WO2019163635A1 - 不織布塗工機 - Google Patents

不織布塗工機 Download PDF

Info

Publication number
WO2019163635A1
WO2019163635A1 PCT/JP2019/005346 JP2019005346W WO2019163635A1 WO 2019163635 A1 WO2019163635 A1 WO 2019163635A1 JP 2019005346 W JP2019005346 W JP 2019005346W WO 2019163635 A1 WO2019163635 A1 WO 2019163635A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
nonwoven fabric
coating
water
transport
Prior art date
Application number
PCT/JP2019/005346
Other languages
English (en)
French (fr)
Inventor
鬼頭 昌利
金田 安生
加藤 真
友洋 佐藤
Original Assignee
三菱製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019014804A external-priority patent/JP7211831B2/ja
Application filed by 三菱製紙株式会社 filed Critical 三菱製紙株式会社
Priority to EP19756707.6A priority Critical patent/EP3756772A4/en
Priority to CN201980014159.XA priority patent/CN111757782A/zh
Publication of WO2019163635A1 publication Critical patent/WO2019163635A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C13/00Means for manipulating or holding work, e.g. for separate articles
    • B05C13/02Means for manipulating or holding work, e.g. for separate articles for particular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H27/00Special constructions, e.g. surface features, of feed or guide rollers for webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/558Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in combination with mechanical or physical treatments other than embossing
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • D04H1/655Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions characterised by the apparatus for applying bonding agents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/02Rollers
    • D06B23/023Guiding rollers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/02Rollers
    • D06B23/026Rollers characterised by particular surface features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C13/00Rolls, drums, discs, or the like; Bearings or mountings therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C13/00Means for manipulating or holding work, e.g. for separate articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/50Auxiliary process performed during handling process
    • B65H2301/51Modifying a characteristic of handled material
    • B65H2301/512Changing form of handled material
    • B65H2301/5123Compressing, i.e. diminishing thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/50Auxiliary process performed during handling process
    • B65H2301/51Modifying a characteristic of handled material
    • B65H2301/516Securing handled material to another material
    • B65H2301/5162Coating, applying liquid or layer of any material to material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/50Auxiliary process performed during handling process
    • B65H2301/51Modifying a characteristic of handled material
    • B65H2301/517Drying material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/10Rollers
    • B65H2404/11Details of cross-section or profile
    • B65H2404/111Details of cross-section or profile shape
    • B65H2404/1118Details of cross-section or profile shape with at least a relief portion on the periphery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/10Rollers
    • B65H2404/11Details of cross-section or profile
    • B65H2404/111Details of cross-section or profile shape
    • B65H2404/1119Details of cross-section or profile shape with at least an axial cavity on the periphery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/10Rollers
    • B65H2404/11Details of cross-section or profile
    • B65H2404/114Built-up elements
    • B65H2404/1141Built-up elements covering a part of the periphery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2801/00Application field
    • B65H2801/72Fuel cell manufacture
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B5/00Forcing liquids, gases or vapours through textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing impregnating
    • D06B5/02Forcing liquids, gases or vapours through textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing impregnating through moving materials of indefinite length
    • D06B5/08Forcing liquids, gases or vapours through textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing impregnating through moving materials of indefinite length through fabrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/66Water repelling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/32Coating surfaces by attaching pre-existing layers, e.g. resin sheets or foils by adhesion to a substrate; Laminating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/42Coating surfaces by spraying the coating material, e.g. plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/58Conveyor systems, e.g. rollers or bearings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2340/00Apparatus for treating textiles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This invention relates to the nonwoven fabric coating machine used in order to apply to a nonwoven fabric.
  • a product imparted with functionality is manufactured by applying a coating liquid in which a non-volatile content is dispersed or dissolved in a non-woven fabric as a base material.
  • Nonvolatile components include resins, inorganic particles, organic particles, and the like, and media include water, organic solvents, and the like.
  • Examples of the product provided with functionality include a separator for a lithium ion battery and a filtration membrane.
  • a separator for a lithium ion battery (hereinafter sometimes abbreviated as “separator”), a thin separator having a thickness of 30 ⁇ m or less is required in order to reduce the volume ratio of the separator as a non-power generation element in the battery. Yes.
  • a filtration membrane having a large area can be accommodated in a module having the same volume, and a thin filtration membrane is required.
  • the non-woven fabric sticks to the transport roll or transport support due to the coating liquid that has oozed out, making it difficult to transport, the amount of coating liquid applied to the non-woven fabric is partially insufficient, such as pinholes
  • the problem which produces a coating defect the problem which the coating liquid once transcribe
  • physical properties such as pore diameters are required to be uniform. Therefore, the occurrence of coating defects such as pinholes and reduced coating uniformity reduce performance. It is a serious problem.
  • Patent Document 1 a method of obtaining a product by laminating a nonwoven fabric and a coating layer formed by coating a coating liquid with a transport support and peeling the transport support after drying is proposed (for example, Patent Document 1).
  • a dense paper or resin sheet that does not cause back-through is disclosed.
  • a method of laminating two layers of non-woven fabric, impregnating the non-woven fabric with a coating solution, coagulating the coating solution from one side, and then peeling the two layers of non-woven fabric to obtain one of them as a product. For example, see Patent Document 5).
  • these methods have a problem of high cost and a large amount of waste because the transport support after use and one of the nonwoven fabrics are discarded.
  • Patent Documents 6 to 8 disclose a method in which deterioration of surface quality due to back-through is avoided by conveying the non-woven fabric after applying the coating liquid using a specific roll.
  • Patent Document 6 discloses a roll provided with grooves in a direction substantially parallel to the traveling direction.
  • Patent Document 7 discloses a roll having a diameter of 25 mm or less.
  • Patent Document 8 discloses a smoothing roll.
  • defects such as pinholes may occur when a very thin nonwoven fabric is used as the base material, and there is still room for improvement in the effect. .
  • the object of the present invention is to highly avoid the occurrence of defects such as pinholes due to the back-through of the coating liquid in coating a non-woven fabric with a coating liquid in which a nonvolatile content is dispersed or dissolved in a medium. It is to provide a nonwoven fabric coating machine.
  • Means for solving the problems of the present invention are as follows.
  • a coating means for applying a coating liquid to a nonwoven fabric a transport means for transporting a nonwoven fabric provided with the coating liquid supported by a transport roll, and a nonwoven fabric having a drying means for drying the applied coating liquid
  • the surface of the conveyance roll has uneven
  • the transport roll is a roll having a concavo-convex shape whose surface is formed by a processing method selected from the group of cutting knurl processing, rolling knurl processing, and laser engraving.
  • the transport roll is a metal roll.
  • the pitch of the unevenness is 300 to 1000 ⁇ m
  • the gap / pitch is 0.3 to 0.6
  • the height of the unevenness is 50 to 200 ⁇ m
  • the contact angle of the surface is 85 ° or more.
  • the coating liquid in which the non-volatile content is dispersed or dissolved in the medium is coated on the nonwoven fabric. Can be suppressed.
  • the present invention is a nonwoven fabric coating machine for coating on a nonwoven fabric. More specifically, it is a nonwoven fabric coating machine for coating a nonwoven fabric with a coating liquid in which a nonvolatile content is dispersed or dissolved in a medium.
  • the nonwoven fabric coating machine of the present invention is a coating means for applying a coating liquid to a nonwoven fabric, a transport means for transporting a nonwoven fabric provided with the coating liquid supported by a transport roll, and drying the applied coating liquid. Has drying means.
  • FIG. 1 is a schematic view showing an example of the nonwoven fabric coating machine of the present invention.
  • the nonwoven fabric is pulled out from the nonwoven fabric roll M by the unwinder.
  • the nonwoven fabric is sent to the coating means H supported by the transport roll T1.
  • the coating liquid is applied to one side of the nonwoven fabric by the coating means H.
  • the nonwoven fabric travels while being supported by one or more transport rolls T2, T3, T4 on the surface opposite to the surface to which the coating liquid is applied, and is dried by the drying means D.
  • the transport roll T3 is a transport roll in front of the drying unit D, and is a transport roll that is affected by heat from the drying unit D.
  • the transport roll T2 is a transport roll that exists between the coating unit H and the transport roll T3, and is a transport roll that is not affected by the heat from the drying unit D.
  • the transport roll T4 is a transport roll in the drying unit D, and is more affected by heat than the transport roll T3.
  • a conveyance roll is a roll used in order to determine the running direction of a nonwoven fabric, or to stabilize the running of a nonwoven fabric in a nonwoven fabric coating machine.
  • Metal, plastic, fiber reinforced plastic, etc. can be used as the core material of the transport roll.
  • the metal include iron, stainless steel, aluminum, brass, and phosphor bronze.
  • the plastic include fluorine resins; silicone resins; urethane resins; acrylic resins; acrylonitrile-butadiene-styrene copolymer (ABS) resins, olefin resins such as polyethylene, polypropylene, and ethylene propylene copolymer resins. .
  • Fiber reinforced plastics include high elastic fiber materials such as carbon fiber, glass fiber, aramid fiber, and boron fiber, and thermosetting resins such as unsaturated polyester resin, epoxy resin, phenol resin, and melamine resin.
  • thermoplastic resin such as an acrylic resin such as polymethyl methacrylate
  • the technical feature of the nonwoven fabric coating machine of the present invention is that the surface of the transport roll has an uneven shape and water repellency.
  • the “conveying roll whose surface has an uneven shape and water repellency” may be abbreviated as “conveying roll Z”.
  • the contact angle of water on the transport roll is preferably 85 ° or more. However, the maximum value is theoretically 180 °. When the contact angle of water is 85 ° or more, the nonwoven fabric does not adhere to the transport roll, and the effect that the back-through coating liquid hardly adheres to the transport roll is easily obtained. The larger the contact angle, the more difficult it is for the coating liquid that has penetrated through to adhere to the transport roll.
  • the contact angle is measured in a room with a room temperature of 23 ° C and a relative humidity of 50%, using a portable contact angle meter PG-X + (Fibo System AB, Sweden), with 10 automatic static contact angles in the range of 5 cm square. The average value was measured as the contact angle.
  • the amount of distilled water dropped was 4.0 ⁇ L.
  • the surface of the transport roll is covered with a material having water repellency by a method of forming a concavo-convex shape on a roll of water repellent material, or by means such as sticking, coating or plating. A method is mentioned.
  • Examples of the transport roll Z (I) include a roll whose surface is covered with a water-repellent uneven sheet.
  • the material of the concavo-convex sheet is not particularly limited, but a sheet made of polyethylene, polypropylene, fluororesin, or silicone resin having a water contact angle of 85 ° or more is preferable.
  • seat surface whose water contact angle is less than 85 degrees may be sufficient.
  • a fluororesin or a silicone resin is preferable.
  • Examples of the transport roll Z (II) include a roll whose surface is made of polyolefin and has a concavo-convex shape formed by machining. When the material of the surface of the transport roll is polyolefin, it has water repellency and no treatment is required. A transport roll obtained by processing a metal roll or the like to form an uneven shape needs to cover the surface of the transport roll with a material made of polyolefin after processing. Examples of the polyolefin include ultra high molecular weight polyethylene and polypropylene having a water contact angle of 85 ° or more. The transport roll Z (II) is more durable than the transport roll Z (I).
  • Examples of the transport roll Z (III) include a roll having an uneven shape whose surface is formed by a processing method selected from the group of cutting knurl processing, rolling knurl processing, and laser engraving.
  • the uneven shape can be formed in a short time, can be processed according to the material and shape optimum for the coating method, and the load on the transport roll is also small.
  • the transport roll Z (III) when the original roll surface material itself has water repellency, no particular treatment is required.
  • a metal roll or the like is processed to form a concavo-convex shape, a water repellent treatment is performed thereafter.
  • the water repellent treatment means such as water repellent resin coating or water repellent plating can be used. From the viewpoint of durability, water-repellent plating is preferable, and composite plating containing polytetrafluoroethylene (PTFE) is preferably used.
  • PTFE polytetrafluoroethylene
  • the shape pattern in the concavo-convex shape is not particularly limited.
  • Examples of the shape of the convex portion include a cone, a polygonal pyramid, a dome, a silk, and a diamond.
  • silk or diamond is more preferable, and diamond is more preferable in terms of ease of processing and reducing a contact area.
  • FIGS. 2 to 4 are cross-sectional views showing an example of uneven patterns of the transport rolls Z (I) to (III).
  • the uneven pitch W1 is preferably 300 to 1000 ⁇ m, and more preferably 400 to 700 ⁇ m.
  • the “pitch” of the unevenness is a distance from the top to the top of the adjacent convex.
  • the height h of the unevenness is preferably 50 to 200 ⁇ m, and more preferably 75 to 120 ⁇ m.
  • the “height” of the unevenness is the height (distance in the Z direction) from the convex top to the concave valley.
  • the uneven gap W2 / pitch W1 is preferably 0.3 to 0.6, more preferably 0.4 to 0.5.
  • the gap W2 is a distance obtained by connecting intermediate points h / 2 of the concave valley portions to the convex top portions of the adjacent convex portions.
  • Examples of the transport roll Z (IV) include a roll that has been subjected to sprayed water-repellent processing.
  • the thermal spray water-repellent process is a process in which the water-repellent process is performed after the thermal spraying process is performed on the surface of the transport roll material.
  • Thermal spraying is a process that forms a coating by bringing the coating material into a molten or semi-molten state and then colliding with the surface of the transport roll material to form a coating.
  • a transport roll with excellent wear resistance and heat resistance is used. Can be formed.
  • As the coating material metals, alloys, ceramics, plastics, glass and the like can be used, and metals or ceramics are more preferable.
  • Examples of the metal or ceramic include nickel, tungsten, and nickel-aluminum.
  • the thermal spraying process an uneven shape is formed on the surface.
  • nickel-based and tungsten-based thermal spraying a surface shape with moderate irregularities of Ra: 3 to 15 ⁇ m and Rz: 30 to 100 ⁇ m can be obtained, and since it is excellent in wear resistance, it is preferably used.
  • the surface of the roll subjected to the thermal spraying process has a concavo-convex shape, but the surface has a concavo-convex cycle with a fine interval of several tens of ⁇ m or less, and is in point contact with the conveyed nonwoven fabric. It is in close contact and transported. For this reason, it is difficult for the coating liquid that has penetrated through the transfer roll to be transferred.
  • the concave portions of the concave / convex cycle at fine intervals formed by thermal spraying are usually sealed by a method such as resin coating to prevent the adhesion of dirt and improve the performance of the film.
  • the water-repellent process after the thermal spraying process is any repellent process in which a water-repellent resin such as a silicone resin or a fluorine resin is formed on the surface by means of coating, plating, plasma treatment or the like.
  • Resin coating of resin or fluororesin is preferably used.
  • fluororesin polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), etc. are used.
  • silicone resins include silicone resins and silicone rubbers.
  • the surface after thermal spraying may be cleaned and polished to finely adjust the surface shape to improve the adhesion with the water-repellent resin.
  • a scratch-resistant filler such as scaly mica, mica-like iron oxide, plate-like titanium oxide, or plate-like silicon carbide may be mixed as the filler.
