WO2019167233A1 - 駆動回路搭載電動機 - Google Patents

駆動回路搭載電動機 Download PDF

Info

Publication number
WO2019167233A1
WO2019167233A1 PCT/JP2018/007812 JP2018007812W WO2019167233A1 WO 2019167233 A1 WO2019167233 A1 WO 2019167233A1 JP 2018007812 W JP2018007812 W JP 2018007812W WO 2019167233 A1 WO2019167233 A1 WO 2019167233A1
Authority
WO
WIPO (PCT)
Prior art keywords
load side
side terminal
drive circuit
load
terminal block
Prior art date
Application number
PCT/JP2018/007812
Other languages
English (en)
French (fr)
Inventor
淳一 尾▲崎▼
雅大 加藤
和彦 堀田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020503215A priority Critical patent/JP6858925B2/ja
Priority to PCT/JP2018/007812 priority patent/WO2019167233A1/ja
Priority to CN201880089918.4A priority patent/CN111758207B/zh
Publication of WO2019167233A1 publication Critical patent/WO2019167233A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof

Definitions

  • the present invention relates to an internal rotation type drive circuit mounted motor.
  • a motor equipped with a drive circuit equipped with a rotor having a permanent magnet inside when the drive circuit is mounted inside, the drive circuit is arranged at a position that does not interfere with the stator, the coil, the rotary shaft and the bearing holding the rotary shaft. I have to do it.
  • the rotating shaft and the bearing are at the center in the radial direction of the drive circuit-equipped motor having a cylindrical shape, and if a large drive circuit is arranged avoiding the position of the rotating shaft and the bearing, The dimensions need to be increased.
  • Patent Document 1 discloses a motor with a drive circuit on which a circuit board is mounted using a space-wide central portion of the motor, and a motor in which the circuit board on which the drive circuit is mounted is attached to the outside in the axial direction of the bracket. Is disclosed.
  • a bearing housing that holds a bearing on the anti-load side that supports a rotating shaft is formed in a shape protruding inward in the axial direction of a resin bracket.
  • a circuit board provided with a rotor position detector for detecting the position of the rotor as a stator is attached to the outer end face in the axial direction of the bracket.
  • the position of the rotor is detected by the magnetic flux generated from the rotor.
  • the circuit board in order to suppress unnecessarily large size of the rotor in the axial direction of the bracket, it is necessary to bring the circuit board closer to the rotor side, and the stator coil also approaches the circuit board.
  • the stator coil approaches the circuit board drive circuit more than necessary, the drive circuit malfunctions due to an increase in electromagnetic noise caused by passing current through the stator coil, and the motor drive characteristics are reduced. There is a concern of deterioration.
  • the present invention has been made in view of the above, and it is an object of the present invention to obtain an electric motor with a drive circuit that can effectively use an internal space and mount a large circuit board without increasing the size or degrading characteristics.
  • a drive circuit-equipped electric motor includes a cylindrical rotor having a permanent magnet with a rotation shaft fixed at the center, and a rotation inside the outer shell.
  • the stator is disposed on the outer peripheral side of the child and includes an iron core and a plurality of coils wound around the winding frame via the winding frame.
  • the drive circuit-equipped motor is configured such that when one direction along the axial direction of the rotating shaft is the load side and the other direction along the axial direction of the rotating shaft is the anti-load side, the anti-load side that supports the rotating shaft Bearing, a metal bracket that is disposed on the opposite side of the rotor and the stator and that holds the bearing on the opposite side of the load, and protrudes toward the load side.
  • An anti-load side terminal block disposed on the anti-load side, and a circuit board on which the drive circuit is mounted and disposed on the anti-load side of the anti-load side terminal block.
  • the electric motor equipped with a drive circuit according to the present invention has an effect that an internal space can be effectively used and a large circuit board can be mounted without increasing the size or degrading characteristics.
  • FIG. 1 is a longitudinal sectional view of an electric motor equipped with a drive circuit according to a first embodiment of the present invention.
  • the perspective view which shows the stator of the electric motor mounted with a drive circuit concerning Embodiment 1 of this invention.
  • the perspective view which shows the bracket of the electric motor carrying a drive circuit concerning Embodiment 1 of this invention.
  • FIG. 1 A longitudinal sectional view of a drive circuit-mounted electric motor according to a second embodiment of the present invention.
  • the perspective view after the assembly which shows the load side terminal block of the electric motor mounted with a drive circuit concerning Embodiment 2 of this invention.
  • FIG. 1 is a longitudinal sectional view of a drive circuit-equipped electric motor 100 according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view showing the stator 1 of the drive circuit-equipped electric motor 100 according to the first embodiment of the present invention.
  • FIG. 2 shows a state where the coil 6 is not wound.
  • the drive circuit-equipped electric motor 100 is an internal rotation type permanent magnet synchronous motor in which the rotor 2 rotates in the stator 1.
  • the drive circuit-equipped electric motor 100 includes a frame 7 and a cover 22 that form an outline of the drive circuit-equipped electric motor 100.
  • the drive circuit-equipped motor 100 includes a stator 1 that has a cylindrical shape inside an outer shell that includes the frame 7 and the cover 22, and a rotation that has a cylindrical shape and is disposed inside the stator 1.
  • the rotor 2 and the rotating shaft 3 connected to the rotor 2 and extending along the central axis 2a of the rotor 2 are provided.
  • the stator 1, the rotor 2, and the rotating shaft 3 are arranged coaxially.
  • the axial direction of the stator 1, the rotor 2, and the rotating shaft 3 may be simply referred to as an axial direction.
  • the radial direction with the axial direction of the stator 1, the rotor 2, and the rotary shaft 3 as the central axis may be simply referred to as the radial direction.
  • the one end 3 a side of the rotating shaft 3 protrudes outside the frame 7.
  • a load (not shown) is connected to one end 3 a side of the rotating shaft 3 protruding to the outside of the frame 7.
  • the one direction side where the rotating shaft 3 protrudes outside the frame 7 that is, the lower side in FIG.
  • the stator 1 has a cylindrical shape and includes a stator core 4, an insulator 5, and a coil 6.
  • the stator 1 is press-fitted into a frame 7 that is an outer shell of the drive circuit-equipped electric motor 100 and is disposed around the rotor 2.
  • a plurality of magnet wires are turned between a stator core 4 formed by laminating a large number of thin electromagnetic steel plates and two stator slots 1a that are through holes provided in teeth of the stator core 4. It comprises a plurality of coils 6 which are wound stator windings. That is, the coil 6 is configured by winding a magnet wire around a winding frame disposed around the stator core 4.
  • the magnet wire is wound between two stator slots 1a via an insulator 5 which is a winding frame made of an insulator.
  • a first conductive pin 8a which is a conductive pin for coil connection for electrically connecting the coil 6 and a circuit board 20 described later, and a circuit board
  • a second conductive pin 8b which is a conductive pin for external power supply connection for electrically connecting 20 to an external power supply (not shown), extends and stands.
  • the first conductive pin 8a and the second conductive pin 8b are inserted on the upper surface of the insulator 5, respectively.
  • the first conductive pin 8a has the end of the coil 6 wound a plurality of times, and is electrically connected to the end of the coil 6 by soldering.
  • the coil 6 is constituted by concentrated winding wound around two adjacent stator slots 1a of the stator core 4.
  • the dimension of the coil 6 in the axial direction of the stator 1 can be made smaller than the distributed winding in which the coils 6 are wound around the stator slots 1a separated by two or more.
  • the coil 6 comprised by concentrated winding has the merit which can make the outer diameter size of the electric motor 100 with a drive circuit small.
  • the coil 6 configured by concentrated winding is adopted, and the outer diameter dimension equivalent to that when the coil configured by distributed winding is used can be accommodated while the circuit board 20 is mounted. Therefore, it is suitable for replacement with a permanent magnet synchronous motor that employs a coil composed of distributed winding.
  • the rotor 2 is rotatably supported by two bearings which are bearings arranged at positions sandwiching the rotor 2 in the axial direction of the rotating shaft 3. That is, the rotor 2 is rotatably supported by the first bearing 10a that is a first bearing and the second bearing 10b that is a second bearing.
  • the first bearing 10 a on the load side of the bearing is fixed by fitting an outer ring into a recess formed in the central part of the frame 7 constituting the outer shell, and is fixed by fitting the inner ring on the rotary shaft 3. That is, the first bearing 10 a has an outer ring supported by the inner peripheral surface of the first bearing housing 11 a that is a first bearing housing provided on the frame 7.
  • the first bearing housing 11 a protrudes toward the inner side of the frame 7 in the axial direction of the rotary shaft 3, that is, the anti-load side, and is formed in an annular shape.
  • the second bearing 10b on the anti-load side of the bearing is fixed by fitting an outer ring into a recess formed in the central part of the metal bracket 9 that supports the second bearing 10b on the anti-load side of the rotor 2.
  • the inner ring is fitted and fixed to the rotary shaft 3. That is, the outer ring of the second bearing 10b is supported by the second bearing housing 11b, which is a second bearing housing provided in the bracket 9.
  • the second bearing housing 11 b of the bracket 9 is formed in an annular shape so as to protrude toward the inner side of the bracket 9, that is, the load side in the axial direction of the rotating shaft 3.
  • the end surface in the axial direction of the bracket 9, that is, the end surface 9a on the side opposite to the load of the bracket is substantially flat.
  • the rotor 2 has a permanent magnet. That is, the rotor 2 is a plastic magnet manufactured by mixing a raw material of a permanent magnet with resin and molding the magnetic pole in which the N pole and the S pole are alternately switched to the outer diameter side at equal intervals in the outer circumferential direction. Have.
  • the rotor 2 consists entirely of a plastic magnet, a part may not be a plastic magnet. That is, the rotor 2 has a plastic magnet.
  • a rotation shaft 3 is inserted in the center of the rotor 2.
  • FIG. 3 is a perspective view showing the insulating member 16 of the drive circuit-equipped electric motor 100 according to the first embodiment of the present invention.
  • An insulating member 16 having a hole through which the first conductive pin 8a passes and a hole through which the second conductive pin 8b passes is disposed coaxially with the stator 1 on the end face and side face of the insulator 5 on the side opposite to the load. ing.
  • the insulating member 16 has a flat portion 16a, a side surface portion 16b, and a protruding portion 16c.
