WO2018193609A1 - 距離計測装置及び移動体 - Google Patents

距離計測装置及び移動体 Download PDF

Info

Publication number
WO2018193609A1
WO2018193609A1 PCT/JP2017/015996 JP2017015996W WO2018193609A1 WO 2018193609 A1 WO2018193609 A1 WO 2018193609A1 JP 2017015996 W JP2017015996 W JP 2017015996W WO 2018193609 A1 WO2018193609 A1 WO 2018193609A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflector
distance measuring
measuring device
light source
Prior art date
Application number
PCT/JP2017/015996
Other languages
English (en)
French (fr)
Inventor
信三 香山
小田川 明弘
琢磨 片山
田中 毅
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP17906394.6A priority Critical patent/EP3614169A4/en
Priority to PCT/JP2017/015996 priority patent/WO2018193609A1/ja
Priority to CN201780089096.5A priority patent/CN110462423A/zh
Priority to US16/603,142 priority patent/US11467261B2/en
Priority to JP2019513188A priority patent/JP6748984B2/ja
Publication of WO2018193609A1 publication Critical patent/WO2018193609A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out

Definitions

  • the present disclosure relates to a distance measuring device and a moving body including the distance measuring device.
  • a distance measuring device capable of measuring a distance to an object
  • a distance measuring technique called a rider (LIDAR)
  • LIDAR distance measuring technique
  • This type of distance measuring device measures the distance to an object using light.
  • a light emitting element that emits laser light and reflected light that is reflected by the object from the laser light emitted from the light emitting element is imaged.
  • An imaging device An imaging device.
  • the distance measuring device it is desired to expand the measurement range in which the distance can be measured in order to detect an object present at a farther place.
  • the angle range that can be measured centering on the distance measuring device that is, the measurable angle
  • the distance that can be measured from the distance measuring device that is, the measurable distance
  • the distance measuring device it is desired to expand the measuring range without increasing the number of light emitting elements and imaging elements and without increasing the size of the apparatus.
  • Patent Document 2 discloses a technique that can emit light over a wide range in order to detect surrounding objects with a wide viewing angle.
  • Patent Document 2 discloses that a cone-shaped member is used as a radiating member that reflects visible light emitted from a light-emitting device and radiates it around.
  • the distance measuring device having such a configuration, when light is uniformly emitted in an arbitrary direction, the distance to the object centering on the distance measuring device is acquired isotropically. That is, the measurable distance at an arbitrary measurement angle is constant.
  • the traveling direction of the moving body when installing a distance measuring device on a moving body having a high moving speed, such as a car, in the traveling direction of the moving body, it is desired to measure the distance to a farther object. If the measurable distance in the traveling direction of the moving body is increased when light is uniformly emitted in an arbitrary direction, the measurable distance in the lateral direction (side) of the moving body is also increased. In other words, the distance that can be detected is the same in the horizontal direction, where the measurable distance is not so long, and the direction in which you want to detect objects that are far away by making the measurable distance as long as possible. May be unnecessarily enlarged.
  • the distance measuring device can be reduced by reducing the number of parts, but it is necessary to detect more distant objects.
  • the measurable distance in the traveling direction of the body also becomes short, and it becomes impossible to detect an object that exists far away in the traveling direction of the moving body.
  • the present disclosure has been made to solve such a problem, and is capable of measuring a direction in which a farther object needs to be detected while realizing a wider measurable angle and a smaller apparatus. It is an object of the present invention to provide a distance measuring device and a moving body that can easily make the distance longer than a measurable distance in a direction in which it is not necessary to detect an object.
  • one aspect of a distance measuring device is a distance measuring device that measures a distance to an object, the light source that emits pulsed light, and the light emitted from the light source
  • the reflected light is reflected and emitted as radiated light, and the emitted radiated light is reflected by the object and reflects object light that is returned, and the object light reflected by the reflector is imaged.
  • the light emitted from the light source body is diffused light
  • the light source body and the imaging body are arranged at positions facing the reflector, and the reflector is used as the radiated light.
  • Light having a shape having a major axis and a minor axis is emitted, and the imaging body images the object light by performing exposure in synchronization with the pulsed light.
  • one aspect of the moving body according to the present disclosure is a moving body in which the distance measuring device is installed, and the distance measuring device is configured so that a direction of the long axis is along a traveling direction of the moving body. Be placed.
  • FIG. 1 is a diagram illustrating a schematic configuration of the distance measuring apparatus according to the first embodiment.
  • FIG. 2 is a diagram illustrating a schematic configuration of the distance measuring apparatus according to the first embodiment.
  • FIG. 3 is a diagram illustrating an application example when the distance measuring device of the comparative example is applied to an automobile.
  • FIG. 4 is a diagram illustrating an application example when the distance measuring device according to the first embodiment is applied to an automobile.
  • FIG. 5 is a diagram showing the relationship between the diffusion angle ⁇ of the diffused light emitted from the light source body and the radiation intensity of the radiated light emitted from the reflector.
  • FIG. 6 is a diagram illustrating a schematic configuration of the distance measuring apparatus according to the second embodiment.
  • FIG. 7A is a diagram illustrating a schematic configuration of the distance measuring apparatus according to the third embodiment.
  • FIG. 7B is a diagram illustrating a locus on a reflection surface of light emitted from the light source body and incident on the reflector in the distance measurement device according to Embodiment 3.
  • FIG. 8 is a diagram schematically illustrating an imaging region of the imaging element of the imaging body in the distance measuring device according to the third embodiment.
  • FIG. 9A is a diagram illustrating a schematic configuration of the distance measuring apparatus according to the fourth embodiment.
  • FIG. 9B is a diagram illustrating a locus on a reflection surface of light emitted from the light source body and incident on the reflector in the distance measuring device according to Embodiment 4.
  • FIG. 10 is a diagram illustrating a schematic configuration of a distance measuring apparatus according to the fifth embodiment.
  • FIG. 11 is a diagram illustrating a schematic configuration of the distance measuring apparatus according to the fifth embodiment.
  • FIG. 12 is a diagram illustrating a schematic configuration of a distance measuring device according to the first modification.
  • FIG. 13 is a diagram illustrating a schematic configuration of a distance measuring device according to the second modification.
  • FIG. 14 is a diagram illustrating a schematic configuration of a distance measuring device according to the third modification.
  • the X axis, the Y axis, and the Z axis represent the three axes of the three-dimensional orthogonal coordinate system.
  • the Z axis direction is the vertical direction and the Z axis is perpendicular to the Z axis. This direction (the direction parallel to the XY plane) is the horizontal direction.
  • the X axis and the Y axis are orthogonal to each other, and both are orthogonal to the Z axis.
  • FIGS. 1 and 2 are diagrams showing a schematic configuration of the distance measuring apparatus 1 according to the first embodiment.
  • an arrow indicated by a solid line indicates a locus of light emitted from the light source body 10
  • an arrow indicated by a broken line indicates light returned from the object reflected by the object.
  • the trajectory is shown.
  • 2A is a plan view
  • FIG. 2B is a front view
  • FIG. 2C is a side view.
  • the distance measuring device 1 is a distance measuring device that measures a distance to an object to be measured (measurement target), and includes a light source body 10, a reflector 20, and an imaging body. 30.
  • the distance measuring device 1 further includes a lens 40 and a control unit 50.
  • the object to be measured is a subject existing around the distance measuring device 1.
  • the light source body 10 emits pulsed light with respect to the time axis. Specifically, the light source body 10 emits rectangular pulse light (rectangular wave).
  • the light source body 10 is the light emitting element itself, for example, a laser element that emits laser light. That is, the light source body 10 which is a laser element emits pulsed laser light.
  • emits is a near infrared ray (near infrared light), it is not restricted to this. In the present embodiment, one laser element is used as the light source body 10.
  • the light emitted from the light source body 10 is diffused light that diffuses at a predetermined diffusion angle.
  • the diffused light emitted from the light source body 10 enters the reflector 20 at a diffusion angle that includes the apex of the cone-shaped reflector 20.
  • the diffusion angle of the diffused light emitted from the light source body 10 is, for example, 3 ° or more, more preferably 10 ° or more.
  • the lower limit value of the diffusion angle of the diffused light emitted from the light source body 10 is not particularly limited to 3 °, but the light emitted from the light source body 10 and the pixels of the imaging element correspond to each other on a one-to-one basis.
  • the light emitted from the light source body 10 may correspond to the plurality of pixels of the image sensor.
  • the upper limit of the diffusion angle of the diffused light emitted from the light source body 10 is not particularly limited, but the diffused light from the light source body 10 toward the reflector 20 protrudes from the reflection surface 20a of the reflector 20. It is good that there is no diffusion angle.
  • the diffusion angle of the diffused light from the light source body 10 is preferably 90 ° or less, and more preferably 30 ° or less.
  • the light source body 10 is disposed at a position facing the reflector 20. That is, as shown in FIG. 2A, the light source body 10 is disposed at a position overlapping the reflector 20 in plan view. Thereby, the diffused light of the light source body 10 can be incident on the reflector 20 so that the diffused light emitted from the light source body 10 includes the apex of the reflector 20.
  • the light source body 10 is disposed at a position substantially facing the central portion of the reflector 20. Specifically, the light source body 10 is disposed in the vicinity of the central axis J of the reflector 20 and on the side of the imaging body 30. The light source body 10 may be disposed adjacent to the imaging body 30.
  • the reflector 20 is a reflecting member having a reflecting surface 20a that reflects light.
  • the reflector 20 is, for example, a mirror body having a surface whose reflecting surface 20a is a mirror surface. Therefore, the light incident on the reflecting surface 20a of the reflector 20 is specularly reflected by the reflecting surface 20a.
  • the shape of the reflector 20 is a cone shape having a long bottom surface and a vertex.
  • the shape of the reflector 20 is an elliptical cone.
  • the reflector 20 is a conical straight elliptical cone whose bottom surface is an ellipse having the X axis as the short axis and the Y axis as the long axis. That is, the reflector 20 is a horizontally long straight elliptical cone that is long in the horizontal direction (Y-axis direction). In this case, as shown in FIG.
  • a ⁇ b is assumed, where a is the minor axis and b is the major axis.
  • a ⁇ c ⁇ b in the present embodiment.
  • the reflector 20 does not necessarily have a strict elliptical cone, and may have a polygonal shape close to an elliptical cone.
  • the reflecting body 20 only needs to have at least an inclined surface that is a side surface of the cone-shaped body as the reflecting surface 20a.
  • the side surface of the elliptical cone is the reflecting surface 20a.
  • the side surface of the elliptical cone that is the reflecting surface 20 a is preferably a curved surface that is recessed inward, but is not limited thereto, and is a curved surface that bulges outward. There may be.
  • the reflector 20 reflects the light emitted from the light source body 10 and emits it as radiated light. Specifically, the reflector 20 reflects the diffused light emitted from the light source body 10 in all directions in the XY plane and emits radiated light in all 360 ° horizontal directions.
  • the reflector 20 since the reflector 20 is a long cone, the reflector 20 emits light having a long axis and a short axis as emitted light. Specifically, since the reflector 20 is a horizontally long elliptical cone that is elongated in the lateral direction (Y-axis direction), the radiated light emitted from the reflector 20 is centered on the central axis J ( The center of the ellipse O) is a vertically long ellipse that is elongated in the longitudinal direction (X-axis direction) on the XY plane. That is, the radiated light radiated from the reflector 20 is elliptical light having the major axis of the X axis and the minor axis of the Y axis.
  • the reflector 20 is arranged such that the apex of the bottom surface and the apex of the cone is located on the light source body 10 side, and the side surface of the cone that is the reflecting surface 20 a is the light source body 10. Suitable for That is, the reflector 20 is arranged such that the vertex of the elliptical cone is on the lower side and the bottom surface of the elliptical cone is on the upper side. Thereby, the light emitted from the light source body 10 is reflected by the reflecting surface 20a of the reflector 20, and is emitted toward the lower side of the reflector 20 as radiated light. As a result, a light irradiation region distributed in an elliptical shape is formed on the light irradiation surface such as the ground.
  • the reflector 20 further reflects the object light that is returned when the emitted radiation is reflected by the object. That is, the light emitted from the light source body 10 and reflected by the reflecting surface 20a of the reflector 20 is radiated in all directions as radiated light, and the light reflected by the object and returning to the reflector 20 is reflected by the reflector 20 Reflected again by the reflecting surface 20a.
  • the object light reflected by the reflector 20 is collected by the lens 40 and enters the image pickup body 30.
  • the lens 40 is an imaging lens. Specifically, the lens 40 forms an image of the object light reflected by the reflector 20 on the imaging body 30.
  • the imaging body 30 images the object light reflected by the reflector 20.
  • the imaging body 30 is, for example, an omnidirectional camera that can capture images in all directions.
  • the imaging body 30 includes an imaging device having a pixel region composed of a plurality of pixels arranged in a matrix.
  • the object light reflected by the reflector 20 is imaged by the imaging device, and a captured image of the object light is generated.
  • the imaging body 30 captures omnidirectional object light and generates an omnidirectional image (360 ° image).
  • an image sensor having sensitivity to the wavelength of light emitted from the light source body 10 can be used.
  • an image sensor having sensitivity to near-infrared light can be used as the imaging element.
  • a silicon-based COMS image sensor or an organic image sensor can be used as the image sensor, but the image sensor is not limited thereto.
