT/CN2018/120570 CN2018120570W WO2019169922A1 WO 2019169922 A1 WO2019169922 A1 WO 2019169922A1 CN 2018120570 W CN2018120570 W CN 2018120570W WO 2019169922 A1 WO2019169922 A1 WO 2019169922A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure stage
rotor
rotor assembly
screw compressor
stage
Prior art date
Application number
PCT/CN2018/120570
Other languages
English (en)
French (fr)
Inventor
刘华
张治平
张天翼
毕雨时
曹聪
李日华
孟强军
黄孜远
张贺龙
许云功
张宝鸽
刘志华
侯芙蓉
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US16/969,952 priority Critical patent/US20200408210A1/en
Priority to EP18909109.3A priority patent/EP3722609B1/en
Publication of WO2019169922A1 publication Critical patent/WO2019169922A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/02Arrangements of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/20Geometry of the rotor

Definitions

  • the present disclosure relates to the field of compressors, and in particular to a screw compressor and an air conditioning unit.
  • the single-stage two-stage screw compressor includes one motor and two pairs of rotors.
  • the two pairs of rotors are low grade rotors and advanced rotors.
  • Each stage of the rotor includes a female rotor and a male rotor that mesh with each other.
  • the motor is placed between two pairs of rotors.
  • the motor includes a through shaft, one end of the shaft is coupled to the high-grade male rotor for transmission, and the other end of the shaft is coupled to the lower-stage male rotor for transmission.
  • the suction and exhaust directions of the screw compressor are related to the rotor arrangement and the direction of rotation of the rotor helix (referred to as the direction of rotation).
  • the lower-stage rotor of the single-stage two-stage screw compressor is provided with a lower slide valve.
  • the arrangement of the lower-stage rotor is: from the suction side to the exhaust side, the female rotor is on the left side of the anode rotor, and the refrigerant enters and exits.
  • the advanced rotor adopts the same arrangement, the refrigerant is also up and down, and the fluid outlet of the screw compressor is arranged below, which is not suitable for the shut-off valve and the check valve installation.
  • the present disclosure proposes a screw compressor and an air conditioning unit for optimizing the performance of a screw compressor.
  • the present disclosure provides a screw compressor comprising:
  • a first pressure stage rotor assembly comprising a first pressure stage male rotor and a first pressure stage female rotor that are intermeshing;
  • a second stage rotor assembly comprising a second compression stage male rotor and a second pressure stage female rotor that are intermeshing;
  • a body internally provided with the first pressure stage rotor assembly and the second pressure stage rotor assembly;
  • first pressure stage rotor assembly and the second pressure stage rotor assembly are arranged to satisfy a condition that the first pressure stage rotor assembly is subjected to an axial force applied by the compressed gas therein and the second The axial force applied by the compressed gas within the pressure stage rotor assembly is reversed.
  • the first pressure stage male rotor and the second pressure stage male rotor are disposed coaxially.
  • the screw compressor further comprises:
  • a motor disposed between the first pressure stage rotor assembly and the second pressure stage rotor assembly, the motor including a motor shaft, the first end of the motor shaft being drivingly coupled to the first pressure stage male rotor The second end of the motor shaft is drivingly coupled to the second pressure stage male rotor.
  • the spiral direction of the first-stage male rotor and the spiral of the second-stage male rotor are the same, and the first-stage cathode rotor and the second-stage cathode rotor are respectively Located on either side of the axis of the motor shaft.
  • the body includes:
  • a second pressure stage body internally provided with a second pressure stage bearing seat, the second pressure stage bearing seat supporting the second pressure stage rotor assembly, and the second pressure stage bearing seat and the second pressure stage body integrally formed .
  • the body is provided with a fluid inlet located at the top of the body.
  • the body is provided with a fluid outlet located at the top of the body.
  • the helix of the first-stage male rotor and the spiral of the second-stage male rotor are opposite in direction, and the first-stage cathode rotor and the second-stage cathode rotor are both Located on the same side of the axis of the motor shaft.
  • the screw compressor includes a plurality of sets of the first pressure stage rotor assembly and the second pressure stage rotor assembly.
  • the screw compressor is a single-stage two-stage screw compressor.
  • the first end of the motor shaft is keyed to the first stage, and the second end of the motor shaft is coupled to the second stage male rotor via a coupling.
  • Another embodiment of the present disclosure provides an air conditioning unit including the screw compressor provided by any one of the technical solutions of the present disclosure.
  • the arrangement of the respective rotors of the first pressure stage rotor assembly and the second pressure stage rotor assembly is reasonably set such that the first pressure stage rotor assembly receives the axial force and the second pressure level applied by the compressed gas therein.
  • the rotor assembly is subjected to the opposite axial force exerted by the compressed gas therein, so that the axial force of the rotor assembly of the screw compressor is balanced, so that the force of the screw compressor is more balanced during the working process, and the screw compressor works reliably. More sexual.
  • FIG. 1 is a cross-sectional view showing the structure of a screw compressor according to an embodiment of the present disclosure
  • FIG. 2 is a schematic view showing a gas flow direction of a screw compressor according to an embodiment of the present disclosure.
  • the present disclosure provides a screw compressor including a first pressure stage rotor assembly 1, a second pressure stage rotor assembly 2, and a body 3.
  • the first stage rotor assembly 1 includes a first pressure stage male rotor 11 and a first pressure stage female rotor 12 that are in mesh with each other
  • the second pressure stage rotor assembly 2 includes a second pressure stage male rotor 21 and a second pressure stage that are in mesh with each other.
  • the female rotor 22; the first pressure stage rotor assembly 1 and the second pressure stage rotor assembly 2 are disposed inside the body 3.
