WO2019165912A1 - 定位功能控制方法、装置、设备及可读存储介质 - Google Patents

定位功能控制方法、装置、设备及可读存储介质 Download PDF

Info

Publication number
WO2019165912A1
WO2019165912A1 PCT/CN2019/075530 CN2019075530W WO2019165912A1 WO 2019165912 A1 WO2019165912 A1 WO 2019165912A1 CN 2019075530 W CN2019075530 W CN 2019075530W WO 2019165912 A1 WO2019165912 A1 WO 2019165912A1
Authority
WO
WIPO (PCT)
Prior art keywords
target object
gait
gps module
peak
preset
Prior art date
Application number
PCT/CN2019/075530
Other languages
English (en)
French (fr)
Inventor
管旭
喻元
刘超
Original Assignee
深圳市远峰宠物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市远峰宠物科技有限公司 filed Critical 深圳市远峰宠物科技有限公司
Publication of WO2019165912A1 publication Critical patent/WO2019165912A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/34Power consumption
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1112Global tracking of patients, e.g. by using GPS
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1113Local tracking of patients, e.g. in a hospital or private home
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C22/00Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers
    • G01C22/006Pedometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/0202Child monitoring systems using a transmitter-receiver system carried by the parent and the child
    • G08B21/0233System arrangements with pre-alarms, e.g. when a first distance is exceeded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services

