WO2019163853A1 - 糖カルボン酸の製造方法 - Google Patents
糖カルボン酸の製造方法 Download PDFInfo
- Publication number
- WO2019163853A1 WO2019163853A1 PCT/JP2019/006412 JP2019006412W WO2019163853A1 WO 2019163853 A1 WO2019163853 A1 WO 2019163853A1 JP 2019006412 W JP2019006412 W JP 2019006412W WO 2019163853 A1 WO2019163853 A1 WO 2019163853A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amount
- carboxylic acid
- added
- reaction
- action step
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/12—Disaccharides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0065—Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/04—Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/03—Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y111/00—Oxidoreductases acting on a peroxide as acceptor (1.11)
- C12Y111/01—Peroxidases (1.11.1)
- C12Y111/01006—Catalase (1.11.1.6)
Definitions
- the present invention relates to a method for producing a sugar carboxylic acid in which the aldehyde group on the reducing end side of a starch degradation product or transfer reaction product having a glucose residue at 2 or more having a glucose residue at the reducing end, or a salt thereof and a lactone thereof are oxidized.
- Gluconic acid which is one of the aldonic acids obtained by oxidizing the reducing end of glucose, is not only a monosaccharide but also has functionality such as bifidobacteria growth selectivity, as well as inorganic substances such as calcium. Since it has a characteristic of forming a stable salt with a cation, it is used as a mineral reinforcing agent. However, the solution stability is poor, and there is a drawback that it is precipitated when stored at a high concentration.
- sugar carboxylic acids such as maltobionic acid in which glucose is bonded to the non-reducing terminal side of gluconic acid
- maltobionic acid which is a sugar carboxylic acid
- Maltobionic acid also forms a stable salt with an inorganic cation, but has good solubility and does not precipitate even when stored under high concentration conditions. In this way, it is expected that many functional substances can be obtained by oxidizing the reducing end of a saccharide higher than a disaccharide.
- Patent Documents 1 and 2 disclose methods using microorganisms such as Acinetobacter genus, Burkholderia genus, Gluconobacter genus and Acetobacter genus as a technique for oxidizing maltose, lactose, cellobiose and the like having a polymerization degree of 2. ing.
- a method using a saccharide oxidase preparation derived from a microorganism belonging to the genus Microdochium or a saccharide oxidase preparation derived from a microorganism belonging to the genus Acremonium is known. It has been.
- the carbohydrate oxidases of Patent Documents 3 to 5 generate hydrogen peroxide as a by-product by a reaction that oxidizes carbohydrates.
- Hydrogen peroxide has the power to denature proteins, such as being used as a bactericidal or bleaching agent, and hydrogen peroxide produced as a by-product during oxidization of carbohydrates denatures and deactivates carbohydrate oxidase. For this reason, in order to oxidize starch degradation products and transfer reaction products having a polymerization degree of 2 or more industrially and efficiently using carbohydrate oxidase, it is necessary to rapidly decompose hydrogen peroxide.
- Patent Document 6 describes a technique for continuously maintaining the pH of a reaction solution in a certain range in the process of oxidizing glucose to gluconic acid.
- a technique for keeping the pH of a reaction solution constant a method is known in which a pH buffer solution (buffer) is added to maintain the pH of the entire reaction solution.
- the present invention has been made in view of the above circumstances, and uses a catalase preparation that quickly decomposes hydrogen peroxide produced as a by-product in an oxidation reaction, and has high yield and has a degree of polymerization of 2 or more.
- a method for industrially producing a sugar carboxylic acid using a product or a transfer reaction oxide is provided.
- an object of the present invention is to provide a method for industrially producing in a high yield using a large volume reaction solution of 1 L or more.
- the present inventor uses containers of various scales from beakers and flask level containers to batch and large reaction vessel level containers for oxidation reactions using starch degradation products and transfer reaction products having a polymerization degree of 2 or more as raw materials.
- the present inventor does not make the inside of the reaction solution a chemical uniform state or a temporal uniform state, but rather It has been found that it is effective to achieve a predetermined non-uniform state.
- hydrolysis by amylolytic enzymes such as ⁇ -glucosidase and glucoamylase, which are contaminating enzymes contained in catalase preparations, is a cause of destabilizing the production of sugar oxides having a polymerization degree of 2 or more. It was also discovered that a certain amount of contaminating enzyme can be used for industrial production.
- the present invention provides the following.
- a method for producing a sugar carboxylic acid in which an aldehyde group on the reducing end side of a starch degradation product or transfer reaction product having a glucose residue at the reducing end of 2 or more is oxidized A step of allowing a saccharide oxidase agent, which produces hydrogen peroxide as a by-product during oxidization of saccharides, to act on a raw material substrate containing the starch degradation product or transfer reaction product in the presence of a catalase preparation, The total amount of the reaction solution in the action step is 1 L or more, A basic compound is added in a predetermined amount during the action step, A method for producing a sugar carboxylic acid, wherein a carbonate or bicarbonate is added as the basic compound at an equivalent mass of 5% or more of the predetermined amount at the start of the action step.
- the predetermined amount of the basic compound added is At the start of the action step, the first basic compound that is carbonate or bicarbonate is added in an equivalent mass of 5% or more and less than 100% of the predetermined amount, A second basic compound that is the same as or different from the first basic compound is added at a mass equivalent to the remaining amount excluding the amount added at the start of the action step, at a time other than the start of the action step in the action step.
- the said carbonate is a manufacturing method of sugar carboxylic acid in any one of (1) to (3) whose solubility with respect to water is more than 0 and 0.01 mol / L or less.
- a method for producing a sugar carboxylic acid in which an aldehyde group on the reducing end side of a starch degradation product or transfer reaction product having a glucose residue at the reducing end of 2 or more is oxidized A step of allowing a saccharide oxidase agent, which produces hydrogen peroxide as a by-product during oxidization of saccharides, to act on a raw material substrate containing the starch degradation product or transfer reaction product in the presence of a catalase preparation, The total amount of the reaction solution in the action step is 1 L or more, A basic compound is added in a predetermined amount during the action step, A method for producing a sugar carboxylic acid, wherein a basic compound having a pKb of 1 or more and 8 or less is added at an equivalent mass of 5% or more of the predetermined amount at the start of the action step.
- the predetermined amount of the basic compound added is At the start of the action step, a first basic compound having a pKb of 1 or more and 8 or less is added at an equivalent mass of 5% or more and less than 100% of the predetermined amount, A second basic compound that is the same as or different from the first basic compound is added at a mass equivalent to the remaining amount excluding the amount added at the start of the action step, at a time other than the start of the action step in the action step.
- the content ratio (B / A) of saccharification activity (B) to catalase activity (A) in the catalase preparation is from 0.00002 to 0.005,
- the content ratio (B / A) of saccharification activity (B) to catalase activity (A) in the catalase preparation is 0.005 or less, and the saccharification activity (B) is 0.1 u / ml or more,
- the present invention it is possible to produce a sugar carboxylic acid that is useful as a material for solubilizing mineral components in foods, medicines, industrial fields, and the like with high yield.
- yields and yields suitable for industrial production can be easily obtained.
- One embodiment of the present invention is a method for producing a sugar carboxylic acid in which an aldehyde group on the reducing end side of a starch degradation product or transfer reaction product having a glucose residue at a reducing end of 2 or more is oxidized, Including a step of allowing a carbohydrate oxidase agent, which produces hydrogen peroxide as a by-product during carbohydrate oxidation, to act on a raw material substrate containing a starch degradation product or a transfer reaction product in the presence of a catalase preparation,
- the total amount of the reaction solution in the action step is 1 L or more
- a basic compound is added in a predetermined amount during the action step
- a carbonate or bicarbonate is added as the basic compound at an equivalent mass of 5% or more of the predetermined amount.
- Another embodiment of the present invention is a method for producing a sugar carboxylic acid in which an aldehyde group on the reducing end side of a starch degradation product or transfer reaction product having a degree of polymerization of 2 or more having a glucose residue at the reducing end is oxidized, Including a step of allowing a carbohydrate oxidase agent, which produces hydrogen peroxide as a by-product during carbohydrate oxidation, to act on a raw material substrate containing a starch degradation product or a transfer reaction product in the presence of a catalase preparation, The total amount of the reaction solution in the action step is 1 L or more, A basic compound is added in a predetermined amount during the action step, In the method for producing a sugar carboxylic acid, a basic compound having a pKb of 1 or more and 8 or less is added at an equivalent mass of 5% or more of the predetermined amount at the start of the action step.
- the present invention is a method for producing a sugar carboxylic acid by an action step of preparing a reaction solution containing a raw sugar in advance and oxidizing the aldehyde group on the reducing end contained in the raw sugar.
- the sugar carboxylic acid produced by the production method of the present invention is as follows.
- the sugar carboxylic acid produced by using the method of the present invention is a starch degradation product having a polymerization degree of 2 or more, preferably 4 or more, and the aldehyde group on the reducing end side of the transfer reaction product is oxidized.
- the degree of polymerization of the starch decomposition product or transfer reaction product may be, for example, 2 to 100, preferably 4 to 100 or the like.
- sugar carboxylic acids are maltodextrin oxide, powdered oxide, starch syrup, maltohexanoic acid, maltotetraonic acid, maltotriionic acid, maltobionic acid, isomaltodextrin oxide, panose oxidation. Products, isomaltorionic acid, isomaltobionic acid, nigerobionic acid, cordobiionic acid and the like.
- the sugar carboxylic acid may be a free acid, a lactone, or a salt thereof.
- the sugar carboxylic acid salt is not particularly limited, and examples thereof include calcium salt, magnesium salt, potassium salt, sodium salt, zinc salt, iron salt, copper salt and the like.
- the reaction liquid containing the raw material sugar prepared in advance has the following configuration.
- the carbohydrate used as a raw material in the present invention is a starch degradation product or transfer reaction product having a glucose residue at the reducing end and having a polymerization degree of 2 or more, and maltose, isomaltose, maltotriose, isomaltotriose, maltotetraose. , Maltohexaose, panose, malto-oligosaccharide, isomalto-oligosaccharide, starch syrup, powder cake, dextrin, branched dextrin, isomaltodextrin and the like.
- the raw sugar does not need to have a single polymerization degree, and may be a raw sugar in which carbohydrates having different polymerization degrees are mixed.
- the concentration of the raw sugar during the production of the sugar carboxylic acid is preferably 10 to 50 (wt)%, more preferably 20 to 40 (wt)% in consideration of the concentration in the purification process.
- “(wt)%” means the content (mass) of the target component, and here, the content of the carbohydrate in the liquid.
- the saccharide oxidase preparation referred to in the present invention means a substance that oxidizes a saccharide having a glucose residue at the reducing end and having a polymerization degree of 2 or more to generate hydrogen peroxide as a by-product.
- Examples include saccharide oxidase preparations derived from microorganisms belonging to the genus Microdocium, saccharide oxidase preparations derived from microorganisms belonging to the genus Acremonium, and specifically, saccharide oxidases derived from Acremonium chrysogenum and the like.
- the sugar oxidase is preferably from 1 u / g to 30 u / g, more preferably from 2 u / g to 20 u / g, based on the amount of reducing sugar (wt%) in the raw material substrate. Act at g or less.
- the carbohydrate oxidation reaction can be performed at a sufficient rate regardless of the increase of hydrogen peroxide produced as a by-product.