  • the imaging body 30 is disposed at a position facing the reflector 20. That is, as shown in FIG. 2A, the imaging body 30 is disposed at a position overlapping the reflector 20 in plan view. In the present embodiment, the image pickup body 30 is disposed at a position substantially facing the center of the reflector 20. Specifically, the center of the imaging body 30 coincides with the central axis J of the reflector 20.
  • the center (optical axis) of the light source body 10 is preferably coincident with the central axis J of the reflector 20, but in the present embodiment, the center of the imaging body 30 is coincident with the central axis J of the reflector 20. Therefore, the optical axis of the light source body 10 cannot match the central axis J of the reflector 20 due to physical restrictions between the light source body 10 and the imaging body 30. For this reason, with respect to the radiated light radiated from the reflector 20, there is some asymmetry of the light irradiation angle with respect to the vertex of the elliptical cone of the reflector 20. Therefore, the distance measuring device 1 may be used for applications that allow such asymmetry.
  • the position of the light source body 10 as much as possible to a position where the radiated light emitted from the reflector 20 becomes a symmetrical shape (for example, an elliptical shape) by reducing asymmetry of the light irradiation angle as much as possible.
  • the imaging body 30 images the object light by performing exposure in synchronization with the pulsed light emitted from the light source body 10. Thereby, the distance to the object can be measured by the control unit 50.
  • the control unit 50 causes the light source body 10 to emit pulsed light.
  • the light emitted from the light source body 10 is reflected by the reflector 20 and emitted as radiated light.
  • the light is reflected and returned to the reflector 20 as object light.
  • the light is again reflected by the reflector 20 and enters the image pickup device of the image pickup body 30.
  • the object light incident on the imaging element of the imaging body 30 is light that has returned to the distance measuring device 1 after a time t from the light source body 10.
  • the control unit 50 controls the exposure of the image pickup element of the image pickup body 30 so as to be synchronized with the light source body 10 during the on period of the pulsed light.
  • the control unit 50 can calculate the time t.
  • the exposure period of the imaging element of the imaging body 30 is controlled by the control unit 50, and the exposure period of the imaging element of the imaging body 30 is synchronized with the on period of the pulsed light emitted from the light source body 10. is doing. That is, the image sensor of the imaging body 30 can capture object light while being controlled by the control unit 50 during exposure.
  • the captured image captured by the image sensor is output to the control unit 50.
  • the control unit 50 calculates the distance d from the distance measuring device 1 to the object based on the time t related to the light emitted from the light source body 10 and the captured image captured by the image sensor.
  • the control unit 50 includes a control circuit such as an IC and a CPU.
  • FIG. 3 is a diagram illustrating an application example when the distance measuring device 100 of the comparative example is applied to the automobile 2.
  • FIG. 4 is a diagram illustrating an application example when the distance measuring device 1 according to the first embodiment is applied to the automobile 2.
  • the configuration of the distance measuring device 100 of the comparative example shown in FIG. 3 is a configuration in which a reflector 120 that is a right cone is used instead of the reflector 20 that is a right elliptic cone in the distance measuring device 1 of the first embodiment. It is.
  • the laser light emitted from the light source body 10 (not shown) is reflected by the right cone reflector 120 and the automobile 2. Isotropically diffused in all directions. Thereby, circular radiation light 103 is emitted around the automobile 2. Therefore, in the automobile 2 equipped with the distance measuring device 100 of the comparative example, the measurable distances in all directions are the same.
  • a reflector 20 having a right elliptical cone is used.
  • the distance measuring device 1 is installed in the automobile 2 so that the major axis direction of the right elliptical cone-shaped reflector 20 is the horizontal direction (Y-axis direction).
  • the laser light emitted from the light source body 10 (not shown) is reflected and diffused by the reflector 20 as in the distance measuring device 100 of the comparative example, but in the distance measuring device 1, the reflector 20 is a right elliptical cone. Therefore, it is not anisotropically diffused in all directions of the automobile 2, but is anisotropically diffused.
  • the laser light emitted from the light source body 10 is radiated around the automobile 2 as elliptical radiation light 3.
  • the emitted light 3 radiated from the reflector 20 has an elliptical shape in which the traveling direction (X-axis direction) of the automobile 2 is a major axis and the left-right direction (Y-axis direction) of the automobile 2 is a minor axis.
  • the light is irradiated on the ground.
  • the distance measuring device 1 is arranged so that the direction of the long axis of the emitted light 3 is along the traveling direction (X-axis direction) of the automobile 2. Specifically, the direction of the long axis of the emitted light 3 is made to coincide with the traveling direction of the automobile 2. Thereby, the measurable distance in the traveling direction of the automobile 2 can be made relatively longer than the measurable distance in the left-right direction of the automobile 2. That is, the measurable distance in the left-right direction of the automobile 2 that does not need to detect an object too much can be shortened, and the measurable distance in the traveling direction of the automobile 2 that needs to detect a farther object can be increased. Thereby, the automobile 2 can travel safely while detecting an object (such as an obstacle or a building) existing in the vicinity. In addition, by using the distance measuring device 1, the automobile 2 can travel independently while avoiding surrounding objects.
  • an object such as an obstacle or a building
  • FIG. 5 is a diagram showing the relationship between the diffusion angle ⁇ of the diffused light emitted from the light source body 10 and the radiation intensity I of the radiated light emitted from the reflectors 120 and 20.
  • the light emitted from the light source body 10 is incident on the reflectors 120 and 20 at a diffusion angle that includes the vertices of the reflectors 120 and 20.
  • the diffusion angle ⁇ of the diffused light emitted from the light source body 10 and the radiation intensity I of the radiated light emitted from the reflectors 120 and 20 are in an inversely proportional relationship. Specifically, the radiation intensity I decreases as the diffusion angle ⁇ increases, and the radiation intensity I increases as the diffusion angle ⁇ decreases. Therefore, in order to extend the irradiation distance of the radiated light, the diffusion angle ⁇ is preferably small in order to allow the light from the light source body 10 to reach farther.
  • the reflector 120 is a right cone, and therefore the relational expression between the diffusion angle ⁇ and the radiation intensity I in the traveling direction and the left-right direction of the automobile 2. Are both represented by a curve 100XY.
  • the reflector 20 is a right elliptical cone, so that the diffusion angle ⁇ and the radiation intensity I between the traveling direction of the automobile 2 and the horizontal direction are as follows. Relational expressions are represented by different curves.
  • the relational expression between the diffusion angle ⁇ and the radiation intensity I in the traveling direction of the automobile 2 is represented by a curve 1X
  • the relational expression between the diffusion angle ⁇ and the radiation intensity I in the left-right direction of the automobile 2 is a curve 1Y. It is represented.
  • diffusion angle (theta) is large about the advancing direction of the motor vehicle 2.
  • the traveling direction of the automobile 2 is the same diffusion in the distance measuring device 1 according to the present embodiment as compared with the distance measuring device 100 of the comparative example.
  • the radiation intensity I with respect to the angle ⁇ is increased.
  • the radiation intensity I for the same diffusion angle ⁇ is smaller in the distance measuring device 1 in the present embodiment than in the distance measuring device 100 of the comparative example.
  • the distribution of the radiation intensity (irradiation distance) with respect to the traveling direction and the left-right direction can be changed by replacing the right-cone reflector 120 with the right-elliptical cone reflector 20.
  • the light source body 10 has a light distribution such that the radiation intensity in the traveling direction is larger than the radiation intensity in the left-right direction.
  • the distribution of the emitted light can be changed. That is, the radiation intensity can be concentrated in the traveling direction.
  • the light source body 10 may be disposed in front of the traveling direction with respect to the imaging body 30.
  • the distance measuring apparatus 1 reflects the light source body 10 that emits pulsed light, the light emitted from the light source body 10, and radiates it as radiated light.
  • the light source 10 includes a reflector 20 that reflects the object light that is reflected by the object and returns, and an imaging body 30 that images the object light reflected by the reflector 20.
  • the light source body 10 and the imaging body 30 are diffused light, and are disposed at positions facing the reflector 20. Thereby, the distance to an object can be measured in a wide angle range.
  • the reflector 20 reflects the light emitted from the light source body 10 and emits the emitted light as a shape having a major axis and a minor axis.
  • the distance measuring device is adapted to correspond to the long axis of the radiated light in the direction that needs to detect a farther object, and to correspond to the short axis of the radiated light in the direction that does not need to detect the object much.
  • the measurable distance in the specific first direction is shortened, and the measurable distance in the specific second direction different from the first direction. It is possible to suppress an increase in the number of parts in order to increase the measurable distance. Thereby, it can avoid that the distance measuring device 1 enlarges uselessly.
  • the measurable distance in the direction in which a farther object needs to be detected can be achieved while realizing a wider measurable angle and a smaller device. It can be easily made longer than the measurable distance in the direction in which it is not necessary to detect an object.
  • the shape of the reflector 20 is a cone shape which has an elongate bottom face and a vertex, and the reflector 20 is located so that a vertex may be located in the light source body 10 side among a bottom face and a vertex. Is arranged.
  • the measurable angle can be easily widened.
  • the shape of the reflector 20 is an elliptical cone.
  • the range in which the distance can be measured can be elliptical.
  • the side surface of the elliptical cone (reflecting surface 20a) constituting the reflector 20 is a curved surface recessed inward.
  • the radiated light radiated from the reflector 20 can be irradiated toward the ground with a uniform intensity.
  • the image pickup body 30 is disposed at a position substantially facing the center of the reflector 20.
  • the light source body 10 is disposed at a position substantially facing the central portion of the reflector 20.
  • the distance measuring device 1 can be further downsized. Further, by arranging the light source body 10 at a position substantially facing the central portion of the reflector 20, the emitted light emitted from the light source body 10 and reflected by the reflector 20 is symmetric. And a desired distance measurement range can be realized. For example, when the reflector 20 is a right elliptical cone, it is possible to use elliptically radiated light that is vertically and horizontally symmetric, so that the range in which the distance can be measured can be elliptical.
  • the light emitted from the light source body 10 may be laser light having a diffusion angle of 3 ° or more.
  • the radiated light can be emitted in a desired wide range.
  • FIG. 6 is a diagram showing a schematic configuration of a distance measuring apparatus 1A according to the second embodiment.
  • 6A is a plan view
  • FIG. 6B is a front view
  • FIG. 6C is a side view.
  • the control unit 50 is not shown.
  • the distance measuring apparatus 1A includes a configuration in which a plurality of light source bodies 10 are arranged in the distance measuring apparatus 1 according to the first embodiment. It has become. Specifically, in the distance measurement device 1 according to the first embodiment, there is only one light source body 10 (light emitting element). However, in the distance measurement device 1A according to the present embodiment, the light source body 10 includes four light source bodies 10. One. Each light source body 10 is a laser element that emits pulsed light, for example, as in the first embodiment. Each light source body 10 emits diffused light having a predetermined diffusion angle.
  • the plurality of light source bodies 10 are evenly arranged around the vertex of the reflector 20 having a right elliptical cone shape. Specifically, the four light source bodies 10 are arranged at 90 ° intervals in the circumferential direction around the vertex of the reflector 20.
  • the diffusion angle of light emitted from each of the four light source bodies 10 is made narrower than the diffusion angle of light emitted from the light source body 10 in the first embodiment.
  • the irradiation range of the radiated light emitted from the reflector 20 by the light from the light source body 10 is the same as that in the first embodiment. That is, even if the light diffusion angle of one light source body 10 is narrow, the light incident on the reflector 20 can be complemented by using the plurality of light source bodies 10, and thus a wide measurable angle can be maintained. .
  • the distance measuring apparatus 1A can achieve the same effects as those of the first embodiment. Specifically, while achieving a wider measurable angle and downsizing the device, it is possible to measure a measurable distance in a direction where it is necessary to detect a farther object and a direction where it is not necessary to detect an object. It can be made longer than the possible distance easily.
  • a plurality of light source bodies 10 are arranged.
  • FIG. 7A is a diagram illustrating a schematic configuration of a distance measuring device 1B according to Embodiment 3.
  • FIG. 7B is a diagram illustrating a locus on the reflection surface 20a of light emitted from the light source body 10B and incident on the reflector 20 in the same distance measurement apparatus 1B.
  • arrows indicated by solid lines indicate the trajectory of light emitted from the light source body 10B.
  • the distance measuring device 1B according to the present embodiment and the distance measuring device 1 according to the first embodiment are different in the configuration of the light source body.
  • the light source body 10B includes a light emitting element 10a and an actuator 10b.
  • the light emitting element 10a emits pulsed light. Specifically, the light emitting element 10a emits rectangular pulse light. In the present embodiment, the light emitting element 10a can be the same as that in the first embodiment, and is, for example, a laser element that emits laser light as diffused light having a predetermined diffusion angle.
  • the actuator 10b dynamically displaces the light emitting element 10a so that the light emitted from the light source body 10B rotates about the center of the reflector 20 as a rotation center. Specifically, as shown in FIG. 7B, the light emitting element 10a is rotated about the central axis J of the reflector 20 having a right elliptical cone by the actuator 10b. Thereby, the diffused light scanned by the rotation of the light emitting element 10a is incident on the reflecting surface 20a of the reflector 20, and the radiated light interlocked with the rotation of the light emitting element 10a is emitted from the reflector 20.
