WO2018098719A1 - 一种睡眠监测方法、装置及终端 - Google Patents

一种睡眠监测方法、装置及终端 Download PDF

Info

Publication number
WO2018098719A1
WO2018098719A1 PCT/CN2016/108115 CN2016108115W WO2018098719A1 WO 2018098719 A1 WO2018098719 A1 WO 2018098719A1 CN 2016108115 W CN2016108115 W CN 2016108115W WO 2018098719 A1 WO2018098719 A1 WO 2018098719A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleep state
state
monitored user
physiological signal
acquisition module
Prior art date
Application number
PCT/CN2016/108115
Other languages
English (en)
French (fr)
Inventor
陈文娟
朱萸
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/108115 priority Critical patent/WO2018098719A1/zh
Priority to CN201680075726.9A priority patent/CN108430309A/zh
Publication of WO2018098719A1 publication Critical patent/WO2018098719A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a sleep monitoring method, apparatus, and terminal.
  • Sleep disorder is a common problem in contemporary society. With the development of sensor technology, the convenience of sleep monitoring is gradually increasing. For example, more and more users can monitor their sleep status through terminals such as wearable devices and mobile phones. Improve sleep quality.
  • the terminal will open the sensor for a long time to monitor the user's sleep state.
  • the battery has limited battery life and the sensor is running at full power, which will cause energy consumption, which leads to the terminal's battery life. too short.
  • the embodiment of the invention provides a sleep monitoring method, device and terminal, which can extend the duration of the terminal.
  • a first aspect of the present invention provides a sleep monitoring method, in which a terminal can collect a physiological signal and a motion signal of a monitored user; and determine a sleep state of the monitored user according to the physiological signal and/or the motion signal;
  • the sleep state may include one or more states of an awakening state, a light sleep state, a deep sleep state, or a rapid eye movement REM state; and an opening strategy of the physiological signal acquisition module is set according to the determined sleep state.
  • the sleep monitoring method can avoid the problem that the physiological signal acquisition module is always in the open full power state and the energy consumption is too fast, and prolongs the endurance duration of the terminal.
  • the sleep monitoring method may further include: determining, according to the motion signal of the monitored user, whether the state of the monitored user is a resting state; when the state of the monitored user is in a resting state, performing the step of collecting physiological signals and motion signals of the monitored user; when the monitored user is in a non-resting state Determining, according to the motion signal of the monitored user, performing the monitoring The step of whether the user is in a resting state.
  • the physiological signal is collected, which can avoid the energy consumed by the physiological signal acquisition module when the monitored user is in a non-rest state, further extending the terminal life. time.
  • the terminal determining whether the state of the monitored user is in a resting state according to the motion signal of the monitored user may include the following steps: the terminal determines that the monitored user is at a preset duration t the cumulative number of active in 0; terminal determines whether the accumulated number of times greater than a preset threshold value N 1, if greater than the predetermined threshold N 1, it is determined that the user is in a non-quiescent state; if less than or equal to the threshold N 1, Then it is determined that the monitored user is in a resting state.
  • the terminal may acquire multiple acceleration vector values collected in a unit time by using an acceleration sensor, and use the acceleration vector value collected by the first one of the multiple acceleration vector values as a reference value; wherein the acceleration vector value collected in a unit time
  • the number is related to the operating frequency of the acceleration sensor; the terminal calculates the sum of the vector difference values of the plurality of acceleration vector values and the reference value in the unit time, and determines the sum when the sum of the vector difference values is greater than the preset threshold value N 0 the unit of time is monitored users are active; the vector difference sum is smaller than or equal to a preset threshold value N 0, which is monitored to determine within the unit of time a user is inactive; statistical preset duration t 0
  • the number of active unit time exists, which is the cumulative number of times the monitored user is active during the preset time period t 0 .
  • the terminal setting the activation policy of the physiological signal collection module according to the determined sleep state may include: Determining, according to the motion signal of the monitored user, determining whether the state of the monitored user is a resting state, and determining that the sleep state is a light sleep state In the deep sleep state or the fast eye movement REM state, the opening time interval of the physiological signal acquisition module is set according to the sleep state.
  • the determined sleep state is a light sleep state, a deep sleep state, or a rapid eye movement
  • the terminal may determine, according to the motion signal of the monitored user, a cumulative number of times that the monitored user is in an active state within a first preset duration; and when the cumulative number of times is less than a first preset threshold, performing the basis The step of setting the on-time interval of the physiological signal acquisition module by the sleep state.
  • the opening time interval of the physiological signal acquisition module is set according to the motion signal and the sleep state, so that the physiological signal acquisition module can be more accurately controlled to be turned off and on, and extended. While the long terminal is in standby time, the accuracy of sleep monitoring is maintained.
  • the terminal sets the opening time interval of the physiological signal collection module according to the sleep state
  • the method includes: obtaining a correspondence between a pre-stored sleep state and an opening time interval parameter of the physiological signal collection module; determining an opening time interval of the physiological signal collection module according to the correspondence relationship and the determined sleep state.
  • the terminal acquires a pre-stored sleep state and an opening time interval parameter of the physiological signal acquisition module After the corresponding relationship, the remaining power of the terminal may also be acquired; when the remaining power is less than or equal to the second preset threshold, the value of the open time interval parameter is increased.
  • the opening time interval of the physiological signal acquisition module is determined according to the sleep state according to the value of the increased time interval parameter, so that when the power is insufficient, the opening time interval of the physiological signal acquisition module is appropriately extended, and the terminal duration of the terminal is further extended.
  • the determining, by the terminal, the opening time interval of the physiological signal collecting module according to the corresponding relationship and the determined sleep state may include: setting the opening time interval of the physiological signal collecting module to a first value when the monitored user is in a light sleep state; When the monitoring user is in a deep sleep state, setting the opening time interval of the physiological signal collecting module to a second value, wherein the second value is greater than the first value; and setting the opening time of the physiological signal collecting module when the monitored user is in the REM state
  • the interval is a third value, wherein the third value is less than the first value.
  • the probability of the monitored user transitioning to other sleep states is lower due to the deep sleep state; the probability of the monitored user transitioning to other sleep states is higher in the REM state; in the light sleep state, the monitored user transitions to other sleep states.
  • the probability is between the two. Therefore, by setting the third value to be smaller than the first value, the first value is smaller than the second value to reduce the energy consumption speed of the terminal, that is, further extending the standby time of the terminal.
  • the second aspect of the present invention further provides a sleep monitoring device, which may include an acquisition module, a determination module, and a setting module, wherein the physiological signal and the motion signal of the monitored user may be collected by the acquisition module, according to the physiological signal Or / and the motion signal further determines the sleep state of the monitored user, so that the opening time interval of the physiological signal acquisition module can be set in the light sleep, deep sleep or REM state, and the physiological signal acquisition module is turned on. duration.
  • a sleep monitoring device may include an acquisition module, a determination module, and a setting module, wherein the physiological signal and the motion signal of the monitored user may be collected by the acquisition module, according to the physiological signal Or / and the motion signal further determines the sleep state of the monitored user, so that the opening time interval of the physiological signal acquisition module can be set in the light sleep, deep sleep or REM state, and the physiological signal acquisition module is turned on. duration.
  • the determining module can be based on the motion signal of the monitored user Determining whether the state of the monitored user is in a resting state. If the state is in a resting state, the collecting module collects the physiological signal of the monitored user, further shortening the opening time of the physiological signal collecting module, thereby prolonging the terminal duration of the terminal. .
  • a third aspect of the present invention provides a computer storage medium storing a program, the program including some or all of the steps of a sleep monitoring method provided by the first aspect.
  • a fourth aspect of the present invention provides a terminal, where the terminal may include a processor, a memory, a physiological signal acquisition module, and a motion signal acquisition module, wherein the physiological signal acquisition module is configured to collect physiological signals of the monitored user; the motion signal acquisition module For collecting the motion signal of the monitored user; the memory is used to store the program; the processor is configured to execute the program to collect the physiological signal of the monitored user by the victory signal acquisition module and the motion signal acquisition module; according to the physiological signal And/or a motion signal of the monitored user determines a sleep state in which the monitored user is located; the sleep state includes at least one of an arousal state, a light sleep state, a deep sleep state, and a rapid eye movement REM state; Setting an opening strategy of the physiological signal acquisition module according to the determined sleep state.
  • the terminal may perform part or all of the steps of the sleep monitoring method provided by the first aspect of the present invention to shorten the time when the physiological signal acquisition module is turned on and extend the duration of the terminal.
  • FIG. 1 is a schematic flow chart of a sleep monitoring method according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of another sleep monitoring method according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a sleep monitoring apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart diagram of still another sleep monitoring method according to an embodiment of the present invention.
  • the embodiment of the invention provides a sleep monitoring method, device and terminal, which can extend the duration of the terminal.
  • FIG. 1 is a schematic flowchart of a sleep monitoring method according to an embodiment of the present invention. As shown in FIG. 1 , the sleep monitoring method may include the following steps:
  • the terminal collects physiological signals and motion signals of the monitored user.
  • the terminal determines, according to the physiological signal and/or the motion signal, a sleep state of the monitored user.
  • the terminal sets an opening policy of the physiological signal collection module according to the determined sleep state of the monitored user.
  • the sleep state includes at least one of an awakening state, a light sleep state, a deep sleep state, and a Rapid Eyes Movement (REM) state.
  • the terminal may include a terminal such as a smart phone, a smart watch, or a media player.
  • the terminal may include a physiological signal acquisition module and a motion signal acquisition module.
  • the physiological signal acquisition module may include an electrocardiogram (ECG) sensor and a photoplethysmograph (PPG) sensor.
  • the motion signal acquisition module may include at least one of an acceleration sensor, a gyroscope, and a magnetometer.
  • the frequency domain of the pulse wave signal may include a high frequency band and a low frequency band, and correspondingly, the pulse wave signal is
  • the characteristic parameters may include high frequency energy (HFE), low frequency energy (LFE), and energy ratio LFE/HFE of two frequency bands; wherein, HFE refers to energy in a frequency band of 0.15 Hz to 0.4 Hz; Energy refers to the energy in the frequency band of 0.05 Hz to 0.15 Hz; the energy ratio of the two frequency bands is the ratio of the low frequency energy to the high frequency energy; and the HFE 0 when the monitored user is awakened is used as the high frequency energy reference value, so that the monitored user is awakened.
  • the low-frequency energy LFE 0 is used as the low-frequency energy reference value (the pulse wave signal in the user's awakening state is analyzed by the frequency domain, and may include a high-frequency band and a low-frequency band, and the energy spectrum of the pulse wave signal is utilized, that is, the energy spectral density is in the high-frequency band.
  • the upper frequency can obtain the high frequency energy HFE 0 of the pulse wave signal; the low frequency energy LFE 0 of the pulse wave signal can be obtained by integrating the energy spectrum in the low frequency band. ), LFE 0 /HFE 0 when the monitored user is awake as the energy ratio reference value.
  • step S102 the terminal is determined based on the physiological signal monitor the user's sleep state which can be monitored as a user terminal length is determined according to the physiological signal at a second predetermined t 1 in which the sleep state may specifically include:
  • the second is determined.
  • the monitored user is in a light sleep state within a preset duration t 1 ;
  • the low frequency energy LFE of the currently acquired pulse wave signal has no significant change with respect to LFE 0 (if the magnitude of the change is less than a certain preset threshold), and the high frequency energy HFE of the currently acquired pulse wave signal rises relative to HFE 0 , and LFE
  • the ratio to the HFE is higher than the LFE/HFE of the pulse wave signal of the monitored user in the light sleep state and the deep sleep state, it is determined that the monitored user is in the rapid eye movement REM state within the preset time length t 1 .
  • determining, according to the physiological signal and the motion signal of the user, the sleep state of the user within the second preset time period t 1 may include:
  • the motion signal determines that the cumulative number of times the monitored user is active in the second preset time period t 1 is greater than or equal to the preset threshold N 2 (where N 2 is less than the preset threshold N 1 , and the preset threshold N 1 is used to determine When monitoring whether the user is in a resting state, determining that the monitored user is in a light sleep state during the second preset time period t 1 ;
  • the low frequency energy LFE of the currently acquired pulse wave signal decreases with respect to LFE 0
  • the high frequency energy HFE of the currently acquired pulse wave signal rises relative to HFE 0
  • the LFE/HFE is lower than the LFE/HFE when the light sleep state is
  • the low frequency energy LFE of the currently acquired pulse wave signal has no significant change with respect to LFE 0 (for example, the amplitude of the LFE is less than a certain preset threshold with respect to LFE 0 ), and the high frequency energy HFE of the currently acquired pulse wave signal is relative to the HFE.
  • 0 rises, and the ratio of LFE to HFE is higher than the LFE/HFE in the light sleep state and the deep sleep state, and the cumulative number of times the monitored user is active in the second preset time period t 1 is less than the pre-determination according to the motion signal.
  • the threshold N 2 is set, it is determined that the monitored user is in the REM REM state during the second preset time period t 1 .
  • the motion signal is an acceleration vector value collected by the acceleration sensor, and the cumulative number of times the monitored user is active in the second preset time period t 1 according to the motion signal may include the following steps:
  • the terminal acquires a plurality of acceleration vector values collected in a unit time by using the acceleration sensor, and uses the acceleration vector value collected by the first one of the plurality of acceleration vector values as a reference value;
  • the number of acceleration vector values collected per unit time (for example, per second) is related to the operating frequency of the acceleration sensor.
  • the terminal calculates a sum of vector deviation values of the plurality of acceleration vector values and the reference value in the unit time (for example, every second), and determines the unit time when the sum of the vector difference values is greater than a preset threshold value N 0
  • the monitored user is in an active state; when the sum of the vector difference values is less than or equal to the preset threshold value N 0 , determining that the monitored user is in an inactive state in the unit time; wherein the preset threshold value N 0 is a vector ;
  • the terminal determines the cumulative number of times the monitored user is active in the second preset time period t 1 ;
  • the second preset duration t 1 is N times the unit time, and N is a value greater than or equal to 1, and the number of unit time in which the monitored user is in the active state in the second preset duration t 1 is accumulated. The cumulative number of times the user is active in the second preset time period t 1 is monitored.
  • the sleep monitoring method shown in FIG. 1 can determine the sleep state of the monitored user according to the physiological signal and/or the collected motion signal by collecting the physiological signal of the monitored user, and setting according to the determined sleep state of the monitored user.
  • the opening strategy of the physiological signal acquisition module avoids the problem that the physiological signal acquisition module is always in the open full power state and the energy consumption is too fast, thereby prolonging the terminal life time.
  • FIG. 2 is a schematic flowchart diagram of another sleep monitoring method according to an embodiment of the present invention, wherein the sleep monitoring method shown in FIG. 2 is executed in comparison with the sleep monitoring method shown in FIG. Before step S101, the following steps can also be performed:
  • the terminal determines, according to the motion signal of the monitored user, whether the state of the monitored user is a resting state, and when the state of the monitored user is a resting state, performing step S101 in the sleep monitoring method shown in FIG. Go to S103; when the state of the monitored user is non-resting state, return to perform the step of determining whether the state of the monitored user is in a resting state according to the motion signal of the monitored user.
  • the resting state means that the monitored user is in a suspected sleep state, and the non-resting state refers to a state in which the monitored user is active or moving.
  • the awakening state in the sleep state means that although the monitored user is determined to be in a resting state by the motion signal, the monitored user is still awakened, for example, the state in which the monitored user does not move while lying on the bed, but has not yet fallen asleep.
  • the terminal may determine, by the physiological signal, whether the monitored user is in an awake state, that is, perform the operations of steps S101 and S102.
  • the terminal determining whether the state of the monitored user is in a resting state according to the motion signal of the monitored user may include the following steps:
  • the terminal acquires a plurality of acceleration vector values collected in a unit time by using the acceleration sensor, and uses the acceleration vector value collected by the first one of the plurality of acceleration vector values as a reference value;
  • the number of acceleration vector values collected per unit time is related to the operating frequency of the acceleration sensor.
  • the terminal calculates a sum of the vector difference values of the plurality of acceleration vector values and the reference value in the unit time, and determines that the monitored user is in the unit time when the sum of the vector difference values is greater than a preset threshold value N 0 active; when the vector difference sum is smaller than or equal to a preset threshold value N 0, which is monitored to determine within the unit of time a user is inactive;
  • the terminal determines the cumulative number of times the monitored user is active in the preset time period t 0 ;
  • the terminal determines whether the accumulated number of times is greater than a preset threshold value N 1 . If the preset threshold value N 1 is greater than the preset threshold value N 1 , the terminal determines that the user is in a non-rest state; if less than or equal to the preset threshold value N 1 , determines that the monitored user is in the Resting state.
  • the preset time length t 0 is N times the unit time, and N is a value greater than or equal to 1.
  • the preset duration t 0 may be a collection period of the motion signal, or a preset multiple of the collection period of the motion signal, which is not limited in the embodiment of the present invention.
  • the probability that the monitored user is in a sleep state is almost zero, and therefore, it is not necessary to collect a physiological signal to determine The user's sleep state. Since the monitored user is likely to be in a sleep state when it is determined that the monitored user is in a resting state according to the motion signal, that is, the suspected sleep state, the physiological signal may be continuously collected to further determine the sleep state of the monitored user as an awake state, A light sleep state, a deep sleep state, or a REM state. Therefore, when determining that the monitored user is in a resting state, performing the step S101 to collect the physiological signal can reduce the number of times the physiological signal acquisition module is turned on, and further extend the duration of the terminal.
  • the terminal sets the activation policy of the physiological signal acquisition module according to the determined sleep state, which may include: when the determined sleep state is the awake state, the terminal does not need to set the opening time interval of the physiological signal acquisition module, ie The physiological signal acquisition module does not need to be started, and the step S201 is continued to determine whether the state of the monitored user is in a resting state according to the motion signal of the monitored user, and the physiological signal collection is set because the monitored user is in other sleep states. The opening time interval of the module, therefore, it is possible to return to step S201.
  • the sleep state of the monitored user before determining the sleep state of the monitored user, first determining whether the monitored user is in a resting state, and preventing the monitored user from being in a non-resting state, that is, an active state, performing step S101, thereby reducing the physiological signal acquisition module.
  • the number of open times when the determined sleep state of the monitored user is a light sleep state, a deep sleep state, or a fast eye movement REM state, the opening time interval of the physiological signal acquisition module is set according to the sleep state.
  • the terminal sets the physiological signal acquisition module on time according to the sleep state when the determined sleep state of the monitored user is a light sleep state, a deep sleep state, or a rapid eye movement REM state.
  • the cumulative number of times the monitored user is in the active state within the first preset time period t 1 may also be determined according to the motion signal of the monitored user.
  • the opening time interval of the physiological signal acquisition module is set according to the sleep state.
  • the opening strategy of the physiological signal acquisition module is set according to the motion signal and the sleep state, so that the physiological signal acquisition module can be more accurately controlled to be turned off and on, thereby reducing the energy consumption while maintaining the accuracy of the sleep monitoring.
  • the opening time interval of the physiological signal collection module may be set according to the sleep state, which may specifically include The following steps: obtaining a correspondence between a pre-stored sleep state and an opening time interval parameter of the physiological signal acquisition module; determining an opening time interval of the physiological signal collection module according to the correspondence relationship and the determined sleep state.
  • Table 1 is a correspondence table between a sleep state and an open time interval parameter according to an embodiment of the present invention.
  • the physiological signal acquisition module is determined according to the correspondence relationship shown in Table 1 and the determined sleep state.
  • the opening time interval may include: setting a turn-on interval of the physiological signal acquisition module to a first value T 1 when the monitored user is in a light sleep state; and setting a physiological signal acquisition module to be turned on when the monitored user is in a deep sleep state;
  • the time interval is a second value T 2 , wherein the second value T 2 is greater than the first value T 1 ; when the monitored user is in the REM state, setting the opening time interval of the physiological signal acquisition module to a third value T 3 , wherein The third value T 3 is smaller than the first value T 1 .
  • the probability of the monitored user transitioning to other sleep states is lower due to the deep sleep state; the probability of the monitored user transitioning to other sleep states is higher in the REM state; in the light sleep state, the monitored user transitions to other sleep states.
  • the probability is between the two. Therefore, by setting the third value T 3 to be smaller than the first value T 3 , the first value is smaller than the second value T 2 , that is, the different opening time intervals of the physiological signal acquisition module to reduce the energy consumption of the terminal.
  • the opening time interval may also be referred to as an opening period of the physiological signal collecting module.
  • the terminal may further perform: acquiring the remaining power of the terminal; When the second preset threshold is equal to, the value of the open time interval parameter is increased.
  • Table 2 is a correspondence table between the sleep state and the turn-on time interval parameter determined according to the remaining power.
  • the remaining power of the terminal is less than or equal to the second preset threshold, the first value T 1 may be increased. Up to T 1 ', the second value T 2 can be increased to T 2 ', the third value T 3 is increased to T 3 ', and the increased value is used to set the on-time interval corresponding to each sleep state. It can be seen that the embodiment of the present invention can determine the opening time interval of the physiological signal collection module in combination with the remaining power, and further extend the duration of the terminal.
  • Table 2 determines the correspondence between the sleep state and the open interval parameter according to the remaining power
  • the terminal determines, according to the motion signal of the monitored user, whether the state of the monitored user is a resting state, and if in the resting state, further determining the monitored user according to the physiological signal and the motion signal.
  • a sleep state and, when the sleep state is an awake state, continue to determine the state of the monitored user according to the motion signal to reduce the number of times the physiological signal acquisition module is turned on; when the sleep state is light sleep, deep sleep, or REM state
  • the opening time interval of the physiological signal acquisition module can be set, which further shortens the opening time of the physiological signal acquisition module, thereby prolonging the duration of the terminal.
  • FIG. 5 is a schematic flowchart of still another sleep monitoring method according to an embodiment of the present invention. As shown in FIG. 5, the sleep monitoring method may include the following steps:
  • step S501 The terminal collects a motion signal of the user, and determines, according to the motion signal, whether the accumulated number of times that the user is active in the preset duration t 0 is less than a preset threshold; if less than the preset threshold, step S503 is performed; if not less than the preset threshold , that is, the active state, step S502 is performed.
  • whether the cumulative number of times that the user is active in the preset time period t 0 is less than a preset threshold according to the motion signal may be specifically:
  • the motion signal acquisition module as a motion sensor, such as a three-axis acceleration sensor, taking the first triaxial acceleration vector value in a unit time (for example, per second) as a reference value, and then taking the remaining sampling points in the preset duration.
  • the triaxial acceleration vector value is compared with the reference value; the sum of the amplitudes of the acceleration vector difference values in the unit time is calculated, and if the sum of the amplitudes is higher than the set threshold v 0 , it is determined that the user is active in the second; Calculating the cumulative number of times the user is active in the preset time period t 0.
  • step S502 is performed to determine that the user is in a non-resting state, and the PPG sensor is turned off; otherwise, determining that the user is in the user In the resting state, proceed to step S503.
  • the terminal determines that the user is in a non-rest state, and turns off the PPG sensor.
  • the terminal determines that the user is in a resting state, and turns on the PPG sensor.
  • step S504 physiological signal terminal by the PPG sensor acquisition and / or motion signal acquisition module of the motion signal, and detects when a preset length of t 1 the user's sleep state; when the sleep state is a light sleep state, performing step S505; if When the sleep state is the deep sleep state, step S506 is performed; when the sleep state is the REM state, step S507 is performed; when the sleep state is the awake state, step S502 is performed;
  • the terminal sets the PPG sensor on time interval to be the first value
  • the terminal sets the PPG sensor on time interval to be a second value.
  • the terminal sets the PPG sensor to open at a third interval.
  • the second value is greater than the first value, and the third value is less than the first value.
  • the terminal first determines that the user is in a resting state according to the motion signal, turns on the PPG sensor, collects the physiological signal of the monitored user, and determines the pre-determination according to the physiological signal and/or the collected motion signal.
  • the sleep state of the monitored user is set in the duration, and the opening time interval of the physiological signal acquisition module is set according to the determined sleep state of the monitored user, so that the terminal can avoid the energy consumption caused by the physiological signal acquisition module being in the all-power state that is always on. The problem of too fast, extending the terminal's battery life.
  • FIG. 3 is a schematic structural diagram of a sleep monitoring apparatus according to an embodiment of the present invention.
  • the sleep monitoring apparatus may include: an acquisition module 301, a determination module 302, and a setting module 303.
  • the collecting module 301 is configured to collect physiological signals of the monitored user
  • the determining module 302 is configured to determine, according to the physiological signal and/or the motion signal, the sleeping of the monitored user a sleep state; the sleep state includes at least one of an arousal state, a light sleep state, a deep sleep state, and a rapid eye movement REM state;
  • the setting module 303 is configured to set an opening strategy of the physiological signal collection module according to the determined sleep state.
  • the acquisition module 301 can include a physiological signal acquisition module and a motion signal acquisition module.
  • the physiological signal acquisition module can include a PPG sensor
  • the motion signal acquisition module can include an ECG sensor.
  • the frequency domain of the pulse wave signal may include a high frequency band and a low frequency band, and correspondingly, the pulse wave signal is
  • the characteristic parameters may include high frequency energy (HFE), low frequency energy (LFE), and energy ratio LFE/HFE of two frequency bands; wherein, HFE refers to energy in a frequency band of 0.15 Hz to 0.4 Hz; Energy refers to the energy in the frequency band of 0.05 Hz to 0.15 Hz; the energy ratio of the two frequency bands is the ratio of the low frequency energy to the high frequency energy; and the HFE 0 when the monitored user is awakened is used as the high frequency energy reference value, so that the monitored user is awakened.
  • the low-frequency energy LFE 0 is used as the low-frequency energy reference value (the pulse wave signal in the user's awakening state is analyzed by the frequency domain, and may include a high-frequency band and a low-frequency band, and the energy spectrum of the pulse wave signal is utilized, that is, the energy spectral density is in the high-frequency band.
  • the upper frequency can obtain the high frequency energy HFE 0 of the pulse wave signal; the low frequency energy LFE 0 of the pulse wave signal can be obtained by integrating the energy spectrum in the low frequency band.
  • the LFE 0 /HFE 0 when the monitored user is awake as the energy ratio reference value; the determining module 302 determines the sleep state of the monitored user according to the physiological signal, which may include:
  • the current pulse is determined.
  • the monitored user is in a light sleep state during the wave signal collection period;
  • the low frequency energy LFE of the currently acquired pulse wave signal decreases with respect to LFE 0
  • the high frequency energy HFE of the currently acquired pulse wave signal rises relative to HFE 0
  • the pulse of the monitored user is lower when the LFE/HFE is lower than the light sleep state.
  • the low frequency energy LFE of the currently acquired pulse wave signal has no significant change with respect to LFE 0 (eg, the variation amplitude is less than a certain preset threshold), and the high frequency energy HFE of the currently acquired pulse wave signal rises relative to HFE 0 , and LFE
  • the ratio to HFE is higher than the LFE/HFE of the pulse wave signal of the monitored user in the light sleep state and the deep sleep state, it is determined that the monitored user is in the REM state during the current pulse wave signal acquisition period.
  • the determining module 302 determines, according to the physiological signal and the motion signal of the user, the sleep state of the user, which may be specifically:
  • the motion signal determines that the cumulative number of times the monitored user is active in the second preset time period t 1 is greater than or equal to the preset threshold N 2 (where N 2 is less than the preset threshold N 1 , and the preset threshold N 1 is used to determine When the monitoring user is in a resting state, the determining module 302 determines that the monitored user is in a light sleep state during the current pulse wave signal collection period;
  • the low frequency energy LFE of the currently acquired pulse wave signal decreases with respect to LFE 0
  • the high frequency energy HFE of the currently acquired pulse wave signal rises relative to HFE 0
  • the LFE/HFE is lower than the LFE/HFE when the light sleep state is
  • the determining module 302 determines that the monitored user is in a deep sleep state during the current pulse wave signal collection period
  • the low frequency energy LFE of the currently acquired pulse wave signal has no significant change with respect to LFE 0 (for example, the amplitude of LFE is less than a certain preset threshold with respect to LFE 0 ), and the high frequency energy HFE of the currently acquired pulse wave signal is relative to HFE.
  • 0 rises, and the ratio of LFE to HFE is higher than the LFE/HFE in the light sleep state and the deep sleep state, and the cumulative number of times the monitored user is active in the second preset time period t 1 is less than the pre-determination according to the motion signal.
  • the determining module 302 determines that the monitored user is in the REM REM state during the current pulse wave signal acquisition period.
  • the motion signal is an acceleration vector value collected by the acceleration sensor, and the cumulative number of times the monitored user is active in the second preset time period t 1 according to the motion signal may include the following steps:
  • the number of acceleration vector values collected in unit time (for example, per second) and acceleration sensing The operating frequency of the device is related.
  • the second preset duration t 1 is N times the unit time, and N is a value greater than or equal to 1, and the number of unit time in which the monitored user is in the active state in the second preset duration t 1 is accumulated. The cumulative number of times the user is active in the second preset time period t 1 is monitored.
  • the sleep monitoring device shown in FIG. 3 can collect the physiological signal and the motion signal of the monitored user through the collecting module 301, and the determining module 302 determines the sleep state of the monitored user according to the physiological signal and/or the collected motion signal, and