  • first pressure stage rotor assembly 1 and the second pressure stage rotor assembly 2 are arranged to satisfy the following conditions: the axial force applied by the first compressed stage rotor assembly 1 and the second pressure stage rotor assembly 2 The axial force applied to the compressed gas within it is reversed.
  • the first pressure stage male rotor 11 is supported by a bearing 51
  • the first pressure stage female rotor 12 is supported by a bearing 52
  • the second pressure stage male rotor 21 is supported by a bearing 53
  • the second pressure stage female rotor 22 is supported by a bearing 54.
  • the force exerted by the exhaust side on the inner wall of the female and male rotor engaging cavities is greater than the force exerted by the inhaling side on the inner walls of the female and male rotor engaging cavities. Since the inner wall of the tooth groove of the female and male rotors is in the shape of a spiral, the force exerted by the gas on the inner wall of the engaging cavity has a component along the axis of the male and female rotor, and the force of this component is called the axial direction of the gas applied to the rotor. force.
  • the opposite axial force means that the axial force is in the opposite direction.
  • the substantially arrow-shaped structure formed by the spiral contact is taken as an example, and the optional arrangement of the first pressure-stage rotor assembly 1 and the second pressure-stage rotor assembly 2 includes the following, as shown in FIG.
  • the manner is such that the spiral lines of the first pressure stage rotor assembly 1 and the second pressure stage rotor assembly 2 are approximately intersected to form an arrow-like shape.
  • the spiral-like shapes of the first pressure-stage rotor assembly 1 and the second pressure-stage rotor assembly 2 may be approximately opposite each other to form an arrow-like shape.
  • the screw compressor includes, for example, one or more sets of rotor assemblies, each set of rotor assemblies including a first pressure stage rotor assembly 1 and a second pressure stage rotor assembly 2, a first pressure stage rotor assembly 1 of each set of rotor assemblies
  • the axial force of the compressed gas received by the second stage rotor assembly 2 is reversed to counteract.
  • the same gas is sequentially compressed by each rotor assembly.
  • the low-pressure stage rotor assembly is used as the first pressure stage rotor assembly 1
  • the high-pressure stage rotor assembly is used as the second pressure stage rotor assembly 2
  • the gas is sequentially pressed by the first pressure stage rotor assembly 1 and the second pressure.
  • the stage rotor assembly 2 is compressed.
  • a three-stage screw compressor as an example, for example, three rotor assemblies including A, B, and C
  • the gas first enters the compression in A, and the gas discharged from A is subjected to B compression, and the gas discharged from B is subjected to C compression.
  • Alternative forms include, for example, A as the first stage rotor assembly 1 and B as the second pressure stage assembly.
  • B is used as the first pressure stage rotor assembly 1, C as the second pressure stage assembly.
  • A is used as the first pressure stage rotor assembly 1, C as the second pressure stage assembly.
  • a four-stage screw compressor as an example, for example, four rotor assemblies including D, E, F, and G
  • the gas first enters the compression in D, and the gas discharged from D is compressed by E, and the gas discharged from E is subjected to F compression and F discharge. The gas is then compressed by G.
  • the four rotor assemblies are divided into two groups, D and E being the first group, and F and G being the second group.
  • D is the first set of first stage rotor assemblies 1
  • E is the first set of second stage rotor assemblies 2.
  • F is the second set of first stage rotor assemblies 1
  • G is the second set of second stage rotor assemblies 2.
  • the respective axial forces of D and E are opposite, and the respective axial forces of F and G are opposite.
  • first stage male rotor 11 and the second stage male rotor 21 are coaxially disposed to better balance the forces on the screw compressor rotor assembly.
  • the coaxial arrangement allows the axial force received by the first pressure stage rotor assembly 1 and the axial force experienced by the second pressure stage rotor assembly 2 to be balanced on the concentric shaft.
  • the screw compressor further includes a motor 4 disposed between the first pressure stage rotor assembly 1 and the second pressure stage rotor assembly 2, the motor 4 including a motor shaft 41, and a motor shaft 41 One end is drivingly coupled to the first stage male rotor 11, and the second end of the motor shaft 41 is drivingly coupled to the second stage male rotor 21.
  • the steering of the motor shaft 41, the spiral direction of the male and female rotors, and the position of the female rotor relative to the male rotor all affect the gas flow direction. In practical applications, the above various factors are selected according to the actual required airflow direction.
  • the first end of the motor shaft 41 is directly keyed to the first pressure stage male rotor 11 , and the second end of the motor shaft 41 and the second pressure stage male rotor 21 are connected by the coupling 6 .
  • the coupling 6 is used to balance the torque generated by the rotor components at both ends of the motor shaft 41 due to the non-coincidence of the axial force directions.
  • the first arrangement of the first pressure stage rotor assembly 1 and the second pressure stage rotor assembly 2 is described below: Referring to Fig. 1, in some embodiments, the first pressure stage anode rotor 11 and the second pressure stage anode rotor 21 The spiral directions of the spirals are the same, and the first pressure stage female rotor 12 and the second pressure stage female rotor 22 are respectively located on both sides of the axial line of the motor shaft 41.
  • the first pressure stage rotor assembly 1 and the second pressure stage rotor assembly 2 are provided, in addition to the second arrangement described above or in the following, optionally, the fluid inlet 33 in which the entire screw compressor is disposed as a refrigerant
  • the top of the screw compressor and the fluid outlet 34 of the refrigerant are disposed at the bottom of the screw compressor. This arrangement facilitates the installation of other related components.
  • the body 3 includes a first pressure stage body 31 and a second pressure stage body 32.
  • a first pressure stage rotor assembly 1 is disposed in the first pressure stage body 31;