  • FIG. 5 is a cross-sectional view showing an example of the surface shape of a transport roll that has been subjected to thermal spraying.
  • the surface shape 1 after thermal spraying in addition to the concave / convex cycle of 100 ⁇ m or more represented by ⁇ , a fine concave / convex cycle shape of several tens ⁇ m or less represented by ⁇ is formed.
  • FIG. 6 is a cross-sectional view showing an example of the surface shape of a transport roll that has been subjected to thermal spray water-repellent processing.
  • a water-repellent resin is coated on the surface shape 1 after thermal spray processing shown in FIG. It is sectional drawing showing surface shape 2 after water processing. As shown in FIG. 6, the water-repellent resin is coated so as to cover the entire surface to become a water-repellent resin layer, but after spraying, the water-repellent resin layer is formed so as to fill the concave portion of the surface shape 1 Is done.
  • the roll surface is repeatedly subjected to physical contact during long-term use or maintenance work including cleaning work, etc. May cause damage.
  • the transport roll is subjected to normal water-repellent processing, the water repellency of the damaged part is lowered, and the effect that the coating liquid is difficult to transfer to the transport roll may be reduced. there were.
  • replacement with a new roll is necessary.
  • the transport roll Z (IV) subjected to sprayed water-repellent processing such a reduction in the effect is unlikely to occur.
  • the convex portion (reference numeral 3 in FIG. 7 and reference numeral 4 in FIG. 8) is a portion that makes point contact with the nonwoven fabric being conveyed.
  • the water repellent resin layer of the convex portion 4 is no longer present. However, since a sufficient water-repellent resin layer still exists in the periphery, the effect of suppressing the back-through transfer is favorably maintained.
  • Examples of the transport roll Z (V) include a transport roll that has been subjected to blast water-repellent plating.
  • the blast water-repellent plating process is a process in which water-repellent plating is performed after blasting the surface of the transport roll material.
  • Blasting is a processing method for deforming a shape by spraying an abrasive on the surface of the material and grinding the surface of the material.
  • the abrasive used in the blasting process is also called a projecting material, and any material can be used as the projecting material as long as it can project in addition to metal particles and ceramic particles.
  • Blast water repellent plating is performed after blast processing.
  • the surface of the roll that has been blasted is uneven, but surface contaminants such as oil that normally adhere to the roll surface before processing are completely removed, and the roll Since the surface is made of only the material, it is suitable for subsequent water-repellent plating. That is, when the water-repellent plating process is performed without performing the blasting process, contamination on the roll surface causes the plating failure, thereby hindering the formation of a good plating film. Therefore, by carrying out blasting before water-repellent plating, a strong plating film can be uniformly formed on the roll surface, and a transport roll that can be used over a long period of time can be obtained.
  • the water-repellent plating process uses a processing method that imparts water repellency to the surface by composite plating technology.
  • complex plating technology a small amount of solid particles are included in the plating solution when plating is performed, and when the metal is deposited, the solid particles are also precipitated (eutectoid) in the plating film. In other words, it is a technique for imparting characteristics that cannot be obtained by a normal plating film depending on the type of solid particles.
  • solid particles that impart water repellency are used as the solid particles, and the water-repellent plating process is performed.
  • the solid particles that impart water repellency include fluorine-based resins such as polytetrafluoroethylene (PTFE) resin and graphite fluoride.
  • FIG. 9 is a cross-sectional view showing the surface shape 1 ′ after blasting.
  • FIG. 10 shows the surface shape 2 ′ after the water-repellent plating process is performed on the concavo-convex shape having a period represented by the symbol A of 100 ⁇ m or more and 1000 ⁇ m or less. As shown in FIG. 10, a water-repellent plating process is performed so as to cover the entire surface.
  • the period A uses the RSm value of the surface roughness parameter.
  • the transport roll Z (V) subjected to the water-repellent plating process is not easily damaged. That is, the component that contributes to water repellency in the water-repellent plating process of the present invention is solid particles that exhibit water repellency during composite plating, and the solid particles are contained in a strong plating film, It is hard to receive.
  • transport rolls that have a water-repellent resin layer formed by applying water-repellent resin are less susceptible to damage, have excellent wear resistance, and are good for a long time Can maintain high water repellency
  • any of a metallic or non-metallic blasting material can be used as the blasting material.
  • a surface shape having moderate irregularities with Ra of about 5 to 30 ⁇ m is formed. This suppresses adhesion of the coating liquid and forms a clean surface suitable for water-repellent plating.
  • a contact-type surface roughness meter (SURFCOM FLEX (registered) has a cutoff value of 2.5 mm and an evaluation length of 12.5 mm. Trademark), manufactured by Tokyo Seimitsu Co., Ltd.) and measured according to JIS B 0601: 2001.
  • any combination of metal plating and solid particles imparting water repellency can be used, but a strong and uniform plating film can be formed satisfactorily and yet has high water repellency.
  • Nickel / PTFE composite plating can be suitably used as the composite plating for obtaining the above.
  • Examples of the transport roll Z (VI) include a roll covered with a water repellent fabric.
  • the water repellent fabric is a fabric in which a water repellent resin is applied.
  • FIG. 11 is a diagram showing an example of a surface pattern of a glass cloth used for a water-repellent fabric used for the transport roll Z (VI).
  • the fabric has a portion where the warp yarn a and the weft yarn b overlap with each other and a portion where the warp yarn a and the weft yarn b do not overlap.
  • the material constituting the fabric there is no particular limitation on the material constituting the fabric.
  • it is preferably a material that does not cause irreversible thermal deformation at the temperature used in the drying means D. Glass fiber, aramid resin fiber, polyimide resin fiber, phenol resin fiber Etc. can be illustrated.
  • the water-repellent resin used for the transport roll Z (VI) is not particularly limited as long as it is a material that does not cause irreversible thermal deformation at the temperature used for the drying means D.
  • Polytetrafluoroethylene, tetrafluoroethylene- Examples thereof include fluorine resins such as hexafluoropropylene copolymer and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer; silicone resins such as silicone resin and silicone rubber.
  • a scratch-resistant filler such as scaly mica, mica-like iron oxide, plate-like titanium oxide, plate-like silicon carbide or the like may be mixed with the water repellent resin.
  • FIG. 12 is a cross-sectional view showing an example of the water-repellent fabric used in the present invention.
  • the water repellent resin layer d covers the fabric composed of the warp yarn a and the weft yarn b, thereby eliminating the gap c where the warp yarn a and the weft yarn b do not overlap as shown in FIG.
  • the applied coating liquid can be prevented from entering the gap c.
  • the warp and weft are preferably 5.6 tex or more and 200 tex or less, and the weave density is 30/25 mm or more and 80/25 mm or less.
  • the weaving structure is preferably plain weave, satin weave, or twill. The count and weave density may be different between the warp and the weft. Since the contact area between the transport roll and the nonwoven fabric can be lowered, the Ra of the transport roll surface is preferably 3 to 30 ⁇ m. In addition, the transport roll Z (VI) can be easily replaced even if the surface is damaged due to physical contact during long-term use or maintenance work. Kept.
  • the coating liquid that has penetrated through is difficult to transfer to the transport roll, so that the nonwoven fabric is less likely to adhere to the transport roll and the transport becomes stable. Moreover, it becomes difficult to produce coating defects, such as a pinhole, in the obtained coating layer. Furthermore, it is also suppressed that the coating liquid transferred to the transport roll is retransferred to the nonwoven fabric and the coating layer becomes non-uniform. The reason why these effects are obtained is that the contact area between the transport roll and the nonwoven fabric can be lowered by the unevenness of the transport roll surface.
  • the transport roll Z transports the nonwoven fabric from the step of applying the coating liquid to one side of the nonwoven fabric (coating step) to the step of drying the nonwoven fabric (drying step).
  • the surface opposite to the surface to which the non-woven fabric coating liquid is applied is appropriately supported by a transport roll.
  • the transport roll Z is used for at least one of the transport rolls T2 to T4. Therefore, the transport roll Z may be used for all the transport rolls T2 to T4. Since the transport roll T2 existing between the coating means H and the transport roll T3 before the drying means D is a transport roll that is not affected by the heat from the drying means D, the surface has an uneven shape.
  • any transport roll having water repellency can be used.
  • the transport rolls Z (I) and (II) can be used as the transport rolls T2 and T3. Further, the transport roll Z (III) is superior in heat resistance to the transport rolls Z (I) and (II). Therefore, the transport roll Z (III) can be used not only as the transport rolls T2 and T3 but also as the transport roll T4. In particular, in the case of a metal roll excellent in heat resistance, it is suitable for the transport roll T4. Further, the drying means D can be processed at a higher drying temperature.
  • the transport rolls Z (IV) to (VI) can also have high heat resistance, and can be used not only as the transport rolls T2 and T3 but also as the transport roll T4 in the drying means D. By using it as the transport roll T4, it becomes possible to raise the drying temperature of the drying means D, the degree of freedom of processing is expanded, and it can contribute to productivity improvement.
  • the coating means H is not particularly limited. However, if too much coating solution is broken through, it is difficult to avoid the adverse effects caused by the strike-through according to the present invention. It is preferable to use it.
  • the dynamic pressure in the thickness direction causes a large amount of coating liquid to escape.
  • coating means such as a kiss touch gravure coater, a kiss roll coater, a die coater, a curtain coater, and a spray coater are preferably used.
  • the drying means D is not particularly limited.
  • Use drying means such as an air dryer that blows hot air or dry air on the surface of the nonwoven fabric, a cylinder dryer that heats and dry the nonwoven fabric by contacting the surface of a heated metal cylinder, or an infrared dryer that heats the nonwoven fabric with infrared rays. be able to.
  • the nonwoven fabric is not particularly limited. However, when using a thick non-woven fabric, it is difficult for the coating liquid to break through in the first place, and the motivation for using the technique of the present invention is poor. Conversely, when a thin nonwoven fabric, specifically, a nonwoven fabric having a thickness of 30 ⁇ m or less is used, the present invention can greatly improve the coating uniformity.
  • the transport roll T1 existing before the coating means H is not particularly limited, and any of metals, resins, and fiber reinforced plastics can be used.
  • the metal include iron, stainless steel, aluminum, brass, and phosphor bronze.
  • the resin include fluorine resins; silicone resins; urethane resins; acrylic resins; ABS resins; polyolefin resins such as polyethylene, polypropylene, and ethylene propylene copolymer resins.
  • fiber reinforced plastics include high elastic modulus materials such as carbon fiber, glass fiber, aramid fiber, and boron fiber, and thermosetting resins such as unsaturated polyester resin, epoxy resin, phenol resin, and melamine resin.
  • An example is a composite of a thermoplastic resin such as an acrylic resin such as polymethyl methacrylate.
  • the transport roll used to support the nonwoven fabric after the applied coating liquid loses fluidity is It is not necessary to have a transcription suppressing effect. That is, it is possible to use a transport roll that does not have an uneven shape and water repellency. However, for the transport roll used inside the drying means D, it is necessary to use a transport roll having resistance to the temperature in the drying means D.
  • Nonwoven fabric It consists of 70 parts by mass of polyethylene terephthalate-based fiber staples with a fineness of 0.1 dtex and a cut length of 3 mm, and 30 parts by mass of polyethylene terephthalate binder fiber staples with a fineness of 0.2 dtex and a cut length of 3 mm.
  • a wet papermaking nonwoven fabric having a basis weight of 8 g / m 2 and a thickness of 12 ⁇ m was used.
  • Coating fluid 100 parts by mass (in terms of solid content) of alumina hydrate (boehmite), 2.0 parts by mass (in terms of solid content) of acrylic polymer latex, 0.4 parts by mass (in terms of solid content) maleic acid-acrylic acid
  • a coating solution containing a sodium salt of the copolymer and 0.2 part by mass (in terms of solid content) of carboxymethylcellulose sodium salt (CMC-Na) and the medium being water was prepared.
  • the solid content concentration of the coating liquid is 20% by mass.
  • CMC-Na CMC-Na having a viscosity of 7000 mPa ⁇ sec at 20 ° C. in a 1% by mass aqueous solution was used.
  • the water repellency is measured in a room with a room temperature of 23 ° C. and a relative humidity of 50% using a portable contact angle meter PG-X + (Fibo System AB, Sweden) with an automatic static contact angle of 5 cm square. Ten locations were measured and the average value was taken. The amount of distilled water dropped was 4.0 ⁇ L.
  • Example I-1 ⁇ Conveying roll Z (I)> [Example I-1]
  • the non-woven fabric was coated with the coating solution so that the WET coating amount including the medium (water) was 50 g / m 2 .
  • the coating means H a die coater was used.
  • the drying means D a single-sided air dryer having an effective length of 30 cm was used so that hot air was applied to the surface to which the nonwoven fabric coating liquid was not applied, and then two single-sided air dryers having an effective length of 30 cm were used. The surface to which the coating liquid was applied was used so that hot air was applied to it.
  • the convex shape is a cone
  • the concavo-convex pitch W1 is 600 ⁇ m
  • the concavo-convex height h is 100 ⁇ m
  • the concavo-convex gap W2 / pitch W1 is 0.45
  • the contact angle of water is 88 °. Met.
  • the coating speed was 2 m / min.
  • Example I-2 Coating on the nonwoven fabric was carried out in the same manner as in Example I-1, except that an uneven polypropylene (PP) sheet was used instead of the uneven PE sheet.
  • PP polypropylene
  • the concavo-convex pitch W1 was 700 ⁇ m
  • the concavo-convex height h was 120 ⁇ m
  • the concavo-convex gap W2 / pitch W1 was 0.40
  • the contact angle of water was 94 °.
  • Example I-3 The nonwoven fabric was coated in the same manner as in Example I-1, except that a concavo-convex polytetrafluoroethylene (PTFE) sheet was used instead of the concavo-convex PE sheet.
  • PTFE polytetrafluoroethylene
  • the concavo-convex pitch W1 was 600 ⁇ m
  • the concavo-convex height h was 100 ⁇ m
  • the concavo-convex gap W2 / pitch W1 was 0.45
  • the contact angle of water was 110 °.
  • Example I-4 In the uneven PE sheet, the same as Example I-1, except that the uneven pitch W1 is 450 ⁇ m, the uneven height h is 110 ⁇ m, the uneven gap W2 / pitch W1 is 0.55, and the contact angle is 90 °. Then, the coating was applied to the nonwoven fabric.
  • Example I-5 Except for the uneven PE sheet, Example I-1 except that the uneven pitch W1 was 560 ⁇ m, the uneven height h was 200 ⁇ m, the uneven gap W2 / pitch W1 was 0.57, and the contact angle of water was 89 °. Similarly, coating on the nonwoven fabric was performed.
  • Example I-6 Example I-1 except for the uneven PE sheet, except that the uneven pitch W1 was 600 ⁇ m, the uneven height h was 50 ⁇ m, the uneven gap W2 / pitch W1 was 0.60, and the contact angle of water was 89 °. Similarly, coating on the nonwoven fabric was performed.
  • Example I-7 In the uneven PE sheet, the nonwoven fabric was coated in the same manner as in Example I-1, except that the uneven pitch W1 was 1500 ⁇ m, the height h was 300 ⁇ m, and the gap W2 / pitch W1 was changed to 0.57. .
  • the water contact angle was 89 °.
  • Example I-8 The nonwoven fabric was coated in the same manner as in Example I-1, except that the uneven pitch W1 of the uneven PE sheet was 600 ⁇ m, the height h was 100 ⁇ m, and the gap W2 / pitch W1 was 0.22.
  • the water contact angle was 89 °.
  • Example I-9 The nonwoven fabric was coated in the same manner as in Example I-1, except that the uneven pitch W1 of the uneven PE sheet was 300 ⁇ m, the height h was 100 ⁇ m, and the gap W2 / pitch W1 was 0.60. The water contact angle was 89 °.
  • Example I-10 The nonwoven fabric was coated in the same manner as in Example I-1, except that the uneven pitch W1 of the uneven PE sheet was 1000 ⁇ m, the height h was 120 ⁇ m, and the gap W2 / pitch W1 was 0.50. The water contact angle was 89 °.
  • Example I-11 The nonwoven fabric was coated in the same manner as in Example I-1, except that the uneven pitch W1 of the uneven PE sheet was 700 ⁇ m, the height h was 75 ⁇ m, and the gap W2 / pitch W1 was 0.40.
  • the water contact angle was 89 °.
  • Example I-12 The nonwoven fabric was coated in the same manner as in Example I-1, except that the uneven pitch W1 of the uneven PE sheet was 500 ⁇ m, the height h was 100 ⁇ m, and the gap W2 / pitch W1 was 0.45. The water contact angle was 89 °.