- the enzyme activity of the carbohydrate oxidase of the present invention is measured as follows. 2 ml of 0.1 M monopotassium phosphate-sodium hydroxide buffer (pH 7.0) containing 0.15% (w / v) phenol and 0.15% (w / v) Triton X-100, 10% maltose Mix 0.5 ml of hydrate solution, 0.5 ml of 25 U / ml peroxidase solution, and 0.1 ml of 0.4% (w / v) 4-aminoantipyrine solution, and incubate at 37 ° C. for 10 minutes. .1 ml was added to start the reaction.
- Catalase preparation examples of the catalase preparation referred to in the present invention include catalase preparations derived from microorganisms such as the genus Aspergillus and Micrococcus, and specific examples include a catalase preparation derived from Aspergillus nigr or Micrococcus lysodeikticus. It also includes selecting and using a commercially available glucose oxidase preparation having catalase activity as a side activity.
- Catalase preparations often contain contaminating enzymes having saccharification activity such as glucoamylase and ⁇ -glucosidase.
- contaminating enzymes having saccharification activity such as glucoamylase and ⁇ -glucosidase.
- sugar carboxylic acid that is, a starch degradation product or transfer reaction product having a glucose residue at the reducing end of 2 or more, or a reaction product obtained by oxidizing these raw materials.
- the sugar carboxylic acid is decomposed, making it impossible to produce a sugar carboxylic acid having a stable quality. Therefore, generally, a catalase preparation with high purity is desired.
- a catalase preparation containing almost no contaminating enzyme such as a recombinant catalase preparation produced by increasing the purity by genetic recombination or a purified catalase preparation distributed as a reagent, can be used.
- the neutralizing agent said by this invention is used in order to adjust pH in a reaction liquid, and is added during an action
- a basic compound can be used as an example of the neutralizing agent.
- Examples of basic compounds that can be used include carbonates, bicarbonates, and hydroxides.
- the carbonate has a solubility in water at 25 ° C. of more than 0 and 0.01 mol / L or less.
- a solubility in water at 25 ° C. of more than 0 and 0.01 mol / L or less.
- calcium carbonate, magnesium carbonate, dolomite, eggshell calcium and the like can be used.
- bicarbonate for example, sodium bicarbonate, potassium bicarbonate, ammonium bicarbonate, etc. can be used.
- hydroxide salt for example, sodium hydroxide, calcium hydroxide or the like can be used.
- a basic compound having a pKb of 0 or more and 8 or less using water at 25 ° C. as a solvent can be used.
- a basic compound having a pKb of more than 8 has a poor neutralizing function and is not suitable for use in industrial production.
- pKb using water at 25 ° C.
- a solvent as a solvent is 0 or more, 0 or more, 0.5 or more, 1 or more, 1 or more, 1.3 or more, 1.3 or more, .5 or more, 2 or more, 2.5 or more, 3 or more, 3.5 or more, 4 or more, or 4.5 or more, 1 or less, less than 1, 1.5 or less, 2 or less, 3 or less, 4 or less 4.5 or less, 5 or less, 5.5 or less, 6 or less, 6.5 or less, 7 or less, or 8 or less.
- Examples of the basic compound having a pKb of 0 or more and 8 or less include sodium hydroxide, calcium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, ammonium hydrogen carbonate, ammonia and the like.
- the total amount of neutralizing agent added during the action step can be calculated as the amount of neutralizing agent necessary to neutralize the reducing sugar in the saccharide as a raw material.
- the neutralizing agent is a divalent ion
- the number of moles necessary for neutralization is calculated so that the molar ratio of reducing sugar to neutralizing agent in the raw sugar is 2: 1.
- the neutralizing agent is a monovalent ion
- the number of moles necessary for neutralization is calculated such that the molar ratio is 1: 1.
- the “predetermined amount” of the neutralizing agent is an amount that makes the total number of moles of the neutralizing agent necessary for neutralizing the reducing sugar in the saccharide as a raw material 100%. Then, the mass of the neutralizing agent used in neutralization (sometimes referred to as equivalent mass in this specification) is calculated according to a conventional method from the number of moles necessary for neutralization and the molecular weight of the neutralizing agent. can do.
- the mass of the neutralizing agent X to be added is (sugar Solid content of raw material) [g] ⁇ (average molecular weight of sugar raw material) ⁇ (molecular weight of neutralizing agent X) ⁇ (ionic valence of neutralizing agent X) ⁇ (Y / 100).
- the neutralizing agent for example, when the neutralizing agent generates divalent ions, 2 is substituted into the above formula, and the neutralizing agent generates monovalent ions. In this case, it is calculated by substituting 1 into the above formula.
- the present inventor was unable to obtain a high yield of 90% or more even in the reaction system in which the total amount of the reaction solution is 1 L or more, even if the real-time feedback control type sequential addition method is performed.
- a method for adding the neutralizing agent various methods have been studied. In anticipation of the pH that decreases during the action step, 90% is obtained by adding an excessive amount of the neutralizing agent in advance at the start of the action step. The above high yield could be obtained.
- a certain amount of neutralizing agent is added.
- 5% or more of the total number of moles of neutralizing agent required throughout the reaction ie, a predetermined amount.
- An amount may be added to the reaction solution at the beginning of the action step.
- the mass of the neutralizing agent to be added can be calculated by a conventional method from the required number of moles and the molecular weight of the neutralizing agent to be used.
- the neutralizing agent since the neutralizing agent may be added in an amount of 5% or more of the predetermined amount at the start of the action step, the addition amount at the start of the action step may be 100% of the predetermined amount (that is, It may be added only at the start of the action step), and the addition amount at the start of the action step may be 5% or more and less than 100% of the predetermined amount.
- the neutralizing agent added at the start of the action step (the predetermined amount of 5) during the action step other than at the start of the action step. %) Of the remaining amount, that is, 95% or less of the predetermined amount.
- the neutralizing agent added other than at the start of the action step is selected from the basic substances described above, and may be the same as or different from the neutralizer at the start of the action step.
- the mass of the neutralizing agent added as the remaining amount is the number of moles necessary for the remaining neutralization and the neutralizing agent added as the remaining amount. Can be calculated by a conventional method.
- count of adding a residual amount Although it may be 1 time or multiple times of addition (split addition), it is preferable that there are few.
- the production process is relatively flexible, and the neutralizing agent can be selected from the basic compounds described above.
- the addition method may be, for example, a method of adding a certain amount at regular intervals, or a method of appropriately adding a necessary amount that makes the pH constant.
- Typical examples of the amount of neutralizing agent added at the start of the action step include 5% or more, 6% or more, 7% or more, 8% or more, 9% or more, 10% or more, 15% or more, 20% of the predetermined amount. % Or more, 30% or more, 40% or more, or 50% or more, or an equivalent mass of 100% or less, less than 100%, 90% or less, 80% or less, or 70% or less.
- a specific basic compound can be used as the neutralizing agent added at the start of the action step (sometimes referred to as a first basic compound).
- Examples of basic compounds that can be used include carbonates and bicarbonates.
- the carbonate has a solubility in water at 25 ° C. of more than 0 and 0.01 mol / L or less.
- a solubility in water at 25 ° C. of more than 0 and 0.01 mol / L or less.
- calcium carbonate, magnesium carbonate, dolomite, eggshell calcium and the like can be used.
- bicarbonate for example, sodium bicarbonate, potassium bicarbonate, ammonium bicarbonate, etc. can be used.
- a compound having a pKb of more than 1.3 and not more than 8 using water at 25 ° C. as a solvent can be used.
- a compound having a pKb of 1.3 or less is used, the saccharide oxidase is deactivated immediately after the addition, and the saccharide oxidation function is not recovered.
- a basic compound having a pKb of more than 8 has a poor neutralizing function and is not suitable for use in industrial production.
- pKb using water at 25 ° C. as a solvent is more than 1.3, 1.5 or more, 2 or more, 2.5 or more, 3 or more, 3.5 or more, 4 or more. Or 4.5 or more, 1 or less, less than 1, 1.5 or less, 2 or less, 3 or less, 4 or less, 4.5 or less, 5 or less, 5.5 or less, 6 or less, 6.5 or less, 7 or less, or 8 or less.
- Examples of the basic compound having a pKb of more than 1.3 and not more than 8 include sodium bicarbonate, potassium bicarbonate, ammonium bicarbonate, ammonia and the like.
- a specific basic compound can be used as the neutralizing agent added at the start of the action step.
- the neutralizing agent (Neutralizing agent added during the action process other than at the start of the action process)
- the neutralizing agent (sometimes referred to as the second basic substance) added during the action process period other than at the start of the action process is not limited to the specific basic substance (first basic substance) described above.
- the neutralizing agent (second basic substance) added during the action process other than at the start of the action process is the same basic compound as the neutralizing agent (first basic substance) added at the start of the action process. Or different basic compounds.
- the neutralizing agent added at the start of the action step (the predetermined amount of 5) during the action step other than at the start of the action step. %), That is, an amount of 95% or less of the predetermined amount.
- the mass of the neutralizing agent added as the remaining amount (in this specification, sometimes referred to as the residual amount equivalent mass) is the number of moles necessary for the remaining neutralization and the neutralizing agent added as the remaining amount. Can be calculated by a conventional method.
- count of adding a residual amount Although it may be 1 time or multiple times of addition (split addition), it is preferable that there are few.
- the first speculation is that the reaction solution contains a large amount of sugar and the viscosity of the reaction solution is high, so that it takes time until the neutralizing agent diffuses.
- Neutralizing agent produces a high concentration region of neutralizing agent, centering on the point of addition of the neutralizing agent (drop point) in the reaction solution, but outside the region until the neutralizing agent diffuses and becomes uniform. Since the pH is in a lowered state and the activity of the carbohydrate oxidase is temporarily reduced, it is speculated that the state will continue until the stirring proceeds and the concentration gradient is eliminated.
- the neutralizer is used to some extent at the start of the action process rather than providing multiple drop points such as every hour during the action process period.
- the amount of subsequent drop points is reduced by adding an excess amount (5% or more) of the enzyme.
- the total amount of enzyme activity is relatively higher when the drop point is provided once at the start of the action process. As a result, a high yield is obtained.
- the reaction system is an advanced reaction system through a plurality of intermediates.
- adding an excessive amount of the neutralizing agent at the start of the action step means that the pH at the start of the action step is increased.
- the reaction solution shows strong alkalinity, the carbohydrate oxidase is immediately deactivated, and the carbohydrate oxidation function is not recovered.
- the specific neutralizing agent used at the start of the action step of the present invention is used, even if the neutralizing agent is added at the start of the action step, the saccharide oxidase can be used without being deactivated.
- the concentration gradient generated in the reaction system having a total reaction solution amount of 1 L or more tends to become stronger as the total reaction solution amount increases. That is, the yield tends to decrease as the amount of the reaction solution increases and the size of the reaction vessel increases. Therefore, the production method of the present invention exhibits a yield improving effect as the amount of the reaction solution increases. For example, even a reaction system in which the total amount of the reaction solution is 50 kg or more can be applied. Further, it can be applied to a reaction system of 100 kg or more, a reaction system of 500 kg or more, a reaction system of 1 ton or more, a reaction system of 10 ton or more, a reaction system of 50 ton or more, and a reaction of 100 ton or more. Even a reaction system of 500 tons or more can be suitably used.
- reaction liquid preparation stage and the action process stage start are continuous, it is a fact that adding a neutralizing agent at the start of the action process stage and adding a neutralizing agent to the reaction liquid preparation stage are facts.
- the present invention also includes the addition of a neutralizing agent to the reaction solution preparation stage.
- the addition of the neutralizer requires a certain amount of time, so the addition of the neutralizer It is also included in the present invention that the step is continuously performed from the reaction solution preparation stage to the beginning of the action process stage.