  • a second pressure stage bearing seat 7 is disposed in the second pressure stage body 32, and the second pressure stage bearing seat 7 supports the second pressure stage rotor assembly 2
  • the second pressure step bearing housing is integrally formed with the second pressure level body 32.
  • a bearing 53 and a bearing 54 are mounted inside the second step bearing housing 7.
  • a bearing 51 and a bearing 52 are mounted in the first pressure bearing housing 8, the bearing 51 supports the first pressure stage male rotor 11, and the bearing 52 supports the first pressure stage female rotor 12.
  • the motor 4 is disposed between the first pressure stage rotor assembly 1 and the second pressure stage rotor assembly 2, and the body 3 further includes, for example, an intermediate body 35. Only the housing 4 is partially or entirely located in the intermediate body 35. If the portion included in the housing of the motor 4 is located in the intermediate body 35, the motor shaft 41 extends out of the intermediate body 35 to driveably connect the rotor assemblies on both sides of the motor 4. If the motors 4 are all located in the intermediate body 35, the drive shafts of the motor shaft 41 and the rotors 4 on both sides of the motor 4 can be realized by means of a coupling or the like.
  • the body 3 is provided with a fluid inlet 33, which is located at the top of the body 3.
  • the fluid inlet 33 is specifically disposed, for example, on the first pressure stage body 31 and is located at the top of the first pressure stage body 31.
  • the first pressure stage is a low pressure stage
  • the second pressure stage is a high pressure stage.
  • the low pressure stage is generally provided with a spool valve structure, and the spool valve structure is located below the first pressure stage rotor assembly 1, so that the fluid inlet 33 is provided at the top to facilitate setting other related structures.
  • the body 3 is provided with a fluid outlet 34, which is located at the top of the body 3.
  • the thick arrows in Fig. 2 indicate the flow direction of the compressed gas, and the fine gas indicates the inflow direction of the replenishing liquid.
  • the fluid inlet 33 and the fluid outlet 34 of the screw compressor are arranged above, as shown in FIG. 2, so that the overall width dimension of the compressor is greatly reduced, and the size of the casing tube of the unit is correspondingly reduced, thereby effectively reducing the cost.
  • the screw compressor is a single-stage two-stage screw compressor. That is, a motor 4 is used to simultaneously drive the anode and rotor movements of the two-stage rotor assembly of the low-pressure stage and the high-pressure stage.
  • the symmetric arrangement structure of the single-stage two-stage rotor assembly of this embodiment is as shown in FIG. 1 .
  • the first stage rotor assembly 1 is a low pressure stage and the second stage rotor assembly 2 is a high pressure stage.
  • the low-pressure stage anode rotor and the low-pressure stage cathode rotor are installed inside the low-pressure stage body 3, the screw compressor adopts the lower slide valve structure, and the female rotor is on the left side of the anode rotor.
  • the high-pressure stage anode rotor and the high-pressure stage cathode rotor are installed in the high-pressure stage body 3.
  • the rotor is reversed, and the positions of the cathode rotor of the high pressure stage and the low pressure stage are different with respect to the anode of the self.
  • the high-pressure stage male rotor is driven by a motor 4 mounted in the body 3 of the motor 4, and the motor shaft 41 drives the low-pressure stage male rotor through a coupling.
  • the coupling 6 is inside the intermediate body 35 and finally assembled.
  • the fluid direction of the entire screw compressor is upward and upward.
  • the fluid direction of the first pressure stage rotor assembly 1 is up and down
  • the fluid direction of the second pressure stage rotor assembly 2 is downward and upward
  • a liquid filling port 36 is provided at the top of the intermediate body 35 to fill the low temperature.
  • the liquid deposition is mixed with the first pressure stage exhaust gas, and the motor 4 is cooled by the motor 4 cavity. Since the high pressure stage air inlet is arranged below, the refrigerant passing through the motor 4 cavity needs to flow to the lower side, and the refrigerant flow distance is increased, which is effective. Cooling the stator coil of the motor 4 can effectively reduce the exhaust temperature and improve energy efficiency.
  • the fluid outlets 34 are all disposed below, and the exhaust pressure is greater than the suction pressure.
  • the upper side of the rotor is too strong to be scratched with the rotor cavity.
  • the noise is too large. Therefore, the second step-stage rotor assembly 2 is rotated in the opposite direction as shown in FIG.
  • the low-pressure stage rotor rotates into the two rotors, the exhaust gas is downward, the rotor is forced upward, and the second-stage rotor assembly 2 rotates outside the rotor, the exhaust gas is upward, and the rotor is forced downward, two
  • the stage rotor is subjected to the opposite direction of force and is balanced by force. The torque is balanced by the coupling.
  • the oil passage is set to enter the low pressure stage from the side of the first pressure stage female rotor 12, the bottom of the first pressure stage anode rotor 11 is returned, and the high pressure stage enters from the side of the second pressure stage female rotor 22, and the second pressure stage anode rotor 21
  • the bottom is returned to the oil, and the oil is supplied by the pressure difference to ensure oil return.
  • the spiral directions of the spirals of the first pressure stage anode rotor 11 and the second pressure stage anode rotor 21 are opposite, and the first pressure stage cathode rotor 12 and the second pressure stage cathode rotor 22 are both located on the motor shaft 41. The same side of the axis.
  • the first pressure stage rotor assembly 1 and the second pressure stage rotor assembly 2 can be disposed as the refrigerant fluid inlet 33 at the top of the screw compressor and the refrigerant fluid outlet 34 at the screw compression regardless of the arrangement described above. The bottom of the machine.
  • Another embodiment of the present disclosure provides an air conditioning unit including the screw compressor provided by any one of the technical solutions of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种螺杆压缩机及空调机组,螺杆压缩机包括第一压级转子组件(1)、第二压级转子组件(2)和机体(3),第一压级转子组件(1)包括相互啮合的第一压级阳转子(11)和第一压级阴转子(12);第二压级转子组件(2)包括相互啮合的第二压级阳转子(21)和第二压级阴转子(22);第一压级转子组件(1)和第二压级转子组件(2)被设置为满足以下条件:第一压级转子组件(1)受到的其内压缩气体施加的轴向力与第二压级转子组件(2)受到的其内压缩气体施加的轴向力相反,从而螺杆压缩机在工作过程中受力更加平衡。

