WO2019163382A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2019163382A1
WO2019163382A1 PCT/JP2019/002179 JP2019002179W WO2019163382A1 WO 2019163382 A1 WO2019163382 A1 WO 2019163382A1 JP 2019002179 W JP2019002179 W JP 2019002179W WO 2019163382 A1 WO2019163382 A1 WO 2019163382A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
noise
axis
control device
motor control
Prior art date
Application number
PCT/JP2019/002179
Other languages
English (en)
French (fr)
Inventor
小室 敦
恒平 明円
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP19758189.5A priority Critical patent/EP3719990B1/en
Priority to US16/971,516 priority patent/US11290044B2/en
Priority to CN201980015280.4A priority patent/CN111771330B/zh
Priority to JP2020501599A priority patent/JP7047056B2/ja
Publication of WO2019163382A1 publication Critical patent/WO2019163382A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control

Definitions

  • the present invention relates to a motor control device.
  • Hybrid vehicles and electric vehicles using a motor as a power source are known, and in a motor control system mounted on such an electric vehicle, motor drive control using an inverter is usually performed.
  • the current command value required to drive the motor is calculated according to the torque command value from the host, and feedback control is performed so that the current that actually flows through the motor matches the current command value. .
  • the torque command value is calculated by the host controller based on the accelerator or brake position (depression amount) detected by a position sensor or the like.
  • the current flowing through the motor is detected by a current sensor provided in a power line connecting the inverter and the motor.
  • Patent Document 1 describes that vector control is used to control a motor, and that a sum of a motor voltage generation value by feedforward control and a motor voltage generation value by feedback control is controlled as a motor voltage generation value. Has been.
  • Patent Document 1 does not mention any behavior when spike noise is applied to the current sensor.
  • current feedback control is performed using a detection current to which the noise is applied, which causes a sudden change in motor drive current, and hence a sudden change in torque. There is.
  • An object of the present invention is to provide a motor control device capable of suppressing a sudden torque change due to spike noise.
  • the motor control device of the present invention replaces the latest detected current value with the current command value or the detected current value before the current suddenly changes.
  • the motor control is continued using.
  • the motor control system replaces the detected current when spike noise is applied to the current sensor in order to prevent a sudden torque change.
  • spike noise means a generic term for factors that cause the current value recognized by the microcomputer executing the motor control software to behave differently from the behavior of the physical current value.
  • a disturbance may be applied to the sensing unit (current sensor), noise may be generated in the AD conversion unit when the sensor value is taken into the microcomputer, or a contact failure of the sensor itself may be considered.
  • a three-phase alternating current sensor it is an alternating waveform of a sine wave, but indicates a state deviating from the waveform.
  • FIG. 1 is a diagram illustrating a motor control system 1 including a control device 300 (motor control device) according to an embodiment of the present invention.
  • the motor control system 1 includes a motor 400 (rotary electric machine as a three-phase AC motor), an HV battery 200 (battery), and a control device 300 that controls them.
  • a motor 400 rotary electric machine as a three-phase AC motor
  • HV battery 200 battery
  • a control device 300 that controls them.
  • the control device 300 is based on the signal from the microcomputer 310, the gate drive circuit 360 that converts the signal output from the microcomputer 310 into a signal that drives a power module element such as IGBT, and the signal from the gate drive circuit 360. Circuit) and an inverter circuit 370 having a power module for switching to a three-phase AC waveform, and a current sensor 380 for detecting a current flowing in the U phase, the V phase, and the W phase.
  • the rotational position sensor 410 attached to the motor 400 has a function of detecting the rotational position of the rotor as a rotational angle.
  • a resolver is used as the rotational position sensor, and this signal is taken into the microcomputer, and the rotational speed ⁇ of the motor 400 is determined from the magnetic pole position ⁇ d and the time derivative of the rotational angle by the position / speed calculator 325 (position / speed calculator). Calculated.
  • the magnetic pole position ⁇ d is used for conversion by the two-phase three-phase conversion unit 322 and the three-phase two-phase conversion unit 324, and the rotation speed ⁇ is used for calculation of the current command value.
  • the HV battery 200 is a power source that supplies driving power to the motor 400.
  • a lithium ion battery or a nickel hydride battery having a terminal voltage of 300V is used.
  • the HV battery 200 is connected to the motor 400 via the inverter circuit 370.
  • the HV battery 200 supplies power to the motor 400.
  • the motor 400 performs a regenerative operation, the regenerative power is received. Charge the battery.
  • the microcomputer 310 includes a current command calculation unit 320, a current control unit 321, a two-phase three-phase conversion unit 322, a gate signal calculation unit 323, a three-phase two-phase conversion unit 324, a position speed calculation unit 325, a noise detection unit 331, and a dq axis.