  • Example I-13 The nonwoven fabric was coated in the same manner as in Example I-1, except that the uneven pitch W1 of the uneven PE sheet was 600 ⁇ m, the height h was 100 ⁇ m, and the gap W2 / pitch W1 was 0.25.
  • the water contact angle was 85 °.
  • Example I-14 The nonwoven fabric was coated in the same manner as in Example I-1, except that the uneven pitch W1 of the uneven PE sheet was 600 ⁇ m, the height h was 130 ⁇ m, and the gap W2 / pitch W1 was 0.60.
  • the water contact angle was 80 °.
  • Example I-1 The nonwoven fabric was coated in the same manner as in Example I-1 except that the uneven PE sheet was replaced with a PE sheet having no unevenness.
  • the water contact angle was 89 °.
  • Example I-2 Coating was performed on the nonwoven fabric in the same manner as in Example I-3 except that the uneven PTFE sheet was replaced with a PTFE sheet having no unevenness.
  • the water contact angle was 112 °.
  • Example I-3 As in Example I-1, except that aluminum roll metal rolls were used as the transport rolls T2 and T3 between the coating means H and the drying means D, and the roll surface was not covered with the concavo-convex PE sheet. Then, coating on the nonwoven fabric was performed. The contact angle of the metal roll was 80 °.
  • Example I-7 Comparing Examples I-1 to I-14, Example I-7 in which the pitch W1 was 1500 ⁇ m had 493 pinholes, and Example I- in which the gap W2 / pitch W1 was 0.22 In Example I-13, in which the number of pinholes was 475 and the gap W2 / pitch W1 was 0.25, in Example I-14, the number of pinholes was 460, and the contact angle was 80 °.
  • the pitch W1 is 300 to 1000 ⁇ m
  • the gap W2 / pitch W1 is 0.3 to 0.6
  • the height h of the unevenness is 50 to 200 ⁇ m
  • the unevenness In Examples I-1 to I-6 and I-9 to I-12 in which the contact angle of the sheet was 85 ° or more, the number of pinholes was very small, 0 to 70.
  • the coating speed is limited to 2 m / min due to the effective length of the drying means, but the back-through of the coating liquid is a phenomenon that gets worse over time. Therefore, it is rather advantageous to increase the coating speed, and if an air dryer having a long effective length is used, it is easy to increase the speed.
  • Example II-1 The non-woven fabric coating machine schematically shown in FIG. 1 applied the coating liquid to the non-woven fabric so that the WET coating amount including the medium (water) was 50 g / m 2 .
  • the coating means H a die coater was used.
  • the drying means D a single-sided air dryer having an effective length of 30 cm was used so that hot air was applied to the surface to which the nonwoven fabric coating liquid was not applied, and then two single-sided air dryers having an effective length of 30 cm were used.
  • the surface to which the coating liquid was applied was used so that hot air was applied to it.
  • the drying temperature was 100 ° C.
  • a roll having a diameter of 60 mm with an aluminum alloy as a core material covered with an uneven polyethylene (PE) sheet was used.
  • the concavo-convex PE sheets were pasted with a spray paste so as not to overlap each other and to leave no gap.
  • the convex shape is a cone
  • the concavo-convex pitch W1 is 600 ⁇ m
  • the concavo-convex height h is 100 ⁇ m
  • the concavo-convex gap W2 / pitch W1 is 0.45
  • the contact angle of water is 88 °. Met.
  • the coating speed was 30 m / min.
  • the water contact angle was 88 °.
  • a nonwoven fabric was coated in the same manner as in Example II-1 except that. The water contact angle was 88 °.
  • a nonwoven fabric was coated in the same manner as in Example II-1 except that. The water contact angle was 88 °.
  • a nonwoven fabric was coated in the same manner as in Example II-1 except that. The water contact angle was 88 °.
  • Example II-7 As the transport rolls T3 and T4, a pyramid pattern is formed as a concave and convex shape on the surface not by cutting knurling but on a stainless steel roll, and a heat-shrinkable polypropylene film is wound around the processed roll, and a hair dryer is sprayed and coated.
  • the drying temperature was set to 80 ° C. Coating was performed. The water contact angle was 92 °.
  • the water contact angle was 93 °.
  • a nonwoven fabric was coated in the same manner as in Example II-1 except that it was used as T3 and T4.
  • the shape of the embossed convex portion was a conical shape.
  • the water contact angle was 90 °.
  • Example II-1 Coating on the nonwoven fabric was carried out in the same manner as in Example II-1, except that as the transport rolls T3 and T4, rolls made of ultrahigh molecular weight polyethylene having a diameter of 60 mm and having no irregularities formed on the surface were used.
  • the water contact angle was 88 °.
  • Table 2 shows the results of the observation of the coated surface after the nonwoven fabric coating and the evaluation of pinholes and coating unevenness.
  • Example II-9 in the transport roll T4 inside the drying means D, the uneven PE sheet fixed on the transport roll surface was deformed by heat, and streaks were generated on the coated surface.
  • corrugated PE sheet can be used as the conveyance rolls T2 and T3, it is difficult to use it as the conveyance roll T4.
  • Example III-1 ⁇ Conveying roll Z (III)> [Example III-1]
  • the non-woven fabric was coated with the coating solution so that the WET coating amount including the medium (water) was 50 g / m 2 .
  • the coating means H a die coater was used.
  • the drying means D a single-sided air dryer having an effective length of 30 cm was used so that hot air was applied to the surface to which the nonwoven fabric coating liquid was not applied, and then two single-sided air dryers having an effective length of 30 cm were used. The surface to which the coating liquid was applied was used so that hot air was applied to it.
  • the transport roll T2 between the coating means H and the transport roll before the drying means D a roll having a diameter of 60 mm and coated with an uneven polyethylene (PE) sheet and having an aluminum alloy as a core material was used.
  • the concavo-convex PE sheets were pasted with a spray paste so as not to overlap each other and to leave no gap.
  • the concavo-convex PE sheet the convex shape is a cone, the concavo-convex pitch W1 is 600 ⁇ m, the concavo-convex height h is 100 ⁇ m, the concavo-convex gap W2 / pitch W1 is 0.45, and the contact angle of water is 88 °. Met.
  • the coating speed was 30 m / min.
  • a diamond pattern is formed on the surface as a concave and convex shape by cutting knurling on a stainless steel roll, and then PTFE composite plating is performed to make the water repellent A treated transport roll was used.
  • Example III-3 The nonwoven fabric was coated in the same manner as in Example III-1, except that the water-repellent treatment method for the transport rolls T3 and T4 was changed to PTFE resin coating treatment.
  • Example III-4 Coating on the nonwoven fabric was carried out in the same manner as in Example III-1, except that an aluminum alloy roll was used instead of a stainless steel roll.
  • the shape of the embossed convex portion was a conical shape.
  • the shape of the embossed convex portion was a conical shape.
  • Example III-1 The nonwoven fabric was coated in the same manner as in Example III-1, except that a stainless steel roll having no irregularities formed on the surface was used for the transport rolls T3 and T4.
  • Example III-2 The nonwoven fabric was coated in the same manner as in Example III-1, except that a stainless steel roll having a concavo-convex shape formed on the surface by cutting knurling was used for the transport rolls T3 and T4. The surface is not subjected to water repellent treatment.
  • Table 3 shows the results of the observation of the coated surface after the coating of the nonwoven fabric and the evaluation of pinholes and coating unevenness.
  • Example III-7 a good coated surface was formed.
  • Example III-5 there was a dimensional change (distortion) of the roll made of an aluminum alloy due to rolling knurl processing, and a change in the pass line of the sheet being conveyed was observed.
  • no effect on the coated surface was observed.
  • Example III-6 required more time for production than the cutting knurl, and had a restriction on the height h.
  • Example III-8 in the transport roll T4 in the drying means D, the PE sheet formed on the transport roll surface was deformed by heat, and streaks were generated on the coated surface.
  • corrugated PE sheet can be used as the conveyance rolls T2 and T3, it is difficult to use it as the conveyance roll T4.
  • FIG. 1 shows a schematic diagram of an example of the nonwoven fabric coating machine of the present invention.
  • the nonwoven fabric is fed from the nonwoven fabric roll M made of the nonwoven fabric, transported by the transport means composed of the transport rolls T1 to T4, and coated and dried by the coating means H and the drying means D.
  • the coating means H a die coater was used, and coating was performed so that the WET coating amount including the medium (water) was 50 g / m 2 .
  • the drying means D a single-sided air dryer having an effective length of 30 cm was used so that hot air was applied to the surface to which the nonwoven fabric coating liquid was not applied, and then two single-sided air dryers having an effective length of 30 cm were used. The surface to which the coating liquid was applied was used so that hot air was applied to it.
  • the drying temperature was 100 ° C.
  • a roll having a diameter of 60 mm with an aluminum alloy as a core material covered with an uneven polyethylene (PE) sheet was used.
  • the concavo-convex PE sheets were pasted with a spray paste so as not to overlap each other and to leave no gap.
  • the coating speed was 30 m / min.
  • the transport roll T3 in front of the drying means D and the transport roll T4 inside the drying means D rolls subjected to sprayed water-repellent processing were used.
  • the thermal spraying was nickel-based thermal spraying, and the water-repellent finish was a roll that was a silicone-based resin coating.
  • the surface roughness was Ra: 10 ⁇ m, Rz: 75 ⁇ m.
  • the contact angle was 106 °.
  • the cleaning removal operation is performed, and the coating is performed again in the same manner as described above.
  • the washing and removing operation is first performed by washing with water, but the remaining coating liquid fixing portions were subjected to physical force with a metal spatula to remove the fixed matter. Moreover, about the adhering thing of a recessed part, it removed by sticking an adhesive sheet.
  • the above coating solution fixing-washing and removing operation was performed 30 more times on the transport roll T4, and then the coating was performed in the same manner as described above, and the coated surface was observed. A good coated surface was formed.
  • Example IV-1 the transport roll T3 in front of the drying means D and the transport roll T4 inside the drying means D are not sprayed and water-repellent, but only sprayed and water-repellent.
  • a non-woven fabric was applied and the coated surface was observed in the same manner as in Example 30, except that a non-roll was used.
  • the surface roughness of the roll subjected only to thermal spraying was Ra: 15 ⁇ m, Rz: 100 ⁇ m, and the contact angle was 80 °.
  • Example IV-2 In Example IV-1, except that the transport roll T3 in front of the drying means D and the transport roll T4 inside the drying means D were not sprayed but used only a water repellent finish. In the same manner as in No. 30, the nonwoven fabric was applied and the coated surface was observed.
  • the surface roughness of the roll subjected only to the water repellent treatment was Ra: 1 ⁇ m, Rz: 5 ⁇ m, and the contact angle was 102 °.
  • FIG. 1 shows a schematic diagram of an example of the nonwoven fabric coating machine of the present invention.
  • the nonwoven fabric is fed from the nonwoven fabric roll M made of the nonwoven fabric, transported by transporting means composed of transporting rolls T1 to T4, and coated and dried by the coating means H and the drying means D.
  • the coating means H a die coater was used, and coating was performed so that the WET coating amount including the medium (water) was 50 g / m 2 .
  • the drying means D a single-sided air dryer having an effective length of 30 cm was used so that hot air was applied to the surface to which the nonwoven fabric coating liquid was not applied, and then two single-sided air dryers having an effective length of 30 cm were used. The surface to which the coating liquid was applied was used so that hot air was applied to it.
  • the drying temperature was 100 ° C.
  • a roll having a diameter of 60 mm with an aluminum alloy as a core material covered with an uneven polyethylene (PE) sheet was used.
  • the concavo-convex PE sheets were pasted with a spray paste so as not to overlap each other and to leave no gap.
  • the coating speed was 30 m / min.
  • the cleaning removal operation is performed, and the coating is performed again in the same manner as described above.
  • the washing and removing operation was performed by washing with water.
  • the coating liquid fixing part remained, the fixed substance was removed by applying a physical force with a cloth wiper.
  • the above coating solution fixing-washing and removing operation was performed 30 more times on the transport roll T4, and then the coating was performed in the same manner as described above, and the coated surface was observed. A good coated surface was formed.
  • Example V-1 the transport roll T3 in front of the drying means D and the transport roll T4 inside the drying means D are not subjected to blast water-repellent plating processing, but only blast processing, and water-repellent plating processing A non-woven fabric was applied and the coated surface was observed in the same manner as in Example V-1, except that a roll that had not been used was used.
  • the surface roughness of the roll subjected only to blasting was Ra: 15 ⁇ m, and the contact angle was 60 °.
  • Period A was 500 ⁇ m.
  • Example V-2 In Example V-1, except that the transport roll T3 in front of the drying means D and the transport roll T4 inside the drying means D are rolls that are only subjected to water-repellent plating without blasting, In the same manner as in Example V-1, non-woven fabric coating was performed, and the coated surface was observed.
  • the surface roughness of the roll subjected to only water-repellent plating was Ra: 1 ⁇ m, and the contact angle was 120 °.
  • Period A was 150 ⁇ m.
  • Example VI-1 The non-woven fabric coating machine schematically shown in FIG. 1 applied the coating liquid to the non-woven fabric so that the WET coating amount including the medium (water) was 50 g / m 2 .
  • the coating means H a die coater was used.
  • the drying means D a single-sided air dryer having an effective length of 30 cm was used so that hot air was applied to the surface to which the nonwoven fabric coating liquid was not applied, and then two single-sided air dryers having an effective length of 30 cm were used.
  • the surface to which the coating liquid was applied was used so that hot air was applied to it.
  • the drying temperature was 100 ° C.
  • the coating speed was 30 m / min.
  • the concavo-convex polyethylene sheets were affixed by spraying so that they did not overlap each other and no gap was formed.
  • the water-repellent fabrics were fixed using polyimide tape so that they did not overlap each other and no gap was formed.
  • a JIS R 3414 2012 EP08B glass cloth impregnated with a polytetrafluoroethylene resin and provided with a water repellent resin layer was used.
  • the surface roughness was Ra: 5 ⁇ m, and the contact angle of water was 110 °.
  • Example VI-2 Example VI-, except that a water repellent fabric used for the transport rolls T3 and T4 was obtained by impregnating a glass cloth of EP06B of JIS R 3414: 2012 with a polytetrafluoroethylene resin and providing a water repellent resin layer. The coating was performed on the nonwoven fabric in the same manner as in 1. The surface roughness was Ra: 3 ⁇ m and the contact angle of water was 110 °.
  • Example VI-3 Example VI-, except that the water repellent fabric used for the transport rolls T3 and T4 was made of a JIS R 3414: 2012 EP25 glass cloth impregnated with a polytetrafluoroethylene resin and provided with a water repellent resin layer. The coating was performed on the nonwoven fabric in the same manner as in 1. The surface roughness was Ra: 30 ⁇ m, and the water contact angle was 110 °.
  • Example VI-3 the concavo-convex pattern of the water-repellent fabric was transferred, but no pinholes or coating unevenness caused by back-through were observed. Moreover, even if the coating solution was intentionally fixed to the transport rolls T3 and T4, the coating solution could be easily wiped with a cloth wiper wetted with water. For this reason, even if it becomes the situation where a coating liquid adheres at the time of coating, the washing
  • Example VI-1 The nonwoven fabric was coated in the same manner as in Example VI-1, except that the transport rolls T3 and T4 were transport rolls in which glass cloth of EP06B of JIS R 3414: 2012 was fixed with a polyimide tape.
  • the surface roughness was Ra: 3 ⁇ m, and the contact angle of water could not be measured.
  • Example VI-2 The nonwoven fabric was coated in the same manner as in Example VI-1, except that a roll coated with a polytetrafluoroethylene resin was used as the transport rolls T3 and T4 instead of the roll coated with the water repellent fabric.
  • the surface roughness was Ra: 1 ⁇ m, and the water contact angle was 110 °.
  • Comparative Examples VI-1 and VI-2 pinholes and coating unevenness caused by strike-through were observed, and a good coating surface could not be formed. Further, in Comparative Example VI-1, in the transport roll T4 inside the drying means D, the coating liquid penetrated through the transport roll surface was fixed.
  • Coating to the nonwoven fabric using the nonwoven fabric coating machine of the present invention is the manufacture of products obtained by coating various types of coating liquids on the nonwoven fabric, for example, lithium ion secondary formed by coating inorganic particles on the nonwoven fabric. It can be used suitably for manufacture of a battery separator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本発明の課題は、不揮発分を媒体に分散又は溶解させた塗工液を不織布に塗工することにおいて、塗工液の裏抜けに起因するピンホール等の欠陥の発生を、高度に回避できる不織布塗工機を提供することにある。 不織布に塗工液を付与する塗工手段、塗工液を付与された不織布が搬送ロールに支持されて搬送される搬送手段、及び付与した塗工液を乾燥させる乾燥手段を有する不織布塗工機において、搬送ロールの表面が凹凸形状及び撥水性を有していることを特徴とする不織布塗工機。

