WO2019164345A1 - 탄화수소의 옥시클로로화 공정용 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 옥시클로로화 화합물의 제조방법 - Google Patents

탄화수소의 옥시클로로화 공정용 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 옥시클로로화 화합물의 제조방법 Download PDF

Info

Publication number
WO2019164345A1
WO2019164345A1 PCT/KR2019/002235 KR2019002235W WO2019164345A1 WO 2019164345 A1 WO2019164345 A1 WO 2019164345A1 KR 2019002235 W KR2019002235 W KR 2019002235W WO 2019164345 A1 WO2019164345 A1 WO 2019164345A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
hydrocarbon
weight
iron
carrier
Prior art date
Application number
PCT/KR2019/002235
Other languages
English (en)
French (fr)
Inventor
방정업
김도희
황교현
정종욱
방용주
유영석
김정은
Original Assignee
주식회사 엘지화학
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학, 서울대학교산학협력단 filed Critical 주식회사 엘지화학
Priority to CN201980007192.XA priority Critical patent/CN111556787A/zh
Priority to JP2020535173A priority patent/JP7318853B2/ja
Priority to EP19758269.5A priority patent/EP3730211A4/en
Priority to US16/958,385 priority patent/US20210086168A1/en
Publication of WO2019164345A1 publication Critical patent/WO2019164345A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/07Preparation of halogenated hydrocarbons by addition of hydrogen halides
    • C07C17/087Preparation of halogenated hydrocarbons by addition of hydrogen halides to unsaturated halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/15Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination
    • C07C17/152Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons
    • C07C17/154Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons of saturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/01Acyclic saturated compounds containing halogen atoms containing chlorine
    • C07C19/03Chloromethanes