Definitions

  • the present disclosure relates to the field of positioning technology, for example, to a positioning function control method, apparatus, device, and readable storage medium.
  • a locator for monitoring the safety distance of a person or a pet arises for the loss of a child, an elderly person, or a pet.
  • the Global Positioning System (GPS) in the locator is generally turned on at a certain frequency to obtain the real-time location information of the pet, and then the real-time location information is used to determine whether the pet is within a safe distance, once the pet An alarm is immediately issued beyond the safe distance to monitor the pet.
  • GPS Global Positioning System
  • the endurance capability is the size of the positioner is generally small and the battery capacity is limited.
  • the power consumption of the GPS module is very high. If it is turned on frequently, the power will be consumed quickly. At the same time, for monitoring within a safe distance, it is of little value to obtain the location information of a person or a pet within a safe distance too frequently. However, if the GPS module is turned on for a long time, the person or pet is likely to have gone out of the safe distance, which loses the meaning of monitoring. Most of the related locators have poor endurance due to the frequent opening of the GPS module. Therefore, there is an urgent need for an algorithm to guide when the locator should turn on the GPS module so that its turn-on frequency is just right, which can satisfy the timely acquisition of the most valuable location information for monitoring the safe distance of people or pets, and Turn on the GPS module less.
  • the disclosure provides a positioning function control method, device, device and readable storage medium, which can reduce the number of times of the GPS module in the locator, reduce the power consumption, and improve the locator's battery life in the case of effectively monitoring the person or the pet. ability.
  • an embodiment of the present disclosure provides a positioning function control method, including:
  • GPS module After acquiring the starting position of the target object by using the GPS module, turning off the GPS module;
  • the GPS module is turned on when the moving distance reaches a preset safety distance.
  • an embodiment of the present disclosure further provides a positioning function control apparatus, including:
  • a starting position obtaining module configured to turn on the GPS module, and after acquiring the starting position of the target object by using the GPS module, turning off the GPS module;
  • a motion information acquiring module configured to acquire motion information of the target object
  • a motion distance calculation module configured to calculate a motion distance of the target object from the start position according to the motion information
  • the GPS module turns on the module, and is configured to turn on the GPS module if the moving distance reaches a preset safety distance.
  • an embodiment of the present disclosure further provides an apparatus, where the apparatus includes:
  • One or more processors are One or more processors;
  • a storage device configured to store one or more programs
  • the one or more programs are executed by the one or more processors, such that the one or more processors implement the methods described in any embodiments of the present disclosure.
  • an embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a computer program executed by a processor to implement any of the embodiments of the present disclosure. method.
  • FIG. 1 is a flowchart of a positioning function control method in Embodiment 1 of the present disclosure
  • FIG. 2 is a flowchart of a positioning function control method in Embodiment 2 of the present disclosure
  • FIG. 3 is a schematic structural diagram of a positioning function control apparatus according to Embodiment 3 of the present disclosure.
  • Embodiment 4 is a schematic structural diagram of an apparatus in Embodiment 4 of the present disclosure.
  • the positioning system includes at least: a user terminal and a locator.
  • the user terminal is held by the user (for example, the owner of the pet, the child or the guardian of the elderly, etc.), including functions such as display position, alarm, input, and positioning; the positioner is worn on the target object (ie, the monitored child, the elderly, or the pet). , including the GPS module to get the location of the target object.
  • the user terminal and the locator can communicate via wireless communication or through a server.
  • the user terminal may be a special device or a mobile phone or a tablet computer to which an application supporting the locator is installed.
  • Embodiment 1 is a flowchart of a method for controlling a positioning function according to Embodiment 1 of the present disclosure.
  • the embodiment is applicable to a situation in which a target object is located or monitored, for example, when a GPS module in a locator is turned on.
  • the method can be performed by a positioning function control device, and in an embodiment, the positioning function control device can be disposed in the positioner.
  • the method includes S110 to S140.
  • the target object wears a locator, and the locator is provided with a GPS module.
  • the embodiments of the present disclosure are not limited to the GPS module, and other modules or devices capable of realizing positioning may also be used in place of the GPS module to achieve positioning or cooperation with the GPS module to achieve positioning.
  • the GPS module is turned on to obtain the start position of the positioner and then turned off.
  • the starting position may be preset by the user. When the user presets, the GPS module is turned on to obtain the position of the locator, and then the GPS module is turned off. Or after the user presets, the GPS module is turned on to obtain the position of the locator, and then the GPS module is turned off to check whether the current starting position is consistent with the preset starting position.
  • the target object is an object to be monitored or positioned, and may be a person or a pet.
  • a positioner can be worn for them, and monitoring and alarming can be realized by determining the position of the positioner, and then the person, the child or the dog can be the target object.
  • the motion information includes motion acceleration data of the target object and a height of the target object, wherein the acceleration data may be acquired by an acceleration sensor, such as an accelerometer installed in the locator; the height of the target object may be input in advance by the user, for example, the user passes the user.
  • the button or touch screen of the terminal inputs data.
  • the user can also input data through the input module of the locator.
  • the height is related to the movement of the target object. For example, a target with a higher height will have a larger stride. Due to the particularity of pets, different pets have different definitions of height. Illustratively, if the target object is a pet dog, the height of the dog actually refers to the shoulder height.
  • the motion distance of the target object may be calculated according to the gait and the number of motion steps. As the target object moves, the motion distance is accumulated in real time.
  • S140 Turn on the GPS module if the motion distance reaches a preset safety distance.
  • the preset safety distance is a preset distance threshold for determining whether the target object is in a safe range required by the user.
  • the user can set according to his actual needs. For example, if the user wants to monitor the dog and not let it go out of the range of 200m, then it is not necessary to monitor the actual position within 200m. In this way, the preset safety distance can be set to 200m, and when the moving distance reaches 200m, the GPS module in the positioner is turned on, and the dog is set to be positioned. When the moving distance reaches the preset safety distance, it indicates that the target object has a possibility of exceeding the pre-safe distance. Since the target object does not necessarily perform linear motion, it is also possible to make a curve motion.
  • the motion distance calculated from the motion information is not necessarily a straight line distance, and may also be a curve distance, so when the motion distance reaches a preset safety distance, the target object The actual position may actually exceed the preset safety distance or may not exceed the preset safety distance. Therefore, the user who performs the position monitoring of the target object needs to obtain the actual position of the target object at this time to determine whether the target object really exceeds the preset safety distance.
  • the location of the target object can be obtained, and the positioning and monitoring of the target object can be realized.
  • the GPS module in the positioner that is worn can be opened to obtain the position, and the valuable position information can be obtained, and the time and the number of times the GPS module is turned on can be effectively reduced. Reduce the power consumption of the positioner and improve the endurance.
  • the method further includes:
  • An alarm is issued in response to a determination that the linear distance of the real-time position from the starting position exceeds the preset safety distance.
  • the method further includes:
  • the real-time position of the target object when the alarm was last issued is taken as the starting position for the next calculation of the moving distance.
  • the position of the target object at this time can be obtained after the GPS module in the positioner is turned on.
  • the starting position may be the position at which the target object starts moving.
  • the starting position at this time can be obtained by turning on the GPS module at power on.
  • the starting position can be the real-time position acquired when the alarm was last issued, that is, the real-time position acquired during the alarm is the starting position of the next calculation of the moving distance.
  • the actual linear distance is calculated by the obtained real-time position and the starting position.
  • the alarm information can be transmitted to the server through the communication module, such as a wireless network, a second-generation mobile communication technology ( 2-Generation wireless telephone technology, 2G), 3rd-generation mobile communication technology (3G), 4th generation mobile communication technology (4G) or fifth-generation mobile communication technology (5th-Generation, 5G) communication, etc.
  • the user can obtain the alarm information directly from the server through the user terminal.
  • the locator can also directly transmit the alarm information to the user terminal by using wireless communication, such as Bluetooth, Wireless-Fidelity (WIFI). It is also possible that the alarm module in the positioner issues an alarm message, such as voice information. After the user obtains the alarm information, the target object can be monitored and positioned in real time to avoid loss.
  • WIFI Wireless-Fidelity
  • Clearing the moving distance is equivalent to calculating the moving distance of one round, and using the current position as the starting position for calculating the moving distance in the next round, and restarting the calculation of the moving distance of the next round.
  • the method further includes:
  • the open state of the GPS module is maintained according to user setting information until the GPS module is turned off until a preset condition is met.
  • the GPS module After the GPS module is turned on to obtain the current location, the GPS module can be turned off in time to save the power of the locator.
  • the user may pre-set information about the GPS module's on state in the locator, ie, user setting information.
  • the user can set whether to turn off the GPS module and under what conditions to turn off the GPS module after the GPS module is opened according to actual needs.
  • the preset condition is a condition that is to be met when the GPS module is turned off in advance.
  • the user sets a predetermined on-time to automatically turn off when the GPS module continues to turn on for a predetermined time. Considering the saving of computing resources and power, the moving distance can be not calculated while the GPS module is always on.
  • the moving distance of the target object can be recalculated. If the GPS module is directly closed after acquiring the real-time position of the target object, the user can obtain the position of the target object at this time, and immediately or later find the target object according to the actual situation. Of course, the user can set the tracking mode to keep the GPS module turned on, which is more convenient for the user to know the real-time location of the target object, and then can accurately and quickly find the target object according to the real-time location.
  • the technical solution of the embodiment of the present disclosure is: acquiring motion information of the target object; calculating a motion distance of the target object according to the motion information; and opening the positioning of the target object when the motion distance reaches a preset safety distance GPS module in the device.
  • the GPS module is controlled to be turned on according to the actual moving distance of the target object. For example, when the actual moving distance reaches the preset safety distance, the GPS module is turned on, and more valuable position information can be obtained, thereby avoiding excessive acquisition of the preset safety distance.
  • a small amount of location information leads to an increase in power consumption. Therefore, it is solved when the locator worn by the person or the pet should turn on the GPS module, so that the frequency of the opening is just right, and the problem of power consumption is reduced.
  • the valuable location information of the target object can be obtained in time, and whether the monitoring target object is within a safe distance is realized, and the number of times of the GPS module is reduced as much as possible, the power consumption of the locator is reduced, and the endurance capability is improved.
  • the GPS module may be turned off; or the open state of the GPS module may be maintained according to user setting information until the GPS module is turned off according to a preset condition, thereby ensuring In addition to obtaining valuable location information of the target object, the GPS module is turned on as much as possible to reduce power consumption.
  • FIG. 2 is a flowchart of a method for controlling a positioning function according to Embodiment 2 of the present disclosure.
  • the present embodiment describes a calculation of a moving distance on the basis of the foregoing embodiment. As shown in FIG. 2, the method includes S210 to S250.
  • the number of motion steps of the target object can be calculated according to the acceleration data in the motion information.
  • Gait is the posture that is exhibited when walking. Exemplaryly, gait can include walking, running, and running. Of course, you can also divide more types of gaits, such as slow walking, walking, brisk walking, jogging, running and running. Different gaits correspond to different strides. Generally speaking, for the same target object, there is a certain proportional relationship between the stride and height in each gait.
  • S represents the moving distance of the target object
  • h represents the height of the target object
  • n represents the number of types of gaits
  • c 1 , c 2 ... c n respectively represent the number of steps in each gait
  • k 1 , k 2 ... k n respectively represent the proportional coefficient of the stride and the height in each gait.
  • the proportional coefficient can be given by the actual empirical value.
  • the motion information includes acceleration data
  • the acceleration curve is traversed, and each time a pair of peaks and troughs are detected, the number of motion steps is increased by one.
  • the filter is arranged to eliminate noise in the acceleration data and to separate one or more different signals, and to effectively filter out the frequency of the specific frequency or the signal of the frequency other than the frequency.
  • the Butterworth filter can be used to filter the acceleration data to obtain more easily recognized and processed acceleration data to determine a more reasonable acceleration curve.
  • the cutoff frequency of the filter is different and the filtered data is different.
  • the target object with a higher height is selected as a filter with a lower cutoff frequency.
  • a filter with a suitable cutoff frequency and order can be selected for the positioner worn by the dog according to the size of the body or the height of the shoulder.
  • peaks and troughs in the acceleration curve can be considered as one step, and the number of motion steps of the target object is accumulated.