Description

不織布塗工機
 本発明は、不織布へ塗工するために使用する不織布塗工機に関する。
 不織布を基材とし、不揮発分を媒体に分散又は溶解させた塗工液を塗工することによって、機能性が付与された製品が製造されている。不揮発分としては、樹脂、無機粒子、有機粒子等が挙げられ、媒体としては、水、有機溶媒等が挙げられる。機能性が付与された製品としては、例えば、リチウムイオン電池用セパレータ、ろ過膜等が挙げられる。
 リチウムイオン電池用セパレータ(以下、「セパレータ」と略記する場合がある)においては、非発電要素であるセパレータが電池内で占める体積の割合を減らすため、厚さ30μm以下という薄いセパレータが求められている。ろ過膜においては、ろ過性能を向上させるために、同体積のモジュール内により大面積のろ過膜を収納できることが望ましく、薄いろ過膜が求められている。
 製品の厚さを薄くするためには、基材として薄い不織布を使用する必要がある。厚さ30μm以下といった薄い不織布を基材として使用する場合、「塗工液の裏抜け」という現象が発生する。「塗工液の裏抜け」とは、塗工液が不織布の反対面に滲み出す現象である。以下、「塗工液の裏抜け」を「裏抜け」と記す場合がある。裏抜けに起因し、種々の問題が発生する。具体的には、滲み出した塗工液によって不織布が搬送ロールや搬送支持体に粘着して搬送が困難になる問題、不織布への塗工液付与量が部分的に不足してピンホール等の塗工欠陥を生じる問題、搬送ロールや搬送支持体に一旦転写した塗工液やその乾固物が不織布に再転写して塗工均一性が低下する問題等が発生する。特に、リチウムイオン電池用セパレータ、ろ過膜等においては、ポア径等の物性が均一であることが求められるため、ピンホール等の塗工欠陥の発生や塗工均一性の低下は、性能を低下させる深刻な問題である。
 裏抜けに伴う諸問題を解決するために、以下のような技術が提案されている。例えば、不織布と、塗工液を塗工してなる塗工層を、搬送支持体と積層し、乾燥後に搬送支持体を剥離して製品を得る方法が提案されている(例えば、特許文献1~4参照)。搬送支持体としては、裏抜けが発生しない、緻密な紙や樹脂シートが開示されている。また、2層の不織布を積層し、双方の不織布に塗工液を含浸し、片面から塗工液を凝固させた後、2層の不織布を剥離してその一方を製品として得る方法が提案されている(例えば、特許文献5参照)。しかし、これらの方法には、使用後の搬送支持体や一方の不織布を廃棄することから、コストが高くなる問題、大量の廃棄物が生じる問題等があった。
 また、塗工液を付与した後の不織布を特定のロールを用いて搬送することによって、裏抜けに伴う面質の悪化を回避する方法も提案されている(例えば、特許文献6~8参照)。特許文献6には、走行方向と略並行方向に溝が設けられたロールが開示されている。また、特許文献7には、直径25mm以下のロールが開示されている。さらに、特許文献8には、スムージングロールが開示されている。しかし、特許文献6~8に開示された方法では、基材として非常に薄い不織布を用いた場合等に、ピンホール等の欠点が発生する場合があり、その効果には未だ改善の余地がある。
 特定の物性の不織布を使用する方法(例えば、特許文献9参照)、特定の物性の塗工液を使用する方法(例えば、特許文献10及び11参照)によって、裏抜けを回避する方法も提案されている。しかし、これらの方法では、不織布や塗工液の選択の幅が狭いために、製品性能やコストの観点から最適な不織布や塗工液が選択できなくなる場合があった。とりわけ、裏抜けが少ない不織布は、必然的に液体や気体の透過性が低い不織布となってしまうため、リチウムイオン電池用セパレータやろ過膜と言った、物質やイオンの透過を目的とした製品においては、著しい制約となる場合が多い。
特開2005-268096号公報 特開2005-302341号公報 特開2013-186958号公報 特開2013-229118号公報 国際公開第2008/153117号パンフレット 特開2014-192027号公報 特開2014-192147号公報 特開2015-8109号公報 特開2013-154304号公報 特開2013-115031号公報 特開2014-44857号公報
 本発明の課題は、不揮発分を媒体に分散又は溶解させた塗工液を不織布に塗工することにおいて、塗工液の裏抜けに起因するピンホール等の欠陥の発生を、高度に回避できる不織布塗工機を提供することにある。
 本発明の課題を解決するための手段は下記のとおりである。
(1)不織布に塗工液を付与する塗工手段、塗工液を付与された不織布が搬送ロールに支持されて搬送される搬送手段、及び付与した塗工液を乾燥させる乾燥手段を有する不織布塗工機において、搬送ロールの表面が凹凸形状及び撥水性を有していることを特徴とする不織布塗工機。
(2)搬送ロールが、表面が撥水性の凹凸シートによって被覆されているロールである上記(1)記載の不織布塗工機。
(3)搬送ロールが、表面がポリオレフィンからなり、表面が機械加工により形成された凹凸形状を有するロールである上記(1)記載の不織布塗工機。
(4)搬送ロールが、表面が切削ローレット加工、転造ローレット加工及びレーザ彫刻の群から選ばれる加工方法により形成された凹凸形状を有するロールである上記(1)記載の不織布塗工機。
(5)搬送ロールが金属製ロールである上記(4)記載の不織布塗工機。
(6)凹凸のピッチが300~1000μmであり、隙間/ピッチが0.3~0.6であり、凹凸の高さが50~200μmであり、さらに表面の接触角が85°以上である上記(2)~(5)のいずれか記載の不織布塗工機。
(7)搬送ロールが、溶射撥水加工がなされたロールである上記(1)記載の不織布塗工機。
(8)搬送ロールが、ブラスト撥水めっき加工がなされたロールである上記(1)記載の不織布塗工機。
(9)搬送ロールが、表面が撥水ファブリックによって被覆されているロールである上記(1)記載の不織布塗工機。
 本発明の不織布塗工機により、不揮発分を媒体に分散又は溶解させた塗工液を不織布に塗工することにおいて、塗工液の裏抜けに起因するピンホール等の欠陥の発生を、高度に抑制することができる。
本発明の不織布塗工機の一例を示した概略図である。 本発明に用いる搬送ロールに形成される凹凸形状のパターンの一例を示した断面図である。 本発明に用いる搬送ロールに形成される凹凸形状のパターンの一例を示した断面図である。 本発明に用いる搬送ロールに形成される凹凸形状のパターンの一例を示した断面図である。 溶射加工がなされた搬送ロールの表面形状の一例を示した断面図である。 溶射撥水加工がなされた搬送ロールの表面形状の一例を示した断面図である。 溶射撥水加工がなされた搬送ロールの表面形状の一例を示した断面図である(ダメージを受ける前)。 溶射撥水加工がなされた搬送ロールの表面形状の一例を示した断面図である(ダメージを受けた後)。 本発明に用いるブラスト加工がなされた搬送ロールにおける凹凸形状のパターンの一例を示した断面図である。 本発明に用いるブラスト撥水めっき加工がなされた搬送ロールにおける凹凸形状のパターンの一例を示した断面図である。 本発明に用いる撥水ファブリックに使用するガラスクロスの表面パターンの一例を示した図である。 本発明に用いる撥水ファブリックの一例を示した断面図である。
 本発明は、不織布への塗工するための不織布塗工機である。より詳しくは、不揮発分を媒体に分散又は溶解させた塗工液を不織布に塗工するための不織布塗工機である。本発明の不織布塗工機は、不織布に塗工液を付与する塗工手段、塗工液を付与された不織布が搬送ロールに支持され搬送される搬送手段、及び付与した塗工液を乾燥させる乾燥手段を有する。
 図1は、本発明の不織布塗工機の一例を示した概略図である。アンワインダーによって、不織布ロールMより不織布が引き出される。搬送ロールT1に支持されて、不織布は塗工手段Hへと送られる。次に、塗工手段Hによって、不織布の片面に塗工液が付与される。その後、不織布は、塗工液を付与された面と反対面を1本以上の搬送ロールT2、T3、T4に支持されながら走行し、乾燥手段Dによって乾燥される。搬送ロールT3は、乾燥手段Dの手前の搬送ロールであり、乾燥手段Dからの熱による影響を受ける搬送ロールである。搬送ロールT2は、塗工手段Hから搬送ロールT3までの間に存在する搬送ロールであり、乾燥手段Dからの熱による影響を受けない搬送ロールである。搬送ロールT4は、乾燥手段D内の搬送ロールであり、搬送ロールT3よりも熱による影響を受ける。
 搬送ロールとは、不織布塗工機中において、不織布の走行方向を決めるために、又は、不織布の走行を安定化させるために用いるロールである。搬送ロールの芯材としては金属、プラスチック、繊維強化プラスチック等を使用することができる。金属としては、鉄、ステンレス、アルミニウム、黄銅、りん青銅等が例示できる。プラスチックとしては、フッ素系樹脂;シリコーン系樹脂;ウレタン系樹脂;アクリル系樹脂;アクリロニトリル-ブタジエン-スチレン共重合(ABS)樹脂、ポリエチレン、ポリプロピレン、エチレンプロピレン共重合樹脂等のオレフィン系樹脂等が例示できる。繊維強化プラスチックとしては、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維等の高弾性率の繊維素材と、不飽和ポリエステル系樹脂、エポキシ系樹脂、フェノール系樹脂、メラミン系樹脂等の熱硬化性樹脂;ポリメチルメタクリレート等のアクリル系樹脂等の熱可塑性樹脂とを複合させたものが例示できる。
 本発明の不織布塗工機では、搬送ロールの表面が凹凸形状及び撥水性を有していることを技術的特徴とする。以下、「表面が凹凸形状及び撥水性を有している搬送ロール」を「搬送ロールZ」と略記する場合がある。搬送ロールにおける水の接触角は85°以上が好ましい。ただし、その最大値は理論上180°である。水の接触角が85°以上であることで、搬送ロールに不織布が粘着せず、裏抜けした塗工液が搬送ロールに付着しにくいという効果が得られ易い。接触角は大きければ大きいほど、裏抜けした塗工液が搬送ロールに付着しにくくなるため、好ましい。接触角の測定は、室温23℃、相対湿度50%の部屋で、携帯式接触角計PG-X+(Fibo System AB、Sweden)を用いて、自動静的接触角を5cm角の範囲で10ヶ所測定し、その平均値を接触角とした。蒸留水滴下量は4.0μLとした。搬送ロールに撥水性を持たせる方法としては、撥水性の材質のロールに凹凸形状を形成する方法、貼付、塗設又はメッキ等の手段によって、撥水性を有する材料で搬送ロールの表面を被覆する方法が挙げられる。
 搬送ロールZ(I)として、表面が撥水性の凹凸シートによって被覆されているロールが挙げられる。凹凸シートの材質は特に制限しないが、既に水の接触角が85°以上であるポリエチレン、ポリプロピレン、フッ素樹脂、シリコーン樹脂からなるシートが好ましい。また、水の接触角が85°未満のシート表面に撥水剤をコートしたシートでも良い。撥水剤としては、フッ素樹脂、シリコーン樹脂が好ましい。
 搬送ロールZ(II)として、表面がポリオレフィンからなり、機械加工により形成された凹凸形状を表面が有するロールが挙げられる。搬送ロールの表面の素材がポリオレフィンである場合、撥水性を有しており、特に処理は必要無い。金属ロール等を加工して凹凸形状を形成させた搬送ロールは、加工後に、ポリオレフィンからなる素材で搬送ロールの表面を被覆する必要がある。ポリオレフィンとしては、水の接触角が85°以上である超高分子量ポリエチレンやポリプロピレン等が挙げられる。搬送ロールZ(II)は、搬送ロールZ(I)よりも耐久性に優れている。
 搬送ロールZ(III)として、表面が切削ローレット加工、転造ローレット加工及びレーザ彫刻の群から選ばれる加工方法により形成された凹凸形状を有するロールが挙げられる。中でも、切削ローレット加工では、凹凸形状を短時間に形成することができ、塗布方法に最適な材質及び形状に合わせて加工することができ、搬送ロールへの負荷も小さい。
 搬送ロールZ(III)において、もともとのロール表面の材質自体が撥水性を有している場合は、特に処理は必要ない。金属製ロール等を加工して凹凸形状を形成させた場合には、その後に撥水処理加工を行う。撥水処理加工としては、撥水性樹脂のコーティングや、撥水メッキ等の手段を用いることができる。耐久性の点で撥水メッキが好ましく、更には、ポリテトラフルオロエチレン(PTFE)を含有させた複合メッキが好適に用いられる。
 搬送ロールZ(I)~(III)において、凹凸形状における形状パターンには、特に制限は無い。凸部の形状としては、円錐、多角錐、ドーム、絹目、ダイヤモンド等が例示できる。搬送ロールZ(III)においては、加工のし易さと接触面積を少なくするという点で、絹目又はダイヤモンドがより好ましく、ダイヤモンドがさらに好ましい。図2~4は、搬送ロールZ(I)~(III)が有する凹凸形状のパターンの一例を示した断面図である。
 搬送ロールZ(I)~(III)において、凹凸のピッチW1は、300~1000μmが好ましく、400~700μmがより好ましい。本発明において、凹凸の「ピッチ」とは、隣接する凸の頂部から頂部までの距離である。該ピッチW1が300~1000μmである場合、裏抜けした塗工液が、搬送ロールZに転写しにくいという効果が得られ易い。
 搬送ロールZ(I)~(III)において、凹凸の高さhは、50~200μmが好ましく、75~120μmがより好ましい。本発明において、凹凸の「高さ」とは、凸の頂部から凹の谷部までの高さ(Z方向の距離)である。該高さhが50~200μmである場合、搬送ロールに不織布が粘着せず、塗工層に凹凸のパターンが転写されないという効果が得られ易い。
 搬送ロールZ(I)~(III)において、凹凸の隙間W2/ピッチW1は0.3~0.6が好ましく、0.4~0.5がより好ましい。本発明において、隙間W2とは、図2で示すように、隣接する凸部の凸の頂部から凹の谷部の中間地点h/2同士を結んだ距離である。該隙間W2/ピッチW1が0.3~0.6である場合、裏抜けした塗工液が、搬送ロールに転写しにくいという効果が得られ易い。
 搬送ロールZ(IV)として、溶射撥水加工がなされたロールが挙げられる。溶射撥水加工とは、搬送ロール素材の表面に溶射加工を行った後に、撥水加工を行うものである。溶射加工とは、被覆材料を溶融・半溶融状態にした後、搬送ロール素材表面に衝突させて積層させることによって皮膜を形成する加工処理であり、耐摩耗性、耐熱性に優れた搬送ロールが形成できる。被覆材料としては、金属、合金、セラミックス、プラスチック、ガラス等が利用可能であり、金属又はセラミックがより好ましい。金属又はセラミックとしては、ニッケル系、タングステン系、ニッケル-アルミニウム系が挙げられる。溶射加工では、表面に凹凸形状が形成される。ニッケル系、タングステン系の溶射では、Ra:3~15μm、Rz:30~100μm程度の適度な凹凸のある表面形状が得られ、耐摩耗性にも優れているため、好適に用いられる。
 溶射加工が行われたロール表面は、凹凸形状が形成されているが、その表面には数十μm以下の微細な間隔での凹凸周期が形成されており、搬送される不織布とは点接触に近い状態で接触し、搬送される。そのため、裏抜けした塗工液が、搬送ロールに転写しにくい。