  • the flat portion 16 a has a diameter substantially equal to the outer diameter of the insulator 5 and covers the non-load side of the insulator 5.
  • the side surface portion 16b has an inner diameter larger than the outer diameter of the insulator 5 and extends from the flat portion 16a to cover the side surface of the insulator 5.
  • the protruding portion 16c is provided so as to protrude from the flat portion 16a to the anti-load side, and includes a hole through which the first conductive pin 8a or the second conductive pin 8b passes, and the first conductive pin 8a and the second conductive pin 8a penetrating the protruding portion 16c.
  • the conductive pin 8b is protected.
  • FIG. 4 is a perspective view showing the bracket 9 of the drive circuit-equipped electric motor 100 according to the first embodiment of the present invention.
  • a metal bracket 9 having a through hole 9b through which the first conductive pin 8a or the second conductive pin 8b and the protruding portion 16c of the insulating member 16 penetrate is disposed on the side opposite to the load of the insulating member 16. .
  • the end surface 9a on the non-load side of the bracket in the axial direction of the rotating shaft 3, that is, the upper surface of the bracket 9 is a substantially flat surface.
  • the metal bracket 9 is disposed on the side opposite to the load of the insulating member 16, so that electromagnetic noise generated by flowing current through the coil 6 of the stator 1 is reflected or reflected by the bracket 9. Absorbed. For this reason, in the drive circuit-equipped electric motor 100, the electromagnetic noise can be blocked by the bracket 9, and the electromagnetic noise can be prevented from adversely affecting the side opposite to the load than the bracket 9.
  • FIG. 5 is a perspective view showing the non-load-side terminal block 13a of the drive circuit-equipped electric motor 100 according to the first embodiment of the present invention.
  • the anti-load side terminal which is a first terminal block provided with a hole through which the first conductive pin 8a or the second conductive pin 8b and the protruding portion 16c of the insulating member 16 pass.
  • a table 13a is provided.
  • the anti-load side terminal block 13a has an outer diameter substantially equal to the outer diameter of the end surface 9a on the anti-load side of the bracket, covers the end surface 9a on the anti-load side of the bracket, and is arranged coaxially with the bracket 9. Yes.
  • the anti-load side terminal block 13a is disposed on the anti-load side of the bracket 9 in the axial direction.
  • the anti-load side terminal block 13a is formed of an insulating material such as a resin in a shallow container shape having a circular shape.
  • the anti-load side terminal block 13a is provided with a plurality of anti-load side terminals 14a that are provided with holes through which the first conductive pins 8a or the second conductive pins 8b penetrate and are used for connection. It is accommodated in the recessed portion.
  • the anti-load side terminal block 13a is provided with a power lead wire 17 connected from the anti-load side terminal 14a to an external power source (not shown) accommodated in a recess provided in the anti-load side terminal block 13a.
  • the circuit board 20 on which the drive circuit is mounted and controls the driving of the drive circuit-equipped electric motor 100 is mounted on the anti-load side terminal block 13a along the inner peripheral surface 23 of the peripheral wall 19 to be described later.
  • the circuit board 20 is disposed on the anti-load side of the anti-load side terminal block 13a, more specifically, inside the anti-load side terminal block 13a and on the anti-load side of the anti-load side terminal block 13a.
  • the first conductive pin 8a and the second conductive pin 8b pass through the bottom of the anti-load side terminal block 13a and project to the anti-load side in the axial direction.
  • the first conductive pin 8a, the second conductive pin 8b, the power supply lead wire 17, and the electrical connection of the drive circuit of the circuit board 20 are performed using the anti-load side terminal 14a.
  • the second conductive pin 8b and the non-load side terminal 14a are electrically connected by soldering or welding.
  • the anti-load side terminal 14a and the power supply lead wire 17 are electrically connected by soldering or welding.
  • the anti-load side terminal 14a is disposed in a state of being accommodated in a terminal accommodating portion 18a that is a recess for accommodating the anti-load side terminal 14a.
  • the depth of the terminal storage portion 18a is greater than the thickness of the anti-load side terminal 14a, and the anti-load side terminal 14a stored in the terminal storage portion 18a is the inner bottom surface 21 of the anti-load side terminal block 13a. It does not protrude from.
  • FIG. 6 is a diagram showing another form of the anti-load side terminal 14a according to the first embodiment of the present invention.
  • the anti-load side terminal 14a may be a round crimp terminal as shown in FIG. 6 instead of a plate-like terminal as shown in FIG.
  • the second conductive pin 8b, the power supply lead wire 17, and the drive circuit of the circuit board 20 can be electrically connected using the anti-load side terminal 14a. is there.
  • the power lead wire 17 is routed to the outside of the anti-load side terminal block 13a in a state of being housed in a power lead wire housing groove 18b that is a groove for housing the power lead wire 17.
  • the depth of the power supply lead storage groove 18b is not less than the thickness dimension of the power supply lead wire 17, and the power supply lead 17 stored in the power supply lead storage groove 18b is included in the anti-load side terminal block 13a. It does not protrude from the bottom surface 21.
  • the power supply lead storage groove 18b is preferably set to a height that allows only one power supply lead 17 to enter one groove.
  • FIG. 7 is a diagram schematically showing an electrical connection path in the drive circuit-equipped motor 100 according to the first embodiment of the present invention.
  • the external power supply, the power supply lead wire 17, the anti-load side terminal 14a, the second conductive pin 8b, the circuit board 20, the first conductive pin 8a, and the coil 6 are electrically connected in this order.
  • a commercial AC voltage is supplied to the circuit board 20 from an external power supply via the power supply lead wire 17, the anti-load side terminal 14 a and the second conductive pin 8 b.
  • the drive circuit-equipped electric motor 100 is a sensorless motor that is driven by so-called position sensorless control that does not use a position detection sensor such as a hall sensor, an encoder, or a resolver that detects the position of the rotor 2, for example.
  • the sensorless drive system in the drive circuit-equipped electric motor 100 is not limited to the above method.
  • the periphery of the anti-load side terminal block 13a is surrounded by a peripheral wall 19.
  • the power supply lead wire 17 disposed in the power supply lead storage groove 18b is drawn out of the anti-load side terminal block 13a from a cutout portion 19a in which a part of the peripheral wall 19 is cut out.
  • the anti-load side terminal block 13a and the circuit board 20 disposed on the anti-load side of the anti-load side terminal block 13a are covered with a cover 22 fitted in the bracket 9, thereby protecting the parts.
  • the cover 22 is provided with a lead-out portion 22a for drawing the power supply lead wire 17 to the outside.
  • the drive circuit and the coil 6 of the circuit board 20 are arranged by disposing the anti-load side terminal block 13a on which the circuit board 20 is arranged on the anti-load side of the end face 9a on the anti-load side of the bracket. A long physical distance can be secured.
  • the drive circuit-equipped electric motor 100 it is possible to prevent electromagnetic noise generated by flowing current through the coil 6 of the stator 1 from adversely affecting the drive circuit of the circuit board 20, and a circuit caused by the electromagnetic noise. The malfunction of the drive circuit of the substrate 20 can be prevented.
  • the metal bracket 9 is arranged on the side opposite to the load of the insulating member 16, thereby generating an electromagnetic wave generated by passing a current through the coil 6 of the stator 1. Noise can be reflected or absorbed by the bracket 9, and electromagnetic noise from the coil 6 toward the anti-load side can be blocked by the bracket 9.
  • the electromagnetic noise can be prevented from adversely affecting the drive circuit of the circuit board 20 disposed on the side opposite to the load from the bracket 9, and the circuit board 20 caused by the electromagnetic noise can be prevented. It is possible to prevent the malfunction of the driving circuit.
  • the drive characteristics are not deteriorated due to electromagnetic noise generated by passing a current through the coil 6 of the stator 1. Therefore, in the drive circuit-equipped electric motor 100 according to the first embodiment, deterioration of the drive characteristics of the drive circuit of the circuit board 20 due to electromagnetic noise generated by flowing current through the coil 6 of the stator 1 is prevented. It is possible to realize an electric motor equipped with a drive circuit that is less prone to malfunction and has good drive circuit drive characteristics and improved safety and quality.
  • the circuit board 20 is disposed on the end surface 9a on the non-load side of the bracket that is substantially flat on the non-load side of the bracket 9.
  • the load side terminal block 13a is arranged.
  • the anti-load side terminal block 13a has an outer diameter that is substantially equal to the outer diameter of the end surface 9a on the anti-load side of the bracket. Therefore, when the large circuit board 20 is mounted, the drive circuit mounted electric motor 100 in which the rotating shaft 3 and the second bearing 10b are disposed while avoiding contact with the rotating shaft 3 and the second bearing 10b.
  • the circuit board 20 can be arranged using the central region in the radial direction. Thereby, in the drive circuit mounted motor 100, a small drive circuit mounted motor having a small size in the radial direction of the drive circuit mounted motor 100 can be realized.
  • the larger circuit board 20 can be mounted without increasing the size of the drive circuit mounted motor 100 in the radial direction. Is possible. That is, the drive circuit-equipped electric motor 100 can mount a larger circuit board 20 by effectively utilizing the internal space.
  • a resin bracket when used, it is difficult to obtain the position accuracy of the bearing housing that requires high position accuracy. For this reason, generally, a resin bracket provided with a bearing housing is formed by adding a cutting process after injection molding or by integrally forming a metal bearing housing. For this reason, the cost of the resin bracket increases. In addition, since the resin bracket must withstand the load applied to the rotary shaft 3, there is a concern that the molding time will increase due to thickening or the cost will increase due to the selection of a strong material.
  • the drive circuit-equipped electric motor 100 according to the first embodiment uses the metal bracket 9
  • the electromagnetic noise described above is suppressed while keeping the cost low compared to the case of using the resin bracket.
  • the blocking effect is obtained.
  • the drive circuit-equipped electric motor 100 according to the first embodiment, the internal space is effectively used, it is resistant to electromagnetic noise from the coil 6 of the stator 1, and is large without increasing its size or deterioration of characteristics.
