WO2019163853A1 - 糖カルボン酸の製造方法 - Google Patents

糖カルボン酸の製造方法 Download PDF

Info

Publication number
WO2019163853A1
WO2019163853A1 PCT/JP2019/006412 JP2019006412W WO2019163853A1 WO 2019163853 A1 WO2019163853 A1 WO 2019163853A1 JP 2019006412 W JP2019006412 W JP 2019006412W WO 2019163853 A1 WO2019163853 A1 WO 2019163853A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
carboxylic acid
added
reaction
action step
Prior art date
Application number
PCT/JP2019/006412
Other languages
English (en)
French (fr)
Inventor
健 深見
Original Assignee
サンエイ糖化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018028044A external-priority patent/JP6417060B1/ja
Priority claimed from JP2018205853A external-priority patent/JP6602934B1/ja
Application filed by サンエイ糖化株式会社 filed Critical サンエイ糖化株式会社
Priority to CN201980012738.0A priority Critical patent/CN111712577A/zh
Priority to KR1020207026481A priority patent/KR102523898B1/ko
Priority to EP19758227.3A priority patent/EP3733859B1/en
Priority to US16/968,117 priority patent/US11384373B2/en
Publication of WO2019163853A1 publication Critical patent/WO2019163853A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/12Disaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0065Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/03Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y111/00Oxidoreductases acting on a peroxide as acceptor (1.11)
    • C12Y111/01Peroxidases (1.11.1)
    • C12Y111/01006Catalase (1.11.1.6)