- the remaining amount (amount of 95% or less of the predetermined amount) is added to the reaction solution during the action step
- the time interval from the addition of the first neutralizing agent at 5% or more of the predetermined amount to the addition of the next neutralizing agent is required as a certain predetermined time.
- the predetermined time is typically 0.25 hours or more, 0.5 hours or more, or 1 hour or more. This predetermined time is considered as a time required as a time during which the entire stirring of the reaction solution immediately after the reaction solution preparation stage proceeds to some extent.
- the required time is typically 8 hours or less, 7 hours or less, 6 hours or less, 5 hours or less, 4 hours or less, 3 hours or less, 2 hours or less, or 1 hour or less.
- This predetermined time depends on the amount of neutralizing agent added at the start of the action step, and is relatively long when a sufficient amount of neutralizing agent is added to the predetermined amount at the start of the action step. Time may be sufficient, and when a relatively small amount of neutralizing agent is added to the predetermined amount at the start of the action step, the time is relatively short. This is because the neutralizing agent added at the start of the action process is consumed for neutralization during the action process period.
- a method of additionally adding a neutralizing agent that is insufficient due to consumption of the neutralizing agent there is a method of managing by the pH of the reaction solution in addition to the method of managing by the above time. For example, the pH of the reaction solution during the action process is monitored, and a stable reaction can be achieved by adding the next neutralizing agent at the timing when the pH transitions from a state above pH 6.0 to a state below pH 6.0. realizable.
- the lower limit of the pH of the reaction solution in the action step is, for example, 5.0 or more, 6.0 or more, 7.0 or more, 8.0 or more, 9.5 or more, and the upper limit is, for example, 11.0 or less, 10.0. It is as follows.
- reaction temperature in the action process The reaction temperature in the reaction step of the carbohydrate oxidase and catalase is preferably, for example, about 20 to 60 ° C., and more preferably in the range of 25 to 40 ° C.
- oxygen is required for the reaction system, so it is preferable to ventilate air or oxygen. Further, since oxygen is consumed as a result of the reaction, it is necessary to supply the reaction solution in a region containing more oxygen to the region in which the oxygen in the reaction solution is deficient. Therefore, it is most desirable to stir at a predetermined amount while a predetermined amount of air or oxygen is aerated.
- the amount of oxygen in the reaction solution can be measured by a dissolved oxygen sensor or the like as a so-called dissolved oxygen amount. Therefore, it is possible to adjust the aeration amount and adjust the stirring speed so that the dissolved oxygen amount becomes a predetermined amount or more during the action period. As shown in the Example mentioned later, the yield of 90% or more can be obtained by making the amount of dissolved oxygen into 1 ppm or more over the whole period of an effect
- the method is achieved, for example, by stirring while aeration of oxygen from an oxygen cylinder. Alternatively, it can also be achieved by bubbling the reaction liquid while ventilating fine air by passing the air diffuser from the air compressor.
- the amount of dissolved oxygen is the total amount of dissolved oxygen including not only oxygen dissolved in the reaction solution by aeration but also oxygen generated by the catalase preparation during the reaction.
- the reaction rate during the action period is not necessarily constant, and in many cases, the reaction rate tends to be high in the first half of the action step and slow in the second half. And since it is the first half where the reaction rate is high that requires more oxygen, in the first half of the action period, stirring is performed while ventilating oxygen from the oxygen cylinder so that the dissolved oxygen amount becomes 1 ppm or more. In the second half, it is possible to reduce the amount of ventilation.
- the oxidation rate of the reaction is monitored, and stirring is performed while ventilating air so that the amount of dissolved oxygen becomes 1 ppm or more during the action period where the oxidation rate is 0 to 50%. It is also possible to reduce the air flow rate during an operation period of 51% or more. In this way, by setting the dissolved oxygen amount to 1 ppm or more only during the operation period in which the oxidation rate is 0 to 50%, the amount of oxygen used can be reduced, the cost can be reduced, and the burden on the process control can be reduced.
- the upper limit of the amount of dissolved oxygen in the reaction solution is, for example, 30 ppm or less, preferably 15 ppm or less, and more preferably 7.5 ppm or less.
- an oxidation rate (%) can be measured, for example by using the colorimetric determination method by the Nelson-Somogi method. .
- a catalase preparation containing a range of impurities a catalase preparation containing a contaminating enzyme in a predetermined range can also be used.
- a catalase preparation in which the content ratio (B / A) of saccharification activity to catalase activity (A) in the catalase preparation is 0.005 or less is used.
- B / A is 0.0045 or less, 0.003 or less, 0.002 or less, 0.0015 or less, 0.001 or less, 0.0005 or less, or 0.0004 or less.
- B / A is preferably 0.00002 or more, and specifically may be 0.0001 or more, 0.0002 or more, 0.0003 or more, or 0.0004 or more. Even if the catalase preparation has saccharification activity at such a ratio, the main reaction of saccharide oxidation proceeds more rapidly than the saccharification reaction, so that the yield is unlikely to decrease.
- the amount of the catalase preparation is larger than that of the raw material carbohydrate.
- the contaminating enzyme in the catalase preparation hydrolyzes the raw material substrate, and there may be a case where a sugar carboxylic acid such as maltobionic acid is assumed to be not obtained. Therefore, the saccharification activity in the catalase preparation is 0.9 u / g or less (preferably 0.8 u / g or less, 0.7 u / g or less) with respect to the amount of reducing sugar (wt% per solid content) in the raw material substrate. , 0.65 u / g or less), it is necessary to make the catalase preparation act.
- the catalase activity (A) in the catalase preparation is preferably 5000 u / ml or more, specifically 10,000 u / ml or more, 15000 u / ml or more, 20000 u / ml or more, 22500 u / ml or more.
- the catalase activity (A) in the catalase preparation is preferably 5000 u / ml or more, specifically 10,000 u / ml or more, 15000 u / ml or more, 20000 u / ml or more, 22500 u / ml or more.
- the catalase activity (A) in the catalase preparation is preferably 500000 u / ml or less, and specifically may be 2500,000 u / ml, 150,000 u / ml, 100000 u / ml or less, 75000 u / ml or less. Since the catalase preparation used in the present invention has a low saccharification activity, even if it does not have an excessive catalase activity, the influence on the yield can be kept small.
- the saccharification activity (B) in the catalase preparation is preferably 250 u / ml or less, specifically, 100 u / ml or less, 50 u / ml or less, 30 u / ml or less, or 25 u / ml or less.
- the saccharification activity (B) in the catalase preparation may be within an acceptable range, and is preferably 0.1 u / ml or more, specifically 0.5 u / ml or more, 1.0 u / ml. As described above, it may be 1.5 u / ml or more and 2.0 u / ml or more. Even if this level of saccharification activity is present, the main reaction of carbohydrate oxidation proceeds more rapidly than the saccharification reaction, so that it is difficult to lead to a decrease in yield.
- the saccharification activity in the catalase preparation may be within an acceptable range. Specifically, it is 0.00008 u / g or more with respect to the amount of reducing sugar (wt% per solid content) in the raw material substrate, preferably 0.8. It may be 0005 u / g or more, 0.001 u / g or more, 0.0015 u / g or more. Even if this level of saccharification activity is present, the main reaction of carbohydrate oxidation proceeds more rapidly than the saccharification reaction, so that it is difficult to lead to a decrease in yield.
- the catalase preparation is preferably present at 40 u / g or more and 1000 u / g or less with respect to the amount of reducing sugar (per solid content) in the raw material substrate, more preferably , 60 u / g or more and 500 u / g or less.
- the saccharification activity in the catalase preparation is kept low, even if a sufficient amount of the catalase preparation is used to suppress the degradation of the carbohydrate oxidase by hydrogen peroxide, the yield is unlikely to decrease.
- the catalase activity in the catalase preparation is measured as follows.
- follow the method of titration of residual hydrogen peroxide after enzymatic reaction with sodium thiosulfate (supervised by Michio Kosaki “Enzyme Utilization Handbook”, Jinjinshokan 1985 edition, p404-410). That is, 5 ml of a substrate solution obtained by diluting commercially available 30% by weight hydrogen peroxide 800-fold with 50 mM phosphate buffer (pH 7.0) is placed in a container and placed in a constant temperature water bath at 30 ° C. for 15 minutes to obtain a constant temperature.
- 1U has shown the activity which decomposes
- T 0 blank titration value (ml)
- T S Titration value of sample (ml) 24.18 / T 0 : Correction value for change in activity measurement due to initial substrate concentration 2.5: 1 ml of 0.005N sodium thiosulfate solution corresponds to 2.5 ⁇ mol of hydrogen peroxide
- the saccharification activity defined in the present invention is a force that hydrolyzes the starch degradation product by glucoamylase activity and ⁇ -glucosidase activity to release glucose, and the saccharification activity of the present invention is the substrate 4-nitrophenyl ⁇ -maltoside. From (G2- ⁇ -PNP), the activity of releasing 1 ⁇ mol of PNP per minute can be defined as 1 U.
- the saccharification activity in the catalase preparation is obtained by reacting the catalase preparation with 4-nitrophenyl ⁇ -maltoside to produce 4-nitrophenyl ⁇ -glucoside, which is decomposed by ⁇ -glucosidase to produce 4-nitrophenol, It is measured by quantifying 4-nitrophenol.
- the saccharification activity in the catalase preparation is measured using a saccharification power measurement kit or a saccharification power fractionation determination kit manufactured by Kikkoman Corporation.
- the sugar carboxylic acid prepared using the method of the present invention can be used for food and drink, cosmetics, pharmaceuticals, chemical products and the like.
- Example 1 Comparison of carbonate neutralizer addition method (examination of addition amount at start of action process and addition method during action process) (Examples 1 to 3 and Comparative Example 1) ⁇ Example 1> In addition to maltose 70.3 wt%, malto-oligosaccharide of glucose 1.2 wt%, maltotriose 15.0 wt% and maltotetraose (degree of polymerization 4) or more for jar fermenter (capacity 4L, manufactured by Able Co., Ltd.) After adding 1200 g of distilled water to 800 g of high maltose starch syrup containing 13.5 wt% (Bx.75%, manufactured by Sanei Saccharification Co., Ltd.) and dissolving it to 30 wt%, calcium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) ) 78 g (amount corresponding to 100% of the predetermined amount), Acrenium chrysogenum-derived saccharide oxidas
- the added amount 78 g of calcium carbonate at this time is a mass corresponding to a predetermined amount of 100%.
- the saccharification activity / catalase activity ratio was 0.00004 (that is, 0.005 or less), and the saccharification activity was 0.013 u / g (that is, 0.9 u / g or less) per reducing sugar of the raw material substrate.
- Example 2 As Example 2, the raw material sugar, the amount of enzyme, the reaction temperature and the air aeration conditions were oxidized under the same conditions as in Example 1, and 78 g of calcium carbonate (amount corresponding to 100% of the predetermined amount) was divided into three parts. The oxidation reaction was carried out while adding (50% of the predetermined amount at the start of the action step, 40% of the predetermined amount after 8 hours, 10% of the predetermined amount after 22 hours).
- Example 3 As Example 3, the raw material sugar, the amount of enzyme, the reaction temperature and the air aeration conditions were oxidized under the same conditions as in Example 1, and the mass of calcium carbonate corresponding to 10% of the predetermined amount (7.8 g) Is added at the start of the action step, and 1 hour after the start of the reaction, calcium carbonate (70.2 g) in a mass corresponding to the remaining amount of 90% is sequentially added as a 15 wt% solution so that the pH becomes 6.0.
- the oxidation reaction was carried out.