  • the filter corresponding to the target object's body shape or shoulder height can be used to accurately and reasonably filter the acceleration data of different target objects, so that the step counting is more reasonable and accurate.
  • the gait of each step of the target object is recorded in real time according to the motion information, including:
  • a gait of each step of the target object is determined based on the peak-to-peak value.
  • the peak-to-peak value refers to the difference between the highest value and the lowest value of the signal in one cycle, and also refers to the difference between the peak and the trough corresponding to each step in the acceleration curve.
  • determining the gait of each step of the target object according to the peak-to-peak value comprises:
  • the peak-to-peak value of each step is compared with all the division thresholds, and the gait of each step of the target object is determined according to a preset rule, wherein the division threshold is calculated according to the gait threshold.
  • the gait threshold corresponding to the plurality of gaits refers to the reference value of the peak-to-peak value corresponding to each gait, and is used to determine which step each belongs by comparing the peak-to-peak value of each step and the reference value of the step-peak value of the step.
  • the gait threshold corresponding to each gait can be calculated according to the peak-to-peak data corresponding to the recorded preset step number.
  • the gait can be identified in two ways:
  • the gait is determined by comparing the difference between the peak-to-peak value of each step and the gait threshold corresponding to the plurality of gaits.
  • the difference between the peak-to-peak value corresponding to the step and the gait threshold corresponding to the plurality of gaits may be calculated, and the difference between the gait thresholds of the plurality of gait thresholds is the smallest. Then explain which gait the step belongs to. or,
  • the preset rule may be a preset rule for determining which gait belongs to according to the magnitude relationship between the peak-to-peak value of each step and the division threshold.
  • the partitioning threshold may be a maximum boundary and/or a minimum boundary value of the corresponding peak-to-peak range of each gait calculated according to the gait threshold corresponding to all the gaits.
  • the partitioning threshold can also be obtained by other parameters, which is not limited in this embodiment.
  • the gait is determined using a preset threshold within a preset number of steps sequentially recorded after the first power-on.
  • the gait threshold or the threshold value that has been accurately determined in accordance with the height or body shape of the target object is not used in the positioner, and is used to determine the gait. Therefore, when the positioner is powered on for the first time, for a preset number of steps, the gait can be determined by using a preset preset threshold, and the preset threshold can be a preset empirical parameter adapted to the target object, and used to identify the preset.
  • the gait within the number of steps may be a gait threshold corresponding to each gait according to actual experience or a division threshold of each gait.
  • the preset number of steps can be set according to the actual situation, for example, 1000 steps.
  • data suitable for the current target object such as height, preset threshold, etc.
  • different target objects and their corresponding data may be stored in advance, and when a locator is to be used for a certain target object, corresponding data may be selected from the stored data.
  • the gait threshold of walking, brisk walking, and running may be preset according to the shoulder height of the dog, or two dividing thresholds: the maximum peak-to-peak value of the walking and the minimum peak-to-peak value of the running.
  • the gait threshold of walking, brisk walking, and running may be preset according to the shoulder height of the dog, or two dividing thresholds: the maximum peak-to-peak value of the walking and the minimum peak-to-peak value of the running.
  • the gait threshold or the division threshold corresponding to the target object body shape or height is calculated by using the relevant data of the preset step number, so that each step after the preset step number can be
  • the gait threshold or the threshold is used to identify the gait, so that the gait recognition result is more accurate, the accuracy of the step and the calculation accuracy of the motion distance are improved, and the GPS module can be opened more reasonably. Reduce power consumption and improve endurance.
  • the peak-to-peak value in the preset step number may be cleared to reduce the occupation of the storage space.
  • the method before the determining the gait of each step of the target object according to the peak-to-peak value, the method further includes:
  • the preset number of steps refers to a preset number of steps for calculating the peak-to-peak value of the gait threshold, for example, the first 500 steps after the power-on.
  • the preset number is the number of types of gaits that are preset. That is, how many gaits are preset and how many cluster centers are calculated.
  • the preset number of steps is 1000. Then, in the case that the positioner is first turned on, the gait of each step is determined using the preset threshold in the first 1000 steps (ie, 1000 steps of sequential recording after power-on); when the calculated number of motion steps reaches 1000 steps, the 1000 steps are calculated.
  • the three cluster centers of the peak-to-peak data of all the steps in the step can call the K-means clustering algorithm, and gather the recorded peak-to-peak data into three clusters of walking, brisk walking and running, and obtain Three cluster centers.
  • the clustering centers corresponding to the clusters of walking, brisk walking and running are determined, and used as the gait thresholds of walking, brisk walking and running, respectively, to determine the gait after the preset number of steps, for example, The difference between the peak value of the current step and the center of the cluster is the smallest, and the gait of the current step is considered to be walking.
  • the division threshold of each gait may be calculated according to the gait threshold corresponding to each gait.
  • the two division thresholds are calculated by the following formula, respectively The maximum threshold for walking and the minimum threshold for running:
  • the maximum threshold for walking (walking cluster center + fast moving cluster center) / 2;
  • the minimum threshold for running (fast moving cluster center + running cluster center) / 2;
  • the gait identifying the step is walking; if the peak value of the current step is greater than or equal to the minimum threshold of the running, the gait identifying the step is Run; if the peak value of the current step is between the maximum threshold of walking and the minimum threshold of running, the gait identifying the step is fast walking.
  • the clustering center Since the clustering center is calculated from the motion data of the target object, it is more accurate and reasonable to use the clustering center as the gait threshold to identify the gait; and when using the partitioning threshold calculated by the clustering center to determine the gait As long as the peak-to-peak value of the step is compared with the division threshold value, it can be determined which gait the step belongs to, the calculation amount is small, the speed is fast, and the power consumption is small.
  • the technical solution of the embodiment uses the step number, the gait and the stride length corresponding to the height to calculate the moving distance of the pet dog, as long as the height and motion acceleration data of the target object are obtained, which is simple and practical; and the target object has different
  • the height or size of the body, the filter of different order and cutoff frequency can be selected to filter the motion acceleration data, which effectively improves the stepping accuracy; and the aggregated peak-to-peak data processing of each step of the target object's own motion data is used.
  • Class center then use the cluster center to determine the gait of each step, fully adapt to the height and body state of different target objects, not affected by the individual differences of the target object, high recognition accuracy, good versatility; use the target object shoulder height, step The moving distance of the target object obtained by the proportional coefficient of the stride and the shoulder height of the target object in the number, gait and asynchronous state, the calculation accuracy is high, the method is simple, and the target object may be opened beyond the safe distance.
  • the GPS module in the locator to locate or monitor the target object, when to open the GPS module in the locator Good reference, effectively reducing the number of open locator GPS module, reducing power consumption, improving the endurance of the positioner.
  • the positioning function control method in the embodiment of the present disclosure may be performed by a locator or by a server, for example, by remotely controlling the opening and closing of the GPS module.
  • FIG. 3 is a schematic structural diagram of a positioning function control apparatus according to Embodiment 3 of the present disclosure, which may be a locator or a server. As shown in FIG. 3, the positioning function control device includes:
  • the start location acquisition module 300 is configured to enable the global positioning system GPS module, and after acquiring the starting position of the target object by using the GPS module, turning off the GPS module;
  • the motion information acquiring module 310 is configured to acquire motion information of the target object.
  • the motion distance calculation module 320 is configured to calculate, according to the motion information, a motion distance of the target object from the starting position;
  • the GPS module opening module 330 is configured to turn on the GPS module if the moving distance reaches a preset safety distance.
  • the positioning function control device further includes:
  • a location acquisition module configured to acquire a real-time location of the target object after the GPS module in the locator worn by the target object is turned on;
  • the alarm module is configured to issue an alarm in response to a determination result that the linear distance between the real-time position and the starting position exceeds the preset safety distance.
  • the alarm module is further configured to:
  • the real-time position of the target object when the alarm was last issued is taken as the starting position for the next calculation of the moving distance.
  • the positioning function control device further includes:
  • the GPS module shutoff module is configured to close the GPS module after acquiring the real-time location of the target object; or, to maintain the open state of the GPS module according to user setting information, until the GPS module is turned off according to a preset condition.
  • the motion distance calculation module 320 includes:
  • a step number and a gait recording unit configured to record the number of motion steps of the target object and the gait of each step in real time according to the motion information
  • the motion distance calculation unit is configured to calculate the motion distance of the target object according to the recorded number of motion steps and the gait of each step by using the following formula:
  • S represents the moving distance of the target object
  • h represents the height of the target object
  • n represents the number of types of gaits
  • c 1 , c 2 ... c n respectively represent the number of steps in each gait
  • k 1 , k 2 ... k n respectively represent the proportional coefficient of the stride and the height in each gait.
  • the step number and gait recording unit comprises:
  • a data filtering subunit configured to: when the motion information includes acceleration data, select a filter corresponding to a height of the target object, and filter the acceleration data by using the filter;
  • a curve determining subunit configured to determine an acceleration curve according to the filtered acceleration data
  • the step number determining subunit is set to traverse the acceleration curve, and each time a pair of peaks and troughs are detected, the number of motion steps is increased by one.
  • the step number and gait recording unit further includes:
  • a peak-to-peak recording subunit configured to record a peak-to-peak value corresponding to each step in the acceleration curve while recording the number of motion steps
  • a gait determining subunit is arranged to determine a gait of each step of the target object based on the peak to peak value.
  • the gait determining subunit is set to:
  • the peak-to-peak value of each step is compared with all the division thresholds, and the gait of each step of the target object is determined according to a preset rule, wherein the division threshold is calculated according to the cluster center corresponding to all the gaits.
  • the step number and gait recording unit further includes:
  • the clustering center calculation subunit is configured to calculate a preset number of cluster centers according to the peak-to-peak value of the preset number of steps sequentially recorded after the locator is first turned on, wherein the preset number is a gait type number;
  • the clustering center determines a subunit, and is configured to determine, according to the size of the preset number of cluster centers, a cluster center corresponding to each gait as a gait threshold corresponding to each gait.
  • the gait determining subunit is further configured to determine a gait using a preset threshold within a preset number of steps sequentially recorded after the locator is first turned on.
  • the positioning function control device further comprises a communication module configured to perform data transmission.
  • the device may perform the positioning function control method provided by any embodiment of the present disclosure, and has a function module and an effect corresponding to the method for performing the positioning function control.
  • the plurality of modules included are only divided according to functional logic, but are not limited to the above division, as long as the corresponding functions can be implemented; in addition, the name of each functional unit They are also for convenience of distinguishing from each other and are not intended to limit the disclosure.
  • Embodiments of the present disclosure provide an apparatus, the server comprising: one or more processors; a storage device configured to store one or more programs when the one or more programs are executed by the one or more processors Having the one or more processors implement the methods described in any of the embodiments of the present disclosure.
  • the device includes a processor 410 and a memory 420.
  • the number of processors 410 in the device may be one or more, and one processor in FIG. 410 is taken as an example; the processor 410 and the memory 420 in the device may be connected by a bus or other means, and the bus connection is taken as an example in FIG.
  • the memory 420 is a computer readable storage medium, and is configured to store a software program, a computer executable program, and a module, such as a program instruction/module corresponding to the positioning function control method in the embodiment of the present disclosure (for example, in the positioning function control device)
  • the processor 410 executes one or more functional applications of the device and data processing by executing software programs, instructions, and modules stored in the memory 420, that is, implementing the positioning function control method described above.
  • the memory 420 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the terminal, and the like.
  • memory 420 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • memory 420 can further include memory remotely located relative to processor 410, which can be connected to the server over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the server provided by the embodiment of the present disclosure can not only perform and implement the positioning function control method provided by any embodiment of the present disclosure, but also execute other programs or methods according to service requirements.
  • the embodiment provides a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the method of any of the embodiments of the present disclosure.
  • the computer program stored in the computer readable storage medium provided by the embodiment when executed by the processor, implements the positioning function control method described in any embodiment of the present disclosure, and may further include other programs to implement the business requirement.