  • An electric motor with a drive circuit on which the circuit board 20 can be mounted is obtained at low cost.
  • FIG. FIG. 8 is a longitudinal sectional view of the drive circuit-equipped electric motor 200 according to the second embodiment of the present invention.
  • FIG. 9 is a perspective view after assembly showing the load-side terminal block 13b of the drive circuit-equipped electric motor 200 according to the second embodiment of the present invention.
  • the drive circuit-equipped electric motor 200 according to the second embodiment is different from the drive circuit-equipped electric motor 100 according to the first embodiment in that it has a load-side terminal block 13b which is a second terminal block.
  • the third conductive pin 8a is replaced with a third conductive pin 8c and a fourth conductive pin 8d
  • the fifth conductive pin 8e is replaced with a fifth conductive pin 8e.
  • the drive circuit-equipped electric motor 200 includes a hole through which the fourth conductive pin 8d passes on the end surface on the anti-load side of the insulator 5 on the anti-load side of the coil 6, and the anti-load-side terminal block 13a.
  • a load-side terminal block 13b which is a terminal block disposed relatively on the load side, is provided.
  • the load side terminal block 13b is disposed in a region outside the second bearing housing 11b in the radial direction of the stator 1.
  • the load side terminal block 13b is formed of an insulating material such as a resin in a shallow container shape having an annular shape.
  • the inner diameter of the load side terminal block 13b and the outer diameter of the second bearing housing 11b are substantially equal, and the load side terminal block 13b and the second bearing housing 11b are disposed with their axes aligned.
  • the load side terminal block 13b is press-fitted on the outer peripheral side of the second bearing housing 11b.
  • the load side terminal block 13b is arranged so that the axis of the rotor 2 and the stator 1 coincide with each other.
  • the load-side terminal block 13b is provided from the outer peripheral side region of the rotor 2 in the radial direction of the rotating shaft 3 to the stator 1 between the end surface 9a on the anti-load side of the bracket and the coil 6 on the anti-load side. It has been.
  • the load side terminal block 13b is provided with a hole through which the third conductive pin 8c passes and a hole through which the fourth conductive pin 8d passes, and a plurality of load side terminals 14b used for connection, and a coil 6 if necessary.
  • a temperature fuse 15 that is a device for preventing an excessive temperature increase of the coil 6 by detecting an excessive temperature increase of the coil 6 is housed and disposed in a recess provided in the load side terminal block 13b.
  • the third conductive pin 8c and the fourth conductive pin 8d are coil connection conductive pins for electrically connecting the coil 6 and the circuit board 20.
  • the third conductive pin 8c is inserted on the inner bottom surface of the load-side terminal block 13b on the anti-load side of the insulator 5 and extends to the anti-load side.
  • the third conductive pin 8c protrudes in the axial direction to the anti-load side of the circuit board 20.
  • the third conductive pin 8c extends from the inner bottom surface of the load side terminal block 13b through the load side terminal 14b, the insulating member 16, the bracket 9, the bottom surface of the antiload side terminal block 13a, and the circuit board 20 to the antiload side.
  • the circuit board 20 and the load side terminal 14b are electrically connected.
  • the fourth conductive pin 8d is erected on the upper surface of the insulator 5, that is, on the antiload side surface of the insulator 5, extending to the antiload side.
  • the fourth conductive pin 8d extends from the insulator 5 through the bottom surface of the load side terminal block 13b and the load side terminal 14b and extends to the anti-load side, and electrically connects the coil 6 and the load side terminal 14b.
  • the fourth conductive pin 8d has the end of the coil 6 wound a plurality of times, and is electrically connected to the end of the coil 6 by soldering.
  • the end of the coil 6 is not wound around the third conductive pin 8c.
  • the third conductive pin 8c is electrically connected to the coil 6 via the load side terminal 14b and the fourth conductive pin 8d, and is not directly connected to the coil 6.
  • the fifth conductive pin 8e is an external power connection conductive pin for electrically connecting the circuit board 20 to an external power source (not shown).
  • the fifth conductive pin 8e is inserted on the inner bottom surface of the load side terminal block 13b on the side opposite to the load side of the insulator 5 and extends to the side opposite to the load.
  • the fifth conductive pin 8e protrudes in the axial direction to the anti-load side of the circuit board 20.
  • the fifth conductive pin 8e passes through the insulating member 16, the bracket 9, the bottom surface of the anti-load side terminal block 13a, the anti-load side terminal 14a, and the circuit board 20 from the inner bottom surface of the load side terminal block 13b to the anti load side. Extendingly arranged, the anti-load side terminal 14a and the circuit board 20 are electrically connected.
  • the insulating member 16 is provided with a hole through which the third conductive pin 8c penetrates and a hole through which the fifth conductive pin 8e penetrates.
  • the bracket 9 is provided with a hole through which the third conductive pin 8c passes and a hole through which the fifth conductive pin 8e passes.
  • the 4th conductive pin 8d connected to the coil 6, the temperature fuse 15, the some 3rd conductive pin 8c connected to the drive circuit of the circuit board 20, and the electronic mounted inside an electric motor Electrical connection of components and the like is performed using the load side terminal 14b.
  • the fourth conductive pin 8d and the load side terminal 14b are electrically connected by soldering or welding.
  • the third conductive pin 8c and the load side terminal 14b are electrically connected by soldering or welding.
  • the load side terminal 14b and the thermal fuse 15 are electrically connected by soldering or welding.
  • Each of the plurality of load side terminals 14b is individually set with an electrical connection target depending on where it is arranged.
  • each of the plurality of third conductive pins 8c is individually set for an electrical connection object depending on where the third conductive pins 8c are arranged.
  • FIG. 10 is a diagram schematically showing an electrical connection path in the drive circuit-equipped electric motor 200 according to the second embodiment of the present invention.
  • the anti-load side terminal 14a that is electrically connected to the external power source via the power lead 17 is disposed on the anti-load side terminal block 13a.
  • the fifth conductive pin 8e electrically connects the anti-load side terminal 14a and the circuit board 20. That is, in the drive circuit-equipped electric motor 200, as in the case of the first embodiment, the power supply lead wire 17, the circuit board 20, and the anti-load side terminal 14a are arranged on the anti-load side terminal block 13a.
  • the circuit board 20 is connected to an external power supply via the power supply lead wire 17.
  • the circuit board 20 is electrically connected to the load side terminal 14b by the third conductive pin 8c.
  • the load side terminal 14b is electrically connected to the coil 6 by the fourth conductive pin 8d.
  • the external power source the power supply lead wire 17, the anti-load side terminal 14a, the fifth conductive pin 8e, the circuit board 20, the third conductive pin 8c, the load side terminal 14b, and the fourth conductive pin 8d.
  • the coil 6 is electrically connected in this order.
  • a commercial AC voltage is supplied to the circuit board 20 from an external power source through the power supply lead wire 17, the anti-load side terminal 14 a and the fifth conductive pin 8 e.
  • the drive circuit-mounted electric motor 200 when a commercial AC voltage is input to the circuit board 20 from the outside, the commercial AC voltage is converted into a DC voltage by the power supply circuit mounted on the circuit board 20. Then, the third conductive pin 8c, the load-side terminal 14b, and the fourth conductive pin 8d that are electrically connected by switching the DC voltage in the control circuit of the drive circuit mounted on the circuit board 20 are performed. Then, a current in a specific direction flows from the circuit board 20 to the coil 6 of the stator 1, and the rotor 2 rotates.
  • the drive circuit-equipped electric motor 200 according to the second embodiment described above has the same effect as the drive circuit-equipped electric motor 100 according to the first embodiment.
  • the drive circuit-equipped motor 200 effectively uses the space between the coil 6 and the circuit board 20 while ensuring a longer physical distance between the coil 6 and the circuit board 20 than the drive circuit-equipped motor 100.
  • a load-side terminal block 13b is disposed between the end surface 9a on the non-load side of the bracket and the coil 6 on the anti-load side.
  • the fourth conductive pin 8da and the fourth conductive pin 8db which are electrically connected to different coils 6 (not shown) wound around different stator slots 1a in the stator 1, are connected to the load side terminals. 14ba, the load side terminal 14bb and the electrical connection component 12 are electrically connected.
  • the thermal fuse 15 which is a device for preventing excessive temperature rise of the coil 6 on the load side terminal block 13b as required.
  • the thermal fuse 15 is arrange
  • the drive circuit-equipped electric motor 200 can be realized as a drive circuit-equipped electric motor that is less prone to malfunction and has good drive circuit drive characteristics and improved safety and quality.
  • FIG. 11 is a longitudinal sectional view of a drive circuit-equipped electric motor 300 according to the third embodiment of the present invention.
  • FIG. 12 is a top view showing the embedded magnet type rotor 25 of the drive circuit-equipped electric motor 300 according to the third embodiment of the present invention.
  • the drive circuit mounted motor 300 according to the third embodiment is different from the drive circuit mounted motor 200 according to the second embodiment in that an embedded magnet type rotor 25 is provided instead of the rotor 2.
  • the embedded magnet type rotor 25 is arranged at a plurality of locations at predetermined intervals on a rotor core 26 formed by laminating a large number of thin electromagnetic steel plates having the same shape having a ring shape as shown in FIG.
  • the permanent magnet insertion hole 27 includes a permanent magnet 28 embedded in the permanent magnet 28. That is, the embedded magnet type rotor 25 is an embedded magnet type rotor in which permanent magnets 28 are embedded in a plurality of locations of a rotor core 26 formed by laminating a plurality of electromagnetic steel plates having the same ring shape. It is.
  • the drive circuit-equipped electric motor 300 according to the third embodiment described above has the same effect as the drive circuit-equipped electric motor 100 according to the first embodiment.
  • the configuration shown in the above embodiment shows an example of the contents of the present invention, and the techniques of the above embodiment can be combined with each other or can be combined with another known technique. However, part of the configuration can be omitted or changed without departing from the gist of the present invention.