- sequential addition measures pH in real time, and adds a neutralizing agent using a micropump.
- Comparative Example 1 As Comparative Example 1, the raw sugar, the amount of enzyme, the reaction temperature, and the air aeration conditions were 15 wt% so that the oxidation reaction was performed under the same conditions as in Example 1 and the pH decreased by the oxidation reaction was 6.0. The oxidation reaction was carried out while adding calcium carbonate sequentially from the start of the action step to the duration of the action step. In addition, it was calculated that the addition amount of calcium carbonate at the start of the action process in Comparative Example 1 was a mass corresponding to 1% of the predetermined amount from the recording data of the micropump.
- Example 1 As described above, with respect to Examples 1 to 3 in which an amount of calcium carbonate corresponding to 5% or more of the predetermined amount was added at the start of the action step, 100% oxidation was performed in Example 1 for 28 hours and in Example 2 for 31 hours. In Example 3, 95% was oxidized in 31 hours of reaction, whereas an amount of calcium carbonate corresponding to 1% of the predetermined amount was added at the start of the action process of calcium carbonate in Comparative Example 1, and thereafter sequentially. When the pH was continuously adjusted by addition, the oxidation rate remained below 90% in 31 hours of reaction, and the reaction efficiency was greatly different.
- Test Example 4 Fourth Example (Example 4) using a carbonate neutralizing agent
- maltose 70.3 wt% malto-oligosaccharide of glucose 1.2 wt%, maltotriose 15.0 wt% and maltotetraose (degree of polymerization 4) or more for jar fermenter (capacity 4L, manufactured by Able Co., Ltd.)
- magnesium carbonate manufactured by Wako Pure Chemical Industries, Ltd.
- Acrenium chrysogenum-derived saccharide oxidase preparation (carbohydrate oxidizing activity 300 u / ml) 4.0 ml (1200 u
- Example 4 in which magnesium carbonate was added as a neutralizing agent in an amount corresponding to 100% of the predetermined amount at the start of the action step, the oxidation reaction proceeded while the pH during the reaction was around 7.5, and 28 hours later was 100% oxidized.
- Example 4 it was confirmed that the amount of dissolved oxygen during the action step was always 1 ppm or more.
- Test Example 3 Example using a bicarbonate neutralizer and a comparative example (Example 5 and Comparative Example 2) In addition to maltose 70.3 wt%, malto-oligosaccharide of glucose 1.2 wt%, maltotriose 15.0 wt% and maltotetraose (degree of polymerization 4) or more for jar fermenter (capacity 4L, manufactured by Able Co., Ltd.) After adding 1466 g of distilled water to 534 g of Hymaltose starch syrup containing 13.5 wt% (Bx.75%, manufactured by Sanei Saccharification Co., Ltd.) and dissolving it to 20 wt%, sodium bicarbonate (Wako Pure Chemical Industries, Ltd.) 50 g (amount equivalent to 100% of the predetermined amount), 2.67 ml (800 u, 2 u / g substrate) of sugar oxidase preparation (sugar oxidase activity 300 u / ml)
- Comparative Example 2 the raw sugar, the amount of enzyme, the reaction temperature, and the air aeration conditions were subjected to an oxidation reaction under the same conditions as in Example 5 so that the pH decreased by the oxidation reaction was 9.5.
- the oxidation reaction was performed while adding 25 wt% sodium hydroxide sequentially from the start of the action step to the duration of the action step.
- Example 5 in which sodium bicarbonate was added as a neutralizing agent and an amount corresponding to 100% of the predetermined amount at the start of the action step, the oxidation reaction proceeded while the pH during the reaction was around 9.8, and the reaction time was 28 hours. Later it was 100% oxidized.
- Comparative Example 2 in which sodium hydroxide, which is a basic compound having a pKb of less than 1, was successively added, the reaction time was 28 hours at the beginning of the reaction and during the reaction period, although the pH was low. The oxidation rate remained below 60%, and the oxidation rate, that is, the yield in industrial production, was a remarkably low value. That is, even if it is a basic compound, it is understood that a basic compound having a pKb of less than 1 is not suitable for industrial production as a basic compound added at the start of the action step.
- Example 5 it was confirmed that the amount of dissolved oxygen during the action step was always 1 ppm or more.
- Test Example 4 Combined use of carbonate neutralizer and basic compound neutralizer (I) (Example 6)
- maltose 70.3 wt% malto-oligosaccharide of glucose 1.2 wt%, maltotriose 15.0 wt% and maltotetraose (degree of polymerization 4) or more for jar fermenter (capacity 4L, manufactured by Able Co., Ltd.)
- Hymaltose starch syrup containing 13.5 wt% Bx.75%, manufactured by Sanei Saccharification Co., Ltd.
- an amount corresponding to 50% of the predetermined amount 39 g of calcium carbonate manufactured by Wako Pure Chemical Industries, Ltd.
- sugar oxidase preparation derived from Acremonium chrysogenum (carbohydrate oxidizing activity 300 u / ml)
- 4.0 ml (1200 u
- the oxidation reaction was carried out while successively adding a 25% calcium hydroxide solution in an amount corresponding to a predetermined amount of 50% so that the pH became 7.0 after 8 hours of the reaction.
- Example 6 it was confirmed that the amount of dissolved oxygen during the action step was always 1 ppm or more.
- Test Example 5 Combined use of bicarbonate neutralizer and basic compound neutralizer (II) (Example 7) In addition to maltose 70.3 wt%, malto-oligosaccharide of glucose 1.2 wt%, maltotriose 15.0 wt% and maltotetraose (degree of polymerization 4) or more for jar fermenter (capacity 4L, manufactured by Able Co., Ltd.) After adding 1200 g of distilled water to 800 g of high maltose starch syrup containing 13.5 wt% (Bx.75%, manufactured by Sanei Saccharification Co., Ltd.) and dissolving it to 30 wt%, an amount of carbonic acid equivalent to 50% of the predetermined amount 37 g of sodium hydrogen (manufactured by Wako Pure Chemical Industries, Ltd.), 4.0 ml (1200 u, 2 u / g substrate) of sugar oxidase preparation (sugar oxidizing activity 300 u / m
- Example 7 it was confirmed that the amount of dissolved oxygen during the action step was always 1 ppm or more.
- Test Example 5 Comparison of dissolved oxygen amount and yield due to differences in stirring and aeration methods (Example 8, Example 9, Comparative Example 3)
- maltose 70.3 wt% malto-oligosaccharide of glucose 1.2 wt%, maltotriose 15.0 wt% and maltotetraose (degree of polymerization 4) or more for jar fermenter (capacity 4L, manufactured by Able Co., Ltd.)
- Acrenium chrysogenum-derived carbohydrate oxidase preparation (carbohydrate oxidation activity 300 u / ml) 4.0 ml (1200
- Test Example 6 Using a large-capacity reaction tank, an application example in a total reaction solution amount of 1 ton or more (Example 10) In addition to maltose 70.3 wt%, a jacketed SUS type reaction tank (capacity 10000 L, manufactured by Yashima Koki Co., Ltd.) equipped with a horizontal type 2.2 kW propeller blade type agitator (manufactured by Takeuchi Seisakusho Co., Ltd.) Hymaltose starch syrup containing 1.2 wt% glucose, 15.0 wt% maltotriose and 13.5 wt% malto-oligosaccharide (polymerization degree 4) or higher (Bx.
- a jacketed SUS type reaction tank capacity 10000 L, manufactured by Yashima Koki Co., Ltd.
- Hymaltose starch syrup containing 1.2 wt% glucose, 15.0 wt% maltotriose and 13.5 wt% malto-oligo
- Table 7 shows the oxidation rate and dissolved oxygen during the lapse of 42 hours from the start of the oxidation reaction.
- neutralization reaction is effectively performed by adding calcium carbonate as a neutralizing agent in advance and venting so that the dissolved oxygen becomes 1 ppm or more. After 42 hours, the oxidation progressed to 98.6%.
- the effect of the present invention could be confirmed even in an industrial production level reaction system.
- Example 7 Application Examples (Examples 11 and 12 and Comparative Example 4) using a large-capacity reaction tank and a total reaction solution amount of 1 ton or more ⁇ Example 11>
- a jacketed SUS type reaction tank (capacity 10000 L, manufactured by Yashima Koki Co., Ltd.) equipped with a horizontal type 2.2 kW propeller blade type agitator (manufactured by Takeuchi Seisakusho Co., Ltd.)
- Hymaltose starch syrup containing 1.2 wt% glucose, 15.0 wt% maltotriose and 13.5 wt% malto-oligosaccharide (polymerization degree 4) or higher (Bx.
- Table 8 shows the oxidation rate and dissolved oxygen during the lapse of 42 hours from the start of the oxidation reaction.
- neutralization reaction is effectively performed by adding calcium carbonate as a neutralizing agent in advance and venting so that the dissolved oxygen becomes 1 ppm or more. After 42 hours, the oxidation progressed to 98.6%.
- the effect of the present invention could be confirmed even in an industrial production level reaction system.
- Example 12 As Example 12, the raw material sugar, the amount of enzyme, the reaction temperature and the air aeration conditions were subjected to an oxidation reaction under the same conditions as in Example 12, and a mass of calcium carbonate (210 kg) corresponding to 70% of the predetermined amount was obtained. After adding at the start of the action step, 20 hours after the start of the reaction, 15% wt. Of calcium hydroxide (39.7 kg) having a mass corresponding to the remaining amount of 30% is set so that the pH becomes 5.5 to 7.5. The oxidation reaction was performed while sequentially adding as a solution.
- Table 9 shows the oxidation rate and dissolved oxygen during the lapse of 50 hours from the start of the oxidation reaction.
- Table 9 shows the oxidation rate and dissolved oxygen during the lapse of 50 hours from the start of the oxidation reaction.
- the equivalent amount of calcium carbonate is added to 70% of the predetermined amount at the start of the reaction, and the remaining 30% is neutralized with calcium hydroxide.
- the neutralization reaction was effectively performed by aeration so that the dissolved oxygen was 1 ppm or more, and the oxidation proceeded to 98.4% after 50 hours of the reaction.
- the effect of the present invention could be confirmed even in an industrial production level reaction system.