Abstract

一种定位功能控制方法、定位功能控制装置、设备以及可读存储介质。定位功能控制方法,包括:开启全球定位系统GPS模块,在通过GPS模块获取目标对象的起始位置之后,关闭GPS模块(S110);获取目标对象的运动信息(S120);根据运动信息计算目标对象距离起始位置的运动距离(S130);在运动距离达到预设安全距离的情况下,开启GPS模块(S140)。

Description

定位功能控制方法、装置、设备及可读存储介质
本申请要求在2018年03月02日提交中国专利局、申请号为201810174733.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及定位技术领域,例如涉及一种定位功能控制方法、装置、设备及可读存储介质。
背景技术
随着人们生活水平的提高,养宠物的人越来越多,例如宠物狗和宠物猫等,宠物成了很多家庭不可缺少的“特殊成员”。针对小孩、老人或者宠物走失的情况,用于监控人或者宠物的安全距离的定位器应运而生。以宠物定位器为例,一般按一定频率开启定位器里的全球定位系统(Global Positioning System,GPS)来获取宠物的实时位置信息,然后根据实时位置信息判断出宠物是否在安全距离以内,一旦宠物超出安全距离立刻发出警报,从而实现对宠物的监控。
定位器最重要的性能指标之一是续航能力,定位器的体积一般很小,电池容量有限;GPS模块开启一次的功耗很高,如果频繁开启,电量很快就会耗光。同时,对于安全距离内的监控而言,过于频繁地获取人或宠物在安全距离以内的位置信息,并没有什么价值。但如果间隔很长时间开启一次GPS模块,人或宠物很可能已经走出安全距离以外了,这就丧失了监控的意义。相关的定位器大都由于过于频繁地开启GPS模块导致续航能力不好。因此,亟需一种算法来指导定位器应当在何时开启GPS模块,使其开启频率恰到好处,既能满足及时获取最有价值的位置信息用于监控人或者宠物的安全距离,又能尽可能少地开启GPS模块。
发明内容
本公开提供一种定位功能控制方法、装置、设备及可读存储介质,该方法可以在有效监控人或宠物情况下,减少定位器中GPS模块的开启次数,降低功耗,提高定位器的续航能力。
在一实施例中,本公开实施例提供了一种定位功能控制方法,包括:
开启全球定位系统GPS模块,在通过所述GPS模块获取目标对象的起始位置之后,关闭所述GPS模块;
获取所述目标对象的运动信息;
根据所述运动信息计算所述目标对象距离所述起始位置的运动距离;
在所述运动距离达到预设安全距离的情况下,开启所述GPS模块。
在一实施例中,本公开实施例还提供了一种定位功能控制装置,包括:
起始位置获取模块,设置为开启GPS模块,在通过所述GPS模块获取目标对象的起始位置之后,关闭所述GPS模块;
运动信息获取模块,设置为获取所述目标对象的运动信息;
运动距离计算模块,设置为根据所述运动信息计算所述目标对象距离所述起始位置的运动距离;
GPS模块开启模块,设置为在所述运动距离达到预设安全距离的情况下,开启所述GPS模块。
在一实施例中,本公开实施例还提供了一种设备,所述设备包括:
一个或多个处理器;
存储装置,设置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现本公开任意实施例所述的方法。
在一实施例中,本公开实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现本公开任意实施例所述的方法。
附图说明
图1是本公开实施例一中的一种定位功能控制方法的流程图;
图2是本公开实施例二中的一种定位功能控制方法的流程图;
图3是本公开实施例三中的一种定位功能控制装置的结构示意图;
图4是本公开实施例四中的一种设备的结构示意图。
具体实施方式
下面结合附图和实施例对本公开进行说明。此处所描述的实施例仅仅用于解释本公开,而非对本公开的限定。为了便于描述,附图中仅示出了与本公开相关的部分而非全部结构。
在介绍本公开实施例之前,首先对本公开实施例中的定位系统进行简单说明。定位系统至少包括:用户终端和定位器。用户终端由用户(例如宠物的主人、小孩或老人的监护人等)持有,包括显示位置、报警、输入和定位等功能;定位器佩戴在目标对象(即被监控的小孩、老人或宠物)身上,包括GPS模块,以获取目标对象的位置。用户终端和定位器可以通过无线通信,也可以通过服务器进行通信。用户终端可以是专门的设备,也可以是安装有与定位器配套的应用程序的手机、平板电脑等。
实施例一
图1为本公开实施例一提供的一种定位功能控制方法的流程图,本实施例可适用于对目标对象进行定位或监控的情况,例如是何时开启定位器中GPS模块的情况,该方法可以由定位功能控制装置来执行,在一实施例中,定位功能控制装置可以设置在定位器中。该方法包括S110至S140。
S110、开启GPS模块,在通过所述GPS模块获取目标对象的起始位置之后,关闭所述GPS模块。
在一实施例中,目标对象佩戴定位器,定位器中设置有GPS模块。本公开实施例不限于GPS模块,其他能够实现定位的模块或装置也可以替代GPS模块实现定位或者与GPS模块合作共同实现定位。定位器开机之后,GPS模块开启后获取定位器的起始位置后关闭。在一实施例中,起始位置可以由用户预先设定,当用户预先设定时,开启GPS模块获取定位器的位置后关闭该GPS模块。或者在用户预先设定之后,开启GPS模块获取定位器的位置后关闭该GPS模块以实现核对当前起始位置与预设起始位置是否一致。
S120、获取所述目标对象的运动信息。
其中,目标对象是要被监控或定位的对象,可以是人或者宠物。一般的,为了防止老人、小孩或宠物狗走失,可以为其佩戴定位器,通过对定位器确定的位置实现监控和报警,那么此时人、小孩或宠物狗可以为目标对象。运动信息包括目标对象的运动加速度数据和目标对象的身高,其中,加速度数据可以由加速度传感器采集得到,例如安装在定位器中的加速度计;目标对象的身高可以由用户预先输入,例如用户通过用户终端的按键或触摸屏输入数据,在一实施例中,如果定位器设置有输入模块,则用户也可以通过定位器的输入模块输入数据。一般情况下,身高是与目标对象的运动情况有关的,比如身高较高的目标对象,其步幅会较大。由于宠物的特殊性,不同的宠物对身高的定义不同,示例性的,如果目标对象是宠物狗,则狗的身高实际上是指肩高。
S130、根据所述运动信息计算所述目标对象距离所述起始位置的运动距离。
在一实施例中,若根据运动信息中的加速度数据计算得到运动步数和每一步的步态,则可以根据步态和运动步数计算出目标对象的运动距离。随着目标对象的运动,运动距离实时累加。
S140、在所述运动距离达到预设安全距离的情况下,开启所述GPS模块。
其中,预设安全距离是预先设定的用于确定目标对象是否处于用户要求的安全范围的距离阈值。用户可以根据自身的实际需求进行设置,示例性的,用户想要监控宠物狗,不让其走出200m以外的范围,那么在200m以内可以不用监控其实际位置。这样就可以设置预设安全距离为200m,在运动距离达到200m时,开启定位器中的GPS模块,设置为对宠物狗进行定位。当运动距离达到预设安全距离时,说明目标对象已经存在超出预先安全距离的可能性。由于目标对象不一定做直线运动,还可能做曲线运动,因此根据运动信息计算的运动距离并不一定是直线距离,还可能是曲线距离,所以当运动距离达到预设安全距离时,目标对象的实际位置可能真的超出了预设的安全距离,也可能并没有超出预设安全距离。因此,对目标对象进行定位监控的用户此刻要获取目标对象的实际位置,以确定目标对象是否真的超出了预设安全距离。
在开启目标对象佩戴的定位器中的GPS模块后,即可以得到所述目标对象的位置,实现对目标对象的定位和监控。这样在目标对象运动到可能超出预设安全距离时,开启佩戴的定位器中的GPS模块,获取其位置,既能获得比较有 价值的位置信息,也可以有效减少GPS模块开启的时间和次数,降低定位器的功耗,提高续航能力。
在一实施例中,在开启所述目标对象佩戴的定位器中的GPS模块之后,还包括:
获取所述目标对象的实时位置;
响应于所述实时位置与起始位置的直线距离超过所述预设安全距离的判断结果,发出警报。
在一实施例中,在发出警报之后,还包括:
将所述运动距离清零;
将上一次发出警报时所述目标对象的实时位置作为下一次计算所述运动距离的起始位置。
在上述实施例的基础上,当所述运动距离达到预设安全距离时,开启定位器中的GPS模块之后即可获取目标对象此时的位置,即实时位置或当前位置。如果是刚刚打开定位器,则起始位置可以是目标对象开始运动时的位置,例如可以在开机时通过开启GPS模块获取此时的起始位置。如果是在目标对象运动的过程中,起始位置可以为上一次发出报警时获取到的实时位置,即报警时获取的实时位置为下一次计算运动距离的起始位置。通过获取到的实时位置和起始位置计算实际的直线距离,如果超过所述预设安全距离,则发出警报,警报信息可以通过通信模块传输至服务器,比如无线网络、第二代移动通信技术(2-Generation wireless telephone technology,2G)、第三代移动通信技术(3rd-Generation mobile communication technology,3G)、第四代移动通信技术(the 4th Generation mobile communication technology,4G)或第五代移动通信技术(5th-Generation,5G)通信等,用户可以通过用户终端直接从服务器获取到警报信息。也可以由定位器直接利用无线通信,比如蓝牙、无线保真(Wireless-Fidelity,WIFI)等方式将警报信息传输至用户终端。还可以是定位器中的报警模块发出警报信息,比如语音信息。用户获取到警报信息后,可以对目标对象实时重点监控定位,避免其走失。