Description

螺杆压缩机及空调机组
本申请是以CN申请号为201810179519.9,申请日为2018年3月5日的申请为基 础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及压缩机领域,具体涉及一种螺杆压缩机及空调机组。
背景技术
单机双级螺杆压缩机包括一个电机以及两对转子。两对转子为低级转子和高级转子。每级转子都包括相互啮合的阴转子和阳转子。电机设于两对转子之间。电机包括贯穿的转轴,转轴的一端与高级阳转子键连接以实现传动,转轴的另一端与低级阳转子键连接以实现传动。单机双级螺杆压缩机工作时,两对转子同时工作。
发明人发现,相关技术中至少存在下述问题:螺杆压缩机的吸、排气方向与转子布置方式及转子螺旋线的旋转方向(简称为旋向)相关。单机双级螺杆压缩机的低级转子处设有下置滑阀,低级转子的布置方式为:从吸气侧看向排气侧,阴转子在阳转子左侧,冷媒上进下出。高级转子采用相同的布置方式,冷媒也是上进下出,则螺杆压缩机的流体出口布置在下方,不利于截止阀及止回阀安装。另一方面,对于电机在两对转子间的布置方式而言,转子旋向相同时,则轴向力方向相同,排气侧受力过大,影响压缩机运行稳定性。
发明内容
本公开提出一种螺杆压缩机及空调机组,用以优化螺杆压缩机的性能。
本公开提供一种螺杆压缩机,包括:
第一压级转子组件,包括相互啮合的第一压级阳转子和第一压级阴转子;
第二压级转子组件,包括相互啮合的第二压级阳转子和第二压级阴转子;以及
机体,内部设有所述第一压级转子组件和所述第二压级转子组件;
其中,所述第一压级转子组件和所述第二压级转子组件被设置为满足以下条件:所述第一压级转子组件受到的其内压缩气体施加的轴向力与所述第二压级转子组件受到的其内压缩气体施加的轴向力相反。
在一些实施例中,所述第一压级阳转子和所述第二压级阳转子同轴设置。
在一些实施例中,螺杆压缩机还包括:
电机,设于所述第一压级转子组件和所述第二压级转子组件之间,所述电机包括电机轴,所述电机轴的第一端与所述第一压级阳转子驱动连接,所述电机轴的第二端与所述第二压级阳转子驱动连接。
在一些实施例中,所述第一压级阳转子的螺旋线和第二压级阳转子的螺旋线的螺旋方向相同,所述第一压级阴转子和所述第二压级阴转子分别位于所述电机轴的轴心线的两侧。
在一些实施例中,所述机体包括:
第一压级机体,内部设有所述第一压级转子组件;以及
第二压级机体,内部设有第二压级轴承座,所述第二压级轴承座支撑所述第二压级转子组件,第二压级轴承座与所述第二压级机体一体成型。
在一些实施例中,所述机体设有流体入口,所述流体入口位于所述机体的顶部。
在一些实施例中,所述机体设有流体出口,所述流体出口位于所述机体的顶部。
在一些实施例中,所述第一压级阳转子的螺旋线和第二压级阳转子的螺旋线的螺旋方向相反,所述第一压级阴转子和所述第二压级阴转子都位于所述电机轴的轴心线的同侧。
在一些实施例中,所述螺杆压缩机包括多组所述第一压级转子组件和所述第二压级转子组件。
在一些实施例中,所述螺杆压缩机为单机双级螺杆压缩机。
在一些实施例中,所述电机轴的第一端与所述第一压级阳转子键连接,所述电机轴的第二端与所述第二压级阳转子通过联轴器连接。
本公开另一实施例提供一种空调机组,包括本公开任一技术方案所提供的螺杆压缩机。
上述技术方案,合理设置了第一压级转子组件和第二压级转子组件的各自转子的布置方式,使得第一压级转子组件受到的其内压缩气体施加的轴向力和第二压级转子组件受到的其内压缩气体施加的轴向力相反,如此平衡了螺杆压缩机的转子组件整体受到的轴向力,使得螺杆压缩机的工作过程中受力更加平衡,螺杆压缩机工作的可靠性更高。
附图说明
图1为本公开实施例提供的螺杆压缩机的结构剖视示意图;
图2为本公开实施例提供的螺杆压缩机的气体流向示意图。
具体实施方式
下面结合图1至图2对本公开提供的技术方案进行更为详细的阐述。
参见图1,本公开提供一种螺杆压缩机,包括第一压级转子组件1、第二压级转子组件2和机体3。第一压级转子组件1包括相互啮合的第一压级阳转子11和第一压级阴转子12,第二压级转子组件2包括相互啮合的第二压级阳转子21和第二压级阴转子22;机体3内部设有第一压级转子组件1和第二压级转子组件2。其中,第一压级转子组件1和第二压级转子组件2被设置为满足以下条件:第一压级转子组件1受到的其内压缩气体施加的轴向力与第二压级转子组件2受到的其内压缩气体施加的轴向力相反。