- Comparative example 4 As Comparative Example 4, the raw material sugar, the amount of enzyme, the reaction temperature and the air aeration conditions were subjected to an oxidation reaction under the same conditions as in Example 11, and calcium carbonate (6 kg) having a mass corresponding to 2% of the predetermined amount was obtained. After adding at the start of the action step, 1 hour after the start of the reaction, a 15 wt% solution of calcium hydroxide (129.5 kg) corresponding to the remaining amount of 98% so that the pH is 5.5 to 7.5. As a result, the oxidation reaction was performed.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
また、一般的に反応液のpHを一定に保つ技術として、pH緩衝液(バッファ)を添加して、反応液全体のpHを保持する手法が知られている。
還元末端にグルコース残基を有する重合度2以上の澱粉分解物又は転移反応物の還元末端側のアルデヒド基が酸化された糖カルボン酸の製造方法であって、
糖質酸化時に過酸化水素を副生する糖質酸化酵素剤を、カタラーゼ製剤の存在下、前記澱粉分解物或いは転移反応物を含む原料基質に作用させる工程を含み、
前記作用工程の反応液総量が、1L以上であり、
塩基性化合物を、前記作用工程中に所定量添加するとともに、
前記作用工程開始時に、前記塩基性化合物として、炭酸塩、または炭酸水素塩を、前記所定量の5%以上の相当質量で添加する糖カルボン酸の製造方法。
前記炭酸塩、または前記炭酸水素塩を、前記作用工程開始時にのみ、所定量添加する(1)記載の糖カルボン酸の製造方法。
前記塩基性化合物の所定量添加は、
前記作用工程開始時に、炭酸塩、または炭酸水素塩である第一の塩基性化合物を、前記所定量の5%以上100%未満の相当質量で添加し、
前記作用工程における前記作用工程開始時以外の時に、前記第一の塩基性化合物と同一または異なる第二の塩基性化合物を、前記作用工程開始時添加分を除いた残量相当質量で添加するものである(1)記載の糖カルボン酸の製造方法。
前記炭酸塩は、水に対する溶解度が、0超0.01mol/L以下である(1)から(3)のいずれか記載の糖カルボン酸の製造方法。
還元末端にグルコース残基を有する重合度2以上の澱粉分解物又は転移反応物の還元末端側のアルデヒド基が酸化された糖カルボン酸の製造方法であって、
糖質酸化時に過酸化水素を副生する糖質酸化酵素剤を、カタラーゼ製剤の存在下、前記澱粉分解物或いは転移反応物を含む原料基質に作用させる工程を含み、
前記作用工程の反応液総量が、1L以上であり、
塩基性化合物を、前記作用工程中に所定量添加するとともに、
前記作用工程開始時に、前記塩基性化合物として、pKbが1以上8以下である塩基性化合物を、前記所定量の5%以上の相当質量で添加する糖カルボン酸の製造方法。
前記pKbが1以上8以下である塩基性化合物を、前記作用工程開始時にのみ、所定量添加する(5)記載の糖カルボン酸の製造方法。
前記塩基性化合物の所定量添加は、
前記作用工程開始時に、pKbが1以上8以下である第一の塩基性化合物を、前記所定量の5%以上100%未満の相当質量で添加し、
前記作用工程における前記作用工程開始時以外の時に、前記第一の塩基性化合物と同一または異なる第二の塩基性化合物を、前記作用工程開始時添加分を除いた残量相当質量で添加するものである(5)記載の糖カルボン酸の製造方法。
前記炭酸塩は、炭酸カルシウム、炭酸マグネシウム、ドロマイト、または卵殻カルシウムである(1)から(4)のいずれか記載の糖カルボン酸の製造方法。
前記塩基性化合物は、炭酸水素ナトリウム、炭酸水素カリウム、または炭酸水素アンモニウムである(5)から(7)記載の糖カルボン酸の製造方法。
溶存酸素量が、1ppm以上となるよう、前記作用工程期間中に酸素を供給する(1)から(9)いずれか記載の糖カルボン酸の製造方法。
前記作用工程期間のうち、酸化率が0%から50%である期間、溶存酸素量が、1ppm以上となるよう、前記作用工程中に酸素を供給する(1)から(9)いずれか記載の糖カルボン酸の製造方法。
前記カタラーゼ製剤中のカタラーゼ活性(A)に対する糖化活性(B)の含有比率(B/A)が0.00002以上0.005以下であり、
前記糖化活性が前記原料基質中の還元糖量に対して0.9u/g以下である量で存在する(1)から(11)のいずれか記載の糖カルボン酸の製造方法。
前記カタラーゼ製剤中のカタラーゼ活性(A)に対する糖化活性(B)の含有比率(B/A)が0.005以下であり、かつ糖化活性(B)が0.1u/ml以上であり、
前記糖化活性が前記原料基質中の還元糖量に対して0.9u/g以下である量で存在する(1)から(11)のいずれか記載の糖カルボン酸の製造方法。
前記作用工程の反応液総量が、50kg以上である(1)~(13)のいずれか記載の糖カルボン酸の製造方法。
前記作用工程の反応液総量が、1ton以上である(14)記載の糖カルボン酸の製造方法。
前記糖カルボン酸は、マルトビオン酸である(1)から(15)いずれか記載の糖カルボン酸の製造方法。
糖質酸化時に過酸化水素を副生する糖質酸化酵素剤を、カタラーゼ製剤の存在下、澱粉分解物或いは転移反応物を含む原料基質に作用させる工程を含み、
前記作用工程の反応液総量が、1L以上であり、
塩基性化合物を、前記作用工程中に所定量添加するとともに、
前記作用工程開始時に、前記塩基性化合物として、炭酸塩、または炭酸水素塩を、前記所定量の5%以上の相当質量で添加する糖カルボン酸の製造方法である。
糖質酸化時に過酸化水素を副生する糖質酸化酵素剤を、カタラーゼ製剤の存在下、澱粉分解物或いは転移反応物を含む原料基質に作用させる工程を含み、
前記作用工程の反応液総量が、1L以上であり、
塩基性化合物を、前記作用工程中に所定量添加するとともに、
前記作用工程開始時に、前記塩基性化合物として、pKbが1以上8以下である塩基性化合物を、前記所定量の5%以上の相当質量で添加する糖カルボン酸の製造方法である。
本発明方法を使用して製造される糖カルボン酸は、重合度2以上、好ましくは重合度4以上の澱粉分解物又は転移反応物の還元末端側のアルデヒド基が酸化されたものであれば、特に限定されない。澱粉分解物又は転移反応物の重合度は、例えば、2~100、好ましくは4~100等であってもよい。より具体的には、糖カルボン酸は、マルトデキストリン酸化物、粉飴酸化物、水飴酸化物、マルトヘキサオン酸、マルトテトラオン酸、マルトトリオン酸、マルトビオン酸、イソマルトデキストリン酸化物、パノース酸化物、イソマルトトリオン酸、イソマルトビオン酸、ニゲロビオン酸、コージビオン酸などが挙げられる。これらのうち、糖カルボン酸は、遊離の酸であってもよく、ラクトンであってもよく、その塩類であってもよい。
本発明において原料に用いる糖質は、還元末端にグルコース残基を有する重合度2以上の澱粉分解物或いは転移反応物であり、マルトース、イソマルトース、マルトトリオース、イソマルトトリオース、マルトテトラオース、マルトヘキサオース、パノース、マルトオリゴ糖、イソマルトオリゴ糖、水飴、粉飴、デキストリン、分岐デキストリン、イソマルトデキストリン等が挙げられる。原料糖質は、単一の重合度である必要はなく、異なる重合度の糖質が混合された原料糖質としてもよい。
本発明で言う糖質酸化酵素製剤とは、還元末端にグルコース残基を有する重合度2以上の糖質を酸化し、副生成分として過酸化水素を発生するものをいう。Microdochium属に属する微生物由来の糖質酸化酵素製剤や、Acremonium属に属する微生物由来の糖質酸化酵素製剤などが挙げられ、具体的には、Acremonium chrysogenumに由来する糖質酸化酵素などが挙げられる。
0.15%(w/v)フェノール及び0.15%(w/v)トリトンX-100を含む0.1Mリン酸一カリウム-水酸化ナトリウム緩衝液(pH7.0)2ml、10%マルトース一水和物溶液0.5ml、25U/mlペルオキシダーゼ溶液0.5ml、及び0.4%(w/v)4-アミノアンチピリン溶液0.1mlを混合し、37℃で10分保温後、酵素溶液0.1mlを添加し、反応を開始した。酵素反応進行と共に、波長500nmにおける吸光度の増加を測定することにより糖質酸化活性を測定した。なお、ブンランクには0.1Mリン酸緩衝液(pH7.0)を使用し、1分間に1μmolのマルトース一水和物を酸化するのに必要な酵素量を1単位とし、以下の計算式より活性を算出する。
マルトース酸化活性 (U/ml)
={(A5-A2)-(Ab5-Ab2)}× 2.218 ×n
A2, A5 : 反応開始後、2分後および5 分後の吸光度 (検体)
Ab2, Ab5 : 反応開始後、2 分後および5 分後の吸光度 (ブランク)
n:酵素液の希釈倍率
本発明で言うカタラーゼ製剤とは、Aspergillus属や、Micrococcus属などの微生物由来のカタラーゼ製剤などが挙げられ、具体的には、Aspergillus nigr又はMicrococcus lysodeikticus由来のカタラーゼ製剤が挙げられる。また、副活性としてカタラーゼ活性を有する市販のグルコースオキシダーゼ製剤を選択して用いることも含まれる。
本発明で言う中和剤とは、反応液中のpHを調整するために用いられるものであり、作用工程中に添加される。中和剤の一例としては、塩基性化合物を用いることができる。
また、pKbの典型的な例としては、25℃における水を溶媒としたpKbは、0以上、0超、0.5以上、1以上、1超、1.3以上、1.3超、1.5以上、2以上、2.5以上、3以上、3.5以上、4以上、または4.5以上であり、1以下、1未満、1.5以下、2以下、3以下、4以下、4.5以下、5以下、5.5以下、6以下、6.5以下、7以下、または8以下である。
例えば、中和剤が2価のイオンであれば、原料となる糖質中の還元糖と中和剤のモル比が2:1となるようにして、中和に必要なモル数が算出される。また、中和剤が1価のイオンであれば、モル比が1:1となるようにして、中和に必要なモル数が算出される。
本明細書において、中和剤の「所定量」とは、原料となる糖質中の還元糖の中和に必要な中和剤の総モル数を100%とする量である。
そして、中和に使用する際の中和剤の質量(本明細書において、相当質量ということがある)は、中和に必要なモル数と、中和剤の分子量とから、常法に従って計算することができる。
一例として、複数種類の中和剤を使用する際、ある中和剤Xを所定量のY%の分について作用させようとする場合には、その添加する中和剤Xの質量は、(糖原料固形分)[g]÷(糖原料平均分子量)×(中和剤Xの分子量)÷(中和剤Xのイオン価数)×(Y/100)、によって計算することができる。中和剤のイオン価数は、例えば中和剤が2価のイオンを生成するものである場合には、上記式に2を代入し、中和剤が1価のイオンを生成するものである場合には、上記式に1を代入して計算される。
ここで、作用工程開始時以外に添加される中和剤は、上述した塩基性物質から選ばれ、作用工程開始時の中和剤と、同じであっても異なっていてもよい。
なお、残量を添加する回数に制限はなく、1回でも、複数回の添加(分割添加)であってもよいが、少ないほうが好ましい。
作用工程開始時に添加する中和剤には、特定の塩基性化合物を用いることができる(第一の塩基性化合物ということがある)。
一方、作用工程開始時以外の作用工程期間中に添加する中和剤(第二の塩基性物質ということがある)は、上記した特定の塩基性物質(第一の塩基性物質)に限らず、上述した塩基性化合物から広く選択することができる。
すなわち作用工程開始時以外の作用工程期間中に添加する中和剤(第二の塩基性物質)は、作用工程開始時に添加する中和剤(第一の塩基性物質)と同じ塩基性化合物であっても、異なる塩基性化合物であってもよい。
そして、作用工程開始時における添加量が所定量の100%未満である場合には、作用工程開始時以外の作用工程の期間中に、上記作用工程開始時に加えた中和剤(所定量の5%以上の量)の残量、すなわち所定量の95%以下の量、が添加される。
具体的に、残量として添加する中和剤の質量(本明細書において、残量相当質量ということがある)は、残りの中和に必要なモル数と、残量として添加する中和剤の分子量を用いて、常法により、計算することができる。
なお、残量を添加する回数に制限はなく、1回でも、複数回の添加(分割添加)であってもよいが、少ないほうが好ましい。
また、反応系が、複数の中間体を経る高度な反応系である可能性も考えられる。