将所述运动距离清零相当于一轮的运动距离计算完毕,将当前位置作为下 一轮计算运动距离的起始位置,重新开始计算下一轮的运动距离。
在一实施例中,在获取所述目标对象的实时位置之后,还包括:
关闭所述GPS模块;或者,
根据用户设置信息保持所述GPS模块的开启状态,直到满足预设条件关闭所述GPS模块。
其中,开启GPS模块获取当前位置之后,可以及时关闭GPS模块,以节省定位器电量。在另一示例中,用户可以预先设置定位器中GPS模块开启状态的相关信息,即用户设置信息。在一实施例中,用户可以根据实际需求设置开启GPS模块获取位置之后,是否要关闭GPS模块以及在什么条件下关闭GPS模块。所述预设条件是预先设定的所述GPS模块关闭时要满足的条件。示例性的,用户设置预定开启时长,当GPS模块在持续开启达到预定时间后自动关闭。考虑到节省计算资源和电量,在GPS模块一直处于开启状态的过程中可以不计算运动距离。在检测到GPS模块关闭之后,可以重新计算目标对象的运动距离。如果在获取到目标对象的实时位置之后,直接关闭GPS模块,用户可以获取到此时目标对象的位置,根据实际情况立即或者稍后寻找目标对象。当然用户可以设置追踪模式,保持所述GPS模块一直处于开启状态,更方便用户了解目标对象的实时位置,进而可以根据实时位置精确快速的寻找到目标对象。
本公开实施例的技术方案,通过获取目标对象的运动信息;根据所述运动信息计算所述目标对象的运动距离;当所述运动距离达到预设安全距离时,开启所述目标对象佩戴的定位器中的GPS模块。按照目标对象的实际运动距离控制GPS模块的开启,例如在实际运动距离达到预设安全距离的情况下,开启GPS模块,能够获取较为有价值的位置信息,避免过多获取预设安全距离内的价值不大的位置信息而导致耗电量增加。从而解决了人或宠物佩戴的定位器应当在何时开启GPS模块,使其开启频率恰到好处,降低电量消耗的问题。利用本方案既可以及时获取到目标对象的有价值的位置信息,实现了监控目标对象是否在安全距离以内,又可以尽可能减少GPS模块的开启次数,降低定位器的功耗,提升了续航能力。
另外,还可以在获取所述目标对象的当前位置之后,关闭所述GPS模块;或者,根据用户设置信息保持所述GPS模块的开启状态,直到满足预设条件关 闭所述GPS模块,这样可以保证在获取到目标对象的有价值的位置信息以外,尽量减少GPS模块的开启时间,降低功耗。
实施例二
图2为本公开实施例二提供的一种定位功能控制方法的流程图,本实施例在上述实施例的基础上,对运动距离的计算进行说明。如图2所示,该方法包括S210至S250。
S210、开启全球定位系统GPS模块,在通过所述GPS模块获取目标对象的起始位置之后,关闭所述GPS模块。
S220、获取目标对象的运动信息。
S230、根据所述运动信息实时记录所述目标对象的运动步数和每一步的步态。
其中,目标对象的运动步数可以根据运动信息中的加速度数据计算得知。步态是走路时所表现的姿态,示例性的,步态可以包括:走、跑和快跑。当然还可以划分更多种类的步态,例如慢走、走、快走、慢跑、跑和快跑等不同的步态。不同的步态对应的步幅是不同的,一般而言,对同一个目标对象而言,每种步态下的步幅与身高存在一定的比例关系。
S240、根据记录的所述运动步数和每一步的步态,采用以下公式计算所述目标对象的运动距离:
S=h(c 1k 1+c 2k 2+…+c nk n)。
其中,S表示所述目标对象的运动距离,h表示所述目标对象的身高,n表示步态的种类数,c 1、c 2…c n分别表示每种步态下的步数,k 1、k 2…k n分别表示每种步态下步幅与身高的比例系数,在实际应用过程中,该比例系数可以由实际的经验值给出。
S250、在所述运动距离达到预设安全距离的情况下,开启所述GPS模块。
在一实施例中,所述运动信息包括加速度数据;
根据所述运动信息实时记录所述目标对象的运动步数,包括:
选取与所述目标对象的身高对应的滤波器,并利用所述滤波器对所述加速度数据进行滤波;
根据滤波后的加速度数据确定加速度曲线;
遍历所述加速度曲线,每检测到一对波峰和波谷,运动步数加一。
其中,滤波器设置为消除加速度数据中的噪声和分离一种或多种不同信号,对特定频率的频点或该频点以外的频率的信号进行有效滤除。比如,可以选用巴特沃斯Butterworth滤波器对加速度数据做滤波处理,得到更容易识别和处理的加速度数据,从而确定更合理的加速度曲线。滤波器的截止频率不同,滤除的数据是不同的。一般的,身高越高的目标对象,选取截止频率更低的滤波器。以宠物狗为例,可以根据体型大小或肩高情况,为宠物狗佩戴的定位器选取截止频率和阶次合适的滤波器。
利用加速度曲线中的波峰和波谷识别运动的步数,比如一对连续的波峰和波谷可以被视为一步,进行累加得到目标对象的运动步数。利用与目标对象体型或肩高相适应的滤波器可以针对不同目标对象的加速度数据进行准确合理的滤波处理,使得计步更加合理准确。
在一实施例中,根据所述运动信息实时记录所述目标对象的每一步的步态,包括:
在记录运动步数的同时,记录加速度曲线中每一步对应的峰峰值;
根据所述峰峰值确定所述目标对象的每步的步态。
其中,峰峰值是指一个周期内信号最高值和最低值之间差的值,也是指加速度曲线中每一步对应的波峰和波谷的差值。
在一实施例中,根据所述峰峰值确定所述目标对象的每一步的步态,包括:
计算所述每一步对应的峰峰值分别与多个步态对应的步态阈值的差值,确定所述每一步的步态为所述每一步对应的多个差值中的最小值所对应的步态,即:针对每一步,分别计算该步对应的峰峰值与多个步态对应的步态阈值的差值,确定最小差值对应的步态作为该步的步态;或者,
将所述每一步的峰峰值与所有划分阈值比较,按照预设规则确定所述目标对象的每一步的步态,其中,所述划分阈值是根据所述步态阈值计算得到的。
其中,多个步态对应的步态阈值是指每种步态对应的峰峰值的参考值,用于通过比较每一步的峰峰值和该步峰峰值的参考值的大小确定每一步是属于哪一种步态。在一实施例中,每个步态对应的步态阈值可以根据记录的预设步数对应的峰峰值数据计算得到。
在一实施例中,识别步态可以用两种方式:
(1)通过每一步的峰峰值与多个步态对应的步态阈值之间的差值比较以确定步态。在一实施例中,可以针对每一步,计算该步对应的峰峰值与多个步态对应的步态阈值的差值,与多个步态阈值中的哪一个步态阈值的差值最小,则说明该步属于哪种步态。或者,
(2)通过每一步的峰峰值与划分阈值的比较确定步态。预设规则可以是预先设置的用于根据每一步的峰峰值与划分阈值的大小关系确定属于哪种步态的规则。其中,划分阈值可以是根据所有步态对应的步态阈值计算得到的每种步态对应峰峰值范围的最大边界和/或最小边界值。当然,也可通过其他参数获取划分阈值,本实施例对此不作限定。
在一实施例中,在所述定位器首次开机的情况下,在首次开机后顺序记录的预设步数内使用预设阈值确定步态。
其中,在定位器首次开机的情况下,由于此时定位器中并没有与目标对象的身高或体型相适应的已经准确确定的步态阈值或划分阈值,用来对步态进行确定。因此,在定位器首次开机时,对于预设步数,可以利用预先存储的预设阈值确定步态,预设阈值可以为预先设定的与目标对象相适应的经验参数,用于识别预设步数内的步态,可以为根据实际经验得出的每种步态对应的步态阈值或者每种步态的划分阈值。预设步数可以根据实际情况进行设置,例如1000步。在一示例中,若同一个定位器给不同体型的宠物或不同身高的人使用,则要设置适用于当前目标对象的数据,如身高、预设阈值等,以便于后续计算和控制。当然,可以预先存储不同目标对象及其对应的数据,当要给某一目标对象使用定位器时,可以从已存数据中选择对应的数据。
以宠物狗为例,可以根据宠物狗的肩高预先设定走、快走和跑的步态阈值,或者两个划分阈值:走的最大峰峰值和跑的最小峰峰值。对于宠物狗的某一步,若峰峰值小于或等于走的最大峰峰值,则步态识别为走;若峰峰值大于或等于 跑的最小峰峰值,则步态识别为跑;若峰峰值介于两者之间,则步态识别为快走。这样可以在预设步数内,利用预设阈值进行步态的确定。当然,在预设步数达到时,利用预设步数的相关数据计算出与目标对象体型或身高相适应的步态阈值或划分阈值,由此在预设步数以后的每一步都可以根据此步态阈值或划分阈值进行步态的识别,这样得到的步态识别结果会更准确,提高了计步的精度,以及运动距离的计算准确度,可以更合理的进行何时开启GPS模块,减少功耗,提高续航能力。在一实施例中,在计算出与目标对象身高或体型相适应的预设阈值后,可以将预设步数内的峰峰值清空,以减少存储空间的占用。
在一实施例中,在所述根据所述峰峰值确定所述目标对象的每一步的步态之前,还包括:
根据所述定位器首次开机后顺序记录的预设步数的峰峰值,计算预设个数的聚类中心,其中,所述预设个数为步态种类数;