Definitions

  • the present specification relates to a catalyst for oxychlorolation process of a hydrocarbon, a method for preparing the same, and a method for preparing an oxychloroated compound of a hydrocarbon using the same.
  • Patent Document 1 Korean Unexamined Patent 10-2010-0074017
  • the present specification provides a catalyst for an oxychlorolation process of a hydrocarbon, a method for preparing the same, and a method for preparing an oxychloroated compound of a hydrocarbon using the same.
  • One embodiment of the present specification is a catalytic material including iron (Fe); And a carrier comprising cerium oxide (CeO 2 ), wherein the content of the catalyst material is 0.1 wt% or more and 9 wt% or less based on the total weight of the catalyst.
  • an exemplary embodiment of the present specification comprises the steps of preparing a carrier comprising cerium oxide (CeO 2 ); And it provides a method for producing a catalyst for the oxychlorolation process of the hydrocarbon comprising the step of supporting a catalyst material containing iron (Fe) on the carrier.
  • an exemplary embodiment of the present specification provides a method for preparing an oxychlorolated compound of a hydrocarbon that is performed under a catalyst for an oxychlorolating process of the hydrocarbon, and includes an oxychlorolating reaction of a hydrocarbon.
  • the catalyst for the oxychlorolation process of a hydrocarbon according to one embodiment of the present specification has the effect of increasing the selectivity of the desired product when used in the oxychlorolation process.
  • the catalyst for the oxychlorolation process of a hydrocarbon when used in the oxychlorolation process has the effect of suppressing the production of by-products such as carbon monoxide or carbon dioxide.
  • the catalyst for the oxychlorolation process of a hydrocarbon when used in the oxychlorolation process, has the effect of increasing the selectivity of the desired product even at low temperatures.
  • FIG. 1 shows XRD patterns of catalysts according to Examples 1-4 and Comparative Example 1.
  • Figure 2 shows the experimental results according to Experimental Example 1.
  • FIG. 5 shows the results of the H 2 -TPR experiment according to Experimental Example 2.
  • Figure 6 shows the reactor used in Experimental Examples 1 to 3.
  • the "catalyst material” may be an “active material” having catalytic activity.
  • a “catalyst” may be a catalyst for the oxychlorolation process of hydrocarbons.
  • the term "oxychloroination process of hydrocarbon” means a process for substituting chlorine for hydrogen in a hydrocarbon, and may also be referred to as an oxidative chlorolation process of a hydrocarbon. For example, it may be a process of generating chloromethane (CH 3 Cl, CH 2 Cl 2 or CHCl 3 ) by substituting hydrogen of methane gas (CH 4 ) with chlorine, and may be represented by the following Chemical Formula (I). . Chloromethane produced via general formula (I) can be converted into useful chemical products via general formula (II). In general formula (I) below, not only chloromethane but also byproducts such as carbon monoxide or carbon dioxide can be produced.
  • One embodiment of the present specification is a catalytic material including iron (Fe); And a carrier comprising cerium oxide (CeO 2 ), wherein the content of the catalyst material is 0.1 wt% or more and 9 wt% or less based on the total weight of the catalyst.
  • the catalyst for the oxychlorolation process of the hydrocarbon may include iron in the catalyst material, adjust the content of the catalyst material to a specific content, and the carrier may include cerium oxide to improve the performance of the catalyst.
  • the iron (Fe) is included in the catalyst material, it is possible to improve the performance of the catalyst. Specifically, in order to increase the redox capacity of the catalyst, oxygen vacancy in the catalyst should be sufficiently secured. When iron is supported on the CeO 2 carrier, iron ions (Fe 3+ ) are enriched in oxygen vacancy by the charge compensation mechanism, thereby increasing the redox capacity of the catalyst. In addition, since iron is included in the catalyst material, there is an effect of reducing the selectivity of by-products such as carbon monoxide or carbon dioxide that may be generated in the oxychlorolation process of hydrocarbons.
  • the present specification may be used in a fixed bed, a fluidized bed or a circulating fluidized bed reactor by including cerium oxide as a carrier and iron in the catalyst material in preparing a chloro compound through an oxychlorolation reaction of a hydrocarbon.
  • the catalyst according to one embodiment of the present specification, it is intended to suppress the production of by-products generated in the oxychlorolation process of hydrocarbons to the maximum, and to maximize the production of the desired product.
  • the reactant is methane (CH 4 ) and the desired products are CH 3 Cl, CH 2 Cl 2 and CHCl 3
  • the chlorolated compounds of methane, by-products CO 2 and CO are generated, wherein the chlorolation It is intended to maximize the production of methane CH 3 Cl, CH 2 Cl 2 and CHCl 3 and to minimize the generation of byproducts CO 2 and CO.
  • the amount of carbon dioxide and carbon monoxide generated as harmful substances while suppressing the risk that can be generated by the process, while increasing the production of the target product to reduce the process cost.
  • the catalyst for the oxychlorolation process of the hydrocarbon may be a catalyst material containing iron supported on a carrier containing the cerium oxide (CeO 2 ).
  • the supporting method is not particularly limited as long as it is a method generally used in the art to which the technology belongs, and a specific method will be described later.
  • iron included in the catalyst material may be used as the active material. Specifically, since iron is included in the catalyst material, there is an effect of reducing the selectivity of by-products such as carbon monoxide or carbon dioxide that may be generated in the oxychlorolation process of hydrocarbons.
  • the content of the catalyst material may be 0.1 wt% or more and 9 wt% or less based on the total weight of the catalyst.
  • the function of the catalyst by the catalyst material may be efficiently performed, and the deactivation phenomenon of the catalyst may be suppressed.
  • the content of the catalyst material may be 1 wt% or more and 7 wt% or less based on the total weight of the catalyst.
  • the redox capacity of the catalyst is increased, so that the performance of the catalyst can be maintained excellently.
  • the content of the catalyst material means the extent to which the catalyst material is supported on the carrier.
  • the catalyst material may further include one or more components selected from the group consisting of yttria (Y), an alkali metal, an alkaline earth metal, a lanthanide metal, and a rare earth metal in addition to the iron.
  • Y yttria
  • an alkali metal an alkaline earth metal
  • a lanthanide metal a rare earth metal in addition to the iron.
  • the alkali metal element means a chemical element other than hydrogen in Group 1 of the periodic table, and includes lithium (Li), sodium (Na), potassium (K), rubidium (Rb), Cesium (Cs) or francium (Fr).
  • the alkaline earth metal element refers to a group 2 element of the periodic table, and includes beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), or radium (Ra).
  • the rare earth element is scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), Europium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er), Tolium (Tm), Ytterbium (Yb) or Ruthenium (Lu) yl Can be.
  • the content of the iron (Fe) may be 50 wt% or more and 100 wt% or less, preferably 90 wt% or more and 100 wt% or less, based on the total weight of the catalyst material.
  • the iron content is 100% by weight based on the total weight of the catalyst material.
  • the iron content is 50% based on the total weight of the catalyst material. Weight percent.
  • the content of the iron (Fe) is 1% by weight or more and 7% by weight or less, preferably 1% by weight or more and 6% by weight or less, 2% by weight or more 5 wt% or less, or 2.5 wt% or more and 4 wt% or less, or 3 wt% or more and 3.5 wt% or less.
  • the redox capacity of the catalyst can be maintained excellent.
  • oxygen vacancies are enriched by the charge compensation mechanism of iron ions (Fe 3+ ), thereby increasing the redox capacity of the catalyst.
  • the cerium oxide may be included in an amount of 50 wt% or more and 100 wt% or less based on the total weight of the carrier.
  • the numerical range since the content of the cerium oxide contained in the carrier is large, the performance of the catalyst itself by the cerium oxide can be improved.
  • the carrier may be one having a single composition of cerium oxide (CeO 2 ).
  • the cerium oxide (CeO 2 ) single composition means that the carrier contains little or no other materials other than cerium oxide.
  • the content of the cerium oxide may be 80% by weight, 90% by weight, 95% by weight, or 99% by weight or more, and most preferably 100% by weight, based on 100% by weight of the carrier. .
  • the carrier having a single composition of cerium oxide can be confirmed by the general method used in the art. For example, X-Ray Diffraction peak patterns can be checked to confirm the presence of CeO 2 . Specifically, when peaks corresponding to the (111), (200), (220), and (311) crystal planes exist, it may be confirmed that CeO 2 on the cubic phase is present. Energy dispersive spectroscopy (EDS) measurements also show the presence and weight percent of Ce and O atoms. The EDS analysis is used to confirm the chemical composition of the sample together with the SEM picture. In the EDS measurement for the cerium oxide, peaks corresponding to Ce and O atoms are observed. On the other hand, when peaks of atoms other than Ce and O atoms are hardly observed, it can be seen that the carrier has a single composition of cerium oxide.
  • EDS Energy dispersive spectroscopy
  • the carrier may be composed of only cerium oxide.
  • the carrier including cerium oxide (CeO 2 ) may be in powder form, the powder may be in spherical form, and the diameter of the catalyst including the carrier will be described later.
  • ABSC / CeO 2 catalyst may mean that A, B, and C, which are metals or metal oxides, are supported on a CeO 2 carrier.
  • the specific surface area of the carrier may be 50 m 2 / g or more and 250 m 2 / g or less, 100 m 2 / g or more and 200 m 2 / g or less, preferably 120 m 2 / may be greater than or equal to 150 m 2 / g.
  • the specific surface area of the carrier may mean an area (m 2 ) relative to the total weight (g) of the carrier.
  • the specific surface area of the carrier may be measured by a method generally used in the art, for example, by the Brunauer, Emmett and Teller (BET) method. This is a gaseous adsorption method in which molecules or ions are adsorbed on the surface of a carrier and the surface area is measured from the amount of adsorption. The sample is stored at 250 ° C for 5 hours and then N 2 adsorption-desorption isotherm is used with a Micromeritics ASAP 2010 machine. Can be measured.
  • BET Brunauer, Emmett and Teller
  • the carrier may further include a complex oxide including at least one element selected from the group consisting of Zr, Y, an alkali metal element, an alkaline earth metal element, a lanthanide element, and a rare earth element.
  • a complex oxide including at least one element selected from the group consisting of Zr, Y, an alkali metal element, an alkaline earth metal element, a lanthanide element, and a rare earth element. Specific examples of the alkali metal element, alkaline earth metal element, lanthanide element and rare earth element are as described above.
  • examples of the composite oxide include CeZr composite oxide (70:30), CeZrLa composite oxide (86: 10: 4), CeZrLa composite oxide (66: 29: 5), and CeZrLaY composite oxide. (40: 50: 5: 5), CeZrPr composite oxide (40: 55: 5), CeZrLaNdPr composite oxide, or CeZrNdPrCa composite oxide.
  • the numbers in parentheses at the end mean the weight ratio of each element.
  • the diameter of the catalyst for the oxychlorolation process of the hydrocarbon may be 0.1mm or more and 1.0mm or less, preferably 0.1mm or more and 0.5mm or less, more preferably 0.18mm or more and 0.25mm or less.
  • the diameter of the catalyst is smaller than 0.1 mm, the pressure drop phenomenon in the reactor is large, and the conversion rate or reaction rate of the reactants may be reduced.
  • the diameter of the catalyst exceeds 1.0mm, a channeling phenomenon may occur in which the reactant does not pass through the catalyst layer.
  • the diameter of the catalyst may mean an average particle diameter of the catalyst particles.
  • the diameter of the catalyst can be measured by methods commonly used in the art, for example, using SEM (Scanning Electron Microscopy) or TEM (Transmission Electron Microscopy). Each diameter of the at least two catalyst particles can be measured and the average of the measured diameters of the particles can be calculated as the average particle diameter.
  • One embodiment of the present specification comprises the steps of preparing a carrier comprising cerium oxide (CeO 2 ); And it provides a method for producing a catalyst for the oxychlorolation process of a hydrocarbon comprising the step of supporting a catalyst material containing iron (Fe) on the carrier.
  • the supporting of the catalyst material including iron (Fe) on the carrier may use an incipient wetness method, and other impregnation methods may be used.
  • the precipitation method a coprecipitation method, a homogeneous precipitation method, or an annual precipitation method may be used.
  • the active material and the carrier are immersed at the same time, so that the catalyst in the powder state can be obtained, the ratio of the active material can be freely controlled, and the mutual binding force between the active material and the carrier is strengthened and stability The production of this excellent catalyst powder is possible.
  • the step of supporting the catalyst material containing iron (Fe) on the carrier is a method of putting the carrier in a precursor aqueous solution containing an active material precursor containing iron (Fe) and stirring It can be performed as.
  • the active material precursor may vary depending on the type of target material.
  • the active material is copper
  • the active material precursor is Copper chloride dihydreate (CuCl 2 .2H 2 O)
  • the active material is iron (Fe)