Definitions

  • the present invention relates to a method for producing a sugar carboxylic acid in which the aldehyde group on the reducing end side of a starch degradation product or transfer reaction product having a glucose residue at 2 or more having a glucose residue at the reducing end, or a salt thereof and a lactone thereof are oxidized.
  • Gluconic acid which is one of the aldonic acids obtained by oxidizing the reducing end of glucose, is not only a monosaccharide but also has functionality such as bifidobacteria growth selectivity, as well as inorganic substances such as calcium. Since it has a characteristic of forming a stable salt with a cation, it is used as a mineral reinforcing agent. However, the solution stability is poor, and there is a drawback that it is precipitated when stored at a high concentration.
  • sugar carboxylic acids such as maltobionic acid in which glucose is bonded to the non-reducing terminal side of gluconic acid
  • maltobionic acid which is a sugar carboxylic acid
  • Maltobionic acid also forms a stable salt with an inorganic cation, but has good solubility and does not precipitate even when stored under high concentration conditions. In this way, it is expected that many functional substances can be obtained by oxidizing the reducing end of a saccharide higher than a disaccharide.
  • Patent Documents 1 and 2 disclose methods using microorganisms such as Acinetobacter genus, Burkholderia genus, Gluconobacter genus and Acetobacter genus as a technique for oxidizing maltose, lactose, cellobiose and the like having a polymerization degree of 2. ing.
  • a method using a saccharide oxidase preparation derived from a microorganism belonging to the genus Microdochium or a saccharide oxidase preparation derived from a microorganism belonging to the genus Acremonium is known. It has been.
  • the carbohydrate oxidases of Patent Documents 3 to 5 generate hydrogen peroxide as a by-product by a reaction that oxidizes carbohydrates.
  • Hydrogen peroxide has the power to denature proteins, such as being used as a bactericidal or bleaching agent, and hydrogen peroxide produced as a by-product during oxidization of carbohydrates denatures and deactivates carbohydrate oxidase. For this reason, in order to oxidize starch degradation products and transfer reaction products having a polymerization degree of 2 or more industrially and efficiently using carbohydrate oxidase, it is necessary to rapidly decompose hydrogen peroxide.
  • Patent Document 6 describes a technique for continuously maintaining the pH of a reaction solution in a certain range in the process of oxidizing glucose to gluconic acid.
  • a technique for keeping the pH of a reaction solution constant a method is known in which a pH buffer solution (buffer) is added to maintain the pH of the entire reaction solution.
  • the present invention has been made in view of the above circumstances, and uses a catalase preparation that quickly decomposes hydrogen peroxide produced as a by-product in an oxidation reaction, and has high yield and has a degree of polymerization of 2 or more.
  • a method for industrially producing a sugar carboxylic acid using a product or a transfer reaction oxide is provided.
  • an object of the present invention is to provide a method for industrially producing in a high yield using a large volume reaction solution of 1 L or more.
  • the present inventor uses containers of various scales from beakers and flask level containers to batch and large reaction vessel level containers for oxidation reactions using starch degradation products and transfer reaction products having a polymerization degree of 2 or more as raw materials.
  • the present inventor does not make the inside of the reaction solution a chemical uniform state or a temporal uniform state, but rather It has been found that it is effective to achieve a predetermined non-uniform state.
  • hydrolysis by amylolytic enzymes such as ⁇ -glucosidase and glucoamylase, which are contaminating enzymes contained in catalase preparations, is a cause of destabilizing the production of sugar oxides having a polymerization degree of 2 or more. It was also discovered that a certain amount of contaminating enzyme can be used for industrial production.
  • the present invention provides the following.
  • a method for producing a sugar carboxylic acid in which an aldehyde group on the reducing end side of a starch degradation product or transfer reaction product having a glucose residue at the reducing end of 2 or more is oxidized A step of allowing a saccharide oxidase agent, which produces hydrogen peroxide as a by-product during oxidization of saccharides, to act on a raw material substrate containing the starch degradation product or transfer reaction product in the presence of a catalase preparation, The total amount of the reaction solution in the action step is 1 L or more, A basic compound is added in a predetermined amount during the action step, A method for producing a sugar carboxylic acid, wherein a carbonate or bicarbonate is added as the basic compound at an equivalent mass of 5% or more of the predetermined amount at the start of the action step.
  • the predetermined amount of the basic compound added is At the start of the action step, the first basic compound that is carbonate or bicarbonate is added in an equivalent mass of 5% or more and less than 100% of the predetermined amount, A second basic compound that is the same as or different from the first basic compound is added at a mass equivalent to the remaining amount excluding the amount added at the start of the action step, at a time other than the start of the action step in the action step.
  • the said carbonate is a manufacturing method of sugar carboxylic acid in any one of (1) to (3) whose solubility with respect to water is more than 0 and 0.01 mol / L or less.
  • a method for producing a sugar carboxylic acid in which an aldehyde group on the reducing end side of a starch degradation product or transfer reaction product having a glucose residue at the reducing end of 2 or more is oxidized A step of allowing a saccharide oxidase agent, which produces hydrogen peroxide as a by-product during oxidization of saccharides, to act on a raw material substrate containing the starch degradation product or transfer reaction product in the presence of a catalase preparation, The total amount of the reaction solution in the action step is 1 L or more, A basic compound is added in a predetermined amount during the action step, A method for producing a sugar carboxylic acid, wherein a basic compound having a pKb of 1 or more and 8 or less is added at an equivalent mass of 5% or more of the predetermined amount at the start of the action step.
  • the predetermined amount of the basic compound added is At the start of the action step, a first basic compound having a pKb of 1 or more and 8 or less is added at an equivalent mass of 5% or more and less than 100% of the predetermined amount, A second basic compound that is the same as or different from the first basic compound is added at a mass equivalent to the remaining amount excluding the amount added at the start of the action step, at a time other than the start of the action step in the action step.
  • the content ratio (B / A) of saccharification activity (B) to catalase activity (A) in the catalase preparation is from 0.00002 to 0.005,
  • the content ratio (B / A) of saccharification activity (B) to catalase activity (A) in the catalase preparation is 0.005 or less, and the saccharification activity (B) is 0.1 u / ml or more,
  • the present invention it is possible to produce a sugar carboxylic acid that is useful as a material for solubilizing mineral components in foods, medicines, industrial fields, and the like with high yield.
  • yields and yields suitable for industrial production can be easily obtained.
  • One embodiment of the present invention is a method for producing a sugar carboxylic acid in which an aldehyde group on the reducing end side of a starch degradation product or transfer reaction product having a glucose residue at a reducing end of 2 or more is oxidized, Including a step of allowing a carbohydrate oxidase agent, which produces hydrogen peroxide as a by-product during carbohydrate oxidation, to act on a raw material substrate containing a starch degradation product or a transfer reaction product in the presence of a catalase preparation,
  • the total amount of the reaction solution in the action step is 1 L or more
  • a basic compound is added in a predetermined amount during the action step
  • a carbonate or bicarbonate is added as the basic compound at an equivalent mass of 5% or more of the predetermined amount.
  • Another embodiment of the present invention is a method for producing a sugar carboxylic acid in which an aldehyde group on the reducing end side of a starch degradation product or transfer reaction product having a degree of polymerization of 2 or more having a glucose residue at the reducing end is oxidized, Including a step of allowing a carbohydrate oxidase agent, which produces hydrogen peroxide as a by-product during carbohydrate oxidation, to act on a raw material substrate containing a starch degradation product or a transfer reaction product in the presence of a catalase preparation, The total amount of the reaction solution in the action step is 1 L or more, A basic compound is added in a predetermined amount during the action step, In the method for producing a sugar carboxylic acid, a basic compound having a pKb of 1 or more and 8 or less is added at an equivalent mass of 5% or more of the predetermined amount at the start of the action step.
  • the present invention is a method for producing a sugar carboxylic acid by an action step of preparing a reaction solution containing a raw sugar in advance and oxidizing the aldehyde group on the reducing end contained in the raw sugar.
  • the sugar carboxylic acid produced by the production method of the present invention is as follows.
  • the sugar carboxylic acid produced by using the method of the present invention is a starch degradation product having a polymerization degree of 2 or more, preferably 4 or more, and the aldehyde group on the reducing end side of the transfer reaction product is oxidized.
  • the degree of polymerization of the starch decomposition product or transfer reaction product may be, for example, 2 to 100, preferably 4 to 100 or the like.
  • sugar carboxylic acids are maltodextrin oxide, powdered oxide, starch syrup, maltohexanoic acid, maltotetraonic acid, maltotriionic acid, maltobionic acid, isomaltodextrin oxide, panose oxidation. Products, isomaltorionic acid, isomaltobionic acid, nigerobionic acid, cordobiionic acid and the like.
  • the sugar carboxylic acid may be a free acid, a lactone, or a salt thereof.
  • the sugar carboxylic acid salt is not particularly limited, and examples thereof include calcium salt, magnesium salt, potassium salt, sodium salt, zinc salt, iron salt, copper salt and the like.
  • the reaction liquid containing the raw material sugar prepared in advance has the following configuration.
  • the carbohydrate used as a raw material in the present invention is a starch degradation product or transfer reaction product having a glucose residue at the reducing end and having a polymerization degree of 2 or more, and maltose, isomaltose, maltotriose, isomaltotriose, maltotetraose. , Maltohexaose, panose, malto-oligosaccharide, isomalto-oligosaccharide, starch syrup, powder cake, dextrin, branched dextrin, isomaltodextrin and the like.
  • the raw sugar does not need to have a single polymerization degree, and may be a raw sugar in which carbohydrates having different polymerization degrees are mixed.
  • the concentration of the raw sugar during the production of the sugar carboxylic acid is preferably 10 to 50 (wt)%, more preferably 20 to 40 (wt)% in consideration of the concentration in the purification process.
  • “(wt)%” means the content (mass) of the target component, and here, the content of the carbohydrate in the liquid.
  • the saccharide oxidase preparation referred to in the present invention means a substance that oxidizes a saccharide having a glucose residue at the reducing end and having a polymerization degree of 2 or more to generate hydrogen peroxide as a by-product.
  • Examples include saccharide oxidase preparations derived from microorganisms belonging to the genus Microdocium, saccharide oxidase preparations derived from microorganisms belonging to the genus Acremonium, and specifically, saccharide oxidases derived from Acremonium chrysogenum and the like.
  • the sugar oxidase is preferably from 1 u / g to 30 u / g, more preferably from 2 u / g to 20 u / g, based on the amount of reducing sugar (wt%) in the raw material substrate. Act at g or less.
  • the carbohydrate oxidation reaction can be performed at a sufficient rate regardless of the increase of hydrogen peroxide produced as a by-product.
  • the enzyme activity of the carbohydrate oxidase of the present invention is measured as follows. 2 ml of 0.1 M monopotassium phosphate-sodium hydroxide buffer (pH 7.0) containing 0.15% (w / v) phenol and 0.15% (w / v) Triton X-100, 10% maltose Mix 0.5 ml of hydrate solution, 0.5 ml of 25 U / ml peroxidase solution, and 0.1 ml of 0.4% (w / v) 4-aminoantipyrine solution, and incubate at 37 ° C. for 10 minutes. .1 ml was added to start the reaction.
  • Catalase preparation examples of the catalase preparation referred to in the present invention include catalase preparations derived from microorganisms such as the genus Aspergillus and Micrococcus, and specific examples include a catalase preparation derived from Aspergillus nigr or Micrococcus lysodeikticus. It also includes selecting and using a commercially available glucose oxidase preparation having catalase activity as a side activity.
  • Catalase preparations often contain contaminating enzymes having saccharification activity such as glucoamylase and ⁇ -glucosidase.
  • contaminating enzymes having saccharification activity such as glucoamylase and ⁇ -glucosidase.
  • sugar carboxylic acid that is, a starch degradation product or transfer reaction product having a glucose residue at the reducing end of 2 or more, or a reaction product obtained by oxidizing these raw materials.
  • the sugar carboxylic acid is decomposed, making it impossible to produce a sugar carboxylic acid having a stable quality. Therefore, generally, a catalase preparation with high purity is desired.
  • a catalase preparation containing almost no contaminating enzyme such as a recombinant catalase preparation produced by increasing the purity by genetic recombination or a purified catalase preparation distributed as a reagent, can be used.
  • the neutralizing agent said by this invention is used in order to adjust pH in a reaction liquid, and is added during an action
  • a basic compound can be used as an example of the neutralizing agent.
  • Examples of basic compounds that can be used include carbonates, bicarbonates, and hydroxides.
  • the carbonate has a solubility in water at 25 ° C. of more than 0 and 0.01 mol / L or less.
  • a solubility in water at 25 ° C. of more than 0 and 0.01 mol / L or less.
  • calcium carbonate, magnesium carbonate, dolomite, eggshell calcium and the like can be used.
  • bicarbonate for example, sodium bicarbonate, potassium bicarbonate, ammonium bicarbonate, etc. can be used.
  • hydroxide salt for example, sodium hydroxide, calcium hydroxide or the like can be used.
  • a basic compound having a pKb of 0 or more and 8 or less using water at 25 ° C. as a solvent can be used.
  • a basic compound having a pKb of more than 8 has a poor neutralizing function and is not suitable for use in industrial production.
  • pKb using water at 25 ° C.
  • a solvent as a solvent is 0 or more, 0 or more, 0.5 or more, 1 or more, 1 or more, 1.3 or more, 1.3 or more, .5 or more, 2 or more, 2.5 or more, 3 or more, 3.5 or more, 4 or more, or 4.5 or more, 1 or less, less than 1, 1.5 or less, 2 or less, 3 or less, 4 or less 4.5 or less, 5 or less, 5.5 or less, 6 or less, 6.5 or less, 7 or less, or 8 or less.
  • Examples of the basic compound having a pKb of 0 or more and 8 or less include sodium hydroxide, calcium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, ammonium hydrogen carbonate, ammonia and the like.
  • the total amount of neutralizing agent added during the action step can be calculated as the amount of neutralizing agent necessary to neutralize the reducing sugar in the saccharide as a raw material.
  • the neutralizing agent is a divalent ion
  • the number of moles necessary for neutralization is calculated so that the molar ratio of reducing sugar to neutralizing agent in the raw sugar is 2: 1.
  • the neutralizing agent is a monovalent ion
  • the number of moles necessary for neutralization is calculated such that the molar ratio is 1: 1.
  • the “predetermined amount” of the neutralizing agent is an amount that makes the total number of moles of the neutralizing agent necessary for neutralizing the reducing sugar in the saccharide as a raw material 100%. Then, the mass of the neutralizing agent used in neutralization (sometimes referred to as equivalent mass in this specification) is calculated according to a conventional method from the number of moles necessary for neutralization and the molecular weight of the neutralizing agent. can do.
  • the mass of the neutralizing agent X to be added is (sugar Solid content of raw material) [g] ⁇ (average molecular weight of sugar raw material) ⁇ (molecular weight of neutralizing agent X) ⁇ (ionic valence of neutralizing agent X) ⁇ (Y / 100).
  • the neutralizing agent for example, when the neutralizing agent generates divalent ions, 2 is substituted into the above formula, and the neutralizing agent generates monovalent ions. In this case, it is calculated by substituting 1 into the above formula.
  • the present inventor was unable to obtain a high yield of 90% or more even in the reaction system in which the total amount of the reaction solution is 1 L or more, even if the real-time feedback control type sequential addition method is performed.
  • a method for adding the neutralizing agent various methods have been studied. In anticipation of the pH that decreases during the action step, 90% is obtained by adding an excessive amount of the neutralizing agent in advance at the start of the action step. The above high yield could be obtained.
  • a certain amount of neutralizing agent is added.
  • 5% or more of the total number of moles of neutralizing agent required throughout the reaction ie, a predetermined amount.
  • An amount may be added to the reaction solution at the beginning of the action step.
  • the mass of the neutralizing agent to be added can be calculated by a conventional method from the required number of moles and the molecular weight of the neutralizing agent to be used.
  • the neutralizing agent since the neutralizing agent may be added in an amount of 5% or more of the predetermined amount at the start of the action step, the addition amount at the start of the action step may be 100% of the predetermined amount (that is, It may be added only at the start of the action step), and the addition amount at the start of the action step may be 5% or more and less than 100% of the predetermined amount.
  • the neutralizing agent added at the start of the action step (the predetermined amount of 5) during the action step other than at the start of the action step. %) Of the remaining amount, that is, 95% or less of the predetermined amount.
  • the neutralizing agent added other than at the start of the action step is selected from the basic substances described above, and may be the same as or different from the neutralizer at the start of the action step.
  • the mass of the neutralizing agent added as the remaining amount is the number of moles necessary for the remaining neutralization and the neutralizing agent added as the remaining amount. Can be calculated by a conventional method.
  • count of adding a residual amount Although it may be 1 time or multiple times of addition (split addition), it is preferable that there are few.
  • the production process is relatively flexible, and the neutralizing agent can be selected from the basic compounds described above.
  • the addition method may be, for example, a method of adding a certain amount at regular intervals, or a method of appropriately adding a necessary amount that makes the pH constant.
  • Typical examples of the amount of neutralizing agent added at the start of the action step include 5% or more, 6% or more, 7% or more, 8% or more, 9% or more, 10% or more, 15% or more, 20% of the predetermined amount. % Or more, 30% or more, 40% or more, or 50% or more, or an equivalent mass of 100% or less, less than 100%, 90% or less, 80% or less, or 70% or less.
  • a specific basic compound can be used as the neutralizing agent added at the start of the action step (sometimes referred to as a first basic compound).
  • Examples of basic compounds that can be used include carbonates and bicarbonates.
  • the carbonate has a solubility in water at 25 ° C. of more than 0 and 0.01 mol / L or less.
  • a solubility in water at 25 ° C. of more than 0 and 0.01 mol / L or less.
  • calcium carbonate, magnesium carbonate, dolomite, eggshell calcium and the like can be used.
  • bicarbonate for example, sodium bicarbonate, potassium bicarbonate, ammonium bicarbonate, etc. can be used.
  • a compound having a pKb of more than 1.3 and not more than 8 using water at 25 ° C. as a solvent can be used.
  • a compound having a pKb of 1.3 or less is used, the saccharide oxidase is deactivated immediately after the addition, and the saccharide oxidation function is not recovered.
  • a basic compound having a pKb of more than 8 has a poor neutralizing function and is not suitable for use in industrial production.
  • pKb using water at 25 ° C. as a solvent is more than 1.3, 1.5 or more, 2 or more, 2.5 or more, 3 or more, 3.5 or more, 4 or more. Or 4.5 or more, 1 or less, less than 1, 1.5 or less, 2 or less, 3 or less, 4 or less, 4.5 or less, 5 or less, 5.5 or less, 6 or less, 6.5 or less, 7 or less, or 8 or less.
  • Examples of the basic compound having a pKb of more than 1.3 and not more than 8 include sodium bicarbonate, potassium bicarbonate, ammonium bicarbonate, ammonia and the like.
  • a specific basic compound can be used as the neutralizing agent added at the start of the action step.
  • the neutralizing agent (Neutralizing agent added during the action process other than at the start of the action process)
  • the neutralizing agent (sometimes referred to as the second basic substance) added during the action process period other than at the start of the action process is not limited to the specific basic substance (first basic substance) described above.
  • the neutralizing agent (second basic substance) added during the action process other than at the start of the action process is the same basic compound as the neutralizing agent (first basic substance) added at the start of the action process. Or different basic compounds.
  • the neutralizing agent added at the start of the action step (the predetermined amount of 5) during the action step other than at the start of the action step. %), That is, an amount of 95% or less of the predetermined amount.
  • the mass of the neutralizing agent added as the remaining amount (in this specification, sometimes referred to as the residual amount equivalent mass) is the number of moles necessary for the remaining neutralization and the neutralizing agent added as the remaining amount. Can be calculated by a conventional method.
  • count of adding a residual amount Although it may be 1 time or multiple times of addition (split addition), it is preferable that there are few.
  • the first speculation is that the reaction solution contains a large amount of sugar and the viscosity of the reaction solution is high, so that it takes time until the neutralizing agent diffuses.
  • Neutralizing agent produces a high concentration region of neutralizing agent, centering on the point of addition of the neutralizing agent (drop point) in the reaction solution, but outside the region until the neutralizing agent diffuses and becomes uniform. Since the pH is in a lowered state and the activity of the carbohydrate oxidase is temporarily reduced, it is speculated that the state will continue until the stirring proceeds and the concentration gradient is eliminated.
  • the neutralizer is used to some extent at the start of the action process rather than providing multiple drop points such as every hour during the action process period.
  • the amount of subsequent drop points is reduced by adding an excess amount (5% or more) of the enzyme.
  • the total amount of enzyme activity is relatively higher when the drop point is provided once at the start of the action process. As a result, a high yield is obtained.
  • the reaction system is an advanced reaction system through a plurality of intermediates.
  • adding an excessive amount of the neutralizing agent at the start of the action step means that the pH at the start of the action step is increased.
  • the reaction solution shows strong alkalinity, the carbohydrate oxidase is immediately deactivated, and the carbohydrate oxidation function is not recovered.
  • the specific neutralizing agent used at the start of the action step of the present invention is used, even if the neutralizing agent is added at the start of the action step, the saccharide oxidase can be used without being deactivated.