Abstract

駆動回路搭載電動機(100)は、外郭の内部に、中央に回転軸(3)が固定された永久磁石を有する筒状形状の回転子(2)と、回転子(2)の外周側に配置され、鉄心と、巻枠を介して巻枠に巻回された複数のコイル(6)とを有する固定子(1)と、を備える。また、駆動回路搭載電動機(100)は、回転軸(3)の軸方向に沿った一方向を負荷側とし、回転軸(3)の軸方向に沿った他方向を反負荷側とした場合に、回転軸(3)を支持する反負荷側のベアリングと、回転子(2)および固定子(1)よりも反負荷側に配置されて、反負荷側のベアリングを保持するベアリングハウジングが負荷側に突出して設けられた金属製のブラケット(9)と、軸方向においてブラケット(9)よりも反負荷側に配置された反負荷側端子台(13a)と、反負荷側端子台(13a)における反負荷側に配置されて駆動回路が搭載された回路基板(20)と、を備える。

Description

駆動回路搭載電動機
 本発明は、内回転式の駆動回路搭載電動機に関するものである。
 内部に永久磁石を有する回転子を備えた駆動回路搭載電動機において、内部に駆動回路を搭載する場合は、固定子、コイル、回転軸および回転軸を保持するベアリングに干渉しない位置に駆動回路を配置しなくてはならない。回転軸およびベアリングは、円筒形状を有する駆動回路搭載電動機の半径方向における中心部にあり、回転軸およびベアリングの位置を避けて大型の駆動回路を配置しようとすると、駆動回路搭載電動機の半径方向の寸法を大きくする必要がある。
 特許文献1には、電動機のスペース的に広い中心部を利用して回路基板を搭載する駆動回路搭載電動機であり、駆動回路が搭載された回路基板がブラケットの軸方向の外側に取り付けられたモータが開示されている。特許文献1に開示されたモータにおいては、回転軸を支持する反負荷側の軸受けを保持するベアリングハウジングが、樹脂製のブラケットの軸方向の内方に突出した形に形成されている。また、固定子であるロータの位置を検出するためのロータ位置検出器を備えた回路基板が、ブラケットの軸方向の外側端面に取り付けられている。
特許第5473968号公報
 ここで、上記特許文献1のモータによれば、ロータから発生する磁束によってロータの位置検出を行う。そして、ロータの位置検出の精度を向上させるためには、ロータ位置検出器を備えた回路基板とロータとを近づける必要がある。ここで、ブラケットの軸方向における、ロータの必要以上の大型化を抑えるためには回路基板をロータ側に近づける必要があり、固定子のコイルも回路基板に近づくことになる。そして、固定子のコイルが必要以上に回路基板の駆動回路に近づく場合には、ステータのコイルに電流を流すことで発生する電磁ノイズの増加による駆動回路の誤動作が発生してモータの駆動特性が劣化する懸念がある。
 本発明は、上記に鑑みてなされたものであって、内部の空間を有効活用し、大型化または特性の劣化を伴わずに大型の回路基板を搭載可能な駆動回路搭載電動機を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる駆動回路搭載電動機は、外郭の内部に、中央に回転軸が固定された永久磁石を有する筒状形状の回転子と、回転子の外周側に配置され、鉄心と、巻枠を介して巻枠に巻回された複数のコイルとを有する固定子と、を備える。また、駆動回路搭載電動機は、回転軸の軸方向に沿った一方向を負荷側とし、回転軸の軸方向に沿った他方向を反負荷側とした場合に、回転軸を支持する反負荷側のベアリングと、回転子および固定子よりも反負荷側に配置されて、反負荷側のベアリングを保持するベアリングハウジングが負荷側に突出して設けられた金属製のブラケットと、軸方向においてブラケットよりも反負荷側に配置された反負荷側端子台と、反負荷側端子台における反負荷側に配置されて駆動回路が搭載された回路基板と、を備える。
 本発明にかかる駆動回路搭載電動機は、内部の空間を有効活用し、大型化または特性の劣化を伴わずに大型の回路基板を搭載可能である、という効果を奏する。
本発明の実施の形態1にかかる駆動回路搭載電動機の縦断面図 本発明の実施の形態1にかかる駆動回路搭載電動機の固定子を示す斜視図 本発明の実施の形態1にかかる駆動回路搭載電動機の絶縁部材を示す斜視図 本発明の実施の形態1にかかる駆動回路搭載電動機のブラケットを示す斜視図 本発明の実施の形態1にかかる駆動回路搭載電動機の反負荷側端子台を示す斜視図 本発明の実施の形態1にかかる反負荷側端子の他の形態を示す図 本発明の実施の形態1にかかる駆動回路搭載電動機における電気的な接続経路を模式的に示す図 本発明の実施の形態2にかかる駆動回路搭載電動機の縦断面図 本発明の実施の形態2にかかる駆動回路搭載電動機の負荷側端子台を示す組立後の斜視図 本発明の実施の形態2にかかる駆動回路搭載電動機における電気的な接続経路を模式的に示す図 本発明の実施の形態3にかかる駆動回路搭載電動機の縦断面図 本発明の実施の形態3にかかる駆動回路搭載電動機の埋込磁石型回転子を示す上面図
 以下に、本発明の実施の形態にかかる駆動回路搭載電動機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる駆動回路搭載電動機100の縦断面図である。図2は、本発明の実施の形態1にかかる駆動回路搭載電動機100の固定子1を示す斜視図である。なお、図2においては、コイル6が巻回されていない状態を示している。
 本実施の形態1にかかる駆動回路搭載電動機100は、回転子2が固定子1の中で回る内回転式の永久磁石同期電動機である。駆動回路搭載電動機100は、駆動回路搭載電動機100の外郭を構成するフレーム7とカバー22とを備える。また、駆動回路搭載電動機100は、フレーム7とカバー22とで構成される外郭の内部に、筒状形状を呈する固定子1と、筒状形状を呈して固定子1の内側に配置される回転子2と、回転子2に連結されて回転子2の中心軸2aに沿って延びる回転軸3と、を備える。固定子1と回転子2と回転軸3とは、同軸状に配設されている。以下、固定子1と回転子2と回転軸3との軸方向を単に軸方向と呼ぶ場合がある。また、固定子1と回転子2と回転軸3との軸方向を中心軸とした径方向を単に径方向と呼ぶ場合がある。
 回転軸3の一端3a側は、フレーム7の外部に突出している。フレーム7の外部に突出した回転軸3の一端3a側には、図示しない負荷が接続される。以下では、回転軸3の軸方向に沿った方向において、回転軸3がフレーム7の外部に突出した一方向側、すなわち図1における下側を負荷側と呼び、回転軸3がフレーム7の外部に突出した方向と反対方向である他方向側、すなわち図1における上側を反負荷側と呼ぶ場合がある。
 固定子1は、筒状形状を呈し、固定子鉄心4とインシュレータ5とコイル6とを有する。固定子1は、駆動回路搭載電動機100の外郭となるフレーム7に圧入され、回転子2の周囲に配設されている。固定子1は、薄い電磁鋼板が多数積層されて構成された固定子鉄心4と、固定子鉄心4のティースに設けられた貫通孔である2つの固定子スロット1aの間にマグネットワイヤが複数ターン巻回された固定子巻線である複数のコイル6とから構成されている。すなわち、コイル6は、固定子鉄心4の周りに配置された巻枠にマグネットワイヤが巻回されて構成されている。マグネットワイヤは、絶縁体からなる巻枠であるインシュレータ5を介して、2つの固定子スロット1aの間に巻回されている。
 また、インシュレータ5の上面、すなわちインシュレータ5の反負荷側には、コイル6と後述する回路基板20とを電気的に接続するためのコイル接続用導電ピンである第1導電ピン8aと、回路基板20を図示しない外部電源に電気的に接続するための外部電源接続用導電ピンである第2導電ピン8bと、が延びて立てられている。第1導電ピン8aと、第2導電ピン8bとは、それぞれインシュレータ5の上面に挿されている。第1導電ピン8aは、コイル6の端部が複数回にわたって巻回されており、はんだ付けによりコイル6の端部と電気的接続がなされている。
 コイル6は、固定子鉄心4の隣り合う2つの固定子スロット1aに巻回された集中巻により構成されている。集中巻は、コイル6が2つ以上離れた固定子スロット1aに巻回される分布巻よりも、固定子1の軸方向におけるコイル6の寸法を小さくできる。このため、集中巻で構成されたコイル6は、駆動回路搭載電動機100の外径寸法を小さくできるメリットがある。