  • a detection current replacement unit 332 is provided, which is a vector control method in which the current is controlled by converting the coordinates of the three-phase AC system into the two-phase coordinates.
  • the microcomputer 310 includes a processor such as a CPU (Central Processing Unit), a memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), an input / output circuit, and the like.
  • the current command calculation unit 320 Based on the torque command value T * to be output by the motor 400 input from the host controller, the current command calculation unit 320, for example, the relationship between the motor torque and the current command value that has been derived in advance by motor adaptation.
  • the necessary d-axis current command value Id * and q-axis current command value Iq * are calculated from the current map in which is embedded in consideration of the rotational speed and the HV battery voltage.
  • the current command calculation unit 320 converts the torque command into a dq axis current command.
  • the protection of components is also taken into consideration from the motor temperature acquired from the motor temperature sensor 420, the inverter temperature (not shown), and the like.
  • the current control unit 321 is a three-phase two-phase based on the dq-axis current command value (Id *, Iq *) calculated from the current command calculation unit 320 and the current value (Iu, Iv, Iw) detected by the current sensor 380. From the dq-axis detection current value (real_Id, real_Iq), which is converted into the dq-axis current by the conversion unit 324 and further processed by the dq-axis detection current replacement unit 232, the d-axis voltage command Vd * and the q-axis Calculate the voltage command Vq *.
  • the three-phase / two-phase conversion unit 324 converts the three-phase alternating current detected by the current sensor 380 into a dq-axis current as a dq-axis detection current.
  • the current control unit 321 performs feedback control based on the dq axis current command and the dq axis detection current.
  • the current control unit 321 includes current feedforward control and current feedback control, and the current feedback control includes proportional integral control (PI control).
  • the d-axis current deviation ⁇ Id and the q-axis current deviation ⁇ Iq are calculated from the dq-axis current command value and the dq-axis detected current value, and from these, the d-axis voltage deviation ⁇ Vd and the q-axis voltage deviation ⁇ Vq are feedback terms (FB) using PI control.
  • the d-axis voltage command Vd * and the q-axis voltage command Vq * are calculated by adding the feed-forward term (FF term) obtained from the dq-axis current command value.
  • the two-phase / three-phase conversion unit 322 has a function of converting the dq axis voltage command calculated by the current control unit 321 into each phase voltage. That is, based on the magnetic pole position angle ⁇ d of the motor 400, the d-axis voltage command Vd * and the q-axis voltage command Vq * are converted into the respective phase voltage commands Vu *, Vv *, and Vw *.
  • the gate signal calculation unit 323 generates a PWM signal for controlling each power module element in the inverter circuit 370 by comparing each phase voltage command Vu *, Vv *, Vw * and the carrier carrier wave.
  • the inverter circuit 370 has a total of six power module elements for each phase, ie, an upper arm and a lower arm, and outputs six as PWM signals.
  • the final PWM signal is generated in consideration of HV battery voltage and dead time compensation.
  • the inverter circuit 370 supplies power for realizing a desired torque from the HV battery to the motor 400 by turning on and off the upper and lower arms of the power module element according to the six PWM signals.
  • the noise detection unit 331 and the dq axis detection current replacement unit 332 are features of the present invention.
  • the noise detection unit 331 determines whether spike noise has been applied to the current values (Iu, Iv, Iw) detected by the current sensor 380. As will be described later, the current detected by the current sensor 380 There are a method of judging from values (Iu, Iv, Iw) and a method of judging after conversion to Id and Iq axes.
  • the noise detection unit 331 detects a noise state indicating a state in which the three-phase alternating current deviates from the sine waveform.
  • the dq axis detection current replacement unit 332 sets the dq axis detection current calculated from the three-phase to two-phase conversion unit 324 to another value as described later. Replace real_Id and real_Iq.
  • the dq axis detection current replacement unit 332 performs the dq axis detection current replacement process while detecting the noise state.
  • FIG. 2 is a diagram illustrating an example of a state in which spike noise is applied to the U-phase current sensor 380.
  • FIG. 2 is a diagram illustrating an example of a state in which spike noise is applied to the U-phase current sensor 380.
  • the noise detection unit 331 determines that spike noise has been applied when the three-phase sum current exceeds a predetermined value Ith. That is, the noise detection unit 331 determines that a noise state has been detected when the three-phase sum of the three-phase alternating current exceeds a predetermined value Ith. In order to prevent erroneous detection, it may be determined that a noise state has been detected when a state where the three-phase sum current exceeds a predetermined value Ith continues for a predetermined time.
  • FIG. 3 is a diagram illustrating an example of a state in which spike noise is applied to the current sensor 380.
  • FIG. 3 shows an example of the Iq current.