第一压级阳转子11由轴承51支撑,第一压级阴转子12由轴承52支撑,第二压级阳转子21由轴承53支撑,第二压级阴转子22由轴承54支撑。
气体在转子组件中压缩时,吸气侧的气体压力低,排气侧的气体压力高。故排气侧对阴、阳转子啮合腔内壁施加的作用力大于吸气侧对阴、阳转子啮合腔内壁施加的作用力。由于阴、阳转子的齿槽内壁是螺旋线形状的,故气体对啮合腔内壁施加的作用力具有沿着阴阳转子的轴心线的分量,该分量的力称为气体对转子施加的轴向力。轴向力相反是指轴向力的方向相反。
若以阴、阳转子啮合时,螺旋线接触形成的大致箭头状结构为例,第一压级转子组件1、第二压级转子组件2可选的的布置方式包括以下,图1所示的方式为,第一压级转子组件1和第二压级转子组件2的螺旋线近似相交形成的类似箭头的形状相对。另一种可选的方式为,第一压级转子组件1和第二压级转子组件2的螺旋线近似相交形成的类似箭头的形状相背离。
螺杆压缩机比如包括一组或多组转子组件,每组转子组件均包括一个第一压级转子组件1和一个第二压级转子组件2,每组转子组件的第一压级转子组件1和第二压级转子组件2收到的压缩气体的轴向力相反,以抵消。同一股气体顺序通过各转子组件实现压缩。
以两级螺杆压缩机为例,低压级转子组件作为第一压级转子组件1,高压级转子 组件作为第二压级转子组件2,气体顺次被第一压级转子组件1和第二压级转子组件2压缩。
以三级螺杆压缩机为例,比如包括A、B、C三个转子组件,气体先进入A中压缩、A排出的气体再经过B压缩、B排出的气体再经过C压缩。可以选择的形式包括:比如将A作为第一压级转子组件1,B作为第二压级组件。或者,将B作为第一压级转子组件1,C作为第二压级组件。或者,将A作为第一压级转子组件1,C作为第二压级组件。
以四级螺杆压缩机为例,比如包括D、E、F、G四个转子组件,气体先进入D中压缩,D排出的气体再经过E压缩,E排出的气体再经过F压缩,F排出的气体再经过G压缩。将四个转子组件分为两组,D和E为第一组,F和G为第二组。D为第一组的第一压级转子组件1,E为第一组的第二压级转子组件2。F为第二组的第一压级转子组件1,G为第二组的第二压级转子组件2。D和E各自的轴向力相反,F和G各自的轴向力相反。
在一些实施例中,第一压级阳转子11和第二压级阳转子21同轴设置,以更好地平衡螺杆压缩机转子组件的受力。
同轴设置使得第一压级转子组件1受到的轴向力和第二压级转子组件2受到的轴向力可以在同心轴上平衡。
参见图1,在一些实施例中,螺杆压缩机还包括电机4,设于第一压级转子组件1和第二压级转子组件2之间,电机4包括电机轴41,电机轴41的第一端与第一压级阳转子11驱动连接,电机轴41的第二端与第二压级阳转子21驱动连接。
电机轴41的转向、阴阳转子的螺旋线方向、以及阴转子相对于阳转子的位置都会影响气体流向。实际应用中,根据实际所需要的气流方向选定上述各个因素。
可选地,电机轴41的第一端与第一压级阳转子11直接键连接,电机轴41的第二端与第二压级阳转子21通过联轴器6连接。联轴器6用于平衡电机轴41两端转子组件因轴向力方向不重合产生的转矩。
下面介绍第一压级转子组件1、第二压级转子组件2的第一种布置方式:参见图1,在一些实施例中,第一压级阳转子11和第二压级阳转子21的螺旋线的螺旋方向相同,第一压级阴转子12和第二压级阴转子22分别位于电机轴41的轴心线的两侧。
第一压级转子组件1、第二压级转子组件2不管采用上述第一种或后述的第二种布置方式,可选地,都将整个螺杆压缩机设置为冷媒的流体入口33设于螺杆压缩机 的顶部、冷媒的流体出口34设于螺杆压缩机的底部,该设置方式,便于其他相关部件的安装。
参见图1,在一些实施例中,机体3包括第一压级机体31和第二压级机体32。第一压级机体31内设有第一压级转子组件1;第二压级机体32内设有第二压级轴承座7,第二压级轴承座7支撑第二压级转子组件2,第二压级轴承座与第二压级机体32一体成型。第二压级轴承座7内部安装有轴承53和轴承54。