  • the active material precursor is Fe (NO 3 ).
  • the precursor may be potassium chloride (KCl)
  • lanthanum the precursor may be lanthanum chloride heptahydrate (LCl 3 ⁇ 7H 2 O).
  • the stirring is performed so that the precursor aqueous solution may be well supported on the carrier, and may be performed for 0.5 hours or more, preferably 1 hour or more.
  • a method of preparing a catalyst for an oxychlorolation process of a hydrocarbon includes drying a catalyst; And calcining the catalyst.
  • the drying of the catalyst is for evaporating the water of the catalyst, and is not particularly limited as long as it is a method generally used in the art.
  • water may be evaporated using a rotary evaporator and dried at a temperature of 100 ° C. for at least 10 hours.
  • the calcining of the catalyst is performed to remove the precursor material remaining in the catalyst after loading, and is not particularly limited as long as it is a method generally used in the art. For example, it may be carried out at a temperature of 1 to 10 hours at a temperature of 100 °C or more. When the operating temperature and the running time are satisfied, the precursor material may be effectively removed, and the problem of deterioration of durability caused by the phase change of the carrier may be suppressed.
  • An exemplary embodiment of the present specification provides a method for preparing an oxychlorolated compound of a hydrocarbon that is carried out under the catalyst for the oxychlorolating process of a hydrocarbon as described above, and includes an oxychlorolating reaction of a hydrocarbon.
  • the catalyst for the oxychlorolation process of hydrocarbons mentioned above is applied, the increase in the production amount of the oxychlorolated compound of a hydrocarbon and the fall of activity of a catalyst are low. That is, the above-mentioned catalyst for the oxychlorolation process of hydrocarbon shows excellent activity even at low temperatures, and has the advantage of being suitable for low temperature processes.
  • the method for preparing the oxychlorolated compound of the hydrocarbon may be expressed herein as 'process'.
  • to be carried out under the catalyst for the oxychlorolation process of a hydrocarbon may be to induce a reaction by introducing a reaction gas or the like into a reactor in which the catalyst for the oxychlorolation process of a hydrocarbon is installed.
  • the oxychlorolation reaction of a hydrocarbon means a reaction for substituting hydrogen of a hydrocarbon raw material gas with chlorine, as described above.
  • the inlet gas refers to an aggregate of gases introduced into the reactor, and is distinguished from the exhaust gas discharged to the outside of the reactor after the reaction.
  • the method for producing the oxychlorolated compound of the hydrocarbon may be by contacting the inlet gas with the catalyst described above.
  • the partial oxidation reaction of the hydrocarbon is by contacting the catalyst with an inlet gas comprising a hydrocarbon source gas and a hydrogen chloride gas.
  • the catalyst comprises any active sites or active centers, and the catalysis takes place at the active point or active center. Catalytic reaction occurs while the inlet gas is in contact with the active point or the active center.
  • the inlet gas may further include a hydrocarbon source gas, a hydrogen chloride gas, and an oxygen gas.
  • the hydrocarbon raw material gas is a gas containing carbon and hydrogen, and means a gas that is a raw material of a desired product.
  • straight or branched chain saturated aliphatic hydrocarbons having 1 to 16 carbon atoms such as methane, ethane, propane, butane, pentane, hexane, heptane, octane, nonane and decane; Alicyclic saturated hydrocarbons such as cyclohexane, methylcyclohexane and cyclooctane; Monocyclic and polycyclic aromatic hydrocarbons; City gas; LPG; naphtha; And hydrocarbons such as kerosene.
  • the hydrogen chloride gas (HCl) may function as a source of chlorine atoms.
  • the inlet gas may further include one or two or more inert gases selected from the group consisting of nitrogen, helium, argon, and carbon dioxide.
  • the ratio of the volume flow rate of the hydrocarbon source gas to the hydrogen chloride gas is 1: 1 to 10: 1, preferably 1: 1 to 5: 1, more preferably 1: 1 to 3 : 1, most preferably 1.5: 1 to 2.5: 1. If the above numerical range is satisfied, the activity of the catalyst can be kept excellent. This has the advantage that the selectivity of the desired product can be maintained high.
  • the inlet gas further includes an oxygen gas
  • the ratio of the volume flow rate of the hydrocarbon source gas to the oxygen gas is 1: 1 to 10: 1, preferably 2: 1 to 6: 1, more preferably 3: 1 to 5: 1. If the ratio of the volumetric flow rate of hydrocarbon feedstock gas to oxygen gas is less than 1: 1, the selectivity of the target product chloromethane may decrease, and if the ratio of the volumetric flow rate of hydrocarbon feedstock gas to oxygen gas is greater than 10: 1, carbon monoxide Or there may be a problem that the selectivity of by-products such as carbon dioxide is increased.
  • the ratio of the volume flow rate of the hydrocarbon source gas to the inert gas may be 1: 0.5 to 1:10, preferably 1: 0.5 to 1: 5.
  • the ratio of the volume flow rate may be measured by a method generally used in the art to which the art belongs, and may be achieved by adjusting the temperature and pressure of the inlet gas introduced into the reactor.
  • the ratio of the volume flow rate may be measured at room temperature (25 ° C.) and at atmospheric pressure (1 atm), and may be measured using a volume flow meter commonly used in the art.
  • the process may be performed under process temperature, pressure, and space velocity of 20,000h -1 2,000h -1 or higher or less than 3atm of 0.5atm or less in a range from 450 °C 550 °C.
  • the process may be performed at a process temperature of 450 ° C. or more and 530 ° C. or less, 450 ° C. or more and less than 530 ° C., 450 ° C. or more and 520 ° C. or less, or 450 ° C. or more and 510 ° C. or less.
  • a process temperature of 450 ° C. or more and 530 ° C. or less, 450 ° C. or more and less than 530 ° C., 450 ° C. or more and 520 ° C. or less, or 450 ° C. or more and 510 ° C. or less.
  • the hydrocarbon feedstock is methane.
  • the space velocity of the inlet gas may be 10,000 ml / (h ⁇ gcat) or more and 50,000 ml / (h ⁇ gcat) or less.
  • the inflow gas is sufficiently fluid, so that coke can be effectively suppressed.
  • the method for preparing the oxychlorolated compound of the hydrocarbon may be performed in a fixed bed reactor, a fluidized bed reactor, or a circulating fluidized bed reactor.
  • the method for preparing the oxychlorolated compound of the hydrocarbon may further include a neutralization process.
  • the neutralization process is for removing hydrogen chloride gas contained in the reactants.
  • the neutralization process can be performed by passing the reactants through a reactor loaded with a sodium carbonate bed.
  • the neutralization process may be one equivalent of sodium carbonate reacts with two equivalents of hydrogen chloride to produce one equivalent of carbon dioxide gas and two equivalents of sodium chloride, which may be represented by the following figure.
  • cerium oxide carrier (CeO 2 ) powder (3 g, from Rhodia®, surface area of 130 m 2 / g or more) was prepared.
  • the catalytic material iron (Fe) was supported on the CeO 2 carrier by the following method. In this case, iron (Fe) precursor was used Iron (III) nitrate nonahydrate (Fe (NO 3 ) 3 ⁇ 9H 2 O).
  • the precursor was weighed by a calculated amount and dissolved in distilled water to prepare a precursor solution.
  • the cerium oxide carrier was made into a powder state, stirred well for 1 hour, and then water was evaporated using a rotary evaporator. Iron was supported on a cerium oxide carrier. Thereafter, the mixture was dried at a temperature of 100 ° C. for about 12 hours or more, and then calcined at 600 ° C. for 6 hours.
  • the content of iron (Fe) was 1.5% by weight based on the total weight of the catalyst.
  • a catalyst was prepared in the same manner as in Example 1, except that the iron content was 3% by weight based on the total weight of the catalyst.
  • a catalyst was prepared in the same manner as in Example 1, except that the iron content was 4 wt% based on the total weight of the catalyst.
  • a catalyst was prepared in the same manner as in Example 1, except that the iron content was 6% by weight based on the total weight of the catalyst.
  • a catalyst was prepared in the same manner as in Example 1 except that no other metal was supported. In this case, the same cerium oxide carrier (CeO 2 ) powder as described in Example 1 was used.
  • CeO 2 cerium oxide carrier
  • FIG. 1 is a diagram according to the X-ray diffraction analysis (XRD, X-ray diffraction) of the catalyst according to Examples 1 to 4 and Comparative Example 1.
  • the X-ray diffraction analysis can be measured at 40kV and 30mA measurement conditions using Ultra X18 (Rigaku corp). Cu K-alpha was used as the radiation source and was measured with a scanning step of 0.02 °.
  • the particle size of the catalyst prepared in Examples and Comparative Examples was controlled by sieve 180 to 250 ⁇ m.
  • a fixed bed reactor (PBR) made of quartz as shown in FIG. 6 was applied to the experiment.
  • the catalysts according to the above Examples and Comparative Examples were loaded in the portions indicated in blue in the drawings.
  • Process temperature was controlled using a thermocouple provided outside of the fixed bed reactor.
  • the CH 4 : O 2 : HCl is a reactant, and Ar acts as a diluent.
  • the concentration of gas produced was measured by GC Chromatograph downstream.
  • the concentrations of CH 4 , CH 3 Cl, CH 2 Cl 2 and CHCl 3 were measured by Flame Ionization Detector (FID), and the concentrations of CH 4 , N 2 , O 2 , CO 2 and CO were measured by TCD (Thermal Conductivity Detector). Measured through.
  • the resulting gas may be heated to 150 ° C.
  • Equation 1 Yield and selectivity associated with the gas can be calculated by Equations 1 to 3 below.
  • the correction coefficient ⁇ related to the inflow and outflow of nitrogen gas is calculated through Equation 1 below.
  • Methane conversion (X: conversion,%) is calculated through the following equation (2).
  • the process temperature was 510 °C
  • the conversion of the reactants and the selectivity of the product is shown in Table 1 and FIG.
  • Example 2 Example 3
  • Example 4 Comparative Example 1 Catalyst type Supported substance Fe Fe Fe Fe Fe Unsupported carrier CeO 2 CeO 2 CeO 2 CeO 2 CeO 2 Iron loading (% by weight) 1.5 3 4 6 0
  • Experimental Example 1 Process temperature (°C) 510 510 510 510 Methane conversion rate (%) 17.6 22.6 17.9 17.3 23.6 Gas selectivity (%) CH 3 Cl 70.6 65.2 70.5 72.5 56.8 CH 2 Cl 2 22.1 22.0 21.7 21.8 17.2 CHCl 3 0.9 0.4 0.7 1.0 0.3 CO 2 1.6 4.6 0 0 7.2 CO 4.7 7.8 7.1 4.8 18.5
  • Unit cell parameter [aa ( ⁇ )] 5.366 5.357 5.358 5.381 5.390
  • Example 1 where the loading of iron was 1.5% by weight and Example 4 when the loading of iron was more than 3% by weight, the conversion of methane was about 17.3%. However, in the case of Example 2 in which the supported amount of iron was 3% by weight, the conversion rate of methane was 22.6%, and the highest conversion rate could be achieved. This is because, as the amount of iron supported, the redox capacity of the catalyst by iron may increase, but when the iron is supported too much, the irons bind together and the oxygen vacancy is reduced by the interstitial compensation mechanism. Because.
  • H 2 -TPR analysis H 2 -Temperature Programmed Reduction, BEL CAT II of MicrotracBel Copr
  • XRD diffraction analysis was performed.
  • the catalysts according to Comparative Example 1 and Examples 1 to 4 were pretreated by raising the temperature to 400 ° C. at an elevated temperature rate of 10 ° C./min under air conditions, and then cooled to 40 ° C. Thereafter, H 2 -TPR analysis was performed using 5% H 2 / N 2 mixed gas at a rate of 10 ° C./min to 900 ° C. Specifically, the catalyst was reduced while raising the temperature to 900 ° C. at a temperature rising rate of 10 ° C./min under 5% H 2 / Ar. The results are shown in FIG. 5 and shown in Table 1 by XRD diffraction analysis.
  • Example 2 shows the strongest interaction.
  • the oxygen vacancies generated in the catalyst may be changed according to the amount of iron supported, and thus the degree of interaction between iron and the carrier may be changed.
  • Example 2 As the loading amount of iron increased to 0 to 3% by weight (Comparative Example 1, Example 1 and Example 2), it was confirmed that the unit cell lattice parameter is reduced. This is because the cell shrinkage occurs as iron ions (Fe 3+ , 0.64 ⁇ ) having a small particle size substitute for cerium ions (Ce 4+ , 1.01 ⁇ ) of CeO 2 as a carrier. Cell shrinkage occurs because of the interaction between iron and Ce in the carrier, and a solid body (Fe-Ce solid solution) was produced. From the above results, it was confirmed that the catalyst of Example 2 having an iron content of 3 wt% had the highest degree of interaction between iron and Ce in the support.
  • the catalyst of Comparative Example 1 without iron showed a carrier reduction peak at the highest temperature, and the catalyst of Example 2 with an iron content of 3 wt% showed a carrier reduction peak at 320 ° C., the lowest temperature. This is a phenomenon that occurs when the interaction between the iron and the carrier is strong, it was confirmed that the strongest interaction of the catalyst of Example 2 having an iron content of 3% by weight.
  • Example 7 when the process temperature is greater than 530 °C, it was confirmed that a lot of by-product carbon dioxide and carbon monoxide are produced. This result is because when the process temperature is higher than 530 ° C, the effect of temperature is increased during the process, and the generated CH 3 Cl is further reacted, or CH 4 is directly oxidized to generate a large amount of by-product carbon dioxide and carbon monoxide. On the other hand, when the process temperature is 530 ° C. or less, it was possible to suppress the further reaction of CH 3 Cl or to inhibit the direct oxidation of CH 4 to prevent the formation of byproduct carbon dioxide and carbon monoxide.
  • the catalyst according to the exemplary embodiment of the present specification shows excellent activity even at a low temperature of 530 ° C or lower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 명세서는 탄화수소의 옥시클로로화 공정용 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 옥시클로로화 화합물의 제조방법을 제공한다.