  • the setting module 303 sets the opening strategy of the physiological signal collecting module according to the determined sleep state of the monitored user, thereby avoiding the problem that the physiological signal collecting module is always in the open full power state, and prolonging the endurance time of the terminal. .
  • the determining module 302 is further configured to determine, according to the motion signal of the monitored user, whether the state of the monitored user is a resting state; the state of the monitored user is static.
  • the acquisition module 301 is triggered to collect the physiological signals and motion signals of the monitored user; when the monitored user is in a non-resting state, the cyclic trigger determination module performs a motion signal according to the monitored user. An operation to determine whether the monitored user is in a resting state.
  • the monitored user is determined to be in a resting state according to the motion signal, and then the physiological signal is collected to determine the sleep state of the monitored user, so that the energy consumed by the physiological signal is not avoided when the monitored user is in a non-rest state, thereby Further extend the life time of the sleep monitoring device.
  • the determining module 302 determines, according to the motion signal of the monitored user, whether the state of the monitored user is a resting state, and the motion signal is an acceleration vector value collected by the acceleration sensor, and the following operations may be specifically performed: acquiring by the acceleration sensor A plurality of acceleration vector values collected per unit time, and the first acceleration acceleration vector value of the plurality of acceleration vector values is used as a reference value, wherein the number of acceleration vector values collected per unit time and the operating frequency of the acceleration sensor Correlating; calculating a sum of vector difference values of the plurality of acceleration vector values and the reference value in the unit time, determining that the monitored user is active in the unit time when the sum of the vector difference values is greater than the preset threshold value N0; When the sum of the differences is less than or equal to the preset threshold N 0 , determining that the user is in an inactive state in the unit time; determining the cumulative number of times the monitored user is active in the preset time period t 0 ; determining whether the accumulated number of times is greater than preset threshold
  • the preset time length t 0 is N times the unit time, and N is a value greater than or equal to 1, and the monitored user is pre-accumulated by accumulating the number of unit time in which the monitored user is in the active state within the preset time period t 0 . Set the cumulative number of times that the active time is within the duration t 0 .
  • the preset duration t 0 may be a collection period of the motion signal, or a preset multiple of the collection period of the motion signal, which is not limited in the embodiment of the present invention.
  • the setting module 303 sets the opening policy of the physiological signal collecting module according to the determined sleep state, specifically, when the determined sleep state is the awake state, the setting time interval of the physiological signal collecting module does not need to be set, that is, it is not necessary
  • the physiological signal acquisition module is turned on, and the operation of determining whether the state of the monitored user is in a resting state according to the motion signal of the monitored user is performed again; the determined sleep state is a light sleep state, a deep sleep state, or a rapid eye movement REM state.
  • the opening time interval of the physiological signal acquisition module is set according to the sleep state.
  • the opening time interval of the physiological signal acquisition module is set, and therefore, it can be returned to continue to determine the state of the monitored user.
  • the determined sleep state is a light sleep state, a deep sleep state, or a fast eye movement REM state
  • the determined user is determined to be active within the first preset time period according to the motion signal of the monitored user.
  • the cumulative number of times of the state when the accumulated number of times is less than the first preset threshold, the operation of setting the opening time interval of the physiological signal collecting module according to the sleep state is performed.
  • the opening strategy of the physiological signal acquisition module is set according to the motion signal and the sleep state, so that the physiological signal acquisition module can be more accurately controlled to be turned off and on, thereby reducing the energy consumption while maintaining the accuracy of the sleep monitoring.
  • the setting module 303 sets the opening time interval of the physiological signal collecting module according to the sleep state, specifically: acquiring the pre-stored sleep state and the opening of the physiological signal collecting module. Corresponding relationship between the interval parameters; determining an opening time interval of the physiological signal acquisition module according to the correspondence and the determined sleep state of the monitored user.
  • the setting module 303 acquires the remaining power of the terminal; when the remaining power is less than or equal to the second preset threshold , increase the value of the on time interval parameter.
  • the opening time interval of the physiological signal acquisition module is determined according to the sleep state according to the value of the increased time interval parameter, so that when the power is insufficient, the opening time interval of the physiological signal acquisition module is appropriately extended, and the terminal duration of the terminal is further extended.
  • the setting module 303 determines the opening time interval of the physiological signal collecting module according to the corresponding relationship and the determined sleep state, which may be specifically: setting the opening time interval of the physiological signal collecting module when the monitored user is in the light sleep state The first value is set; when the monitored user is in a deep sleep state, setting the opening time interval of the physiological signal collecting module to a second value, wherein the second value is greater than the first value; when the monitored user is in the REM state, setting The opening time interval of the physiological signal acquisition module is a third value, wherein the third value is smaller than the first value.
  • the probability of the monitored user transitioning to other sleep states is lower due to the deep sleep state; the probability of the monitored user transitioning to other sleep states is higher in the REM state; in the light sleep state, the monitored user transitions to other sleep states.
  • the probability is between the two, therefore, by setting the third value to be less than the first value, the first value is less than the second value to reduce the energy consumption of the sleep monitoring device.
  • the determining module may determine, according to the motion signal of the monitored user, whether the state of the monitored user is a resting state, and determine whether the monitored user is in a resting state, if the user is in a resting state.
  • the sleep state of the monitored user may be further determined according to the physiological signal and the motion signal, so that the state of the monitored user may be determined according to the motion signal when the state is awakened; in a light sleep, deep sleep, or In the REM state, the opening time interval of the physiological signal acquisition module can be set, which further shortens the opening time of the physiological signal acquisition module, thereby prolonging the terminal duration of the terminal.
  • FIG. 4 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the terminal may include: at least one processor 401, such as a CPU, at least one network interface 404, or other user interface. 403. Memory 405, at least one communication bus 402. Communication bus 402 is used to implement connection communication between these components.
  • the terminal may further include a physiological signal acquisition module 406 and a motion signal acquisition module 407, wherein the physiological signal acquisition module 406 collects physiological signals of the monitored user, and the physiological signal acquisition module 406 At least one of a light sensor, a pressure sensor, an acoustic sensor, a photoelectric sensor, and a displacement sensor may be included.
  • the physiological signal collected by the physiological signal acquisition module 406 may include an electrocardiogram signal, a pulse wave signal, a body temperature signal, At least one of a skin resistance signal or the like;
  • the motion signal acquisition module 407 is configured to collect a motion signal of the monitored user, and the motion signal acquisition module 407 may include at least one of an acceleration sensor, a gyroscope, a magnetometer, and the like.
  • the network interface 404 may optionally include at least one of a Wi-Fi interface and other wireless and wired interfaces.
  • the memory 405 may include a high speed RAM memory and may also include a non-volatile memory such as at least one disk memory.
  • the memory 405 can optionally include at least one storage device located remotely from the aforementioned processor 401.
  • the memory 405 stores the following elements, executable modules or data structures, or a subset thereof, or their extended set: an operating system 4051, containing various system programs for implementing various basic services. And processing hardware-based tasks; the application 4052 includes various applications such as a sleep monitoring program for implementing various application services.
  • the processor 401 is configured to invoke a program stored in the memory 405 to perform the following operations:
  • the sleep state of the monitored user may include a light sleep state, a deep sleep state, or a rapid eye movement REM state;
  • the opening strategy of the physiological signal acquisition module is set according to the determined sleep state.
  • the frequency domain of the pulse wave signal may include a high frequency band and a low frequency band, and correspondingly, the pulse wave signal is
  • the characteristic parameters may include high frequency energy (HFE), low frequency energy (LFE), and energy ratio LFE/HFE of two frequency bands; wherein, HFE refers to energy in a frequency band of 0.15 Hz to 0.4 Hz; Energy refers to the energy in the frequency band of 0.05 Hz to 0.15 Hz; the energy ratio of the two frequency bands is the ratio of the low frequency energy to the high frequency energy; and the HFE 0 when the monitored user is awakened is used as the high frequency energy reference value, so that the monitored user is awakened.
  • the low-frequency energy LFE 0 is used as the low-frequency energy reference value (the pulse wave signal in the user's awakening state is analyzed by the frequency domain, and may include a high-frequency band and a low-frequency band, and the energy spectrum of the pulse wave signal is utilized, that is, the energy spectral density is in the high-frequency band.
  • the upper frequency can obtain the high frequency energy HFE 0 of the pulse wave signal; the low frequency energy LFE 0 of the pulse wave signal can be obtained by integrating the energy spectrum in the low frequency band.
  • the current pulse is determined.
  • the monitored user is in a light sleep state during the wave signal collection period;
  • the low frequency energy LFE of the currently acquired pulse wave signal decreases with respect to LFE 0
  • the high frequency energy HFE of the currently acquired pulse wave signal rises relative to HFE 0
  • the pulse of the monitored user is lower when the LFE/HFE is lower than the light sleep state.
  • the low frequency energy LFE of the currently acquired pulse wave signal has no significant change with respect to LFE 0 (if the magnitude of the change is less than a certain preset threshold), and the high frequency energy HFE of the currently acquired pulse wave signal rises relative to HFE 0 , and LFE
  • the ratio to HFE is higher than the LFE/HFE of the pulse wave signal of the monitored user in the light sleep state and the deep sleep state, it is determined that the monitored user is in the REM state during the current pulse wave signal acquisition period.
  • the processor 401 determines the sleep state of the user according to the physiological signal and the motion signal of the user, and may include the following steps:
  • the motion signal determines that the cumulative number of times the monitored user is active in the second preset time period t 1 is greater than or equal to the preset threshold N 2 (where N 2 is less than the preset threshold N 1 , and the preset threshold N 1 is used to determine When monitoring whether the user is in a resting state, determining that the monitored user is in a light sleep state during the current pulse wave signal collection period;
  • the low frequency energy LFE of the currently acquired pulse wave signal decreases with respect to LFE 0
  • the high frequency energy HFE of the currently acquired pulse wave signal rises relative to HFE 0
  • the LFE/HFE is lower than the LFE/HFE when the light sleep state is
  • the low frequency energy LFE of the currently acquired pulse wave signal has no significant change with respect to LFE 0 (for example, the amplitude of LFE is less than a certain preset threshold with respect to LFE 0 ), and the high frequency energy HFE of the currently acquired pulse wave signal is relative to HFE.
  • 0 rises, and the ratio of LFE to HFE is higher than the LFE/HFE in the light sleep state and the deep sleep state, and the cumulative number of times the monitored user is active in the second preset time period t 1 is less than the pre-determination according to the motion signal.
  • the threshold value N 2 is set, it is determined that the monitored user is in the rapid eye movement REM state during the current pulse wave signal acquisition period.
  • the motion signal is an acceleration vector value collected by the acceleration sensor, and the cumulative number of times the monitored user is active in the second preset time period t 1 according to the motion signal may include the following steps:
  • the terminal acquires a plurality of acceleration vector values collected in a unit time by using the acceleration sensor, and uses the acceleration vector value collected by the first one of the plurality of acceleration vector values as a reference value;
  • the number of acceleration vector values collected per unit time (for example, per second) is related to the operating frequency of the acceleration sensor.
  • the terminal calculates a sum of vector deviation values of the plurality of acceleration vector values and the reference value in the unit time (for example, every second), and determines the unit time when the sum of the vector difference values is greater than a preset threshold value N 0 the monitored user is active; when the vector difference sum is smaller than or equal to a preset threshold value N 0, which is monitored to determine within the unit of time a user is inactive; wherein the predetermined threshold value N 0 is a vector ;
  • the second preset duration t 1 is N times the unit time, and N is a value greater than or equal to 1, and the number of unit time in which the monitored user is in the active state in the second preset duration t 1 is accumulated. The cumulative number of times the user is active in the second preset time period t 1 is monitored.
  • the processor 401 is configured to invoke the program stored in the memory 405, and may further perform the following operations: determining, according to the motion signal of the monitored user, whether the state of the monitored user is in a resting state; When the monitoring user is in a resting state, performing the operation of turning on the physiological signal collecting module to collect the physiological signal of the monitored user; where the monitored user is located When the state is a non-resting state, the operation of determining whether the monitored user is in a resting state according to a motion signal of the monitored user is performed.
  • the processor 401 determines, according to the motion signal of the monitored user, whether the state of the monitored user is a resting state, and the motion signal is an acceleration vector value collected by the acceleration sensor, and the following operations may be specifically performed:
  • a preset threshold value N 1 It is determined whether the accumulated number of times is greater than a preset threshold value N 1 . If the preset threshold value N 1 is greater than the predetermined threshold value N 1 , it is determined that the user is in a non-resting state; if less than or equal to the preset threshold value N 1 , it is determined that the monitored user is in a resting state.
  • the processor 401 is configured to invoke a program stored in the memory 405, and set an opening policy of the physiological signal collection module according to the determined sleep state, and specifically perform the following operations:
  • the determined sleep state is an awake state, performing an operation of determining, according to a motion signal of the monitored user, whether the state of the monitored user is a resting state;
  • an opening time interval of the physiological signal acquisition module is set according to the sleep state.
  • the processor 401 is configured to invoke a program stored in the memory 405.
  • the determined sleep state is a light sleep state, a deep sleep state, or a fast eye movement REM state
  • the following operations may also be performed:
  • the processor 401 is configured to invoke a program stored in the memory 405, and set an opening time interval of the physiological signal collection module according to the sleep state, and specifically perform the following operations:
  • the processor 401 is configured to invoke a program stored in the memory 405 to obtain a correspondence between a pre-stored sleep state and an open time interval parameter of the physiological signal collection module, and then perform the following operations:
  • the processor 401 determines the opening time interval of the physiological signal collecting module according to the corresponding relationship and the determined sleep state, which may be specifically: setting the opening time interval of the physiological signal collecting module when the monitored user is in a light sleep state The first value is set; when the monitored user is in a deep sleep state, setting the opening time interval of the physiological signal collecting module to a second value, wherein the second value is greater than the first value; when the monitored user is in the REM state, setting The opening time interval of the physiological signal acquisition module is a third value, wherein the third value is smaller than the first value.
  • the probability of the monitored user transitioning to other sleep states is lower due to the deep sleep state; the probability of the monitored user transitioning to other sleep states is higher in the REM state; in the light sleep state, the monitored user transitions to other sleep states.
  • the probability is between the two, therefore, by setting the third value to be smaller than the first value, the first value is smaller than the second value to further reduce the energy consumption speed of the terminal.
  • the embodiment of the present invention provides a computer storage medium, where the computer storage medium can store a program, and the program includes some or all of the steps of the sleep monitoring method in the above embodiment of the invention.