  • the diffusion angle of the light emitted from the light source body 10B is the same as in the second embodiment, in the light source body in the first embodiment. Even if it is narrower than the diffusion angle of the light emitted from 10, the irradiation range of the radiated light radiated from the reflector 20 by the light of the light source body 10B can be made the same as in the first embodiment. In other words, even when one light emitting element 10a having a narrow diffusion angle of emitted light is used, the irradiation range of the radiated light that provides a wide measurable angle by rotating the light emitting element 10a using the actuator 10b. Can be realized.
  • the control unit 50 causes the object light to be emitted at which timing in which imaging region of the imaging element. Information on whether it is incident is acquired.
  • FIG. 8 is a diagram schematically illustrating an imaging region of the imaging element of the imaging body 30 in the distance measuring device 1B according to the third embodiment.
  • the hatched portion indicates a region where the object light is incident
  • the arrow indicates the rotation direction of the object light incident in conjunction with the rotation of the light emitting element 10a.
  • the pixel area is divided into a plurality of readout areas.
  • a plurality of read areas are set in advance, and the control unit 50 grasps in advance address information corresponding to each of the plurality of read areas.
  • FIG. 8 shows a case where the pixel area is divided into 64 ⁇ 8 ⁇ 8 readout areas.
  • the row direction addresses are indicated by A to H
  • the column direction addresses are indicated by a to h
  • each read area can be represented by a row direction address and a column direction address.
  • the control unit 50 includes a readout circuit that reads an image captured by the imaging element of the imaging body 30 by exposure.
  • the control unit 50 includes an address decoder for reading an image for each of a plurality of reading areas.
  • the object light returning to the reflector 20 is partially incident on the pixel region of the imaging element. It will be.
  • the readout circuit does not read the image captured by exposing all the pixels in the pixel area at the same time, but only the region of interest (ROI) where the object light returns is captured and imaged.
  • Read a partial image Specifically, the readout circuit sequentially reads out the partial images captured by exposing only the readout region where the object light is incident among the plurality of readout regions in synchronization with the rotation of the light emitted from the light source body 10B. Yes.
  • the readout circuit when the object light is incident on the hatched portion illustrated in FIG. 8, the readout circuit includes row D ⁇ column e, row D ⁇ column f, row D ⁇ column g, row among the 64 readout regions. Only four partial images captured by exposing only the four read areas indicated by D ⁇ column h are read. The control by the readout circuit is sequentially performed in synchronization with the rotation of the light emitted from the light source body 10B.
  • the distance measuring device 1B can achieve the same effects as those of the first embodiment. Specifically, while achieving a wider measurable angle and downsizing the device, it is possible to measure a measurable distance in a direction where it is necessary to detect a farther object and a direction where it is not necessary to detect an object. It can be made longer than the possible distance easily.
  • the light source body 10B includes a light emitting element 10a that emits pulsed light and an actuator 10b that dynamically displaces the light emitting element 10a.
  • the number of the light emitting elements 10a can be reduced as compared with the second embodiment while realizing the measurement range by the emitted light having the same light quantity as the second embodiment.
  • the pixel area of the imaging element of the imaging body 30 is divided into a plurality of readout areas.
  • the distance measuring device 1B further includes a readout circuit that reads out an image captured by the imaging body 30 by exposure, and the readout circuit only reads out a readout area where object light is incident among a plurality of readout areas of the imaging device.
  • the partial images captured by exposure are sequentially read out in synchronization with the rotation of the light emitted from the light source body 10B.
  • the data amount can be reduced as compared with reading the entire area of the pixel area. For example, in FIG. 8, the data amount when reading the captured image can be reduced to 4/64. Therefore, since an image of object light can be taken efficiently and at high speed, the time required for distance measurement can be shortened.
  • FIG. 9A is a diagram showing a schematic configuration of a distance measuring device 1C according to the fourth embodiment.
  • FIG. 9B is a diagram illustrating a locus on the reflection surface 20a of light emitted from the light source body 10C and incident on the reflector 20 in the distance measurement apparatus 1C.
  • 9A and 9B, arrows indicated by solid lines indicate the locus of light emitted from the light source body 10C.
  • the distance measuring device 1C according to the present embodiment is different from the distance measuring device 1 according to the first embodiment in the configuration of the light source body. Specifically, as shown in FIG. 9A, in the distance measuring apparatus 1C according to the present embodiment, the light source body 10C includes a light emitting element 10a and a mirror 10c.
  • the light emitting element 10a is the same as that of the third embodiment, but in this embodiment, the light emitting element 10a is fixed and the position of the light emitting element 10a does not change.
  • the mirror 10 c reflects the light emitted from the light emitting element 10 a so that the light emitted from the light source body 10 rotates around the center of the reflector 20.
  • the mirror 10c is a galvanometer mirror and controls the angle of light incident on the reflector 20 from the light emitting element 10a.
  • the mirror 10c controls the direction of the light emitted from the light emitting element 10a by the mirror 10c, the light emitted from the light source body 10C is changed to the central axis J of the reflector 20 having the right elliptical cone shape. Rotate around.
  • the light scanned by the rotation of the light emitted from the light source body 10C is incident on the reflection surface 20a of the reflector 20, and the radiated light interlocked with the rotation of the light of the light source body 10C is emitted from the reflector 20. Radiated.
  • the diffusion angle of the light emitted from the light source body 10C is emitted from the light source body 10 in the first embodiment, as in the third embodiment. Even if it is narrower than the diffusion angle of the light to be emitted, the irradiation range of the radiated light emitted from the reflector 20 by the light of the light source body 10C can be made the same as in the first embodiment. That is, even when one light emitting element 10a having a narrow diffusion angle of emitted light is used, a wide measurable angle can be obtained by controlling the direction of light emitted from the light emitting element 10a using the mirror 10c. An appropriate radiation range can be realized.
  • the reflector 20 emits radiated light that is linked to the rotation of the light of the light source body 10C to the surroundings, so the object light that is linked to the rotation of the light of the light source body 10C is applied to the imaging body 30. Is incident. Therefore, also in this embodiment, by using the same readout circuit as that in Embodiment 3, not all the imaging areas are exposed and the image is read out, but only the imaging area where the object light returns is exposed. Read the image.
  • the distance measuring device 1C can achieve the same effects as those of the first embodiment. Specifically, while achieving a wider measurable angle and downsizing the device, it is possible to measure a measurable distance in a direction where it is necessary to detect a farther object and a direction where it is not necessary to detect an object. It can be made longer than the possible distance easily.
  • the light source body 10C includes the light emitting element 10a and a mirror 10c that changes the direction of light emitted from the light emitting element 10a.
  • the same effects as those of the third embodiment can be obtained. That is, the number of the light emitting elements 10a can be reduced as compared with the second embodiment while realizing the measurement range by the emitted light having the same light quantity as the second embodiment. In addition, in the present embodiment, since the light emitting element 10a is fixed, stable electrical driving can be realized, and thus reliability can be improved.
  • the distance measuring apparatus 1C includes a readout circuit similar to that of the above-described third embodiment, and the readout circuit only includes a readout area in which object light is incident among a plurality of readout areas of the image sensor.
  • the partial images captured by exposure are sequentially read out in synchronization with the rotation of the light emitted from the light source body 10C.
  • an object light image can be taken efficiently and at high speed, and the time required for distance measurement can be shortened.
  • FIGS. 10 and 11 are diagrams showing a schematic configuration of a distance measuring device 1D according to the fifth embodiment.
  • an arrow indicated by a solid line indicates a locus of light emitted from the light source body 10
  • an arrow indicated by a broken line indicates that light emitted from the light source body 10 is reflected by an object and returns.
  • the trajectory is shown.
  • 11A is a plan view
  • FIG. 11B is a front view
  • FIG. 11C is a side view.
  • the difference between the distance measuring device 1D according to the present embodiment and the distance measuring device 1 according to the first embodiment is the shape of the reflector.
  • the shape of the reflector 20 in the first embodiment is a right elliptical cone whose bottom surface is an ellipse.
  • the shape of the reflector 20D in the present embodiment is as follows. The shape is a polyhedral cone whose bottom surface is an elongated polygon.
  • the reflector 20D is a horizontally long hexagonal pyramid having a long hexagonal shape with the X-axis as the short axis and the Y-axis as the long axis.
  • a ⁇ b for the hexagon that is the bottom surface of the hexagonal pyramid that constitutes the reflector 20D, a ⁇ b, where a is the minor axis and b is the major axis.
  • a ⁇ c ⁇ b for the hexagon that is the bottom surface of the hexagonal pyramid that constitutes the reflector 20D, a ⁇ b, where a is the minor axis and b is the major axis.
  • the reflector 20D has at least an inclined surface that is a side surface of the hexagonal pyramid as the reflecting surface 20a.
  • the side surface of the hexagonal pyramid that is the reflecting surface 20a is preferably a curved surface that is recessed inward, but is not limited thereto, and is a curved surface that bulges outward. There may be. Further, the side surface of the hexagonal pyramid that is the reflecting surface 20a is not limited to a curved surface.
  • the distance measuring device 1D can achieve the same effects as those of the first embodiment. Specifically, while achieving a wider measurable angle and downsizing the device, it is possible to measure a measurable distance in a direction where it is necessary to detect a farther object and a direction where it is not necessary to detect an object. It can be made longer than the possible distance easily.
  • the shape of the reflector 20D is a conical shape having a long bottom surface and a vertex as in the reflector 20 in the first embodiment, but the reflection in the present embodiment.
  • the shape of the body 20D is a polyhedral cone whose bottom surface is a long polygon.
  • the range in which the distance can be measured is made a substantially polygonal shape. Can do.
  • the shape of the reflector 20 into a polyhedral cone, it is possible to perform image processing by clearly associating the pixel area on which the object light to be imaged is incident with each surface of the polyhedral cone, thereby simplifying the calculation algorithm. can do.
  • the side surface of the polyhedral cone (reflecting surface 20a) constituting the reflector 20D is a curved surface that is recessed inward.
  • the radiated light emitted from the reflector 20D can be irradiated with uniform intensity toward the ground.
  • Embodiment 2 demonstrated the case where it applied to Embodiment 1, this Embodiment can also be applied to Embodiment 2-4.
  • the reflecting surface 20a (side surface) of the reflector 20 is a curved surface, but the present invention is not limited to this.
  • the reflector 20E may be an elliptical cone whose cross-sectional shape in a plane passing through the central axis J is an isosceles triangle.
  • the reflecting surface 20a (side surface) of the reflector is not limited to a curved surface, and the reflector is a cone having a cross-sectional shape in an isosceles triangle in a plane passing through the central axis J. It may be.
  • the entire cone is used as the reflector.
  • the present invention is not limited to this, and a part of the cone may be used.
  • the reflector 20F may have a configuration using the left half of an elliptical cone divided into two equal parts by a plane passing through the short axis.
  • the light irradiation area of the radiated light emitted from the reflector 20F is only the left half of FIG.
  • the lens 40 may also be half.
  • the distance measuring device 1 ⁇ / b> F configured in this way is preferably installed on the left side of the automobile, for example.
  • a distance measuring device including a reflector using the right half of the elliptical cone also on the right side of the automobile the emitted light can be emitted in all directions of the automobile 2.
  • a single cone is used as the reflector.
  • the present invention is not limited to this, and the first reflector 21 having a right elliptical cone is used, as in the distance measuring device 1G shown in FIG.
  • the reflector 20G may be configured by two conical bodies including a second elliptical cone-shaped second reflecting portion 22.
  • the 1st reflection part 21 and the 2nd reflection part 22 are arrange
  • the light source body 10 is disposed at a position facing the first reflecting portion 21, and the imaging body 30 is disposed at a position facing the second reflecting portion 22.
  • the distance measuring device 1G configured as described above, the light emitted from the light source body 10 is reflected by the reflecting surface 20a of the first reflecting portion 21 of the reflector 20G and is emitted as radiated light in all directions.
  • the light that is reflected by the object and returns to the reflector 20G is reflected by the reflecting surface 20a of the second reflecting portion 22 of the reflector 20G, imaged by the lens 40, and imaged. 30 is incident. Thereby, the distance to an object can be measured.
  • the laser element is used as the light emitting element constituting the light source body.
  • the present invention is not limited to this.
  • the light-emitting element constituting the light source body other solid-state light-emitting elements such as LEDs (Light Emitting Diode) may be used.
  • the distance measuring device is installed in the automobile, but the present invention is not limited to this.
  • the distance measuring device may be installed on a moving body other than an automobile, or may be installed on a stationary body that does not move.
  • the distance measuring device in each of the above embodiments may be configured as a distance measuring system (ranging system).
  • the technology of the present disclosure can be used for a distance measuring device and the like, and can be applied to, for example, a vehicle-mounted peripheral monitoring sensor system or a robot.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