Description

탄화수소의 옥시클로로화 공정용 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 옥시클로로화 화합물의 제조방법
본 출원은 2018년 2월 23일 한국특허청에 제출된 한국 특허 출원 제10-2018-0022207호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 탄화수소의 옥시클로로화 공정용 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 옥시클로로화 화합물의 제조방법에 관한 것이다.
유가의 지속적인 상승으로 인하여 가격이 저렴하며 매장량이 풍부한 천연가스 활용 방안에 관한 연구는 그 중요성이 더욱 증대되고 있으며, 주로 천연가스 중의 메탄을 산소를 이용하는 열분해 반응 및 촉매를 이용하는 커플링 반응에 관한 선행 기술이 많이 보고 되어 있다. 이와 함께 메탄의 활성화를 위하여 클로린 화합물을 이용할 수 있는 종래의 방안으로서, 메탄과 클로린을 고온에서 열분해하는 방법이 미국 등록특허 제4199533호, 미국 등록특허 제4804797호, 미국 등록특허 제4714796호 및 미국 등록특허 제4983783호 등에 개시되어 있다. 그러나, 상기 메탄의 클로린에 의한 고온 열분해 방법은 선택도 조절에 있어 단순히 제공되는 열공급량 및 반응시간에 의존하므로 메틸렌클로라이드나 코크스와 같은 부산물의 발생이 부가적으로 많이 발생한다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국 공개 특허 10-2010-0074017호
본 명세서는 탄화수소의 옥시클로로화 공정용 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 옥시클로로화 화합물의 제조방법을 제공한다.
본 명세서의 일 실시상태는 철(Fe)을 포함하는 촉매 물질; 및 세륨옥사이드(CeO2)를 포함하는 담체를 포함하고, 상기 촉매 물질의 함량은 촉매 전체의 중량을 기준으로 0.1 중량% 이상 9 중량% 이하인 것인 탄화수소의 옥시클로로화 공정용 촉매를 제공한다.
또한, 본 명세서의 일 실시상태는 세륨옥사이드(CeO2) 포함하는 담체를 준비하는 단계; 및 철(Fe)을 포함하는 촉매 물질을 상기 담체에 담지하는 단계를 포함하는 상기 탄화수소의 옥시클로로화 공정용 촉매의 제조방법을 제공한다.
또한, 본 명세서의 일 실시상태는 상기 탄화수소의 옥시클로로화 공정용 촉매 하에서 수행되고, 탄화수소의 옥시클로로화 반응을 포함하는 탄화수소의 옥시클로로화 화합물의 제조방법을 제공한다.
본 명세서의 일 실시상태에 따른 탄화수소의 옥시클로로화 공정용 촉매는 옥시클로로화 공정에 이용될 경우, 목적 생성물의 선택도를 높일 수 있는 효과를 갖는다.
또한, 본 명세서의 일 실시상태에 따른 탄화수소의 옥시클로로화 공정용 촉매는 옥시클로로화 공정에 이용될 경우, 일산화탄소 또는 이산화탄소와 같은 부산물의 생성을 억제할 수 있는 효과를 갖는다.
또한, 본 명세서의 일 실시상태에 따른 탄화수소의 옥시클로로화 공정용 촉매는 옥시클로로화 공정에 이용될 경우, 낮은 온도에서도 목적 생성물의 선택도를 높일 수 있는 효과를 갖는다.
도 1은 실시예 1 내지 4 및 비교예 1에 따른 촉매의 XRD 패턴을 도시한 것이다.
도 2는 실험예 1에 따른 실험결과를 나타낸 것이다.
도 3 및 도 4는 실험예 3에 따른 실험결과를 나타낸 것이다.
도 5는 실험예 2에 따른 H2-TPR 실험 결과를 나타낸다.
도 6은 실험예 1 내지 3에서 사용된 반응기를 나타낸 것이다.
이하, 본 명세서에 대하여 설명한다.
본 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐만 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, “촉매 물질”은 촉매 활성을 갖는 “활성 물질”일 수 있다.
본 명세서에 있어서, 다른 언급이 없는 한, “촉매”는 탄화수소의 옥시클로로화 공정용 촉매일 수 있다.
본 명세서에서 "탄화수소의 옥시클로로화 공정"은 탄화수소의 수소를 염소로 치환하기 위한 공정을 의미하고, 탄화수소의 산화적 클로로화 공정이라고도 명명될 수 있다. 예를 들어, 메탄 기체(CH4)의 수소를 염소로 치환하여 클로로메탄(CH3Cl, CH2Cl2 또는 CHCl3)을 생성하는 공정일 수 있고, 하기 화학식 (I)로 표시될 수 있다. 하기 일반식 (I)을 통해 생성된 클로로메탄은 하기 일반식 (II)를 통해 유용한 화학물질 제품으로 전환될 수 있다. 하기 일반식 (I)에서는 클로로메탄 뿐만 아니라, 일산화탄소 또는 이산화탄소와 같은 부산물이 생성될 수 있다.
CH4 + HCl + O2 → 클로로메탄 + H2O (I)
클로로메탄 → 화학물질 제품 + HCl (II)
본 명세서에서는, 상기 일반식 (I)의 공정에서 사용되는 촉매이면서, 생성물 중 클로로메탄의 선택도는 높이면서도, 일산화탄소 또는 이산화탄소와 같은 부산물의 선택도는 최소화할 수 있는 촉매를 제공하고자 한다.
본 명세서의 일 실시상태는 철(Fe)을 포함하는 촉매 물질; 및 세륨옥사이드(CeO2)를 포함하는 담체를 포함하고, 상기 촉매 물질의 함량은 촉매 전체의 중량을 기준으로 0.1 중량% 이상 9 중량% 이하인 것인 탄화수소의 옥시클로로화 공정용 촉매를 제공한다. 상기 탄화수소의 옥시클로로화 공정용 촉매는 촉매 물질에 철을 포함하고, 촉매 물질의 함량을 특정 함량으로 조절하고, 담체가 세륨옥사이드를 포함함으로써 촉매의 성능을 향상시킬 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 촉매 물질에 철(Fe)이 포함됨으로써, 촉매의 성능을 향상시킬 수 있다. 구체적으로, 촉매의 산화환원 능력이 증대되기 위해서는 촉매 내의 산소 공공(oxygen vacancy)가 충분히 확보되어야 한다. CeO2 담체에 철을 담지 하게 되면, 철 이온(Fe3+)이 전하 보상 메커니즘에 의해 산소 공공이 풍부하게 되고, 이에 따라 촉매의 산화환원 능력이 증가하게 된다. 또한, 철이 촉매 물질에 포함됨으로써, 탄화수소의 옥시클로로화 공정에서 발생될 수 있는 일산화탄소 또는 이산화탄소와 같은 부산물의 선택도를 줄일 수 있는 효과가 있다.
본 명세서는 탄화수소의 옥시클로로화 반응을 통하여 클로로화합물을 제조함에 있어서, 담체로서 세륨옥사이드를 포함하고, 촉매 물질에 철을 포함함으로써, 고정층, 유동층 또는 순환 유동층 반응기에서 사용될 수 있다.
또한, 본 명세서의 일 실시상태에 따른 촉매를 사용함으로써, 탄화수소의 옥시클로로화 공정시 발생되는 부산물의 생성을 최대한 억제하고, 목적 생성물의 생성을 최대화하고자 한다. 예를 들어, 반응물이 메탄(CH4)이고, 목적 생성물이 메탄의 클로로화 화합물인 CH3Cl, CH2Cl2 및 CHCl3인 경우, 부산물인 CO2 및 CO가 발생되는데, 이때 상기 클로로화 메탄 CH3Cl, CH2Cl2 및 CHCl3의 생성량을 최대화하고, 부산물인 CO2 및 CO의 발생을 최소화하고자 한다. 이 경우, 유해한 물질인 이산화 탄소 및 일산화탄소의 발생량을 최소화하여, 공정에 의해 발생될 수 있는 위험을 억제하면서도, 목적 생성물의 생산량을 증가시켜 공정 비용의 절감을 유도하고자 한다.
본 명세서의 일 실시상태에 있어서, 상기 탄화수소의 옥시클로로화 공정용 촉매는 상기 철을 포함하는 촉매 물질이 상기 세륨옥사이드(CeO2)를 포함하는 담체에 담지된 것일 수 있다. 상기 담지 방법은 이 기술이 속하는 분야에서 일반적으로 사용되는 방법이라면 특별히 제한되지 않으며, 구체적인 방법에 대하여는 후술하기로 한다.
본 명세서의 일 실시상태에 있어서, 상기 촉매 물질에 포함되는 철은 활성 물질로 사용될 수 있다. 구체적으로, 철이 촉매 물질에 포함됨으로써, 탄화수소의 옥시클로로화 공정에서 발생될 수 있는 일산화탄소 또는 이산화탄소와 같은 부산물의 선택도를 줄일 수 있는 효과가 있다.
본 명세서의 일 실시상태에 있어서, 상기 촉매 물질의 함량은 촉매 전체의 중량을 기준으로 0.1 중량% 이상 9 중량% 이하일 수 있다. 상기 수치 범위를 만족하는 경우, 촉매 물질에 의한 촉매의 기능이 효율적으로 이루어질 수 있으며, 촉매의 비활성화 현상이 억제될 수 있는 효과가 있다.
본 명세서의 일 실시상태에 있어서, 상기 촉매 물질의 함량은 촉매 전체의 중량을 기준으로 1 중량% 이상 7 중량% 이하일 수 있다. 상기 수치 범위를 만족하는 경우, 촉매의 산화 환원 능력이 증대되어, 촉매의 성능이 우수하게 유지될 수 있다. 상기 촉매 물질의 함량은 촉매 물질이 담체에 담지되는 정도를 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 촉매 물질은 상기 철 외에 이트리아(Y), 알칼리 금속, 알칼리 토금속, 란탄족 금속 및 희토류 금속으로 이루어진 군으로부터 선택되는 1 이상의 성분을 더 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 알칼리 금속 원소는 주기율표의 1족 가운데 수소를 제외한 나머지 화학 원소를 의미하는 것으로서, 리튬(Li), 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs) 또는 프랑슘(Fr)일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 알칼리 토금속 원소는 주기율표의 2족 원소를 의미하는 것으로서, 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba) 또는 라듐(Ra)일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 희토류 원소는 스칸듐(Sc), 이트륨(Y), 란타넘(La), 세륨(Ce), 프라세오디뮴(Pr), 네오디뮴(Nd), 프로메튬(Pm), 사마륨(Sm), 유로퓸(Eu), 가돌리늄(Gd), 터븀(Tb), 디스프로슘(Dy), 홀뮴(Ho), 어븀(Er), 톨륨(Tm), 이터븀(Yb) 또는 루테늄(Lu)일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 촉매 물질 전체 중량에 대하여, 상기 철(Fe)의 함량은 50 중량% 이상 100 중량% 이하, 바람직하게는 90 중량% 이상 100중량% 이하일 수 있다. 예를 들어, 촉매 물질로 철만이 사용되는 경우 철의 함량은 촉매 물질 전체 중량에 대하여 100 중량% 이고, 촉매 물질로 철 및 이트리아가 사용되는 경우, 철의 함량은 촉매 물질 전체 중량에 대하여 50 중량% 일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 촉매의 전체 중량에 대하여, 상기 철(Fe)의 함량은 1 중량% 이상 7 중량% 이하, 바람직하게는 1 중량% 이상 6 중량% 이하, 2 중량% 이상 5 중량% 이하, 또는 2.5 중량% 이상 4 중량% 이하, 또는 3 중량% 이상 3.5 중량% 이하일 수 있다. 상기 수치 범위로 포함되는 경우, 촉매의 산화환원 능력이 우수하게 유지될 수 있다. 상술한 바와 같이, CeO2 담체에 철을 담지 하게 되면, 철 이온(Fe3+)의 전하 보상 메커니즘에 의해 산소 공공이 풍부하게 되고, 이에 따라 촉매의 산화환원 능력이 증가하게 된다. 그러나, 너무 많은 양의 철이 담지되는 경우, interstitial site를 차지하는 철 이온이 서로 뭉치게 된다. 이 때, interstitial compensation mechanism에 의하여 산소 공공이 감소되는 문제가 있을 수 있다. 그러나, 철이 상기 수치 범위로 포함되는 경우, 철이 포함되지 않은 촉매에 비하여 부산물의 생성을 효과적으로 억제할 수 있으며, 철 이온이 서로 뭉치는 것을 방지할 수 있으므로, 촉매의 산화환원 능력이 우수하게 유지될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 담체 전체 중량에 대하여 세륨 옥사이드를 50 중량% 이상 100 중량% 이하로 포함할 수 있다. 상기 수치 범위를 만족할 때, 담체에 포함되는 세륨 옥사이드의 함량이 많으므로, 세륨 옥사이드에 의한 촉매 자체의 성능이 개선될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 담체는 세륨옥사이드(CeO2) 단일 조성을 갖는 것일 수 있다. 상기 세륨옥사이드(CeO2) 단일 조성이란, 상기 담체가 세륨옥사이드 외에 다른 물질을 거의 포함하지 않거나, 포함하더라도 소량 포함하는 것을 의미한다. 예를 들어, 상기 담체 전체 100 중량 기준으로 상기 세륨옥사이드의 함량이 80 중량% 이상, 90 중량% 이상, 95 중량% 이상, 또는 99 중량% 이상일 수 있으며, 가장 바람직하게는 100 중량%일 수 있다.
상기 담체는 세륨옥사이드(CeO2) 단일 조성을 갖는 것은 이 기술이 속하는 분야에서 사용되는 일반적인 방법에 의하여 확인할 수 있다. 예를 들어, X-Ray Diffraction peak patterns을 확인하여 CeO2의 존재 여부를 확인할 수 있다. 구체적으로, (111), (200), (220), (311) 결정면에 해당하는 peak가 존재하는 경우, 큐빅 상의 CeO2가 존재하는 것을 확인할 수 있다. 또한, Energy dispersive spectroscopy (EDS) 측정을 통하여 Ce 및 O 원자의 존재 여부 및 중량%를 확인할 수 있다. 상기 EDS 분석은 SEM 사진과 함께 시료의 화학적 조성을 확인하기 위하여 사용되는 것이다. 상기 세륨옥사이드에 대한 EDS 측정시, Ce 및 O 원자에 해당하는 peak가 관찰된다. 반면에, Ce 및 O 원자가 아닌 다른 원자의 peak가 거의 관찰되지 않는 경우, 상기 담체는 세륨옥사이드 단일 조성을 갖는 것임을 확인할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 담체는 세륨옥사이드 만으로 구성될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 세륨옥사이드(CeO2)를 포함하는 담체는 분말 형태일 수 있고, 분말은 구체 형태일 수 있으며, 상기 담체를 포함하는 촉매의 직경에 대하여는 후술하기로 한다.