Abstract

一种睡眠监测方法、装置和终端,该睡眠监测方法包括:S101、采集被监测用户的生理信号和运动信号;S102、根据所述生理信号和/或运动信号确定被监测用户所处的睡眠状态,所述睡眠状态包括觉醒状态、浅睡状态、深睡状态以及快速眼动REM状态中的至少一种;S103、根据确定的所述睡眠状态设置生理信号采集模块的开启策略。该方法、装置和终端避免了生理信号采集模块一直处于开启的全功率状态引起的能量消耗过快的问题,延长了装置的续航时间。

Description

一种睡眠监测方法、装置及终端 技术领域
本发明涉及电子技术领域,尤其涉及一种睡眠监测方法、装置及终端。
背景技术
睡眠障碍是当代社会普遍存在的一个问题,随着传感器技术的发展,睡眠监测的便捷性逐渐提升,例如,越来越多的用户可以通过可穿戴设备、手机等终端监测自己的睡眠状况,以提升睡眠质量。
在实践中发现,终端会长期开启传感器以监测用户的睡眠状态,然而,终端由于体积的限制,电池续航能力有限,传感器处于全功率状态下运行,会造成能源消耗大,从而导致终端的续航时长过短。
发明内容
本发明实施例提供一种睡眠监测方法、装置及终端,能够延长终端的续航时长。
本发明第一方面提供了一种睡眠监测方法,该睡眠监测方法中,终端可以采集被监测用户的生理信号和运动信号;根据生理信号和/或运动信号确定被监测用户所处的睡眠状态;其中,该睡眠状态可以包括觉醒状态、浅睡状态、深睡状态或者快速眼动REM状态中的一种或多种状态;根据确定的睡眠状态设置生理信号采集模块的开启策略。该睡眠监测方法可以避免生理信号采集模块一直处于开启的全功率状态引起的能量消耗过快的问题,延长了终端的续航时长。
结合本发明第一方面的实施方式,在本发明第一方面的第一种可能的实现方式中,该睡眠监测方法还可以包括:根据被监测用户的运动信号确定被监测用户所处的状态是否为静息状态;在被监测用户所处的状态为静息状态时,执行所述的采集被监测用户的生理信号和运动信号的步骤;在被监测用户所处的状态为非静息状态时,执行所述的根据被监测用户的运动信号判断所述被监测 用户是否为静息状态的步骤。该实施方式,首先根据运动信号确定被监测用户处于静息状态时,再采集生理信号,可以避免被监测用户处于非静息状态时开启生理信号采集模块消耗的能量,进一步的延长了终端的续航时间。
以运动信号为加速度传感器采集的加速度矢量值为例,终端根据被监测用户的运动信号确定被监测用户所处的状态是否为静息状态可以包括以下步骤:终端确定被监测用户在预设时长t0内处于活动状态的累计次数;终端判断该累计次数是否大于预设阈值N1,若大于该预设阈值N1,则确定用户处于非静息状态;若小于或等于预设阈值N1,则确定被监测用户处于静息状态。其中,终端可以通过加速度传感器获取单位时间内采集的多个加速度矢量值,并将多个加速度矢量值中的第一个采集的加速度矢量值作为基准值;其中,单位时间内采集的加速度矢量值的个数与加速度传感器的工作频率相关;终端计算该单位时间内该多个加速度矢量值与基准值的矢量差值之和,在该矢量差值之和大于预设阈值N0时,确定该单位时间内该被监测用户处于活动状态;在该矢量差值之和小于或等于预设阈值N0时,确定该单位时间内该被监测用户处于非活动状态;通过统计预设时长t0中存在的处于活动状态的单位时间的个数,该个数即为被监测用户在该预设时长t0内处于活动状态的累计次数。
结合本发明第一方面的第一种可能的实现方式,在本发明第一方面的第二种可能的实现方式中,终端根据确定的睡眠状态设置生理信号采集模块的开启策略,可以包括:在确定的所述睡眠状态为觉醒状态时,执行所述根据被监测用户的运动信号确定所述被监测用户所处的状态是否为静息状态的步骤;在确定的所述睡眠状态为浅睡状态、深睡状态或者快速眼动REM状态时,根据所述睡眠状态设置所述生理信号采集模块的开启时间间隔。
结合本发明第一方面的第二种可能的实现方式,在本发明第一方面的第三种可能的实现方式中,在确定的所述睡眠状态为浅睡状态、深睡状态或者快速眼动REM状态时,终端可以根据被监测用户的运动信号确定在第一预设时长内所述被监测用户处于活动状态的累计次数;在累计次数小于第一预设阈值时,执行所述的根据所述睡眠状态设置所述生理信号采集模块的开启时间间隔的步骤。该实施方式中,根据运动信号和睡眠状态设置所述生理信号采集模块的开启时间间隔,可以更加精确的控制生理信号采集模块的关闭和开启,并延 长终端的待机时长的同时,保持睡眠监测的准确度。
结合本发明第一方面的第二种或第三种可能的实现方式,在本发明第一方面的第四种可能的实现方式中,终端根据睡眠状态设置生理信号采集模块的开启时间间隔,可以包括:获取预先存储的睡眠状态与所述生理信号采集模块的开启时间间隔参数之间的对应关系;根据所述对应关系以及确定的所述睡眠状态确定所述生理信号采集模块的开启时间间隔。
结合本发明第一方面的第四可能的实现方式,在本发明第一方面的第五种可能的实现方式中,终端获取预先存储的睡眠状态与所述生理信号采集模块的开启时间间隔参数之间的对应关系之后,还可以获取终端的剩余电量;在所述剩余电量小于或等于第二预设阈值时,增大开启时间间隔参数的值。以已增大的时间间隔参数的值来根据睡眠状态确定生理信号采集模块的开启时间间隔,使得在电量不足时,适当延长生理信号采集模块的开启时间间隔,进一步的延长终端的续航时长。
其中,终端根据对应关系以及确定的睡眠状态确定生理信号采集模块的开启时间间隔,可以包括:在被监测用户处于浅睡状态时,设置生理信号采集模块的开启时间间隔为第一值;在被监测用户处于深睡状态时,设置生理信号采集模块的开启时间间隔为第二值,其中,该第二值大于第一值;在被监测用户处于REM状态时,设置生理信号采集模块的开启时间间隔为第三值,其中,该第三值小于第一值。由于深睡状态时,被监测用户转换到其他睡眠状态的概率较低;REM状态时,被监测用户转换到其他睡眠状态的概率较高;浅睡状态时,被监测用户转换到其他睡眠状态的概率处于两者之间,因此,通过设置第三值小于第一值,第一值小于第二值来降低终端的能量消耗速度,即进一步地,延长终端的待机时长。
本发明第二方面还提供了一种睡眠监测装置,该睡眠监测装置可以包括采集模块、确定模块和设置模块,其中,可以由采集模块采集被监测用户的生理信号和运动信号,根据该生理信号或/和运动信号进一步确定被监测用户所处的睡眠状态,从而,可以在在浅睡、深睡或者REM状态时,可以设置生理信号采集模块的开启时间间隔,缩短了生理信号采集模块开启的时长。
进一步的,该睡眠监测装置中,确定模块可以根据被监测用户的运动信号 确定被监测用户所处的状态是否为静息状态,若处于静息状态时,再由采集模块采集被监测用户的生理信号,进一步缩短生理信号采集模块开启的时间,从而延长了终端的续航时长。
本发明第三方面提供一种计算机存储介质,所述计算机存储介质可存储有程序,该程序执行时包括第一方面提供的一种睡眠监测方法的部分或全部步骤。
本发明第四方面提供一种终端,该终端可以包括处理器、存储器、生理信号采集模块以及运动信号采集模块,其中,生理信号采集模块,用于采集被监测用户的生理信号;运动信号采集模块,用于采集被监测用户的运动信号;存储器用于存储程序;处理器用于执行所述程序,以实现通过胜利信号采集模块和运动信号采集模块采集被监测用户的生理信号;根据所述生理信号和/或所述被监测用户的运动信号确定所述被监测用户所处的睡眠状态;所述睡眠状态包括觉醒状态、浅睡状态、深睡状态以及快速眼动REM状态中的至少一种;根据确定的所述睡眠状态设置所述生理信号采集模块的开启策略。其中,该终端可以执行本发明第一方面提供的睡眠监测方法的部分或者全部步骤,以缩短生理信号采集模块开启的时间,延长终端的续航时长。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种睡眠监测方法的流程示意图;
图2是本发明实施例提供的另一种睡眠监测方法的流程示意图;
图3是本发明实施例提供的一种睡眠监测装置的结构示意图;
图4是本发明实施例提供的一种终端的结构示意图;
图5是本发明实施例提供的又一种睡眠监测方法的流程示意图。
具体实施方式
本发明实施例提供了一种睡眠监测方法、装置及终端,能够延长终端的续航时长。
请参见图1,图1是本发明实施例提供的一种睡眠监测方法的流程示意图,如图1所示,该睡眠监测方法可以包括以下步骤:
S101、终端采集被监测用户的生理信号和运动信号;
S102、终端根据该生理信号和/或运动信号确定被监测用户所处的睡眠状态;
S103、终端根据确定的被监测用户所处的睡眠状态设置生理信号采集模块的开启策略。
本发明实施例中,睡眠状态包括觉醒状态、浅睡状态、深睡状态以及快速眼动(Rapid Eyes Movement,REM)状态中的至少一种。本发明实施例中,该终端可以包括智能手机、智能手表、媒体播放器等终端。其中,该终端可以包括生理信号采集模块和运动信号采集模块。生理信号采集模块可以包括心电图(electrocardiogram,ECG)传感器和光电容积(photoplethysmograph,PPG)传感器。运动信号采集模块可以包括加速度传感器、陀螺仪、磁力计中的至少一种。
以生理信号采集模块采集的生理信号为脉搏波信号为例,通过分析脉搏波信号的频域特征,该脉搏波信号的频域可以包括高频频段和低频频段,相应的,该脉搏波信号的特征参数可以包括高频能量(High Frequency energy,HFE)、低频能量(Low Frequency energy,LFE)和两个频段的能量比LFE/HFE;其中,HFE是指0.15Hz至0.4Hz频段的能量;低频能量是指0.05Hz至0.15Hz频段的能量;两个频段的能量比即低频能量与高频能量之比;以被监测用户觉醒时的HFE0作为高频能量参考值,以被监测用户觉醒时的低频能量LFE0作为低频能量参考值(通过频域分析用户觉醒状态时的脉搏波信号,可以包括高频频段和低频频段,利用该脉搏波信号的能量谱,即能量谱密度在高频频段上积分就可以得到该脉搏波信号的高频能量HFE0;利用能量谱在低频频段上积分就可以得到该脉搏波信号的低频能量LFE0),以被监测用户觉醒时的LFE0/HFE0作为能量比参考值。
步骤S102中,终端根据该生理信号确定被监测用户所处的睡眠状态,可以为终端根据该生理信号确定被监测用户在第二预设时长t1内所处的睡眠状态,可以具体包括:
针对步骤S101中采集的生理信号,在当前采集的生理信号即脉搏波信号的低频能量LFE相对于LFE0下降且当前采集的脉搏波信号的高频能量HFE相对于HFE0上升时,确定第二预设时长t1内被监测用户处于浅睡状态;
在当前采集的脉搏波信号的低频能量LFE相对于LFE0下降,且当前采集的脉搏波信号的高频能量HFE相对于HFE0上升,且LFE/HFE低于浅睡状态时被监测用户的脉搏波信号的LFE/HFE时,确定第二预设时长t1内被监测用户处于深睡状态;
在当前采集的脉搏波信号的低频能量LFE相对于LFE0无明显变化(如变化幅度小于某一预设阈值),且当前采集的脉搏波信号的高频能量HFE相对于HFE0上升,且LFE与HFE之比均高于浅睡状态和深睡状态时被监测用户的脉搏波信号的LFE/HFE时,确定预设时长t1内被监测用户处于快速眼动REM状态。
作为另一种可选的实施方式,根据用户的生理信号和运动信号确定用户在第二预设时长t1内所处的睡眠状态,可以包括:
针对步骤S101中采集的生理信号即脉搏波信号,在当前采集的脉搏波信号的低频能量LFE相对于LFE0下降,且当前采集的脉搏波信号的高频能量HFE相对于HFE0上升,且根据运动信号确定被监测用户在第二预设时长t1内处于活动状态的累计次数大于或等于预设阈值N2(其中,N2小于预设阈值N1,预设阈值N1用于确定被监测用户是否处于静息状态)时,确定在第二预设时长t1内被监测用户处于浅睡状态;
在当前采集的脉搏波信号的低频能量LFE相对于LFE0下降,且当前采集的脉搏波信号的高频能量HFE相对于HFE0上升,且LFE/HFE低于浅睡状态时的LFE/HFE,且根据运动信号确定被监测用户在第二预设时长t1内处于活动状态的累计次数小于预设阈值N2时,确定在第二预设时长t1内被监测用户处于深睡状态;
在当前采集的脉搏波信号的低频能量LFE相对于LFE0无明显变化(如 LFE相对于LFE0变化幅度小于某一预设阈值),且当前采集的脉搏波信号的高频能量HFE相对于HFE0上升,且LFE与HFE之比均高于浅睡状态和深睡状态时的LFE/HFE,且根据运动信号确定被监测用户在第二预设时长t1内处于活动状态的累计次数小于预设阈值N2时,确定在第二预设时长t1内被监测用户处于快速眼动REM状态。
其中,以运动信号为加速度传感器采集的加速度矢量值为例,根据运动信号确定被监测用户在第二预设时长t1内处于活动状态的累计次数,可以包括以下步骤:
(1)终端通过加速度传感器获取单位时间内采集的多个加速度矢量值,并将多个加速度矢量值中的第一个采集的加速度矢量值作为基准值;
其中,单位时间(例如每秒)内采集的加速度矢量值的个数与加速度传感器的工作频率相关。
(2)终端计算该单位时间(例如每秒)内该多个加速度矢量值与基准值的矢量差值之和,在该矢量差值之和大于预设阈值N0时,确定该单位时间内该被监测用户处于活动状态;在该矢量差值之和小于或等于预设阈值N0时,确定该单位时间内该被监测用户处于非活动状态;其中,该预设阈值N0为一个矢量;
(3)终端确定被监测用户在第二预设时长t1内处于活动状态的累计次数;
其中,第二预设时长t1为单位时间的N倍,N为大于等于1的数值,通过将第二预设时长t1内被监测用户处于活动状态的单位时间的个数累加即为被监测用户在第二预设时长t1内处于活动状态的累计次数。
可见,图1所示的睡眠监测方法可以通过采集被监测用户的生理信号,根据该生理信号和/或采集的运动信号确定被监测用户的睡眠状态,并根据确定的被监测用户的睡眠状态设置生理信号采集模块的开启策略,从而避免生理信号采集模块一直处于开启的全功率状态引起的能量消耗过快的问题,延长了终端的续航时间。
请参阅图2,图2是本发明实施例提供的另一种睡眠监测方法的流程示意图,其中,图2所示的睡眠监测方法与图1所示的睡眠监测方法相比,在执行 步骤S101之前,还可以执行以下步骤:
S201、终端根据被监测用户的运动信号确定被监测用户所处的状态是否为静息状态,在被监测用户所处的状态为静息状态时,执行图1所示的睡眠监测方法中步骤S101至S103;在被监测用户所处的状态为非静息状态时,返回执行根据被监测用户的运动信号判断被监测用户所处的状态是否为静息状态的步骤。
其中,静息状态是指被监测用户处于疑似睡眠状态,非静息状态是指被监测用户处于活动或者运动的状态。睡眠状态中的觉醒状态是指虽然通过运动信号确定被监测用户处于静息状态,但被监测用户还处于觉醒,例如,被监测用户躺在床上不动,但还未睡着时的状态。具体的,终端可以通过生理信号来确定被监测用户是否为觉醒状态,即执行步骤S101和S102的操作。