物体までの距離を計測する距離計測装置(1)であって、パルス状の光を出射する光源体(10)と、光源体(10)から出射した光を反射して放射光(3)として放射し、かつ、放射した放射光(3)が物体で反射して戻ってくる物体光を反射する反射体(20)と、反射体(20)で反射した物体光を撮像する撮像体(30)とを備え、光源体(10)から出射する光は、拡散光であり、光源体(10)及び撮像体(30)は、反射体(20)に正対する位置に配置され、反射体(20)は、放射光(3)として、長軸及び短軸を有する形状の光を放射し、撮像体(30)は、パルス状の光と同期して露光することで物体光を撮像する。

Description

距離計測装置及び移動体
 本開示は、距離計測装置及びこれを備える移動体に関する。
 従来、物体までの距離を計測することができる距離計測装置として、ライダー(LIDAR)と呼ばれる測距技術を利用したものが知られている(例えば、特許文献1参照)。この種の距離計測装置は、光を用いて物体までの距離を計測するものであり、例えば、レーザ光を出射する発光素子と、発光素子から出射したレーザ光が物体で反射した反射光を撮像する撮像素子とを備える。
米国特許第7969558号明細書 特開2016-219258号公報
 距離計測装置では、より遠方の場所に存在する物体を検知するために、距離を計測することができる計測範囲を拡大することが望まれる。具体的には、距離計測装置では、距離計測装置を中心とする計測可能な角度範囲(つまり計測可能角度)の広角化と、距離計測装置から計測可能な距離(つまり計測可能距離)の長距離化とが望まれている。
 この場合、撮像素子の画角を広げて計測可能角度を広角化することが考えられるが、単に撮像素子の画角のみを広げると、遠方における光学素子の光の密度が小さくなる。つまり、光学素子の光が到達可能な距離が短くなってしまう。この結果、計測可能距離が短くなってしまい、近距離に存在する物体までの距離しか計測することができない。
 そこで、発光素子及び撮像素子の数を増やすことで、計測可能角度の広角化と計測可能距離の長距離化とを実現することも考えられるが、発光素子及び撮像素子の数を増やすと、メカ機構等の部品の数が増加する等して、距離計測装置が大型化する。
 このように、距離計測装置では、発光素子及び撮像素子の数をあまり増やさずに装置を大型化させることなく、計測範囲を拡大することが望まれている。
 ところで、広い視野角で周囲の物体を検知するために広範囲に光を放射することができる技術が特許文献2に開示されている。特許文献2には、発光デバイスから出射した可視光を反射して周囲に放射する放射部材として円錐形状のものを用いることが開示されている。
 そこで、特許文献2に開示された放射部材を距離計測装置に用いることで、計測可能角度の広角化と装置の小型化とを実現することが考えられる。
 しかしながら、このような構成の距離計測装置において、任意の方向に光を均一に放射すると、距離計測装置を中心とする物体までの距離を等方的に取得することになる。つまり、任意の計測角度における計測可能距離は一定である。
 ここで、車等の移動速度が速い移動体に距離計測装置を設置する場合、移動体の進行方向においては、より遠くの物体までの距離を計測することが望まれるが、上記のように、任意の方向に光を均一に放射する場合に移動体の進行方向の計測可能距離を長くすると、移動体の横方向(側方)の計測可能距離も長くなってしまう。つまり、計測可能距離をそれほど長くする必要のない横方向と、計測可能距離をできるだけ長くして遠方に存在する物体を検知したい進行方向とで、検知可能な計測距離が同じになり、距離計測装置が無駄に大型化するおそれがある。逆に、あまり物体を検知する必要のない移動体の横方向の計測可能距離を短くすると、部品点数を少なくして距離計測装置を小型化できるものの、より遠くの物体を検知する必要のある移動体の進行方向の計測可能距離も短くなってしまい、移動体の進行方向において遠方に存在する物体を検知することができなくなる。
 本開示は、このような課題を解決するためになされたものであり、計測可能角度の広角化と装置の小型化とを実現しつつ、より遠くの物体を検知する必要のある方向の計測可能距離を、あまり物体を検知する必要のない方向の計測可能距離よりも容易に長くすることができる距離計測装置及び移動体を提供することを目的とする。
 上記目的を達成するために、本開示に係る距離計測装置の一態様は、物体までの距離を計測する距離計測装置であって、パルス状の光を出射する光源体と、前記光源体から出射した光を反射して放射光として放射し、かつ、放射した前記放射光が前記物体で反射して戻ってくる物体光を反射する反射体と、前記反射体で反射した前記物体光を撮像する撮像体とを備え、前記光源体から出射する光は、拡散光であり、前記光源体及び前記撮像体は、前記反射体に正対する位置に配置され、前記反射体は、前記放射光として、長軸及び短軸を有する形状の光を放射し、前記撮像体は、前記パルス状の光と同期して露光することで前記物体光を撮像する。
 また、本開示に係る移動体の一態様は、上記の距離計測装置が設置された移動体であって、前記距離計測装置は、前記長軸の方向が前記移動体の進行方向に沿うように配置される。
 計測可能角度の広角化と装置の小型化とを実現しつつ、より遠くの物体を検知する必要のある方向の計測可能距離を、あまり物体を検知する必要のない方向の計測可能距離よりも容易に長くすることができる。
図1は、実施の形態1に係る距離計測装置の概略構成を示す図である。 図2は、実施の形態1に係る距離計測装置の概略構成を示す図である。 図3は、比較例の距離計測装置を自動車に適用した場合の適用例を示す図である。 図4は、実施の形態1に係る距離計測装置を自動車に適用した場合の適用例を示す図である。 図5は、光源体から出射する拡散光の拡散角度θと反射体から放射する放射光の放射強度との関係を示す図である。 図6は、実施の形態2に係る距離計測装置の概略構成を示す図である。 図7Aは、実施の形態3に係る距離計測装置の概略構成を示す図である。 図7Bは、実施の形態3に係る距離計測装置において、光源体から出射して反射体に入射する光の反射面上の軌跡を示す図である。 図8は、実施の形態3に係る距離計測装置における撮像体の撮像素子の撮像領域を模式的に示す図である。 図9Aは、実施の形態4に係る距離計測装置の概略構成を示す図である。 図9Bは、実施の形態4に係る距離計測装置において、光源体から出射して反射体に入射する光の反射面上の軌跡を示す図である。 図10は、実施の形態5に係る距離計測装置の概略構成を示す図である。 図11は、実施の形態5に係る距離計測装置の概略構成を示す図である。 図12は、変形例1に係る距離計測装置の概略構成を示す図である。 図13は、変形例2に係る距離計測装置の概略構成を示す図である。 図14は、変形例3に係る距離計測装置の概略構成を示す図である。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 各図は、模式図であり、必ずしも厳密に図示されたものではない。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化される場合がある。
 また、本明細書及び図面において、X軸、Y軸及びZ軸は、三次元直交座標系の三軸を表しており、本実施の形態では、Z軸方向を鉛直方向とし、Z軸に垂直な方向(XY平面に平行な方向)を水平方向としている。X軸及びY軸は、互いに直交し、且つ、いずれもZ軸に直交する軸である。
 (実施の形態1)
 まず、実施の形態1に係る距離計測装置1について、図1及び図2を用いて説明する。図1及び図2は、実施の形態1に係る距離計測装置1の概略構成を示す図である。なお、図1において、実線で示す矢印は、光源体10から出射する光の軌跡を示しており、破線で示す矢印は、光源体10から出射した光が物体で反射して戻ってくる光の軌跡を示している。また、図2において、(a)は平面図、(b)は正面図、(c)は側面図を示している。
 図1及び図2に示すように、距離計測装置1は、計測対象の物体(計測対象物)までの距離を計測する測距装置であって、光源体10と、反射体20と、撮像体30とを備える。本実施の形態において、距離計測装置1は、さらに、レンズ40と制御部50とを備える。計測対象となる物体は、距離計測装置1の周囲に存在する被写体である。
 光源体10は、時間軸に対してパルス状の光を出射する。具体的には、光源体10は、矩形状のパルス光(矩形波)を出射する。本実施の形態において、光源体10は、発光素子そのものであり、例えば、レーザ光を出射するレーザ素子である。つまり、レーザ素子である光源体10は、パルス状のレーザ光を出射する。また、光源体10が出射する光は、近赤外線(近赤外光)であるが、これに限らない。なお、本実施の形態では、光源体10として1つのレーザ素子が用いられている。
 また、光源体10が出射する光は、所定の拡散角度で拡散する拡散光である。本実施の形態において、光源体10が出射する拡散光は、錐状の反射体20の頂点を包含するような拡散角度で反射体20に入射する。この場合、光源体10が出射する拡散光の拡散角度は、例えば3°以上、より好ましくは10°以上である。
 なお、光源体10が出射する拡散光の拡散角度の下限値は、特に3°に限るものではないが、光源体10から出射する光と撮像素子の画素とが1対1に対応するのではなく、光源体10から出射する光が撮像素子の複数の画素に対応していればよい。
 一方、光源体10が出射する拡散光の拡散角度の上限についても特に限定されるものではないが、光源体10から反射体20に向かう光の拡散光が反射体20の反射面20aからはみ出さないような拡散角度であるとよい。例えば、光源体10の拡散光の拡散角度は、90°以下がよく、より好ましくは30°以下である。
 光源体10は、反射体20に正対する位置に配置される。つまり、図2(a)に示すように、光源体10は、平面視において、反射体20と重なる位置に配置されている。これにより、光源体10から出射する拡散光が反射体20の頂点を含むように、光源体10の拡散光を反射体20に入射させることができる。本実施の形態において、光源体10は、反射体20の中央部と実質的に正対する位置に配置されている。具体的には、光源体10は、反射体20の中心軸Jの近傍で、かつ、撮像体30の側方に配置されている。光源体10は、撮像体30に隣接して配置されているとよい。
 反射体20は、光を反射する反射面20aを有する反射部材である。反射体20は、例えば、反射面20aが鏡面である表面を有する鏡体である。したがって、反射体20の反射面20aに入射する光は、反射面20aで鏡面反射する。
 反射体20の形状は、長尺状の底面と頂点とを有する錐状である。本実施の形態において、反射体20の形状は、楕円錐である。具体的には、反射体20は、X軸を短軸とし且つY軸を長軸とする楕円を底面とする錐状の直楕円錐である。つまり、反射体20は、横方向(Y軸方向)に長尺状をなす横長の直楕円錐である。この場合、図2(a)に示すように、反射体20を構成する楕円錐の底面である楕円については、短径をaとし、長径をbとすると、a<bである。また、図2(b)に示すように、反射体20を構成する楕円錐において、底面から頂点までの高さをcとすると、本実施の形態では、a<c<bとしている。なお、反射体20は、必ずしも厳密な楕円錐である必要はなく、楕円錐に近いポリゴン形状であってもよい。