본 명세서의 일 실시상태에 있어서, "A-B-C/CeO2 촉매"는 CeO2 담체에 금속 또는 금속산화물인 A, B 및 C가 담지된 것을 의미할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 담체의 비표면적은 50 m2/g 이상 250 m2/g 이하일 수 있고, 100 m2/g 이상 200 m2/g 이하, 바람직하게는 120 m2/g 이상 150 m2/g 이하일 수 있다. 상기 수치 범위를 만족하는 경우, 촉매의 활성성분과의 접촉면적이 넓게 확보될 수 있고, 유입 가스가 촉매 내에 전달될 때, 물질 전달 저항이 적절히 제어되어, 원료 가스의 전환율이 우수하게 달성될 수 있다. 상기 담체의 비표면적은 담체 총 중량(g) 대비 면적(m2)을 의미할 수 있다. 상기 담체의 비표면적은 이 기술분야에서 일반적으로 사용되는 방법으로 측정될 수 있으며, 예를 들면, BET(Brunauer, Emmett and Teller)법으로 측정될 수 있다. 이는 담체 표면에 분자나 이온을 흡착시켜 그 흡착량에서 표면적을 측정하는 기상 흡착법의 일종이며, 샘플을 250℃에서 5시간 동안 보관한 후 Micromeritics ASAP 2010 기계를 이용하여 N2 adsorption-desorption isotherm을 이용하여 측정할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 담체는 Zr, Y, 알칼리 금속 원소, 알칼리 토금속 원소, 란탄족 원소 및 희토류 원소로 이루어진 군으로부터 선택된 1 이상의 원소를 포함하는 복합 산화물을 더 포함할 수 있다. 알칼리 금속 원소, 알칼리 토금속 원소, 란탄족 원소 및 희토류 원소에 대한 구체적인 예시는 상술한 바와 같다.
본 명세서의 일 실시상태에 있어서, 상기 복합 산화물의 예는, CeZr 복합 산화물(70:30), CeZrLa 복합 산화물 (86:10:4), CeZrLa 복합 산화물(66:29:5), CeZrLaY 복합 산화물(40:50:5:5), CeZrPr 복합 산화물(40:55:5), CeZrLaNdPr 복합 산화물 또는 CeZrNdPrCa 복합 산화물 등이 있다. 후단의 괄호 내의 숫자는 각 원소의 중량 비율을 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 탄화수소의 옥시클로로화 공정용 촉매의 직경은 0.1mm 이상 1.0mm 이하, 바람직하게는 0.1mm 이상 0.5mm 이하, 더욱 바람직하게는 0.18mm 이상 0.25mm 이하일 수 있다. 촉매 직경이 0.1mm 보다 작은 경우, 반응기 내의 압력강하 현상이 크게 나타나, 반응물의 전환율 또는 반응속도가 저하될 수 있다. 반면에, 촉매 직경이 1.0mm를 초과하는 경우, 반응물이 촉매층을 거치지 않는 편류(channeling) 현상이 나타날 수 있다. 상기 촉매의 직경은 촉매 입자의 평균 입자 직경을 의미할 수 있다. 상기 촉매의 직경은 이 기술분야에서 일반적으로 사용되는 방법으로 측정될 수 있으며, 예를 들어, SEM(주사 전자 현미경, Scanning Electron Microscopy) 또는 TEM(투과 전자 현미경, Transmission Electron Microscopy)을 이용하여, 2개 이상의 촉매 입자의 각 직경을 측정하고, 측정된 입자의 지름의 평균을 평균 입자 직경으로 계산할 수 있다.
본 명세서의 일 실시상태는 세륨옥사이드(CeO2)를 포함하는 담체를 준비하는 단계; 및 철(Fe)을 포함하는 촉매 물질을 상기 담체에 담지하는 단계를 포함하는 탄화수소의 옥시클로로화 공정용 촉매의 제조방법을 제공한다.
본 명세서의 일 실시상태에 있어서, 상기 철(Fe)을 포함하는 촉매 물질을 상기 담체에 담지하는 단계는 초기 함침법 (incipient wetness method)을 이용할 수 있고, 그 밖의 다른 함침법도 이용할 수 있다. 상기 침전법으로는 공침법(coprecipitation method), 균일 침전법 (homogeneous precipitation method) 또는 연차 침전법 (sequential precipitation method) 등을 이용할 수 있다. 침전법으로 촉매 분말 제조 시, 구성 요소인 활성물질과 담체를 동시에 침천시킴으로, 분말상태의 촉매가 얻어지고, 활성물질의 비율을 자유롭게 조절할 수 있으며, 활성물질과 담체 사이의 상호 결합력을 강하게 하여 안정성이 우수한 촉매 분말의 제조가 가능하다.
본 명세서의 일 실시상태에 있어서, 상기 철(Fe)을 포함하는 촉매 물질을 상기 담체에 담지하는 단계는 철(Fe)을 포함하는 활성 물질 전구체를 포함하는 전구체 수용액에 상기 담체를 넣고 교반하는 방법으로 수행될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 활성 물질 전구체는 목적 물질의 종류에 따라 달라질 수 있다. 예를 들어, 활성 물질이 구리인 경우 활성 물질 전구체는 커퍼 클로라이드 디하이드레이트(Copper chloride dihydreate, CuCl2·2H2O)이고, 활성 물질이 철(Fe)인 경우 활성 물질 전구체는 Fe(NO3)3ㆍ9H2O이고, 포타슘인 경우, 전구체는 포타슘 클로라이드(Potassium chloride, KCl)이고, 란타넘인 경우 전구체는 란타넘 클로라이드 헵타하이드레이트(Lanthanum chloride heptahydrate, LaCl3·7H2O)일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 교반은 전구체 수용액이 담체에 잘 담지될 수 있도록 수행되는 것으로써, 0.5 시간 이상, 바람직하게는 1 시간 이상 수행될 수 있다.
본 명세서의 일 실시상태에 있어서, 탄화수소의 옥시클로로화 공정용 촉매의 제조방법은 촉매를 건조하는 단계; 및 촉매를 하소하는 단계를 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 촉매를 건조하는 단계는 촉매의 수분을 증발시키기 위한 것으로서, 이 기술이 속하는 분야에서 일반적으로 사용되는 방법이라면 크게 제한되지 않는다. 예를 들어, 회전 증발기(Rotary evaporator)를 이용하여 수분을 증발시키고, 100℃의 온도에서 10 시간 이상 건조하는 방법으로 수행될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 촉매를 하소하는 단계는 담지 후 촉매에 남아있는 전구체물질을 제거하기 위해 수행되는 것으로서, 이 기술이 속하는 분야에서 일반적으로 사용되는 방법이라면 크게 제한되지 않으며, 예를 들면 100℃ 이상의 온도에서 1 내지 10 시간의 온도에서 수행될 수 있다. 상기 수행 온도 및 수행 시간을 만족하는 경우, 전구체 물질을 효과적으로 제거할 수 있으며, 담체의 상 변화가 일어남으로써 발생되는 내구성 저하 문제를 억제할 수 있다.
본 명세서의 일 실시상태는 상술한 탄화수소의 옥시클로로화 공정용 촉매 하에서 수행되고, 탄화수소의 옥시클로로화 반응을 포함하는 탄화수소의 옥시클로로화 화합물의 제조방법을 제공한다. 상술한 탄화수소의 옥시클로로화 공정용 촉매를 적용할 경우, 탄화수소의 옥시클로로화 화합물 생산량의 증대 및 촉매의 활성 저하가 낮다. 즉, 상술한 탄화수소의 옥시클로로화 공정용 촉매는 저온에서도 우수한 활성을 나타내어, 저온 공정에 적합한 장점을 갖는다.
본 명세서의 일 실시상태에 있어서, 상기 탄화수소의 옥시클로로화 화합물의 제조방법은 본 명세서에서 '공정'이라고 표현될 수 있다.
본 명세서의 일 실시상태에 있어서, 탄화수소의 옥시클로로화 공정용 촉매 하에서 수행된다는 것은 탄화수소의 옥시클로로화 공정용 촉매가 설치된 반응기 내에 반응 기체 등을 유입시켜 반응을 유도하는 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 탄화수소의 옥시클로로화 반응은, 탄화수소 원료 가스의 수소를 염소로 치환시키는 반응을 의미하는 것으로서, 상술한 바와 같다.
본 명세서의 일 실시상태에 있어서, 유입 가스는 반응기 내에 유입되는 가스의 집합체를 의미하는 것으로서, 반응 후 반응기 외부로 배출되는 배출 가스와는 구별되는 것이다.
본 명세서의 일 실시상태에 있어서, 상기 탄화수소의 옥시클로로화 화합물의 제조방법은 유입 가스와 상술한 촉매를 접촉시키는 것에 의할 수 있다. 상기 탄화수소의 부분 산화 반응은 탄화수소 원료 가스 및 염화수소 가스를 포함하는 유입 가스와 촉매를 접촉시키는 것에 의한다. 상기 접촉의 의미는, 촉매 이론에 의하여 설명될 수 있다. 구체적으로, 촉매는 어떠한 활성점(active sites) 또는 활성 중심(centers)를 포함하고, 상기 활성점 또는 활성 중심에서 촉매 작용이 이루어지게 된다. 상기 활성점 또는 활성 중심에 유입 가스가 접하면서 촉매 반응이 일어나게 된다. 예를 들어, 반응기에 촉매를 충진하고 상기 반응기 내에 상기 유입 가스를 유통시키는 방법이 있다.
본 명세서의 일 실시상태에 있어서, 상기 유입 가스는 탄화수소 원료 가스, 염화수소 가스 및 산소 가스를 더 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 탄화수소 원료 가스는 탄소 및 수소를 포함하는 가스로서, 목적 생성물의 원료가 되는 가스를 의미한다. 예를 들어, 메탄, 에탄, 프로판, 부탄, 펜탄, 헥산, 헵탄, 옥탄, 노난, 데칸 등의 탄소수 1 내지 16의 직쇄형 또는 분지쇄형의 포화 지방족 탄화수소; 시클로헥산, 메틸시클로헥산, 시클로옥탄 등의 지환식 포화 탄화수소; 단환 및 다환의 방향족 탄화수소; 도시 가스; LPG; 나프타; 및 등유 등의 탄화수소를 들 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 염화수소 가스(HCl)은 염소 원자의 공급원으로서 기능할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유입 가스는 질소, 헬륨, 아르곤 및 이산화탄소로 이루어진 군으로부터 선택된 1 또는 2 이상의 불활성 가스를 더 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 탄화수소 원료 가스 대 염화수소 가스의 부피 유량의 비는 1:1 내지 10:1, 바람직하게는 1:1 내지 5:1, 더욱 바람직하게는 1:1 내지 3:1, 가장 바람직하게는 1.5:1 내지 2.5:1일 수 있다. 상기 수치 범위를 만족하는 경우, 촉매의 활성이 우수하게 유지될 수 있다. 이로 인해, 목적 생성물의 선택도를 높게 유지할 수 있다는 장점이 있다.
본 명세서의 일 실시상태에 있어서, 상기 유입 가스는 산소 가스를 더 포함하고, 상기 탄화수소 원료 가스 대 산소 가스의 부피 유량의 비는 1:1 내지 10:1, 바람직하게는 2:1 내지 6:1, 더욱 바람직하게는 3:1 내지 5:1일 수 있다. 탄화수소 원료 가스 대 산소 가스의 부피 유량의 비가 1:1보다 작은 경우, 목적 생성물인 클로로 메탄의 선택도가 감소할 수 있고, 탄화수소 원료 가스 대 산소 가스의 부피 유량의 비가 10:1보다 큰 경우 일산화탄소 또는 이산화탄소와 같은 부산물의 선택도가 증가하는 문제가 있을 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 탄화수소 원료 가스 대 불활성 가스의 부피 유량의 비는 1:0.5 내지 1:10, 바람직하게는 1:0.5 내지 1:5일 수 있다.
상기 부피 유량의 비는 이 기술이 속하는 기술 분야에서 일반적으로 사용되는 방법에 의하여 측정될 수 있으며, 반응기 내에 유입되는 유입 가스의 온도 및 압력을 조절하여 달성될 수 있다. 예를 들어, 상기 부피 유량의 비는 상온(25℃) 및 상압(1atm)에서 측정된 것일 수 있고, 이 기술분야에서 일반적으로 사용되는 체적 유량계를 사용하여 측정할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 공정은 450℃ 이상 550℃ 이하의 공정 온도, 0.5atm 이상 3atm 이하의 압력 및 2,000h-1 이상 20,000h-1이하의 공간 속도 하에서 수행되는 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 공정은 450℃ 이상 530℃ 이하, 450℃ 이상 530℃ 미만, 450℃ 이상 520℃ 이하, 또는 450℃ 이상 510℃ 이하의 공정 온도 하에서 수행될 수 있다. 상기 범위를 만족하는 경우, 부산물이 생성되는 것을 억제할 수 있고, 목적 생성물의 선택도를 높일 수 있다. 예를 들어, 탄화수소 원료가 메탄인 경우. 1) 염화수소 산화를 통한 Cl 활성화종 생성, 2) 메탄과 Cl 활성화종의 반응을 통한 CH3Cl로의 생성 및 3) 생성된 CH3Cl의 추가적인 반응 또는 메탄의 산화로부터 일산화탄소 또는 이산화 탄소의 부산물 생성 순으로 반응이 진행된다. 이때, 공정온도가 저온인 경우 반응에 대한 촉매의 영향이 지배적이어서 촉매 자체의 산화환원 능력을 통해 1)번 반응의 Cl 활성화종의 생성 속도가 2)번 반응의 Cl 활성화종의 소모 속도보다 빠르게 된다. 그러나, 온도가 고온인 경우 온도의 영향이 점차 증가하면서 3)번 반응의 속도가 더욱 빠르게 되므로 부산물 생성이 증가하게 되는 문제가 있다.
본 명세서의 일 실시상태에서는, 공정 조건을 상기와 같이 조절하여, 상술한 3)번 반응의 속도를 제어하면서도 1)번 및 2)번 반응의 속도를 적절히 유지하여 일산화탄소 또는 이산화탄소와 같은 부산물이 생성되는 것을 억제하고자 한다.
본 명세서의 일 실시상태에 있어서, 상기 유입 가스의 공간 속도는 10,000 ml/(h˙gcat) 이상 50,000 ml/(h˙gcat) 이하일 수 있다. 상기 범위를 만족하는 경우, 유입 가스가 충분히 유동적이므로, 코크스가 발생하는 것을 효과적으로 억제할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 탄화수소의 옥시클로로화 화합물의 제조방법은 고정층 반응기, 유동층 반응기 또는 순환 유동층 반응기 내에서 수행되는 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 탄화수소의 옥시클로로화 화합물의 제조방법은 중화 공정을 더 포함할 수 있다. 중화 공정은 반응물에 포함된 염화 수소 기체를 제거하기 위한 공정이다. 구체적으로, 상기 중화 공정은 반응물을 탄산나트륨 베드(bed)가 로딩된 반응기에 통과시킴으로써 수행될 수 있다. 상기 중화 공정은 1당량의 탄산 나트륨에 2 당량의 염화수소가 반응하여 1당량의 이산화탄소 기체 및 2 당량의 염화나트륨을 생성하는 것일 수 있으며, 하기 그림으로 표현될 수 있다.