参见图1,第一压级轴承座8内安装有轴承51和轴承52,轴承51支撑第一压级阳转子11,轴承52支撑第一压级阴转子12。
以上述的电机4设置在第一压级转子组件1和第二压级转子组件2之间为例,机体3还比如包括中间机体35,电机4仅壳体部分或全部位于中间机体35内,若进电机4壳体所包括的部分位于中间机体35中,电机轴41伸出中间机体35与电机4两侧的各转子组件驱动连接。若电机4全部位于中间机体35内,则可采用联轴器等部件实现电机轴41与电机4两侧的各转子组件的驱动连接。
在一些实施例中,机体3设有流体入口33,流体入口33位于机体3的顶部。
参见图2,流体入口33具体比如设于第一压级机体31,且位于第一压级机体31的顶部。以采用两级螺杆压缩机为例,第一压级为低压级,第二压级为高压级。低压级一般设有滑阀结构,滑阀结构位于第一压级转子组件1的下方,故此时将流体入口33设于顶部利于设置其他相关结构。
参见图2,在一些实施例中,机体3设有流体出口34,流体出口34位于机体3的顶部。图2中粗箭头示意了压缩气体的流向,细气体示意了补充液体的流入方向。
螺杆压缩机的流体入口33和流体出口34均布置在上方,如图2所示,使得压缩机整体宽度尺寸大大缩减,机组壳管尺寸相应减少,有效降低了成本。
在一些实施例中,螺杆压缩机为单机双级螺杆压缩机。即采用一个电机4同时带动低压级、高压级两个压级转子组件的阳转子运动。
下面介绍一种具体实施例。
本实施例单机双级转子组件对称布置结构如图1所示。第一压级转子组件1为低压级,第二压级转子组件2为高压级。低压级阳转子与低压级阴转子安装在低压级机体3内部,螺杆压缩机采用下置滑阀结构,阴转子在阳转子左侧。高压级阳转子与高压级阴转子安装在高压级机体3内。以电机轴41心线为参照,采用转子反置方式,高压级和低压级的阴转子相对于自身阳转子的位置不同。高压级阳转子通过安装在电 机4机体3内的电机4驱动,电机轴41通过联轴器驱动低压级阳转子。联轴器6在中间机体35内部,最后装配。
此时,整个螺杆压缩机的流体方向为上进上出。具体来说,第一压级转子组件1的流体方向为上进下出,第二压级转子组件2的流体方向为下进上出,在中间机体35的顶部设置补液口36,以补入低温液态冷媒。喷液沉降与第一压级排气混合,通过电机4腔时冷却电机4,由于高压级吸气口布置在下方,穿过电机4腔的冷媒需流动至下方,冷媒流动距离增加,可有效冷却电机4定子线圈,可有效降低排气温度,提高能效。
由于第一压级转子组件1、第二压级转子组件2对称布置,此时若采用相同旋向,流体出口34均设置在下方,排气压力大于吸气压力,此时转子受力方向均为从下至上,转子上侧受力过大容易与转子腔擦伤,联轴器偏移量过大时易造成噪音过大。因此,将第二压级转子组件2旋转方向相反设置,如图1所示。运行时,在俯视图方向上,低压级转子向两转子内旋转,排气向下,转子向上受力,第二压级转子组件2向转子外旋转,排气向上,转子向下受力,两级转子受力方向相反,受力平衡。转动力矩通过联轴器平衡。
此时油路设置为低压级从第一压级阴转子12侧进入,第一压级阳转子11底部回油,高压级从第二压级阴转子22侧进入,第二压级阳转子21底部回油,通过压差供油,可保证回油。
上述技术方案,通过采用转子对称布置,实现了两级转子受力平衡,提高压缩机运行稳定性。同时,压缩机流体入口33、流体出口34均布置在上方,便于维护且降低成本。
下面介绍第一压级转子组件1、第二压级转子组件2的第二种布置方式。
在一些实施例中,第一压级阳转子11和第二压级阳转子21的螺旋线的螺旋方向相反,第一压级阴转子12和第二压级阴转子22都位于电机轴41的轴心线的同侧。
第一压级转子组件1、第二压级转子组件2不管采用上述何种布置方式,都可以将整个螺杆压缩机设置为冷媒流体入口33位于螺杆压缩机的顶部、冷媒流体出口34位于螺杆压缩机的底部。
本实施例中的其他未述事宜,请参照上述实施例的描述。
本公开另一实施例提供一种空调机组,包括本公开任一技术方案所提供的螺杆压缩机。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本公开技术方案的精神,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (12)