根据所述预设个数的聚类中心的大小确定每种步态对应的聚类中心,作为每种步态对应的步态阈值。
其中,预设步数是指预先设定的用于计算步态阈值的峰峰值的步数,例如开机后的前500步。预设个数是预先设定的步态的种类数。即预设多少种步态,计算多少个聚类中心。
示例性的,以宠物狗为例,如果预设宠物狗的步态有三类:走、快走和跑,预设步数为1000。则在定位器首次开机的情况下,在前1000步(即开机后顺序记录的1000步)使用预设阈值确定每步的步态;当计算的运动步数达到1000步时,计算这1000步中所有步的峰峰值数据的三个聚类中心,例如可以调用K-均值(k-means)聚类算法,把记录的峰峰值数据聚成的走、快走和跑三个聚类,并得到三个聚类中心。依据得到聚类中心的大小关系确定走、快走和跑的聚类对应的聚类中心,并分别作为走、快走和跑的步态阈值,用以判断预设步数以后的步态,例如,当前步的峰峰值与走的聚类中心的差值最小,则认为当前步的步态是走。
在另一示例中,当进行步态识别时,可以先根据每种步态对应的聚类中心即步态阈值计算每种步态的划分阈值,比如通过以下公式计算两个划分阈值,分别为走的最大阈值和跑的最小阈值:
走的最大阈值=(走的聚类中心+快走的聚类中心)/2;
跑的最小阈值=(快走的聚类中心+跑的聚类中心)/2;
若当前步的峰峰值小于或等于所述走的最大阈值,则识别该步的步态为走;若当前步的峰峰值大于或等于所述跑的最小阈值,则识别该步的步态为跑;若当前步的峰峰值介于走的最大阈值和跑的最小阈值之间,则识别该步的步态为快走。由于聚类中心是由目标对象的运动数据计算得到,因此利用此聚类中心作为步态阈值对步态进行识别会更加准确合理;而利用聚类中心计算得到的划分阈值对步态进行确定时,只要比较该步的峰峰值与划分阈值的大小关系,就可以确定该步是属于哪种步态,计算量较小,速度较快,功耗也较小。
本实施例的技术方案,利用步数、步态以及与身高相适应的步幅来计算宠物狗的运动距离,只要获取目标对象的身高和运动的加速度数据,简单实用;针对目标对象具有的不同的身高或体型,可以选择不同阶次和截止频率的滤波器对运动加速度数据做滤波处理,有效地提高了计步精度;利用目标对象自身的运动数据的每一步的峰峰值数据处理得到的聚类中心,再利用聚类中心确定每一步的步态,充分适应了不同目标对象的身高体型状态,不受目标对象个体差异的影响,识别精度高,通用性好;利用目标对象肩高、步数、步态和不同步态下目标对象的步幅与肩高的比例系数得出的目标对象的运动距离,计算的精度高,方法简单,在目标对象有可能超出安全距离的情况下,开启定位器中的GPS模块来定位或监控目标对象,给定位器中的GPS模块何时开启提供良好的参考依据,有效减少了定位器中GPS模块的开启次数,减小功耗,提高了定位器的续航能力。
本公开实施例中的定位功能控制方法可以由定位器来执行,也可以由服务器执行,例如通过远程控制GPS模块的开启和关闭。
实施例三
图3是本公开实施例三中的一种定位功能控制装置的结构示意图,该装置可以是定位器,也可以是服务器。如图3所示,该定位功能控制装置包括:
起始位置获取模块300,设置为开启全球定位系统GPS模块,在通过所述 GPS模块获取目标对象的起始位置之后,关闭所述GPS模块;
运动信息获取模块310,设置为获取所述目标对象的运动信息;
运动距离计算模块320,设置为根据所述运动信息计算所述目标对象距离所述起始位置的运动距离;
GPS模块开启模块330,设置为在所述运动距离达到预设安全距离的情况下,开启所述GPS模块。
在一实施例中,该定位功能控制装置还包括:
位置获取模块,设置为在开启所述目标对象佩戴的定位器中的GPS模块之后,获取所述目标对象的实时位置;
报警模块,设置为响应于所述实时位置与起始位置的直线距离超过所述预设安全距离的判断结果,发出警报。
在一实施例中,所述报警模块还设置为:
将所述运动距离清零;
将上一次发出警报时所述目标对象的实时位置作为下一次计算所述运动距离的起始位置。
在一实施例中,该定位功能控制装置还包括:
GPS模块关闭模块,设置为在获取所述目标对象的实时位置之后,关闭所述GPS模块;或者,根据用户设置信息保持所述GPS模块的开启状态,直到满足预设条件关闭所述GPS模块。
在一实施例中,所述运动距离计算模块320,包括:
步数和步态记录单元,设置为根据所述运动信息实时记录所述目标对象的运动步数和每一步的步态;
运动距离计算单元,设置为根据记录的所述运动步数和每一步的步态,采用以下公式计算所述目标对象的运动距离:
S=h(c 1k 1+c 2k 2+…+c nk n);
其中,S表示所述目标对象的运动距离,h表示所述目标对象的身高,n表 示步态的种类数,c 1、c 2…c n分别表示每种步态下的步数,k 1、k 2…k n分别表示每种步态下步幅与身高的比例系数。
在一实施例中,所述步数和步态记录单元,包括:
数据滤波子单元,设置为在所述运动信息包括加速度数据的情况下,选取与所述目标对象的身高对应的滤波器,并利用所述滤波器对所述加速度数据进行滤波;
曲线确定子单元,设置为根据滤波后的加速度数据确定加速度曲线;
步数确定子单元,设置为遍历述所加速度曲线,每检测到一对波峰和波谷,运动步数加一。
在一实施例中,所述步数和步态记录单元,还包括:
峰峰值记录子单元,设置为在记录运动步数的同时,记录所述加速度曲线中每一步对应的峰峰值;
步态确定子单元,设置为根据所述峰峰值确定所述目标对象的每一步的步态。
在一实施例中,所述步态确定子单元,是设置为:
计算每一步对应的峰峰值与多个步态对应的步态阈值的差值,确定每一步的步态为所述每一步对应的多个差值中的最小值所对应的步态;或者,
将所述每一步的峰峰值与所有划分阈值比较,按照预设规则确定所述目标对象的每一步的步态,其中,所述划分阈值是根据所有步态对应的聚类中心计算的。
在一实施例中,所述步数和步态记录单元,还包括:
聚类中心计算子单元,设置为根据所述定位器首次开机后顺序记录的预设步数的峰峰值,计算预设个数的聚类中心,其中,所述预设个数为步态种类数;
聚类中心确定子单元,设置为根据所述预设个数的聚类中心的大小确定每种步态对应的聚类中心,作为每种步态对应的步态阈值。
在一实施例中,所述步态确定子单元,还设置为在所述定位器首次开机后顺序记录的预设步数内使用预设阈值确定步态。
在一实施例中,在实际应用的情况中,该定位功能控制装置还包括通信模块,设置为进行数据传输。
上述装置可执行本公开任意实施例所提供的定位功能控制方法,具备执行该定位功能控制方法相应的功能模块和效果。
上述定位功能控制装置的实施例中,所包括的多个模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,每个功能单元的名称也只是为了便于相互区分,并不用于限制本公开。
实施例四
本公开实施例提供一种设备,该服务器包括:一个或多个处理器;存储装置,设置为存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现本公开任意实施例所述的方法。
图4是本公开实施例四提供的设备的结构示意图,参见图4,该设备包括处理器410和存储器420;设备中处理器410的数量可以是一个或多个,图4中以一个处理器410为例;设备中的处理器410和存储器420可以通过总线或其他方式连接,图4中以通过总线连接为例。
存储器420作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本公开实施例中的定位功能控制方法对应的程序指令/模块(例如,定位功能控制装置中的起始位置获取模块300、运动信息获取模块310、运动距离计算模块320和GPS模块开启模块330)。处理器410通过运行存储在存储器420中的软件程序、指令以及模块,从而执行设备的一种或多种功能应用以及数据处理,即实现上述的定位功能控制方法。
存储器420可以包括存储程序区和存储数据区,其中,存储程序区可以存储操作系统、至少一个功能所需的应用程序;存储数据区可以存储根据终端的使用所创建的数据等。此外,存储器420可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器420可进一步包括相对于处理器410远程设置的存储器,这些远程存储器可以通过网络连接至服务器。上述网络的 实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本公开实施例提供的服务器不仅可以执行并实现本公开任意实施例提供的定位功能控制方法,还可以根据业务要求,执行其他程序或者方法。
实施例五
本实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现本公开任意实施例所述的方法。
本实施例提供的计算机可读存储介质存储的计算机程序,除了被处理器执行时实现本公开任意实施例中所述的定位功能控制方法,还可以包括其他程序,以实现业务需求。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本公开可借助软件及通用硬件来实现,也可以通过硬件实现。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开一个或多个实施例所述的方法。