  • the concentration gradient generated in the reaction system having a total reaction solution amount of 1 L or more tends to become stronger as the total reaction solution amount increases. That is, the yield tends to decrease as the amount of the reaction solution increases and the size of the reaction vessel increases. Therefore, the production method of the present invention exhibits a yield improving effect as the amount of the reaction solution increases. For example, even a reaction system in which the total amount of the reaction solution is 50 kg or more can be applied. Further, it can be applied to a reaction system of 100 kg or more, a reaction system of 500 kg or more, a reaction system of 1 ton or more, a reaction system of 10 ton or more, a reaction system of 50 ton or more, and a reaction of 100 ton or more. Even a reaction system of 500 tons or more can be suitably used.
  • reaction liquid preparation stage and the action process stage start are continuous, it is a fact that adding a neutralizing agent at the start of the action process stage and adding a neutralizing agent to the reaction liquid preparation stage are facts.
  • the present invention also includes the addition of a neutralizing agent to the reaction solution preparation stage.
  • the addition of the neutralizer requires a certain amount of time, so the addition of the neutralizer It is also included in the present invention that the step is continuously performed from the reaction solution preparation stage to the beginning of the action process stage.
  • the remaining amount (amount of 95% or less of the predetermined amount) is added to the reaction solution during the action step
  • the time interval from the addition of the first neutralizing agent at 5% or more of the predetermined amount to the addition of the next neutralizing agent is required as a certain predetermined time.
  • the predetermined time is typically 0.25 hours or more, 0.5 hours or more, or 1 hour or more. This predetermined time is considered as a time required as a time during which the entire stirring of the reaction solution immediately after the reaction solution preparation stage proceeds to some extent.
  • the required time is typically 8 hours or less, 7 hours or less, 6 hours or less, 5 hours or less, 4 hours or less, 3 hours or less, 2 hours or less, or 1 hour or less.
  • This predetermined time depends on the amount of neutralizing agent added at the start of the action step, and is relatively long when a sufficient amount of neutralizing agent is added to the predetermined amount at the start of the action step. Time may be sufficient, and when a relatively small amount of neutralizing agent is added to the predetermined amount at the start of the action step, the time is relatively short. This is because the neutralizing agent added at the start of the action process is consumed for neutralization during the action process period.
  • a method of additionally adding a neutralizing agent that is insufficient due to consumption of the neutralizing agent there is a method of managing by the pH of the reaction solution in addition to the method of managing by the above time. For example, the pH of the reaction solution during the action process is monitored, and a stable reaction can be achieved by adding the next neutralizing agent at the timing when the pH transitions from a state above pH 6.0 to a state below pH 6.0. realizable.
  • the lower limit of the pH of the reaction solution in the action step is, for example, 5.0 or more, 6.0 or more, 7.0 or more, 8.0 or more, 9.5 or more, and the upper limit is, for example, 11.0 or less, 10.0. It is as follows.
  • reaction temperature in the action process The reaction temperature in the reaction step of the carbohydrate oxidase and catalase is preferably, for example, about 20 to 60 ° C., and more preferably in the range of 25 to 40 ° C.
  • oxygen is required for the reaction system, so it is preferable to ventilate air or oxygen. Further, since oxygen is consumed as a result of the reaction, it is necessary to supply the reaction solution in a region containing more oxygen to the region in which the oxygen in the reaction solution is deficient. Therefore, it is most desirable to stir at a predetermined amount while a predetermined amount of air or oxygen is aerated.
  • the amount of oxygen in the reaction solution can be measured by a dissolved oxygen sensor or the like as a so-called dissolved oxygen amount. Therefore, it is possible to adjust the aeration amount and adjust the stirring speed so that the dissolved oxygen amount becomes a predetermined amount or more during the action period. As shown in the Example mentioned later, the yield of 90% or more can be obtained by making the amount of dissolved oxygen into 1 ppm or more over the whole period of an effect
  • the method is achieved, for example, by stirring while aeration of oxygen from an oxygen cylinder. Alternatively, it can also be achieved by bubbling the reaction liquid while ventilating fine air by passing the air diffuser from the air compressor.
  • the amount of dissolved oxygen is the total amount of dissolved oxygen including not only oxygen dissolved in the reaction solution by aeration but also oxygen generated by the catalase preparation during the reaction.
  • the reaction rate during the action period is not necessarily constant, and in many cases, the reaction rate tends to be high in the first half of the action step and slow in the second half. And since it is the first half where the reaction rate is high that requires more oxygen, in the first half of the action period, stirring is performed while ventilating oxygen from the oxygen cylinder so that the dissolved oxygen amount becomes 1 ppm or more. In the second half, it is possible to reduce the amount of ventilation.
  • the oxidation rate of the reaction is monitored, and stirring is performed while ventilating air so that the amount of dissolved oxygen becomes 1 ppm or more during the action period where the oxidation rate is 0 to 50%. It is also possible to reduce the air flow rate during an operation period of 51% or more. In this way, by setting the dissolved oxygen amount to 1 ppm or more only during the operation period in which the oxidation rate is 0 to 50%, the amount of oxygen used can be reduced, the cost can be reduced, and the burden on the process control can be reduced.
  • the upper limit of the amount of dissolved oxygen in the reaction solution is, for example, 30 ppm or less, preferably 15 ppm or less, and more preferably 7.5 ppm or less.
  • an oxidation rate (%) can be measured, for example by using the colorimetric determination method by the Nelson-Somogi method. .
  • a catalase preparation containing a range of impurities a catalase preparation containing a contaminating enzyme in a predetermined range can also be used.
  • a catalase preparation in which the content ratio (B / A) of saccharification activity to catalase activity (A) in the catalase preparation is 0.005 or less is used.
  • B / A is 0.0045 or less, 0.003 or less, 0.002 or less, 0.0015 or less, 0.001 or less, 0.0005 or less, or 0.0004 or less.
  • B / A is preferably 0.00002 or more, and specifically may be 0.0001 or more, 0.0002 or more, 0.0003 or more, or 0.0004 or more. Even if the catalase preparation has saccharification activity at such a ratio, the main reaction of saccharide oxidation proceeds more rapidly than the saccharification reaction, so that the yield is unlikely to decrease.
  • the amount of the catalase preparation is larger than that of the raw material carbohydrate.
  • the contaminating enzyme in the catalase preparation hydrolyzes the raw material substrate, and there may be a case where a sugar carboxylic acid such as maltobionic acid is assumed to be not obtained. Therefore, the saccharification activity in the catalase preparation is 0.9 u / g or less (preferably 0.8 u / g or less, 0.7 u / g or less) with respect to the amount of reducing sugar (wt% per solid content) in the raw material substrate. , 0.65 u / g or less), it is necessary to make the catalase preparation act.
  • the catalase activity (A) in the catalase preparation is preferably 5000 u / ml or more, specifically 10,000 u / ml or more, 15000 u / ml or more, 20000 u / ml or more, 22500 u / ml or more.
  • the catalase activity (A) in the catalase preparation is preferably 5000 u / ml or more, specifically 10,000 u / ml or more, 15000 u / ml or more, 20000 u / ml or more, 22500 u / ml or more.
  • the catalase activity (A) in the catalase preparation is preferably 500000 u / ml or less, and specifically may be 2500,000 u / ml, 150,000 u / ml, 100000 u / ml or less, 75000 u / ml or less. Since the catalase preparation used in the present invention has a low saccharification activity, even if it does not have an excessive catalase activity, the influence on the yield can be kept small.
  • the saccharification activity (B) in the catalase preparation is preferably 250 u / ml or less, specifically, 100 u / ml or less, 50 u / ml or less, 30 u / ml or less, or 25 u / ml or less.
  • the saccharification activity (B) in the catalase preparation may be within an acceptable range, and is preferably 0.1 u / ml or more, specifically 0.5 u / ml or more, 1.0 u / ml. As described above, it may be 1.5 u / ml or more and 2.0 u / ml or more. Even if this level of saccharification activity is present, the main reaction of carbohydrate oxidation proceeds more rapidly than the saccharification reaction, so that it is difficult to lead to a decrease in yield.
  • the saccharification activity in the catalase preparation may be within an acceptable range. Specifically, it is 0.00008 u / g or more with respect to the amount of reducing sugar (wt% per solid content) in the raw material substrate, preferably 0.8. It may be 0005 u / g or more, 0.001 u / g or more, 0.0015 u / g or more. Even if this level of saccharification activity is present, the main reaction of carbohydrate oxidation proceeds more rapidly than the saccharification reaction, so that it is difficult to lead to a decrease in yield.
  • the catalase preparation is preferably present at 40 u / g or more and 1000 u / g or less with respect to the amount of reducing sugar (per solid content) in the raw material substrate, more preferably , 60 u / g or more and 500 u / g or less.
  • the saccharification activity in the catalase preparation is kept low, even if a sufficient amount of the catalase preparation is used to suppress the degradation of the carbohydrate oxidase by hydrogen peroxide, the yield is unlikely to decrease.
  • the catalase activity in the catalase preparation is measured as follows.
  • follow the method of titration of residual hydrogen peroxide after enzymatic reaction with sodium thiosulfate (supervised by Michio Kosaki “Enzyme Utilization Handbook”, Jinjinshokan 1985 edition, p404-410). That is, 5 ml of a substrate solution obtained by diluting commercially available 30% by weight hydrogen peroxide 800-fold with 50 mM phosphate buffer (pH 7.0) is placed in a container and placed in a constant temperature water bath at 30 ° C. for 15 minutes to obtain a constant temperature.
  • 1U has shown the activity which decomposes
  • T 0 blank titration value (ml)
  • T S Titration value of sample (ml) 24.18 / T 0 : Correction value for change in activity measurement due to initial substrate concentration 2.5: 1 ml of 0.005N sodium thiosulfate solution corresponds to 2.5 ⁇ mol of hydrogen peroxide
  • the saccharification activity defined in the present invention is a force that hydrolyzes the starch degradation product by glucoamylase activity and ⁇ -glucosidase activity to release glucose, and the saccharification activity of the present invention is the substrate 4-nitrophenyl ⁇ -maltoside. From (G2- ⁇ -PNP), the activity of releasing 1 ⁇ mol of PNP per minute can be defined as 1 U.
  • the saccharification activity in the catalase preparation is obtained by reacting the catalase preparation with 4-nitrophenyl ⁇ -maltoside to produce 4-nitrophenyl ⁇ -glucoside, which is decomposed by ⁇ -glucosidase to produce 4-nitrophenol, It is measured by quantifying 4-nitrophenol.
  • the saccharification activity in the catalase preparation is measured using a saccharification power measurement kit or a saccharification power fractionation determination kit manufactured by Kikkoman Corporation.
  • the sugar carboxylic acid prepared using the method of the present invention can be used for food and drink, cosmetics, pharmaceuticals, chemical products and the like.
  • Example 1 Comparison of carbonate neutralizer addition method (examination of addition amount at start of action process and addition method during action process) (Examples 1 to 3 and Comparative Example 1) ⁇ Example 1> In addition to maltose 70.3 wt%, malto-oligosaccharide of glucose 1.2 wt%, maltotriose 15.0 wt% and maltotetraose (degree of polymerization 4) or more for jar fermenter (capacity 4L, manufactured by Able Co., Ltd.) After adding 1200 g of distilled water to 800 g of high maltose starch syrup containing 13.5 wt% (Bx.75%, manufactured by Sanei Saccharification Co., Ltd.) and dissolving it to 30 wt%, calcium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) ) 78 g (amount corresponding to 100% of the predetermined amount), Acrenium chrysogenum-derived saccharide oxidas
  • the added amount 78 g of calcium carbonate at this time is a mass corresponding to a predetermined amount of 100%.
  • the saccharification activity / catalase activity ratio was 0.00004 (that is, 0.005 or less), and the saccharification activity was 0.013 u / g (that is, 0.9 u / g or less) per reducing sugar of the raw material substrate.
  • Example 2 As Example 2, the raw material sugar, the amount of enzyme, the reaction temperature and the air aeration conditions were oxidized under the same conditions as in Example 1, and 78 g of calcium carbonate (amount corresponding to 100% of the predetermined amount) was divided into three parts. The oxidation reaction was carried out while adding (50% of the predetermined amount at the start of the action step, 40% of the predetermined amount after 8 hours, 10% of the predetermined amount after 22 hours).
  • Example 3 As Example 3, the raw material sugar, the amount of enzyme, the reaction temperature and the air aeration conditions were oxidized under the same conditions as in Example 1, and the mass of calcium carbonate corresponding to 10% of the predetermined amount (7.8 g) Is added at the start of the action step, and 1 hour after the start of the reaction, calcium carbonate (70.2 g) in a mass corresponding to the remaining amount of 90% is sequentially added as a 15 wt% solution so that the pH becomes 6.0.
  • the oxidation reaction was carried out.
  • sequential addition measures pH in real time, and adds a neutralizing agent using a micropump.
  • Comparative Example 1 As Comparative Example 1, the raw sugar, the amount of enzyme, the reaction temperature, and the air aeration conditions were 15 wt% so that the oxidation reaction was performed under the same conditions as in Example 1 and the pH decreased by the oxidation reaction was 6.0. The oxidation reaction was carried out while adding calcium carbonate sequentially from the start of the action step to the duration of the action step. In addition, it was calculated that the addition amount of calcium carbonate at the start of the action process in Comparative Example 1 was a mass corresponding to 1% of the predetermined amount from the recording data of the micropump.
  • Example 1 As described above, with respect to Examples 1 to 3 in which an amount of calcium carbonate corresponding to 5% or more of the predetermined amount was added at the start of the action step, 100% oxidation was performed in Example 1 for 28 hours and in Example 2 for 31 hours. In Example 3, 95% was oxidized in 31 hours of reaction, whereas an amount of calcium carbonate corresponding to 1% of the predetermined amount was added at the start of the action process of calcium carbonate in Comparative Example 1, and thereafter sequentially. When the pH was continuously adjusted by addition, the oxidation rate remained below 90% in 31 hours of reaction, and the reaction efficiency was greatly different.
  • Test Example 4 Fourth Example (Example 4) using a carbonate neutralizing agent
  • maltose 70.3 wt% malto-oligosaccharide of glucose 1.2 wt%, maltotriose 15.0 wt% and maltotetraose (degree of polymerization 4) or more for jar fermenter (capacity 4L, manufactured by Able Co., Ltd.)
  • magnesium carbonate manufactured by Wako Pure Chemical Industries, Ltd.
  • Acrenium chrysogenum-derived saccharide oxidase preparation (carbohydrate oxidizing activity 300 u / ml) 4.0 ml (1200 u
  • Example 4 in which magnesium carbonate was added as a neutralizing agent in an amount corresponding to 100% of the predetermined amount at the start of the action step, the oxidation reaction proceeded while the pH during the reaction was around 7.5, and 28 hours later was 100% oxidized.
  • Example 4 it was confirmed that the amount of dissolved oxygen during the action step was always 1 ppm or more.
  • Test Example 3 Example using a bicarbonate neutralizer and a comparative example (Example 5 and Comparative Example 2) In addition to maltose 70.3 wt%, malto-oligosaccharide of glucose 1.2 wt%, maltotriose 15.0 wt% and maltotetraose (degree of polymerization 4) or more for jar fermenter (capacity 4L, manufactured by Able Co., Ltd.) After adding 1466 g of distilled water to 534 g of Hymaltose starch syrup containing 13.5 wt% (Bx.75%, manufactured by Sanei Saccharification Co., Ltd.) and dissolving it to 20 wt%, sodium bicarbonate (Wako Pure Chemical Industries, Ltd.) 50 g (amount equivalent to 100% of the predetermined amount), 2.67 ml (800 u, 2 u / g substrate) of sugar oxidase preparation (sugar oxidase activity 300 u / ml)
  • Comparative Example 2 the raw sugar, the amount of enzyme, the reaction temperature, and the air aeration conditions were subjected to an oxidation reaction under the same conditions as in Example 5 so that the pH decreased by the oxidation reaction was 9.5.
  • the oxidation reaction was performed while adding 25 wt% sodium hydroxide sequentially from the start of the action step to the duration of the action step.
  • Example 5 in which sodium bicarbonate was added as a neutralizing agent and an amount corresponding to 100% of the predetermined amount at the start of the action step, the oxidation reaction proceeded while the pH during the reaction was around 9.8, and the reaction time was 28 hours. Later it was 100% oxidized.
  • Comparative Example 2 in which sodium hydroxide, which is a basic compound having a pKb of less than 1, was successively added, the reaction time was 28 hours at the beginning of the reaction and during the reaction period, although the pH was low. The oxidation rate remained below 60%, and the oxidation rate, that is, the yield in industrial production, was a remarkably low value. That is, even if it is a basic compound, it is understood that a basic compound having a pKb of less than 1 is not suitable for industrial production as a basic compound added at the start of the action step.
  • Example 5 it was confirmed that the amount of dissolved oxygen during the action step was always 1 ppm or more.
  • Test Example 4 Combined use of carbonate neutralizer and basic compound neutralizer (I) (Example 6)
  • maltose 70.3 wt% malto-oligosaccharide of glucose 1.2 wt%, maltotriose 15.0 wt% and maltotetraose (degree of polymerization 4) or more for jar fermenter (capacity 4L, manufactured by Able Co., Ltd.)
  • Hymaltose starch syrup containing 13.5 wt% Bx.75%, manufactured by Sanei Saccharification Co., Ltd.
  • an amount corresponding to 50% of the predetermined amount 39 g of calcium carbonate manufactured by Wako Pure Chemical Industries, Ltd.
  • sugar oxidase preparation derived from Acremonium chrysogenum (carbohydrate oxidizing activity 300 u / ml)
  • 4.0 ml (1200 u
  • the oxidation reaction was carried out while successively adding a 25% calcium hydroxide solution in an amount corresponding to a predetermined amount of 50% so that the pH became 7.0 after 8 hours of the reaction.
  • Example 6 it was confirmed that the amount of dissolved oxygen during the action step was always 1 ppm or more.
  • Test Example 5 Combined use of bicarbonate neutralizer and basic compound neutralizer (II) (Example 7) In addition to maltose 70.3 wt%, malto-oligosaccharide of glucose 1.2 wt%, maltotriose 15.0 wt% and maltotetraose (degree of polymerization 4) or more for jar fermenter (capacity 4L, manufactured by Able Co., Ltd.) After adding 1200 g of distilled water to 800 g of high maltose starch syrup containing 13.5 wt% (Bx.75%, manufactured by Sanei Saccharification Co., Ltd.) and dissolving it to 30 wt%, an amount of carbonic acid equivalent to 50% of the predetermined amount 37 g of sodium hydrogen (manufactured by Wako Pure Chemical Industries, Ltd.), 4.0 ml (1200 u, 2 u / g substrate) of sugar oxidase preparation (sugar oxidizing activity 300 u / m
  • Example 7 it was confirmed that the amount of dissolved oxygen during the action step was always 1 ppm or more.
  • Test Example 5 Comparison of dissolved oxygen amount and yield due to differences in stirring and aeration methods (Example 8, Example 9, Comparative Example 3)
  • maltose 70.3 wt% malto-oligosaccharide of glucose 1.2 wt%, maltotriose 15.0 wt% and maltotetraose (degree of polymerization 4) or more for jar fermenter (capacity 4L, manufactured by Able Co., Ltd.)
  • Acrenium chrysogenum-derived carbohydrate oxidase preparation (carbohydrate oxidation activity 300 u / ml) 4.0 ml (1200
  • Test Example 6 Using a large-capacity reaction tank, an application example in a total reaction solution amount of 1 ton or more (Example 10) In addition to maltose 70.3 wt%, a jacketed SUS type reaction tank (capacity 10000 L, manufactured by Yashima Koki Co., Ltd.) equipped with a horizontal type 2.2 kW propeller blade type agitator (manufactured by Takeuchi Seisakusho Co., Ltd.) Hymaltose starch syrup containing 1.2 wt% glucose, 15.0 wt% maltotriose and 13.5 wt% malto-oligosaccharide (polymerization degree 4) or higher (Bx.
  • a jacketed SUS type reaction tank capacity 10000 L, manufactured by Yashima Koki Co., Ltd.
  • Hymaltose starch syrup containing 1.2 wt% glucose, 15.0 wt% maltotriose and 13.5 wt% malto-oligo
  • Table 7 shows the oxidation rate and dissolved oxygen during the lapse of 42 hours from the start of the oxidation reaction.
  • neutralization reaction is effectively performed by adding calcium carbonate as a neutralizing agent in advance and venting so that the dissolved oxygen becomes 1 ppm or more. After 42 hours, the oxidation progressed to 98.6%.
  • the effect of the present invention could be confirmed even in an industrial production level reaction system.
  • Example 7 Application Examples (Examples 11 and 12 and Comparative Example 4) using a large-capacity reaction tank and a total reaction solution amount of 1 ton or more ⁇ Example 11>
  • a jacketed SUS type reaction tank (capacity 10000 L, manufactured by Yashima Koki Co., Ltd.) equipped with a horizontal type 2.2 kW propeller blade type agitator (manufactured by Takeuchi Seisakusho Co., Ltd.)
  • Hymaltose starch syrup containing 1.2 wt% glucose, 15.0 wt% maltotriose and 13.5 wt% malto-oligosaccharide (polymerization degree 4) or higher (Bx.
  • Table 8 shows the oxidation rate and dissolved oxygen during the lapse of 42 hours from the start of the oxidation reaction.
  • neutralization reaction is effectively performed by adding calcium carbonate as a neutralizing agent in advance and venting so that the dissolved oxygen becomes 1 ppm or more. After 42 hours, the oxidation progressed to 98.6%.
  • the effect of the present invention could be confirmed even in an industrial production level reaction system.
  • Example 12 As Example 12, the raw material sugar, the amount of enzyme, the reaction temperature and the air aeration conditions were subjected to an oxidation reaction under the same conditions as in Example 12, and a mass of calcium carbonate (210 kg) corresponding to 70% of the predetermined amount was obtained. After adding at the start of the action step, 20 hours after the start of the reaction, 15% wt. Of calcium hydroxide (39.7 kg) having a mass corresponding to the remaining amount of 30% is set so that the pH becomes 5.5 to 7.5. The oxidation reaction was performed while sequentially adding as a solution.
  • Table 9 shows the oxidation rate and dissolved oxygen during the lapse of 50 hours from the start of the oxidation reaction.
  • Table 9 shows the oxidation rate and dissolved oxygen during the lapse of 50 hours from the start of the oxidation reaction.
  • the equivalent amount of calcium carbonate is added to 70% of the predetermined amount at the start of the reaction, and the remaining 30% is neutralized with calcium hydroxide.
  • the neutralization reaction was effectively performed by aeration so that the dissolved oxygen was 1 ppm or more, and the oxidation proceeded to 98.4% after 50 hours of the reaction.
  • the effect of the present invention could be confirmed even in an industrial production level reaction system.
  • Comparative example 4 As Comparative Example 4, the raw material sugar, the amount of enzyme, the reaction temperature and the air aeration conditions were subjected to an oxidation reaction under the same conditions as in Example 11, and calcium carbonate (6 kg) having a mass corresponding to 2% of the predetermined amount was obtained. After adding at the start of the action step, 1 hour after the start of the reaction, a 15 wt% solution of calcium hydroxide (129.5 kg) corresponding to the remaining amount of 98% so that the pH is 5.5 to 7.5. As a result, the oxidation reaction was performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