 また、溶射加工で形成された微細な間隔での凹凸周期の凹部には、通常、樹脂塗工などの方法で封孔処理をすることで、汚れの付着防止及び皮膜の性能向上が図られる。本発明では、溶射加工の後の撥水加工は、シリコーン系樹脂やフッ素系樹脂等の撥水性の樹脂を、塗工やめっき、プラズマ処理等の手段を用いて、表面に形成させるいずれの撥水加工を行うこともできるが、表面全体に撥水樹脂層を形成するとともに、溶射加工によってできた微細な凹凸周期の凹部に充填するように撥水樹脂層を形成することが好ましく、シリコーン系樹脂やフッ素系樹脂の樹脂塗工が好適に用いられる。フッ素系樹脂としては、ポリ四フッ化エチレン(PTFE)、四フッ化エチレン-六フッ化プロピレン共重合体(FEP)及び四フッ化エチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)等が利用される。シリコーン系樹脂としては、シリコーン樹脂、シリコーンゴムが挙げられる。撥水加工に先立って、溶射加工後の表面を洗浄・研磨を実施して、表面の形状を微調整して、撥水樹脂との密着性向上を図っても良い。撥水樹脂層の耐擦過性を向上させる目的で、充填材として鱗片状マイカ、雲母状酸化鉄、板状酸化チタン、板状炭化ケイ素等の耐擦過性充填材を混合しても良い。
 搬送ロールZ(IV)における、溶射撥水加工がなされた搬送ロール表面の凹凸形状は溶射加工によって形成されたものであれば、種々の形状のものが使用可能である。溶射加工で表面形状を詳細にコントロールすることは難しく、形状の表現も難しいが、図5及び図6を用いて説明する。図5は、溶射加工がなされた搬送ロールの表面形状の一例を示した断面図である。溶射加工後表面形状1では、αで表される100μm以上の凹凸周期に加え、βで表される数十μm以下の微細な凹凸周期の形状が形成される。図6は、溶射撥水加工がなされた搬送ロールの表面形状の一例を示した断面図であり、図5で示される溶射加工後表面形状1の上に撥水性の樹脂を塗工した、撥水加工後表面形状2を表す断面図である。撥水性の樹脂は、図6に示すように、表面全面を覆うように塗工がなされて撥水樹脂層となるが、溶射加工後表面形状1の凹部を埋めるように撥水樹脂層が形成される。
 本発明の不織布塗工機では、長期間の使用時や、洗浄作業等を含むメンテナンス作業時において、ロール表面が繰り返し物理的な接触を受けて磨耗が発生したり、突発的な機械的な接触により傷がついたりするダメージが発生する場合がある。そのような場合、通常の撥水加工が施された搬送ロールであれば、ダメージを受けた部分の撥水性が低下し、塗工液が、搬送ロールに転写しにくくなる効果が低減する場合があった。そのような場合には、最悪の場合、新品ロールとの交換が必要となるが、溶射撥水加工がなされた搬送ロールZ(IV)においては、そのような効果の低減が発生しにくい。図7及び図8にダメージを受ける前後の溶射撥水加工がなされた搬送ロールの表面形状を示す。それぞれ、溶射加工後表面形状1の上に撥水加工を行い、撥水加工後表面形状2が形成されている搬送ロールの表面形状である。図7に示すダメージを受ける前の表面形状の凸部3において形成されていた撥水樹脂層が、図8に示すダメージを受けた後の表面形状の凸部4においては除去されて、溶射加工後表面形状1が撥水樹脂層に覆われていない状態となっている。凸部(図7の符号3、図8の符号4)は、搬送されている不織布と点接触する部分となるが、本発明では、この凸部4の撥水樹脂層が存在しなくなったとしても、その周辺には十分な撥水樹脂層が依然存在するために、裏抜けの転写抑制効果が良好に持続される。
 搬送ロールZ(V)として、ブラスト撥水めっき加工がなされた搬送ロールが挙げられる。ブラスト撥水めっき加工とは、搬送ロール素材の表面にブラスト加工を行った後に、撥水めっき加工を行うものである。ブラスト加工とは、素材の表面に研磨剤を吹き付けて素材表面を研削することにより形状変形をさせる加工方法である。ブラスト加工で使用される研磨剤は投射材とも呼ばれ、金属粒子やセラミック粒子の他、投射できるものであれば、あらゆる素材が投射材として使用可能である。投射材の種類(粒径、組成、密度、硬度、強度)や投射条件(速度、投射角度、投射量)などをコントロールすることで、搬送ロールに所望の表面形状を形成することが可能である。
 ブラスト撥水めっき加工は、ブラスト加工の後に、撥水めっき加工を行う。ブラスト加工が行われたロール表面は、凹凸形状が形成されているが、加工前のロール表面に通常付着している油分などの表面汚染物が完全に取り除かれた状態となっており、かつロール素材のみからなる表面となっているため、その後の撥水めっき加工に適している。すなわち、ブラスト加工を行わずに、撥水めっき加工を行うと、ロール表面の汚れがめっき不良の原因となってしまい、良好なめっき皮膜形成を阻害する。したがって、撥水めっき加工の前にブラスト加工を行うことで、ロール表面に強固なめっき皮膜を均一に形成することができ、長期に亘って使用することが可能な搬送ロールができる。
 撥水めっき加工は、複合めっき技術により撥水性を表面に持たせる加工法を用いる。複合めっき技術は、めっきを行う際に、めっき液中にわずかな量の固体粒子を含めておき、金属が析出する際に固体粒子もめっき皮膜中に析出(共析)させ、めっき皮膜に対して、通常のめっき皮膜では得られない特性を、固体粒子の種類によって付与する技術である。本発明における撥水めっき加工では、固体粒子として撥水性を付与する固体粒子を用い、撥水めっき加工を行う。撥水性を付与する固体粒子としては、ポリテトラフルオロエチレン(PTFE)樹脂のようなフッ素系樹脂やフッ化黒鉛等が挙げられる。
 搬送ロールZ(V)における、ブラスト撥水めっき加工がなされた搬送ロール表面の凹凸形状はブラスト加工によって形成されたものであれば、種々の形状が使用可能である。図9及び図10を用いて説明する。図9は、ブラスト加工後の表面形状1′を表す断面図である。符号Aで表される周期が100μm以上、1000μm以下である凹凸形状の上に撥水めっき加工を行った後の表面形状2′を図10に示す。図10に示すように全面を覆うように撥水めっき加工がなされる。周期Aは、表面粗さパラメータのRSm値を用いる。
 本発明の不織布塗工機では、長期間の使用時や、洗浄作業等を含むメンテナンス作業時において、ロール表面が繰り返し物理的な接触を受ける場合や、突発的な機械的な接触等が発生する場合がある。このような場合、撥水めっき加工が施された搬送ロールZ(V)であれば、損傷を受けにくい。すなわち、本発明の撥水めっき加工における撥水性に寄与する成分は、複合めっきの際の撥水性を発現する固形粒子にあり、その固形粒子は、強固なめっき皮膜に含まれているため、損傷を受けにくい。撥水樹脂を塗布して形成される撥水樹脂層を有する搬送ロールに比べると、複合めっき加工が施された搬送ロールは、損傷を受けにくく、耐磨耗性に優れ、長期に亘って良好な撥水性を維持することができる
 搬送ロールZ(V)に係わるブラスト加工は、投射材として、金属系、非金属系いずれの投射材も使用可能である。ブラスト加工では、Raが5~30μm程度の適度な凹凸のある表面形状を形成する。それにより、塗工液の付着を抑制するとともに、撥水めっきに適した清浄な表面を形成する。
 本発明において、Ra、周期A、Rz等の表面粗さに関するパラメータの測定の際には、カットオフ値2.5mm、評価長さ12.5mmとして、接触式表面粗さ計(SURFCOM FLEX(登録商標)、株式会社東京精密製)を用いて、JIS B 0601:2001にて測定を行った。
 撥水めっき加工において用いられる複合めっきとしては、いずれの金属めっき及び撥水性を付与する固体粒子の組み合わせも使用可能であるが、強固な均一なめっき皮膜が良好に形成でき、なおかつ、高い撥水性が得られる複合めっきとして、ニッケル・PTFE複合めっきが好適に使用できる。
 搬送ロールZ(VI)としては、撥水ファブリックによって被覆されているロールが挙げられる。撥水ファブリックとは、ファブリックに撥水樹脂を塗工したものである。
 図11は、搬送ロールZ(VI)に用いる撥水ファブリックに使用するガラスクロスの表面パターンの一例を示した図である。本発明において、ファブリックは、図11で示すように、縦糸aと横糸bとが重なる部分と重ならない部分とを有し、重ならない部分に隙間cが存在し、ファブリック特有の凹凸形状を有する。ファブリックを構成する素材としては特に制限は無い。しかし、搬送ロールT4として使用するためには、乾燥手段Dに使用される温度において不可逆的な熱変形を起こさない素材であることが好ましく、ガラス繊維、アラミド樹脂繊維、ポリイミド樹脂繊維、フェノール樹脂繊維等が例示できる。
 搬送ロールZ(VI)に用いられる撥水樹脂としては、乾燥手段Dに使用される温度において不可逆的な熱変形を起こさない素材であれば特に制限が無く、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体等のフッ素系樹脂;シリコーンレジン、シリコーンゴム等のシリコーン系樹脂等が例示できる。
 耐擦過性を向上させる目的で、充填材として鱗片状マイカ、雲母状酸化鉄、板状酸化チタン、板状炭化ケイ素等の耐擦過性充填材を撥水樹脂に混合しても良い。
 図12は、本発明に用いる撥水ファブリックの一例を示した断面図である。図12に示すように、縦糸aと横糸bからなるファブリックを撥水樹脂層dが覆うことで、図11にあるような縦糸aと横糸bとが重ならない部分の隙間cがなくなり、裏抜けした塗工液が隙間cに入り込むことを抑えることができる。
 撥水樹脂層dで隙間cを覆うことから、縦糸、横糸共に、番手5.6tex以上、200tex以下であることが好ましく、織り密度は30本/25mm以上、80本/25mm以下であることが好ましく、織り組織は、平織、朱子織、綾目が好ましい。番手、織り密度は、縦糸と横糸で異なってもよい。搬送ロールと不織布との接触面積を下げることができるため、搬送ロール表面のRaが3~30μmであることが好ましい。また、搬送ロールZ(VI)は、長期使用時やメンテナンス作業時の物理的な接触によって、表面が損傷を受けたとしても、簡便に交換ができ、簡易なメンテナンスで良好な効果が長期に亘って保たれる。
 搬送ロールZによって、以下の有利な効果が得られる。すなわち、裏抜けした塗工液が、搬送ロールに転写しにくくなるため、不織布が搬送ロールに粘着しにくくなり、搬送が安定になる。また、得られた塗工層にピンホール等の塗工欠陥が生じにくくなる。さらに、搬送ロールに転写した塗工液が不織布に再転写して、塗工層が不均一になることも抑制される。これらの効果が得られる理由は、搬送ロール表面の凹凸によって、搬送ロールと不織布との接触面積を下げることができるからである。
 本発明において、搬送ロールZは、不織布の片面に塗工液を付与する工程(塗工工程)後から、不織布を乾燥する工程(乾燥工程)まで、不織布を搬送する。その際、不織布の塗工液を付与した面とは反対面を、搬送ロールによって適宜支持する。搬送ロールZは、搬送ロールT2~T4のうち、少なくとも1本以上の搬送ロールに使用される。したがって、搬送ロールT2~T4全てに搬送ロールZを使用しても良い。塗工手段Hから乾燥手段Dの手前の搬送ロールT3までの間に存在する搬送ロールT2に関しては、乾燥手段Dからの熱による影響を受けない搬送ロールであることから、表面に凹凸形状を有し、且つ、撥水性を有するいずれの搬送ロールも使用可能である。
 搬送ロールZ(I)及び(II)は、搬送ロールT2及びT3として使用することができる。また、搬送ロールZ(III)は、搬送ロールZ(I)及び(II)よりも、耐熱性に優れている。よって、搬送ロールZ(III)は、搬送ロールT2及びT3としてだけではなく、搬送ロールT4として使用することもできる。特に、耐熱性に優れた金属製ロールの場合、搬送ロールT4に適している。また、乾燥手段Dにおいて、より高い乾燥温度の処理も可能となる。
 搬送ロールZ(IV)~(VI)も、高い耐熱性を持たせることが可能であり、搬送ロールT2及びT3としてだけではなく、乾燥手段D内の搬送ロールT4に使用することができる。搬送ロールT4として使用することによって、乾燥手段Dの乾燥温度を上昇させることが可能となり、処理の自由度が拡がり、生産性向上に寄与できる。
 また、なんらかの原因によって、搬送ロールT4に塗工液が付着して汚れの固着等が発生した場合には、表面の洗浄を行う必要があり、その洗浄の際に、搬送ロールの表面に物理的な力を加えて、固着物の除去を行う場合がある。搬送ロールT4として耐摩耗性を向上させた搬送ロールZ(IV)~(VI)を使用することで、上記のような物理的な接触がT4ロール表面にあったとしても、搬送ロール表面は損傷を受けにくく、裏抜けの転写抑制効果が良好に維持される。また、表面への機械的な接触が発生する可能性の高い位置の搬送ロール、メンテナンス作業時に表面清掃等で機械的接触が必要な位置の搬送ロールとしても、耐磨耗性に優れた搬送ロールZ(IV)~(VI)を適用することが好ましい。
 本発明において、塗工手段Hに特に制限は無い。ただし、余りにも多量の塗工液が裏抜けした場合、本発明によっても裏抜けに起因する悪影響を回避することが困難になることから、厚み方向への動圧が発生しにくい塗工手段を用いることが好ましい。厚み方向への動圧は、多量の塗工液が裏抜けする原因となる。具体的には、キスタッチグラビアコーター、キスロールコーター、ダイコーター、カーテンコーター、スプレーコーター等の塗工手段が好ましく用いられる。
 本発明において、乾燥手段Dにも特に制限は無い。不織布の表面に熱風や乾燥空気を吹き付けて乾燥するエアドライヤー、加熱した金属製円筒の表面に不織布を接触させることで加熱乾燥するシリンダードライヤー、赤外線により不織布を加熱する赤外線ドライヤー等の乾燥手段を用いることができる。
  乾燥は、塗工液の付着量が少ない点及び迅速に乾燥することができる点から、塗工液を付与した面とは反対の面を先に乾燥させることが好ましい。
 本発明において、不織布にも特に制限は無い。ただし、厚い不織布を用いる場合には、塗工液の裏抜けがそもそも生じにくく、本発明の技術を使用する動機に乏しい。逆に、薄い不織布、具体的には、その厚さが30μm以下である不織布を用いる場合には、本発明によって、塗工の均一性を大幅に向上させられる。
 また、塗工手段Hの前に存在する搬送ロールT1は、特に制限は無く、金属類、樹脂、繊維強化プラスチックのいずれも使用することができる。金属としては、鉄、ステンレス、アルミニウム、黄銅、りん青銅等が例示できる。樹脂としては、フッ素系樹脂;シリコーン系樹脂;ウレタン系樹脂;アクリル系樹脂;ABS樹脂;ポリエチレン、ポリプロピレン、エチレンプロピレン共重合樹脂等のポリオレフィン系樹脂等が例示できる。繊維強化プラスチックとしては、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維等の高弾性率の素材と、不飽和ポリエステル系樹脂、エポキシ系樹脂、フェノール系樹脂、メラミン系樹脂等の熱硬化性樹脂やポリメチルメタアクリレート等のアクリル系樹脂等の熱可塑性樹脂とを複合させたものが例示できる。
 乾燥手段D内部及び乾燥手段Dよりも後において、少なくとも媒体の一部が蒸発し、付与された塗工液が流動性を失った後の不織布を支持するために用いる搬送ロールは、裏抜けの転写抑制効果を有する必要は無い。すなわち、凹凸形状及び撥水性を有していない搬送ロールを使用することができる。ただし、乾燥手段D内部に使用される搬送ロールについては、乾燥手段D内の温度に対して耐性を有する搬送ロールを使用する必要がある。
 以下、本発明を実施例により更に詳細に説明するが、本発明は本実施例に限定されるものではない。
[不織布]
 繊度0.1dtex、カット長3mmのポリエチレンテレフタレート主体繊維ステープル70質量部、及び繊度0.2dtex、カット長3mmのポリエチレンテレフタレートバインダー繊維ステープル30質量部からなり、表面温度200℃の熱カレンダーにより強度の付与及び厚み調整を行った、坪量8g/m、厚さ12μmの湿式抄造不織布を用いた。
