WO2019163526A1 - 測定装置、制御方法、プログラム、及び記憶媒体 - Google Patents

測定装置、制御方法、プログラム、及び記憶媒体 Download PDF

Info

Publication number
WO2019163526A1
WO2019163526A1 PCT/JP2019/004375 JP2019004375W WO2019163526A1 WO 2019163526 A1 WO2019163526 A1 WO 2019163526A1 JP 2019004375 W JP2019004375 W JP 2019004375W WO 2019163526 A1 WO2019163526 A1 WO 2019163526A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
detection value
electromagnetic wave
movable
control unit
Prior art date
Application number
PCT/JP2019/004375
Other languages
English (en)
French (fr)
Inventor
山本 晃二
庄悟 宮鍋
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2020501658A priority Critical patent/JPWO2019163526A1/ja
Priority to EP19757948.5A priority patent/EP3757605B1/en
Priority to US16/975,089 priority patent/US12099143B2/en
Publication of WO2019163526A1 publication Critical patent/WO2019163526A1/ja
Priority to JP2022172567A priority patent/JP2023001209A/ja
Priority to JP2024037559A priority patent/JP2024072847A/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes

Definitions

  • the present invention relates to a measuring apparatus, a control method, a program, and a storage medium.
  • an electromagnetic wave type sensor is provided on a moving body such as a vehicle, and the moving body is controlled using the detection result of the sensor.
  • the emitted electromagnetic wave is moved using a device such as MEMS (Micro Electro Mechanical Systems).
  • Patent Document 1 An example of a device for moving electromagnetic waves is described in Patent Document 1.
  • the device described in Patent Document 1 has a movable reflection mirror. This reflection mirror vibrates due to electrostatic force generated in the electrode. This electrostatic force is controlled by the voltage applied to the electrodes.
  • the electromagnetic wave movement range of the sensor may deviate due to various factors even after being mounted on a moving object. For this reason, it is necessary to be able to correct the moving range of the electromagnetic wave even after the measuring device having the sensor is mounted on the moving body.
  • An example of a problem to be solved by the present invention is that the moving range of the electromagnetic wave can be corrected after the measuring device that emits the electromagnetic wave is mounted on the moving body.
  • the invention according to claim 1 is an irradiator that radiates electromagnetic waves; A movable reflector that reflects the electromagnetic wave; A controller that moves the electromagnetic wave along a first direction by controlling the irradiator and the movable reflector; and A sensor capable of receiving the electromagnetic wave; With The sensor is disposed at a position where the electromagnetic wave passes when the electromagnetic wave moves in the first direction, The controller is A first detection value which is a detection value of the sensor when the electromagnetic wave is irradiated to a first position located in front of the sensor in the first direction; and a first detection value which is located after the sensor in the first direction. It is a measuring apparatus which sets the movement range of the said movable reflection part using the 2nd detection value which is a detection value of the said sensor when irradiating the said electromagnetic waves to 2 positions.
  • the invention according to claim 8 controls the electromagnetic wave along the first direction by controlling the irradiator that irradiates the electromagnetic wave, the movable reflection part that reflects the electromagnetic wave, and the irradiator and the movable reflection part.
  • a control method used by a measuring device including a control unit that moves the sensor and a sensor that can receive the electromagnetic wave, The sensor is disposed at a position where the electromagnetic wave passes when the electromagnetic wave moves in the first direction, A first detection value which is a detection value of the sensor when the electromagnetic wave is irradiated to a first position located in front of the sensor in the first direction; and a first detection value which is located after the sensor in the first direction.
  • It is a control method including the setting process which sets the movement range of the said movable reflection part using the 2nd detection value which is a detection value of the said sensor when the said electromagnetic waves are irradiated to 2 positions.
  • the invention according to claim 9 is a program for causing a computer to function as a control unit for controlling the measuring apparatus
  • the measuring device is An irradiator that emits electromagnetic waves; A movable reflector that reflects the electromagnetic wave; A sensor capable of receiving the electromagnetic wave; With The sensor is disposed at a position where the electromagnetic wave passes when the electromagnetic wave moves in the first direction,
  • a first detection value which is a detection value of the sensor when the electromagnetic wave is irradiated to a first position located in front of the sensor in the first direction; and a first detection value which is located after the sensor in the first direction.
  • a second detection value that is a detection value of the sensor when the electromagnetic wave is irradiated at two positions, and a function of setting a moving range of the movable reflecting portion; It is a program that has
  • the invention according to claim 10 is a storage medium storing the program according to claim 9.
  • FIG. 3A is a diagram showing the relative positions of the light from the irradiator and the sensor on the plane including the sensor.
  • FIG. 3B is a diagram illustrating an example of an output from the sensor. It is a figure for demonstrating the specific example of correction
  • A) And (B) is a figure for demonstrating the specific example of correction
  • (A) And (B) is a figure for demonstrating the method of determining the timing which the irradiation direction of a movable reflection part becomes 1st position Sa, and the timing which becomes 2nd position Sb. It is a flowchart which shows the 1st example of the method of resetting 1st position Sa and 2nd position Sb. It is a flowchart which shows the 2nd example of the method of resetting 1st position Sa and 2nd position Sb. It is a figure for demonstrating the method shown in FIG. 10 typically.
  • FIG. 1 is a diagram illustrating a configuration of a measurement apparatus 1 according to the embodiment.
  • the measuring device 1 includes an irradiator 10, a movable reflector 20, a controller 30, and a sensor 40.
  • the irradiator 10 emits electromagnetic waves, for example, light.
  • the electromagnetic wave irradiated by the irradiator 10 enters the movable reflector 20 and is reflected.
  • the movable reflector 20 changes the traveling direction of the electromagnetic wave irradiated by the irradiator 10 by, for example, swinging.
  • the control unit 30 controls the irradiator 10 and the movable reflection unit 20.
  • the sensor 40 can receive electromagnetic waves.
  • the sensor 40 is disposed behind the movable reflector 20 in the traveling direction of the electromagnetic wave.
  • the sensor 40 is disposed at a position where the electromagnetic wave passes when the irradiation direction of the electromagnetic wave moves in the first direction.
  • the control part 30 performs the following processes, when setting the movement range of the movable reflection part 20 (setting process).
  • a detection value hereinafter referred to as a first detection value
  • a detection value hereinafter referred to as a second detection value
  • the movement range of the movable reflection part 20 is set using a 1st detection value and a 2nd detection value.
  • the measuring apparatus 1 will be described in detail. In the following description, it is assumed that the electromagnetic wave is light.
  • the measuring device 1 is mounted on a moving body such as a vehicle.
  • the measuring apparatus 1 is, for example, LIDAR (LIght Detection And Ranging), and detects the relative position of an object located around the moving body when the moving body is used as a reference.
  • the measuring apparatus 1 also includes a light receiver.
  • the irradiator 10 is a semiconductor laser such as a laser diode, for example, and emits a laser when electric energy is input.
  • the control unit 30 controls the light emission timing and the light emission intensity of the irradiator 10 by controlling the power input to the irradiator 10.
  • the movable reflection unit 20 includes at least one movable mirror, and can change the irradiation direction of the light emitted from the irradiator 10 two-dimensionally.
  • the movable reflector 20 periodically moves the light irradiation direction in the first direction described above, and at the same time periodically moves the light irradiation direction in a second direction different from the first direction.
  • the movable reflecting portion 20 has one movable mirror
  • the inclination of the movable mirror can be changed around two axes orthogonal to each other.
  • the movable reflection part 20 has two movable mirrors, the axes of the two movable mirrors are orthogonal to each other.