Figure PCTKR2019002235-appb-I000001
이하, 실시예를 통해 상술한 내용을 설명하기로 한다. 다만, 본 명세서의 권리 범위는 이하의 실시예에 의해 한정되는 것은 아니다.
<실시예 1>
담체로서, 세륨옥사이드 담체(CeO2) 분말(3g, from Rhodia®, surface area 130 m2/g 이상)을 준비하였다. 촉매 물질인 철(Fe)은 하기 방법에 의해 CeO2 담체에 담지되었다. 이때, 철(Fe) 전구체로는 Iron(III) nitrate nonahydrate(Fe(NO3)3ㆍ9H2O)를 사용하였다.
상기 전구체를 계산된 양만큼 칭량하여 증류수에 녹여 전구체 용액을 제조하고, 상기 세륨옥사이드 담체를 분말 상태로 만들어 넣어 1시간 동안 잘 교반한 후, 회전 증발기(Rotary evaporator)를 이용하여 물을 증발시켜, 철을 세륨옥사이드 담체에 담지시켰다. 이후, 100℃의 온도에서 약 12 시간 이상 건조한 후 600℃의 온도에서 6 시간 동안 소성시켜 제조하였다.
이때, 철(Fe)의 함량이 촉매 전체 중량을 기준으로 1.5 중량% 이었다.
<실시예 2>
철의 함량이 촉매 전체 중량을 기준으로 3 중량%인 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 촉매를 제조하였다.
<실시예 3>
철의 함량이 촉매 전체 중량을 기준으로 4 중량%인 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 촉매를 제조하였다.
<실시예 4>
철의 함량이 촉매 전체 중량을 기준으로 6 중량%인 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 촉매를 제조하였다.
<비교예 1>
다른 금속이 담지되지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 촉매를 제조하였다. 이때, 세륨옥사이드 담체(CeO2) 분말은 실시예 1에서 설명한 것과 동일한 것을 사용하였다.
도 1은 상기 실시예 1 내지 4 및 비교예 1에 따른 촉매의 X-선 회절 분석법(XRD, X-ray diffraction)에 따른 도면이다. 상기 X-선 회절 분석은 Ultra X18(Rigaku corp)을 이용하여 40kV 및 30mA의 측정 조건에서 측정될 수 있다. Cu K-alpha가 radiation source로 사용되었으며, 0.02°의 scanning step으로 측정하였다.
<실험예 1: 촉매의 성능 실험>
시험 조건
상기 실시예 및 비교예에서 제조된 따른 촉매의 입자 크기는 180㎛ 내지 250㎛로 sieve하여 조절하였다.
도 6과 같은 quartz 재질의 고정층 반응기(PBR)를 실험에 적용하였다. 도면의 파란색으로 표시된 부분에 상기 실시예 및 비교예에 따른 촉매를 충진(loading)하였다. 공정 온도는 상기 고정층 반응기의 외부에 구비된 thermocouple을 이용하여 조절하였다.
Inlet 기체의 조성은 CH4:O2:HCl:Ar:N2=4:1:2:3:10의 부피비로 이루어져 있으며, 반응기 내의 압력을 조절하여 Inlet 기체의 부피 유량(υ0)이 50 ml/min이고, Flow rate/catalyst weight의 비율[FT/Wcat]은 30,000 ml/(h·gcat)이 되게 조절하였다. 상기 CH4:O2:HCl는 반응 기체(reactant)이고, 상기 Ar는 희석제(diluent)로 작용한다.
모든 기체 조건의 설정이 완료된 후 반응기를 450 ℃까지 예열한 후 실험을 시작하였으며, 생성되는 기체의 조성을 모니터링하였다.
생성되는 기체의 농도를 GC 다운 스트림(Gas Chromatograph downstream)에 의하여 측정하였다. CH4, CH3Cl, CH2Cl2, CHCl3의 농도는 FID(Flame Ionization Detector)를 통해 측정하였고, CH4, N2, O2, CO2 및 CO의 농도는 TCD(Thermal Conductivity Detector)를 통해 측정하였다. 생성되는 기체의 응축을 방지하기 위하여, 생성되는 기체를 150℃까지 가열할 수 있다.
기체와 관련된 수율 및 선택도는 아래 수학식 1 내지 3에 의해 계산될 수 있다. 유입 및 유출되는 질소 기체와 관련된 보정계수(α)는 아래 수학식 1을 통해 계산된다.
[수학식 1]
Figure PCTKR2019002235-appb-I000002
상기
Figure PCTKR2019002235-appb-I000003
는 반응기로 유입되는 질소 기체의 몰수이고, 상기
Figure PCTKR2019002235-appb-I000004
는 반응기로부터 빠져나가는 질소 기체의 몰수이다.
메탄 전환율(X: conversion, %) 는 하기 수학식 2를 통해 계산된다.
[수학식 2]
Figure PCTKR2019002235-appb-I000005
상기
Figure PCTKR2019002235-appb-I000006
는 반응기로 유입되는 메탄 기체의 몰수이고, 상기
Figure PCTKR2019002235-appb-I000007
는 반응기로부터 빠져나가는 메탄 기체의 몰수이다.
생성되는 기체의 선택도(S: selectivity)는 하기 수학식 3을 통해 계산된다.
[수학식 3]
Figure PCTKR2019002235-appb-I000008
상기
Figure PCTKR2019002235-appb-I000009
는 반응기로부터 빠져나가는 각 생성 기체의 몰수이고,
Figure PCTKR2019002235-appb-I000010
는 상기 생성 기체들의 총 몰수이다.
이때, 공정 온도는 510℃이었으며, 반응물의 전환율 및 생성물의 선택도를 하기 표 1 및 도 2에 나타내었다.
구분 구성/종류 실시예 1 실시예 2 실시예 3 실시예 4 비교예 1
촉매 종류 담지 물질 Fe Fe Fe Fe 미담지
담체 CeO2 CeO2 CeO2 CeO2 CeO2
철 담지량(중량%) 1.5 3 4 6 0
실험예 1 공정 온도(℃) 510 510 510 510 510
메탄 전환율(%) 17.6 22.6 17.9 17.3 23.6
생성기체선택도 (%) CH3Cl 70.6 65.2 70.5 72.5 56.8
CH2Cl2 22.1 22.0 21.7 21.8 17.2
CHCl3 0.9 0.4 0.7 1.0 0.3
CO2 1.6 4.6 0 0 7.2
CO 4.7 7.8 7.1 4.8 18.5
실험예 2 Unit cell parameter[aa (Å)] 5.366 5.357 5.358 5.381 5.390
실시예 1 내지 4 및 비교예 1을 비교하면, 담체 CeO2에 철을 담지 하는 경우, 철을 담지 하지 않은 경우(비교예 1)에 비하여, CO2 및 CO 부산물의 선택도가 낮은 것을 확인할 수 있었다. 이는, 철 이온(Fe3+)이 CeO2의 lattice로 incorporation되면서 전하 보상 메커니즘(charge compensation mechanism)에 의해 산소 공공(oxygen vacancy)이 풍부하게 되고, 이에 따라 촉매의 산화환원 능력이 증가하였기 때문이다. 한편, 실시예 1 내지 4를 비교해보면, 철 이온의 담지량에 따라 메탄의 전환율 및 부산물의 선택도가 변하는 것을 확인할 수 있었다. 철의 담지량이 1.5 중량%인 실시예 1 및 철의 담지량이 3 중량%를 초과하는 실시예 4의 경우, 메탄의 전환율이 약 17.3%이었다. 그러나, 철의 담지량이 3 중량%인 실시예 2 의 경우, 메탄의 전환율이 22.6%로서, 가장 높은 전환율을 달성할 수 있었다. 이는, 철의 담지량이 증가함에 따라, 철에 의한 촉매의 산화환원 능력이 증가할 수 있으나, 철이 너무 많이 담지 되게 되면 철이 서로 뭉치게 되고, interstitial compensation mechanism에 의하여 산소 공공(oxygen vacancy)이 감소하였기 때문이다.
즉, CeO2 담체에 철(Fe)이 담지될 때, 클로로화 화합물의 선택도는 높이면서 부산물의 선택도를 감소시킬 수 있었다. 특히, 실시예 2 및 3에 따른 촉매가 가장 우수한 성능을 나타내었다.
<실험예 2: 촉매의 환원 특성 변화 실험>
철의 함량에 따른 촉매의 환원성 변화를 관찰하기 위하여, H2-TPR 분석(H2-Temperature Programmed Reduction, MicrotracBel Copr사의 BEL CAT II 이용) 및 XRD 회절 분석을 수행하였다. 비교예 1 및 실시예 1 내지 4에 따른 촉매를 air 조건에서 10℃/분의 승온 속도로 400℃까지 승온 시켜가며 전처리한 후, 40℃까지 냉각하였다. 그 후, 5% H2/N2 혼합 기체를 활용하여 900℃까지 10℃/분의 속도로 승온하며 H2-TPR 분석을 수행하였다. 구체적으로, 5% H2/Ar 조건에서 10℃/min의 승온 속도로 900℃로 승온시켜 가며 촉매를 환원시켰다. 결과를 도 5에 나타내었고, XRD 회절 분석을 실시하여 상기 표 1에 나타내었다.
또한, 실시예 1 내지 실시예 4를 비교하면, 실시예 2의 촉매가 가장 강한 상호작용을 나타내는 것을 확인할 수 있었다. 이를 통해, 철의 담지량에 따라, 촉매에 생기는 산소 공공이 변화될 수 있으며, 이에 따라 철과 담체 간의 상호 작용 정도가 변하는 것을 확인할 수 있었다.
철의 담지량이 0~3중량%로 증가할수록(비교예 1, 실시예 1 및 실시예 2), unit cell lattice parameter가 감소하는 것을 확인할 수 있었다. 이는 입자 크기가 작은 철 이온(Fe3+, 0.64Å)이 담체인 CeO2의 세륨 이온(Ce4+, 1.01Å)을 치환하여 들어가면서 cell shrinkage가 일어나기 때문이다. Cell shrinkage가 일어나는 것은 철과 담체의 Ce의 상호작용이 잘 일어나서 고형체(Fe-Ce solid solution)가 생성되었기 때문이다. 상기 결과로부터, 철의 함량이 3wt%인 실시예 2의 촉매가 철과 담체의 Ce의 상호작용 정도가 가장 높은 것을 확인할 수 있었다.
한편, 철의 함량이 4wt% 이상인 실시예 3 및 4의 경우, 철의 함량이 증가할 때 unit cell lattice parameter가 오히려 증가하는 것을 확인할 수 있었다. 이는 철의 양이 증가하면서 철끼리 뭉치는 현상이 발생하였고, Ce와 solid solution을 이루는 Fe의 양이 감소하였기 때문이다.
H2-TPR 분석결과, 낮은 온도에서 환원 피크가 나타나는 경우, 촉매의 산화 환원 능력이 좋다는 것을 의미한다. 철의 담지량이 0~3중량%로 증가할수록(비교예 1, 실시예 1 및 실시예 2) 환원 피크가 나타나는 온도가 낮아지는 경향을 보인다.
이것은, Fe-Ce 고용체(Fe-Ce solid solution)의 Fe3+ 및 Ce4+의 산화수의 차이에 의한 전하 보상 메커니즘(charge compensating mechanism)에 의해 발생한 산소 공공(oxygen vacancy)의 농도 차이에 의한 것으로 설명할 수 있다. 즉, Fe-Ce 고용체의 생성 정도와 상기 산소 공공의 농도는 비례 관계에 있다. 또한, 상기 산소 공공이 생기게 되면, 촉매 물질과 담체 간의 상호 작용이 강해지게 되고, 결과적으로 촉매의 산화 환원 능력이 우수할 수 있다.
철의 담지량이 0~3중량%로 증가할수록(비교예 1, 실시예 1 및 실시예 2), Fe-Ce 고용체의 농도가 증가하고, 실시예 2의 촉매가 가장 많은 산소 공공을 가지는 것을 확인할 수 있었다.
철이 담지되지 않은 비교예 1의 촉매는 가장 높은 온도에서 담체 환원 피크가 나타났고, 철의 함량이 3 중량%인 실시예 2의 촉매는 가장 낮은 온도인 320℃에서 담체 환원 피크가 나타났다. 이는 철과 담체 간의 상호 작용이 강한 경우 발생하는 현상으로서, 철의 함량이 3 중량%인 실시예 2의 촉매가 가장 강한 상호작용이 나타나는 것을 확인할 수 있었다.
<실험예 3: 공정 온도에 따른 실험>
공정 온도에 따른 효과를 비교하기 위하여 상기 실시예 2 및 3에 따른 촉매를 적용하여 실험을 진행하였다. 물질의 전환율 또는 선택도를 하기 표 2, 도 3 및 도 4에 나타내었다. 도 3 및 도 4는 각각 실시예 2 및 실시예 3에 따른 촉매를 적용한 실험 결과를 나타낸 것이다.
온도(℃) 메탄의 전환율 CH3Cl의 선택도 CH2Cl2의 선택도 CHCl3의 선택도 CO2의 선택도 CO의 선택도
구분 실시예 실시예 실시예 실시예 실시예 실시예
2 3 2 3 2 3 2 3 2 3 2 3
450 3.6% 3.3% 92.7% 90.6% 7.3% 9.4% 0% 0% 0% 0% 0% 0%
480 9.6% 8.2% 81.% 82.0% 15.2% 17.0% 0.9% 1.0% 0% 0% 2.1% 2.1%
510 22.6% 17.9% 65.2% 70.5% 22.0% 21.7% 0.4% 0.7% 4.6% 0% 7.8% 7.1%
530 22.1% 22.6% 66.8% 59.3% 17.4% 19.2% 0.1% 0.3% 8.6% 14.1% 7.2% 7.1%
550 19.8% 20.7 70.5% 62.7 9.6% 11.7% 0% 0% 9.9% 15.3 9.9% 10.3
실시예 7에 따르면, 공정 온도가 530℃ 초과인 경우, 부산물인 이산화탄소 및 일산화탄소가 많이 생성되는 것을 확인할 수 있었다. 이와 같은 결과는, 공정 온도가 530℃ 초과인 경우, 공정 과정에서 온도에 의한 영향이 증가하여 생성된 CH3Cl가 추가적으로 반응하거나, CH4이 직접 산화하여 부산물인 이산화탄소 및 일산화탄소가 많이 생성되었기 때문이다.반면에, 공정 온도가 530℃ 이하인 경우, CH3Cl가 추가적으로 반응하는 것을 억제하거나, CH4이 직접 산화하는 것을 억제하여 부산물인 이산화탄소 및 일산화탄소가 생성되는 것을 방지할 수 있었다.
상기와 같은 결과로부터, 본 명세서의 일 실시상태에 따른 촉매는 530℃ 이하의 저온에서도 우수한 활성을 나타내는 것을 확인할 수 있었다.