その所定時間は、典型的には0.25時間以上、0.5時間以上、または1時間以上である。この所定時間は、反応液調製段階直後の反応液の全体撹拌がある程度進行する時間として必要な時間として考えられる。
また、上記所要時間は、典型的には、8時間以下、7時間以下、6時間以下、5時間以下、4時間以下、3時間以下、2時間以下、または1時間以下である。この所定時間は、作用工程開始時に添加した中和剤の添加量に依存し、作用工程開始時に、所定量に対して充分な量の中和剤が添加された場合には、相対的に長い時間でよく、作用工程開始時に、所定量に対して相対的に少ない量の中和剤が添加された場合には、相対的に短い時間となる。これは作用工程開始時に添加する中和剤が、作用工程期間中に、中和のために消費されることによるものである。
作用工程における反応液のpHは、下限は例えば5.0以上、6.0以上、7.0以上、8.0以上、9.5以上であり、上限は例えば11.0以下、10.0以下である。
糖質酸化酵素とカタラーゼの反応工程での反応温度は、例えば20~60℃程度の条件下で行うのが好ましく、より好ましくは、25~40℃の範囲である。
本発明の酸化反応では、反応系に酸素が必要となるため、空気や酸素を通気することが好ましい。また、反応の結果、酸素は消費されるため、反応液中の酸素が欠乏した領域に対して、酸素をより多く含む領域の反応液を供給する必要があるから、常時撹拌することが好ましい。従って、空気や酸素を所定量通気しながら、所定量の速度で撹拌することが最も望ましい。
後述する実施例に示すように、例えば作用工程の全期間にわたって、溶存酸素量を1ppm以上とすることにより、90%以上の収率を得ることができる。その方法は、例えば、酸素ボンベから酸素を通気しながら攪拌することで達成される。または、エアーコンプレッサーから散気装置を通すことで微細な空気を通気しながら、反応液をバブリングすることでも達成される。また反応容器の形状にもよるが、スクリュー型攪拌機、プロペラ型攪拌機のような供給される空気を高速撹拌することで微細な空気へせん断供給する方法でも達成される。
なおここで、溶存酸素量は、単に通気によって反応液に溶け込んだ酸素だけではなく、カタラーゼ製剤が反応中に生成する酸素等をも含んだ、合計の溶存酸素量である。
(反応開始前還元糖量-反応液還元糖量)/反応開始前還元糖量×100=酸化率(%)
本発明では、夾雑酵素を所定範囲で含むカタラーゼ製剤を用いることもできる。具体的には、カタラーゼ製剤中のカタラーゼ活性(A)に対する糖化活性の含有比率(B/A)が0.005以下であるカタラーゼ製剤を用いる。好ましくは、B/Aは、0.0045以下、0.003以下、0.002以下、0.0015以下、0.001以下、0.0005以下、0.0004以下である。
酵素反応後の残存過酸化水素をチオ硫酸ナトリウムで滴定する方法に従う(小崎道雄監修「酵素利用ハンドブック」、地人書館昭和60年版、p404~410)。すなわち、市販の30重量%過酸化水素を50mMリン酸緩衝液(pH7.0)で800倍に希釈した基質溶液5mlを容器にとり、30℃の恒温水槽に15分入れ恒温とする。これに30℃に保温した検体酵素液1mlを加え、正確に5分後に0.5N硫酸2mlを加えよく振り混ぜ酵素作用を止める。これに10重量%ヨウ化カリウム溶液1mlと1%モリブデン酸アンモニウム1滴及び指示薬として0.5%デンプン試薬5滴を加え、この溶液を撹拌しながら、0.005Nチオ硫酸ナトリウム溶液(定量用)で滴定し、ブランクは試料の代わりに水1mlを添加し、ブランクの値から検体の値を差し引いてカタラーゼ作用によって分解された過酸化水素の量を算出し、標準曲線から検体酵素液のカタラーゼ活性を求める。なお、1Uは1分間に1μmolの過酸化水素を分解する活性を示している。
カタラーゼ活性(U/ml)=A×n
n:希釈倍率
A:標準曲線のグラフよりy=(T0-TS)×24.18/T0×2.5×fのx軸の値Aを求める
f:0.005Nチオ硫酸ナトリウムのファクター
T0:ブランクの滴定値(ml)
TS:サンプルの滴定値(ml)
24.18/T0:初発基質濃度による活性測定変化に対する補正値
2.5:0.005Nチオ硫酸ナトリウム溶液1mlは過酸化水素2.5μmolに相当
キッコーマン社製の糖化力測定キットを使用する場合、4-ニトロフェニルβ-マルトシドを含有する基質溶液0.5mlにβ-グルコシダーゼを含有する酵素溶液0.5mlを混ぜ、37℃で5分間予備加温を行った後、測定試料0.1mlを加え、混合して37℃で10分間反応させる。反応停止は、炭酸ナトリウムを含有する酵素停止液2mlを加え混合する。反応終了後の液を波長400nmで定量することにより糖化力を測定し、以下の計算式より活性を算出する。
糖化力活性 (U/ml)=(Es-Eb)× 0.171×n
Es:測定試料の吸光度
Eb:ブランクの吸光度
n:酵素液の希釈倍率
(実施例1~3、及び比較例1)
<実施例1>
ジャーファメンター(容量4L、エイブル株式会社製)に対し、マルトース70.3wt%に加えて、グルコース1.2wt%、マルトトリオース15.0wt%及びマルトテトラオース(重合度4)以上のマルトオリゴ糖13.5wt%を含むハイマルトース水飴(Bx.75%、サンエイ糖化株式会社製)800gに蒸留水1200gを加え、30wt%となるように溶解させた後、炭酸カルシウム(和光純薬工業株式会社製)78g(所定量の100%に相当する量)、Acremonium chrysogenum由来糖質酸化酵素製剤(糖質酸化活性300u/ml)4.0ml(1200u、2u/g基質)と、Aspergillus属由来のカタラーゼ製剤E(カタラーゼ活性53800u/ml、糖化活性2.2u/ml、糖化活性/カタラーゼ活性比=0.00004)1.56ml(84000U、140u/g基質)を加え、35℃、500rpm、空気通気1L/分で通気攪拌(孔径10μmの焼結フィルターを装着した配管より連続的に通気)を行った。反応開始から4時間後に、糖質酸化酵素剤4.0ml(1200u、2u/g基質)を追加添加し、酸化反応を行った。
実施例2として、原料糖質や酵素量、反応温度や空気通気条件は、実施例1と同様の条件で酸化反応を行い、炭酸カルシウム78g(所定量の100%に相当する量)を3分割(作用工程開始時に所定量の50%、8時間後に所定量の40%、22時間後に所定量の10%)で添加しながら、酸化反応を行った。
実施例3として、原料糖質や酵素量、反応温度や空気通気条件は、実施例1と同様の条件で酸化反応を行い、所定量の10%に相当する質量の炭酸カルシウム(7.8g)を、作用工程開始時に添加した後、反応開始1時間後から、pHを6.0となるように、残量90%に相当する質量の炭酸カルシウム(70.2g)を15wt%溶液として逐次添加しながら、酸化反応を行った。ここで、逐次添加は、pHをリアルタイムで計測し、マイクロポンプを用いて中和剤を添加するものである。
比較例1として、原料糖質や酵素量、反応温度や空気通気条件は、実施例1と同様の条件で酸化反応を行い、酸化反応により低下するpHを6.0となるように、15wt%炭酸カルシウムを、作用工程開始時から作用工程期間中にわたって、逐次添加しながら、酸化反応を行った。
なお比較例1における作用工程開始時の炭酸カルシウムの添加量は、マイクロポンプの記録データより、所定量の1%に相当する質量であることが計算された。
(反応開始前還元糖量-反応液還元糖量)/反応開始前還元糖量×100=酸化率(%)
(実施例4)
ジャーファメンター(容量4L、エイブル株式会社製)に対し、マルトース70.3wt%に加えて、グルコース1.2wt%、マルトトリオース15.0wt%及びマルトテトラオース(重合度4)以上のマルトオリゴ糖13.5wt%を含むハイマルトース水飴(Bx.75%、サンエイ糖化株式会社製)800gに蒸留水1200gを加え、30wt%となるように溶解させた後、炭酸マグネシウム(和光純薬工業株式会社製)63g(所定量の100%に相当する量)、Acremonium chrysogenum由来糖質酸化酵素製剤(糖質酸化活性300u/ml)4.0ml(1200u、2u/g基質)と、Aspergillus属由来のカタラーゼ製剤E(カタラーゼ活性53800u/ml、糖化活性2.2u/ml、糖化活性/カタラーゼ活性比=0.00004)1.56ml(84000U、140u/g基質)を加え、35℃、300rpm、空気通気2L/分(孔径10μmの焼結フィルターを装着した配管より連続的に通気)で通気攪拌を行った。また、反応開始から4時間後に、糖質酸化酵素剤4.0ml(1200u、2u/g基質)を追加添加し、酸化反応を行った。
なお、この時の糖化活性/カタラーゼ活性比=0.00004(すなわち0.005以下)であり、且つ糖化活性が原料基質の還元糖あたり0.013u/g(すなわち0.9u/g以下)であった。
(反応開始前還元糖量-反応液還元糖量)/反応開始前還元糖量×100=酸化率(%)
(実施例5、及び比較例2)
ジャーファメンター(容量4L、エイブル株式会社製)に対し、マルトース70.3wt%に加えて、グルコース1.2wt%、マルトトリオース15.0wt%及びマルトテトラオース(重合度4)以上のマルトオリゴ糖13.5wt%を含むハイマルトース水飴(Bx.75%、サンエイ糖化株式会社製)534gに蒸留水1466gを加え、20wt%となるように溶解させた後、炭酸水素ナトリウム(和光純薬工業株式会社製)50g(所定量の100%に相当する量)、Acremonium chrysogenum由来糖質酸化酵素製剤(糖質酸化活性300u/ml)2.67ml(800u、2u/g基質)と、Aspergillus属由来のカタラーゼ製剤E(カタラーゼ活性53800u/ml、糖化活性2.2u/ml、糖化活性/カタラーゼ活性比=0.00004)1.04ml(56000U、140u/g基質)を加え、35℃、300rpm、空気通気2L/分(孔径10μmの焼結フィルターを装着した配管より連続的に通気)で通気攪拌を行った。反応開始から4時間後に、糖質酸化酵素剤2.67ml(800u、2u/g基質)を追加添加し、酸化反応を行った。
なお、この時の糖化活性/カタラーゼ活性比=0.00004(すなわち0.005以下)であり、且つ糖化活性が原料基質の還元糖あたり0.013u/g(すなわち0.9u/g以下)であった。
(反応開始前還元糖量-反応液還元糖量)/反応開始前還元糖量×100=酸化率(%)
一方、pKbが1未満の塩基性化合物である水酸化ナトリウムで逐次添加した比較例2では、実施例5よりも反応開始時、及び反応期間中のいずれでもpHが低いにも関わらず、28時間で酸化率60%未満に留まり、酸化率、すなわち工業生産における収率において、著しく低い数値となった。
すなわち、塩基性化合物であっても、作用工程の開始時に加える塩基性化合物として、pKbが1未満である塩基性化合物は、工業生産には適さないことが分かる。
(実施例6)
ジャーファメンター(容量4L、エイブル株式会社製)に対し、マルトース70.3wt%に加えて、グルコース1.2wt%、マルトトリオース15.0wt%及びマルトテトラオース(重合度4)以上のマルトオリゴ糖13.5wt%を含むハイマルトース水飴(Bx.75%、サンエイ糖化株式会社製)800gに蒸留水1200gを加え、30wt%となるように溶解させた後、所定量の50%に相当する量の炭酸カルシウム39g(和光純薬工業株式会社製)、Acremonium chrysogenum由来糖質酸化酵素製剤(糖質酸化活性300u/ml)4.0ml(1200u、2u/g基質)と、Aspergillus属由来のカタラーゼ製剤E(カタラーゼ活性53800u/ml、糖化活性2.2u/ml、糖化活性/カタラーゼ活性比=0.00004)1.56ml(84000U、140u/g基質)を加え、35℃、300rpm、空気通気1L/分で通気攪拌(孔径10μmの焼結フィルターを装着した配管より連続的に通気)を行った。反応開始から4時間後に、糖質酸化酵素剤4.0ml(1200u、2u/g基質)を追加添加し、酸化反応を行った。
なお、この時の糖化活性/カタラーゼ活性比=0.00004(すなわち0.005以下)であり、且つ糖化活性が原料基質の還元糖あたり0.013u/g(すなわち0.9u/g以下)であった。
(反応開始前還元糖量-反応液還元糖量)/反応開始前還元糖量×100=酸化率(%)
(実施例7)
ジャーファメンター(容量4L、エイブル株式会社製)に対し、マルトース70.3wt%に加えて、グルコース1.2wt%、マルトトリオース15.0wt%及びマルトテトラオース(重合度4)以上のマルトオリゴ糖13.5wt%を含むハイマルトース水飴(Bx.75%、サンエイ糖化株式会社製)800gに蒸留水1200gを加え、30wt%となるように溶解させた後、所定量の50%相当の量の炭酸水素ナトリウム(和光純薬工業株式会社製)37g、Acremonium chrysogenum由来糖質酸化酵素製剤(糖質酸化活性300u/ml)4.0ml(1200u、2u/g基質)と、Aspergillus属由来のカタラーゼ製剤E(カタラーゼ活性53800u/ml、糖化活性2.2u/ml、糖化活性/カタラーゼ活性比=0.00004)1.56ml(84000U、140u/g基質)を加え、35℃、300rpm、空気通気1L/分で通気攪拌(孔径10μmの焼結フィルターを装着した配管より連続的に通気)を行った。反応開始から4時間後に、糖質酸化酵素剤4.0ml(1200u、2u/g基質)を追加添加し、酸化反応を行った。