 反射体20は、少なくとも錐状体の側面である傾斜面が反射面20aとなっていればよい。本実施の形態では、楕円錐の側面が反射面20aとなっている。また、反射面20aである楕円錐の側面は、図2の(b)及び(c)に示すように、内側に凹む湾曲面であるとよいが、これに限らず、外側に膨らむ湾曲面であってもよい。
 反射体20は、光源体10から出射した光を反射して放射光として放射する。具体的には、反射体20は、光源体10から出射した拡散光をXY平面内の全方位に反射して、水平360°全方位に放射光を放射する。
 上記のように、反射体20は、長尺状の錐状体であるので、反射体20は、放射光として、長軸及び短軸を有する形状の光を放射する。具体的には、反射体20は、横方向(Y軸方向)に長尺状をなす横長の楕円錐であるので、反射体20から放射される放射光は、反射体20の中心軸J(楕円の中心O)を中心とし、XY平面において縦方向(X軸方向)に長尺状をなす縦長の楕円状となる。つまり、反射体20から放射される放射光は、X軸が長軸でY軸が短軸となる楕円状の光になる。
 本実施の形態において、反射体20は、錐状体の底面及び頂点のうち頂点が光源体10側に位置するように配置されており、反射面20aである錐状体の側面が光源体10に向いている。つまり、反射体20は、楕円錐の頂点が下側で楕円錐の底面が上側となるように配置されている。これにより、光源体10から出射した光は、反射体20の反射面20aで反射して、放射光として反射体20の下側に向けて放射される。この結果、例えば地面等の光照射面には楕円状に分布する光照射領域が形成される。
 図1に示すように、反射体20は、さらに、放射した放射光が物体で反射して戻ってくる物体光を反射する。つまり、光源体10から出射して反射体20の反射面20aで反射した光は放射光として全方位に放射され、そのうち物体に反射して反射体20に戻ってくる光は、反射体20の反射面20aで再び反射する。
 反射体20で反射した物体光は、レンズ40によって集光されて撮像体30に入射する。レンズ40は、結像レンズである。具体的には、レンズ40は、反射体20で反射した物体光を撮像体30で結像する。
 撮像体30は、反射体20で反射した物体光を撮像する。撮像体30は、例えば、全方位を撮像することができる全方位カメラである。具体的には、撮像体30は、マトリクス状に配置された複数の画素からなる画素領域を有する撮像素子を含む。この場合、反射体20で反射した物体光は撮像素子で撮像されて、物体光についての撮像画像が生成される。より具体的には、撮像体30では、全方位の物体光が撮像されて全方位画像(360°画像)が生成される。
 撮像素子としては、例えば、光源体10が出射する光の波長に感度を有するイメージセンサを用いることができる。本実施の形態では、光源体10は近赤外光を出射するので、撮像素子としては、近赤外光に感度を有するイメージセンサを用いることができる。イメージセンサとしては、例えば、シリコン系のCOMSイメージセンサ又は有機イメージセンサ等を用いることができるが、これに限らない。
 また、撮像体30は、反射体20に正対する位置に配置される。つまり、図2(a)に示すように、撮像体30は、平面視において、反射体20と重なる位置に配置されている。本実施の形態において、撮像体30は、反射体20の中心と実質的に正対する位置に配置されている。具体的には、撮像体30の中心は、反射体20の中心軸Jと一致している。
 なお、光源体10の中心(光軸)も反射体20の中心軸Jと一致させるとよいが、本実施の形態では、撮像体30の中心が反射体20の中心軸Jと一致しているので、光源体10と撮像体30との物理的な制約により、光源体10の光軸を反射体20の中心軸Jと一致させることができない。このため、反射体20から放射する放射光については、反射体20の楕円錐の頂点に対して光照射角度の非対称性が幾分生じることになる。したがって、距離計測装置1は、このような非対称性を許容するような用途に用いるとよい。また、光照射角度の非対称性をできるだけなくして反射体20から放射される放射光が左右対称形状(例えば楕円形状)になる位置に光源体10の位置を可能な限り合わせ込む調整を行うとよい。
 本実施の形態において、撮像体30は、光源体10から出射するパルス状の光と同期して露光することで物体光を撮像する。これにより、制御部50によって、物体までの距離を計測することができる。
 具体的には、制御部50は、光源体10にパルス状の光を射出させる。光源体10から射出した光は、反射体20で反射して放射光として放射され、距離計測装置1から距離dの位置に存在する物体に到達した後反射し、物体光として反射体20に戻ってきて再び反射体20で反射して撮像体30の撮像素子に入射する。この撮像体30の撮像素子に入射する物体光は、光源体10から出射してから時間t後に距離計測装置1に戻ってきた光である。この物体光を検知するために、制御部50は、光源体10にパルス状の光のオン期間に同期するように撮像体30の撮像素子の露光の制御を行う。制御部50は、時間tを算出することができる。
 このように、撮像体30の撮像素子は、制御部50によって露光期間が制御されており、撮像体30の撮像素子の露光期間が、光源体10から出射するパルス状の光のオン期間と同期している。つまり、撮像体30の撮像素子では、制御部50によって露光中に制御された間に物体光が撮像可能となっている。
 そして、撮像素子で撮像された撮像画像は、制御部50に出力される。制御部50は、光源体10から出射した光に関する時間tと撮像素子で撮像された撮像画像とをもとに、距離計測装置1から物体までの距離dを算出する。なお、制御部50は、IC及びCPU等の制御回路等によって構成されている。
 次に、距離計測装置1を自動車に適用した場合の距離計測について、比較例の距離計測装置100と比較しながら図3及び図4を用いて説明する。図3は、比較例の距離計測装置100を自動車2に適用した場合の適用例を示す図である。図4は、実施の形態1に係る距離計測装置1の自動車2に適用した場合の適用例を示す図である。
 図3に示される比較例の距離計測装置100の構成は、上記実施の形態1における距離計測装置1において、直楕円錐である反射体20に代えて直円錐である反射体120を用いた構成である。
 この場合、図3に示すように、比較例の距離計測装置100が設置された自動車2では、光源体10(不図示)から出射したレーザ光が直円錐の反射体120で反射して自動車2の全方位に等方的に拡散される。これにより、自動車2の周囲に円形の放射光103が放射される。したがって、比較例の距離計測装置100を搭載した自動車2では、全方位の計測可能距離が同じになる。
 これに対して、図4に示すように、本実施の形態における距離計測装置1では、直楕円錐の反射体20が用いられている。また、距離計測装置1は、直楕円錐の反射体20の長軸の方向が横方向(Y軸方向)となるように自動車2に設置されている。
 これにより、光源体10(不図示)から出射したレーザ光は、比較例の距離計測装置100と同様に反射体20で反射して拡散するが、距離計測装置1では反射体20が直楕円錐であるので、自動車2の全方位に等方的に拡散するのではなく、非等方的に拡散される。具体的には、光源体10から出射したレーザ光は、楕円の放射光3となって自動車2の周囲に放射される。本実施の形態では、反射体20から放射される放射光3は、自動車2の進行方向(X軸方向)を長軸とし、自動車2の左右方向(Y軸方向)を短軸とする楕円形の光照射領域となって地面に照射される。
 このように、本実施の形態において、距離計測装置1は、放射光3の長軸の方向が自動車2の進行方向(X軸方向)に沿うように配置されている。具体的には、放射光3の長軸の方向を自動車2の進行方向に一致させている。これにより、自動車2の進行方向の計測可能距離を自動車2の左右方向の計測可能距離に対して相対的に長くすることができる。つまり、あまり物体を検知する必要のない自動車2の左右方向の計測可能距離を短くして、より遠くの物体を検知する必要のある自動車2の進行方向の計測可能距離を長くすることができる。これにより、自動車2は、周囲に存在する物体(例えば障害物や建物等)を検知しながら安全に走行することができる。また、距離計測装置1を用いることで、自動車2は、周囲の物体を回避しながら自立走行することも可能となる。
 ここで、比較例の距離計測装置100と本実施の形態における距離計測装置1とにおいて、光源体10から出射する拡散光の拡散角度θと反射体120及び20から放射する放射光の放射強度Iとの関係について、図5を用いて説明する。図5は、光源体10から出射する拡散光の拡散角度θと反射体120及び20から放射する放射光の放射強度Iとの関係を示す図である。なお、光源体10から出射する光は、反射体120及び20の頂点を包含するような拡散角度で反射体120及び20に入射する。
 図5に示すように、光源体10から出射する拡散光の拡散角度θと反射体120及び20から放射する放射光の放射強度Iとは、反比例の関係にある。具体的には、拡散角度θが大きいほど放射強度Iは小さくなり、拡散角度θが小さいほど放射強度Iは大きくなる。したがって、放射光の照射距離を長くするために、より遠方にまで光源体10の光を届かせるには、拡散角度θは小さい方がよい。
 このとき、比較例の距離計測装置100を自動車2に適用した場合、反射体120は直円錐であるので、自動車2の進行方向と左右方向とでは、拡散角度θと放射強度Iとの関係式はいずれも曲線100XYで表される。
 一方、本実施の形態における距離計測装置1を自動車2に適用した場合、反射体20は直楕円錐であるので、自動車2の進行方向と左右方向とでは、拡散角度θと放射強度Iとの関係式は異なる曲線で表される。
 具体的には、自動車2の進行方向における拡散角度θと放射強度Iとの関係式は曲線1Xで表され、自動車2の左右方向における拡散角度θと放射強度Iとの関係式は曲線1Yで表されている。そして、曲線1X及び曲線1Yで示されるように、自動車2の進行方向については、自動車2の左右方向と比べて、同じ拡散角度θに対する放射強度Iが大きくなっている。
 また、曲線1X、1Y、100XYで示されるように、自動車2の進行方向については、本実施の形態における距離計測装置1の場合は、比較例の距離計測装置100の場合と比べて、同じ拡散角度θに対する放射強度Iが大きくなっている。一方、自動車2の左右方向については、本実施の形態における距離計測装置1の場合は、比較例の距離計測装置100の場合と比べて、同じ拡散角度θに対する放射強度Iが小さくなっている。
 このように、直円錐の反射体120を直楕円錐の反射体20に代えることで、進行方向と左右方向とに対する放射強度(照射距離)の配分を変更することができる。具体的には、直円錐の反射体120を直楕円錐の反射体20に代えることによって、進行方向の放射強度が左右方向の放射強度よりも大きくなる配光となるように、光源体10から出射する光の配分を変えることができる。つまり、進行方向に放射強度を集中させることができる。
 これにより、例えば、自動車2の進行方向に光を多く拡散放射させることができるので、自動車2が走行中において、進行方向に存在する物体をより早く検知して物体までの距離を測定することができる。なお、走行方向における前方側と後方側とのうち前方側の照射距離をより長くしたい場合は、光源体10を撮像体30に対して進行方向の前に配置するとよい。