  • the inclination of the movable mirror included in the movable reflector 20 can be controlled by, for example, a voltage input to the movable reflector 20.
  • This voltage is controlled by the control unit 30.
  • the voltage input to the movable reflector 20 changes periodically.
  • This voltage is, for example, a sine wave.
  • the reflection direction of the light by the movable reflector 20 changes periodically, for example, in a sine wave.
  • the control unit 30 is realized using, for example, an integrated circuit.
  • This integrated circuit includes, for example, a bus, a processor, a memory, a storage device, an input / output interface, and a network interface.
  • the bus is a data transmission path through which a processor, a memory, a storage device, an input / output interface, and a network interface exchange data with each other.
  • the processor is an arithmetic processing unit realized using a microprocessor or the like.
  • the memory is a memory realized using RAM (Random Access Memory) or the like.
  • the storage device is a storage device realized using a ROM (Read Only Memory) or a flash memory.
  • the input / output interface is an interface for connecting the integrated circuit to peripheral devices.
  • the peripheral devices are, for example, the irradiator 10 and the movable reflector 20.
  • the network interface is an interface for connecting the integrated circuit to the communication network.
  • This communication network is, for example, a CAN (Controller Area Network) communication network.
  • the method of connecting the network interface to the communication network may be a wireless connection or a wired connection.
  • the storage device stores a program module for realizing the function of the control unit 30.
  • the processor implements the function of the control unit 30 by reading this program module into the memory and executing it.
  • the program module may be stored in a memory. In this case, the integrated circuit may not include the storage device.
  • the sensor 40 has a photoelectric conversion element and detects the intensity of light incident on the sensor 40.
  • a signal from the sensor 40 is input to the control unit 30.
  • the control unit 30 sets the moving range of the movable mirror of the movable reflecting unit 20 using the detection value of the sensor 40. Specifically, the control unit 30 sets a signal to be input to the movable reflection unit 20 using the detection value of the sensor 40.
  • the sensor 40 has an element that detects the electromagnetic wave having that wavelength.
  • FIG. 2 is a view for explaining the light irradiable range by the movable reflector 20 and the position of the sensor 40, and corresponds to the AA cross section of FIG.
  • the movable reflector 20 moves the light from the irradiator 10.
  • the range used for measurement by the measuring apparatus 1 is a part of the movable range ⁇ 1 (hereinafter referred to as a measurement range ⁇ 2).
  • control unit 30 causes the irradiator 10 to emit light at a timing when the movable reflection unit 20 reflects light toward the measurement range ⁇ 2, and the movable reflection unit 20 emits light toward the outside of the measurement range ⁇ 2.
  • the irradiator 10 does not emit light at the timing of reflecting the light. For this reason, even if the sensor 40 is provided, the measurement device 1 does not affect the measurement.
  • the control unit 30 periodically moves the light in the first direction (H direction) and at the same time, periodically in the second direction (V direction) orthogonal to the first direction. Has been moved to.
  • the first direction corresponds to the first rotation axis of the movable reflection unit 20, and the second direction corresponds to the second rotation axis of the movable reflection unit 20.
  • the moving period in the first direction is shorter than the moving period in the second direction.
  • the control unit 30 uses a sine wave as a control signal for controlling the movement in the first direction (H direction) among the signals input to the movable reflection unit 20, and the second direction (V direction).
  • a signal having a longer period than the above-described sine wave for example, a sawtooth wave
  • the light gradually moves in the V direction (lateral direction) while periodically moving in the H direction (lateral direction) in FIG.
  • the movable range ⁇ 1 is substantially rectangular.
  • the sensor 40 is a line sensor.
  • the direction in which the sensor 40 extends that is, the longitudinal direction of the sensor 40 is the second direction.
  • the length of the sensor 40 is shorter than the side in the second direction of the measurement range ⁇ 2 on the plane including the sensor 40.
  • the length of the sensor 40 is not limited to this.
  • a plurality of sensors 40 may be provided.
  • the sensor 40 is provided along each of two sides extending in the second direction of the measurement range ⁇ 2 shown in FIG.
  • the two sensors 40 are preferably provided at diagonal positions.
  • FIG. 3 is a diagram for explaining a method of setting the movement range of the movable reflecting unit 20 by the control unit 30.
  • FIG. 3A is a diagram illustrating the relative position of the light from the irradiator 10 and the sensor 40 in the plane including the sensor 40
  • FIG. 3B is an example of the output from the sensor 40.
  • the horizontal axis indicates the tilt of the movable mirror of the movable reflector 20.
  • Control unit 30 causes the irradiator 10 to emit light intermittently at regular intervals. For this reason, as shown in FIG. 3A, the center position S of the light emitted from the irradiator 10 gradually moves in the first direction (H direction).
  • the fixed interval may be a time interval or a space interval (distance).
  • the light from the irradiator 10 has a certain extent when passing through a plane including the sensor 40. For this reason, the output of the sensor 40 has a certain magnitude even when the position S does not overlap the sensor 40. Specifically, as shown in FIG. 3B, when the position S overlaps the sensor 40, the output of the sensor 40 becomes the largest, and as the position S moves away from the sensor 40, the output of the sensor 40 becomes Decreases rapidly.
  • the amplitude of the movable reflector 20 may change due to various factors even when the drive signal is not changed. For this reason, it is necessary to be able to correct the amplitude of the movable reflecting portion 20 even after the measuring apparatus 1 is mounted on the moving body.
  • the amplitude of the movable reflecting portion 20 is corrected using the detection value of the sensor 40 when the second position Sb is irradiated with light, that is, the second detection value.
  • the light emission timing of the irradiator 10 is determined in advance based on the reference position when the movable reflector 20 is at a reference position, for example, the tilt angle is 0 °.
  • the light emission timing of the irradiator 10 is determined at each of the timing at which the first position Sa is to be reached and the timing at which the second position Sb is to be set. For example, this timing is determined in advance before the measurement apparatus 1 is mounted on the moving body, and is stored in the storage medium of the control unit 30 in advance. Then, the amplitude of the movable reflector 20 is corrected so that the detection values (first detection value and second detection value) of the sensor 40 at each timing satisfy the reference.
  • the reference here may be, for example, that the magnitude of the first detection value is in the reference range and the magnitude of the second detection value is also in the reference range, or the difference between the first detection value and the second detection value. May be within the reference range (for example, below the reference value). In the former case, the reference range of the first detection value may be the same as or different from the reference range of the second detection value.
  • the left side is the center side of the movable range ⁇ 1
  • the right side is the edge side of the movable range ⁇ 1.
  • the positions of the first position Sa and the second position Sb are determined so as to be targets with respect to the sensor 40 when the amplitude of the movable reflecting portion 20 is normal.
  • the first detection value and the second detection value are the same.
  • the control unit 30 decreases the movement range, for example, the amplitude of the movable reflection unit 20.
  • FIG. 6 is a diagram showing a modification of the output processing of the sensor 40 by the control unit 30.
  • measurement is performed at the first position Sa and the second position Sb in each of a plurality of periods.
  • the control unit 30 integrates the plurality of first measurement values and also integrates the plurality of second measurement values.
  • the moving range of the movable reflector 20, for example, the amplitude is controlled so that the difference between these integral values satisfies the above-described standard.
  • the measurement error of the sensor 40 is reduced by integration, so that the amplitude of the movable reflector 20 can be corrected with high accuracy.