Claims (14)

  1. 철(Fe)을 포함하는 촉매 물질; 및
    세륨옥사이드(CeO2)를 포함하는 담체를 포함하고,
    상기 촉매 물질의 함량은 촉매 전체의 중량을 기준으로 0.1 중량% 이상 9 중량% 이하인 것인 탄화수소의 옥시클로로화 공정용 촉매.
  2. 청구항 1에 있어서, 상기 촉매 물질의 함량은 촉매 전체의 중량을 기준으로 1 중량% 이상 7 중량% 이하인 것인 탄화수소의 옥시클로로화 공정용 촉매.
  3. 청구항 1에 있어서, 상기 촉매 물질은 이트리아(Y), 알칼리 금속, 알칼리 토금속, 란탄족 금속 및 희토류 금속으로 이루어진 군으로부터 선택되는 1 이상의 성분을 더 포함하는 것인 탄화수소의 옥시클로로화 공정용 촉매.
  4. 청구항 1에 있어서, 상기 촉매 물질 전체 중량에 대하여, 상기 철(Fe)의 함량은 50 중량% 이상 100 중량% 이하인 것인 탄화수소의 옥시클로로화 공정용 촉매.
  5. 청구항 1에 있어서, 상기 촉매의 전체 중량에 대하여, 상기 철(Fe)의 함량은 1 중량% 이상 7 중량% 이하인 것인 탄화수소의 옥시클로로화 공정용 촉매.
  6. 청구항 1에 있어서, 상기 담체의 비표면적은 50 m2/g 이상 250 m2/g 이하인 것인 탄화수소의 옥시클로로화 공정용 촉매.
  7. 청구항 1에 있어서, 상기 담체는 Zr, Y, 알칼리 금속 원소, 알칼리 토금속 원소, 란탄족 원소 및 희토류 원소로 이루어진 군으로부터 선택된 1 이상의 원소를 포함하는 복합 산화물을 더 포함하는 것인 탄화수소의 옥시클로로화 공정용 촉매.
  8. 청구항 1에 있어서, 상기 담체 전체 중량에 대하여 세륨 옥사이드를 50 중량% 이상 100 중량%이하로 포함하는 것인 탄화수소의 옥시클로로화 공정용 촉매.
  9. 청구항 1에 있어서, 직경이 0.1mm 이상 1.0mm 이하인 것인 탄화수소의 옥시클로로화 공정용 촉매.
  10. 세륨옥사이드(CeO2) 포함하는 담체를 준비하는 단계; 및
    철(Fe)을 포함하는 촉매 물질을 상기 담체에 담지하는 단계를 포함하는 것인 상기 청구항 1 내지 9 중 어느 한 항에 따른 탄화수소의 옥시클로로화 공정용 촉매의 제조방법.
  11. 청구항 1 내지 9 중 어느 한 항에 따른 탄화수소의 옥시클로로화 공정용 촉매 하에서 수행되고, 탄화수소의 옥시클로로화 반응을 포함하는 탄화수소의 옥시클로로화 화합물의 제조방법.
  12. 청구항 11에 있어서, 450℃ 이상 550℃ 이하의 공정 온도, 0.5atm 이상 3atm 이하의 압력 및 2000h-1 이상 20000h-1이하의 공간 속도 하에서 수행되는 것인 탄화수소의 옥시클로로화 화합물의 제조방법.
  13. 청구항 11에 있어서, 고정층 반응기, 유동층 반응기 또는 순환 유동층 반응기 내에서 수행되는 것인 탄화수소의 옥시클로로화 화합물의 제조방법.
  14. 청구항 11에 있어서, 상기 공정 온도는 450℃ 이상 530℃ 이하인 것인 탄화수소의 옥시클로로화 화합물의 제조방법.
PCT/KR2019/002235 2018-02-23 2019-02-22 탄화수소의 옥시클로로화 공정용 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 옥시클로로화 화합물의 제조방법 WO2019164345A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980007192.XA CN111556787A (zh) 2018-02-23 2019-02-22 用于烃的氧氯化工艺的催化剂、其制备方法和使用该催化剂制备烃的氧氯化化合物的方法
JP2020535173A JP7318853B2 (ja) 2018-02-23 2019-02-22 炭化水素のオキシクロロ化工程用触媒、その製造方法およびそれを用いた炭化水素のオキシクロロ化化合物の製造方法
EP19758269.5A EP3730211A4 (en) 2018-02-23 2019-02-22 CATALYST FOR THE HYDROCARBON OXYCHLORINATION PROCESS, ITS PREPARATION PROCESS, AND PROCESS FOR MANUFACTURING AN OXYCHLORINE HYDROCARBON COMPOUND USING THE SAME
US16/958,385 US20210086168A1 (en) 2018-02-23 2019-02-22 Catalyst for oxychlorination process of hydrocarbon, method for producing same, and method for manufacturing oxychlorinated compound of hydrocarbon by using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0022207 2018-02-23
KR20180022207 2018-02-23