本发明实施例中,以运动信号为加速度传感器采集的加速度矢量值为例,终端根据被监测用户的运动信号确定被监测用户所处的状态是否为静息状态可以包括以下步骤:
(1)终端通过加速度传感器获取单位时间内采集的多个加速度矢量值,并将多个加速度矢量值中的第一个采集的加速度矢量值作为基准值;
其中,单位时间内采集的加速度矢量值的个数与加速度传感器的工作频率相关。
(2)终端计算该单位时间内该多个加速度矢量值与基准值的矢量差值之和,在该矢量差值之和大于预设阈值N0时,确定该单位时间内该被监测用户处于活动状态;在该矢量差值之和小于或等于预设阈值N0时,确定该单位时间内该被监测用户处于非活动状态;
(3)终端确定被监测用户在预设时长t0内处于活动状态的累计次数;
(4)终端判断该累计次数是否大于预设阈值N1,若大于该预设阈值N1,则确定用户处于非静息状态;若小于或等于预设阈值N1,则确定被监测用户处于静息状态。
其中,预设时长t0为单位时间的N倍,N为大于等于1的数值,通过将预设时长t0内被监测用户处于活动状态的单位时间的个数累加,即为被监测用户在预设时长t0内处于活动状态的累计次数。其中,该预设时长t0可以为运动 信号的采集周期,或者运动信号的采集周期的预设倍数,本发明实施例不做限定。
本发明实施例中,由于当根据运动信号判断被监测用户处于非静息状态,即活动或者运动的状态时,被监测用户处于睡眠状态的几率几乎为零,因此,可以不必采集生理信号来确定用户的睡眠状态。由于当根据运动信号判断出被监测用户处于静息状态,即疑似睡眠状态时,被监测用户很可能处于睡眠状态,因此,可以继续采集生理信号进一步的确定被监测用户的睡眠状态为觉醒状态、浅睡状态、深睡状态或者REM状态等。因此,该实施方式在确定被监测用户处于静息状态时,再执行步骤S101采集生理信号,可以降低生理信号采集模块的开启次数,进一步的延长终端的续航时长。
相应地,步骤S103中,终端根据确定的睡眠状态设置生理信号采集模块的开启策略,可以包括:终端在确定的睡眠状态为觉醒状态时,则不需要设置生理信号采集模块的开启时间间隔,即不必开启生理信号采集模块,继续执行步骤S201中,根据被监测用户的运动信号确定被监测用户所处的状态是否为静息状态的步骤,由于被监测用户处于其他睡眠状态时才设置生理信号采集模块的开启时间间隔,因此,可以返回继续执行步骤S201。另外,在确定被监测用户的睡眠状态之前,首先判断被监测用户是否处于静息状态,可以避免被监测用户为非静息状态即活动状态时执行步骤S101,从而,可以降低生理信号采集模块的开启次数。相应地,在确定的被监测用户所处的睡眠状态为浅睡状态、深睡状态或者快速眼动REM状态时,根据睡眠状态设置生理信号采集模块的开启时间间隔。
作为一种可选的实施方式,终端在确定的被监测用户所处的睡眠状态为浅睡状态、深睡状态或者快速眼动REM状态时,以及在根据睡眠状态设置生理信号采集模块的开启时间间隔之前,还可以根据被监测用户的运动信号确定在第一预设时长t1内被监测用户处于活动状态的累计次数。在累计次数小于第一预设阈值N1时,根据睡眠状态设置生理信号采集模块的开启时间间隔。该实施方式中,根据运动信号和睡眠状态设置生理信号采集模块的开启策略,可以更加精确的控制生理信号采集模块的关闭和开启,从而在降低能量消耗的同时,保持睡眠监测的准确度。
本发明实施例中,终端在确定的被监测用户所处的睡眠状态为浅睡状态、深睡状态或者快速眼动REM状态时,根据睡眠状态设置生理信号采集模块的开启时间间隔,可以具体包括以下步骤:获取预先存储的睡眠状态与所述生理信号采集模块的开启时间间隔参数之间的对应关系;根据对应关系以及确定的睡眠状态确定生理信号采集模块的开启时间间隔。
请参阅表1,表1为本发明实施例提供的一种睡眠状态与开启时间间隔参数之间的对应关系表,根据表1中所示的对应关系以及确定的睡眠状态确定生理信号采集模块的开启时间间隔,可以包括:在被监测用户处于浅睡状态时,设置生理信号采集模块的开启时间间隔为第一值T1;在被监测用户处于深睡状态时,设置生理信号采集模块的开启时间间隔为第二值T2,其中,该第二值T2大于第一值T1;在被监测用户处于REM状态时,设置生理信号采集模块的开启时间间隔为第三值T3,其中,该第三值T3小于第一值T1。由于深睡状态时,被监测用户转换到其他睡眠状态的概率较低;REM状态时,被监测用户转换到其他睡眠状态的概率较高;浅睡状态时,被监测用户转换到其他睡眠状态的概率处于两者之间,因此,通过设置第三值T3小于第一值T3,第一值小于第二值T2,即生理信号采集模块不同的开启时间间隔来降低终端的能量消耗。其中,该开启时间间隔也可以称为生理信号采集模块的开启周期。
表1睡眠状态与开启时间间隔参数之间的对应关系表
睡眠状态 开启时间间隔参数
浅睡状态 T1
深睡状态 T2
REM状态 T3
作为一种可选的实施方式,终端获取预先存储的睡眠状态与生理信号采集模块的开启时间间隔参数之间的对应关系之后,还可以执行:获取终端的剩余电量;在所述剩余电量小于或等于第二预设阈值时,增大开启时间间隔参数的值。请参阅表2,表2为根据剩余电量确定的睡眠状态与开启时间间隔参数之间的对应关系表,当终端的剩余电量小于或等于第二预设阈值时,可以将第一值T1增大到T1’,可以将第二值T2增大到T2’,将第三值T3增大到T3’,利用 增大后的值来设置各睡眠状态对应的开启时间间隔。可见,本发明实施例可以结合剩余电量确定生理信号采集模块的开启时间间隔,进一步的延长终端的续航时长。
表2根据剩余电量确定睡眠状态与开启时间间隔参数之间的对应关系表
睡眠状态 开启时间间隔参数
浅睡状态 T1
深睡状态 T2
REM状态 T3
可见,本发明实施例中,终端根据被监测用户的运动信号确定被监测用户所处的状态是否为静息状态,若处于静息状态时,可以根据生理信号以及运动信号进一步确定被监测用户所处的睡眠状态,并且,可以在睡眠状态为觉醒状态时继续根据运动信号确定被监测用户所处的状态来降低生理信号采集模块的开启次数;在睡眠状态为浅睡、深睡或者REM状态时,可以设置生理信号采集模块的开启时间间隔,进一步缩短了生理信号采集模块开启的时间,从而延长了终端的续航时长。
请参阅图5,图5是本发明实施例提供的又一种睡眠监测方法的流程示意图,如图5所示,该睡眠监测方法可以包括以下步骤:
S501、终端采集用户的运动信号,根据运动信号判断用户在预设时长t0内处于活动状态的累计次数是否小于预设阈值;若小于预设阈值,则执行步骤S503;若不小于预设阈值,即活动状态,则执行步骤S502。
本发明实施例中,根据运动信号判断用户在预设时长t0内处于活动状态的累计次数是否小于预设阈值,可以具体为:
以运动信号采集模块为运动传感器,如三轴加速度传感器为例,取单位时间(例如每秒)内的第一个三轴加速度矢量值为基准值,然后依次取预设时长内其余采样点的三轴加速度矢量值,与该基准值做矢量差分值;计算单位时间内加速度矢量差分值的幅度总和,如果幅度总和高于设定的阈值v0,则判断用户在该秒内处于活动状态;计算用户在预设时长t0内处于活动状态的累计次 数,如果累计次数高于设定的阈值v1,则执行步骤S502,确定用户处于非静息状态,关闭PPG传感器;否则,确定用户处于静息状态,进入步骤S503.
S502、终端确定用户处于非静息状态,关闭PPG传感器。
S503、终端确定用户处于静息状态,开启PPG传感器。
S504、终端通过PPG传感器采集的生理信号和/或运动信号采集模块采集的运动信号,并检测预设时长t1内用户的睡眠状态;当该睡眠状态为浅睡状态时,执行步骤S505;当该睡眠状态为深睡状态时,执行步骤S506;当该睡眠状态为REM状态时,执行步骤S507;当该睡眠状态为觉醒状态时,执行步骤S502;
本发明实施例中,终端如何根据生理信号确定用户的睡眠状态;或者如何根据生理信号和运动信号确定用户的睡眠状态,可以参考上述发明实施例的相关内容,这里不再详述。
S505、终端设置PPG传感器的开启时间间隔为第一值;
S506、终端设置PPG传感器的开启时间间隔为第二值;
S507、终端设置PPG传感器的开启时间间隔为第三值。
其中,该第二值大于第一值,该第三值小于第一值。
可见,图5所示的睡眠监测方法中,终端首先根据运动信号确定用户处于静息状态时,开启PPG传感器,采集被监测用户的生理信号,根据该生理信号和/或采集的运动信号确定预设时长内被监测用户的睡眠状态,并根据确定的被监测用户的睡眠状态设置生理信号采集模块的开启时间间隔,从而,终端可以避免生理信号采集模块一直处于开启的全功率状态引起的能量消耗过快的问题,延长了终端的续航时间。
请参阅图3,图3是本发明实施例提供的一种睡眠监测装置的结构示意图,如图3所示,该睡眠监测装置可以包括:采集模块301、确定模块302以及设置模块303。
采集模块301,用于采集被监测用户的生理信号;
确定模块302,用于根据生理信号和/或运动信号确定被监测用户所处的睡 眠状态;睡眠状态包括觉醒状态、浅睡状态、深睡状态以及快速眼动REM状态中的至少一种;
设置模块303,用于根据确定的睡眠状态设置生理信号采集模块的开启策略。
本发明实施例中,采集模块301可以包括生理信号采集模块和运动信号采集模块,其中,生理信号采集模块可以包括PPG传感器,运动信号采集模块可以包括ECG传感器。
以生理信号采集模块采集的生理信号为脉搏波信号为例,通过分析脉搏波信号的频域特征,该脉搏波信号的频域可以包括高频频段和低频频段,相应的,该脉搏波信号的特征参数可以包括高频能量(High Frequency energy,HFE)、低频能量(Low Frequency energy,LFE)和两个频段的能量比LFE/HFE;其中,HFE是指0.15Hz至0.4Hz频段的能量;低频能量是指0.05Hz至0.15Hz频段的能量;两个频段的能量比即低频能量与高频能量之比;以被监测用户觉醒时的HFE0作为高频能量参考值,以被监测用户觉醒时的低频能量LFE0作为低频能量参考值(通过频域分析用户觉醒状态时的脉搏波信号,可以包括高频频段和低频频段,利用该脉搏波信号的能量谱,即能量谱密度在高频频段上积分就可以得到该脉搏波信号的高频能量HFE0;利用能量谱在低频频段上积分就可以得到该脉搏波信号的低频能量LFE0),以被监测用户觉醒时的LFE0/HFE0作为能量比参考值;确定模块302根据该生理信号确定被监测用户所处的睡眠状态,可以包括:
针对采集模块301采集的生理信号,在当前采集的生理信号即脉搏波信号的低频能量LFE相对于LFE0下降且当前采集的脉搏波信号的高频能量HFE相对于HFE0上升时,确定当前脉搏波信号采集周期内被监测用户处于浅睡状态;
在当前采集的脉搏波信号的低频能量LFE相对于LFE0下降,且当前采集的脉搏波信号的高频能量HFE相对于HFE0上升,且LFE/HFE低于浅睡状态时被监测用户的脉搏波信号的LFE/HFE时,确定当前脉搏波信号采集周期内被监测用户处于深睡状态;
在当前采集的脉搏波信号的低频能量LFE相对于LFE0无明显变化(如变 化幅度小于某一预设阈值),且当前采集的脉搏波信号的高频能量HFE相对于HFE0上升,且LFE与HFE之比均高于浅睡状态和深睡状态时被监测用户的脉搏波信号的LFE/HFE时,确定当前脉搏波信号采集周期内被监测用户处于快速眼动REM状态。
作为另一种可选的实施方式,确定模块302根据用户的生理信号和运动信号确定用户所处的睡眠状态,可以具体为:
针对采集模块301采集的生理信号即脉搏波信号,在当前采集的脉搏波信号的低频能量LFE相对于LFE0下降,且当前采集的脉搏波信号的高频能量HFE相对于HFE0上升,且根据运动信号确定被监测用户在第二预设时长t1内处于活动状态的累计次数大于或等于预设阈值N2(其中,N2小于预设阈值N1,预设阈值N1用于确定被监测用户是否处于静息状态)时,确定模块302确定当前脉搏波信号采集周期内被监测用户处于浅睡状态;
在当前采集的脉搏波信号的低频能量LFE相对于LFE0下降,且当前采集的脉搏波信号的高频能量HFE相对于HFE0上升,且LFE/HFE低于浅睡状态时的LFE/HFE,且根据运动信号确定被监测用户在第二预设时长t1内处于活动状态的累计次数小于预设阈值N2时,确定模块302确定当前脉搏波信号采集周期内被监测用户处于深睡状态;
在当前采集的脉搏波信号的低频能量LFE相对于LFE0无明显变化(如LFE相对于LFE0变化幅度小于某一预设阈值),且当前采集的脉搏波信号的高频能量HFE相对于HFE0上升,且LFE与HFE之比均高于浅睡状态和深睡状态时的LFE/HFE,且根据运动信号确定被监测用户在第二预设时长t1内处于活动状态的累计次数小于预设阈值N2时,确定模块302确定当前脉搏波信号采集周期内被监测用户处于快速眼动REM状态。
其中,以运动信号为加速度传感器采集的加速度矢量值为例,根据运动信号确定被监测用户在第二预设时长t1内处于活动状态的累计次数,可以包括以下步骤:
(1)通过加速度传感器获取单位时间内采集的多个加速度矢量值,并将多个加速度矢量值中的第一个采集的加速度矢量值作为基准值;
其中,单位时间(例如每秒)内采集的加速度矢量值的个数与加速度传感 器的工作频率相关。
(2)计算该单位时间(例如每秒)内该多个加速度矢量值与基准值的矢量差值之和,在该矢量差值之和大于预设阈值N0时,确定该单位时间内该被监测用户处于活动状态;在该矢量差值之和小于或等于预设阈值N0时,确定该单位时间内该被监测用户处于非活动状态;其中,该预设阈值N0为一个矢量;
(3)确定被监测用户在第二预设时长t1内处于活动状态的累计次数;
其中,第二预设时长t1为单位时间的N倍,N为大于等于1的数值,通过将第二预设时长t1内被监测用户处于活动状态的单位时间的个数累加即为被监测用户在第二预设时长t1内处于活动状态的累计次数。
可见,图3所示的睡眠监测装置可以通过采集模块301采集被监测用户的生理信号和运动信号,确定模块302根据该生理信号和/或采集的运动信号确定被监测用户的睡眠状态,还可以由设置模块303根据确定的被监测用户的睡眠状态设置生理信号采集模块的开启策略,从而避免生理信号采集模块一直处于开启的全功率状态引起的能量消耗过快的问题,延长了终端的续航时间。
进一步的,图3所示的睡眠监测装置中,确定模块302还用于根据被监测用户的运动信号确定被监测用户所处的状态是否为静息状态;在被监测用户所处的状态为静息状态时,才触发采集模块301采集被监测用户的生理信号和运动信号的操作;在被监测用户所处的状态为非静息状态时,则循环触发判断模块执行根据被监测用户的运动信号判断被监测用户是否为静息状态的操作。该实施方式,先根据运动信号确定被监测用户处于静息状态,再开启采集生理信号以确定被监测用户的睡眠状态,可以避免被监测用户处于非静息状态时采集生理信号消耗的能量,从而进一步的延长睡眠监测装置的续航时间。