 駆動回路搭載電動機100では、集中巻で構成されたコイル6を採用し、回路基板20を搭載しながらも、分布巻で構成されたコイルを用いる場合と同等の外径寸法に収めることが可能なため、分布巻で構成されたコイルを採用している永久磁石同期電動機との置き換えに適している。
 回転子2は、回転軸3の軸方向において回転子2を挟んだ位置に配置された軸受けである2つのベアリングによって、回転可能に支持されている。すなわち、回転子2は、第1の軸受けである第1ベアリング10aおよび第2の軸受けである第2ベアリング10bによって、回転可能に支持されている。
 軸受けのうちの負荷側の第1ベアリング10aは、外郭を構成するフレーム7の中央部に形成された凹部に外輪が嵌め込まれて固定され、内輪が回転軸3に嵌め込まれて固定されている。すなわち、第1ベアリング10aは、フレーム7に設けられた第1の軸受けハウジングである第1ベアリングハウジング11aの内周面により外輪が支持されている。第1ベアリングハウジング11aは、回転軸3の軸方向においてフレーム7の内部側、すなわち反負荷側に突出して、環状に形成されている。
 軸受けのうちの反負荷側の第2ベアリング10bは、回転子2の反負荷側において第2ベアリング10bを支持する金属製のブラケット9の中央部に形成された凹部に外輪が嵌め込まれて固定され、内輪が回転軸3に嵌め込まれて固定されている。すなわち、第2ベアリング10bは、ブラケット9に備えられた第2の軸受けハウジングである第2ベアリングハウジング11bにより外輪が支持されている。ブラケット9の第2ベアリングハウジング11bは、回転軸3の軸方向においてブラケット9の内部側、すなわち負荷側に突出して環状に形成されている。そして、ブラケット9の軸方向における端面、すなわちブラケットの反負荷側の端面9aは概ねフラットな面となっている。
 回転子2の外径と固定子1の内径との間には、微少な間隙が全周にわたって均一となるように形成されている。回転子2は、永久磁石を有している。すなわち、回転子2は、樹脂に永久磁石の原料を混合して成形することによって作製されたプラスチックマグネットであり、N極とS極が交互に入れ替わる磁極を外径側に、外周方向において等間隔に有している。なお、回転子2は、全体がプラスチックマグネットによって成ることが好ましいが、一部がプラスチックマグネットでなくてもよい。すなわち、回転子2は、プラスチックマグネットを有して構成されている。回転子2の中央には、回転軸3が挿入されている。
 図3は、本発明の実施の形態1にかかる駆動回路搭載電動機100の絶縁部材16を示す斜視図である。インシュレータ5の反負荷側の端面および側面には、第1導電ピン8aが貫通する孔および第2導電ピン8bが貫通する孔を備えた絶縁部材16が、固定子1と同軸状に配設されている。絶縁部材16は、平坦部16aと側面部16bと突出部16cとを有する。平坦部16aは、インシュレータ5の外径とほぼ等しい径を有し、インシュレータ5の反負荷側を覆う。側面部16bは、インシュレータ5の外径よりも大きな内径を有し、平坦部16aから延在してインシュレータ5の側面を覆う。突出部16cは、平坦部16aから反負荷側に突出して設けられ、第1導電ピン8aまたは第2導電ピン8bが貫通する孔を備え、突出部16cを貫通した第1導電ピン8aおよび第2導電ピン8bを保護する。
 図4は、本発明の実施の形態1にかかる駆動回路搭載電動機100のブラケット9を示す斜視図である。絶縁部材16の反負荷側には、第1導電ピン8aまたは第2導電ピン8b、および絶縁部材16の突出部16cが貫通する貫通孔9bを備えた金属製のブラケット9が配設されている。回転軸3の軸方向におけるブラケットの反負荷側の端面9a、すなわちブラケット9の上面は、概ねフラットな面となっている。
 駆動回路搭載電動機100においては、金属製のブラケット9が絶縁部材16の反負荷側に配置されることで、固定子1のコイル6に電流を流すことで発生する電磁ノイズがブラケット9で反射または吸収される。このため、駆動回路搭載電動機100においては、電磁ノイズをブラケット9で遮断することができ、上記電磁ノイズがブラケット9よりも反負荷側に悪影響を及ぼすことを防止できる。
 図5は、本発明の実施の形態1にかかる駆動回路搭載電動機100の反負荷側端子台13aを示す斜視図である。ブラケットの反負荷側の端面9a上には、第1導電ピン8aまたは第2導電ピン8b、および絶縁部材16の突出部16cが貫通する孔を備えた第1の端子台である反負荷側端子台13aが配設されている。反負荷側端子台13aは、ブラケットの反負荷側の端面9aの外径とほぼ等しい外径を有し、ブラケットの反負荷側の端面9aを覆って、ブラケット9と同軸状に配設されている。すなわち、反負荷側端子台13aは、軸方向においてブラケット9の反負荷側に配設されている。反負荷側端子台13aは、円形を有する浅底容器状に、樹脂等の絶縁材料により形成されている。
 反負荷側端子台13aには、第1導電ピン8aまたは第2導電ピン8bが貫通する孔を備えて結線に使用される複数個の反負荷側端子14aが反負荷側端子台13aに設けられた凹部に収納されて配設される。また、反負荷側端子台13aには、反負荷側端子14aから図示しない外部電源に接続される電源リード線17が反負荷側端子台13aに設けられた凹部に収納されて配設される。また、反負荷側端子台13aには、駆動回路が搭載されて駆動回路搭載電動機100の駆動を制御する回路基板20が、後述する周壁19の内周面23に沿って反負荷側端子台13aの内底面21から反負荷側に突出して設けられた突出部24上に配置されている。すなわち、回路基板20は、反負荷側端子台13aにおける反負荷側、より詳細には反負荷側端子台13aの内部であって反負荷側端子台13aよりも反負荷側に配置されている。
 第1導電ピン8aおよび第2導電ピン8bは、反負荷側端子台13aの底を貫通して軸方向において反負荷側に突出する。そして、反負荷側端子台13aでは、第1導電ピン8a、第2導電ピン8b、電源リード線17、回路基板20の駆動回路の電気的な結線が反負荷側端子14aを用いて行われる。第2導電ピン8bと反負荷側端子14aとは、はんだ付けまたは溶接により電気的接続がなされる。反負荷側端子14aと電源リード線17とは、はんだ付けまたは溶接により電気的接続がなされる。
 反負荷側端子14aは、反負荷側端子14aを収納する凹部である端子収納部18aに収納された状態で配置されている。端子収納部18aの深さは、反負荷側端子14aの厚み寸法以上の深さとされており、端子収納部18aに収納された反負荷側端子14aは、反負荷側端子台13aの内底面21から突出することがない。
 図6は、本発明の実施の形態1にかかる反負荷側端子14aの他の形態を示す図である。反負荷側端子14aは、図5に示すような板状の端子ではなく、図6に示すような丸形の圧着端子を用いることも可能である。この場合も、反負荷側端子台13aにおいて、第2導電ピン8b、電源リード線17、および回路基板20の駆動回路の電気的な結線を、反負荷側端子14aを用いて行うことが可能である。
 電源リード線17は、電源リード線17を収納する溝である電源リード線収納溝18bに収納された状態で、反負荷側端子台13aの外部まで引き回されている。電源リード線収納溝18bの深さは、電源リード線17の厚み寸法以上の深さとされており、電源リード線収納溝18bに収納された電源リード線17は、反負荷側端子台13aの内底面21から突出することがない。電源リード線収納溝18bは、溝1つに対して電源リード線17が1本までしか入らない高さに設定されることが好ましい。
 図7は、本発明の実施の形態1にかかる駆動回路搭載電動機100における電気的な接続経路を模式的に示す図である。駆動回路搭載電動機100においては、外部電源、電源リード線17、反負荷側端子14a、第2導電ピン8b、回路基板20、第1導電ピン8aおよびコイル6が、この順で電気的に接続されている。回路基板20には、電源リード線17、反負荷側端子14aおよび第2導電ピン8bを介して、外部電源から商用交流電圧が投入される。
 回路基板20に外部から商用交流電圧を投入すると、回路基板20に搭載された電源回路により商用交流電圧が直流電圧に変換される。そして、回路基板20に搭載された駆動回路の制御回路で直流電圧に対してスイッチングが行われることで、第1導電ピン8aを介して固定子1のコイル6に特定の方向の電流が流れ、回転子2が回転する。コイル6に流す電流の方向は、回転子2の角度方向の位置により変化させる。回路基板20に搭載された駆動回路は、回転子2の磁束をコイル6が通過することにより発生する逆起電力の情報を元に、回転子2の位置を推測する。そして、駆動回路は、回転子2の位置によって特定のコイル6の特定の方向に電流を流すことで回転子2の回転制御を行う、センサレス駆動方式で回転子2の回転を制御する。