酸化反応で副生する過酸化水素を速やかに分解するカタラーゼ製剤を用い、重合度2以上の澱粉分解酸化物或いは転移反応酸化物で糖カルボン酸を、工業的にかつ、高収率で、生産する方法を提供すること。 還元末端にグルコース残基を有する重合度2以上の澱粉分解物又は転移反応物の還元末端側のアルデヒド基が酸化された糖カルボン酸の製造方法は、糖質酸化時に過酸化水素を副生する糖質酸化酵素剤を、カタラーゼ製剤の存在下、前記澱粉分解物或いは転移反応物を含む原料基質に作用させる工程を含み、作用工程の反応液総量が、1L以上であり、塩基性化合物を、作用工程中に所定量添加するとともに、作用工程開始時に、塩基性化合物として、炭酸塩、または炭酸水素塩を、前記所定量の5%以上の相当質量で添加する。

Description

糖カルボン酸の製造方法
 本発明は、還元末端にグルコース残基を有する重合度2以上の澱粉分解物又は転移反応物の還元末端側のアルデヒド基が酸化された糖カルボン酸、その塩類及びそのラクトンを製造する方法に関する。
 グルコースの還元末端を酸化することで得られるアルドン酸の一つであるグルコン酸は、単糖でありながらビフィズス菌増殖選択性を持つ機能性等を有しているだけでなく、カルシウムなどの無機カチオンと安定な塩を形成する特徴を持つことから、ミネラル補強剤として利用されている。しかしながら溶液安定性が悪く、高濃度下で保存すると析出してしまう欠点があった。
 これら欠点を補う素材として、グルコン酸の非還元末端側にグルコースが結合したマルトビオン酸などの糖カルボン酸が挙げられる。糖カルボン酸であるマルトビオン酸においても無機カチオンと安定な塩を形成するが、溶解性が良好であり、高濃度条件で保存しても析出しない特徴を有している。このように二糖類以上の糖質の還元末端を酸化することで、多くの機能性物質が得られることが期待される。
 特許文献1及び2には、重合度2のマルトース、ラクトースやセロビオースなどを酸化する手法として、アシネトバクター属、ブルクホルデリア属、グルコノバクター属やアセトバクター属などの微生物を用いた方法が開示されている。また、重合度4以上の澱粉分解物を酸化する酵素的な手法として、Microdochium属に属する微生物由来の糖質酸化酵素製剤や、Acremonium属に属する微生物由来の糖質酸化酵素製剤を用いる手法が知られている。
特開2001-245657号公報 特開2007-028917号公報 特許第4417550号公報 特許第3310008号公報 国際公開WO2014/042237号パンフレット 特表2000-502904号公報
 特許文献3~5の糖質酸化酵素は、糖質を酸化する反応で副生成分として過酸化水素を生成する。過酸化水素は、殺菌や漂白剤として使用されるなど、タンパク質を変性させる力があり、糖質酸化時に副生する過酸化水素が、糖質酸化酵素を変性失活させてしまう。このため、糖質酸化酵素を用いて工業的に安定且つ効率的に重合度2以上の澱粉分解物および転移反応物を酸化するためには、過酸化水素の速やかな分解が必要となる。
 特許文献6のグルコースオキシダーゼ製剤においても、グルコースをグルコン酸へ酸化する過程で過酸化水素が発生する。副生する過酸化水素を速やかに分解する生産技術としてカタラーゼ製剤を使用することが記載されている。
 また、特許文献6には、グルコースをグルコン酸へ酸化する過程で、反応液のpHを連続的に一定の範囲に保つ技術が記載されている。
 また、一般的に反応液のpHを一定に保つ技術として、pH緩衝液(バッファ)を添加して、反応液全体のpHを保持する手法が知られている。
 重合度2以上の澱粉分解物や転移反応物を酸化する場合においても、糖質酸化酵素と一緒に、カタラーゼ製剤を添加すると、糖質酸化時に副生する過酸化水素を速やかに分解することが出来る。しかしながら、原因は不明ではあるが、重合度2以上の酸化物を高収率で安定して生産することができない。
 本発明は、以上の実情に鑑みてなされたものであり、酸化反応で副生する過酸化水素を速やかに分解するカタラーゼ製剤を用い、かつ、高収率で、重合度2以上の澱粉分解酸化物或いは転移反応酸化物で糖カルボン酸を工業的に生産する方法を提供する。特に1L以上の大容量の反応液を用いて、工業的に高収率で生産する方法を提供することを目的とする。
 本発明者は、重合度2以上の澱粉分解物や転移反応物を原料とした酸化反応について、ビーカー、フラスコレベルの容器から、バッチ、大型反応釜レベルの容器まで、様々なスケールの容器を用いて検討を行ったところ、原料を含む1L以上の反応液を、大容量の容器の中で酸化反応を行うと収率が低下し、所望の収量を得るためには反応時間が長くかかる傾向にあることが分かった。その原因を検討したところ、大容量の容器内部に保持される反応液の内部は一様ではなく、表面付近と内部とでは反応の経過が異なることが原因であることが判明した。しかしながら、撹拌を行う、循環を行う、反応液のpHを一定に保つ、といった従来手法の採用により、収率はある程度改善がみられるものの、工業生産レベルに必要とされる収率、反応時間には依然不充分であることも判明した。
 そして、本発明者は、工業生産レベルに必要とされる収率、反応時間を得るためには、反応液の内部を、化学的な均一状態、時間的な均一状態にするのではなく、むしろ所定の不均一な状態とすることが効果的であることを発見した。
 また、カタラーゼ製剤中に含まれる夾雑酵素であるα-グルコシダーゼやグルコアミラーゼ等の澱粉分解酵素により加水分解されることが、重合度2以上の糖酸化物の生産を不安定化させる原因であることを発見するとともに、所定量の夾雑酵素量であれば、工業生産に用いることができることも発見した。
 本発明者らは、これら発見に基づき、本発明を完成するに至った。より具体的には、本発明は以下のようなものを提供する。
 (1)
 還元末端にグルコース残基を有する重合度2以上の澱粉分解物又は転移反応物の還元末端側のアルデヒド基が酸化された糖カルボン酸の製造方法であって、
 糖質酸化時に過酸化水素を副生する糖質酸化酵素剤を、カタラーゼ製剤の存在下、前記澱粉分解物或いは転移反応物を含む原料基質に作用させる工程を含み、
 前記作用工程の反応液総量が、1L以上であり、
 塩基性化合物を、前記作用工程中に所定量添加するとともに、
 前記作用工程開始時に、前記塩基性化合物として、炭酸塩、または炭酸水素塩を、前記所定量の5%以上の相当質量で添加する糖カルボン酸の製造方法。
 (2)
 前記炭酸塩、または前記炭酸水素塩を、前記作用工程開始時にのみ、所定量添加する(1)記載の糖カルボン酸の製造方法。
 (3)
 前記塩基性化合物の所定量添加は、
 前記作用工程開始時に、炭酸塩、または炭酸水素塩である第一の塩基性化合物を、前記所定量の5%以上100%未満の相当質量で添加し、
 前記作用工程における前記作用工程開始時以外の時に、前記第一の塩基性化合物と同一または異なる第二の塩基性化合物を、前記作用工程開始時添加分を除いた残量相当質量で添加するものである(1)記載の糖カルボン酸の製造方法。
 (4)
 前記炭酸塩は、水に対する溶解度が、0超0.01mol/L以下である(1)から(3)のいずれか記載の糖カルボン酸の製造方法。
 (5)
 還元末端にグルコース残基を有する重合度2以上の澱粉分解物又は転移反応物の還元末端側のアルデヒド基が酸化された糖カルボン酸の製造方法であって、
 糖質酸化時に過酸化水素を副生する糖質酸化酵素剤を、カタラーゼ製剤の存在下、前記澱粉分解物或いは転移反応物を含む原料基質に作用させる工程を含み、
 前記作用工程の反応液総量が、1L以上であり、
 塩基性化合物を、前記作用工程中に所定量添加するとともに、
 前記作用工程開始時に、前記塩基性化合物として、pKbが1以上8以下である塩基性化合物を、前記所定量の5%以上の相当質量で添加する糖カルボン酸の製造方法。
 (6)
 前記pKbが1以上8以下である塩基性化合物を、前記作用工程開始時にのみ、所定量添加する(5)記載の糖カルボン酸の製造方法。
 (7)
 前記塩基性化合物の所定量添加は、
 前記作用工程開始時に、pKbが1以上8以下である第一の塩基性化合物を、前記所定量の5%以上100%未満の相当質量で添加し、
 前記作用工程における前記作用工程開始時以外の時に、前記第一の塩基性化合物と同一または異なる第二の塩基性化合物を、前記作用工程開始時添加分を除いた残量相当質量で添加するものである(5)記載の糖カルボン酸の製造方法。
 (8)
 前記炭酸塩は、炭酸カルシウム、炭酸マグネシウム、ドロマイト、または卵殻カルシウムである(1)から(4)のいずれか記載の糖カルボン酸の製造方法。
 (9)
 前記塩基性化合物は、炭酸水素ナトリウム、炭酸水素カリウム、または炭酸水素アンモニウムである(5)から(7)記載の糖カルボン酸の製造方法。
 (10)
 溶存酸素量が、1ppm以上となるよう、前記作用工程期間中に酸素を供給する(1)から(9)いずれか記載の糖カルボン酸の製造方法。
 (11)
 前記作用工程期間のうち、酸化率が0%から50%である期間、溶存酸素量が、1ppm以上となるよう、前記作用工程中に酸素を供給する(1)から(9)いずれか記載の糖カルボン酸の製造方法。
 (12)
 前記カタラーゼ製剤中のカタラーゼ活性(A)に対する糖化活性(B)の含有比率(B/A)が0.00002以上0.005以下であり、
 前記糖化活性が前記原料基質中の還元糖量に対して0.9u/g以下である量で存在する(1)から(11)のいずれか記載の糖カルボン酸の製造方法。
 (13)
 前記カタラーゼ製剤中のカタラーゼ活性(A)に対する糖化活性(B)の含有比率(B/A)が0.005以下であり、かつ糖化活性(B)が0.1u/ml以上であり、
 前記糖化活性が前記原料基質中の還元糖量に対して0.9u/g以下である量で存在する(1)から(11)のいずれか記載の糖カルボン酸の製造方法。
 (14)
 前記作用工程の反応液総量が、50kg以上である(1)~(13)のいずれか記載の糖カルボン酸の製造方法。
 (15)
 前記作用工程の反応液総量が、1ton以上である(14)記載の糖カルボン酸の製造方法。
 (16)
 前記糖カルボン酸は、マルトビオン酸である(1)から(15)いずれか記載の糖カルボン酸の製造方法。
 本発明によれば、食品、医薬や工業分野等において、ミネラル成分を可溶させる素材等として有用である糖カルボン酸を収率よく製造することができる。特に工業生産に適した収率、収量を、簡便に得ることができる。
 以下、本発明の具体的な実施形態について詳細に説明するが、本発明は以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の要旨を限定するものではない。
 本発明の一実施形態は、還元末端にグルコース残基を有する重合度2以上の澱粉分解物又は転移反応物の還元末端側のアルデヒド基が酸化された糖カルボン酸の製造方法であって、
 糖質酸化時に過酸化水素を副生する糖質酸化酵素剤を、カタラーゼ製剤の存在下、澱粉分解物或いは転移反応物を含む原料基質に作用させる工程を含み、
 前記作用工程の反応液総量が、1L以上であり、
 塩基性化合物を、前記作用工程中に所定量添加するとともに、
 前記作用工程開始時に、前記塩基性化合物として、炭酸塩、または炭酸水素塩を、前記所定量の5%以上の相当質量で添加する糖カルボン酸の製造方法である。
 本発明の別の実施形態は、還元末端にグルコース残基を有する重合度2以上の澱粉分解物又は転移反応物の還元末端側のアルデヒド基が酸化された糖カルボン酸の製造方法であって、
 糖質酸化時に過酸化水素を副生する糖質酸化酵素剤を、カタラーゼ製剤の存在下、澱粉分解物或いは転移反応物を含む原料基質に作用させる工程を含み、
 前記作用工程の反応液総量が、1L以上であり、
 塩基性化合物を、前記作用工程中に所定量添加するとともに、
 前記作用工程開始時に、前記塩基性化合物として、pKbが1以上8以下である塩基性化合物を、前記所定量の5%以上の相当質量で添加する糖カルボン酸の製造方法である。
 以下、本発明の構成について、順に説明する。本発明は、原料糖質を含む反応液をあらかじめ調製し、原料糖質に含まれる還元末端側のアルデヒド基を酸化させる作用工程によって、糖カルボン酸を得る製造方法である。
 本発明の製造方法によって製造される糖カルボン酸は、以下のとおりである。
 (糖カルボン酸)
 本発明方法を使用して製造される糖カルボン酸は、重合度2以上、好ましくは重合度4以上の澱粉分解物又は転移反応物の還元末端側のアルデヒド基が酸化されたものであれば、特に限定されない。澱粉分解物又は転移反応物の重合度は、例えば、2~100、好ましくは4~100等であってもよい。より具体的には、糖カルボン酸は、マルトデキストリン酸化物、粉飴酸化物、水飴酸化物、マルトヘキサオン酸、マルトテトラオン酸、マルトトリオン酸、マルトビオン酸、イソマルトデキストリン酸化物、パノース酸化物、イソマルトトリオン酸、イソマルトビオン酸、ニゲロビオン酸、コージビオン酸などが挙げられる。これらのうち、糖カルボン酸は、遊離の酸であってもよく、ラクトンであってもよく、その塩類であってもよい。
 糖カルボン酸の塩としては、特に限定されないが、カルシウム塩、マグネシウム塩、カリウム塩、ナトリウム塩、亜鉛塩、鉄塩、銅塩等が挙げられる。
 あらかじめ調製する原料糖質を含む反応液は、以下の構成からなる。
 (原料糖質)
 本発明において原料に用いる糖質は、還元末端にグルコース残基を有する重合度2以上の澱粉分解物或いは転移反応物であり、マルトース、イソマルトース、マルトトリオース、イソマルトトリオース、マルトテトラオース、マルトヘキサオース、パノース、マルトオリゴ糖、イソマルトオリゴ糖、水飴、粉飴、デキストリン、分岐デキストリン、イソマルトデキストリン等が挙げられる。原料糖質は、単一の重合度である必要はなく、異なる重合度の糖質が混合された原料糖質としてもよい。
 糖カルボン酸生産時の原料糖質の濃度は、精製工程での濃縮等を考慮すると10~50(wt)%が好ましく、20~40(wt)%がより好ましい。なお、本明細書において、「(wt)%」は、対象成分の含有量(質量)を意味し、ここでは、液体中における糖質の含有量を意味する。
 (糖質酸化酵素製剤)
 本発明で言う糖質酸化酵素製剤とは、還元末端にグルコース残基を有する重合度2以上の糖質を酸化し、副生成分として過酸化水素を発生するものをいう。Microdochium属に属する微生物由来の糖質酸化酵素製剤や、Acremonium属に属する微生物由来の糖質酸化酵素製剤などが挙げられ、具体的には、Acremonium  chrysogenumに由来する糖質酸化酵素などが挙げられる。
 マルトビオン酸等の糖カルボン酸製造にあたり糖質酸化酵素は、原料基質中の還元糖量(wt%)に対して1u/g以上30u/g以下が好ましく、より好ましくは、2u/g以上20u/g以下で作用させる。本発明では、カタラーゼ製剤による過酸化水素の分解が十分になされるので、副生される過酸化水素の増加にかかわらず、糖質酸化反応を十分な速度で行うことができる。また、糖化活性による原料となる重合度2以上の澱粉分解物や転移反応物の分解が抑制され、ある程度の時間をかけて糖質酸化反応を行っても収率低下を招きにくいので、過剰な量の糖質酸化酵素を必要としない。
 本発明の糖質酸化酵素の酵素活性は、次のようにして測定する。
 0.15%(w/v)フェノール及び0.15%(w/v)トリトンX-100を含む0.1Mリン酸一カリウム-水酸化ナトリウム緩衝液(pH7.0)2ml、10%マルトース一水和物溶液0.5ml、25U/mlペルオキシダーゼ溶液0.5ml、及び0.4%(w/v)4-アミノアンチピリン溶液0.1mlを混合し、37℃で10分保温後、酵素溶液0.1mlを添加し、反応を開始した。酵素反応進行と共に、波長500nmにおける吸光度の増加を測定することにより糖質酸化活性を測定した。なお、ブンランクには0.1Mリン酸緩衝液(pH7.0)を使用し、1分間に1μmolのマルトース一水和物を酸化するのに必要な酵素量を1単位とし、以下の計算式より活性を算出する。
 マルトース酸化活性 (U/ml)
 ={(A5-A2)-(Ab5-Ab2)}× 2.218 ×n 
 A2, A5 : 反応開始後、2分後および5 分後の吸光度 (検体)
 Ab2, Ab5 : 反応開始後、2 分後および5 分後の吸光度 (ブランク)