[塗工液]
 100質量部(固形分換算)のアルミナ水和物(ベーマイト)、2.0質量部(固形分換算)のアクリル系ポリマーのラテックス、0.4質量部(固形分換算)のマレイン酸-アクリル酸共重合体のナトリウム塩、及び0.2質量部(固形分換算)のカルボキシメチルセルロースナトリウム塩(CMC-Na)を含み、媒体が水である塗工液を調製した。塗工液の固形分濃度は20質量%である。なお、CMC-Naとしては、1質量%水溶液の20℃における粘度が7000mPa・secであるCMC-Naを使用した。
[撥水性測定]
 本発明において、撥水性は、室温23℃、相対湿度50%の部屋で、携帯式接触角計PG-X+(Fibo System AB、Sweden)を用いて、自動静的接触角を5cm角の範囲で10ヶ所測定し、その平均値とした。蒸留水滴下量は4.0μLとした。
<搬送ロールZ(I)>
[実施例I-1]
 図1に概略を示した装置によって、前記不織布に、前記塗工液を、媒体(水)を含むWET塗工量が50g/mとなるように塗工した。塗工手段Hとしては、ダイコーターを使用した。乾燥手段Dとしては、有効長30cmの片面エアドライヤーを、不織布の塗工液が付与されていない面に熱風を当てるようにして用い、続いて、有効長30cmの片面エアドライヤー2台を、不織布の塗工液が付与されている面に熱風を当てるようにして用いた。塗工手段Hと乾燥手段Dとの間にある搬送ロールT2及びT3としては、凹凸ポリエチレン(PE)シートによって被覆された、アルミニウム合金を芯材とする直径60mmのロールを用いた。搬送ロールT4としては、アルミニウム合金を芯材とする直径60mmのロールを用いた。凹凸PEシートは、互いに重ならず、且つ隙間ができないように、スプレーのりで貼り付けた。凹凸PEシートにおいて、凸部の形状は円錐で、凹凸のピッチW1は600μmで、凹凸の高さhは100μmで、凹凸の隙間W2/ピッチW1は0.45で、水の接触角は88°であった。塗工速度は2m/minとした。
[実施例I-2]
 凹凸PEシートに代え、凹凸ポリプロピレン(PP)シートを使用した以外は、実施例I-1と同様にして、不織布への塗工を行った。凹凸PPシートにおいて、凹凸のピッチW1は700μmで、凹凸の高さhは120μmで、凹凸の隙間W2/ピッチW1は0.40で、水の接触角は94°であった。
[実施例I-3]
 凹凸PEシートに代え、凹凸ポリテトラフルオロエチレン(PTFE)シートを使用した以外には、実施例I-1と同様にして、不織布への塗工を行った。凹凸PTFEシートにおいて、凹凸のピッチW1は600μmで、凹凸の高さhは100μmで、凹凸の隙間W2/ピッチW1は0.45、水の接触角は110°であった。
[実施例I-4]
 凹凸PEシートにおいて、凹凸のピッチW1を450μm、凹凸の高さhを110μm、凹凸の隙間W2/ピッチW1を0.55、接触角を90°にした以外は、実施例I-1と同様にして、不織布への塗工を行った。
[実施例I-5]
 凹凸PEシートにおいて、凹凸のピッチW1を560μm、凹凸の高さhを200μm、凹凸の隙間W2/ピッチW1を0.57、水の接触角を89°にした以外は、実施例I-1と同様にして、不織布への塗工を行った。
[実施例I-6]
 凹凸PEシートにおいて、凹凸のピッチW1を600μm、凹凸の高さhを50μm、凹凸の隙間W2/ピッチW1を0.60、水の接触角を89°にした以外は、実施例I-1と同様にして、不織布への塗工を行った。
[実施例I-7]
 凹凸PEシートにおいて、凹凸のピッチW1を1500μm、高さhを300μm、隙間W2/ピッチW1を0.57に代えた以外は、実施例I-1と同様にして、不織布へ塗工を行った。水の接触角は89°であった。
[実施例I-8]
 凹凸PEシートの凹凸のピッチW1を600μm、高さhを100μm、隙間W2/ピッチW1を0.22にした以外は、実施例I-1と同様にして、不織布へ塗工を行った。水の接触角は89°であった。
[実施例I-9]
 凹凸PEシートの凹凸のピッチW1を300μm、高さhを100μm、隙間W2/ピッチW1を0.60にした以外は、実施例I-1と同様にして、不織布へ塗工を行った。水の接触角は89°であった。
[実施例I-10]
 凹凸PEシートの凹凸のピッチW1を1000μm、高さhを120μm、隙間W2/ピッチW1を0.50にした以外は、実施例I-1と同様にして、不織布へ塗工を行った。水の接触角は89°であった。
[実施例I-11]
 凹凸PEシートの凹凸のピッチW1を700μm、高さhを75μm、隙間W2/ピッチW1を0.40にした以外は、実施例I-1と同様にして、不織布へ塗工を行った。水の接触角は89°であった。
[実施例I-12]
 凹凸PEシートの凹凸のピッチW1を500μm、高さhを100μm、隙間W2/ピッチW1を0.45にした以外は、実施例I-1と同様にして、不織布へ塗工を行った。水の接触角は89°であった。
[実施例I-13]
 凹凸PEシートの凹凸のピッチW1を600μm、高さhを100μm、隙間W2/ピッチW1を0.25にした以外は、実施例I-1と同様にして、不織布へ塗工を行った。水の接触角は85°であった。
[実施例I-14]
 凹凸PEシートの凹凸のピッチW1を600μm、高さhを130μm、隙間W2/ピッチW1を0.60にした以外は、実施例I-1と同様にして、不織布へ塗工を行った。水の接触角は80°であった。
[比較例I-1]
 凹凸PEシートを凹凸の無いPEシートに代えた以外は、実施例I-1と同様にして、不織布へ塗工を行った。水の接触角は89°であった。
[比較例I-2]
 凹凸PTFEシートを凹凸の無いPTFEシートに代えた以外は、実施例I-3と同様にして、不織布へ塗工を行った。水の接触角は112°であった。
[比較例I-3]
 塗工手段Hと乾燥手段Dとの間にある搬送ロールT2及びT3として、アルミニウム合金製の金属ロールを用い、ロール表面を凹凸PEシートによって被覆しなかった以外は、実施例I-1と同様にして、不織布への塗工を行った。金属ロールの接触角は80°であった。
[評価]
 塗工後の不織布における100mm×100mmの領域を、解像度600dpiの透過式スキャナでスキャンし、得られた輝度ヒストグラムの最頻値から、5σ以上高い輝度を有するピクセルをピンホールとみなし、その個数により、均一性を判断した。5σ以上高い輝度を有するピクセルが複数個隣接している場合は、1個のピンホールと見なした。ピンホール数が少ない程、均一性の高い塗工になったと判断できる。10m塗工後にサンプリングを行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 搬送ロールT2及びT3の表面が撥水性の凹凸シートによって被覆されている実施例I-1~I-14では、ピンホールは500個未満であった。これに対し、比較例I-1~I-3では、搬送ロールT2及びT3の表面が撥水性の凹凸シートによって被覆されていないため、搬送ロールT2及びT3と不織布との接触が多くなり、ピンホールが500個より多くなった。
 実施例I-1~I-14を比較すると、ピッチW1が1500μmであった実施例I-7ではピンホールが493個であり、隙間W2/ピッチW1が0.22であった実施例I-8ではピンホールが475個であり、隙間W2/ピッチW1が0.25であった実施例I-13では、ピンホールが460個であり、接触角が80°である実施例I-14ではピンホールが480個であるのに対し、ピッチW1が300~1000μmであり、隙間W2/ピッチW1が0.3~0.6であり、凹凸の高さhが50~200μmであり、さらに凹凸シートの接触角が85°以上である実施例I-1~I-6、I-9~I-12では、ピンホール個数が0~70個と、非常に少なかった。
 なお、実施例I-1~I-14では、乾燥手段の有効長の関係で、塗工速度が2m/minに制限されているが、塗工液の裏抜けは経時で悪化する現象であるため、塗工速度が高速になることはむしろ有利であり、有効長の長いエアドライヤーを使用すれば、高速化は容易である。
<搬送ロールZ(II)>
[実施例II-1]
 図1に概略を示した不織布塗工機によって、前記不織布に、前記塗工液を、媒体(水)を含むWET塗工量が50g/mとなるように塗工した。塗工手段Hとしては、ダイコーターを使用した。乾燥手段Dとしては、有効長30cmの片面エアドライヤーを、不織布の塗工液が付与されていない面に熱風を当てるようにして用い、続いて、有効長30cmの片面エアドライヤー2台を、不織布の塗工液が付与されている面に熱風を当てるようにして用いた。乾燥温度は100℃とした。塗工手段Hと乾燥手段Dの手前の搬送ロールT3との間にある搬送ロールT2としては、凹凸ポリエチレン(PE)シートによって被覆された、アルミニウム合金を芯材とする直径60mmのロールを用いた。凹凸PEシートは、互いに重ならず、且つ隙間ができないように、スプレーのりで貼り付けた。凹凸PEシートにおいて、凸部の形状は円錐で、凹凸のピッチW1は600μmで、凹凸の高さhは100μmで、凹凸の隙間W2/ピッチW1は0.45で、水の接触角は88°であった。塗工速度は30m/minとした。
 乾燥手段Dの手前の搬送ロールT3及び乾燥手段Dの内部の搬送ロールT4としては、直径60mmの超高分子量ポリエチレン製のロールに切削ローレット加工によって表面に凹凸形状としてダイヤモンドパターンを形成した搬送ロールを使用した。
 搬送ロールT3及びT4の表面に施した切削ローレット加工は、図3に示すように、ピッチW1=500μm、高さh=190μmで、隙間W2=226μmとして、凹凸形状の凸の頂部は平坦領域を残して加工を行った。水の接触角は88°であった。
[実施例II-2]
 搬送ロールT3及びT4の表面に施した切削ローレット加工のパターンを、図4に示すように、ピッチW1=364μm、高さh=157μm、隙間W2=182μmとして頂部に平坦領域を残さないように加工した以外は実施例II-1と同様にして不織布への塗工を行った。水の接触角は88°であった。
[実施例II-3]
 搬送ロールT3及びT4の表面に施した切削ローレット加工のパターンを、図4に示すように、ピッチW1=210μm、高さh=94μm、隙間W2=105μmとして頂部に平坦領域を残さないように加工した以外は実施例II-1と同様にして不織布への塗工を行った。水の接触角は88°であった。
[実施例II-4]
 搬送ロールT3及びT4の表面に施した切削ローレット加工のパターンを、図4に示すように、ピッチW1=940μm、高さh=400μm、隙間W2=470μmとして頂部に平坦領域を残さないように加工した以外は実施例II-1と同様にして不織布への塗工を行った。水の接触角は88°であった。
[実施例II-5]
 切削ローレット加工ではなく、レーザ彫刻によって、搬送ロールT3及びT4の表面加工パターンを、図4に示すように、ピッチW1=600μm、高さh=100μm、隙間W2=270μmとして頂部に平坦領域を残さないように加工した以外は実施例II-1と同様にして不織布への塗工を行った。水の接触角は88°であった。
[実施例II-6]
 切削ローレット加工ではなく、レーザ彫刻によって、搬送ロールT3及びT4の表面加工パターンを、図4に示すように、ピッチW1=940μm、高さh=120μm、隙間W2=475μmとして頂部に平坦領域を残さないように加工した以外は実施例II-1と同様にして不織布への塗工を行った。水の接触角は88°であった。
[実施例II-7]
 搬送ロールT3及びT4としては、ステンレス製のロールに切削ローレットではなくミール彫刻加工によって表面に凹凸形状としてピラミッドパターン形成し、加工後のロールに熱収縮ポリプロピレンフィルムを巻き、ヘヤードライヤーを吹き付け、被覆し、図4に示すように、ピッチW1=700μm、高さh=120μm、隙間W2=350μmとしたロールを用い、乾燥温度を80℃にした以外は、実施例II-1と同様にして不織布への塗工を行った。水の接触角は92°であった。
[実施例II-8]
 搬送ロールT3及びT4として、超高分子量ポリエチレン製のロールではなく、ポリプロピレン製のロールに、切削ローレット加工ではなく、レーザ彫刻加工によって、図4に示すようにピッチW1=940μm、高さh=120μm、隙間W2=475μmの凹凸形状を形成した以外は、実施例II-1と同様にして不織布への塗工を行った。水の接触角は93°であった。
[実施例II-9]
 ピッチW1=600μm、高さh=100μm、隙間W2=270μmの凹凸ポリエチレンシートを直径60mmのアルミニウム合金製ロール表面にお互い重ならず且つ隙間ができないようにポリイミドテープで固定した搬送ロールを、搬送ロールT3及びT4として用いた以外は、実施例II-1と同様にして不織布への塗工を行った。エンボス加工の凸部の形状は円錐形状とした。水の接触角は90°であった。
[比較例II-1]
 搬送ロールT3及びT4として、凹凸形状を表面に形成していない直径60mmの超高分子量ポリエチレン製ロールを用いた以外は実施例II-1と同様にして不織布への塗工を行った。水の接触角は88°であった。
[比較例II-2]
 搬送ロールT3及びT4として、直径60mmのステンレス製のロールにミール彫刻によって表面に凹凸形状としてダイヤモンドパターンを形成し、図4に示すように、ピッチW1=580μm、高さh=250μm、隙間W2=260μmとして頂部に平坦領域を残さないように加工した以外は実施例II-1と同様にして不織布への塗工を行った。水の接触角は60°であった。
 不織布塗工後の塗工面観察を行い、ピンホールや塗布ムラの評価を行った結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例II-1~II-8においては、良好な塗工面が形成されていた。
 実施例II-9では、乾燥手段D内部の搬送ロールT4において、搬送ロール表面に固定した凹凸PEシートが熱により変形し、塗工面にスジが発生した。凹凸PEシートによって被覆されている搬送ロールZは、搬送ロールT2及びT3としては使用できるが、搬送ロールT4として使用することは難しい。
 また、比較例II-1及びII-2では、塗工液の裏抜けによって、搬送ロールT3及びT4表面が汚れ、その逆転写により、塗工面にスジが発生した。
<搬送ロールZ(III)>
[実施例III-1]
 図1に概略を示した装置によって、前記不織布に、前記塗工液を、媒体(水)を含むWET塗工量が50g/mとなるように塗工した。塗工手段Hとしては、ダイコーターを使用した。乾燥手段Dとしては、有効長30cmの片面エアドライヤーを、不織布の塗工液が付与されていない面に熱風を当てるようにして用い、続いて、有効長30cmの片面エアドライヤー2台を、不織布の塗工液が付与されている面に熱風を当てるようにして用いた。塗工手段Hと乾燥手段Dの手前の搬送ロールとの間にある搬送ロールT2としては、凹凸ポリエチレン(PE)シートによって被覆された、アルミニウム合金を芯材とする直径60mmのロールを用いた。凹凸PEシートは、互いに重ならず、且つ隙間ができないように、スプレーのりで貼り付けた。凹凸PEシートにおいて、凸部の形状は円錐で、凹凸のピッチW1は600μmで、凹凸の高さhは100μmで、凹凸の隙間W2/ピッチW1は0.45で、水の接触角は88°であった。塗工速度は30m/minとした。