 以上説明したように、本実施の形態における距離計測装置1は、パルス状の光を出射する光源体10と、光源体10から出射した光を反射して放射光として放射し、かつ、放射した放射光が物体で反射して戻ってくる物体光を反射する反射体20と、反射体20で反射した物体光を撮像する撮像体30とを備えており、光源体10から出射する光は、拡散光であり、光源体10及び撮像体30は、反射体20に正対する位置に配置されている。これにより、広い角度範囲で物体までの距離を計測することができる。
 しかも、本実施の形態における距離計測装置1では、反射体20は、光源体10から出射した光を反射して、長軸及び短軸を有する形状の放射光として放射している。これにより、より遠くの物体を検知する必要のある方向を放射光の長軸に対応させるとともに、あまり物体を検知する必要のない方向を放射光の短軸に対応させるようにして、距離計測装置1を設置することで、より遠くの物体を検知する必要のある方向の計測可能距離を、あまり物体を検知する必要のない方向の計測可能距離よりも相対的に長くすることができる。
 また、このように、全方位の計測可能距離を長くするのではなく、特定の第1の方向の計測可能距離を短くし、第1の方向とは異なる特定の第2の方向の計測可能距離を長くすることによって、計測可能距離を長くするために部品点数が増加してしまうことを抑制できる。これにより、距離計測装置1が無駄に大型化することを回避できる。
 このように、本実施の形態における距離計測装置1によれば、計測可能角度の広角化と装置の小型化とを実現しつつ、より遠くの物体を検知する必要のある方向の計測可能距離を、あまり物体を検知する必要のない方向の計測可能距離よりも容易に長くすることができる。
 また、本実施の形態において、反射体20の形状は、長尺状の底面と頂点とを有する錐状であり、反射体20は、底面及び頂点のうち頂点が光源体10側に位置するように配置されている。
 これにより、反射体20によって光源体10の光を全方位に容易に放射させることができるので、計測可能角度を容易に広角化することができる。
 また、本実施の形態において、反射体20の形状は、楕円錐である。
 これにより、光源体10から出射した光を反射体20で反射して楕円形の放射光として全方位に放射させることができるので、距離を計測することができる範囲を楕円形にすることができる。
 また、本実施の形態において、反射体20を構成する楕円錐の側面(反射面20a)は、内側に凹む湾曲面である。
 これにより、反射体20から放射される放射光を地面に向けて均一な強度で照射させることができる。
 また、本実施の形態において、撮像体30は、反射体20の中心と実質的に正対する位置に配置されている。
 これにより、物体までの距離をより高精度に計測することができる。
 また、本実施の形態において、光源体10は、反射体20の中央部と実質的に正対する位置に配置されている。
 これにより、距離計測装置1をさらに小型化することができる。また、光源体10を反射体20の中央部と実質的に正対する位置に配置することで、光源体10から出射して反射体20で反射して放射される放射光を対称な形状にすることができ、所望の距離計測範囲を実現することができる。例えば、反射体20が直楕円錐である場合、上下対称及び左右対称な楕円形の放射光にすることができるので、距離を計測することができる範囲を楕円形にすることができる。
 また、本実施の形態において、光源体10が出射する光は、拡散角度が3°以上のレーザ光であるとよい。
 これにより、光源体10が出射する光を反射体20で反射させることによって、所望の広い範囲に放射光を放射させることができる。
 (実施の形態2)
 次に、実施の形態2に係る距離計測装置1Aについて、図6を用いて説明する。図6は、実施の形態2に係る距離計測装置1Aの概略構成を示す図である。図6において、(a)は平面図、(b)は正面図、(c)は側面図を示している。なお、制御部50は、図示していない。
 図6の(a)~(c)に示すように、本実施の形態に係る距離計測装置1Aは、上記実施の形態1に係る距離計測装置1において、光源体10が複数配置された構成となっている。具体的には、上記実施の形態1に係る距離計測装置1では、光源体10(発光素子)は1つのみであったが、本実施の形態における距離計測装置1Aにおいて、光源体10は4つである。各光源体10は、例えば、実施の形態1と同様に、パルス状の光を出射するレーザ素子である。また、各光源体10は、所定の拡散角度の拡散光を出射する。
 本実施の形態において、複数の光源体10は、直楕円錐の反射体20の頂点を中心に均等に配置されている。具体的には、4つの光源体10は、反射体20の頂点を中心にした周方向に90°間隔で配置されている。
 また、本実施の形態では、4つの光源体10の各々から出射する光の拡散角度を、上記実施の形態1における光源体10から出射する光の拡散角度よりも狭くしているが、4つの光源体10の光によって反射体20から放射させる放射光の照射範囲は、上記実施の形態1と同様である。つまり、1つの光源体10の光の拡散角度が狭くても、複数の光源体10を用いることで、反射体20に入射される光を補完できるので、広い計測可能角度を維持することができる。
 以上、本実施の形態における距離計測装置1Aは、上記実施の形態1と同様の効果を奏することができる。具体的には、計測可能角度の広角化と装置の小型化とを実現しつつ、より遠くの物体を検知する必要のある方向の計測可能距離を、あまり物体を検知する必要のない方向の計測可能距離よりも容易に長くすることができる。
 また、本実施の形態において、光源体10は、複数配置されている。
 これにより、放射光の照射範囲を広くするために1つの光源体10に光量を集中させることを回避できる。これにより、光源体10の発熱を分散することができるので、熱による影響の少ない信頼性の高い距離計測装置1Aを実現できる。
 (実施の形態3)
 次に、実施の形態3に係る距離計測装置1Bについて、図7A及び図7Bを用いて説明する。図7Aは、実施の形態3に係る距離計測装置1Bの概略構成を示す図である。図7Bは、同距離計測装置1Bにおいて、光源体10Bから出射して反射体20に入射する光の反射面20a上の軌跡を示す図である。なお、図7A及び図7Bにおいて、実線で示す矢印は、光源体10Bから出射する光の軌跡を示している。
 本実施の形態に係る距離計測装置1Bと上記実施の形態1に係る距離計測装置1とは、光源体の構成が異なる。具体的には、図7Aに示すように、本実施の形態にける距離計測装置1Bでは、光源体10Bは、発光素子10aと、アクチュエータ10bとによって構成されている。
 発光素子10aは、パルス状の光を出射する。具体的には、発光素子10aは、矩形状のパルス光を出射する。本実施の形態において、発光素子10aは、上記実施の形態1と同様のものを用いることができ、例えば、所定の拡散角度の拡散光としてレーザ光を出射するレーザ素子である。
 アクチュエータ10bは、光源体10Bから出射する光が反射体20の中心を回転中心として回転するように発光素子10aを動的に変位させる。具体的には、図7Bに示すように、アクチュエータ10bによって、直楕円錐の反射体20の中心軸Jを中心に発光素子10aを回転させる。これにより、反射体20の反射面20aには、発光素子10aの回転によってスキャンされた拡散光が入射し、反射体20からは、発光素子10aの回転に連動した放射光が放射される。
 このように、発光素子10aをアクチュエータ10bで制御することで、光源体10B(発光素子10a)から出射する光の拡散角度が、上記実施の形態2と同様に、上記実施の形態1における光源体10から出射する光の拡散角度よりも狭くなっていたとしても、光源体10Bの光によって反射体20から放射させる放射光の照射範囲を、上記実施の形態1と同様にすることができる。つまり、出射する光の拡散角度が狭い1つの発光素子10aを用いる場合であっても、アクチュエータ10bを用いて発光素子10aを回転させることで、広い計測可能角度となるような放射光の照射範囲を実現することができる。
 また、本実施の形態では、上記のように反射体20からは発光素子10aの回転に連動した放射光が周囲に照射されるので、撮像体30には発光素子10aの回転に連動した物体光が入射する。この場合、撮像体30(撮像素子)の露光のタイミングは発光素子10aから出射するパルス状の光と同期しているので、制御部50は、撮像素子のどの撮像領域にどのタイミングで物体光が入射されるかの情報を取得している。
 そこで、本実施の形態では、全ての撮像領域を露光して画像を読み出すのではなく、物体光が戻ってくる撮像領域のみを露光して画像を読み出している。以下、この画像の読み出し方法について、図8を用いて説明する。図8は、実施の形態3に係る距離計測装置1Bにおける撮像体30の撮像素子の撮像領域を模式的に示す図である。なお、図8において、ハッチング部分は、物体光が入射した領域を示しており、矢印は、発光素子10aの回転に連動して入射する物体光の回転方向を示している。
 図8に示すように、撮像体30の撮像素子は、画素領域が複数の読み出し領域に分割されている。複数の読み出し領域は予め設定されており、制御部50は、複数の読み出し領域の各々に対応するアドレス情報を予め把握している。例えば、図8では、画素領域を8×8の64個の読み出し領域に分割する場合を示している。なお、行方向のアドレスはA~Hで示され、列方向のアドレスはa~hで示されており、各読み出し領域は、行方向のアドレスと列方向のアドレスとで表すことができる。
 制御部50は、露光により撮像体30の撮像素子で撮像した画像を読み出す読み出し回路を備えている。例えば、制御部50は、複数の読み出し領域ごとに画像を読み出すためのアドレスデコーダを有している。
 そして、本実施の形態では、回転させた発光素子10aの光を反射体20で反射させているので、反射体20に戻ってくる物体光は、撮像素子の画素領域に部分的に入射されることになる。
 したがって、読み出し回路は、画素領域の全ての画素を同時に露光して撮像された画像を読み出すのではなく、物体光が戻ってくる関心領域(ROI;Region of Interest)だけを露光して撮像された部分画像を読み出す。具体的には、読み出し回路は、複数の読み出し領域のうち物体光が入射する読み出し領域のみを露光して撮像された部分画像を、光源体10Bから出射する光の回転に同期して順次読み出している。
 例えば、図8に示されるハッチング部分に物体光が入射している場合、読み出し回路は、64個の読み出し領域のうち、行D×列e、行D×列f、行D×列g、行D×列hで示される4つの読み出し領域のみを露光して撮像された4つの部分画像のみを読み出す。また、この読み出し回路による制御は、光源体10Bから出射する光の回転に同期して順次行う。
 以上、本実施の形態における距離計測装置1Bは、上記実施の形態1と同様の効果を奏することができる。具体的には、計測可能角度の広角化と装置の小型化とを実現しつつ、より遠くの物体を検知する必要のある方向の計測可能距離を、あまり物体を検知する必要のない方向の計測可能距離よりも容易に長くすることができる。
 また、本実施の形態において、光源体10Bは、パルス状の光を出射する発光素子10aと、発光素子10aを動的に変位させるアクチュエータ10bとを有する。
 これにより、上記実施の形態2と同等の光量の放射光による計測範囲を実現しつつ、実施の形態2よりも発光素子10aの数を少なくすることができる。