 n:酵素液の希釈倍率
 (カタラーゼ製剤)
 本発明で言うカタラーゼ製剤とは、Aspergillus属や、Micrococcus属などの微生物由来のカタラーゼ製剤などが挙げられ、具体的には、Aspergillus nigr又はMicrococcus lysodeikticus由来のカタラーゼ製剤が挙げられる。また、副活性としてカタラーゼ活性を有する市販のグルコースオキシダーゼ製剤を選択して用いることも含まれる。
 カタラーゼ製剤には、グルコアミラーゼやα‐グルコシダーゼなどの糖化活性を持つ夾雑酵素が混在することが多い。これら夾雑酵素が多く混在していると、糖カルボン酸の原料、すなわち還元末端にグルコース残基を有する重合度2以上の澱粉分解物又は転移反応物や、これら原料を酸化した反応生成物である糖カルボン酸が分解されてしまい、安定的な品質の糖カルボン酸の製造が不可能となる。従って、一般的には、純度の高いカタラーゼ製剤が望まれる。
 例えば、遺伝子組換えにより純度を上げて製造された組換えカタラーゼ製剤や、試薬として流通している精製カタラーゼ製剤といった、夾雑酵素をほとんど含まないカタラーゼ製剤を、用いることができる。
 しかしながら、中和剤を、後述する所定の方法で反応液に添加することにより、全体の収率が向上するので、夾雑酵素をある範囲で含んだカタラーゼ製剤でも問題なく用いることができるようになる。その結果、工業生産上、コストメリットも生まれる。この夾雑酵素を所定範囲量で含んだカタラーゼ製剤については、後述する。
 (中和剤)
 本発明で言う中和剤とは、反応液中のpHを調整するために用いられるものであり、作用工程中に添加される。中和剤の一例としては、塩基性化合物を用いることができる。
 塩基性化合物は、一例として、炭酸塩、炭酸水素塩、水酸化塩を用いることができる。
 そして、炭酸塩は、一例として、25℃における水に対する溶解度が、0超0.01mol/L以下のものである。例えば炭酸カルシウム、炭酸マグネシウム、ドロマイト、卵殻カルシウムなどを用いることができる。
 また、炭酸水素塩は、例えば炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素アンモニウムなどを用いることができる。
 また、水酸化塩は、例えば水酸化ナトリウム、水酸化カルシウムなどを用いることができる。
 また、塩基性化合物の別の一例としては、25℃における水を溶媒としたpKbが、0以上8以下である塩基性化合物を用いることができる。pKbが8超である塩基性化合物は、中和機能に乏しく、工業生産における使用には適さないものである。
 また、pKbの典型的な例としては、25℃における水を溶媒としたpKbは、0以上、0超、0.5以上、1以上、1超、1.3以上、1.3超、1.5以上、2以上、2.5以上、3以上、3.5以上、4以上、または4.5以上であり、1以下、1未満、1.5以下、2以下、3以下、4以下、4.5以下、5以下、5.5以下、6以下、6.5以下、7以下、または8以下である。
 pKbが0以上8以下である塩基性化合物としては、例えば水酸化ナトリウム、水酸化カルシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素アンモニウム、アンモニアなどを例示することができる。
 なお作用工程中(作用工程開始時を含む)に加える中和剤の総量は、原料となる糖質中の還元糖を、中和するのに必要な中和剤の量として計算できる。
 例えば、中和剤が2価のイオンであれば、原料となる糖質中の還元糖と中和剤のモル比が2:1となるようにして、中和に必要なモル数が算出される。また、中和剤が1価のイオンであれば、モル比が1:1となるようにして、中和に必要なモル数が算出される。
 本明細書において、中和剤の「所定量」とは、原料となる糖質中の還元糖の中和に必要な中和剤の総モル数を100%とする量である。
 そして、中和に使用する際の中和剤の質量(本明細書において、相当質量ということがある)は、中和に必要なモル数と、中和剤の分子量とから、常法に従って計算することができる。
 中和剤を複数種類使用する場合でも、上記所定量を按分して、各々の中和剤の分子量を用いて、各々の中和剤の添加質量を計算することができる。
 一例として、複数種類の中和剤を使用する際、ある中和剤Xを所定量のY%の分について作用させようとする場合には、その添加する中和剤Xの質量は、(糖原料固形分)[g]÷(糖原料平均分子量)×(中和剤Xの分子量)÷(中和剤Xのイオン価数)×(Y/100)、によって計算することができる。中和剤のイオン価数は、例えば中和剤が2価のイオンを生成するものである場合には、上記式に2を代入し、中和剤が1価のイオンを生成するものである場合には、上記式に1を代入して計算される。
 ところで、糖カルボン酸を生成する作用工程期間中、反応液のpHは次第に低下し、中性から酸性に変化する傾向にある。ここでpHが4未満となると、糖質酸化酵素の活性が大幅に低下することが分かっているため、一般的には反応液の状態を、pHセンサーで常時モニタリングすることが行われている。そして、pHが4~7の間に任意の目標pHの値を設定し、pHがその目標値で一定に保たれるように、中和剤を作用工程開始時から逐次添加することが一般的に行われている(リアルタイムフィードバック制御型の逐次添加法)。
 しかしながら、本発明者は、反応液総量が1L以上である反応系においては、リアルタイムフィードバック制御型の逐次添加法を行っても、90%以上の高い収率を得ることはできなかった。そして、中和剤の添加方法について、様々な方法を検討としたところ、作用工程期間中に低下するpHを見越して、作用工程開始時に、中和剤をあらかじめ過剰に添加することで、90%以上の高い収率を得ることができた。
 すなわち、作用工程の開始時において、中和剤をある程度の量、加えるものであり、一例としては、反応の全期間を通じて必要な中和剤の総モル数(すなわち所定量)の5%以上の量を、作用工程開始時に反応液に加えることが挙げられる。具体的に、添加する中和剤の質量は、必要なモル数と、使用する中和剤の分子量とから、常法により、計算することができる。
 本発明において、上記のとおり、中和剤を、作用工程開始時に所定量の5%以上の量を添加すればよいため、作用工程開始時における添加量が所定量の100%でもよく(すなわち、作用工程の開始時にのみ添加してもよく)、また、作用工程開始時における添加量が所定量の5%以上100%未満でもよい。
 そして、作用工程開始時における添加量が所定量の100%未満である場合には、作用工程開始時以外の作用工程の期間中に、上記作用工程開始時に加えた中和剤(所定量の5%以上の量)の残量、すなわち所定量の95%以下の量が添加される。
 ここで、作用工程開始時以外に添加される中和剤は、上述した塩基性物質から選ばれ、作用工程開始時の中和剤と、同じであっても異なっていてもよい。
 具体的に、残量として添加する中和剤の質量(本明細書において、残量相当質量ということがある)は、残りの中和に必要なモル数と、残量として添加する中和剤の分子量を用いて、常法により、計算することができる。
 なお、残量を添加する回数に制限はなく、1回でも、複数回の添加(分割添加)であってもよいが、少ないほうが好ましい。
 重要なのは、反応初期に相当する作用工程開始時には、中和剤を5%以上添加するという条件が、反応液総量が1L以上の生産において収率90%を得るために必要であるということである。ここで、作用工程開始時に用いる中和剤には、後述する特定の塩基性化合物を用いることができる。
 一方、作用工程開始時を除く作用工程期間中については、製造工程に比較的柔軟性があり、中和剤に上述した塩基性化合物から選択して用いることができる。また添加方法についても特に制限はない。その添加方法は、例えば、一定時間おきに一定量ずつ添加する方法でよいし、pHが一定となる必要量を適宜追加する方法であってもよい。
 作用工程開始時に加える中和剤の量の典型的な例としては、所定量の5%以上、6%以上、7%以上、8%以上、9%以上、10%以上、15%以上、20%以上、30%以上、40%以上、または50%以上であり、または、100%以下、100%未満、90%以下、80%以下、または70%以下の相当質量である。
 (作用工程開始時に添加する中和剤)
 作用工程開始時に添加する中和剤には、特定の塩基性化合物を用いることができる(第一の塩基性化合物ということがある)。
 塩基性化合物としては、一例として、炭酸塩、炭酸水素塩を用いることができる。
 そして、炭酸塩は、一例として、25℃における水に対する溶解度が、0超0.01mol/L以下のものである。例えば炭酸カルシウム、炭酸マグネシウム、ドロマイト、卵殻カルシウムなどを用いることができる。
 また、炭酸水素塩は、例えば炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素アンモニウムなどを用いることができる。
 また、塩基性化合物の別の一例としては、25℃における水を溶媒としたpKbが、1.3超8以下である化合物を用いることができる。pKbが、1.3以下の化合物を用いた場合は、糖質酸化酵素が添加直後に失活してしまい、糖質酸化機能が回復しないため、使用できない場合があり得る。pKbが8超である塩基性化合物は、中和機能に乏しく、工業生産における使用には適さないものである。
 また、pKbの典型的な例としては、25℃における水を溶媒としたpKbは、1.3超、1.5以上、2以上、2.5以上、3以上、3.5以上、4以上、または4.5以上であり、1以下、1未満、1.5以下、2以下、3以下、4以下、4.5以下、5以下、5.5以下、6以下、6.5以下、7以下、または8以下である。
 pKbが1.3超8以下である塩基性化合物としては、例えば炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素アンモニウム、アンモニアなどを例示することができる。
 以上述べたように、作用工程開始時に添加する中和剤には、特定の塩基性化合物を用いることができる。
 (作用工程開始時以外の作用工程期間中に添加する中和剤)
 一方、作用工程開始時以外の作用工程期間中に添加する中和剤(第二の塩基性物質ということがある)は、上記した特定の塩基性物質(第一の塩基性物質)に限らず、上述した塩基性化合物から広く選択することができる。
 すなわち作用工程開始時以外の作用工程期間中に添加する中和剤(第二の塩基性物質)は、作用工程開始時に添加する中和剤(第一の塩基性物質)と同じ塩基性化合物であっても、異なる塩基性化合物であってもよい。
 そして、作用工程開始時における添加量が所定量の100%未満である場合には、作用工程開始時以外の作用工程の期間中に、上記作用工程開始時に加えた中和剤(所定量の5%以上の量)の残量、すなわち所定量の95%以下の量、が添加される。
 具体的に、残量として添加する中和剤の質量(本明細書において、残量相当質量ということがある)は、残りの中和に必要なモル数と、残量として添加する中和剤の分子量を用いて、常法により、計算することができる。
 なお、残量を添加する回数に制限はなく、1回でも、複数回の添加(分割添加)であってもよいが、少ないほうが好ましい。
 作用工程開始時に中和剤をあらかじめ過剰に加える方法が、作用工程開始時から逐次添加する方法よりも、高収率が得られる原因については、充分に解明が進んでいない。しかし、反応液総量が1L以上である反応系の場合、反応の初期には、反応液の内部に反応中間物質の濃度勾配、反応生成物/副生成物の濃度勾配、添加した中和剤の濃度勾配等が生じやすいことが一因であると考えられる。
 具体的には、第1の推測としては、糖質を多く含むことで反応液は粘度が高いために、中和剤が拡散するまでに時間を要することが原因というものである。中和剤は、反応液中における中和剤の添加点(ドロップポイント)を中心として、中和剤の高濃度な領域が生じるが、中和剤が拡散し均一になるまでにその領域外ではpHが低下した状態となっており、糖質酸化酵素の活性が一時的に減退するため、攪拌が進んで濃度勾配が解消するまで、その状態が持続するという推測である。
 また、第2の推測としては、中和剤が拡散し均一になるまでにドロップポイント近傍以外の領域は、pH低下することで酵素がダメージを受けるため、予め中和剤を添加した場合に比べ、活性低下が早いため収率が悪くなったという推測である。
 いずれの推測にしても、ドロップポイントは、長い時間にわたり影響を与えるものであるから、作用工程期間中に1時間ごとなど複数回のドロップポイントを設けるよりも、作用工程開始時には中和剤をある程度の過剰量(5%以上)を添加して以降のドロップポイントを少なくする、好ましくは作用工程開始時に一度だけドロップポイントを設ける方が、相対的に酵素活性の総和量(時間積分値)が高くなり、その結果、高い収率が得られる。
 また、反応系が、複数の中間体を経る高度な反応系である可能性も考えられる。
 ところで、中和剤を作用工程の開始時に過剰に添加することは、作用工程開始時のpHが高くなることを意味する。ここで、反応液が強アルカリ性を示すと、糖質酸化酵素が直ちに失活してしまい、糖質酸化機能が回復しない。しかしながら、本発明の作用工程開始時に用いる特定の中和剤を用いた場合には、中和剤を作用工程の開始時に添加しても、糖質酸化酵素が失活することなく使用できる。
 また、反応液総量が1L以上である反応系で生ずる濃度勾配は、反応液総量が多くなるほど勾配が強くなる傾向にあることが分かっている。すなわち、反応液の量が多くなり、反応容器のサイズが大きくなるほど、収率は低下する傾向にある。従って、本発明の製造方法は、反応液の量が多い系であるほど、収率向上効果を発揮するものである。例えば、反応液の総量が50kg以上である反応系であっても、適用することができる。さらには、100kg以上である反応系、500kg以上である反応系、1ton以上である反応系、10ton以上である反応系、50ton以上である反応系にも適用することができ、100ton以上である反応系、500ton以上である反応系、でも好適に用いることができる。
 なお、反応液調製段階と、作用工程段階開始時は連続するものであるので、中和剤を作用工程段階の開始時に加えることと、中和剤を反応液調製段階に加えることとは、事実上同一であり、本発明には、中和剤を反応液調製段階に加えることも含まれる。
 また、中和剤の形態(液体、固体等)や添加方法(滴下、散布等)にもよるが、中和剤の添加には、ある程度の有限の時間を要することから、中和剤の添加を、反応液調製段階から作用工程段階開始時にかけて、連続して行うことも、本発明には含まれる。
 一方、中和剤を作用工程開始時に所定量の5%以上の量で反応液に加えた後、その残量(所定量の95%以下の量)を作用工程期間中に反応液に追加する場合、最初の中和剤を所定量の5%以上で添加した後、次の中和剤を添加するまでの時間間隔は、ある所定時間として必要である。
 その所定時間は、典型的には0.25時間以上、0.5時間以上、または1時間以上である。この所定時間は、反応液調製段階直後の反応液の全体撹拌がある程度進行する時間として必要な時間として考えられる。
 また、上記所要時間は、典型的には、8時間以下、7時間以下、6時間以下、5時間以下、4時間以下、3時間以下、2時間以下、または1時間以下である。この所定時間は、作用工程開始時に添加した中和剤の添加量に依存し、作用工程開始時に、所定量に対して充分な量の中和剤が添加された場合には、相対的に長い時間でよく、作用工程開始時に、所定量に対して相対的に少ない量の中和剤が添加された場合には、相対的に短い時間となる。これは作用工程開始時に添加する中和剤が、作用工程期間中に、中和のために消費されることによるものである。
 なお、中和剤の消費に伴なって不足した中和剤を追加添加する方法として、上記した時間で管理する方法以外に、反応液のpHで管理する方法もある。例えば、作用工程進行中の反応液のpHをモニターし、pH6.0超の状態から、pH6.0以下の状態に移行するタイミングで、次の中和剤を添加することで、安定した反応が実現できる。
 (作用工程における反応液のpH)
 作用工程における反応液のpHは、下限は例えば5.0以上、6.0以上、7.0以上、8.0以上、9.5以上であり、上限は例えば11.0以下、10.0以下である。
 (作用工程における反応温度)