  1. 一种螺杆压缩机,包括:
    第一压级转子组件(1),包括相互啮合的第一压级阳转子(11)和第一压级阴转子(12);
    第二压级转子组件(2),包括相互啮合的第二压级阳转子(21)和第二压级阴转子(22);以及
    机体(3),内部设有所述第一压级转子组件(1)和所述第二压级转子组件(2);
    其中,所述第一压级转子组件(1)和所述第二压级转子组件(2)被设置为满足以下条件:所述第一压级转子组件(1)受到的其内压缩气体施加的轴向力与所述第二压级转子组件(2)受到的其内压缩气体施加的轴向力相反。
  2. 根据权利要求1所述的螺杆压缩机,其中,所述第一压级阳转子(11)和所述第二压级阳转子(21)同轴设置。
  3. 根据权利要求1所述的螺杆压缩机,还包括:
    电机(4),设于所述第一压级转子组件(1)和所述第二压级转子组件(2)之间,所述电机(4)包括电机轴(41),所述电机轴(41)的第一端与所述第一压级阳转子(11)驱动连接,所述电机轴(41)的第二端与所述第二压级阳转子(21)驱动连接。
  4. 根据权利要求3所述的螺杆压缩机,其中,所述第一压级阳转子(11)的螺旋线和第二压级阳转子(21)的螺旋线的螺旋方向相同,所述第一压级阴转子(12)和所述第二压级阴转子(22)分别位于所述电机轴(41)的轴心线的两侧。
  5. 根据权利要求1所述的螺杆压缩机,其中,所述机体(3)包括:
    第一压级机体(31),内部设有所述第一压级转子组件(1);以及
    第二压级机体(32),内部设有第二压级轴承座,所述第二压级轴承座支撑所述第二压级转子组件(2),第二压级轴承座与所述第二压级机体(32)一体成型。
  6. 根据权利要求1所述的螺杆压缩机,其中,所述机体(3)设有流体入口(33),所述流体入口(33)位于所述机体(3)的顶部。
  7. 根据权利要求1所述的螺杆压缩机,其中,所述机体(3)设有流体出口(34),所述流体出口(34)位于所述机体(3)的顶部。
  8. 根据权利要求3所述的螺杆压缩机,其中,所述第一压级阳转子(11)的螺 旋线和第二压级阳转子(21)的螺旋线的螺旋方向相反,所述第一压级阴转子(12)和所述第二压级阴转子(22)都位于所述电机轴(41)的轴心线的同侧。
  9. 根据权利要求1所述的螺杆压缩机,其中,所述螺杆压缩机包括多组所述第一压级转子组件(1)和所述第二压级转子组件(2)。
  10. 根据权利要求1所述的螺杆压缩机,其中,所述螺杆压缩机为单机双级螺杆压缩机。
  11. 根据权利要求3所述的螺杆压缩机,其中,所述电机轴(41)的第一端与所述第一压级阳转子(11)键连接,所述电机轴(41)的第二端与所述第二压级阳转子(21)通过联轴器(6)连接。
  12. 一种空调机组,包括权利要求1-11任一所述的螺杆压缩机。
PCT/CN2018/120570 2018-03-05 2018-12-12 螺杆压缩机及空调机组 WO2019169922A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/969,952 US20200408210A1 (en) 2018-03-05 2018-12-12 Screw Compressor and Air Conditioning Unit
EP18909109.3A EP3722609B1 (en) 2018-03-05 2018-12-12 Screw compressor and air conditioning unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810179519.9 2018-03-05
CN201810179519.9A CN108167186B (zh) 2018-03-05 2018-03-05 螺杆压缩机及空调机组