其中,确定模块302根据被监测用户的运动信号确定被监测用户所处的状态是否为静息状态,以运动信号为加速度传感器采集的加速度矢量值为例,可以具体执行以下操作:通过加速度传感器获取单位时间内采集的多个加速度矢量值,并将多个加速度矢量值中第一个采集的加速度矢量值作为基准值,其中,单位时间内采集的加速度矢量值的个数与加速度传感器的工作频率相关;计算单位时间内多个加速度矢量值与基准值的矢量差值之和,在该矢量差值之和大 于预设阈值N0时,确定该单位时间内被监测用户处于活动状态;在该矢量差值之和小于或等于预设阈值N0时,确定该单位时间内该用户处于非活动状态;确定被监测用户在预设时长t0内处于活动状态的累计次数;判断该累计次数是否大于预设阈值N1,若大于该预设阈值N1,则确定用户处于非静息状态;若小于或等于预设阈值N1,则确定被监测用户处于静息状态。
其中,预设时长t0为单位时间的N倍,N为大于等于1的数值,通过将预设时长t0内被监测用户处于活动状态的单位时间的个数累加即为被监测用户在预设时长t0内处于活动状态的累计次数。其中,该预设时长t0可以为运动信号的采集周期,或者运动信号的采集周期的预设倍数,本发明实施例不做限定。
本发明实施例中,设置模块303根据确定的睡眠状态设置生理信号采集模块的开启策略,具体为在确定的睡眠状态为觉醒状态时,则不需要设置生理信号采集模块的开启时间间隔,即不必开启生理信号采集模块,再次执行根据被监测用户的运动信号确定被监测用户所处的状态是否为静息状态的操作;在确定的睡眠状态为浅睡状态、深睡状态或者快速眼动REM状态时,根据睡眠状态设置生理信号采集模块的开启时间间隔。由于被监测用户处于除觉醒状态之外的其他睡眠状态时才设置生理信号采集模块的开启时间间隔,因此,可以返回继续确定被监测用户所处的状态。另外,在确定被监测用户的睡眠状态之前,首先确定被监测用户是否处于静息状态,可以避免被监测用户为非静息状态即活动状态时采集生理信号,从而,可以降低生理信号采集模块的开启次数。
本发明实施例中,设置模块303在确定的睡眠状态为浅睡状态、深睡状态或者快速眼动REM状态时,根据被监测用户的运动信号确定在第一预设时长内被监测用户处于活动状态的累计次数;在累计次数小于第一预设阈值时,执行所述的根据睡眠状态设置生理信号采集模块的开启时间间隔的操作。该实施方式中,根据运动信号和睡眠状态设置生理信号采集模块的开启策略,可以更加精确的控制生理信号采集模块的关闭和开启,从而在降低能量消耗的同时,保持睡眠监测的准确度。
本发明实施例中,设置模块303根据睡眠状态设置生理信号采集模块的开启时间间隔,具体为:获取预先存储的睡眠状态与生理信号采集模块的开启时 间间隔参数之间的对应关系;根据该对应关系以及确定的被监测用户的睡眠状态确定生理信号采集模块的开启时间间隔。
本发明实施例中,设置模块303获取预先存储的睡眠状态与生理信号采集模块的开启时间间隔参数之间的对应关系之后,获取终端的剩余电量;在剩余电量小于或等于第二预设阈值时,增大开启时间间隔参数的值。以已增大的时间间隔参数的值来根据睡眠状态确定生理信号采集模块的开启时间间隔,使得在电量不足时,适当延长生理信号采集模块的开启时间间隔,进一步的延长终端的续航时长。
本发明实施例中,设置模块303根据对应关系以及确定的睡眠状态确定生理信号采集模块的开启时间间隔,可以具体为:在被监测用户处于浅睡状态时,设置生理信号采集模块的开启时间间隔为第一值;在被监测用户处于深睡状态时,设置生理信号采集模块的开启时间间隔为第二值,其中,该第二值大于第一值;在被监测用户处于REM状态时,设置生理信号采集模块的开启时间间隔为第三值,其中,该第三值小于第一值。由于深睡状态时,被监测用户转换到其他睡眠状态的概率较低;REM状态时,被监测用户转换到其他睡眠状态的概率较高;浅睡状态时,被监测用户转换到其他睡眠状态的概率处于两者之间,因此,通过设置第三值小于第一值,第一值小于第二值来降低睡眠监测装置的能量消耗。
可见,本发明实施例所述的睡眠监测装置中,确定模块可以根据被监测用户的运动信号确定被监测用户所处的状态是否为静息状态确定被监测用户是否处于静息状态,若处于静息状态时,可以根据该生理信号以及运动信号进一步确定被监测用户所处的睡眠状态,从而,可以在觉醒状态时继续根据运动信号确定被监测用户所处的状态;在浅睡、深睡或者REM状态时,可以设置生理信号采集模块的开启时间间隔,进一步缩短了生理信号采集模块的开启时长,从而延长了终端的续航时长。
请参阅图4,图4是本发明实施例提供的一种终端的结构示意图,如图4所示,该终端可以包括:至少一个处理器401,例如CPU,至少一个网络接口404或者其他用户接口403,存储器405,至少一个通信总线402。通信总线 402用于实现这些组件之间的连接通信。
本发明实施例中,如图4所示,该终端还可以包括生理信号采集模块406以及运动信号采集模块407,其中,生理信号采集模块406采集被监测用户的生理信号,该生理信号采集模块406可以包括光传感器、压力传感器、声传感器、光电传感器以及位移传感器等器件中的至少一种,相应的,该生理信号采集模块406采集的生理信号可以包括心电信号、脉搏波信号、体温信号、皮肤电阻信号等的至少一种;运动信号采集模块407用于采集被监测用户的运动信号,该运动信号采集模块407可以包括加速度传感器、陀螺仪、磁力计等器件中的至少一种。
本发明实施例中,网络接口404可选的可以包括Wi-Fi接口、其他无线和有线接口中的至少一种。存储器405可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。存储器405可选的可以包含至少一个位于远离前述处理器401的存储装置。
在一些实施方式中,存储器405存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统4051,包含各种系统程序,用于实现各种基础业务以及处理基于硬件的任务;应用程序4052,包含睡眠监测程序等各种应用程序,用于实现各种应用业务。
具体地,处理器401用于调用存储器405中存储的程序,执行以下操作:
采集被监测用户的生理信号和运动信号;
根据生理信号和/或所述被监测用户的运动信号确定被监测用户所处的睡眠状态;被监测用户的睡眠状态可以包括浅睡状态、深睡状态或者快速眼动REM状态;
根据确定的睡眠状态设置生理信号采集模块的开启策略。
以生理信号采集模块采集的生理信号为脉搏波信号为例,通过分析脉搏波信号的频域特征,该脉搏波信号的频域可以包括高频频段和低频频段,相应的,该脉搏波信号的特征参数可以包括高频能量(High Frequency energy,HFE)、低频能量(Low Frequency energy,LFE)和两个频段的能量比LFE/HFE;其中,HFE是指0.15Hz至0.4Hz频段的能量;低频能量是指0.05Hz至0.15Hz频段的能量;两个频段的能量比即低频能量与高频能量之比;以被监测用户觉醒时 的HFE0作为高频能量参考值,以被监测用户觉醒时的低频能量LFE0作为低频能量参考值(通过频域分析用户觉醒状态时的脉搏波信号,可以包括高频频段和低频频段,利用该脉搏波信号的能量谱,即能量谱密度在高频频段上积分就可以得到该脉搏波信号的高频能量HFE0;利用能量谱在低频频段上积分就可以得到该脉搏波信号的低频能量LFE0),以被监测用户觉醒时的LFE0/HFE0作为能量比参考值;处理器401根据该生理信号确定被监测用户所处的睡眠状态,可以包括:
针对处理器401采集的生理信号,在当前采集的生理信号即脉搏波信号的低频能量LFE相对于LFE0下降且当前采集的脉搏波信号的高频能量HFE相对于HFE0上升时,确定当前脉搏波信号采集周期内被监测用户处于浅睡状态;
在当前采集的脉搏波信号的低频能量LFE相对于LFE0下降,且当前采集的脉搏波信号的高频能量HFE相对于HFE0上升,且LFE/HFE低于浅睡状态时被监测用户的脉搏波信号的LFE/HFE时,确定当前脉搏波信号采集周期内被监测用户处于深睡状态;
在当前采集的脉搏波信号的低频能量LFE相对于LFE0无明显变化(如变化幅度小于某一预设阈值),且当前采集的脉搏波信号的高频能量HFE相对于HFE0上升,且LFE与HFE之比均高于浅睡状态和深睡状态时被监测用户的脉搏波信号的LFE/HFE时,确定当前脉搏波信号采集周期内被监测用户处于快速眼动REM状态。
作为另一种可选的实施方式,处理器401根据用户的生理信号和运动信号确定用户所处的睡眠状态,可以包括以下步骤:
针对处理器401采集的生理信号即脉搏波信号,在当前采集的脉搏波信号的低频能量LFE相对于LFE0下降,且当前采集的脉搏波信号的高频能量HFE相对于HFE0上升,且根据运动信号确定被监测用户在第二预设时长t1内处于活动状态的累计次数大于或等于预设阈值N2(其中,N2小于预设阈值N1,预设阈值N1用于确定被监测用户是否处于静息状态)时,确定当前脉搏波信号采集周期内被监测用户处于浅睡状态;
在当前采集的脉搏波信号的低频能量LFE相对于LFE0下降,且当前采集的脉搏波信号的高频能量HFE相对于HFE0上升,且LFE/HFE低于浅睡状态 时的LFE/HFE,且根据运动信号确定被监测用户在第二预设时长t1内处于活动状态的累计次数小于预设阈值N2时,确定当前脉搏波信号采集周期内被监测用户处于深睡状态;
在当前采集的脉搏波信号的低频能量LFE相对于LFE0无明显变化(如LFE相对于LFE0变化幅度小于某一预设阈值),且当前采集的脉搏波信号的高频能量HFE相对于HFE0上升,且LFE与HFE之比均高于浅睡状态和深睡状态时的LFE/HFE,且根据运动信号确定被监测用户在第二预设时长t1内处于活动状态的累计次数小于预设阈值N2时,确定当前脉搏波信号采集周期内被监测用户处于快速眼动REM状态。
其中,以运动信号为加速度传感器采集的加速度矢量值为例,根据运动信号确定被监测用户在第二预设时长t1内处于活动状态的累计次数,可以包括以下步骤:
(1)终端通过加速度传感器获取单位时间内采集的多个加速度矢量值,并将多个加速度矢量值中的第一个采集的加速度矢量值作为基准值;
其中,单位时间(例如每秒)内采集的加速度矢量值的个数与加速度传感器的工作频率相关。
(2)终端计算该单位时间(例如每秒)内该多个加速度矢量值与基准值的矢量差值之和,在该矢量差值之和大于预设阈值N0时,确定该单位时间内该被监测用户处于活动状态;在该矢量差值之和小于或等于预设阈值N0时,确定该单位时间内该被监测用户处于非活动状态;其中,该预设阈值N0为一个矢量;
(3)终端确定被监测用户在第二预设时长t1内处于活动状态的累计次数。
其中,第二预设时长t1为单位时间的N倍,N为大于等于1的数值,通过将第二预设时长t1内被监测用户处于活动状态的单位时间的个数累加即为被监测用户在第二预设时长t1内处于活动状态的累计次数。
本发明实施例中,处理器401用于调用存储器405中存储的程序,还可以执行以下操作:根据被监测用户的运动信号确定被监测用户所处的状态是否为静息状态;在所述被监测用户所处的状态为静息状态时,执行所述的开启生理信号采集模块以采集被监测用户的生理信号的操作;在所述被监测用户所处的 状态为非静息状态时,执行所述的根据被监测用户的运动信号判断所述被监测用户是否为静息状态的操作。
其中,处理器401根据被监测用户的运动信号确定被监测用户所处的状态是否为静息状态,以运动信号为加速度传感器采集的加速度矢量值为例,可以具体执行以下操作:
通过加速度传感器获取单位时间内采集的多个加速度矢量值,并将多个加速度矢量值中第一个采集的加速度矢量值作为基准值,其中,单位时间内采集的加速度矢量值的个数与加速度传感器的工作频率相关;
计算单位时间内多个加速度矢量值与基准值的矢量差值之和,在该矢量差值之和大于预设阈值N0时,确定该单位时间内被监测用户处于活动状态;在该矢量差值之和小于或等于预设阈值N0时,确定该单位时间内该用户处于非活动状态;
确定被监测用户在预设时长t0内处于活动状态的累计次数;
判断该累计次数是否大于预设阈值N1,若大于该预设阈值N1,则确定用户处于非静息状态;若小于或等于预设阈值N1,则确定被监测用户处于静息状态。
本发明实施例中,处理器401用于调用存储器405中存储的程序,根据确定的所述睡眠状态设置所述生理信号采集模块的开启策略,可以具体执行以下操作:
在确定的所述睡眠状态为觉醒状态时,执行所述根据被监测用户的运动信号确定所述被监测用户所处的状态是否为静息状态的操作;
在确定的所述睡眠状态为浅睡状态、深睡状态或者快速眼动REM状态时,根据所述睡眠状态设置生理信号采集模块的开启时间间隔。
本发明实施例中,处理器401用于调用存储器405中存储的程序,在确定的所述睡眠状态为浅睡状态、深睡状态或者快速眼动REM状态时,还可以执行以下操作:
根据被监测用户的运动信号确定在第一预设时长内被监测用户处于活动状态的累计次数;
在累计次数小于第一预设阈值时,执行所述的根据所述睡眠状态设置生理 信号采集模块的开启时间间隔的操作。
本发明实施例中,处理器401用于调用存储器405中存储的程序,根据所述睡眠状态设置生理信号采集模块的开启时间间隔,可以具体执行以下操作:
获取预先存储的睡眠状态与所述生理信号采集模块的开启时间间隔参数之间的对应关系;
根据所述对应关系以及确定的所述睡眠状态确定所述生理信号采集模块的开启时间间隔。
本发明实施例中,处理器401用于调用存储器405中存储的程序,获取预先存储的睡眠状态与生理信号采集模块的开启时间间隔参数之间的对应关系之后,还可以执行以下操作:
获取终端的剩余电量;在所述剩余电量小于或等于第二预设阈值时,增大开启时间间隔参数的值。
本发明实施例中,处理器401根据对应关系以及确定的睡眠状态确定生理信号采集模块的开启时间间隔,可以具体为:在被监测用户处于浅睡状态时,设置生理信号采集模块的开启时间间隔为第一值;在被监测用户处于深睡状态时,设置生理信号采集模块的开启时间间隔为第二值,其中,该第二值大于第一值;在被监测用户处于REM状态时,设置生理信号采集模块的开启时间间隔为第三值,其中,该第三值小于第一值。由于深睡状态时,被监测用户转换到其他睡眠状态的概率较低;REM状态时,被监测用户转换到其他睡眠状态的概率较高;浅睡状态时,被监测用户转换到其他睡眠状态的概率处于两者之间,因此,通过设置第三值小于第一值,第一值小于第二值来进一步降低终端的能量消耗速度。
本发明实施例提供了一种计算机存储介质,该计算机存储介质可存储有程序,该程序执行时包括上述发明实施例中睡眠监测方法的部分或全部步骤。
以上对本发明实施例所提供的睡眠监测方法、装置及终端进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (19)