Claims (13)

  1. 一种定位功能控制方法,包括:
    开启全球定位系统GPS模块,在通过所述GPS模块获取目标对象的起始位置之后,关闭所述GPS模块;
    获取所述目标对象的运动信息;
    根据所述运动信息计算所述目标对象距离所述起始位置的运动距离;
    在所述运动距离达到预设安全距离的情况下,开启所述GPS模块。
  2. 根据权利要求1所述的方法,在开启GPS模块之后,还包括:
    获取所述目标对象的实时位置;
    响应于所述实时位置与所述起始位置的直线距离超过所述预设安全距离的判断结果,发出警报。
  3. 根据权利要求2所述的方法,在发出警报之后,还包括:
    将所述运动距离清零;
    将上一次发出警报时所述目标对象的实时位置作为下一次计算所述运动距离的起始位置。
  4. 根据权利要求2所述的方法,在获取所述目标对象的实时位置之后,还包括:
    关闭所述GPS模块;或者,
    根据用户设置信息保持所述GPS模块的开启状态,直到满足预设条件关闭所述GPS模块。
  5. 根据权利要求1所述的方法,其中,所述根据所述运动信息计算所述目标对象距离所述起始位置的运动距离,包括:
    根据所述运动信息实时记录所述目标对象的运动步数和每一步的步态;
    根据记录的所述运动步数和每一步的步态,采用以下公式计算所述目标对象距离所述起始位置的运动距离:
    S=h(c 1k 1+c 2k 2+…+c nk n);
    其中,S表示所述目标对象的运动距离,h表示所述目标对象的身高,n表 示步态的种类数,c 1、c 2…c n分别表示每种步态下的步数,k 1、k 2…k n分别表示每种步态下步幅与身高的比例系数。
  6. 根据权利要求5所述的方法,其中,所述运动信息包括加速度数据;
    根据所述运动信息实时记录所述目标对象的运动步数,包括:
    选取与所述目标对象的身高对应的滤波器,并利用所述滤波器对所述加速度数据进行滤波;
    根据滤波后的加速度数据确定加速度曲线;
    遍历所述加速度曲线,每检测到一对波峰和波谷,运动步数加一。
  7. 根据权利要求6所述的方法,其中,根据所述运动信息实时记录所述目标对象的每一步的步态,包括:
    在记录运动步数的同时,记录所述加速度曲线中每一步对应的峰峰值;
    根据所述峰峰值确定所述目标对象的每一步的步态。
  8. 根据权利要求7所述的方法,其中,根据所述峰峰值确定所述目标对象的每一步的步态,包括:
    计算所述每一步对应的峰峰值分别与多个步态对应的步态阈值的差值,确定所述每一步的步态为所述每一步对应的多个差值中的最小值所对应的步态;或者,
    将所述每一步的峰峰值与所有划分阈值比较,按照预设规则确定所述目标对象的每一步的步态,其中,所述划分阈值是根据所述步态阈值计算得到的。
  9. 根据权利要求7所述的方法,在所述根据所述峰峰值确定所述目标对象的每一步的步态之前,还包括:
    根据定位器首次开机后顺序记录的预设步数的峰峰值,计算预设个数的聚类中心,其中,所述预设个数为步态种类数;
    根据所述预设个数的聚类中心的大小确定每种步态对应的聚类中心,作为每种步态对应的步态阈值。
  10. 根据权利要求8所述的方法,其中,在定位器首次开机后顺序记录的预设步数内使用预设阈值确定步态。
  11. 一种定位功能控制装置,包括:
    起始位置获取模块,设置为开启全球定位系统GPS模块,在通过所述GPS模块获取目标对象的起始位置之后,关闭所述GPS模块;
    运动信息获取模块,设置为获取所述目标对象的运动信息;
    运动距离计算模块,设置为根据所述运动信息计算所述目标对象距离所述起始位置的运动距离;
    GPS模块开启模块,设置为在所述运动距离达到预设安全距离的情况下,开启所述GPS模块。
  12. 一种设备,包括:
    一个或多个处理器;
    存储装置,设置为存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-10中任一项所述的方法。
  13. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-10中任一项所述的方法。
PCT/CN2019/075530 2018-03-02 2019-02-20 定位功能控制方法、装置、设备及可读存储介质 WO2019165912A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810174733.5 2018-03-02
CN201810174733.5A CN108508455B (zh) 2018-03-02 2018-03-02 一种定位方法、装置、设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2019165912A1 true WO2019165912A1 (zh) 2019-09-06