  • the integration of the first measurement value and the integration of the second measurement value may be performed by a circuit different from the control unit 30.
  • FIG. 7 is a diagram showing a modified example of the first position Sa and the second position Sb.
  • the control unit 30 periodically moves the light in the first direction (H direction) and also periodically moves the light in the second direction (V direction) orthogonal to the first direction. Yes. For this reason, it is preferable that the correction of the amplitude of the movable reflector 20 is performed in each of the first direction and the second direction.
  • the control unit 30 corrects the amplitude of the movable reflection unit 20 in the H direction so that the difference between the first detection value and the second detection value is equal to or less than the reference value.
  • the control unit 30 corrects the amplitude in the V direction of the control unit 30 so that the second detection value is larger than the first detection value by a reference value or more (second detection value >> first detection value). .
  • the sensor 40 is provided along each of two opposite sides of the measurement range ⁇ 2. The above correction is performed for each of the two sensors 40.
  • S1 provided above one sensor 40 in the V direction is defined as a first position Sa
  • S5 ′ provided below the other sensor 40 in the V direction is defined as a second position Sb.
  • the first position Sa and the second position Sb are located on the diagonal of the measurement range ⁇ 2.
  • the control unit 30 corrects the amplitude in the H direction of the movable reflecting unit 20 and the amplitude in the V direction so that the difference between the first detection value and the second detection value is equal to or less than the reference value.
  • the measuring apparatus 1 has the sensor 40.
  • the control unit 30 detects the detection value (first detection value) of the sensor 40 when the first position Sa positioned in front of the sensor 40 in the first direction is irradiated with light, and the sensor 40 in the first direction.
  • the swing range of the movable reflecting portion 20 is set using the detection value (second detection value) of the sensor 40 when the second position Sb positioned after is irradiated with light.
  • the timing for the first position Sa and the timing for the second position Sb are determined using an external sensor 100 that is different from the measuring device 1. Specifically, first, as shown in FIG. 8A, light is emitted from the measuring apparatus 1 in a state where the movable reflector 20 is at a reference position, for example, an inclination angle is 0 °. In this state, the light from the measuring apparatus 1 is incident on the external sensor 100.
  • the external sensor 100 is moved from the above position by a predetermined angle ⁇ (for example, 10 °) around the measuring device 1. Then, the signal input to the movable reflector 20 is gradually changed. Thereby, the angle of the movable reflection part 20 changes gradually, As a result, the direction of the light radiate
  • the external writing device uses this signal to calculate an input signal to the movable reflector 20 when the light emission direction of the measuring device 1 is set to each angle, and controls the information indicating the calculated signal to 1 Write to the storage medium of the unit 30.
  • control part 30 changes the inclination direction of the movable reflection part 20 using the information written in the storage medium of the control part 30, and detects the direction of the movable reflection part 20 when light injects into the sensor 40. .
  • the exact position of the sensor 40 that is, the inclination of the movable reflecting portion 20 when light enters is specified.
  • control part 30 sets the timing which becomes 1st position Sa, and the timing which becomes 2nd position Sb on the basis of this direction. For example, the timing before the predetermined time from when the output of the sensor 40 becomes maximum is set to the timing at which the first position Sa is reached, and the timing after the predetermined time after the output of the sensor 40 becomes maximum at the second position. The timing is set to Sb.
  • the position of the sensor 40 inside the measuring apparatus 1 has an error due to, for example, mounting. Even if the same signal is input to the plurality of measuring devices 1, the tilt angle of the movable reflecting portion 20 varies due to individual differences of the measuring devices 1. For this reason, it is difficult to accurately recognize the position of the sensor 40.
  • a signal for controlling the tilt angle of the movable reflector 20 is set using the external sensor 100. For this reason, the position of the sensor 40 can be accurately detected, and as a result, the first position Sa and the second position Sb can be set to appropriate positions.
  • Modification 2 The amplitude of the movable reflector 20 may change over time.
  • the control unit 30 of the measuring apparatus 1 needs to reset the first position Sa and the second position Sb.
  • a method for resetting the first position Sa and the second position Sb will be described.
  • FIG. 9 is a flowchart showing a first example of a method for resetting the first position Sa and the second position Sb.
  • the control unit 30 causes the irradiator 10 to emit light at each of the temporary first position Sa and second position Sb (for example, the first position Sa and the second position Sb set at that time) (step S10).
  • the output of the sensor 40 when the illuminator 10 is caused to emit light at the first position Sa and the output of the sensor 40 when the illuminator 10 is caused to emit light at the second position Sb are measured (step S20). If both of the two outputs are within the reference range (step S30: Yes), the control unit 30 ends the process.
  • step S40 when at least one of the first position Sa and the second position Sb is out of the reference range, the position out of the first position Sa and the second position Sb is corrected (step S40). Specifically, when the output of the sensor 40 at the first position Sa is larger than the reference range, the first position Sa is moved away from the second position Sb. When the output of the sensor 40 at the first position Sa is smaller than the reference range, the first position Sa is brought closer to the second position Sb. Similarly, when the output of the sensor 40 at the second position Sb is larger than the reference range, the second position Sb is separated from the first position Sa. In addition, when the output of the sensor 40 at the second position Sb is smaller than the reference range, the second position Sb is brought closer to the first position Sa. Thereafter, the process shown in step S30 is performed again.
  • FIG. 10 is a flowchart showing a second example of a method for resetting the first position Sa and the second position Sb.
  • FIG. 11 is a diagram for schematically explaining the method shown in FIG.
  • the control unit 30 causes the irradiator 10 to emit light at each of the temporary first position Sa and the second position Sb (for example, the first position Sa and the second position Sb set at that time) (step S110). ). Then, the output of the sensor 40 when the illuminator 10 is caused to emit light at the first position Sa and the output of the sensor 40 when the illuminator 10 is caused to emit light at the second position Sb are measured (step S120).
  • step S130 No
  • both the first position Sa and the second position Sb are located closer to the measurement range ⁇ 2 than the sensor 40. There is a high possibility of doing. For this reason, the control part 30 returns to step S120, after expanding the amplitude of the movable reflection part 20 (step S140).
  • step S130: Yes if the difference is greater than or equal to the reference value (step S130: Yes), the first position Sa and the second position Sb are likely to sandwich the sensor 40 as shown in FIG. Therefore, the same processing as steps S20 to S40 in FIG. 9 is performed. Specifically, the control unit 30 ends the process when both of the two outputs are within the reference range (step S150: Yes). On the other hand, when at least one of the first position Sa and the second position Sb is out of the reference range, the position out of the first position Sa and the second position Sb is corrected (step S160). A specific example of this correction is the same as step S40 in FIG.
  • step S170 the output of the sensor 40 when the illuminator 10 is caused to emit light at the first position Sa and the output of the sensor 40 when the illuminator 10 is caused to emit light at the second position Sb are measured (step S170).
  • the process returns to step S150.
  • control unit 30 can reset the first position Sa and the second position Sb even if the amplitude of the movable reflection unit 20 changes with time. Therefore, the control unit 30 can correct the amplitude of the movable reflecting unit 20 with high accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