  1. 一种睡眠监测方法,其特征在于,包括:
    采集被监测用户的生理信号和运动信号;
    根据所述生理信号和/或所述运动信号确定所述被监测用户所处的睡眠状态;所述睡眠状态包括觉醒状态、浅睡状态、深睡状态以及快速眼动REM状态中的至少一种;
    根据确定的所述睡眠状态设置生理信号采集模块的开启策略。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据被监测用户的运动信号确定所述被监测用户所处的状态;
    当所述被监测用户所处的状态为静息状态时,执行所述的采集被监测用户的生理信号和运动信号的步骤。
  3. 根据权利要求2所述的方法,其特征在于,所述根据确定的所述睡眠状态设置所述生理信号采集模块的开启策略,包括:
    当所述睡眠状态为浅睡状态、深睡状态或者快速眼动REM状态时,根据所述睡眠状态设置生理信号采集模块的开启时间间隔。
  4. 根据权利要求3所述的方法,其特征在于,当所述睡眠状态为浅睡状态、深睡状态或者快速眼动REM状态时,所述方法还包括:
    根据所述运动信号确定在第一预设时长内所述被监测用户处于活动状态的累计次数;
    在所述累计次数小于第一预设阈值时,执行所述的根据所述睡眠状态设置生理信号采集模块的开启时间间隔的步骤。
  5. 根据权利要求3或4所述的方法,其特征在于,所述根据所述睡眠状态设置生理信号采集模块的开启时间间隔,包括:
    获取预先存储的睡眠状态与生理信号采集模块的开启时间间隔参数之间的对应关系;
    根据所述对应关系以及确定的所述睡眠状态设置生理信号采集模块的开启时间间隔。
  6. 根据权利要求5所述的方法,其特征在于,所述获取预先存储的睡眠状态与所述生理信号采集模块的开启时间间隔参数之间的对应关系之后,所述方法还包括:
    获取剩余电量;
    在所述剩余电量小于或等于第二预设阈值时,增大所述开启时间间隔参数的值。
  7. 一种计算机存储介质,其特征在于,
    所述计算机存储介质可存储有程序,该程序执行时包括权利要求1至6任一项所述的步骤。
  8. 一种睡眠监测装置,其特征在于,包括:
    采集模块,用于采集被监测用户的生理信号和运动信号;
    确定模块,用于根据所述生理信号和/或所述运动信号确定所述被监测用户所处的睡眠状态;所述睡眠状态包括觉醒状态、浅睡状态、深睡状态以及快速眼动REM状态中的至少一种;
    设置模块,用于根据确定的所述睡眠状态设置生理信号采集模块的开启策略。
  9. 根据权利要求8所述的装置,其特征在于,所述确定模块还用于根据被监测用户的运动信号确定所述被监测用户所处的状态;在所述被监测用户所处的状态为静息状态时,触发采集模块采集被监测用户的生理信号和运动信号的操作。
  10. 根据权利要求9所述的装置,其特征在于,所述设置模块根据确定的所述睡眠状态设置所述生理信号采集模块的开启策略,具体为在确定的所述睡眠状态为浅睡状态、深睡状态或者快速眼动REM状态时,根据所述睡眠状态设置生理信号采集模块的开启时间间隔。。
  11. 根据权利要求10所述的装置,其特征在于,所述设置模块在确定的所述睡眠状态为浅睡状态、深睡状态或者快速眼动REM状态时,根据所述运动信号确定在第一预设时长内所述被监测用户处于活动状态的累计次数;在所述累计次数小于第一预设阈值时,执行所述的根据所述睡眠状态设置生理信号采集模块的开启时间间隔的操作。
  12. 根据权利要求10或11所述的装置,其特征在于,所述设置模块根据所述睡眠状态设置生理信号采集模块的开启时间间隔,具体为:获取预先存储的睡眠状态与所述生理信号采集模块的开启时间间隔参数之间的对应关系;根据所述对应关系以及确定的所述睡眠状态确定所述生理信号采集模块的开启时间间隔。
  13. 根据权利要求12所述的装置,其特征在于,所述设置模块获取预先存储的睡眠状态与所述生理信号采集模块的开启时间间隔参数之间的对应关系之后,获取剩余电量;在所述剩余电量小于或等于第二预设阈值时,增大所述开启时间间隔参数的值。
  14. 一种终端,其特征在于,包括:处理器、存储器、生理信号采集模块以及运动信号采集模块,其中,
    所述生理信号采集模块,用于采集被监测用户的生理信号;
    所述运动信号采集模块,用于采集所述被监测用户的运动信号;
    所述存储器用于存储程序;
    所述处理器用于执行所述程序,以实现采集所述被监测用户的生理信号和运动信号;
    根据所述生理信号和/或所述运动信号确定所述被监测用户所处的睡眠状态;所述睡眠状态包括觉醒状态、浅睡状态、深睡状态以及快速眼动REM状态中的至少一种;
    根据确定的所述睡眠状态设置生理信号采集模块的开启策略。
  15. 根据权利要求14所述的终端,其特征在于,所述处理器还用于根据被监测用户的运动信号确定所述被监测用户所处的状态;在所述被监测用户所处的状态为静息状态时,执行所述的开启生理信号采集模块以采集被监测用户的生理信号的操作。
  16. 根据权利要求15所述的终端,其特征在于,所述处理器根据确定的所述睡眠状态设置所述生理信号采集模块的开启策略,具体为:
    在确定的所述睡眠状态为浅睡状态、深睡状态或者快速眼动REM状态时,根据所述睡眠状态设置所述生理信号采集模块的开启时间间隔。
  17. 根据权利要求16所述的终端,其特征在于,所述处理器在确定的所 述睡眠状态为浅睡状态、深睡状态或者快速眼动REM状态时,还用于:
    根据所述运动信号确定在第一预设时长内所述被监测用户处于活动状态的累计次数;
    在所述累计次数小于第一预设阈值时,执行所述的根据所述睡眠状态设置开启所述生理信号采集模块的开启时间间隔的操作。
  18. 根据权利要求16或17所述的终端,其特征在于,所述处理器根据所述睡眠状态设置生理信号采集模块的开启时间间隔,具体为:
    获取预先存储的睡眠状态与生理信号采集模块的开启时间间隔参数之间的对应关系;
    根据所述对应关系以及确定的所述睡眠状态确定所述生理信号采集模块的开启时间间隔。
  19. 根据权利要求18所述的终端,其特征在于,所述处理器获取预先存储的睡眠状态与所述生理信号采集模块的开启时间间隔参数之间的对应关系之后,还用于:
    获取剩余电量;
    在所述剩余电量小于或等于第二预设阈值时,增大所述开启时间间隔参数的值。
PCT/CN2016/108115 2016-11-30 2016-11-30 一种睡眠监测方法、装置及终端 WO2018098719A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/108115 WO2018098719A1 (zh) 2016-11-30 2016-11-30 一种睡眠监测方法、装置及终端
CN201680075726.9A CN108430309A (zh) 2016-11-30 2016-11-30 一种睡眠监测方法、装置及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/108115 WO2018098719A1 (zh) 2016-11-30 2016-11-30 一种睡眠监测方法、装置及终端