Family

ID=63376133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075530 WO2019165912A1 (zh) 2018-03-02 2019-02-20 定位功能控制方法、装置、设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN108508455B (zh)
WO (1) WO2019165912A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108508455B (zh) * 2018-03-02 2019-12-10 深圳市远峰宠物科技有限公司 一种定位方法、装置、设备及可读存储介质
CN110196438A (zh) * 2019-06-17 2019-09-03 广东顺德雷舜信息科技有限公司 定位方法、定位装置以及终端设备
CN110749908B (zh) * 2019-09-27 2022-05-06 荣耀终端有限公司 定位方法及相关设备
CN111602609A (zh) * 2020-06-29 2020-09-01 天津市可利农物联科技产业发展有限公司 低功耗牲畜运动监测与定位装置,实施方法及其客户端
CN112113560B (zh) * 2020-08-18 2022-08-16 杭州叙简科技股份有限公司 运动轨迹生成方法、装置、电子设备以及介质
CN112880686A (zh) * 2021-01-20 2021-06-01 湖南赫兹信息技术有限公司 一种物体运动监测与定位方法、设备及存储介质
CN113324559B (zh) * 2021-05-10 2023-03-21 青岛海尔空调器有限总公司 一种运动计步方法、装置及空气处理设备
CN113204009B (zh) * 2021-05-12 2023-12-22 深圳康佳电子科技有限公司 跑步步长提醒方法、装置、终端及计算机可读存储介质
CN113905328B (zh) * 2021-09-30 2024-03-22 展讯通信(天津)有限公司 人机距离提醒方法及装置、设备以及存储介质
CN116224387B (zh) * 2023-05-09 2023-07-07 深圳市易赛通信技术有限公司 可穿戴设备的定位方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618993A (zh) * 2013-12-02 2014-03-05 江苏荣讯科技实业有限公司 一种宠物定位追踪器
CN105388503A (zh) * 2015-11-20 2016-03-09 小米科技有限责任公司 一种进行导航的方法和装置
US20160178392A1 (en) * 2014-12-15 2016-06-23 i4c Innovations Inc. Distance Measuring in a Monitoring System for Animals
CN105959026A (zh) * 2016-07-20 2016-09-21 广东小天才科技有限公司 定位策略的优化方法和装置
CN106324630A (zh) * 2015-06-30 2017-01-11 华为终端(东莞)有限公司 一种基于可穿戴设备的定位方法及可穿戴设备
JP2018019611A (ja) * 2016-08-01 2018-02-08 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America ペット向けリード型バイタル計測装置
CN108508455A (zh) * 2018-03-02 2018-09-07 深圳市远峰宠物科技有限公司 一种定位方法、装置、设备及可读存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012143952A2 (en) * 2011-04-20 2012-10-26 B Amutha A system and apparatus for safe remote on-line tracing, shadowing, surveillance, inter-communication, location, navigation, tagging, rescue, recovery and restitution of humans and stolen/missing chattels, and the method/s thereof
CN103852771B (zh) * 2012-12-05 2017-07-11 厦门雅迅网络股份有限公司 一种定位漂移的处理方法
CN103096443B (zh) * 2013-01-25 2015-10-28 歌尔声学股份有限公司 一种室内无线定位方法、系统以及智能终端
CN104796855A (zh) * 2014-01-21 2015-07-22 中国移动通信集团江苏有限公司 一种定位方法、终端及系统
CN105318870A (zh) * 2015-11-05 2016-02-10 无锡新人居科贸有限公司 一种宠物定位器
US9947210B2 (en) * 2016-06-01 2018-04-17 Tile, Inc. User intervention opt-in in a tracking device environment
CN106303963A (zh) * 2016-08-18 2017-01-04 深圳市沃特沃德股份有限公司 基于gsm网络的人与宠物的互动方法和装置
CN106683377A (zh) * 2016-12-26 2017-05-17 上海斐讯数据通信技术有限公司 宠物追踪定位系统及其宠物佩戴终端和宠物监控装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618993A (zh) * 2013-12-02 2014-03-05 江苏荣讯科技实业有限公司 一种宠物定位追踪器
US20160178392A1 (en) * 2014-12-15 2016-06-23 i4c Innovations Inc. Distance Measuring in a Monitoring System for Animals
CN106324630A (zh) * 2015-06-30 2017-01-11 华为终端(东莞)有限公司 一种基于可穿戴设备的定位方法及可穿戴设备
CN105388503A (zh) * 2015-11-20 2016-03-09 小米科技有限责任公司 一种进行导航的方法和装置
CN105959026A (zh) * 2016-07-20 2016-09-21 广东小天才科技有限公司 定位策略的优化方法和装置
JP2018019611A (ja) * 2016-08-01 2018-02-08 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America ペット向けリード型バイタル計測装置
CN108508455A (zh) * 2018-03-02 2018-09-07 深圳市远峰宠物科技有限公司 一种定位方法、装置、设备及可读存储介质

Also Published As

Publication number Publication date
CN108508455A (zh) 2018-09-07
CN108508455B (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
WO2019165912A1 (zh) 定位功能控制方法、装置、设备及可读存储介质
WO2018107755A1 (zh) 一种用户行为监测方法和可穿戴设备
CN109581437B (zh) 一种可穿戴设备及其定位方法、装置
JP7082113B2 (ja) 散歩を自動的に検出および開始するためのシステムおよび方法
JP2014528314A5 (zh)
WO2019033586A1 (zh) 基于智能手表的游泳运动分析方法和智能手表
US20180329713A1 (en) Fitness sensor with low power attributes in sensor hub
US20170303761A1 (en) Automatic cleaning system and operation method thereof
RU2014118363A (ru) Система мониторинга для мониторинга пациента и обнаружения делирия у пациента
WO2016188286A1 (zh) 危险等级的确定方法及装置
WO2018098719A1 (zh) 一种睡眠监测方法、装置及终端
CA2916286A1 (en) Animal monitoring device, system, and method
CN111975772A (zh) 机器人控制方法、装置、电子设备及存储介质
JP2017194772A (ja) 覚醒度判定装置
JP7081606B2 (ja) 対象の転倒応答を決定する方法、システム、及び、コンピュータプログラム
CN112902321A (zh) 送风装置的控制方法、送风装置、送风系统及存储介质
CN108133160B (zh) 基于rfid的游泳安全监控系统
KR20210116183A (ko) 가축의 설사 탐지 및 설사 위험도 예측 시스템 및 그 이용 방법
US20200068854A1 (en) Method And System For Monitoring Animals
CN110916614A (zh) 一种用户睡眠监测的方法、装置及智能吊扇
CN113671489B (zh) 状态提醒方法及装置、电子设备和计算机可读存储介质
CN213639266U (zh) 一种可穿戴草食家畜个体特征识别装置
KR101657682B1 (ko) 가속도 센서 및 gps를 이용한 사료효율 분석 시스템
CN208498371U (zh) 一种新型汽车电子警示装置
CN202856899U (zh) 一种具有人体跌倒检测与报警功能的智能视频监控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19761660

Country of ref document: EP

Kind code of ref document: A1