 糖質酸化酵素とカタラーゼの反応工程での反応温度は、例えば20~60℃程度の条件下で行うのが好ましく、より好ましくは、25~40℃の範囲である。
 (作用工程における酸素の供給)
 本発明の酸化反応では、反応系に酸素が必要となるため、空気や酸素を通気することが好ましい。また、反応の結果、酸素は消費されるため、反応液中の酸素が欠乏した領域に対して、酸素をより多く含む領域の反応液を供給する必要があるから、常時撹拌することが好ましい。従って、空気や酸素を所定量通気しながら、所定量の速度で撹拌することが最も望ましい。
 そして、反応液中の酸素量は、いわゆる溶存酸素量として、溶存酸素センサー等により計測することができる。従って、作用期間中に、溶存酸素量が所定量以上となるように、通気量を調整することや、撹拌速度を調整することが可能である。
 後述する実施例に示すように、例えば作用工程の全期間にわたって、溶存酸素量を1ppm以上とすることにより、90%以上の収率を得ることができる。その方法は、例えば、酸素ボンベから酸素を通気しながら攪拌することで達成される。または、エアーコンプレッサーから散気装置を通すことで微細な空気を通気しながら、反応液をバブリングすることでも達成される。また反応容器の形状にもよるが、スクリュー型攪拌機、プロペラ型攪拌機のような供給される空気を高速撹拌することで微細な空気へせん断供給する方法でも達成される。
 なおここで、溶存酸素量は、単に通気によって反応液に溶け込んだ酸素だけではなく、カタラーゼ製剤が反応中に生成する酸素等をも含んだ、合計の溶存酸素量である。
 また、溶存酸素センサーを用いた反応液中の溶存酸素量の計測は、比較的簡単にできるため、工業生産として必要な製造コストに見合った製造方法を設計することも可能である。具体的には、作用期間中の反応速度は必ずしも一定ではなく、多くの場合、作用工程の前半では反応速度が速く、後半では反応速度が遅い傾向にある。そしてより多くの酸素を必要するのは反応速度の速い前半であるから、作用期間の前半では、溶存酸素量が1ppm以上となるように、酸素ボンベから酸素を通気しながら攪拌し、作用期間の後半では、通気量を減らすことが可能である。また、別の例としては、反応の酸化率をモニターし、酸化率が0~50%の作用期間に、溶存酸素量が1ppm以上となるように、空気を通気しながら攪拌し、酸化率が51%以上の作用期間では、通気量を減らすことも可能である。このように酸化率が0~50%の作用期間のみを溶存酸素量が1ppm以上とすることにより、酸素使用量を減らし、コスト削減ができるとともに、工程管理面での負担も軽減される。
 反応溶液中の溶存酸素量の上限値としては、例えば30ppm以下であり、15ppm以下が好ましく、7.5ppm以下がより好ましい。
 なお、糖カルボン酸への酸化反応は、還元糖量の減少から確認することができるから、例えばネルソン・ソモギ法による比色定量法を用いることによって、酸化率(%)を測定することが出来る。この場合、ネルソン・ソモギ法による還元糖量を定量することによって、反応系全体の酸化率(%)を算出することもできる。
(反応開始前還元糖量-反応液還元糖量)/反応開始前還元糖量×100=酸化率(%)
 また、HPLCにより原料糖質や糖カルボン酸を分析することで確認することも可能である。例えば、マルトースを原料に酸化反応を行った後、HPAED-PAD法(パルスドアンペロメトリー検出器、CarboPac PA1カラム)により、溶出:35℃、1.0ml/min、水酸化ナトリウム濃度:100mM、酢酸ナトリウム濃度:0分-0mM、2分-0mM、20分-20mMの条件で測定すれば、マルトース、マルトビオン酸を定量することが可能である。
 (夾雑酵素を所定範囲で含むカタラーゼ製剤)
 本発明では、夾雑酵素を所定範囲で含むカタラーゼ製剤を用いることもできる。具体的には、カタラーゼ製剤中のカタラーゼ活性(A)に対する糖化活性の含有比率(B/A)が0.005以下であるカタラーゼ製剤を用いる。好ましくは、B/Aは、0.0045以下、0.003以下、0.002以下、0.0015以下、0.001以下、0.0005以下、0.0004以下である。
 また、B/Aは0.00002以上であることが好ましく、具体的には0.0001以上、0.0002以上、0.0003以上、0.0004以上であってよい。カタラーゼ製剤がこの程度の比率で糖化活性を有していても、糖化反応に比べて糖質酸化の主反応が速やかに進むため、収率低下につながりにくい。
 また、本発明においては、カタラーゼ製剤中のカタラーゼ活性(A)に対する糖化活性(B)の含有比率(B/A)が0.005以下であっても、原料糖質に対してカタラーゼ製剤を多めに添加すると、カタラーゼ製剤中の夾雑酵素が原料基質を加水分解し、マルトビオン酸等の糖カルボン酸が想定している組成のものが得られない場合がある。このためカタラーゼ製剤中の糖化活性が、原料基質中の還元糖量(固形分当たりwt%)に対して0.9u/g以下(好ましくは、0.8u/g以下、0.7u/g以下、0.65u/g以下)となるようにカタラーゼ製剤を作用させる必要がある。
 カタラーゼ製剤中のカタラーゼ活性(A)は、5000u/ml以上であることが好ましく、具体的には10000u/ml以上、15000u/ml以上、20000u/ml以上、22500u/ml以上であってよい。高いカタラーゼ活性を有すると、糖化活性がある程度高くても、収率に与える影響を小さくとどめやすい。
 カタラーゼ製剤中のカタラーゼ活性(A)は、500000u/ml以下であることが好ましく、具体的には、2500000u/ml以下、150000u/ml以下、100000u/ml以下、75000u/ml以下であってよい。本発明で用いられるカタラーゼ製剤は糖化活性が低いので、過大なカタラーゼ活性を有しなくても、収率に与える影響を小さくとどめやすい。
 カタラーゼ製剤中の糖化活性(B)は、250u/ml以下であることが好ましく、具体的には、100u/ml以下、50u/ml以下、30u/ml以下、25u/ml以下であってよい。
 他方、カタラーゼ製剤中の糖化活性(B)は、許容範囲内で有してよく、0.1u/ml以上であることが好ましく、具体的には0.5u/ml以上、1.0u/ml以上、1.5u/ml以上、2.0u/ml以上であってよい。この程度の糖化活性が存在しても、糖化反応に比べて糖質酸化の主反応が速やかに進むため、収率低下につながりにくい。
 カタラーゼ製剤中の糖化活性は、許容範囲内で有してよく、具体的には原料基質中の還元糖量(固形分当たりwt%)に対して、0.00008u/g以上、好ましくは0.0005u/g以上、0.001u/g以上、0.0015u/g以上であってよい。この程度の糖化活性が存在しても、糖化反応に比べて糖質酸化の主反応が速やかに進むため、収率低下につながりにくい。
 また、マルトビオン酸等の糖カルボン酸製造にあたり、前記カタラーゼ製剤は、原料基質中の還元糖量(固形分当たり)に対して40u/g以上1000u/g以下で存在するのが好ましく、より好ましくは、60u/g以上500u/g以下で存在する。本発明では、カタラーゼ製剤中の糖化活性が低く抑えられているため、過酸化水素による糖質酸化酵素の分解を抑制するのに十分な量のカタラーゼ製剤を使っても収率低下を招きにくい。また、糖化活性による原料となる重合度2以上の澱粉分解物や転移反応物の分解が抑制され、ある程度の時間をかけて糖質酸化反応を行っても収率低下を招きにくいので、過剰なカタラーゼ活性を必要としない。
 なお、カタラーゼ製剤中のカタラーゼ活性は、次のようにして測定する。
 酵素反応後の残存過酸化水素をチオ硫酸ナトリウムで滴定する方法に従う(小崎道雄監修「酵素利用ハンドブック」、地人書館昭和60年版、p404~410)。すなわち、市販の30重量%過酸化水素を50mMリン酸緩衝液(pH7.0)で800倍に希釈した基質溶液5mlを容器にとり、30℃の恒温水槽に15分入れ恒温とする。これに30℃に保温した検体酵素液1mlを加え、正確に5分後に0.5N硫酸2mlを加えよく振り混ぜ酵素作用を止める。これに10重量%ヨウ化カリウム溶液1mlと1%モリブデン酸アンモニウム1滴及び指示薬として0.5%デンプン試薬5滴を加え、この溶液を撹拌しながら、0.005Nチオ硫酸ナトリウム溶液(定量用)で滴定し、ブランクは試料の代わりに水1mlを添加し、ブランクの値から検体の値を差し引いてカタラーゼ作用によって分解された過酸化水素の量を算出し、標準曲線から検体酵素液のカタラーゼ活性を求める。なお、1Uは1分間に1μmolの過酸化水素を分解する活性を示している。
 カタラーゼ活性(U/ml)=A×n
 n:希釈倍率
 A:標準曲線のグラフよりy=(T0-TS)×24.18/T0×2.5×fのx軸の値Aを求める
 f:0.005Nチオ硫酸ナトリウムのファクター
 T0:ブランクの滴定値(ml)
 TS:サンプルの滴定値(ml)
 24.18/T0:初発基質濃度による活性測定変化に対する補正値
 2.5:0.005Nチオ硫酸ナトリウム溶液1mlは過酸化水素2.5μmolに相当
 本発明で定義する糖化活性とは、グルコアミラーゼ活性とα-グルコシダーゼ活性により澱粉分解物が加水分解されグルコースを遊離する力であり、本発明の糖化活性は、基質の4-ニトロフェニルβ-マルトシド(G2-β-PNP)より、1分間に1μmolのPNPを遊離する活性を1Uと定義することができる。
 カタラーゼ製剤中の糖化活性は、カタラーゼ製剤を4-ニトロフェニルβ-マルトシドと反応させて4-ニトロフェニルβ-グルコシドを生成させ、それをβ-グルコシダーゼによって分解して4-ニトロフェノールを生成させ、4-ニトロフェノールを定量することにより測定される。具体的には、キッコーマン社製の糖化力測定キット或いは糖化力分別定量キットなどを利用して、カタラーゼ製剤中の糖化活性を測定する。
 (キッコーマン社製の糖化力測定キットを使用した糖化力活性の測定)
 キッコーマン社製の糖化力測定キットを使用する場合、4-ニトロフェニルβ-マルトシドを含有する基質溶液0.5mlにβ-グルコシダーゼを含有する酵素溶液0.5mlを混ぜ、37℃で5分間予備加温を行った後、測定試料0.1mlを加え、混合して37℃で10分間反応させる。反応停止は、炭酸ナトリウムを含有する酵素停止液2mlを加え混合する。反応終了後の液を波長400nmで定量することにより糖化力を測定し、以下の計算式より活性を算出する。
 糖化力活性 (U/ml)=(Es-Eb)× 0.171×n 
 Es:測定試料の吸光度
 Eb:ブランクの吸光度
 n:酵素液の希釈倍率
 本発明方法を使用して調製した糖カルボン酸は、飲食物や化粧品、医薬品、化成品等へ使用することが可能である。
試験例1  炭酸塩中和剤添加方法の比較(作用工程開始時の添加量、及び作用工程期間中の添加方法の検討)
(実施例1~3、及び比較例1)
<実施例1>
 ジャーファメンター(容量4L、エイブル株式会社製)に対し、マルトース70.3wt%に加えて、グルコース1.2wt%、マルトトリオース15.0wt%及びマルトテトラオース(重合度4)以上のマルトオリゴ糖13.5wt%を含むハイマルトース水飴(Bx.75%、サンエイ糖化株式会社製)800gに蒸留水1200gを加え、30wt%となるように溶解させた後、炭酸カルシウム(和光純薬工業株式会社製)78g(所定量の100%に相当する量)、Acremonium  chrysogenum由来糖質酸化酵素製剤(糖質酸化活性300u/ml)4.0ml(1200u、2u/g基質)と、Aspergillus属由来のカタラーゼ製剤E(カタラーゼ活性53800u/ml、糖化活性2.2u/ml、糖化活性/カタラーゼ活性比=0.00004)1.56ml(84000U、140u/g基質)を加え、35℃、500rpm、空気通気1L/分で通気攪拌(孔径10μmの焼結フィルターを装着した配管より連続的に通気)を行った。反応開始から4時間後に、糖質酸化酵素剤4.0ml(1200u、2u/g基質)を追加添加し、酸化反応を行った。
 なお、この時の炭酸カルシウムの添加量78gは、所定量100%に相当する質量である。また、糖化活性/カタラーゼ活性比=0.00004(すなわち0.005以下)であり、且つ糖化活性が原料基質の還元糖あたり0.013u/g(すなわち0.9u/g以下)であった。
 <実施例2>
 実施例2として、原料糖質や酵素量、反応温度や空気通気条件は、実施例1と同様の条件で酸化反応を行い、炭酸カルシウム78g(所定量の100%に相当する量)を3分割(作用工程開始時に所定量の50%、8時間後に所定量の40%、22時間後に所定量の10%)で添加しながら、酸化反応を行った。
 <実施例3>
 実施例3として、原料糖質や酵素量、反応温度や空気通気条件は、実施例1と同様の条件で酸化反応を行い、所定量の10%に相当する質量の炭酸カルシウム(7.8g)を、作用工程開始時に添加した後、反応開始1時間後から、pHを6.0となるように、残量90%に相当する質量の炭酸カルシウム(70.2g)を15wt%溶液として逐次添加しながら、酸化反応を行った。ここで、逐次添加は、pHをリアルタイムで計測し、マイクロポンプを用いて中和剤を添加するものである。
 <比較例1>
 比較例1として、原料糖質や酵素量、反応温度や空気通気条件は、実施例1と同様の条件で酸化反応を行い、酸化反応により低下するpHを6.0となるように、15wt%炭酸カルシウムを、作用工程開始時から作用工程期間中にわたって、逐次添加しながら、酸化反応を行った。
 なお比較例1における作用工程開始時の炭酸カルシウムの添加量は、マイクロポンプの記録データより、所定量の1%に相当する質量であることが計算された。
 酸化反応の推移は、反応液の還元糖量をネルソン・ソモギ法で定量し、次式により変換率を算出した。
(反応開始前還元糖量-反応液還元糖量)/反応開始前還元糖量×100=酸化率(%)
 なお、上記実施例1~3において、作用工程期間中における溶存酸素量は、常時1ppm以上であることを確認している。
Figure JPOXMLDOC01-appb-T000001
 以上のとおり、作用工程開始時に所定量の5%以上に相当する量の炭酸カルシウムを添加した実施例1~3について、実施例1では反応28時間、実施例2では反応31時間で100%酸化され、実施例3では反応31時間で95%が酸化されたのに対して、比較例1の炭酸カルシウムの作用工程開始時に所定量の1%に相当する量の炭酸カルシウムを添加し、以降逐次添加によって連続してpH調整した場合では、反応31時間で酸化率90%未満に留まり、反応効率が大きく異なる結果となった。
試験例2 炭酸塩中和剤を用いる第4の実施例
(実施例4)
 ジャーファメンター(容量4L、エイブル株式会社製)に対し、マルトース70.3wt%に加えて、グルコース1.2wt%、マルトトリオース15.0wt%及びマルトテトラオース(重合度4)以上のマルトオリゴ糖13.5wt%を含むハイマルトース水飴(Bx.75%、サンエイ糖化株式会社製)800gに蒸留水1200gを加え、30wt%となるように溶解させた後、炭酸マグネシウム(和光純薬工業株式会社製)63g(所定量の100%に相当する量)、Acremonium  chrysogenum由来糖質酸化酵素製剤(糖質酸化活性300u/ml)4.0ml(1200u、2u/g基質)と、Aspergillus属由来のカタラーゼ製剤E(カタラーゼ活性53800u/ml、糖化活性2.2u/ml、糖化活性/カタラーゼ活性比=0.00004)1.56ml(84000U、140u/g基質)を加え、35℃、300rpm、空気通気2L/分(孔径10μmの焼結フィルターを装着した配管より連続的に通気)で通気攪拌を行った。また、反応開始から4時間後に、糖質酸化酵素剤4.0ml(1200u、2u/g基質)を追加添加し、酸化反応を行った。
 なお、この時の糖化活性/カタラーゼ活性比=0.00004(すなわち0.005以下)であり、且つ糖化活性が原料基質の還元糖あたり0.013u/g(すなわち0.9u/g以下)であった。
 (酸化反応の推移は、反応液の還元糖量をネルソン・ソモギ法で定量し、次式により変換率を算出した。
(反応開始前還元糖量-反応液還元糖量)/反応開始前還元糖量×100=酸化率(%)
Figure JPOXMLDOC01-appb-T000002