照射器(10)によって照射された電磁波は、可動反射部(20)に入射して反射する。制御部(30)は、照射器(10)及び可動反射部(20)を制御する。センサ(40)は、電磁波の照射方向が第1の方向に移動する際に電磁波が通過する位置に配置されている。そして、制御部(30)は、可動反射部(20)の移動範囲を設定する際に、以下の処理をする。まず、第1の方向においてセンサ(40)の前に位置する第1位置Saに光を照射したときのセンサ(40)の検出値(第1検出値)を認識する。次に、第1の方向においてセンサ(40)の後に位置する第2位置Sbに光を照射したときのセンサ(40)の検出値(第2検出値)を認識する。そして、第1検出値と第2検出値を用いて、可動反射部(20)の移動範囲を設定する。

Description

測定装置、制御方法、プログラム、及び記憶媒体
 本発明は、測定装置、制御方法、プログラム、及び記憶媒体に関する。
 近年は、車両などの移動体に電磁波方式のセンサを設け、このセンサの検出結果を用いて移動体の制御を行うことがある。このような用途のセンサでは、出射する電磁波は、MEMS(Micro Electro Mechanical Systems)などのデバイスを用いて移動されている。
 電磁波を移動させるためのデバイスの一例が、特許文献1に記載されている。特許文献1に記載のデバイスは可動式の反射ミラーを有している。この反射ミラーは、電極に生じる静電気力によって振動する。この静電気力は、電極に印加される電圧によって制御される。
特開2017-167254号公報
 センサの電磁波の移動範囲は、移動体に搭載された後においても様々な要因でずれる可能性がある。このため、センサを有する測定装置が移動体に搭載された後であっても、電磁波の移動範囲を修正できるようにする必要がある。
 本発明が解決しようとする課題としては、電磁波を出射する測定装置が移動体に搭載された後に、その電磁波の移動範囲を修正できるようにすることが一例として挙げられる。
 請求項1に記載の発明は、電磁波を照射する照射器と、
 前記電磁波を反射する可動反射部と、
 前記照射器及び前記可動反射部を制御することにより、前記電磁波を第1の方向に沿って移動させる制御部と、
 前記電磁波を受信可能なセンサと、
を備え、
 前記センサは、前記電磁波が前記第1の方向に移動する際に前記電磁波が通過する位置に配置されており、
 前記制御部は、
  前記第1の方向において前記センサの前に位置する第1位置に前記電磁波を照射したときの前記センサの検出値である第1検出値と、前記第1の方向において前記センサの後に位置する第2位置に前記電磁波を照射したときの前記センサの検出値である第2検出値と、を用いて、前記可動反射部の移動範囲を設定する、測定装置である。
 請求項8に記載の発明は、電磁波を照射する照射器と、前記電磁波を反射する可動反射部と、前記照射器及び前記可動反射部を制御することにより、前記電磁波を第1の方向に沿って移動させる制御部と、前記電磁波を受信可能なセンサと、を備えた測定装置によって利用される制御方法であって、
 前記センサは、前記電磁波が前記第1の方向に移動する際に前記電磁波が通過する位置に配置されており、
 前記第1の方向において前記センサの前に位置する第1位置に前記電磁波を照射したときの前記センサの検出値である第1検出値と、前記第1の方向において前記センサの後に位置する第2位置に前記電磁波を照射したときの前記センサの検出値である第2検出値と、を用いて、前記可動反射部の移動範囲を設定する設定工程を含む、制御方法である。
 請求項9に記載の発明は、コンピュータを、測定装置を制御する制御部として機能させるためのプログラムであって、
 前記測定装置は、
  電磁波を照射する照射器と、
  前記電磁波を反射する可動反射部と、
 前記電磁波を受信可能なセンサと、
を備え、
 前記センサは、前記電磁波が第1の方向に移動する際に前記電磁波が通過する位置に配置されており、
 前記コンピュータに、
  前記照射器及び前記可動反射部を制御することにより、前記電磁波を前記第1の方向に沿って移動させる機能と、
  前記第1の方向において前記センサの前に位置する第1位置に前記電磁波を照射したときの前記センサの検出値である第1検出値と、前記第1の方向において前記センサの後に位置する第2位置に前記電磁波を照射したときの前記センサの検出値である第2検出値と、を用いて、前記可動反射部の移動範囲を設定する機能と、
を持たせるプログラムである。
 請求項10に記載の発明は、請求項9に記載のプログラムを記憶した記憶媒体である。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
実施形態に係る測定装置1の構成を示す図である。 可動反射部による光の照射可能範囲とセンサの位置を説明するための図である。 図3(A)は、センサを含む平面における、照射器からの光とセンサの相対位置を示す図である。図3(B)はセンサからの出力の一例を示す図である。 振幅の補正の具体例を説明するための図である。 (A)及び(B)は振幅の補正の具体例を説明するための図である。 制御部30によるセンサの出力の処理の変形例を示す図である。 第1位置Sa及び第2位置Sbの変形例を示す図である。 (A)及び(B)は可動反射部の照射方向が第1位置Saとなるタイミング及び第2位置Sbとなるタイミングを定める方法を説明するための図である。 第1位置Sa及び第2位置Sbを設定し直す方法の第1例を示すフローチャートである。 第1位置Sa及び第2位置Sbを設定し直す方法の第2例を示すフローチャートである。 図10に示した方法を模式的に説明するための図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(実施形態)
 図1は、実施形態に係る測定装置1の構成を示す図である。測定装置1は、照射器10、可動反射部20、制御部30、及びセンサ40を備えている。照射器10は、電磁波、例えば光を照射する。照射器10によって照射された電磁波は、可動反射部20に入射して反射する。可動反射部20は、例えば揺動することにより、照射器10が照射した電磁波の進行方向を変える。制御部30は、照射器10及び可動反射部20を制御する。センサ40は、電磁波を受信可能である。センサ40は、例えば電磁波の進行方向において可動反射部20よりも後に配置されている。また、センサ40は、電磁波の照射方向が第1の方向に移動する際に電磁波が通過する位置に配置されている。そして、制御部30は、可動反射部20の移動範囲を設定する(設定工程)際に、以下の処理をする。まず、第1の方向においてセンサ40の前に位置する第1位置Saに光を照射したときのセンサ40の検出値(以下、第1検出値と記載)を認識する。次に、第1の方向においてセンサ40の後に位置する第2位置Sbに光を照射したときのセンサ40の検出値(以下、第2検出値と記載)を認識する。そして、第1検出値と第2検出値を用いて、可動反射部20の移動範囲を設定する。以下、測定装置1について詳細に説明する。また、以下の説明において、電磁波は光であるとする。
 測定装置1は、例えば車両などの移動体に搭載されている。この場合、測定装置1は、例えばLIDAR(LIght Detection And Ranging)であり、移動体を基準としたときの、移動体の周囲に位置する物体の相対位置を検出する。この場合、測定装置1は、受光器も備えている。
 照射器10は、例えばレーザダイオードなどの半導体レーザであり、電気エネルギーが入力されることによりレーザを発光する。制御部30は、照射器10に入力する電力を制御することにより、照射器10の発光タイミング及び発光強度を制御している。
 可動反射部20は、少なくとも一つの可動ミラーを備えており、照射器10が発光した光の照射方向を2次元的に変更することができる。可動反射部20は、例えば、光の照射方向を上記した第1の方向に周期的に移動させると同時に、第1の方向とは異なる第2の方向に周期的に移動させる。可動反射部20が一つの可動ミラーを有している場合、この可動ミラーの傾きは、互いに直交する2軸のそれぞれを中心に変更できる。可動反射部20が2つの可動ミラーを有している場合、2つの可動ミラーの軸は互いに直交している。
 可動反射部20が有する可動ミラーの傾きは、例えば、可動反射部20に入力する電圧によって制御できる。この電圧は、制御部30によって制御されている。具体的には、可動反射部20に入力される電圧は、周期的に変化する。この電圧は、例えば正弦波である。この場合、可動反射部20による光の反射方向は、周期的、例えば正弦波的に変化する。
 制御部30は、例えば集積回路を用いて実現される。この集積回路は、例えば、バス、プロセッサ、メモリ、ストレージデバイス、及び入出力インタフェース、及びネットワークインタフェースを有する。バスは、プロセッサ、メモリ、ストレージデバイス、入出力インタフェース、及びネットワークインタフェースが、相互にデータを送受信するためのデータ伝送路である。ただし、プロセッサなどを互いに接続する方法は、バス接続に限定されない。プロセッサは、マイクロプロセッサなどを用いて実現される演算処理装置である。メモリは、RAM(Random Access Memory)などを用いて実現されるメモリである。ストレージデバイスは、ROM(Read Only Memory)やフラッシュメモリなどを用いて実現されるストレージデバイスである。