 すなわち、駆動回路搭載電動機100は、例えば回転子2の位置を検出する、ホールセンサ、エンコーダ、レゾルバといった位置検出センサを用いない、いわゆる位置センサレス制御で駆動されるセンサレスモータである。なお、駆動回路搭載電動機100におけるセンサレス駆動方式は、上記の方法に限定されない。
 反負荷側端子台13aの周囲は周壁19で囲まれている。電源リード線収納溝18bに配設された電源リード線17は、周壁19の一部が切り欠かれた切り欠き部19aから反負荷側端子台13aの外部に引き出されている。反負荷側端子台13aおよび反負荷側端子台13aの反負荷側に配置された回路基板20は、ブラケット9に嵌め込まれたカバー22で被覆され、部品の保護が図られている。カバー22には、電源リード線17を外部に引き出す引き出し部22aが設けられている。
 駆動回路搭載電動機100では、回路基板20が配置された反負荷側端子台13aを、ブラケットの反負荷側の端面9aの反負荷側に配設することによって、回路基板20の駆動回路とコイル6との物理的距離を長く確保することができる。これにより、駆動回路搭載電動機100においては、固定子1のコイル6に電流を流すことで発生する電磁ノイズが、回路基板20の駆動回路に悪影響を及ぼすことを防止でき、電磁ノイズに起因した回路基板20の駆動回路の誤動作の発生を防止することができる。
 また、本実施の形態1にかかる駆動回路搭載電動機100では、金属製のブラケット9を絶縁部材16の反負荷側に配置することによって、固定子1のコイル6に電流を流すことで発生する電磁ノイズをブラケット9で反射または吸収させることができ、コイル6から反負荷側に向かう電磁ノイズをブラケット9で遮断することができる。これにより、駆動回路搭載電動機100においては、上記電磁ノイズが、ブラケット9よりも反負荷側に配置された回路基板20の駆動回路に悪影響を及ぼすことを防止でき、電磁ノイズに起因した回路基板20の駆動回路の誤動作の発生を防止することができる。
 すなわち、駆動回路搭載電動機100では、固定子1のコイル6に電流を流すことで発生する電磁ノイズに起因した駆動特性の劣化が生じない。したがって、本実施の形態1にかかる駆動回路搭載電動機100は、固定子1のコイル6に電流を流すことで発生する電磁ノイズに起因した回路基板20の駆動回路の駆動特性の劣化が防止され、誤動作を起こし難く駆動回路の駆動特性の良好な、安全性および品質を向上させた駆動回路搭載電動機が実現可能である。
 また、本実施の形態1にかかる駆動回路搭載電動機100では、ブラケット9の反負荷側において、ほぼ平坦な面とされたブラケットの反負荷側の端面9a上に、回路基板20が配置された反負荷側端子台13aが配置される。そして、反負荷側端子台13aは、ブラケットの反負荷側の端面9aの外径とほぼ等しい外径を有する。このため、大型の回路基板20を搭載する場合は、回転軸3および第2ベアリング10bとの接触を回避しつつ、回転軸3および第2ベアリング10bが配設されている駆動回路搭載電動機100の半径方向における中心領域を使用して回路基板20を配置することができる。これにより、駆動回路搭載電動機100では、駆動回路搭載電動機100の半径方向の大きさの小さい、小型の駆動回路搭載電動機が実現可能である。
 また、駆動回路搭載電動機100では、より大型の回路基板20を搭載する場合でも、駆動回路搭載電動機100の半径方向の大きさを大型化することなく、より大型の回路基板20を搭載することが可能である。すなわち、駆動回路搭載電動機100は、内部の空間を有効活用して、より大型の回路基板20を搭載することが可能である。
 また、樹脂製のブラケットを用いる場合、樹脂製のブラケットは、高い位置精度を必要とするベアリングハウジングの位置精度を得ることが難しい。このため、一般的に、ベアリングハウジングを備えた樹脂製のブラケットは、射出形成した後に切削工程を追加するか、または金属製のベアリングハウジングを一体形成することによって形成される。このため、樹脂製のブラケットは、コストが高くなる。また、樹脂製のブラケットは、回転軸3に受ける荷重に耐えなければならないため、厚肉化による成形時間の増加または強固な材料の選定によるコストの増加が懸念される。
 これに対して、本実施の形態1にかかる駆動回路搭載電動機100では、金属製のブラケット9を使用するため、樹脂製のブラケットを使用する場合と比べてコストを低く抑えつつ、上述した電磁ノイズの遮断効果が得られる。
 したがって、本実施の形態1にかかる駆動回路搭載電動機100によれば、内部の空間を有効活用し、固定子1のコイル6からの電磁ノイズに強く、大型化または特性の劣化を伴わずに大型の回路基板20を搭載可能な駆動回路搭載電動機が安価に得られる。
実施の形態2.
 図8は、本発明の実施の形態2にかかる駆動回路搭載電動機200の縦断面図である。図9は、本発明の実施の形態2にかかる駆動回路搭載電動機200の負荷側端子台13bを示す組立後の斜視図である。本実施の形態2にかかる駆動回路搭載電動機200が実施の形態1にかかる駆動回路搭載電動機100と異なる点は、第2の端子台である負荷側端子台13bを有している点と、第1導電ピン8aの代わりに第3導電ピン8cおよび第4導電ピン8dを有する点と、第2導電ピン8bの代わりに第5導電ピン8eを有する点である。すなわち、駆動回路搭載電動機200は、コイル6の反負荷側であって、インシュレータ5の反負荷側の端面上に、第4導電ピン8dが貫通する孔を備えて反負荷側端子台13aに対して相対的に負荷側に配置された端子台である負荷側端子台13bが配設されている。負荷側端子台13bは、固定子1の径方向における第2ベアリングハウジング11bの外側の領域に配設されている。
 負荷側端子台13bは、円環形状を有する浅底容器状に、樹脂等の絶縁材料により形成されている。負荷側端子台13bの内径と第2ベアリングハウジング11bの外径とは、ほぼ等しく、負荷側端子台13bと第2ベアリングハウジング11bとは、軸心を一致させて配設されている。負荷側端子台13bは、第2ベアリングハウジング11bの外周側に圧入されている。また、負荷側端子台13bは、回転子2および固定子1とも軸心を一致させて配設されている。したがって、負荷側端子台13bは、ブラケットの反負荷側の端面9aと反負荷側のコイル6との間に、回転軸3の径方向における回転子2の外周側の領域から固定子1にわたって設けられている。
 負荷側端子台13bには、第3導電ピン8cが貫通する孔および第4導電ピン8dが貫通する孔を備えて結線に使用される複数個の負荷側端子14bと、必要に応じてコイル6の過昇温を検知してコイル6の過昇温を防止するコイル6の過昇温防止装置である温度ヒューズ15とが、負荷側端子台13bに設けられた凹部に収納されて配設される。
 第3導電ピン8cおよび第4導電ピン8dは、コイル6と回路基板20とを電気的に接続するためのコイル接続用導電ピンである。第3導電ピン8cは、インシュレータ5の反負荷側において、負荷側端子台13bの内底面に挿されて、反負荷側に延びて立てられている。第3導電ピン8cは、回路基板20の反負荷側まで軸方向に突出する。第3導電ピン8cは、負荷側端子台13bの内底面から負荷側端子14bと絶縁部材16とブラケット9と反負荷側端子台13aの底面と回路基板20とを貫通して反負荷側に延びて配設されて、回路基板20と負荷側端子14bとを電気的に接続する。
 第4導電ピン8dは、インシュレータ5の上面、すなわちインシュレータ5の反負荷側の面に、反負荷側に延びて立てられている。第4導電ピン8dは、インシュレータ5から負荷側端子台13bの底面および負荷側端子14bを貫通して反負荷側に延びて配設されて、コイル6と負荷側端子14bとを電気的に接続する。第4導電ピン8dは、第1導電ピン8aと同様に、コイル6の端部が複数回にわたって巻回されており、はんだ付けによりコイル6の端部と電気的接続がなされている。一方、第3導電ピン8cにはコイル6の端部は巻回されていない。第3導電ピン8cは、負荷側端子14bおよび第4導電ピン8dを介してコイル6との電気的接続がなされており、直接はコイル6と電気的接続がなされていない。