 乾燥手段Dの手前及び乾燥手段Dの内部の搬送ロールT3及びT4としては、ステンレス製ロールに切削ローレット加工によって表面に凹凸形状としてダイヤモンドパターンを形成し、その後にPTFE複合メッキ処理を行って撥水処理を施した搬送ロールを使用した。
 搬送ロールT3及びT4の表面に施した切削ローレット加工は、図3に示すように、ピッチW1=580μm、高さh=200μmとして、凹凸形状の凸の頂部は平坦領域を残して加工を行った。
[実施例III-2]
 搬送ロールT3及びT4の表面に施した切削ローレット加工のパターンを、図4に示すように、ピッチW1=580μm、高さh=250μmとして頂部に平坦領域を残さないように加工した以外は実施例III-1と同様にして不織布への塗工を行った。
[実施例III-3]
 搬送ロールT3及びT4への撥水処理の方法をPTFE樹脂コーティング処理に変更した以外は実施例III-1と同様にして不織布への塗工を行った。
[実施例III-4]
 ステンレス製ロールではなく、アルミニウム合金製ロールを使用した以外は実施例III-1と同様にして不織布への塗工を行った。
[実施例III-5]
 実施例III-4において、切削ローレット加工ではなく、転造ローレット加工を行って、ピッチW1=500μm、高さh=250μmの凹凸形状を形成した以外は実施例III-4と同様にして不織布への塗工を行った。
[実施例III-6]
 切削ローレット加工ではなく、レーザ彫刻によって、ピッチW1=600μm、高さh=100μmの凹凸形状を形成し、撥水処理をPTFE樹脂コーティングに変更した以外は実施例III-1と同様にして不織布への塗工を行った。
[実施例III-7]
 テフロン(登録商標)シートに、ピッチW1=600μm、高さh=250μmのエンボス加工を行い、それをアルミニウム合金製ロール表面にポリイミドテープを使用して固定したロールを搬送ロールT3及びT4に用いた以外は、実施例III-1と同様にして不織布への塗工を行った。エンボス加工の凸部の形状は円錐形状とした。
[実施例III-8]
 ピッチW1=600μm、高さh=100μmの凹凸PEシートをアルミニウム製ロール表面にポリイミドテープを使用して固定したロールを搬送ロールT3及びT4に用いた以外は、実施例III-1と同様にして不織布への塗工を行った。エンボス加工の凸部の形状は円錐形状とした。
[比較例III-1]
 凹凸形状を表面に形成していないステンレス製ロールを搬送ロールT3及びT4に用いた以外は実施例III-1と同様にして不織布への塗工を行った。
[比較例III-2]
 切削ローレット加工によって表面に凹凸形状を形成したステンレス製ロールを搬送ロールT3及びT4に用いた以外は実施例III-1と同様にして不織布への塗工を行った。表面に撥水処理は行っていない。
 不織布塗工後の塗工面観察を行い、ピンホールや塗布ムラの評価を行った結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例III-1~III-7においては、良好な塗工面が形成されていた。ただし、実施例III-5においては、転造ローレット加工によってアルミニウム合金製ロールの寸法変化(歪み)があり、搬送中のシートのパスラインの変動が観察された。ただし、塗工面への影響は見られなかった。
 実施例III-6に用いたレーザ彫刻加工では、切削ローレット加工に比べ、製作に時間を要するとともに、高さhにも制約があった。
 実施例III-7に用いた搬送ロールT3及びT4では、テフロンシートがダメージを受けており、交換を余儀無くされるような状態であった。
 実施例III-8では、乾燥手段D内の搬送ロールT4において、搬送ロール表面に形成したPEシートが熱により変形し、塗工面にスジが発生した。凹凸PEシートによって被覆されている搬送ロールZは、搬送ロールT2及びT3としては使用できるが、搬送ロールT4として使用することは難しい。
 また、比較例III-1及びIII-2では、搬送ロールT3及びT4表面が裏抜け液によって汚れ、その逆転写により、塗工面にスジが発生した。
<搬送ロールZ(IV)>
[実施例IV-1]
 図1に本発明の不織布塗工機の一例の概略図を示す。前記不織布からなる不織布ロールMから不織布を送り出し、搬送ロールT1~T4からなる搬送手段によって搬送し、塗工手段H及び乾燥手段Dによって、前記塗工液の塗工及び乾燥を行う装置である。
 塗工手段Hとしては、ダイコーターを使用し、媒体(水)を含むWET塗工量が50g/mとなるように塗工した。乾燥手段Dとしては、有効長30cmの片面エアドライヤーを、不織布の塗工液が付与されていない面に熱風を当てるようにして用い、続いて、有効長30cmの片面エアドライヤー2台を、不織布の塗工液が付与されている面に熱風を当てるようにして用いた。乾燥温度は100℃とした。
 塗工手段Hと乾燥手段Dの手前の搬送ロールT3との間にある搬送ロールT2としては、凹凸ポリエチレン(PE)シートによって被覆された、アルミニウム合金を芯材とする直径60mmのロールを用いた。凹凸PEシートは、互いに重ならず、且つ隙間ができないように、スプレーのりで貼り付けた。塗工速度は30m/minとした。
 乾燥手段Dの手前の搬送ロールT3及び乾燥手段Dの内部の搬送ロールT4としては、溶射撥水加工がなされたロールを用いた。溶射はニッケル系の溶射であり、撥水加工はシリコーン系樹脂の塗工であるロールを用いた。表面粗さはRa:10μm、Rz:75μmであった。接触角は106°であった。
 不織布塗工後の塗工面観察を行ったところ、裏抜けによって引き起こされるピンホールや塗布ムラが観察されず、良好な塗工面が形成されていた。
 耐久性を確認する目的で、乾燥手段Dの搬送ロールT4に塗工液を強制的に固着させた後、その洗浄除去作業を行い、再度、上記と同様にして塗工を行って、塗工面の観察を行った。洗浄除去作業は、まずは水洗によって行うが、残存する多くの塗工液固着部分については、金属ヘラによって物理的な力を加えて固着物の除去を行った。また、凹部の固着物については、粘着シート貼り付けにより除去を行った。
 塗布後の塗工面の観察を行ったところ、洗浄作業前と同様の良好な塗工面が形成されていた。
 上記の塗工液固着-洗浄除去の作業を、搬送ロールT4に対してさらに30回施してから、再度、上記と同様に塗工を行い、塗工面の観察を行ったところ、初期と変わらず良好な塗工面が形成されていた。
 [比較例IV-1]
 実施例IV-1において、乾燥手段Dの手前の搬送ロールT3及び乾燥手段Dの内部の搬送ロールT4に、溶射撥水加工がなされたロールではなく、溶射加工のみがなされ、撥水加工をしていないロールを用いた以外は、実施例30と同様にして、不織布塗工を行い、塗工面の観察を行った。溶射加工のみがなされたロールの表面粗さは、Ra:15μm、Rz:100μm、接触角は80°であった。
 不織布塗工後の塗工面観察を行ったところ、裏抜けによって引き起こされるピンホールや塗布ムラが観察され、良好な塗工面の形成ができなかった。
 [比較例IV-2]
 実施例IV-1において、乾燥手段Dの手前の搬送ロールT3及び乾燥手段Dの内部の搬送ロールT4に、溶射を行わずに、撥水加工のみを行ったロールを用いた以外は、実施例30と同様にして、不織布塗工を行い、塗工面の観察を行った。撥水加工のみがなされたロールの表面粗さは、Ra:1μm、Rz:5μm、接触角は102°であった。
 不織布塗工後の塗工面観察を行ったところ、裏抜けによって引き起こされるピンホールや塗布ムラが観察され、良好な塗工面の形成ができなかった。
<搬送ロールZ(V)>
[実施例V-1]
 図1に本発明の不織布塗工機の一例の概略図を示す。前記不織布からなる不織布ロールMから不織布を送りだし、搬送ロールT1~T4からなる搬送手段によって搬送し、塗工手段H及び乾燥手段Dによって、前記塗工液の塗工及び乾燥を行う装置である。
 塗工手段Hとしては、ダイコーターを使用し、媒体(水)を含むWET塗工量が50g/mとなるように塗工した。乾燥手段Dとしては、有効長30cmの片面エアドライヤーを、不織布の塗工液が付与されていない面に熱風を当てるようにして用い、続いて、有効長30cmの片面エアドライヤー2台を、不織布の塗工液が付与されている面に熱風を当てるようにして用いた。乾燥温度は100℃とした。
 塗工手段Hと乾燥手段Dの手前の搬送ロールT3との間にある搬送ロールT2としては、凹凸ポリエチレン(PE)シートによって被覆された、アルミニウム合金を芯材とする直径60mmのロールを用いた。凹凸PEシートは、互いに重ならず、且つ隙間ができないように、スプレーのりで貼り付けた。塗工速度は30m/minとした。
 乾燥手段Dの手前の搬送ロールT3及び乾燥手段Dの内部の搬送ロールT4としては、ブラスト撥水めっき加工がなされたロールを用いた。ブラスト加工は投射材としてガラスビーズを用い、撥水めっき加工は、ニッケル・PTFE複合めっきを用いた。表面粗さはRa:15μmであった。接触角は120°であった。周期Aは500μmであった。
 不織布塗工後の塗工面観察を行ったところ、裏抜けによって引き起こされるピンホールや塗布ムラが観察されず、良好な塗工面が形成されていた。
 耐久性を確認する目的で、乾燥手段Dの搬送ロールT4に塗工液を強制的に固着させた後、その洗浄除去作業を行い、再度、上記と同様にして塗工を行って、塗工面の観察を行った。洗浄除去作業は、水洗によって行った。塗工液固着部が残存する場合には、布製のワイパーにより物理的な力を加えて固着物の除去を行った。
 塗布後の塗工面の観察を行ったところ、洗浄作業前と同様の良好な塗工面が形成されていた。
 上記の塗工液固着-洗浄除去の作業を、搬送ロールT4に対してさらに30回施してから、再度、上記と同様に塗工を行い、塗工面の観察を行ったところ、初期と変わらず良好な塗工面が形成されていた。
[比較例V-1]
 実施例V-1において、乾燥手段Dの手前の搬送ロールT3及び乾燥手段Dの内部の搬送ロールT4に、ブラスト撥水めっき加工がなされたロールではなく、ブラスト加工のみがなされ、撥水めっき加工をしていないロールを用いた以外は、実施例V-1と同様にして、不織布塗工を行い、塗工面の観察を行った。ブラスト加工のみがなされたロールの表面粗さは、Ra:15μm、接触角は60°であった。周期Aは500μmであった。
 不織布塗工の結果、搬送ロールT3及びT4において、裏抜けした塗工液の転写が発生してしまい、塗工面にピンホール及び塗布ムラが観察され、良好な塗工面の形成ができなかった。
[比較例V-2]
 実施例V-1において、乾燥手段Dの手前の搬送ロールT3及び乾燥手段Dの内部の搬送ロールT4に、ブラスト加工を行わずに、撥水めっき加工のみを行ったロールを用いた以外は、実施例V-1と同様にして、不織布塗工を行い、塗工面の観察を行った。撥水めっき加工のみがなされたロールの表面粗さは、Ra:1μm、接触角は120°であった。周期Aは150μmであった。
 不織布塗工の結果、搬送ロールT3及びT4において裏抜けした塗工液の転写が発生してしまい、塗工面にピンホール及び塗布ムラが観察され、良好な塗工面の形成ができなかった。
<搬送ロールZ(VI)>
[実施例VI-1]
 図1に概略を示した不織布塗工機によって、前記不織布に、前記塗工液を、媒体(水)を含むWET塗工量が50g/mとなるように塗工した。塗工手段Hとしては、ダイコーターを使用した。乾燥手段Dとしては、有効長30cmの片面エアドライヤーを、不織布の塗工液が付与されていない面に熱風を当てるようにして用い、続いて、有効長30cmの片面エアドライヤー2台を、不織布の塗工液が付与されている面に熱風を当てるようにして用いた。乾燥温度は100℃とした。塗工速度は30m/minとした。
 塗工手段Hと乾燥手段Dの手前の搬送ロールとの間にある搬送ロールT2としては、凹凸ポリエチレンシートによって被覆された、アルミニウム合金を芯材とする直径60mmのロールを用いた。凹凸ポリエチレンシートは、互いに重ならず、且つ隙間ができないように、スプレーのりで貼り付けた。
 乾燥手段Dの手前の搬送ロールT3及び乾燥手段Dの内部の搬送ロールT4としては、撥水ファブリックによって被覆された、アルミニウム合金を芯材とする直径60mmのロールを用いた。撥水ファブリックは、お互いに重ならず、且つ隙間ができないように、ポリイミドテープを使用して固定した。
 搬送ロールT3及びT4に用いた撥水ファブリックとして、JIS R 3414:2012のEP08Bのガラスクロスにポリテトラフルオロエチレン樹脂を含浸して撥水樹脂層を設けたものを用いた。表面粗さはRa:5μmで、水の接触角は110°であった。
[実施例VI-2]
 搬送ロールT3及びT4に用いた撥水ファブリックとして、JIS R 3414:2012のEP06Bのガラスクロスにポリテトラフルオロエチレン樹脂を含浸して撥水樹脂層を設けたものを用いた以外は実施例VI-1と同様にして不織布へ塗工した。表面粗さはRa:3μmで水の接触角は110°であった。
[実施例VI-3]
 搬送ロールT3及びT4に用いた撥水ファブリックとして、JIS R 3414:2012のEP25のガラスクロスにポリテトラフルオロエチレン樹脂を含浸して撥水樹脂層を設けたものを用いた以外は実施例VI-1と同様にして不織布へ塗工した。表面粗さはRa:30μmで水の接触角は110°であった。
 実施例VI-1~VI-2においては、裏抜けによって引き起こされるピンホールや塗工ムラが観察されず、良好な塗工面が形成されていた。実施例VI-3は撥水ファブリックの凹凸パターンが転写されたが、裏抜けによって引き起こされるピンホールや塗工ムラは観察されなかった。また、搬送ロールT3及びT4ロールに塗工液をわざと固着させても、水で濡らした布製のワイパーで塗工液を簡単に拭き取ることができた。このことから、塗工時に塗工液が固着する事態になっても、洗浄除去作業が容易である。この固着-洗浄作業を30回行ってから、再度、上記同様に不織布に塗工を行ったところ、初期と変わらず良好な塗工面が形成されていた。
[比較例VI-1]
 搬送ロールT3及びT4として、JIS R 3414:2012のEP06Bのガラスクロスをポリイミドテープで固定した搬送ロールを使用した以外は、実施例VI-1と同様にして不織布への塗工を行った。表面粗さはRa:3μmで、水の接触角は測定できなかった。
[比較例VI-2]
 搬送ロールT3及びT4として、撥水ファブリックの被覆したロールの代わりに、ポリテトラフルオロエチレン樹脂塗工したロールを使用した以外は実施例VI-1と同じにして不織布への塗工を行った。表面粗さはRa:1μmで、水の接触角は110°であった。
 比較例VI-1及びVI-2において、裏抜けによって引き起こされるピンホールや塗工ムラが観察され、良好な塗面の形成ができなかった。また、比較例VI-1では、乾燥手段Dの内部の搬送ロールT4において、搬送ロール表面に裏抜けした塗工液が固着していた。
 本発明の不織布塗工機を用いた不織布への塗工は、不織布に各種の塗工液を塗工してなる製品の製造、例えば、不織布に無機粒子を塗工してなるリチウムイオン二次電池用セパレータの製造に好適に使用できる。
1  溶射加工後表面形状
2  撥水加工後表面形状
3  凸部(ダメージを受ける前)
4  凸部(ダメージを受けた後)
1′ ブラスト加工後表面形状
2′ 撥水めっき加工後表面形状
D  乾燥手段
T1 搬送ロール
T2 搬送ロール
T3 搬送ロール
T4 搬送ロール
H  塗工手段
M  不織布ロール
W1 ピッチ
W2 隙間
h  高さ
α  凹凸周期
β  微細な凹凸周期
A  周期
a  縦糸
b  横糸
c  隙間
d  撥水樹脂層