Publications (1)

Publication Number Publication Date
WO2019169922A1 true WO2019169922A1 (zh) 2019-09-12

Family

ID=62511449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120570 WO2019169922A1 (zh) 2018-03-05 2018-12-12 螺杆压缩机及空调机组

Country Status (4)

Country Link
US (1) US20200408210A1 (zh)
EP (1) EP3722609B1 (zh)
CN (1) CN108167186B (zh)
WO (1) WO2019169922A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114033681A (zh) * 2021-11-08 2022-02-11 中北大学 一种基于螺旋型双爪转子的复合式真空泵

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108167186B (zh) * 2018-03-05 2024-07-12 珠海格力电器股份有限公司 螺杆压缩机及空调机组
CN109578275A (zh) * 2018-12-27 2019-04-05 珠海格力电器股份有限公司 双级螺杆压缩机及其使用的双级转子组安装结构
CN110388320A (zh) * 2019-08-26 2019-10-29 珠海格力电器股份有限公司 具有平衡轴向力功能的双级螺杆压缩机及空调机组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294184A (ja) * 1985-06-20 1986-12-24 Kobe Steel Ltd タンデム型スクリユ−圧縮機
CN102996450A (zh) * 2011-09-08 2013-03-27 上海汉钟精机股份有限公司 半封闭双螺杆压缩机
CN105805002A (zh) * 2016-05-03 2016-07-27 华东交通大学 双吸平衡式双螺杆压缩机
CN205937114U (zh) * 2016-08-02 2017-02-08 江森自控空调冷冻设备(无锡)有限公司 一种阳转子对称布置的螺杆压缩机
CN108167186A (zh) * 2018-03-05 2018-06-15 珠海格力电器股份有限公司 螺杆压缩机及空调机组
CN108167189A (zh) * 2018-03-05 2018-06-15 珠海格力电器股份有限公司 压缩机及空调机组

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718422B2 (ja) * 1988-04-27 1995-03-06 株式会社日立製作所 コンパウンド形二段スクリュー圧縮機
JP4265577B2 (ja) * 2005-06-30 2009-05-20 日立アプライアンス株式会社 二段スクリュー圧縮機
JP2007023848A (ja) * 2005-07-14 2007-02-01 Hitachi Ltd 二段スクリュー圧縮機
CN100340769C (zh) * 2005-12-22 2007-10-03 西安交通大学 一种用于高压系统的双螺杆压缩机
EP2518322B1 (en) * 2009-12-22 2019-01-23 Daikin Industries, Ltd. Single-screw compressor
CN202250858U (zh) * 2011-09-08 2012-05-30 上海汉钟精机股份有限公司 半封闭双螺杆压缩机
CN207920855U (zh) * 2018-03-05 2018-09-28 珠海格力电器股份有限公司 螺杆压缩机及空调机组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294184A (ja) * 1985-06-20 1986-12-24 Kobe Steel Ltd タンデム型スクリユ−圧縮機
CN102996450A (zh) * 2011-09-08 2013-03-27 上海汉钟精机股份有限公司 半封闭双螺杆压缩机
CN105805002A (zh) * 2016-05-03 2016-07-27 华东交通大学 双吸平衡式双螺杆压缩机
CN205937114U (zh) * 2016-08-02 2017-02-08 江森自控空调冷冻设备(无锡)有限公司 一种阳转子对称布置的螺杆压缩机
CN108167186A (zh) * 2018-03-05 2018-06-15 珠海格力电器股份有限公司 螺杆压缩机及空调机组
CN108167189A (zh) * 2018-03-05 2018-06-15 珠海格力电器股份有限公司 压缩机及空调机组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3722609A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114033681A (zh) * 2021-11-08 2022-02-11 中北大学 一种基于螺旋型双爪转子的复合式真空泵

Also Published As

Publication number Publication date
CN108167186B (zh) 2024-07-12
CN108167186A (zh) 2018-06-15
EP3722609A1 (en) 2020-10-14
EP3722609B1 (en) 2023-06-28
EP3722609A4 (en) 2020-11-25
US20200408210A1 (en) 2020-12-31

Similar Documents

Publication Publication Date Title
WO2019169922A1 (zh) 螺杆压缩机及空调机组
US8313312B2 (en) Screw compressor
CN111295518B (zh) 液冷式螺杆压缩机
WO2018024201A1 (en) A screw compressor with male and female rotors
JP2006342742A (ja) スクリュー圧縮機
CN100465450C (zh) 具有罗茨转子和螺旋转子的组合干式真空泵
KR101679860B1 (ko) 압축기
CN207920855U (zh) 螺杆压缩机及空调机组
JP2009074554A (ja) 多段階螺旋ねじロータ
CN107084134A (zh) 新型两级压缩涡旋式空气压缩机
CN104696227B (zh) 旋转式压缩机
CN215890463U (zh) 压缩机及空调器
JP2005171957A (ja) パッケージ型圧縮機
CN213928775U (zh) 一种改进型压缩机
US20060029510A1 (en) Motor-driven Roots compressor
US20110171015A1 (en) Centrifugal compressor and fabricating method thereof
KR101315842B1 (ko) 스크류 로터를 구비하는 진공 펌프
JP7179315B2 (ja) 多段ルーツ式ポンプ
CN102444564A (zh) 一体式真空泵
CN220059896U (zh) 一种多级螺杆压缩机
CN101205913B (zh) 涡旋压缩机功率可变装置
CN109654019A (zh) 一种卧式旋转式压缩机
TWI756050B (zh) 雙級螺旋式壓縮機
CN220890590U (zh) 一种蜗壳和离心式压缩机
CN104776025B (zh) 多螺杆压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018909109

Country of ref document: EP

Effective date: 20200709

NENP Non-entry into the national phase

Ref country code: DE