 また、本実施の形態において、撮像体30の撮像素子は、画素領域が複数の読み出し領域に分割されている。そして、距離計測装置1Bは、さらに、露光により撮像体30で撮像した画像を読み出す読み出し回路を備えており、読み出し回路は、撮像素子の複数の読み出し領域のうち物体光が入射する読み出し領域のみを露光して撮像された部分画像を、光源体10Bから出射する光の回転に同期して順次読み出している。
 これにより、画素領域で撮像された画像を読み出す際、画素領域の全領域を読み出すよりもデータ量を縮小することができる。例えば、図8では、撮像された画像を読み出すときのデータ量を4/64に縮小することができる。したがって、効率的かつ高速に物体光の画像を撮像することができるので、距離計測に要する時間を短縮できる。
 (実施の形態4)
 次に、実施の形態4に係る距離計測装置1Cについて、図9A及び図9Bを用いて説明する。図9Aは、実施の形態4に係る距離計測装置1Cの概略構成を示す図である。図9Bは、同距離計測装置1Cにおいて、光源体10Cから出射して反射体20に入射する光の反射面20a上の軌跡を示す図である。なお、図9A及び図9Bにおいて、実線で示す矢印は、光源体10Cから出射する光の軌跡を示している。
 本実施の形態に係る距離計測装置1Cと上記実施の形態1に係る距離計測装置1とは、光源体の構成が異なる。具体的には、図9Aに示すように、本実施の形態にける距離計測装置1Cにおいて、光源体10Cは、発光素子10aと、ミラー10cとによって構成されている。
 発光素子10aは、上記実施の形態3と同じであるが、本実施の形態では、発光素子10aは固定されており、発光素子10aの位置は変化しない。
 ミラー10cは、光源体10から出射する光が反射体20の中心を回転中心として回転するように発光素子10aから出射する光を反射させる。具体的には、ミラー10cは、ガルバノミラーであり、発光素子10aから反射体20に入射する光の角度を制御する。具体的には、図9Bに示すように、ミラー10cによって発光素子10aから出射する光の向きを制御することで、光源体10Cから出射する光を、直楕円錐の反射体20の中心軸Jを中心に回転させる。これにより、反射体20の反射面20aには、光源体10Cから出射する光の回転によってスキャンされた光が入射し、反射体20からは、光源体10Cの光の回転に連動した放射光が放射される。
 このように、発光素子10aの光をミラー10cで制御することで、光源体10Cから出射する光の拡散角度が、上記実施の形態3と同様に、上記実施の形態1における光源体10から出射する光の拡散角度よりも狭くなっていたとしても、光源体10Cの光によって反射体20から放射させる放射光の照射範囲を、上記実施の形態1と同様にすることができる。つまり、出射する光の拡散角度が狭い1つの発光素子10aを用いる場合であっても、ミラー10cを用いて発光素子10aから出射する光の向きを制御することで、広い計測可能角度となるような放射光の照射範囲を実現することができる。
 また、本実施の形態では、反射体20からは光源体10Cの光の回転に連動した放射光が周囲に照射されるので、撮像体30には光源体10Cの光の回転に連動した物体光が入射する。したがって、本実施の形態でも、実施の形態3と同様の読み出し回路を用いることで、全ての撮像領域を露光して画像を読み出すのではなく、物体光が戻ってくる撮像領域のみを露光して画像を読み出すとよい。
 以上、本実施の形態における距離計測装置1Cは、上記実施の形態1と同様の効果を奏することができる。具体的には、計測可能角度の広角化と装置の小型化とを実現しつつ、より遠くの物体を検知する必要のある方向の計測可能距離を、あまり物体を検知する必要のない方向の計測可能距離よりも容易に長くすることができる。
 また、本実施の形態において、光源体10Cは、発光素子10aと、発光素子10aから出射する光の向きを変更するミラー10cとを有する。
 これにより、上記実施の形態3と同様の効果を奏することができる。つまり、実施の形態2と同等の光量の放射光による計測範囲を実現しつつ、実施の形態2よりも発光素子10aの数を少なくすることができる。しかも、本実施の形態では、発光素子10aが固定されているので、安定した電気的な駆動を実現することができるので、信頼性を向上させることができる。
 また、本実施の形態における距離計測装置1Cは、上記実施の形態3と同様の読み出し回路を備えており、読み出し回路は、撮像素子の複数の読み出し領域のうち物体光が入射する読み出し領域のみを露光して撮像された部分画像を、光源体10Cから出射する光の回転に同期して順次読み出している。
 これにより、上記実施の形態3と同様に、効率的かつ高速に物体光の画像を撮像することができるので、距離計測に要する時間を短縮できる。
 (実施の形態5)
 次に、実施の形態5に係る距離計測装置1Dについて、図10及び図11を用いて説明する。図10及び図11は、実施の形態5に係る距離計測装置1Dの概略構成を示す図である。なお、図10において、実線で示す矢印は、光源体10から出射する光の軌跡を示しており、破線で示す矢印は、光源体10から出射した光が物体で反射して戻ってくる光の軌跡を示している。また、図11において、(a)は平面図、(b)は正面図、(c)は側面図を示している。
 本実施の形態に係る距離計測装置1Dと上記実施の形態1に係る距離計測装置1とが異なる点は反射体の形状である。具体的には、上記実施の形態1における反射体20の形状は、底面が楕円である直楕円錐であったが、図10及び図11に示すように、本実施の形態における反射体20Dの形状は、底面が長尺状の多角形である多面錐である。
 具体的には、反射体20Dは、X軸を短軸とし且つY軸を長軸とする長尺状の六角形を底面とする横長の六角錐である。この場合、図11(a)に示すように、反射体20Dを構成する六角錐の底面である六角形については、短径をaとし、長径をbとすると、a<bである。また、反射体20Dを構成する六角錐において、底面から頂点までの高さをcとすると、本実施の形態では、a<c<bとしている。
 また、本実施の形態でも、反射体20Dは、少なくとも六角錐の側面である傾斜面が反射面20aとなっていればよい。また、反射面20aである六角錐の側面は、図11の(b)及び(c)に示すように、内側に凹む湾曲面であるとよいが、これに限らず、外側に膨らむ湾曲面であってもよい。また、反射面20aである六角錐の側面は、湾曲面に限らない。
 以上、本実施の形態における距離計測装置1Dは、上記実施の形態1と同様の効果を奏することができる。具体的には、計測可能角度の広角化と装置の小型化とを実現しつつ、より遠くの物体を検知する必要のある方向の計測可能距離を、あまり物体を検知する必要のない方向の計測可能距離よりも容易に長くすることができる。
 また、本実施の形態において、反射体20Dの形状は、上記実施の形態1における反射体20と同様に、長尺状の底面と頂点とを有する錐状であるが、本実施の形態における反射体20Dの形状は、底面が長尺状の多角形である多面錐である。
 これにより、光源体10から出射した光を反射体20Dで反射して略多角形の放射光として全方位に放射させることができるので、距離を計測することができる範囲を略多角形にすることができる。
 しかも、反射体20の形状を多面錐にすることで、撮像する物体光が入射する画素領域を明確に多面錐の各面と対応付けて画像処理を行うことができるので、演算アルゴリズムを簡易化することができる。
 また、本実施の形態において、反射体20Dを構成する多面錐の側面(反射面20a)は、内側に凹む湾曲面である。
 これにより、反射体20Dから放射される放射光を地面に向けて均一な強度で照射させることができる。
 なお、本実施の形態は、実施の形態1に適用する場合について説明したが、本実施の形態は、実施の形態2~4にも適用することができる。
 (変形例)
 以上、本開示に係る距離計測装置について、実施の形態に基づいて説明したが、本開示は、上記実施の形態に限定されない。
 例えば、上記実施の形態1において、反射体20の反射面20a(側面)は湾曲面としたが、これに限らない。この場合、図12に示される距離計測装置1Eのように、反射体20Eは、中心軸Jを通る平面での断面形状が二等辺三角形となるような楕円錐であってもよい。なお、実施の形態2~5においても、反射体の反射面20a(側面)は湾曲面に限らず、反射体は、中心軸Jを通る平面での断面形状が二等辺三角形となる錐状体であってもよい。
 また、上記各実施の形態において、反射体は、錐状体の全体を用いたが、これに限らず、錐状体の一部を用いたものであってもよい。例えば、図13に示される距離計測装置1Fのように、反射体20Fは、短軸を通る平面で2等分した楕円錐の左半分を用いた構成であってもよい。この場合、反射体20Fから放射される放射光の光照射領域は、図4の左半分のみとなる。なお、図13において、レンズ40も半分でもよい。このように構成される距離計測装置1Fは、例えば、自動車の左サイドに設置するとよい。さらに、楕円錐の右半分を用いた反射体を備える距離計測装置を自動車の右サイドにも設置することで、自動車2の全方位に放射光を放射することができる。
 また、上記各実施の形態において、反射体は、1つの錐状体を用いたが、これに限らず、図14に示される距離計測装置1Gのように、直楕円錐の第1反射部21と直楕円錐の第2反射部22との2つの錐状体によって反射体20Gを構成してもよい。第1反射部21と第2反射部22とは底面同士が対面するように配置されている。つまり、第1反射部21と第2反射部22とは頂点同士が背向するように配置されている。この場合、光源体10は第1反射部21と正対する位置に配置され、撮像体30は第2反射部22と正対する位置に配置されている。このように構成される距離計測装置1Gでは、光源体10から出射した光は、反射体20Gの第1反射部21の反射面20aで反射して放射光として全方位に放射される。その放射された放射光のうち物体に反射して反射体20Gに戻ってくる光は、反射体20Gの第2反射部22の反射面20aで反射して、レンズ40で結像されて撮像体30に入射する。これにより、物体までの距離を測定することができる。
 また、上記各実施の形態では、光源体を構成する発光素子として、レーザ素子を用いたが、これに限らない。光源体を構成する発光素子としては、LED(Light Emitting Diode)等のその他の固体発光素子を用いてもよい。
 また、上記各実施の形態では、距離計測装置を自動車に設置する場合を例示したが、これに限らない。例えば、距離計測装置は、自動車以外の移動体に設置してもよいし、移動しない固定体に設置してもよい。
 なお、上記各実施の形態における距離計測装置は、距離計測システム(測距システム)として構成してもよい。
 その他、上記各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で上記各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 本開示の技術は、距離計測装置等に利用することができ、例えば、車載用途の周辺監視センサシステム又はロボット等に適用することができる。
 1、1A、1B、1C、1D、1E、1F、1G 距離計測装置
 2 自動車
 3 放射光
 10、10B、10C 光源体
 10a 発光素子
 10b アクチュエータ
 10c ミラー
 20、20D、20E、20F、20G 反射体
 20a 反射面
 21 第1反射部
 22 第2反射部
 30 撮像体
 40 レンズ
 50 制御部