Claims (9)

  1.  不織布に塗工液を付与する塗工手段、塗工液を付与された不織布が搬送ロールに支持されて搬送される搬送手段、及び付与した塗工液を乾燥させる乾燥手段を有する不織布塗工機において、搬送ロールの表面が凹凸形状及び撥水性を有していることを特徴とする不織布塗工機。
  2.  搬送ロールが、表面が撥水性の凹凸シートによって被覆されているロールである請求項1記載の不織布塗工機。
  3.  搬送ロールが、表面がポリオレフィンからなり、表面が機械加工により形成された凹凸形状を有するロールである請求項1記載の不織布塗工機。
  4.  搬送ロールが、表面が切削ローレット加工、転造ローレット加工及びレーザ彫刻の群から選ばれる加工方法により形成された凹凸形状を有するロールである請求項1記載の不織布塗工機。
  5.  搬送ロールが金属製ロールである請求項4記載の不織布塗工機。
  6.  凹凸のピッチが300~1000μmであり、隙間/ピッチが0.3~0.6であり、凹凸の高さが50~200μmであり、表面の接触角が85°以上である請求項2~5のいずれか記載の不織布塗工機。
  7.  搬送ロールが、溶射撥水加工がなされたロールである請求項1記載の不織布塗工機。
  8.  搬送ロールが、ブラスト撥水めっき加工がなされたロールである請求項1記載の不織布塗工機。
  9.  搬送ロールが、撥水ファブリックによって被覆されているロールである請求項1記載の不織布塗工機。
PCT/JP2019/005346 2018-02-20 2019-02-14 不織布塗工機 WO2019163635A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19756707.6A EP3756772A4 (en) 2018-02-20 2019-02-14 NONWOVEN COATING MACHINE
CN201980014159.XA CN111757782A (zh) 2018-02-20 2019-02-14 无纺布涂布机

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2018027605 2018-02-20
JP2018-064772 2018-03-29
JP2018064772 2018-03-29
JP2018-167450 2018-09-07
JP2018167450 2018-09-07
JP2018172556 2018-09-14
JP2018-172556 2018-09-14
JP2018-182474 2018-09-27
JP2018182474 2018-09-27
JP2018-184235 2018-09-28
JP2018184235 2018-09-28
JP2018-027605 2018-12-18
JP2019-014804 2019-01-30
JP2019014804A JP7211831B2 (ja) 2018-02-20 2019-01-30 不織布塗工機

Publications (1)

Publication Number Publication Date
WO2019163635A1 true WO2019163635A1 (ja) 2019-08-29

Family

ID=67687569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005346 WO2019163635A1 (ja) 2018-02-20 2019-02-14 不織布塗工機

Country Status (2)

Country Link
EP (1) EP3756772A4 (ja)
WO (1) WO2019163635A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501789A (zh) * 2020-11-01 2021-03-16 巩晓芳 一种应用于无纺布材料的喷胶复合装置
CN113417085A (zh) * 2021-07-30 2021-09-21 安徽高梵电子商务有限公司 一种基于石墨烯抑菌羽绒服面料的防水喷涂装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268096A (ja) 2004-03-19 2005-09-29 Tomoegawa Paper Co Ltd 電子部品用セパレータ及びその製造方法
JP2005302341A (ja) 2004-04-07 2005-10-27 Tomoegawa Paper Co Ltd 電子部品用セパレータ及びその製造方法
WO2008153117A1 (ja) 2007-06-15 2008-12-18 Mitsubishi Paper Mills Limited 多孔質シート、電気化学素子用セパレータおよび多孔質シートの製造方法
JP2013007131A (ja) * 2011-06-23 2013-01-10 Kao Corp 不織布の製造方法
JP2013115031A (ja) 2011-12-01 2013-06-10 Mitsubishi Paper Mills Ltd リチウムイオン電池セパレータ用塗工液およびリチウムイオン電池セパレータ
JP2013154304A (ja) 2012-01-30 2013-08-15 Hokuetsu Kishu Paper Co Ltd 半透膜支持体用不織布
JP2013186958A (ja) 2012-03-06 2013-09-19 Mitsubishi Paper Mills Ltd 金属イオン二次電池用セパレータの製造方法及び金属イオン二次電池用セパレータ
JP2013229118A (ja) 2012-04-24 2013-11-07 Mitsubishi Paper Mills Ltd 金属イオン二次電池用セパレータの製造方法及び金属イオン二次電池用セパレータ
JP2014044857A (ja) 2012-08-27 2014-03-13 Mitsubishi Paper Mills Ltd 金属イオン二次電池セパレータ用塗液及び金属イオン二次電池セパレータ
JP2014192027A (ja) 2013-03-27 2014-10-06 Mitsubishi Paper Mills Ltd リチウムイオン二次電池用セパレータの製造装置および製造方法
JP2014192147A (ja) 2013-03-28 2014-10-06 Mitsubishi Paper Mills Ltd リチウムイオン二次電池用セパレータの製造装置および製造方法
JP2015008109A (ja) 2013-06-26 2015-01-15 三菱製紙株式会社 不織布用塗工装置およびリチウムイオン二次電池用セパレータの製造方法
JP2015059173A (ja) * 2013-09-18 2015-03-30 中興化成工業株式会社 凸部が設けられたシート
WO2015049808A1 (ja) * 2013-10-04 2015-04-09 進 庄司 織物からなる被覆物を被覆してなるローラとそれを用いた装置
JP2015136901A (ja) * 2014-01-23 2015-07-30 日東電工株式会社 印刷画像付き粘着テープの製造方法と該印刷画像を形成する装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056708A1 (ja) * 2013-10-16 2015-04-23 住友化学株式会社 グラビアロール及びセパレータの製造方法並びにセパレータ

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268096A (ja) 2004-03-19 2005-09-29 Tomoegawa Paper Co Ltd 電子部品用セパレータ及びその製造方法
JP2005302341A (ja) 2004-04-07 2005-10-27 Tomoegawa Paper Co Ltd 電子部品用セパレータ及びその製造方法
WO2008153117A1 (ja) 2007-06-15 2008-12-18 Mitsubishi Paper Mills Limited 多孔質シート、電気化学素子用セパレータおよび多孔質シートの製造方法
JP2013007131A (ja) * 2011-06-23 2013-01-10 Kao Corp 不織布の製造方法
JP2013115031A (ja) 2011-12-01 2013-06-10 Mitsubishi Paper Mills Ltd リチウムイオン電池セパレータ用塗工液およびリチウムイオン電池セパレータ
JP2013154304A (ja) 2012-01-30 2013-08-15 Hokuetsu Kishu Paper Co Ltd 半透膜支持体用不織布
JP2013186958A (ja) 2012-03-06 2013-09-19 Mitsubishi Paper Mills Ltd 金属イオン二次電池用セパレータの製造方法及び金属イオン二次電池用セパレータ
JP2013229118A (ja) 2012-04-24 2013-11-07 Mitsubishi Paper Mills Ltd 金属イオン二次電池用セパレータの製造方法及び金属イオン二次電池用セパレータ
JP2014044857A (ja) 2012-08-27 2014-03-13 Mitsubishi Paper Mills Ltd 金属イオン二次電池セパレータ用塗液及び金属イオン二次電池セパレータ
JP2014192027A (ja) 2013-03-27 2014-10-06 Mitsubishi Paper Mills Ltd リチウムイオン二次電池用セパレータの製造装置および製造方法
JP2014192147A (ja) 2013-03-28 2014-10-06 Mitsubishi Paper Mills Ltd リチウムイオン二次電池用セパレータの製造装置および製造方法
JP2015008109A (ja) 2013-06-26 2015-01-15 三菱製紙株式会社 不織布用塗工装置およびリチウムイオン二次電池用セパレータの製造方法
JP2015059173A (ja) * 2013-09-18 2015-03-30 中興化成工業株式会社 凸部が設けられたシート
WO2015049808A1 (ja) * 2013-10-04 2015-04-09 進 庄司 織物からなる被覆物を被覆してなるローラとそれを用いた装置
JP2015136901A (ja) * 2014-01-23 2015-07-30 日東電工株式会社 印刷画像付き粘着テープの製造方法と該印刷画像を形成する装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3756772A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501789A (zh) * 2020-11-01 2021-03-16 巩晓芳 一种应用于无纺布材料的喷胶复合装置
CN113417085A (zh) * 2021-07-30 2021-09-21 安徽高梵电子商务有限公司 一种基于石墨烯抑菌羽绒服面料的防水喷涂装置

Also Published As

Publication number Publication date
EP3756772A1 (en) 2020-12-30
EP3756772A4 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
CN112428691B (zh) 数字印刷方法和系统
JP7422918B2 (ja) デジタル印刷処理及び方法
CN109689371B (zh) 数字印刷方法
US10960432B2 (en) Apparatus for coating a surface with a transferable layer of thermoplastic particles, and related methods
WO2019163635A1 (ja) 不織布塗工機
JP4920237B2 (ja) 印刷機の圧胴または搬送胴の被覆体
CN109476155A (zh) 数字印刷方法和系统
JPH11165930A (ja) 被印刷体圧着・移送用ローラー
JPH10503860A (ja) 各種印刷装置において使用するための油送達シート材
US20160121598A1 (en) Multilayer roller
JP7211831B2 (ja) 不織布塗工機
JP2011143388A (ja) 薄膜塗工装置並びに両面薄膜塗工装置
JP2009536271A (ja) 紙匹成形機用の静電脱水素子及び紙匹成形機用に設計される静電脱水素子を被覆するための方法
JP5743031B2 (ja) スイーパーローラーおよびこれを用いたプラスチックフィルムの製造装置ならびに製造方法
JP2011056710A (ja) 圧胴用ジャケットとその製造方法
KR101682566B1 (ko) 옵셋 인쇄장치 실린더 자켓용 금속판의 표면처리방법
JP2015174024A (ja) 機能性シート製造装置、機能性シート製造方法、および機能性シート
JP2011139998A (ja) 薄膜塗工装置並びに両面薄膜塗工装置
JP2021517881A (ja) フィルムのシワ除去用ローラ
JP3132965B2 (ja) ローラ表面の防汚処理方法
JP2013539503A (ja) リサイクル炭素繊維の利用
JP2022137726A (ja) 搬送ロール及び不織布塗工装置
JP4751233B2 (ja) シート状物の製造方法および製造装置
JP3732479B2 (ja) 印刷装置用部材及び該部材を用いた印刷装置
CN108058465B (zh) 聚氨酯涂层形成用工序纸

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19756707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019756707

Country of ref document: EP

Effective date: 20200921