 入出力インタフェースは、集積回路を周辺デバイスと接続するためのインタフェースである。周辺デバイスは、例えば、照射器10及び可動反射部20である。
 ネットワークインタフェースは、集積回路を通信網に接続するためのインタフェースである。この通信網は、例えばCAN(Controller Area Network)通信網である。なお、ネットワークインタフェースが通信網に接続する方法は、無線接続であってもよいし、有線接続であってもよい。
 ストレージデバイスは、制御部30の機能を実現するためのプログラムモジュールを記憶している。プロセッサは、このプログラムモジュールをメモリに読み出して実行することで、制御部30の機能を実現する。なお、プログラムモジュールはメモリに格納されてもよい。この場合、集積回路は、ストレージデバイスを備えていなくてもよい。
 センサ40は、光電変換素子を有しており、センサ40に入射する光の強度を検出する。センサ40からの信号は、制御部30に入力される。制御部30は、センサ40の検出値を用いて、可動反射部20の可動ミラーの移動範囲を設定する。具体的には、制御部30は、センサ40の検出値を用いて、可動反射部20に入力する信号を設定する。なお、照射器10が光以外の電磁波を発する場合、センサ40は、その波長の電磁波を検出する素子を有している。
 図2は、可動反射部20による光の照射可能範囲とセンサ40の位置を説明するための図であり、図1のA-A断面に対応している。上記したように、可動反射部20は、照射器10からの光を移動させる。可動反射部20によって光が照射できる範囲を移動可能範囲α1とすると、測定装置1の測定に用いられる範囲は、移動可能範囲α1の一部(以下、測定範囲α2と記載)である。具体的には、制御部30は、可動反射部20が測定範囲α2に向けて光を反射するタイミングでは照射器10を発光させ、かつ、可動反射部20が測定範囲α2の外に向けて光を反射するタイミングでは照射器10を発光させない。このため、センサ40が設けられても、測定装置1による測定に影響は生じない。
 また、図2に示す例において、制御部30は、光を、第1方向(H方向)に周期的に移動させると同時に、第1方向に直交する第2方向(V方向)にも周期的に移動させている。第1方向は、可動反射部20の第1の回転軸に対応しており、第2方向は、可動反射部20の第2の回転軸に対応している。そして、第1方向の移動周期は、第2方向の移動周期よりも短い。例えば、制御部30は、可動反射部20に入力する信号のうち、第1方向(H方向)の移動を制御するための制御信号には正弦波を使用し、第2方向(V方向)の移動を制御するための制御信号には、前記した正弦波よりも長周期の信号(例えばのこぎり波)を使用する。このため、図2に示すように、光は、図2におけるH方向(横方向)に周期的に移動しつつ、徐々にV方向(横方向)に移動する。その結果、移動可能範囲α1は略矩形になる。
 また、図2に示す例において、センサ40はラインセンサである。そして、センサ40が延在する方向、すなわちセンサ40の長手方向は、第2方向になっている。センサ40の長さは、センサ40を含む平面における測定範囲α2の第2方向の辺よりも短い。ただし、センサ40の長さはこれに限定されない。
 なお、センサ40は、複数設けられていてもよい。本図に示す例において、センサ40は、図2に示した測定範囲α2の第2方向に延在する2つの辺のそれぞれに沿って、設けられている。センサ40が測定範囲α2の辺よりも短い場合、2つのセンサ40は対角をなす位置に設けられるのが好ましい。
 図3は、制御部30による可動反射部20の移動範囲の設定方法を説明するための図である。詳細には、図3(A)は、センサ40を含む平面における、照射器10からの光とセンサ40の相対位置を示す図であり、図3(B)はセンサ40からの出力の一例を示す図である。なお、図3(B)において、横軸は可動反射部20の可動ミラーの傾きを示している。
 制御部30は、照射器10を一定間隔で間欠的に発光させる。このため、図3(A)に示すように、照射器10から照射される光の中心の位置Sは、第1方向(H方向)に徐々に移動していく。なお、ここでの一定間隔は、時間上の間隔であってもよいし、空間上の間隔(距離)であってもよい。
 照射器10からの光は、センサ40を含む平面を通過する際、ある程度広がりを有している。このため、センサ40の出力は、位置Sがセンサ40に重なっていない場合でもある程度の大きさになる。詳細には、図3(B)に示すように、位置Sがセンサ40と重なっている場合、センサ40の出力は最も大きくなり、また、位置Sがセンサ40から離れるにつれて、センサ40の出力は急激に低下する。
 ここで、可動反射部20の振幅は、駆動信号を変えなかった場合でも、様々な要因に起因して変化する恐れがある。このため、測定装置1を移動体に搭載した後であっても、可動反射部20の振幅を補正できるようにする必要がある。
 本実施形態では、第1方向においてセンサ40の前に位置する第1位置Saに光を照射したときのセンサ40の検出値、すなわち第1検出値と、第1方向においてセンサ40の後に位置する第2位置Sbに光を照射したときのセンサ40の検出値、すなわち第2検出値を用いて、可動反射部20の振幅を補正している。例えば、可動反射部20が基準位置、例えば傾斜角度が0°のときを基準とした、照射器10の発光タイミングを予め定めておく。具体的には、照射器10の発光タイミングを、第1位置Saとなるべきタイミング、及び、第2位置Sbの位置となるべきタイミングそれぞれに定めておく。このタイミングは、例えば、測定装置1を移動体に搭載する前に予め定められており、かつ、予め制御部30の記憶媒体に記憶されている。そして各タイミングにおけるセンサ40の検出値(第1検出値及び第2検出値)が基準を満たすように、可動反射部20の振幅を補正する。
 ここでの基準は、例えば、第1検出値の大きさが基準範囲にあり、かつ、第2検出値の大きさも基準範囲にあることでもよいし、第1検出値と第2検出値の差分が基準範囲にあること(例えば基準値以下にあること)でもよい。前者の場合、第1検出値の基準範囲は、第2検出値の基準範囲と同じであってもよいし異なっていてもよい。
 この振幅の補正の具体例について、図4及び図5を用いて具体的に説明する。これらの図において、左側が移動可能範囲α1の中心側であり、右側が移動可能範囲α1の縁側である。図4に示すように、第1位置Saと第2位置Sbの位置は、可動反射部20の振幅が正常な状態において、センサ40を基準に互いに対象となるように定められている。そして、可動反射部20の振幅が正常な状態では、第1検出値と第2検出値が同じになる。
 ここで、図5(A)に示すように、可動反射部20の振幅が設定よりも大きくなった場合を考える。一般的に、可動反射部20の振幅が変わっても可動反射部20の1周期に必要な時間は一定であるため、可動反射部20の振幅が大きくなると、第1位置Sa及び第2位置Sbは、ともに外側(図5における右側)に移動する。このため、第1検出値は基準よりも大きくなり、第2検出値は基準よりも小さくなる。また、第1検出値から第2検出値を引いた値は正の値となり、かつ、基準よりも大きくなる。第1検出値及び第2検出値がこのようになった場合、制御部30は、可動反射部20の移動範囲、例えば振幅を小さくする。
 次に、図5(B)に示すように、可動反射部20の振幅が設定よりも大きくなった場合を考える。この場合、第1位置Sa及び第2位置Sbは、ともに内側(図6における左側)に移動する。このため、第1検出値は基準よりも小さくなり、第2検出値は基準よりも大きくなる。また、第1検出値から第2検出値を引いた値は負となり、かつ基準よりも大きくなる。第1検出値及び第2検出値がこのようになった場合、制御部30は、可動反射部20の移動範囲、例えば振幅を大きくする。
 図6は、制御部30によるセンサ40の出力の処理の変形例を示す図である。本図に示す例では、複数の周期のそれぞれにおいて、第1位置Sa及び第2位置Sbで測定を行う。このようにすると、複数の第1測定値が得られるとともに、複数の第2測定値がられる。制御部30は、これら複数の第1測定値を積分するとともに、複数の第2測定値も積分する。そして、これらの積分値の差分が上記した基準を満たすように、可動反射部20の移動範囲、例えば振幅を制御する。このようにすると、センサ40の測定誤差が積分によって小さくなるため、高い精度で可動反射部20の振幅を補正できる。なお、第1測定値の積分及び第2測定値の積分は、制御部30とは異なる回路が行ってもよい。