 中和剤として、炭酸マグネシウムを作用工程開始時に所定量の100%に相当する量を添加した実施例4は、反応中のpHは7.5付近を推移しながら酸化反応が進み、28時間後には100%酸化された。
 なお、上記実施例4において、作用工程期間中における溶存酸素量は、常時1ppm以上であることを確認している。
試験例3 炭酸水素塩中和剤を用いる実施例、及び比較例
(実施例5、及び比較例2)
 ジャーファメンター(容量4L、エイブル株式会社製)に対し、マルトース70.3wt%に加えて、グルコース1.2wt%、マルトトリオース15.0wt%及びマルトテトラオース(重合度4)以上のマルトオリゴ糖13.5wt%を含むハイマルトース水飴(Bx.75%、サンエイ糖化株式会社製)534gに蒸留水1466gを加え、20wt%となるように溶解させた後、炭酸水素ナトリウム(和光純薬工業株式会社製)50g(所定量の100%に相当する量)、Acremonium chrysogenum由来糖質酸化酵素製剤(糖質酸化活性300u/ml)2.67ml(800u、2u/g基質)と、Aspergillus属由来のカタラーゼ製剤E(カタラーゼ活性53800u/ml、糖化活性2.2u/ml、糖化活性/カタラーゼ活性比=0.00004)1.04ml(56000U、140u/g基質)を加え、35℃、300rpm、空気通気2L/分(孔径10μmの焼結フィルターを装着した配管より連続的に通気)で通気攪拌を行った。反応開始から4時間後に、糖質酸化酵素剤2.67ml(800u、2u/g基質)を追加添加し、酸化反応を行った。
 なお、この時の糖化活性/カタラーゼ活性比=0.00004(すなわち0.005以下)であり、且つ糖化活性が原料基質の還元糖あたり0.013u/g(すなわち0.9u/g以下)であった。
 また、比較例2として、原料糖質や酵素量、反応温度や空気通気条件は、実施例5と同様の条件で酸化反応を行い、酸化反応により低下するpHを9.5となるように、25wt%水酸化ナトリウムを、作用工程開始時から作用工程期間中にわたって、逐次添加しながら、酸化反応を行った。
 酸化反応の推移は、反応液の還元糖量をネルソン・ソモギ法で定量し、次式により変換率を算出した。
(反応開始前還元糖量-反応液還元糖量)/反応開始前還元糖量×100=酸化率(%)
Figure JPOXMLDOC01-appb-T000003
 中和剤に炭酸水素ナトリウムを、作用工程開始時に所定量の100%に相当する量を添加した実施例5は、反応中のpHは9.8付近を推移しながら酸化反応が進み、28時間後には100%酸化された。
 一方、pKbが1未満の塩基性化合物である水酸化ナトリウムで逐次添加した比較例2では、実施例5よりも反応開始時、及び反応期間中のいずれでもpHが低いにも関わらず、28時間で酸化率60%未満に留まり、酸化率、すなわち工業生産における収率において、著しく低い数値となった。
 すなわち、塩基性化合物であっても、作用工程の開始時に加える塩基性化合物として、pKbが1未満である塩基性化合物は、工業生産には適さないことが分かる。
 なお、上記実施例5において、作用工程期間中における溶存酸素量は、常時1ppm以上であることを確認している。
試験例4 炭酸塩中和剤と塩基性化合物中和剤の併用(I)
(実施例6)
 ジャーファメンター(容量4L、エイブル株式会社製)に対し、マルトース70.3wt%に加えて、グルコース1.2wt%、マルトトリオース15.0wt%及びマルトテトラオース(重合度4)以上のマルトオリゴ糖13.5wt%を含むハイマルトース水飴(Bx.75%、サンエイ糖化株式会社製)800gに蒸留水1200gを加え、30wt%となるように溶解させた後、所定量の50%に相当する量の炭酸カルシウム39g(和光純薬工業株式会社製)、Acremonium  chrysogenum由来糖質酸化酵素製剤(糖質酸化活性300u/ml)4.0ml(1200u、2u/g基質)と、Aspergillus属由来のカタラーゼ製剤E(カタラーゼ活性53800u/ml、糖化活性2.2u/ml、糖化活性/カタラーゼ活性比=0.00004)1.56ml(84000U、140u/g基質)を加え、35℃、300rpm、空気通気1L/分で通気攪拌(孔径10μmの焼結フィルターを装着した配管より連続的に通気)を行った。反応開始から4時間後に、糖質酸化酵素剤4.0ml(1200u、2u/g基質)を追加添加し、酸化反応を行った。
 なお、この時の糖化活性/カタラーゼ活性比=0.00004(すなわち0.005以下)であり、且つ糖化活性が原料基質の還元糖あたり0.013u/g(すなわち0.9u/g以下)であった。
 また、反応8時間後よりpH7.0となるように25%水酸化カルシウム溶液を、所定量の残量50%に相当する量を、逐次添加しながら、酸化反応を行った。
 酸化反応の推移は、反応液の還元糖量をネルソン・ソモギ法で定量し、次式により変換率を算出した。
(反応開始前還元糖量-反応液還元糖量)/反応開始前還元糖量×100=酸化率(%)
Figure JPOXMLDOC01-appb-T000004
 作用工程開始時に、所定量の50%相当の量の炭酸カルシウムを添加した後、反応8時間以降より水酸化カルシウムの逐次添加へ切り替えても、反応は効率良く進み、28時間後には、95%以上が酸化された。
 なお、上記実施例6において、作用工程期間中における溶存酸素量は、常時1ppm以上であることを確認している。
試験例5 炭酸水素塩中和剤と塩基性化合物中和剤の併用(II)
(実施例7)
 ジャーファメンター(容量4L、エイブル株式会社製)に対し、マルトース70.3wt%に加えて、グルコース1.2wt%、マルトトリオース15.0wt%及びマルトテトラオース(重合度4)以上のマルトオリゴ糖13.5wt%を含むハイマルトース水飴(Bx.75%、サンエイ糖化株式会社製)800gに蒸留水1200gを加え、30wt%となるように溶解させた後、所定量の50%相当の量の炭酸水素ナトリウム(和光純薬工業株式会社製)37g、Acremonium chrysogenum由来糖質酸化酵素製剤(糖質酸化活性300u/ml)4.0ml(1200u、2u/g基質)と、Aspergillus属由来のカタラーゼ製剤E(カタラーゼ活性53800u/ml、糖化活性2.2u/ml、糖化活性/カタラーゼ活性比=0.00004)1.56ml(84000U、140u/g基質)を加え、35℃、300rpm、空気通気1L/分で通気攪拌(孔径10μmの焼結フィルターを装着した配管より連続的に通気)を行った。反応開始から4時間後に、糖質酸化酵素剤4.0ml(1200u、2u/g基質)を追加添加し、酸化反応を行った。
 なお、この時の糖化活性/カタラーゼ活性比=0.00004(すなわち0.005以下)であり、且つ糖化活性が原料基質の還元糖あたり0.013u/g(すなわち0.9u/g以下)であった。
 また、反応8時間後より、pH7.0となるように25%水酸化ナトリウム溶液を、残量50%に相当する量を、逐次添加しながら、酸化反応を行った。
 酸化反応の推移は、反応液の還元糖量をネルソン・ソモギ法で定量し、次式により変換率を算出した。
(反応開始前還元糖量-反応液還元糖量)/反応開始前還元糖量×100=酸化率(%)
Figure JPOXMLDOC01-appb-T000005
 作用工程開始時に、所定量の50%に相当する量の炭酸水素ナトリウムを添加した後、反応8時間以降より水酸化ナトリウムの逐次添加へ切り替えても、反応は効率良く進み、32時間後には、95%以上が酸化された。
 なお、上記実施例7において、作用工程期間中における溶存酸素量は、常時1ppm以上であることを確認している。
試験例5  撹拌及び通気方法の違いによる溶存酸素量と収率の比較
(実施例8、実施例9、比較例3)
 ジャーファメンター(容量4L、エイブル株式会社製)に対し、マルトース70.3wt%に加えて、グルコース1.2wt%、マルトトリオース15.0wt%及びマルトテトラオース(重合度4)以上のマルトオリゴ糖13.5wt%を含むハイマルトース水飴(Bx.75%、サンエイ糖化株式会社製)800gに蒸留水1200gを加え、30wt%となるように溶解させた後、炭酸カルシウム(和光純薬工業株式会社製)78g、Acremonium chrysogenum由来糖質酸化酵素製剤(糖質酸化活性300u/ml)4.0ml(1200u、2u/g基質)と、Aspergillus属由来のカタラーゼ製剤E(カタラーゼ活性53800u/ml、糖化活性2.2u/ml、糖化活性/カタラーゼ活性比=0.00004)1.56ml(84000U、140u/g基質)を加え、35℃で孔径10μmの焼結フィルターを装着した配管より連続的に通気と攪拌機による攪拌することで酸化反応を行った。また、反応開始から4時間後に、糖質酸化酵素剤4.0ml(1200u、2u/g基質)を追加添加した。通気攪拌条件を変えることで溶存酸素による影響を評価した。
 なお、この時の糖化活性/カタラーゼ活性比=0.00004(すなわち0.005以下)であり、且つ糖化活性が原料基質の還元糖あたり0.013u/g(すなわち0.9u/g以下)であった。
 酸化反応の推移は、反応液の還元糖量をネルソン・ソモギ法で定量し、次式により変換率を算出した。
(反応開始前還元糖量-反応液還元糖量)/反応開始前還元糖量×100=酸化率(%)
Figure JPOXMLDOC01-appb-T000006
 試験の結果、実施例8と9のように、反応10時間までの段階で溶存酸素量が1ppm以上であると反応26時間後には95%以上酸化されているのに対して、比較例3では、溶存酸素量が1ppm以下で推移したことにより、反応28時間後の段階で酸化率が43%程度に留まった。
試験例6 大容量反応槽を用い、反応液総量1ton以上における応用例
 (実施例10)
 横型2.2kWのプロペラ翼式撹拌機(株式会社竹内製作所製)を装着したジャケット付きSUS型反応槽(容量10000L、八洲化工機株式会社製)に対し、マルトース70.3wt%に加えて、グルコース1.2wt%、マルトトリオース15.0wt%及びマルトテトラオース(重合度4)以上のマルトオリゴ糖13.5wt%を含むハイマルトース水飴(Bx.70%、サンエイ糖化株式会社製)3.3tに水道水4.4tを加え、30wt%となるように溶解させた後、炭酸カルシウム(三共精粉株式会社製)300kg(所定量の100%に相当する量)、Acremonium chrysogenum由来糖質酸化酵素製剤(糖質酸化活性315u/ml)14.6L(4599945u、2u/g基質)と、Aspergillus属由来のカタラーゼ製剤F(カタラーゼ活性68250u/ml、糖化活性23.6u/ml、糖化活性/カタラーゼ活性比=0.000035)3.385L(231000000U、100u/g基質)を加え、35℃、200rpm、空気通気800L/分(微細気泡発生装置より連続的に通気)で通気攪拌をおこなった。反応開始から12時間後と24時間後に、糖質酸化酵素剤3.651L(1150065u、0.5u/g基質)とカタラーゼ製剤0.677L(46200000u、20u/g基質)をそれぞれ追加添加し、酸化反応を行った。
 なお、この時の糖化活性/カタラーゼ活性比=0.000346(すなわち0.005以下)であり、且つ糖化活性が原料基質の還元糖あたり0.11u/g(すなわち0.9u/g以下)であった。
 酸化反応の推移は、反応液の還元糖量をネルソン・ソモギ法で定量し、次式により変換率を算出した。
(反応開始前還元糖量-反応液還元糖量)/反応開始前還元糖量×100=酸化率(%)
Figure JPOXMLDOC01-appb-T000007
 実施例10について、表7に酸化反応開始時から42時間までの経過時における酸化率と溶存酸素を示す。表7に示すとおり、8ton程度の反応液総量においても、中和剤として炭酸カルシウムを予め添加し、溶存酸素が1ppm以上となるように通気することで中和反応が効果的に行われ、反応42時間後には98.6%まで酸化が進んだ。工業生産レベルの反応系でも、本発明の効果を確認することができた。
試験例7 大容量反応槽を用い、反応液総量1ton以上における応用例
(実施例11、12及び比較例4)
 <実施例11>
 横型2.2kWのプロペラ翼式撹拌機(株式会社竹内製作所製)を装着したジャケット付きSUS型反応槽(容量10000L、八洲化工機株式会社製)に対し、マルトース70.3wt%に加えて、グルコース1.2wt%、マルトトリオース15.0wt%及びマルトテトラオース(重合度4)以上のマルトオリゴ糖13.5wt%を含むハイマルトース水飴(Bx.70%、サンエイ糖化株式会社製)3.3tに水道水4.4tを加え、30wt%となるように溶解させた後、炭酸カルシウム(三共精粉株式会社製)300kg(所定量の100%に相当する量)、Acremonium chrysogenum由来糖質酸化酵素製剤(糖質酸化活性315u/ml)14.6L(4599945u、2u/g基質)と、Aspergillus属由来のカタラーゼ製剤F(カタラーゼ活性68250u/ml、糖化活性23.6u/ml、糖化活性/カタラーゼ活性比=0.000035)3.385L(231000000U、100u/g基質)を加え、35℃、200rpm、空気通気800L/分(微細気泡発生装置より連続的に通気)で通気攪拌をおこなった。反応開始から12時間後と24時間後に、糖質酸化酵素剤3.651L(1150065u、0.5u/g基質)とカタラーゼ製剤0.677L(46200000u、20u/g基質)をそれぞれ追加添加し、酸化反応を行った。
 なお、この時の糖化活性/カタラーゼ活性比=0.000346(すなわち0.005以下)であり、且つ糖化活性が原料基質の還元糖あたり0.11u/g(すなわち0.9u/g以下)であった。
 酸化反応の推移は、反応液の還元糖量をネルソン・ソモギ法で定量し、次式により変換率を算出した。
(反応開始前還元糖量-反応液還元糖量)/反応開始前還元糖量×100=酸化率(%)
Figure JPOXMLDOC01-appb-T000008
 実施例11について、表8に酸化反応開始時から42時間までの経過時における酸化率と溶存酸素を示す。表8に示すとおり、8ton程度の反応液総量においても、中和剤として炭酸カルシウムを予め添加し、溶存酸素が1ppm以上となるように通気することで中和反応が効果的に行われ、反応42時間後には98.6%まで酸化が進んだ。工業生産レベルの反応系でも、本発明の効果を確認することができた。
<実施例12>
 実施例12として、原料糖質や酵素量、反応温度や空気通気条件は、実施例12と同様の条件で酸化反応を行い、所定量の70%に相当する質量の炭酸カルシウム(210kg)を、作用工程開始時に添加した後、反応開始20時間後から、pHを5.5~7.5となるように、残量30%に相当する質量の水酸化カルシウム(39.7kg)を15%wt溶液として逐次添加しながら、酸化反応を行った。
Figure JPOXMLDOC01-appb-T000009
 実施例12について、表9に酸化反応開始時から50時間までの経過時における酸化率と溶存酸素を示す。表9に示すとおり、8ton程度の反応液総量で、反応開始時に所定量の70%に相当の炭酸カルシウムを添加し、残り30%相当分を水酸化カルシウムで中和反応させた条件においても、溶存酸素が1ppm以上となるように通気することで中和反応が効果的に行われ、反応50時間後には98.4%まで酸化が進んだ。工業生産レベルの反応系でも、本発明の効果を確認することができた。
<比較例4>
 比較例4として、原料糖質や酵素量、反応温度や空気通気条件は、実施例11と同様の条件で酸化反応を行い、所定量の2%に相当する質量の炭酸カルシウム(6kg)を、作用工程開始時に添加した後、反応開始1時間後から、pHを5.5~7.5となるように、残量98%に相当する質量の水酸化カルシウム(129.5kg)を15wt%溶液として逐次添加しながら、酸化反応を行った。
Figure JPOXMLDOC01-appb-T000010
 比較例4は作用工程開始時に所定量の2%に相当する量の炭酸カルシウムを添加し、以降、水酸化ナトリウムを逐次添加によって連続してpH調整した場合では、反応40時間以降で酸化反応が大きく失速し酸化率90%未満に留まり、実施例11や12と反応効率が大きく異なる結果となった。