 第5導電ピン8eは、回路基板20を図示しない外部電源に電気的に接続するための外部電源接続用導電ピンである。第5導電ピン8eは、インシュレータ5の反負荷側において、負荷側端子台13bの内底面に挿されて、反負荷側に延びて立てられている。第5導電ピン8eは、回路基板20の反負荷側まで軸方向に突出する。第5導電ピン8eは、負荷側端子台13bの内底面から絶縁部材16とブラケット9と反負荷側端子台13aの底面と反負荷側端子14aと回路基板20とを貫通して反負荷側に延びて配設されて、反負荷側端子14aと回路基板20とを電気的に接続する。
 したがって、本実施の形態2では、絶縁部材16には、第3導電ピン8cが貫通する孔および第5導電ピン8eが貫通する孔が設けられている。また、本実施の形態2では、ブラケット9には、第3導電ピン8cが貫通する孔および第5導電ピン8eが貫通する孔が設けられている。
 そして、負荷側端子台13bでは、コイル6に接続された第4導電ピン8d、温度ヒューズ15、回路基板20の駆動回路に接続された複数の第3導電ピン8c、電動機内部に搭載される電子部品等の電気的な結線が負荷側端子14bを用いて行われる。第4導電ピン8dと負荷側端子14bとは、はんだ付けまたは溶接により電気的接続がなされている。第3導電ピン8cと負荷側端子14bとは、はんだ付けまたは溶接により電気的接続がなされている。また、負荷側端子14bと温度ヒューズ15とは、はんだ付けまたは溶接により電気的接続がなされている。複数個の負荷側端子14bは、配置された箇所によって、各々の電気的な結線対象が個別に設定されている。同様に、複数本の第3導電ピン8cは、配置された箇所によって、各々の電気的な結線対象が個別に設定されている。
 図10は、本発明の実施の形態2にかかる駆動回路搭載電動機200における電気的な接続経路を模式的に示す図である。駆動回路搭載電動機200では、電源リード線17を介して外部電源と電気的に接続される反負荷側端子14aが反負荷側端子台13aに配設されている。第5導電ピン8eが、反負荷側端子14aと回路基板20とを電気的に接続している。すなわち、駆動回路搭載電動機200では、実施の形態1の場合と同様に、電源リード線17、回路基板20および反負荷側端子14aが反負荷側端子台13aに配設されている。回路基板20は、電源リード線17を介して外部電源と接続されている。また、回路基板20は、第3導電ピン8cによって負荷側端子14bと電気的に接続されている。そして、負荷側端子14bは、第4導電ピン8dによってコイル6と電気的に接続されている。
 したがって、駆動回路搭載電動機200においては、外部電源、電源リード線17、反負荷側端子14a、第5導電ピン8e、回路基板20、第3導電ピン8c、負荷側端子14b、第4導電ピン8dおよびコイル6が、この順で電気的に接続されている。回路基板20には、電源リード線17、反負荷側端子14aおよび第5導電ピン8eを介して、外部電源から商用交流電圧が投入される。
 駆動回路搭載電動機200では、回路基板20に外部から商用交流電圧が投入されると、回路基板20に搭載された電源回路により商用交流電圧が直流電圧に変換される。そして、回路基板20に搭載された駆動回路の制御回路で直流電圧に対してスイッチングが行われることで、電気的に接続された、第3導電ピン8c、負荷側端子14bおよび第4導電ピン8dを介して、回路基板20から固定子1のコイル6に特定の方向の電流が流れ、回転子2が回転する。
 上述した実施の形態2にかかる駆動回路搭載電動機200は、実施の形態1にかかる駆動回路搭載電動機100と同様の効果を有する。
 駆動回路搭載電動機200は、コイル6と回路基板20との間の物理的な距離を駆動回路搭載電動機100よりも長く確保しつつ、コイル6と回路基板20との間の空間を有効活用するために、ブラケットの反負荷側の端面9aと反負荷側のコイル6との間に負荷側端子台13bが配設されている。これにより、駆動回路搭載電動機200では、固定子1における異なる固定子スロット1aに巻回された異なるコイル6と電気的に接続されている第4導電ピン8d同士の電気的接続を、負荷側端子台13bの上に配設された負荷側端子14bにて行うことができる。すなわち、異なるコイル6同士を、負荷側端子台13b上において負荷側端子14bを介して電気的に接続することができる。
 これにより、上記の第4導電ピン8d同士の接続を回路基板20の駆動回路で行う必要がなく、駆動回路の簡素化が可能である。図9においては、固定子1における異なる固定子スロット1aに巻回された図示しない異なるコイル6と電気的に接続されている、第4導電ピン8daと第4導電ピン8dbとが、負荷側端子14baと負荷側端子14bbと電気接続部品12とによって電気的に接続されている。
 駆動回路搭載電動機200では、必要に応じて負荷側端子台13bにコイル6の過昇温防止装置である温度ヒューズ15の配設が可能である。温度ヒューズ15が負荷側端子台13bに配設されることにより、熱源であるコイル6と温度ヒューズ15との距離を短くすることができ、コイル6に対する温度ヒューズ15の熱応答性が良好となる。そして、温度ヒューズ15は、反負荷側端子台13aにおいて、反負荷側端子台13aの面内におけるコイル6に対応した領域に配置されることが好ましい。これにより、温度ヒューズ15が、熱源であるコイル6からより近い位置に配設されるため、温度ヒューズ15の熱応答性がより良好となり、コイル6の過昇温を確実に防止することができる。
 したがって、駆動回路搭載電動機200は、より誤動作を起こし難く駆動回路の駆動特性の良好な、安全性および品質を向上させた駆動回路搭載電動機が実現可能である。
実施の形態3.
 図11は、本発明の実施の形態3にかかる駆動回路搭載電動機300の縦断面図である。図12は、本発明の実施の形態3にかかる駆動回路搭載電動機300の埋込磁石型回転子25を示す上面図である。本実施の形態3にかかる駆動回路搭載電動機300が実施の形態2にかかる駆動回路搭載電動機200と異なる点は、回転子2の代わりに埋込磁石型回転子25を備える点である。
 埋込磁石型回転子25は、図12に示すようなリング状を有する同一形状の薄い電磁鋼板が多数枚積層されて構成された回転子鉄心26に既定の間隔をおいて複数箇所に配置された永久磁石挿入穴27を備え、永久磁石挿入穴27に永久磁石28が埋め込まれて構成された回転子である。すなわち、埋込磁石型回転子25は、同一のリング形状を有する複数の電磁鋼板が積層されて構成された回転子鉄心26の複数箇所に永久磁石28が埋め込まれてなる埋込磁石型回転子である。
 上述した実施の形態3にかかる駆動回路搭載電動機300においても、実施の形態1にかかる駆動回路搭載電動機100と同様の効果を有する。
 また、上述した実施の形態1にかかる駆動回路搭載電動機100における回転子2の代わりに埋込磁石型回転子25を用いた場合においても、実施の形態1にかかる駆動回路搭載電動機100と同様の効果が得られる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、上記の実施の形態の技術同士を組み合わせることも可能であるし、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 固定子、1a 固定子スロット、2 回転子、2a 中心軸、3 回転軸、3a 一端、4 固定子鉄心、5 インシュレータ、6 コイル、7 フレーム、8a 第1導電ピン、8b 第2導電ピン、8c 第3導電ピン、8d,8da,8db 第4導電ピン、8e 第5導電ピン、9 ブラケット、9a ブラケットの反負荷側の端面、9b 貫通孔、10a 第1ベアリング、10b 第2ベアリング、11a 第1ベアリングハウジング、11b 第2ベアリングハウジング、12 電気接続部品、13a 反負荷側端子台、13b 負荷側端子台、14a 反負荷側端子、14b,14ba,14bb 負荷側端子、15 温度ヒューズ、16 絶縁部材、16a 平坦部、16b 側面部、16c 突出部、17 電源リード線、18a 端子収納部、18b 電源リード線収納溝、19 周壁、19a 切り欠き部、20 回路基板、21 内底面、22 カバー、22a 引き出し部、23 内周面、24 突出部、25 埋込磁石型回転子、26 回転子鉄心、27 永久磁石挿入穴、28 永久磁石、100,200,300 駆動回路搭載電動機。