 図7は、第1位置Sa及び第2位置Sbの変形例を示す図である。上記したように、制御部30は、光を、第1方向(H方向)に周期的に移動させると同時に、第1方向に直交する第2方向(V方向)にも周期的に移動させている。このため、可動反射部20の振幅の補正は、第1方向及び第2方向のそれぞれで行われるのが好ましい。
 第1の例では、図7における第1方向(H方向)の振幅を補正する際、第1位置SaとしてはS2を、第2位置SbとしてはS4を用いる。この場合、センサ40の幅方向すなわち第1方向において、第1位置Sa、センサ40の中心、及び第2位置Sbがこの順に並んでいる。この場合、制御部30は、第1検出値と第2検出値の差分が基準値以下になるように、可動反射部20のH方向の振幅を補正する。
 また、図7における第2方向(V方向)の振幅を補正する場合、第1位置SaとしてはS1を、第2位置SbとしてはS3を、それぞれ用いる。言い換えると、第1位置Saは、センサ40が延在する方向(V方向)においてセンサ40の外、かつセンサ40の幅方向(H方向)においてセンサ40と重なっている。また、第2位置Sbは、V方向及びH方向のそれぞれにおいて、センサ40と重なっている。この場合、制御部30は、第2検出値が第1検出値よりも基準値以上大きくなる(第2検出値>>第1検出値)ように、制御部30のV方向の振幅を補正する。
 なお、センサ40は、測定範囲α2の互いに対向する2辺のそれぞれに沿って設けられている。そして、上記した補正は、2つのセンサ40のそれぞれに対して行われる。
 第2の例では、V方向において一方のセンサ40の上方に設けられたS1を第1位置Saとして、V方向において他方のセンサ40の下方に設けられたS5´を第2位置Sbとする。言い換えると、第1位置Saと第2位置Sbは、測定範囲α2の対角上に位置している。この場合、制御部30は、第1検出値と第2検出値差分が基準値以下になるように、可動反射部20のH方向の振幅を補正するとともにV方向の振幅を補正する。
 以上、本実施形態によれば、測定装置1はセンサ40を有している。センサ40は、制御部30は、第1方向においてセンサ40の前に位置する第1位置Saに光を照射したときのセンサ40の検出値(第1検出値)と、第1方向においてセンサ40の後に位置する第2位置Sbに光を照射したときのセンサ40の検出値(第2検出値)を用いて、可動反射部20の揺動範囲を設定する。これにより、測定装置1が移動体に搭載された後であっても、制御部30は、可動反射部20の振幅を補正することができる。
(変形例1)
 上記した実施形態において、照射器10が発光すべきタイミング、すなわち、可動反射部20の照射方向が第1位置Saとなるタイミング及び第2位置Sbとなるタイミングは、予め制御部30に記憶されている。本変形例では、このタイミングを定める方法について、図8(A),(B)を用いて説明する。
 第1位置Saとなるタイミング、及び、第2位置Sbとなるタイミングは、測定装置1とは別の外部センサ100を用いて定められる。具体的には、先ず、図8(A)に示すように、可動反射部20を基準位置、例えば傾斜角度が0°にした状態で、測定装置1から光を出射させる。この状態で、外部センサ100に測定装置1からの光が入射するようにする。
 次いで、外部センサ100を、上記した位置から、測定装置1を中心にして所定角度θ(例えば10°)移動させる。そして、可動反射部20へ入力する信号を徐々に変更する。これにより、可動反射部20の角度は徐々に変わり、その結果、測定装置1から出射する光の向きが変わる。そして、外部センサ100に光が入射したときの可動反射部20への入力信号を、光を上記した所定角度θに向けるときの信号として扱う。外部の書き込み装置は、この信号を用いて、測定装置1の光の出射方向を各角度にするときの、可動反射部20への入力信号を算出し、算出した信号を示す情報を1の制御部30の記憶媒体に書き込む。
 なお、上記した処理は、第1方向(H方向)及び第2方向(V方向)のそれぞれに対して行われる。
 そして、制御部30は、制御部30の記憶媒体に書き込んだ情報を用いて、可動反射部20の傾斜方向を変化させ、センサ40に光が入射するときの可動反射部20の向きを検出する。これにより、センサ40の正確な位置、すなわち光が入射するときの可動反射部20の傾きが特定される。そして、制御部30は、この向きを基準に、第1位置Saとなるタイミング及び第2位置Sbとなるタイミングを設定する。例えば、センサ40の出力が最大となるときから所定時間前のタイミングを第1位置Saとなるタイミングに設定し、また、センサ40の出力が最大となるときから所定時間後のタイミングを第2位置Sbとなるタイミングに設定する。
 測定装置1の内部におけるセンサ40の位置には、例えば、取付時に起因した誤差がある。また、複数の測定装置1に同じ信号を入力しても、測定装置1の個体差に起因して可動反射部20の傾斜角度にはばらつきが生じる。このため、センサ40の位置を正確に認識することは難しい。これに対して本変形例では、外部センサ100を用いて可動反射部20の傾斜角度を制御するための信号を設定している。このため、センサ40の位置を精度よく検出でき、その結果、第1位置Sa及び第2位置Sbを適切な位置に設定できる。
(変形例2)
 可動反射部20の振幅は、経時的に変化することがある。この場合、測定装置1の制御部30は、第1位置Sa及び第2位置Sbを設定し直す必要がある。本変形例では、第1位置Sa及び第2位置Sbを設定し直す方法について、説明する。
 図9は、第1位置Sa及び第2位置Sbを設定し直す方法の第1例を示すフローチャートである。まず、制御部30は、仮の第1位置Sa及び第2位置Sb(例えばその時点で設定されている第1位置Sa及び第2位置Sb)のそれぞれにおいて、照射器10を発光させる(ステップS10)。そして、第1位置Saで照射器10を発光させたときのセンサ40の出力、及び第2位置Sbで照射器10を発光させたときのセンサ40の出力のそれぞれを測定する(ステップS20)。制御部30は、2つの出力の双方が基準範囲内にある場合(ステップS30:Yes)は、処理を終了する。
 一方、第1位置Sa及び第2位置Sbの少なくとも一方が基準範囲から外れている場合は、第1位置Sa及び第2位置Sbのうち外れている方の位置を修正する(ステップS40)。具体的には、第1位置Saにおけるセンサ40の出力が基準範囲より大きい場合、第1位置Saを第2位置Sbから離す。また、第1位置Saにおけるセンサ40の出力が基準範囲より小さい場合、第1位置Saを第2位置Sbに近づける。同様に、第2位置Sbにおけるセンサ40の出力が基準範囲より大きい場合、第2位置Sbを第1位置Saから離す。また、第2位置Sbにおけるセンサ40の出力が基準範囲より小さい場合、第2位置Sbを第1位置Saに近づける。その後、ステップS30に示した処理を再び行う。
 図10は、第1位置Sa及び第2位置Sbを設定し直す方法の第2例を示すフローチャートである。図11は、図10に示した方法を模式的に説明するための図である。まず、制御部30は、仮の第1位置Sa及び第2位置Sb(例えばその時点で設定されている第1位置Sa及び第2位置Sb)のそれぞれにおいて、照射器10を発光させる(ステップS110)。そして、第1位置Saで照射器10を発光させたときのセンサ40の出力、及び第2位置Sbで照射器10を発光させたときのセンサ40の出力のそれぞれを測定する(ステップS120)。
 そして、差分が第2基準値以下の場合(ステップS130:No)、図11(A)に示すように、第1位置Sa及び第2位置Sbの双方がセンサ40よりも測定範囲α2側に位置する可能性が高い。このため、制御部30は、可動反射部20の振幅を広げた(ステップS140)後、ステップS120に戻る。
 一方、差分が基準値以上の場合(ステップS130:Yes)、図11(B)に示すように、第1位置Sa及び第2位置Sbはセンサ40を挟んでいる可能性が高い。そこで、図9のステップS20~S40と同様の処理を行う。具体的には、制御部30は、2つの出力の双方が基準範囲内にある場合(ステップS150:Yes)は、処理を終了する。一方、第1位置Sa及び第2位置Sbの少なくとも一方が基準範囲から外れている場合は、第1位置Sa及び第2位置Sbのうち外れている方の位置を修正する(ステップS160)。この修正の具体例は、図9のステップS40と同様である。その後、第1位置Saで照射器10を発光させたときのセンサ40の出力、及び第2位置Sbで照射器10を発光させたときのセンサ40の出力のそれぞれを測定し(ステップS170)、ステップS150に戻る。
 以上、本変形例によれば、制御部30は、可動反射部20の振幅が経時的に変化しても、第1位置Sa及び第2位置Sbを設定し直すことができる。従って、制御部30は、可動反射部20の振幅を精度よく補正することができる。
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 この出願は、2018年2月22日に出願された日本出願特願2018-029827号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (10)