なお、この時の糖化活性/カタラーゼ活性比=0.00004(すなわち0.005以下)であり、且つ糖化活性が原料基質の還元糖あたり0.013u/g(すなわち0.9u/g以下)であった。
(反応開始前還元糖量-反応液還元糖量)/反応開始前還元糖量×100=酸化率(%)
(実施例8、実施例9、比較例3)
ジャーファメンター(容量4L、エイブル株式会社製)に対し、マルトース70.3wt%に加えて、グルコース1.2wt%、マルトトリオース15.0wt%及びマルトテトラオース(重合度4)以上のマルトオリゴ糖13.5wt%を含むハイマルトース水飴(Bx.75%、サンエイ糖化株式会社製)800gに蒸留水1200gを加え、30wt%となるように溶解させた後、炭酸カルシウム(和光純薬工業株式会社製)78g、Acremonium chrysogenum由来糖質酸化酵素製剤(糖質酸化活性300u/ml)4.0ml(1200u、2u/g基質)と、Aspergillus属由来のカタラーゼ製剤E(カタラーゼ活性53800u/ml、糖化活性2.2u/ml、糖化活性/カタラーゼ活性比=0.00004)1.56ml(84000U、140u/g基質)を加え、35℃で孔径10μmの焼結フィルターを装着した配管より連続的に通気と攪拌機による攪拌することで酸化反応を行った。また、反応開始から4時間後に、糖質酸化酵素剤4.0ml(1200u、2u/g基質)を追加添加した。通気攪拌条件を変えることで溶存酸素による影響を評価した。
なお、この時の糖化活性/カタラーゼ活性比=0.00004(すなわち0.005以下)であり、且つ糖化活性が原料基質の還元糖あたり0.013u/g(すなわち0.9u/g以下)であった。
(反応開始前還元糖量-反応液還元糖量)/反応開始前還元糖量×100=酸化率(%)
(実施例10)
横型2.2kWのプロペラ翼式撹拌機(株式会社竹内製作所製)を装着したジャケット付きSUS型反応槽(容量10000L、八洲化工機株式会社製)に対し、マルトース70.3wt%に加えて、グルコース1.2wt%、マルトトリオース15.0wt%及びマルトテトラオース(重合度4)以上のマルトオリゴ糖13.5wt%を含むハイマルトース水飴(Bx.70%、サンエイ糖化株式会社製)3.3tに水道水4.4tを加え、30wt%となるように溶解させた後、炭酸カルシウム(三共精粉株式会社製)300kg(所定量の100%に相当する量)、Acremonium chrysogenum由来糖質酸化酵素製剤(糖質酸化活性315u/ml)14.6L(4599945u、2u/g基質)と、Aspergillus属由来のカタラーゼ製剤F(カタラーゼ活性68250u/ml、糖化活性23.6u/ml、糖化活性/カタラーゼ活性比=0.000035)3.385L(231000000U、100u/g基質)を加え、35℃、200rpm、空気通気800L/分(微細気泡発生装置より連続的に通気)で通気攪拌をおこなった。反応開始から12時間後と24時間後に、糖質酸化酵素剤3.651L(1150065u、0.5u/g基質)とカタラーゼ製剤0.677L(46200000u、20u/g基質)をそれぞれ追加添加し、酸化反応を行った。
なお、この時の糖化活性/カタラーゼ活性比=0.000346(すなわち0.005以下)であり、且つ糖化活性が原料基質の還元糖あたり0.11u/g(すなわち0.9u/g以下)であった。
(反応開始前還元糖量-反応液還元糖量)/反応開始前還元糖量×100=酸化率(%)
(実施例11、12及び比較例4)
<実施例11>
横型2.2kWのプロペラ翼式撹拌機(株式会社竹内製作所製)を装着したジャケット付きSUS型反応槽(容量10000L、八洲化工機株式会社製)に対し、マルトース70.3wt%に加えて、グルコース1.2wt%、マルトトリオース15.0wt%及びマルトテトラオース(重合度4)以上のマルトオリゴ糖13.5wt%を含むハイマルトース水飴(Bx.70%、サンエイ糖化株式会社製)3.3tに水道水4.4tを加え、30wt%となるように溶解させた後、炭酸カルシウム(三共精粉株式会社製)300kg(所定量の100%に相当する量)、Acremonium chrysogenum由来糖質酸化酵素製剤(糖質酸化活性315u/ml)14.6L(4599945u、2u/g基質)と、Aspergillus属由来のカタラーゼ製剤F(カタラーゼ活性68250u/ml、糖化活性23.6u/ml、糖化活性/カタラーゼ活性比=0.000035)3.385L(231000000U、100u/g基質)を加え、35℃、200rpm、空気通気800L/分(微細気泡発生装置より連続的に通気)で通気攪拌をおこなった。反応開始から12時間後と24時間後に、糖質酸化酵素剤3.651L(1150065u、0.5u/g基質)とカタラーゼ製剤0.677L(46200000u、20u/g基質)をそれぞれ追加添加し、酸化反応を行った。
なお、この時の糖化活性/カタラーゼ活性比=0.000346(すなわち0.005以下)であり、且つ糖化活性が原料基質の還元糖あたり0.11u/g(すなわち0.9u/g以下)であった。
(反応開始前還元糖量-反応液還元糖量)/反応開始前還元糖量×100=酸化率(%)
実施例12として、原料糖質や酵素量、反応温度や空気通気条件は、実施例12と同様の条件で酸化反応を行い、所定量の70%に相当する質量の炭酸カルシウム(210kg)を、作用工程開始時に添加した後、反応開始20時間後から、pHを5.5~7.5となるように、残量30%に相当する質量の水酸化カルシウム(39.7kg)を15%wt溶液として逐次添加しながら、酸化反応を行った。
比較例4として、原料糖質や酵素量、反応温度や空気通気条件は、実施例11と同様の条件で酸化反応を行い、所定量の2%に相当する質量の炭酸カルシウム(6kg)を、作用工程開始時に添加した後、反応開始1時間後から、pHを5.5~7.5となるように、残量98%に相当する質量の水酸化カルシウム(129.5kg)を15wt%溶液として逐次添加しながら、酸化反応を行った。
Claims (16)
- 還元末端にグルコース残基を有する重合度2以上の澱粉分解物又は転移反応物の還元末端側のアルデヒド基が酸化された糖カルボン酸の製造方法であって、
糖質酸化時に過酸化水素を副生する糖質酸化酵素剤を、カタラーゼ製剤の存在下、前記澱粉分解物或いは転移反応物を含む原料基質に作用させる工程を含み、
前記作用工程の反応液総量が、1L以上であり、
塩基性化合物を、前記作用工程中に所定量添加するとともに、
前記作用工程開始時に、前記塩基性化合物として、炭酸塩、または炭酸水素塩を、前記所定量の5%以上の相当質量で添加する糖カルボン酸の製造方法。 - 前記炭酸塩、または前記炭酸水素塩を、前記作用工程開始時にのみ、所定量添加する請求項1記載の糖カルボン酸の製造方法。
- 前記塩基性化合物の所定量添加は、
前記作用工程開始時に、炭酸塩、または炭酸水素塩である第一の塩基性化合物を、前記所定量の5%以上100%未満の相当質量で添加し、
前記作用工程における前記作用工程開始時以外の時に、前記第一の塩基性化合物と同一または異なる第二の塩基性化合物を、前記作用工程開始時添加分を除いた残量相当質量で添加するものである請求項1記載の糖カルボン酸の製造方法。 - 前記炭酸塩は、水に対する溶解度が、0超0.01mol/L以下である請求項1から3のいずれか記載の糖カルボン酸の製造方法。
- 還元末端にグルコース残基を有する重合度2以上の澱粉分解物又は転移反応物の還元末端側のアルデヒド基が酸化された糖カルボン酸の製造方法であって、
糖質酸化時に過酸化水素を副生する糖質酸化酵素剤を、カタラーゼ製剤の存在下、前記澱粉分解物或いは転移反応物を含む原料基質に作用させる工程を含み、
前記作用工程の反応液総量が、1L以上であり、
塩基性化合物を、前記作用工程中に所定量添加するとともに、
前記作用工程開始時に、前記塩基性化合物として、pKbが1以上8以下である塩基性化合物を、前記所定量の5%以上の相当質量で添加する糖カルボン酸の製造方法。 - 前記pKbが1以上8以下である塩基性化合物を、前記作用工程開始時にのみ、所定量添加する請求項5記載の糖カルボン酸の製造方法。
- 前記塩基性化合物の所定量添加は、
前記作用工程開始時に、pKbが1以上8以下である第一の塩基性化合物を、前記所定量の5%以上100%未満の相当質量で添加し、
前記作用工程における前記作用工程開始時以外の時に、前記第一の塩基性化合物と同一または異なる第二の塩基性化合物を、前記作用工程開始時添加分を除いた残量相当質量で添加するものである請求項5記載の糖カルボン酸の製造方法。 - 前記炭酸塩は、炭酸カルシウム、炭酸マグネシウム、ドロマイト、または卵殻カルシウムである請求項1~4のいずれか記載の糖カルボン酸の製造方法。
- 前記塩基性化合物は、炭酸水素ナトリウム、炭酸水素カリウム、または炭酸水素アンモニウムである請求項5~7記載の糖カルボン酸の製造方法。
- 溶存酸素量が、1ppm以上となるよう、前記作用工程期間中に酸素を供給する請求項1から9いずれか記載の糖カルボン酸の製造方法。
- 前記作用工程期間のうち、酸化率が0%から50%である期間、溶存酸素量が、1ppm以上となるよう、前記作用工程中に酸素を供給する請求項1から9いずれか記載の糖カルボン酸の製造方法。
- 前記カタラーゼ製剤中のカタラーゼ活性(A)に対する糖化活性(B)の含有比率(B/A)が0.00002以上0.005以下であり、
前記糖化活性が前記原料基質中の還元糖量に対して0.9u/g以下である量で存在する請求項1から11のいずれか記載の糖カルボン酸の製造方法。 - 前記カタラーゼ製剤中のカタラーゼ活性(A)に対する糖化活性(B)の含有比率(B/A)が0.005以下であり、かつ糖化活性(B)が0.1u/ml以上であり、
前記糖化活性が前記原料基質中の還元糖量に対して0.9u/g以下である量で存在する請求項1から11のいずれか記載の糖カルボン酸の製造方法。 - 前記作用工程の反応液総量が、50kg以上である請求項1~13のいずれか記載の糖カルボン酸の製造方法。
- 前記作用工程の反応液総量が、1ton以上である請求項14記載の糖カルボン酸の製造方法。
- 前記糖カルボン酸は、マルトビオン酸である請求項1から15いずれか記載の糖カルボン酸の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19758227.3A EP3733859B1 (en) | 2018-02-20 | 2019-02-20 | Method for producing sugar carboxylic acid |
CN201980012738.0A CN111712577A (zh) | 2018-02-20 | 2019-02-20 | 糖羧酸的制造方法 |
KR1020207026481A KR102523898B1 (ko) | 2018-02-20 | 2019-02-20 | 당카르본산의 제조 방법 |
US16/968,117 US11384373B2 (en) | 2018-02-20 | 2019-02-20 | Method for producing sugar carboxylic acid |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018028044A JP6417060B1 (ja) | 2018-02-20 | 2018-02-20 | 糖カルボン酸の製造方法 |
JP2018-028044 | 2018-02-20 | ||
JP2018205853A JP6602934B1 (ja) | 2018-10-31 | 2018-10-31 | 糖カルボン酸の製造方法 |
JP2018-205853 | 2018-10-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019163853A1 true WO2019163853A1 (ja) | 2019-08-29 |
Family
ID=67687723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/006412 WO2019163853A1 (ja) | 2018-02-20 | 2019-02-20 | 糖カルボン酸の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11384373B2 (ja) |
EP (1) | EP3733859B1 (ja) |
KR (1) | KR102523898B1 (ja) |
CN (1) | CN111712577A (ja) |
WO (1) | WO2019163853A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102598193B1 (ko) * | 2021-06-14 | 2023-11-06 | 대상 주식회사 | 효소적 산화를 이용한 말토비온산 제조방법 |