Claims (15)

  1.  物体までの距離を計測する距離計測装置であって、
     パルス状の光を出射する光源体と、
     前記光源体から出射した光を反射して放射光として放射し、かつ、放射した前記放射光が前記物体で反射して戻ってくる物体光を反射する反射体と、
     前記反射体で反射した前記物体光を撮像する撮像体とを備え、
     前記光源体から出射する光は、拡散光であり、
     前記光源体及び前記撮像体は、前記反射体に正対する位置に配置され、
     前記反射体は、前記放射光として、長軸及び短軸を有する形状の光を放射し、
     前記撮像体は、前記パルス状の光と同期して露光することで前記物体光を撮像する、
     距離計測装置。
  2.  前記反射体の形状は、長尺状の底面と頂点とを有する錐状であり、
     前記反射体は、前記底面及び前記頂点のうち前記頂点が前記光源体側に位置するように配置されている、
     請求項1に記載の距離計測装置。
  3.  前記反射体の形状は、楕円錐である、
     請求項2に記載の距離計測装置。
  4.  前記楕円錐の側面は、内側に凹む湾曲面である、
     請求項3に記載の距離計測装置。
  5.  前記反射体の形状は、前記底面が長尺状の多角形である多面錐である、
     請求項2に記載の距離計測装置。
  6.  前記多面錐の側面は、内側に凹む湾曲面である、
     請求項5に記載の距離計測装置。
  7.  前記撮像体は、前記反射体の中心と実質的に正対する位置に配置されている、
     請求項1~6のいずれか1項に記載の距離計測装置。
  8.  前記光源体は、前記反射体の中央部と実質的に正対する位置に配置されている、
     請求項1~7のいずれか1項に記載の距離計測装置。
  9.  前記光源体は、複数配置されている、
     請求項1~8のいずれか1項に記載の距離計測装置。
  10.  前記光源体は、
     前記パルス状の光を出射する発光素子と、
     前記光源体から出射する光が前記反射体の中心を回転中心として回転するように前記発光素子を動的に変位させるアクチュエータとを有する、
     請求項1~8のいずれか1項に記載の距離計測装置。
  11.  前記光源体は、
     前記パルス状の光を出射する発光素子と、
     前記光源体から出射する光が前記反射体の中心を回転中心として回転するように前記発光素子から出射する光を反射させるミラーとを有する、
     請求項1~8のいずれか1項に記載の距離計測装置。
  12.  さらに、露光により前記撮像体で撮像した画像を読み出す読み出し回路を備え、
     前記読み出し回路は、前記複数の読み出し領域のうち前記物体光が入射する読み出し領域のみを露光して撮像された部分画像を、前記光源体から出射する光の回転に同期して順次読み出す、
     請求項10又は11に記載の距離計測装置。
  13.  前記光源体が出射する光は、拡散角度が3°以上のレーザ光である、
     請求項1~12のいずれか1項に記載の距離計測装置。
  14.  前記距離計測装置を移動体に設置した場合、前記放射光の長軸の方向は、前記移動体の進行方向である、
     請求項1~13のいずれか1項に記載の距離計測装置。
  15.  請求項1~14のいずれか1項に記載の距離計測装置が設置された移動体であって、
     前記距離計測装置は、前記長軸の方向が前記移動体の進行方向に沿うように配置される、
     移動体。
PCT/JP2017/015996 2017-04-21 2017-04-21 距離計測装置及び移動体 WO2018193609A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17906394.6A EP3614169A4 (en) 2017-04-21 2017-04-21 DISTANCE MEASURING DEVICE AND MOVABLE BODY
PCT/JP2017/015996 WO2018193609A1 (ja) 2017-04-21 2017-04-21 距離計測装置及び移動体
CN201780089096.5A CN110462423A (zh) 2017-04-21 2017-04-21 距离计测装置以及移动体
US16/603,142 US11467261B2 (en) 2017-04-21 2017-04-21 Distance measuring device and moving object
JP2019513188A JP6748984B2 (ja) 2017-04-21 2017-04-21 距離計測装置及び移動体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015996 WO2018193609A1 (ja) 2017-04-21 2017-04-21 距離計測装置及び移動体

Publications (1)

Publication Number Publication Date
WO2018193609A1 true WO2018193609A1 (ja) 2018-10-25

Family

ID=63856554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015996 WO2018193609A1 (ja) 2017-04-21 2017-04-21 距離計測装置及び移動体

Country Status (5)

Country Link
US (1) US11467261B2 (ja)
EP (1) EP3614169A4 (ja)
JP (1) JP6748984B2 (ja)
CN (1) CN110462423A (ja)
WO (1) WO2018193609A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537977A (zh) * 2019-01-21 2020-08-14 燕成祥 一种通过锥形反射镜制作的二维光学雷达的感测装置
JPWO2020194567A1 (ja) * 2019-03-27 2020-10-01
JP2020166061A (ja) * 2019-03-28 2020-10-08 株式会社豊田中央研究所 光走査装置
WO2020221619A1 (de) * 2019-04-29 2020-11-05 Valeo Schalter Und Sensoren Gmbh Optische detektionsvorrichtung zur erfassung von objekten und empfangseinrichtung für eine optische detektionsvorrichtung
WO2021079559A1 (ja) * 2019-10-24 2021-04-29 立山科学工業株式会社 距離画像の作成装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11644571B2 (en) 2019-07-01 2023-05-09 Samsung Electronics Co., Ltd. Electronic apparatus and control method thereof
KR102448571B1 (ko) * 2020-10-16 2022-09-28 코닉오토메이션 주식회사 3차원 스캔가능한 라이다 스캐닝장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368392A (en) * 1993-09-17 1994-11-29 Omega Engineering, Inc. Method and apparatus for measuring temperature using infrared techniques
US20010015751A1 (en) * 1998-06-16 2001-08-23 Genex Technologies, Inc. Method and apparatus for omnidirectional imaging
JP2001337166A (ja) * 2000-05-26 2001-12-07 Minolta Co Ltd 3次元入力方法および3次元入力装置
US7969558B2 (en) 2006-07-13 2011-06-28 Velodyne Acoustics Inc. High definition lidar system
JP2013072878A (ja) * 2011-09-28 2013-04-22 Samsung Electronics Co Ltd 障害物感知装置及びそれを備えたロボット掃除機
JP2014160777A (ja) * 2013-02-20 2014-09-04 Iwasaki Electric Co Ltd 光源ユニット及び照射装置
JP2016219258A (ja) 2015-05-21 2016-12-22 シャープ株式会社 照明装置及び移動体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105625A (ja) * 1995-10-13 1997-04-22 Topcon Corp 距離測定装置
JPH11218409A (ja) * 1998-02-03 1999-08-10 Minolta Co Ltd 3次元情報計測方法及び装置
JP2002073170A (ja) * 2000-08-25 2002-03-12 Matsushita Electric Ind Co Ltd 移動作業ロボット
JP2012255738A (ja) * 2011-06-10 2012-12-27 Fujitsu Ltd 光学式測定装置
US9239389B2 (en) 2011-09-28 2016-01-19 Samsung Electronics Co., Ltd. Obstacle sensor and robot cleaner having the same
US20130120986A1 (en) * 2011-11-12 2013-05-16 Raydex Technology, Inc. High efficiency directional light source with concentrated light output
JP5740321B2 (ja) * 2012-02-02 2015-06-24 株式会社東芝 距離計測装置、距離計測方法及び制御プログラム
JP6123163B2 (ja) * 2012-03-21 2017-05-10 株式会社豊田中央研究所 距離測定装置
CN108919294B (zh) * 2013-11-20 2022-06-14 新唐科技日本株式会社 测距摄像系统以及固体摄像元件
CN105807284B (zh) * 2016-04-29 2018-05-25 北醒(北京)光子科技有限公司 光学扫描测距装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368392A (en) * 1993-09-17 1994-11-29 Omega Engineering, Inc. Method and apparatus for measuring temperature using infrared techniques
US5368392B1 (en) * 1993-09-17 1998-11-03 Omega Engineering Method and apparatus for measuring temperature using infrared techniques
US20010015751A1 (en) * 1998-06-16 2001-08-23 Genex Technologies, Inc. Method and apparatus for omnidirectional imaging
JP2001337166A (ja) * 2000-05-26 2001-12-07 Minolta Co Ltd 3次元入力方法および3次元入力装置
US7969558B2 (en) 2006-07-13 2011-06-28 Velodyne Acoustics Inc. High definition lidar system
JP2013072878A (ja) * 2011-09-28 2013-04-22 Samsung Electronics Co Ltd 障害物感知装置及びそれを備えたロボット掃除機
JP2014160777A (ja) * 2013-02-20 2014-09-04 Iwasaki Electric Co Ltd 光源ユニット及び照射装置
JP2016219258A (ja) 2015-05-21 2016-12-22 シャープ株式会社 照明装置及び移動体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3614169A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537977A (zh) * 2019-01-21 2020-08-14 燕成祥 一种通过锥形反射镜制作的二维光学雷达的感测装置
JPWO2020194567A1 (ja) * 2019-03-27 2020-10-01
JP2020166061A (ja) * 2019-03-28 2020-10-08 株式会社豊田中央研究所 光走査装置
JP7088114B2 (ja) 2019-03-28 2022-06-21 株式会社豊田中央研究所 光走査装置
WO2020221619A1 (de) * 2019-04-29 2020-11-05 Valeo Schalter Und Sensoren Gmbh Optische detektionsvorrichtung zur erfassung von objekten und empfangseinrichtung für eine optische detektionsvorrichtung
WO2021079559A1 (ja) * 2019-10-24 2021-04-29 立山科学工業株式会社 距離画像の作成装置

Also Published As

Publication number Publication date
US20200033451A1 (en) 2020-01-30
US11467261B2 (en) 2022-10-11
CN110462423A (zh) 2019-11-15
JP6748984B2 (ja) 2020-09-02
EP3614169A1 (en) 2020-02-26
JPWO2018193609A1 (ja) 2020-02-27
EP3614169A4 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
WO2018193609A1 (ja) 距離計測装置及び移動体
KR101946870B1 (ko) 패턴의 회전 현상을 개선한 라이다 발광 시스템
US11585902B2 (en) Optical designs using cylindrical lenses for improved resolution in lidar systems
US10782392B2 (en) Scanning optical system and light projecting and receiving apparatus
KR102020037B1 (ko) 하이브리드 라이다 스캐너
KR101687994B1 (ko) 라이다 발광 시스템
JP5187319B2 (ja) 対象物測定装置、及び当該装置で用いられる方法
US20180084241A1 (en) Optical apparatus with beam steering and position feedback
KR102514726B1 (ko) 광 방사원의 적어도 하나의 조명 또는 방사 특성 변수의 조명의 방향 의존성 측정을 위한 방법 및 고니오라디오미터
US10816663B2 (en) Distance measuring device and distance measuring method
JP2006276012A (ja) 物体の六つの自由度を求めるための測定システム
US20190120966A1 (en) Depth map measuring device and depth map measuring method
US11920920B2 (en) Projector for diffuse illumination and structured light
US10048492B2 (en) Scanning optical system and radar
US20150226543A1 (en) Optical probe, attachable cover, and shape measuring apparatus
TW202131015A (zh) 距離畫像的作成裝置
JPWO2019244701A1 (ja) 光放射装置、物体情報検知装置、光路調整方法、及び、物体情報検知方法
KR102249842B1 (ko) 3차원 스캐너 장치
JP2021018081A (ja) 撮像装置、計測装置、及び、計測方法
JP2008032402A (ja) リフレクタ評価装置及びリフレクタ評価方法
US20150226544A1 (en) Optical probe, attachable cover, and shape measuring apparatus
JP2014048192A (ja) 物体検出装置および情報取得装置
KR102456998B1 (ko) 폴리곤미러 기반 미세 격자 패턴 생성 장치
US7180669B2 (en) Method and system for generating substantially uniform speckle patterns
WO2021079559A1 (ja) 距離画像の作成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513188

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017906394

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017906394

Country of ref document: EP

Effective date: 20191121