  1.  電磁波を照射する照射器と、
     前記電磁波を反射する可動反射部と、
     前記照射器及び前記可動反射部を制御することにより、前記電磁波を第1の方向に沿って移動させる制御部と、
     前記電磁波を受信可能なセンサと、
    を備え、
     前記センサは、前記電磁波が前記第1の方向に移動する際に前記電磁波が通過する位置に配置されており、
     前記制御部は、
      前記第1の方向において前記センサの前に位置する第1位置に前記電磁波を照射したときの前記センサの検出値である第1検出値と、前記第1の方向において前記センサの後に位置する第2位置に前記電磁波を照射したときの前記センサの検出値である第2検出値と、を用いて、前記可動反射部の移動範囲を設定する、測定装置。
  2.  請求項1に記載の測定装置において、
     前記制御部は、前記可動反射部を制御することにより、前記電磁波を前記第1の方向に周期的に移動させると同時に、前記第1の方向とは異なる第2の方向にも周期的に移動させ、
     前記電磁波の第1方向の周期は、前記電磁波の前記第2の方向の周期よりも短く、
     前記センサはラインセンサであり、前記第2の方向に延在している測定装置。
  3.  請求項2に記載の測定装置において、
     前記センサの幅方向において、前記第1位置、前記センサ、及び前記第2位置の順に並んでいる測定装置。
  4.  請求項2に記載の測定装置において、
     前記第1位置は、センサが延在する方向において前記センサの外に位置しており、かつ、センサの幅方向においてセンサと重なっており、
     前記第2位置はセンサと重なっている測定装置。
  5.  請求項1~4のいずれか一項に記載の測定装置において、
     前記制御部は、測定時には、前記可動反射部による前記電磁波の移動可能範囲よりも狭い測定範囲で前記電磁波を移動させ、
     センサは、前記移動可能範囲の中、かつ前記測定範囲の外に位置している測定装置。
  6.  請求項1~5のいずれか一項に記載の測定装置において、
     前記制御部は、前記可動反射部の移動範囲を設定する際に、前記第1検出値と前記第2検出値との差分が第1基準値以下となるようにする、測定装置。
  7.  請求項6に記載の測定装置において、
     前記制御部は、前記可動反射部の移動範囲を設定する際に、
      前記第1検出値と前記第2検出値との差分が第2基準値以上となるように、前記可動反射部の振幅を広げ、
      その後、前記第1検出値と前記第2検出値が基準を満たすように、前記第1位置と前記第2位置を定める測定装置。
  8.  電磁波を照射する照射器と、前記電磁波を反射する可動反射部と、前記照射器及び前記可動反射部を制御することにより、前記電磁波を第1の方向に沿って移動させる制御部と、前記電磁波を受信可能なセンサと、を備えた測定装置によって利用される制御方法であって、
     前記センサは、前記電磁波が前記第1の方向に移動する際に前記電磁波が通過する位置に配置されており、
      前記第1の方向において前記センサの前に位置する第1位置に前記電磁波を照射したときの前記センサの検出値である第1検出値と、前記第1の方向において前記センサの後に位置する第2位置に前記電磁波を照射したときの前記センサの検出値である第2検出値と、を用いて、前記可動反射部の移動範囲を設定する設定工程を含む、制御方法。
  9.  コンピュータを、測定装置を制御する制御部として機能させるためのプログラムであって、
     前記測定装置は、
      電磁波を照射する照射器と、
      前記電磁波を反射する可動反射部と、
     前記電磁波を受信可能なセンサと、
    を備え、
     前記センサは、前記電磁波が第1の方向に移動する際に前記電磁波が通過する位置に配置されており、
     前記コンピュータに、
      前記照射器及び前記可動反射部を制御することにより、前記電磁波を第1の方向に沿って移動させる機能と、
      前記第1の方向において前記センサの前に位置する第1位置に前記電磁波を照射したときの前記センサの検出値である第1検出値と、前記第1の方向において前記センサの後に位置する第2位置に前記電磁波を照射したときの前記センサの検出値である第2検出値と、を用いて、前記可動反射部の移動範囲を設定する機能と、
    を持たせるプログラム。
  10.  請求項9に記載のプログラムを記憶した記憶媒体。
PCT/JP2019/004375 2018-02-22 2019-02-07 測定装置、制御方法、プログラム、及び記憶媒体 WO2019163526A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020501658A JPWO2019163526A1 (ja) 2018-02-22 2019-02-07 測定装置、制御方法、プログラム、及び記憶媒体
EP19757948.5A EP3757605B1 (en) 2018-02-22 2019-02-07 Measuring device, control method, program, and storage medium
US16/975,089 US12099143B2 (en) 2018-02-22 2019-02-07 Measuring device, control method, program, and storage medium
JP2022172567A JP2023001209A (ja) 2018-02-22 2022-10-27 測定装置
JP2024037559A JP2024072847A (ja) 2018-02-22 2024-03-11 測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-029827 2018-02-22
JP2018029827 2018-02-22