Publications (1)

Publication Number Publication Date
WO2018098719A1 true WO2018098719A1 (zh) 2018-06-07

Family

ID=62241117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108115 WO2018098719A1 (zh) 2016-11-30 2016-11-30 一种睡眠监测方法、装置及终端

Country Status (2)

Country Link
CN (1) CN108430309A (zh)
WO (1) WO2018098719A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110584611A (zh) * 2019-09-24 2019-12-20 喜临门家具股份有限公司 一种节能效果好的睡眠监测系统
CN112890777A (zh) * 2021-01-22 2021-06-04 深圳市苏仁智能科技有限公司 一种基于心肺耦合的睡眠状态分期方法、装置及计算机可读存储介质
CN114073493A (zh) * 2020-08-18 2022-02-22 华为终端有限公司 生理数据采集方法、装置及可穿戴设备
CN114145717A (zh) * 2021-12-08 2022-03-08 四川北易信息技术有限公司 基于ppg心率特征参数和运动量的睡眠状态分析方法
CN114646021A (zh) * 2022-02-28 2022-06-21 苏州大学 地下管网监测方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114073513A (zh) * 2020-08-10 2022-02-22 安徽华米健康科技有限公司 一种睡眠中起夜的检测方法、装置及智能可穿戴设备
CN114469005B (zh) * 2022-02-17 2023-10-24 珠海格力电器股份有限公司 睡眠状态的监测方法及其装置、计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247122A (zh) * 2010-05-20 2011-11-23 上海易酷信息技术服务有限公司 睡眠检测装置及其检测、辅助睡眠的方法
CN104207755A (zh) * 2013-06-03 2014-12-17 飞比特公司 可佩戴心率监视器
WO2016047494A1 (ja) * 2014-09-22 2016-03-31 株式会社 東芝 生体情報測定装置及びシステム
CN105476620A (zh) * 2014-10-01 2016-04-13 精工爱普生株式会社 活动状态信息检测装置及其控制方法
US20160255422A1 (en) * 2015-02-26 2016-09-01 Kabushiki Kaisha Toshiba Electronic device and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3987053B2 (ja) * 2004-03-30 2007-10-03 株式会社東芝 睡眠状態判定装置および睡眠状態判定方法
JP3976752B2 (ja) * 2004-07-07 2007-09-19 三洋電機株式会社 睡眠状態推定装置及びプログラム
EP2524647A1 (en) * 2011-05-18 2012-11-21 Alain Gilles Muzet System and method for determining sleep stages of a person
IN2014CN02772A (zh) * 2011-10-25 2015-07-03 Koninkl Philips Nv
KR102091167B1 (ko) * 2012-09-19 2020-03-20 레스메드 센서 테크놀로지스 리미티드 수면 스테이지를 결정하는 시스템 및 방법
JP2016014542A (ja) * 2014-07-01 2016-01-28 セイコーエプソン株式会社 生体情報処理システム及び生体情報処理システムの制御方法
CN104391561B (zh) * 2014-09-30 2018-01-26 英华达(上海)科技有限公司 穿戴式设备进行模式切换的方法及该穿戴式设备
JP2016073527A (ja) * 2014-10-08 2016-05-12 セイコーエプソン株式会社 睡眠状態判定装置、睡眠状態判定方法および睡眠管理システム
CN105125173A (zh) * 2015-06-29 2015-12-09 上海卓易科技股份有限公司 一种睡眠状态监测方法
CN105125338A (zh) * 2015-08-06 2015-12-09 成都康拓邦科技有限公司 一种缓解眼底血管病变的医疗装置及其控制方法
CN105943015A (zh) * 2016-06-04 2016-09-21 浙江大学 一种主动降噪的穿戴式心率变异性监测设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247122A (zh) * 2010-05-20 2011-11-23 上海易酷信息技术服务有限公司 睡眠检测装置及其检测、辅助睡眠的方法
CN104207755A (zh) * 2013-06-03 2014-12-17 飞比特公司 可佩戴心率监视器
WO2016047494A1 (ja) * 2014-09-22 2016-03-31 株式会社 東芝 生体情報測定装置及びシステム
CN105476620A (zh) * 2014-10-01 2016-04-13 精工爱普生株式会社 活动状态信息检测装置及其控制方法
US20160255422A1 (en) * 2015-02-26 2016-09-01 Kabushiki Kaisha Toshiba Electronic device and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110584611A (zh) * 2019-09-24 2019-12-20 喜临门家具股份有限公司 一种节能效果好的睡眠监测系统
CN114073493A (zh) * 2020-08-18 2022-02-22 华为终端有限公司 生理数据采集方法、装置及可穿戴设备
WO2022037555A1 (zh) * 2020-08-18 2022-02-24 华为技术有限公司 生理数据采集方法、装置及可穿戴设备
CN114073493B (zh) * 2020-08-18 2023-12-29 华为终端有限公司 生理数据采集方法、装置及可穿戴设备
CN112890777A (zh) * 2021-01-22 2021-06-04 深圳市苏仁智能科技有限公司 一种基于心肺耦合的睡眠状态分期方法、装置及计算机可读存储介质
CN114145717A (zh) * 2021-12-08 2022-03-08 四川北易信息技术有限公司 基于ppg心率特征参数和运动量的睡眠状态分析方法
CN114646021A (zh) * 2022-02-28 2022-06-21 苏州大学 地下管网监测方法
CN114646021B (zh) * 2022-02-28 2023-11-17 苏州大学 地下管网监测方法

Also Published As

Publication number Publication date
CN108430309A (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
WO2018098719A1 (zh) 一种睡眠监测方法、装置及终端
JP6502470B2 (ja) 心拍計のエネルギー消費を削減するための方法およびシステム
JP6516846B2 (ja) 睡眠監視のデバイス及び方法
US10656695B2 (en) Health wearable that automatically changes sensor reading timings
KR102350493B1 (ko) 수면과 관련된 정보를 결정하기 위한 전자 장치 및 방법
EP3366205B1 (en) Heart rate detection method and device
CN105068414A (zh) 一种闹钟唤醒方法及电子设备
JP5862400B2 (ja) 睡眠状態管理装置、睡眠状態管理方法、及び睡眠状態管理プログラム
KR102143499B1 (ko) 휴대 단말 장치를 이용한 수면 품질 측정 방법 및 장치
CN106489066B (zh) 用于预测性数据测量的装置和用于预测性数据测量的计算机实现的方法
CN107968885A (zh) 闹钟提醒方法、移动终端及计算机可读存储介质
EP3375357B1 (en) Biological signal acquisition method, device, electronic equipment and system
TW201626119A (zh) 智慧鬧鈴控制系統及方法
US20150116117A1 (en) System and method for providing sleep recommendations
CN107638171A (zh) 生理监控装置、生理监控方法及实现该生理控制方法的电脑可读取记录媒体
JP2016067811A (ja) 生体情報検出システム、生体情報検出装置及び生体情報検出システムの制御方法
CN114451900B (zh) 一种基于脑电的睡眠质量确定方法、系统及存储介质
US20210068736A1 (en) Method and device for sensing physiological stress
CN108683981A (zh) 电子设备的扬声器排水方法、装置、电子设备及存储介质
CN108683816B (zh) 基于穿戴式设备的闹钟关闭方法、装置、设备及存储介质
CN111248857A (zh) 睡眠质量监测方法、装置、计算机设备及存储介质
CN114302424B (zh) 通信模组的功耗检测方法、装置、计算机设备和存储介质
CN114287885B (zh) 一种人体体征监测方法、装置、系统以及存储介质
US11224347B2 (en) Biometric information measurement system and biometric information measurement apparatus
US20210401363A1 (en) Using personalized physiological parameters for sleep/wake detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922960

Country of ref document: EP

Kind code of ref document: A1