Publications (1)

Publication Number Publication Date
WO2019164345A1 true WO2019164345A1 (ko) 2019-08-29

Family

ID=67687841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002235 WO2019164345A1 (ko) 2018-02-23 2019-02-22 탄화수소의 옥시클로로화 공정용 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 옥시클로로화 화합물의 제조방법

Country Status (6)

Country Link
US (1) US20210086168A1 (ko)
EP (1) EP3730211A4 (ko)
JP (1) JP7318853B2 (ko)
KR (1) KR102230989B1 (ko)
CN (1) CN111556787A (ko)
WO (1) WO2019164345A1 (ko)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4159968A (en) * 1976-03-24 1979-07-03 The B. F. Goodrich Company Catalyst for the preparation of ethylene and vinyl chloride from ethane
US4199533A (en) 1978-11-03 1980-04-22 University Of Southern California Conversion of methane
US4714796A (en) 1987-04-21 1987-12-22 Illinois Institute Of Technology Production of higher molecular weight hydrocarbons from methane
US4804797A (en) 1987-08-24 1989-02-14 Gas Research Institute Production of commodity chemicals from natural gas by methane chlorination
US4983783A (en) 1989-07-25 1991-01-08 Illinois Institute Of Technology Reduction in carbon oxides in oxidative pyrolysis of halogenated methanes
KR19990045511A (ko) * 1997-11-24 1999-06-25 볼커 버그달 지지된 촉매, 이의 제조방법 및 에틸렌의 옥시염소화에 있어서의 이의 용도
KR20100074017A (ko) 2008-12-23 2010-07-01 슈드-케미 캐터리스트 이탈리아 에스.알.엘. 1,2-디클로로에탄으로의 에틸렌의 고정층 옥시염소화 반응용 촉매
EP3272418A1 (en) * 2016-07-21 2018-01-24 ETH Zurich A catalyst composition for direct synthesis of vinyl chloride from ethylene
KR20180022207A (ko) 2016-08-23 2018-03-06 김재원 폐합성고분자 재료를 이용한 산업건축자재 제조장치 및 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL135031C (ko) * 1962-04-14 1900-01-01
CA1002956A (en) * 1973-03-08 1977-01-04 Girdler Chemical Dehydrogenation catalyst
GB8305406D0 (en) * 1983-02-26 1983-03-30 British Petroleum Co Plc Methyl/ethyl monochloride/bromide
US5192733A (en) * 1989-12-15 1993-03-09 Vulcan Materials Company Oxychlorination catalysts comprising copper chloride supported on rare-earth-modified alumina, process for making such catalysts, and oxychlorination processes using them
FR2695574B1 (fr) * 1992-09-15 1994-11-04 Rhone Poulenc Chimie Composition à base d'oxyde cérique, préparation et utilisation.
KR101108801B1 (ko) * 2006-10-27 2012-01-31 주식회사 엘지화학 메탄의 옥시클로리네이션 반응에 사용하는클로로금속화합물 촉매 및 이를 이용한 클로로화합물제조방법
WO2009031719A1 (en) * 2007-09-03 2009-03-12 Lg Chem, Ltd. Method for preparing chlorinated compound from saturated hydrocarbon
WO2017216653A1 (en) * 2016-06-17 2017-12-21 Sabic Global Technologies B.V. Mixed cerium-lanthanum oxide catalysts and systems for oxidative halogenation of an alkane

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4159968A (en) * 1976-03-24 1979-07-03 The B. F. Goodrich Company Catalyst for the preparation of ethylene and vinyl chloride from ethane
US4199533A (en) 1978-11-03 1980-04-22 University Of Southern California Conversion of methane
US4714796A (en) 1987-04-21 1987-12-22 Illinois Institute Of Technology Production of higher molecular weight hydrocarbons from methane
US4804797A (en) 1987-08-24 1989-02-14 Gas Research Institute Production of commodity chemicals from natural gas by methane chlorination
US4983783A (en) 1989-07-25 1991-01-08 Illinois Institute Of Technology Reduction in carbon oxides in oxidative pyrolysis of halogenated methanes
KR19990045511A (ko) * 1997-11-24 1999-06-25 볼커 버그달 지지된 촉매, 이의 제조방법 및 에틸렌의 옥시염소화에 있어서의 이의 용도
KR20100074017A (ko) 2008-12-23 2010-07-01 슈드-케미 캐터리스트 이탈리아 에스.알.엘. 1,2-디클로로에탄으로의 에틸렌의 고정층 옥시염소화 반응용 촉매
EP3272418A1 (en) * 2016-07-21 2018-01-24 ETH Zurich A catalyst composition for direct synthesis of vinyl chloride from ethylene
KR20180022207A (ko) 2016-08-23 2018-03-06 김재원 폐합성고분자 재료를 이용한 산업건축자재 제조장치 및 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SCHARFE, MATTHIAS ET AL.: "Mechanism of Ethylene Oxychlorination on Ceria", ACS CATALYSIS, vol. 8, no. 4, 15 February 2018 (2018-02-15), pages 2651 - 2663, XP055631698 *
See also references of EP3730211A4
ZHOU, QILIUA ET AL.: "The role of KCI in FeCl3-KCl/Al2O3 catalysts with enhanced catalytic performance for ethane oxychlorination", DALTON TRANSACTIONS, vol. 46, no. 31, 2017, pages 10433 - 10439, XP055632875 *

Also Published As

Publication number Publication date
KR20190101906A (ko) 2019-09-02
EP3730211A1 (en) 2020-10-28
JP2021509353A (ja) 2021-03-25
KR102230989B1 (ko) 2021-03-23
EP3730211A4 (en) 2021-01-06
JP7318853B2 (ja) 2023-08-01
US20210086168A1 (en) 2021-03-25
CN111556787A (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
KR100780562B1 (ko) 에틸렌을 비닐 클로라이드로 전환시키는 방법 및 당해 방법에 사용하기에 유용한 촉매
Yue et al. Effect of rare earths (La, Pr, Nd, Sm and Y) on the methane combustion over Pd/Ce–Zr/Al2O3 catalysts
de Morais Batista et al. Mesoporous MAl2O4 (M= Cu, Ni, Fe or Mg) spinels: characterisation and application in the catalytic dehydrogenation of ethylbenzene in the presence of CO2
TW202106611A (zh) 有機儲氫原料脫氫催化劑以及該催化劑的載體、儲氫合金、和提供高純度氫氣的方法
EP2776157B1 (en) Process for producing reforming catalyst and reforming of methane
JP2022531799A (ja) 有機水素吸蔵原料用脱水素触媒及びその担体、水素吸蔵性合金、並びに、高純度水素ガスの供給方法
WO2011110424A2 (en) Palladium-modified hydrotalcites and their use as catalyst precursors
KR20120109998A (ko) 메탄의 산화성 짝반응을 위한 방법
JP2003128415A (ja) 12CaO・7Al2O3化合物とその作成方法
US5773589A (en) Steam reforming catalysts for lower hydrocarbons
Farra et al. Synthesis and catalytic performance of CeOCl in Deacon reaction
WO2019164345A1 (ko) 탄화수소의 옥시클로로화 공정용 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 옥시클로로화 화합물의 제조방법
WO2019164342A1 (ko) 탄화수소의 옥시클로로화 공정용 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 옥시클로로화 화합물의 제조방법
WO2019177362A1 (ko) 탄화수소의 부분 산화 공정
EP0133778B1 (en) Methanol conversion process
JP2004261728A (ja) アンモニア合成触媒及びその製造方法
Kong et al. Solution-combustion Synthesized Nano-pellet α-Al 2 O 3 and Catalytic Oxidation of Cyclohexane by Its Supported Cobalt Acetate
KR102542195B1 (ko) 탄화수소의 부분 산화 공정용 촉매 및 이를 이용한 일산화탄소의 제조방법
Gubareni et al. Steam and steam-oxygen reforming of methane on NiAl 2 O 3–M x O y (M: La, Ce) based monoliths: effects of catalyst and reaction mixture composition
WO2023055108A1 (ko) 수소화/탈수소화의 가역성이 개선된 백금 담지 촉매 및 이를 이용한 액체 유기 수소 운반체 기반의 수소 저장 및 방출 방법
Teng et al. Crystal structure stability and catalytic activity of magnetoplumbite (MP) catalyst doped with Mn and Mg
WO2023141486A1 (en) Oxychlorination process
JP3968532B2 (ja) 一酸化炭素及び水素の混合ガスの製造方法
JPH09290158A (ja) メタノール製造用触媒、その製造方法及び該触媒を用いるメタノールの製造方法
KR20120077699A (ko) 프로판으로부터 프로필렌을 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19758269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535173

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019758269

Country of ref document: EP

Effective date: 20200720

NENP Non-entry into the national phase

Ref country code: DE