CN116590355B (zh) * | 2022-12-27 | 2023-11-07 | 安徽斯拜科生物科技有限公司 | 一种利用葡萄糖脱氢酶催化麦芽糖合成麦芽糖酸的方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5599194A (en) * | 1979-01-22 | 1980-07-28 | Solvay | Production of aldonic acid by enzyme method |
JPH0584074A (ja) * | 1991-01-22 | 1993-04-06 | Biseiken:Kk | オリゴ糖酸化酵素、オリゴ糖酸化酵素の製造方法、オリゴ糖の測定方法、オリゴ糖酸の製造方法及びアミラーゼ活性測定法 |
JPH10502825A (ja) * | 1995-05-12 | 1998-03-17 | ギスト ブロカデス ベスローテン フェンノートシャップ | グルコン酸及びその塩の酵素的生産方法 |
JP2001245657A (ja) | 1999-12-27 | 2001-09-11 | Takehara Kagaku Kogyo Kk | アルドン酸を産生する新規菌体およびその酵素 |
JP2005504554A (ja) * | 2001-10-08 | 2005-02-17 | プラク・ビオヘム・ベー・ブイ | グルコン酸カルシウムの製造方法 |
JP2007028917A (ja) | 2005-07-22 | 2007-02-08 | Unitika Ltd | アルドン酸の製造方法 |
JP2007535331A (ja) * | 2004-05-03 | 2007-12-06 | セーホーエル.ハンセン アクティーゼルスカブ | ラクトビオン酸の高められた収率を得るための酵素方法 |
JP4417550B2 (ja) | 1997-12-22 | 2010-02-17 | ノボザイムス アクティーゼルスカブ | 糖質酸化酵素およびベーキングにおけるその使用 |
WO2014042237A1 (ja) | 2012-09-14 | 2014-03-20 | 天野エンザイム株式会社 | 糖質酸化酵素とその製造方法並びに用途 |
JP6321857B1 (ja) * | 2017-05-17 | 2018-05-09 | サンエイ糖化株式会社 | 糖カルボン酸の製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56114747A (en) * | 1980-02-14 | 1981-09-09 | Nippon Steel Corp | Surface inspection device |
EP0870052B1 (en) | 1995-12-27 | 2005-02-16 | Genencor International, Inc. | Process for the preparation of gluconic acid and gluconic acid produced thereby |
JP2003093090A (ja) | 2001-09-26 | 2003-04-02 | Fuji Seito Co Ltd | イヌリンの製造方法 |
CN101765664B (zh) * | 2007-07-27 | 2014-08-06 | 诺维信公司 | 麦芽糖酸作为食物产品中的抗氧化剂 |
US10667538B2 (en) | 2007-11-07 | 2020-06-02 | Leprino Foods Company | Non-fat dry milk production processes for cheesemaking |
CN102341009A (zh) * | 2009-03-20 | 2012-02-01 | 诺维信公司 | 营养饮料及其制造方法 |
-
2019
- 2019-02-20 EP EP19758227.3A patent/EP3733859B1/en active Active
- 2019-02-20 KR KR1020207026481A patent/KR102523898B1/ko active IP Right Grant
- 2019-02-20 WO PCT/JP2019/006412 patent/WO2019163853A1/ja unknown
- 2019-02-20 CN CN201980012738.0A patent/CN111712577A/zh active Pending
- 2019-02-20 US US16/968,117 patent/US11384373B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5599194A (en) * | 1979-01-22 | 1980-07-28 | Solvay | Production of aldonic acid by enzyme method |
JPH0584074A (ja) * | 1991-01-22 | 1993-04-06 | Biseiken:Kk | オリゴ糖酸化酵素、オリゴ糖酸化酵素の製造方法、オリゴ糖の測定方法、オリゴ糖酸の製造方法及びアミラーゼ活性測定法 |
JP3310008B2 (ja) | 1991-01-22 | 2002-07-29 | 有限会社ビセイケン | オリゴ糖酸化酵素、オリゴ糖酸化酵素の製造方法、オリゴ糖の測定方法、オリゴ糖酸の製造方法、アミラーゼ活性測定法及び新規微生物 |
JPH10502825A (ja) * | 1995-05-12 | 1998-03-17 | ギスト ブロカデス ベスローテン フェンノートシャップ | グルコン酸及びその塩の酵素的生産方法 |
JP4417550B2 (ja) | 1997-12-22 | 2010-02-17 | ノボザイムス アクティーゼルスカブ | 糖質酸化酵素およびベーキングにおけるその使用 |
JP2001245657A (ja) | 1999-12-27 | 2001-09-11 | Takehara Kagaku Kogyo Kk | アルドン酸を産生する新規菌体およびその酵素 |
JP2005504554A (ja) * | 2001-10-08 | 2005-02-17 | プラク・ビオヘム・ベー・ブイ | グルコン酸カルシウムの製造方法 |
JP2007535331A (ja) * | 2004-05-03 | 2007-12-06 | セーホーエル.ハンセン アクティーゼルスカブ | ラクトビオン酸の高められた収率を得るための酵素方法 |
JP2007028917A (ja) | 2005-07-22 | 2007-02-08 | Unitika Ltd | アルドン酸の製造方法 |
WO2014042237A1 (ja) | 2012-09-14 | 2014-03-20 | 天野エンザイム株式会社 | 糖質酸化酵素とその製造方法並びに用途 |
JP6321857B1 (ja) * | 2017-05-17 | 2018-05-09 | サンエイ糖化株式会社 | 糖カルボン酸の製造方法 |
Non-Patent Citations (2)
Title |
---|
FAN Z. ET AL.: "Characterization of Kinetics and Thermostability of Acremonium strictum Glucooligosaccharide Oxidase", BIOTECHNOL. BIOENG., vol. 68, no. 2, 2010, pages 231 - 237, XP002500985, doi:10.1002/(SICI)1097-0290(20000420)68:2<231::AID-BIT12>3.0.CO;2-D * |
MICHIO OZAKI: "Enzyme Use Handbook", 1985, pages: 404 - 410 |
Also Published As
Publication number | Publication date |
---|---|
EP3733859A1 (en) | 2020-11-04 |
EP3733859B1 (en) | 2023-07-19 |
KR20200120722A (ko) | 2020-10-21 |
EP3733859A4 (en) | 2021-03-31 |
EP3733859C0 (en) | 2023-07-19 |
CN111712577A (zh) | 2020-09-25 |
US11384373B2 (en) | 2022-07-12 |
KR102523898B1 (ko) | 2023-04-19 |
US20210180099A1 (en) | 2021-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5897995A (en) | Enzymatic production of gluconic acid or its salts | |
Satory et al. | Continuous enzymatic production of lactobionic acid using glucose-fructose oxidoreductase in an ultrafiltration membrane reactor | |
US4460686A (en) | Glucose oxidation with immobilized glucose oxidase-catalase | |
Hendriks et al. | The effect of bismuth on the selective oxidation of lactose on supported palladium catalysts | |
RU2495130C2 (ru) | Способ получения мальтобионата | |
WO2019163853A1 (ja) | 糖カルボン酸の製造方法 | |
EP0233816A1 (fr) | Procédé d'oxydation d'aldoses et un catalyseur mis en oeuvre | |
de Wilt | Part I. Oxidation of glucose to gluconic Acid. Survey of Techniques | |
EP0054066B1 (en) | Process for making glucosone | |
JP6602934B1 (ja) | 糖カルボン酸の製造方法 | |
Pezzotti et al. | Enzymatic synthesis of aldonic acids | |
JP6417060B1 (ja) | 糖カルボン酸の製造方法 | |
EP0056038B1 (en) | Carbohydrate process | |
JP6321857B1 (ja) | 糖カルボン酸の製造方法 | |
US4345031A (en) | Process for the manufacture of aldonic acids by an enzymatic method | |
JP2000506868A (ja) | ジ、トリ、オリゴおよびポリサッカライドをポリヒドロキシカルボン酸へと酸化する方法 | |
KR100261015B1 (ko) | 가압조건 하에서 포도당 산화효소를 이용한 글루콘산 칼슘의 제조방법 | |
JP2018191635A (ja) | 糖カルボン酸の製造方法 | |
JP2000502904A (ja) | グルコン酸を調製するための方法およびそれにより製造されたグルコン酸 | |
EP0054067B1 (en) | Process for making fructose | |
EP0745677B1 (en) | Enzymatic production of gluconic acid or its salts | |
CN113981017A (zh) | 一种葡萄糖酸盐的生物合成方法 | |
EP3976626A1 (en) | Methods for the production of calcium, magnesium, and zinc salts of sugar acids | |
EP2457990A1 (en) | Process and device for the production of gluconic acid | |
CN111118079A (zh) | 一种含有葡萄糖酸钙与低聚果糖的复合粉及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19758227 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019758227 Country of ref document: EP Effective date: 20200730 |
|
ENP | Entry into the national phase |
Ref document number: 20207026481 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: JP |