Claims (16)

  1.  還元末端にグルコース残基を有する重合度2以上の澱粉分解物又は転移反応物の還元末端側のアルデヒド基が酸化された糖カルボン酸の製造方法であって、
     糖質酸化時に過酸化水素を副生する糖質酸化酵素剤を、カタラーゼ製剤の存在下、前記澱粉分解物或いは転移反応物を含む原料基質に作用させる工程を含み、
     前記作用工程の反応液総量が、1L以上であり、
     塩基性化合物を、前記作用工程中に所定量添加するとともに、
     前記作用工程開始時に、前記塩基性化合物として、炭酸塩、または炭酸水素塩を、前記所定量の5%以上の相当質量で添加する糖カルボン酸の製造方法。
  2.  前記炭酸塩、または前記炭酸水素塩を、前記作用工程開始時にのみ、所定量添加する請求項1記載の糖カルボン酸の製造方法。
  3.  前記塩基性化合物の所定量添加は、
     前記作用工程開始時に、炭酸塩、または炭酸水素塩である第一の塩基性化合物を、前記所定量の5%以上100%未満の相当質量で添加し、
     前記作用工程における前記作用工程開始時以外の時に、前記第一の塩基性化合物と同一または異なる第二の塩基性化合物を、前記作用工程開始時添加分を除いた残量相当質量で添加するものである請求項1記載の糖カルボン酸の製造方法。
  4.  前記炭酸塩は、水に対する溶解度が、0超0.01mol/L以下である請求項1から3のいずれか記載の糖カルボン酸の製造方法。
  5.  還元末端にグルコース残基を有する重合度2以上の澱粉分解物又は転移反応物の還元末端側のアルデヒド基が酸化された糖カルボン酸の製造方法であって、
     糖質酸化時に過酸化水素を副生する糖質酸化酵素剤を、カタラーゼ製剤の存在下、前記澱粉分解物或いは転移反応物を含む原料基質に作用させる工程を含み、
     前記作用工程の反応液総量が、1L以上であり、
     塩基性化合物を、前記作用工程中に所定量添加するとともに、
     前記作用工程開始時に、前記塩基性化合物として、pKbが1以上8以下である塩基性化合物を、前記所定量の5%以上の相当質量で添加する糖カルボン酸の製造方法。
  6.  前記pKbが1以上8以下である塩基性化合物を、前記作用工程開始時にのみ、所定量添加する請求項5記載の糖カルボン酸の製造方法。
  7.  前記塩基性化合物の所定量添加は、
     前記作用工程開始時に、pKbが1以上8以下である第一の塩基性化合物を、前記所定量の5%以上100%未満の相当質量で添加し、
     前記作用工程における前記作用工程開始時以外の時に、前記第一の塩基性化合物と同一または異なる第二の塩基性化合物を、前記作用工程開始時添加分を除いた残量相当質量で添加するものである請求項5記載の糖カルボン酸の製造方法。
  8.  前記炭酸塩は、炭酸カルシウム、炭酸マグネシウム、ドロマイト、または卵殻カルシウムである請求項1~4のいずれか記載の糖カルボン酸の製造方法。
  9.  前記塩基性化合物は、炭酸水素ナトリウム、炭酸水素カリウム、または炭酸水素アンモニウムである請求項5~7記載の糖カルボン酸の製造方法。
  10.  溶存酸素量が、1ppm以上となるよう、前記作用工程期間中に酸素を供給する請求項1から9いずれか記載の糖カルボン酸の製造方法。
  11.  前記作用工程期間のうち、酸化率が0%から50%である期間、溶存酸素量が、1ppm以上となるよう、前記作用工程中に酸素を供給する請求項1から9いずれか記載の糖カルボン酸の製造方法。
  12.  前記カタラーゼ製剤中のカタラーゼ活性(A)に対する糖化活性(B)の含有比率(B/A)が0.00002以上0.005以下であり、
     前記糖化活性が前記原料基質中の還元糖量に対して0.9u/g以下である量で存在する請求項1から11のいずれか記載の糖カルボン酸の製造方法。
  13.  前記カタラーゼ製剤中のカタラーゼ活性(A)に対する糖化活性(B)の含有比率(B/A)が0.005以下であり、かつ糖化活性(B)が0.1u/ml以上であり、
     前記糖化活性が前記原料基質中の還元糖量に対して0.9u/g以下である量で存在する請求項1から11のいずれか記載の糖カルボン酸の製造方法。
  14.  前記作用工程の反応液総量が、50kg以上である請求項1~13のいずれか記載の糖カルボン酸の製造方法。
  15.  前記作用工程の反応液総量が、1ton以上である請求項14記載の糖カルボン酸の製造方法。
  16.  前記糖カルボン酸は、マルトビオン酸である請求項1から15いずれか記載の糖カルボン酸の製造方法。
PCT/JP2019/006412 2018-02-20 2019-02-20 糖カルボン酸の製造方法 WO2019163853A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980012738.0A CN111712577A (zh) 2018-02-20 2019-02-20 糖羧酸的制造方法
KR1020207026481A KR102523898B1 (ko) 2018-02-20 2019-02-20 당카르본산의 제조 방법
EP19758227.3A EP3733859B1 (en) 2018-02-20 2019-02-20 Method for producing sugar carboxylic acid
US16/968,117 US11384373B2 (en) 2018-02-20 2019-02-20 Method for producing sugar carboxylic acid

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-028044 2018-02-20
JP2018028044A JP6417060B1 (ja) 2018-02-20 2018-02-20 糖カルボン酸の製造方法
JP2018205853A JP6602934B1 (ja) 2018-10-31 2018-10-31 糖カルボン酸の製造方法
JP2018-205853 2018-10-31

Publications (1)

Publication Number Publication Date
WO2019163853A1 true WO2019163853A1 (ja) 2019-08-29

Family

ID=67687723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006412 WO2019163853A1 (ja) 2018-02-20 2019-02-20 糖カルボン酸の製造方法

Country Status (5)

Country Link
US (1) US11384373B2 (ja)
EP (1) EP3733859B1 (ja)
KR (1) KR102523898B1 (ja)
CN (1) CN111712577A (ja)
WO (1) WO2019163853A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102598193B1 (ko) * 2021-06-14 2023-11-06 대상 주식회사 효소적 산화를 이용한 말토비온산 제조방법
CN116590355B (zh) * 2022-12-27 2023-11-07 安徽斯拜科生物科技有限公司 一种利用葡萄糖脱氢酶催化麦芽糖合成麦芽糖酸的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599194A (en) * 1979-01-22 1980-07-28 Solvay Production of aldonic acid by enzyme method
JPH0584074A (ja) * 1991-01-22 1993-04-06 Biseiken:Kk オリゴ糖酸化酵素、オリゴ糖酸化酵素の製造方法、オリゴ糖の測定方法、オリゴ糖酸の製造方法及びアミラーゼ活性測定法
JPH10502825A (ja) * 1995-05-12 1998-03-17 ギスト ブロカデス ベスローテン フェンノートシャップ グルコン酸及びその塩の酵素的生産方法
JP2001245657A (ja) 1999-12-27 2001-09-11 Takehara Kagaku Kogyo Kk アルドン酸を産生する新規菌体およびその酵素
JP2005504554A (ja) * 2001-10-08 2005-02-17 プラク・ビオヘム・ベー・ブイ グルコン酸カルシウムの製造方法
JP2007028917A (ja) 2005-07-22 2007-02-08 Unitika Ltd アルドン酸の製造方法
JP2007535331A (ja) * 2004-05-03 2007-12-06 セーホーエル.ハンセン アクティーゼルスカブ ラクトビオン酸の高められた収率を得るための酵素方法
JP4417550B2 (ja) 1997-12-22 2010-02-17 ノボザイムス アクティーゼルスカブ 糖質酸化酵素およびベーキングにおけるその使用
WO2014042237A1 (ja) 2012-09-14 2014-03-20 天野エンザイム株式会社 糖質酸化酵素とその製造方法並びに用途
JP6321857B1 (ja) * 2017-05-17 2018-05-09 サンエイ糖化株式会社 糖カルボン酸の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114747A (en) * 1980-02-14 1981-09-09 Nippon Steel Corp Surface inspection device
ATE289355T1 (de) 1995-12-27 2005-03-15 Genencor Int Verfahren zur herstellung von gluconsäure und durch dieses hergestellte gluconsäure
JP2003093090A (ja) 2001-09-26 2003-04-02 Fuji Seito Co Ltd イヌリンの製造方法
EP2185717B1 (en) * 2007-07-27 2011-12-14 Novozymes A/S Production of maltobionate
US10667538B2 (en) 2007-11-07 2020-06-02 Leprino Foods Company Non-fat dry milk production processes for cheesemaking
BRPI1008803A2 (pt) * 2009-03-20 2015-08-25 Novozymes As Método para fabricar uma bebida não alcoólica

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599194A (en) * 1979-01-22 1980-07-28 Solvay Production of aldonic acid by enzyme method
JPH0584074A (ja) * 1991-01-22 1993-04-06 Biseiken:Kk オリゴ糖酸化酵素、オリゴ糖酸化酵素の製造方法、オリゴ糖の測定方法、オリゴ糖酸の製造方法及びアミラーゼ活性測定法
JP3310008B2 (ja) 1991-01-22 2002-07-29 有限会社ビセイケン オリゴ糖酸化酵素、オリゴ糖酸化酵素の製造方法、オリゴ糖の測定方法、オリゴ糖酸の製造方法、アミラーゼ活性測定法及び新規微生物
JPH10502825A (ja) * 1995-05-12 1998-03-17 ギスト ブロカデス ベスローテン フェンノートシャップ グルコン酸及びその塩の酵素的生産方法
JP4417550B2 (ja) 1997-12-22 2010-02-17 ノボザイムス アクティーゼルスカブ 糖質酸化酵素およびベーキングにおけるその使用
JP2001245657A (ja) 1999-12-27 2001-09-11 Takehara Kagaku Kogyo Kk アルドン酸を産生する新規菌体およびその酵素
JP2005504554A (ja) * 2001-10-08 2005-02-17 プラク・ビオヘム・ベー・ブイ グルコン酸カルシウムの製造方法
JP2007535331A (ja) * 2004-05-03 2007-12-06 セーホーエル.ハンセン アクティーゼルスカブ ラクトビオン酸の高められた収率を得るための酵素方法
JP2007028917A (ja) 2005-07-22 2007-02-08 Unitika Ltd アルドン酸の製造方法
WO2014042237A1 (ja) 2012-09-14 2014-03-20 天野エンザイム株式会社 糖質酸化酵素とその製造方法並びに用途
JP6321857B1 (ja) * 2017-05-17 2018-05-09 サンエイ糖化株式会社 糖カルボン酸の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FAN Z. ET AL.: "Characterization of Kinetics and Thermostability of Acremonium strictum Glucooligosaccharide Oxidase", BIOTECHNOL. BIOENG., vol. 68, no. 2, 2010, pages 231 - 237, XP002500985, doi:10.1002/(SICI)1097-0290(20000420)68:2<231::AID-BIT12>3.0.CO;2-D *
MICHIO OZAKI: "Enzyme Use Handbook", 1985, pages: 404 - 410

Also Published As

Publication number Publication date
KR102523898B1 (ko) 2023-04-19
US20210180099A1 (en) 2021-06-17
US11384373B2 (en) 2022-07-12
EP3733859A4 (en) 2021-03-31
KR20200120722A (ko) 2020-10-21
EP3733859B1 (en) 2023-07-19
CN111712577A (zh) 2020-09-25
EP3733859C0 (en) 2023-07-19
EP3733859A1 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
Satory et al. Continuous enzymatic production of lactobionic acid using glucose-fructose oxidoreductase in an ultrafiltration membrane reactor
US4460686A (en) Glucose oxidation with immobilized glucose oxidase-catalase
Hendriks et al. The effect of bismuth on the selective oxidation of lactose on supported palladium catalysts
RU2495130C2 (ru) Способ получения мальтобионата
WO1996035800A1 (en) Enzymatic production of gluconic acid or its salts
WO2019163853A1 (ja) 糖カルボン酸の製造方法
FR2597474A1 (fr) Procede d&#39;oxydation d&#39;aldoses, catalyseur mis en oeuvre et produits ainsi obtenus.
de Wilt Part I. Oxidation of glucose to gluconic Acid. Survey of Techniques
EP0054066B1 (en) Process for making glucosone
JP6602934B1 (ja) 糖カルボン酸の製造方法
Pezzotti et al. Enzymatic synthesis of aldonic acids
JP6417060B1 (ja) 糖カルボン酸の製造方法
EP0056038B1 (en) Carbohydrate process
JP6321857B1 (ja) 糖カルボン酸の製造方法
EP0870052B1 (en) Process for the preparation of gluconic acid and gluconic acid produced thereby
US4345031A (en) Process for the manufacture of aldonic acids by an enzymatic method
JP2000506868A (ja) ジ、トリ、オリゴおよびポリサッカライドをポリヒドロキシカルボン酸へと酸化する方法
JP2018191635A (ja) 糖カルボン酸の製造方法
KR100261015B1 (ko) 가압조건 하에서 포도당 산화효소를 이용한 글루콘산 칼슘의 제조방법
EP0054067B1 (en) Process for making fructose
EP0745677B1 (en) Enzymatic production of gluconic acid or its salts
CN113981017A (zh) 一种葡萄糖酸盐的生物合成方法
EP3976626A1 (en) Methods for the production of calcium, magnesium, and zinc salts of sugar acids
WO2012072591A1 (en) Process and device for the production of gluconic acid
CN116875415A (zh) 一种降低液态食品中天然糖成分的组合物及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19758227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019758227

Country of ref document: EP

Effective date: 20200730

ENP Entry into the national phase

Ref document number: 20207026481

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: JP