Publications (1)

Publication Number Publication Date
WO2019163526A1 true WO2019163526A1 (ja) 2019-08-29

Family

ID=67688058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004375 WO2019163526A1 (ja) 2018-02-22 2019-02-07 測定装置、制御方法、プログラム、及び記憶媒体

Country Status (4)

Country Link
US (1) US12099143B2 (ja)
EP (1) EP3757605B1 (ja)
JP (3) JPWO2019163526A1 (ja)
WO (1) WO2019163526A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021192610A1 (ja) * 2020-03-27 2021-09-30
JP2021156794A (ja) * 2020-03-27 2021-10-07 パイオニア株式会社 センサ装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936767A (en) * 1996-03-18 1999-08-10 Yale University Multiplanar autostereoscopic imaging system
JP2004264670A (ja) * 2003-03-03 2004-09-24 Canon Inc 光偏向器
JP2007003687A (ja) * 2005-06-22 2007-01-11 Canon Inc 画像表示装置
WO2008032485A1 (fr) * 2006-09-15 2008-03-20 Nec Corporation Projecteur laser
WO2011125495A1 (ja) * 2010-03-31 2011-10-13 ブラザー工業株式会社 画像表示装置
JP2017167254A (ja) 2016-03-15 2017-09-21 パイオニア株式会社 駆動装置及びミラー装置
JP2018029827A (ja) 2016-08-25 2018-03-01 サミー株式会社 弾球遊技機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090681A (ja) * 2000-09-14 2002-03-27 Minolta Co Ltd 光学走査装置および3次元測定装置
JP4497861B2 (ja) 2003-08-29 2010-07-07 キヤノン株式会社 画像表示装置及びそれを有する撮像装置
JP4574394B2 (ja) * 2005-02-25 2010-11-04 キヤノン株式会社 走査型画像表示装置
JP2013210316A (ja) * 2012-03-30 2013-10-10 Brother Ind Ltd 光学式距離測定装置
JP5335982B2 (ja) * 2012-09-19 2013-11-06 日立コンシューマエレクトロニクス株式会社 画像表示装置、及び画像表示装置における反射鏡の振動状態調整方法
JP6315268B2 (ja) * 2014-07-02 2018-04-25 船井電機株式会社 レーザレンジファインダ
JP6634667B2 (ja) * 2014-07-18 2020-01-22 船井電機株式会社 レーザ走査装置
JP6930120B2 (ja) * 2017-02-02 2021-09-01 株式会社リコー 表示装置、移動体装置及び表示方法。
US10267899B2 (en) * 2017-03-28 2019-04-23 Luminar Technologies, Inc. Pulse timing based on angle of view
CN107402061B (zh) * 2017-06-29 2019-09-03 西安知微传感技术有限公司 谐振式扫描镜幅值测量系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936767A (en) * 1996-03-18 1999-08-10 Yale University Multiplanar autostereoscopic imaging system
JP2004264670A (ja) * 2003-03-03 2004-09-24 Canon Inc 光偏向器
JP2007003687A (ja) * 2005-06-22 2007-01-11 Canon Inc 画像表示装置
WO2008032485A1 (fr) * 2006-09-15 2008-03-20 Nec Corporation Projecteur laser
WO2011125495A1 (ja) * 2010-03-31 2011-10-13 ブラザー工業株式会社 画像表示装置
JP2017167254A (ja) 2016-03-15 2017-09-21 パイオニア株式会社 駆動装置及びミラー装置
JP2018029827A (ja) 2016-08-25 2018-03-01 サミー株式会社 弾球遊技機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021192610A1 (ja) * 2020-03-27 2021-09-30
WO2021192610A1 (ja) * 2020-03-27 2021-09-30 パイオニア株式会社 センサ装置
JP2021156794A (ja) * 2020-03-27 2021-10-07 パイオニア株式会社 センサ装置
EP4130785A4 (en) * 2020-03-27 2024-04-24 Pioneer Corporation SENSOR DEVICE
JP7504196B2 (ja) 2020-03-27 2024-06-21 パイオニア株式会社 センサ装置

Also Published As

Publication number Publication date
EP3757605A1 (en) 2020-12-30
US12099143B2 (en) 2024-09-24
JPWO2019163526A1 (ja) 2021-02-12
JP2023001209A (ja) 2023-01-04
US20200393546A1 (en) 2020-12-17
EP3757605C0 (en) 2024-01-17
JP2024072847A (ja) 2024-05-28
EP3757605A4 (en) 2021-11-17
EP3757605B1 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
JP2023001209A (ja) 測定装置
JPWO2019171726A1 (ja) レーザレーダ
US9329025B2 (en) Measuring device
JP2007248225A (ja) レーザビーム照射装置及び測距装置
US11656340B2 (en) LIDAR device
WO2018193609A1 (ja) 距離計測装置及び移動体
US10271414B2 (en) Droplet detector and extreme ultraviolet light generating apparatus
JPWO2019171727A1 (ja) レーザレーダ
JP6186863B2 (ja) 測距装置及びプログラム
JP2017040546A (ja) 物体検出装置
JP2024114870A (ja) 走査方法の決定方法
JP2010271663A (ja) 静電駆動型光スキャナ
WO2018155212A1 (ja) 電磁波検出装置、プログラム、および電磁波検出システム
EP3754377B1 (en) Control device, irradiation system, control method, and program
CN112180584A (zh) 光扫描装置及其控制方法
CN109613696B (zh) 光纤扫描投影装置及电子设备
JP7468661B2 (ja) 物体までの距離を計算するためのlidar装置及び方法
JPWO2019244701A1 (ja) 光放射装置、物体情報検知装置、光路調整方法、及び、物体情報検知方法
WO2017130729A1 (ja) レーザレーダ装置
JP2006038686A (ja) 距離計測機能付きランプ装置
JP6659856B2 (ja) 計測装置、制御装置、制御方法、及びプログラム
WO2018101293A1 (ja) 計測装置、設定装置、設定方法、修正方法、及びプログラム
JPWO2020022185A1 (ja) センサシステム
WO2022071332A1 (ja) センサ装置、及び灯具
US20240175988A1 (en) Sensor device, control device, control method, program, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501658

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019757948

Country of ref document: EP

Effective date: 20200922