Claims (9)

  1.  外郭の内部に、
     中央に回転軸が固定された永久磁石を有する筒状形状の回転子と、
     前記回転子の外周側に配置され、鉄心と、巻枠を介して前記巻枠に巻回された複数のコイルとを有する固定子と、
     前記回転軸の軸方向に沿った一方向を負荷側とし、前記回転軸の軸方向に沿った他方向を反負荷側とした場合に、前記回転軸を支持する反負荷側のベアリングと、
     前記回転子および固定子よりも反負荷側に配置されて、前記反負荷側のベアリングを保持するベアリングハウジングが負荷側に突出して設けられた金属製のブラケットと、
     前記軸方向において前記ブラケットよりも反負荷側に配置された反負荷側端子台と、
     前記反負荷側端子台における反負荷側に配置されて駆動回路が搭載された回路基板と、
     を備えることを特徴とする駆動回路搭載電動機。
  2.  外部電源と電気的に接続されて前記反負荷側端子台に配置される反負荷側端子と、
     前記巻枠から前記ブラケットと前記反負荷側端子台とを貫通して反負荷側に延びて配設されて、前記コイルと前記回路基板とを電気的に接続する第1導電ピンと、
     前記巻枠から前記ブラケットと前記反負荷側端子台とを貫通して反負荷側に延びて配設されて、前記反負荷側端子と前記回路基板とを電気的に接続する第2導電ピンと、
     を備えることを特徴とする請求項1に記載の駆動回路搭載電動機。
  3.  外部電源と電気的に接続されて前記反負荷側端子台に配置される反負荷側端子と、
     前記コイルと前記ブラケットとの間に配置される負荷側端子台と、
     前記負荷側端子台上に配置される負荷側端子と、
     前記負荷側端子台から前記ブラケットと前記反負荷側端子台とを貫通して反負荷側に延びて配設されて、前記回路基板と前記負荷側端子とを電気的に接続する第3導電ピンと、
     前記巻枠から前記負荷側端子台を貫通して反負荷側に延びて配設されて、前記コイルと前記負荷側端子とを電気的に接続する第4導電ピンと、
     前記負荷側端子台から前記ブラケットと前記反負荷側端子台とを貫通して反負荷側に延びて配設されて、前記反負荷側端子と前記回路基板とを電気的に接続する第5導電ピンと、
     を備えることを特徴とする請求項1に記載の駆動回路搭載電動機。
  4.  異なる前記コイル同士が、前記負荷側端子台上において前記負荷側端子を介して電気的に接続されていること、
     を特徴とする請求項3に記載の駆動回路搭載電動機。
  5.  前記コイルの過昇温を検知する過昇温防止装置が、前記負荷側端子台上に配設されていること、
     を特徴とする請求項3に記載の駆動回路搭載電動機。
  6.  前記外部電源と前記反負荷側端子とを接続する電源リード線が、前記反負荷側端子台に配設されていること、
     を特徴とする請求項2または3に記載の駆動回路搭載電動機。
  7.  前記駆動回路は、前記回転子の磁束を前記コイルが通過することにより発生する逆起電力の情報に基づいて、既定のコイルに対して既定の方向に電流を流す制御を行うことで前記回転子の回転を制御するセンサレス駆動制御を行うこと、
     を特徴とする請求項1に記載の駆動回路搭載電動機。
  8.  前記回転子は、プラスチックマグネットを有すること、
     を特徴とする請求項7に記載の駆動回路搭載電動機。
  9.  前記回転子は、同一のリング形状を有する複数の電磁鋼板が積層されて構成された回転子鉄心の複数箇所に永久磁石が埋め込まれてなる埋込磁石型回転子であること、
     を特徴とする請求項7に記載の駆動回路搭載電動機。
PCT/JP2018/007812 2018-03-01 2018-03-01 駆動回路搭載電動機 WO2019167233A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020503215A JP6858925B2 (ja) 2018-03-01 2018-03-01 駆動回路搭載電動機
PCT/JP2018/007812 WO2019167233A1 (ja) 2018-03-01 2018-03-01 駆動回路搭載電動機
CN201880089918.4A CN111758207B (zh) 2018-03-01 2018-03-01 搭载有驱动电路的电动机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/007812 WO2019167233A1 (ja) 2018-03-01 2018-03-01 駆動回路搭載電動機

Publications (1)

Publication Number Publication Date
WO2019167233A1 true WO2019167233A1 (ja) 2019-09-06

Family

ID=67806120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007812 WO2019167233A1 (ja) 2018-03-01 2018-03-01 駆動回路搭載電動機

Country Status (3)

Country Link
JP (1) JP6858925B2 (ja)
CN (1) CN111758207B (ja)
WO (1) WO2019167233A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007195344A (ja) * 2006-01-19 2007-08-02 Jtekt Corp モータ
JP2009232676A (ja) * 2008-02-26 2009-10-08 Nippon Densan Corp モータおよびディスク駆動装置
JP2010028925A (ja) * 2008-07-16 2010-02-04 Asmo Co Ltd モータ及び電動パワーステアリング装置用モータ
JP2010226805A (ja) * 2009-03-19 2010-10-07 Mitsubishi Electric Corp 電動機及びそれを用いた換気送風機
JP2014082853A (ja) * 2012-10-16 2014-05-08 Panasonic Corp 回転負荷結合体及び回転負荷結合体を具備する空気調和機
JP2015226447A (ja) * 2014-05-30 2015-12-14 Kyb株式会社 回転電機
JP2016144322A (ja) * 2015-02-03 2016-08-08 株式会社ジェイテクト 回転電機用ロータおよびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5473968B2 (ja) * 2011-03-14 2014-04-16 三菱電機株式会社 Dcブラシレスモータ及び換気扇

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007195344A (ja) * 2006-01-19 2007-08-02 Jtekt Corp モータ
JP2009232676A (ja) * 2008-02-26 2009-10-08 Nippon Densan Corp モータおよびディスク駆動装置
JP2010028925A (ja) * 2008-07-16 2010-02-04 Asmo Co Ltd モータ及び電動パワーステアリング装置用モータ
JP2010226805A (ja) * 2009-03-19 2010-10-07 Mitsubishi Electric Corp 電動機及びそれを用いた換気送風機
JP2014082853A (ja) * 2012-10-16 2014-05-08 Panasonic Corp 回転負荷結合体及び回転負荷結合体を具備する空気調和機
JP2015226447A (ja) * 2014-05-30 2015-12-14 Kyb株式会社 回転電機
JP2016144322A (ja) * 2015-02-03 2016-08-08 株式会社ジェイテクト 回転電機用ロータおよびその製造方法

Also Published As

Publication number Publication date
CN111758207A (zh) 2020-10-09
JP6858925B2 (ja) 2021-04-14
CN111758207B (zh) 2022-04-12
JPWO2019167233A1 (ja) 2020-08-27

Similar Documents

Publication Publication Date Title
US9496762B2 (en) Motor
US9537367B2 (en) Driving device
US10263499B2 (en) Motor
WO2017033917A1 (ja) モータ
CN108206598B (zh) 电机装置及其定子
JP2007060844A (ja) 磁気センサ付き回転電機
JP6409321B2 (ja) インナーロータ型のブラシレスモータ
US11056953B2 (en) Stator unit, motor, and fan motor
JP2010158094A (ja) ブラシレスモータ
JP6248433B2 (ja) モータ
JP2018157613A (ja) モータ
JP2009095139A (ja) モータ
JP2019097261A (ja) ブラシレスモータ
JP2007189841A (ja) ブラシレスモータ
JP7406546B2 (ja) モータ
JPWO2019038849A1 (ja) 電動駆動装置
JP5368524B2 (ja) レゾルバステータ構造
EP3474425B1 (en) Motor device
JP2021052492A (ja) バスバーユニットおよびモータ
JP6229331B2 (ja) モータ
WO2019167233A1 (ja) 駆動回路搭載電動機
JP7395571B2 (ja) モータ
US20220094213A1 (en) Motor
JP2020124036A (ja) モータ
US10958140B2 (en) Motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503215

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907881

Country of ref document: EP

Kind code of ref document: A1