  • the noise detection unit 331 obtains the degree of change (gradient) from ⁇ real_Iq / ⁇ t, and determines that spike noise has been applied when the value exceeds a predetermined value. That is, the noise detection unit 331 determines that a noise state has been detected when the degree of change in the dq axis detection current exceeds a predetermined value.
  • the noise detection unit 331 determines that the spike noise has been removed when the degree of change in the opposite direction (reverse sign) occurs after the spike noise is generated.
  • the noise detection unit 331 determines that spike noise has been applied when ⁇ real_Iq / ⁇ t exceeds a predetermined value and ⁇ real_Iq / ⁇ t deviates more than ⁇ Iq * / ⁇ t. That is, the noise detection unit 331 determines that spike noise has been applied when ⁇ real_Iq / ⁇ t exceeds a predetermined value and the difference in absolute value between ⁇ real_Iq / ⁇ t and ⁇ Iq * / ⁇ t is greater than a threshold value.
  • the noise detection unit 331 when the change level of the dq axis detection current exceeds a predetermined value and the change level of the dq axis detection current is larger than the change level of the dq axis current command, the noise detection unit 331 has a noise state. Judge that it was detected.
  • FIG. 4 is a diagram illustrating an example of replacement processing when spike noise is applied to the current sensor.
  • FIG. 4 shows the Iq current detection value replacement process.
  • the noise generation determination is performed based on a three-phase sum current as an example.
  • the output value from the current sensor 380 is fetched at a current control calculation cycle, and the calculation interval of t1 and t2 is, for example, 100 us (microseconds).
  • the noise detection unit 331 determines that noise is applied.
  • the dq axis detection current replacement unit 332 replaces the current value detected by the current sensor 380 with the current command value. Specifically, the dq axis detection current replacement unit 332 replaces the latest dq axis detection current with the dq axis current command. When no noise is generated, the detected current Real_Iq moves in a broken line as shown in FIG.
  • the noise detection unit 331 determines that noise has occurred due to the three-phase sum current, and the dq axis detection current replacement unit 332 immediately replaces Real_Iq. . Therefore, the value (detection current) at the time of noise generation is not used for the calculation.
  • FIG. 5 is a diagram showing another example of the replacement process when spike noise is applied to the current sensor 380.
  • FIG. 5 shows the replacement process of the Iq current detection value.
  • the noise generation detection operation is the same as in FIG. That is, for example, the noise detection unit 331 determines whether spike noise has been applied based on a three-phase sum current.
  • FIG. 6 is a diagram illustrating an example of operation when spike noise is applied to the current sensor 380 and the state continues for a predetermined time.
  • the dq axis detection current replacement unit 332 increases the counter and performs the replacement process of the dq axis detection current.
  • the dq axis detection current replacement unit 332 shifts to the degenerate mode when the spike noise duration time indicating the period when the counter increases continues for a long time (for example, more than a threshold). Even in the case of hunting operation for noise generation / removal, the system is configured to count up by 2 when noise is generated and to count down by 1 when noise is removed so that an abnormality can always be determined.
  • the dq axis detection current replacement unit 332 determines that the abnormality is confirmed and shifts to the degenerate mode.
  • the dq axis detection current replacement unit 332 may shift to the degenerate mode when the noise state continues for a predetermined time or when the noise state is intermittently detected a predetermined number of times. After transitioning to the degeneration mode, when a predetermined condition (for example, when the microcomputer is reset) is satisfied, the normal mode may be restored.
  • a predetermined condition for example, when the microcomputer is reset
  • the control device 300 (motor control device) of the present embodiment changes the current command value or the current suddenly instead of the latest detected current value.
  • the motor control is continued using the previous detected current value. According to this embodiment, a sudden torque change due to spike noise can be suppressed.
  • the current command value is used instead of the three-phase AC detection current value.
  • a motor control device that continues motor control using a detected current value before the occurrence of previous noise instead of the three-phase AC detected current value.
  • the total of the currents of U, V, and W three-phase alternating current is theoretically 0, but when noise is applied, it occurs in a non-zero state. Therefore, the noise generation state can be detected from the value of the three-phase current sum.
  • the influence of noise can be eliminated by replacing the detected current with the current command value, and a sudden change in the motor drive current can be suppressed. Further, as another means, the sudden change of the motor drive current can be similarly suppressed by replacing the detected current with the detected current value before the occurrence of noise.
  • the motor can be controlled without causing a sudden change in the motor driving current.
  • An inverter drive device that controls the drive of an AC motor, a current command calculation means for converting a torque command value into a dq axis current command, and a three-phase current detection means for detecting a three-phase AC current of U, V, and W Three-phase two-phase conversion means for converting the three-phase AC current into dq-axis detection current, and current control means for performing control for driving the AC motor based on the dq-axis current command and the dq-axis detection current And a noise detection means for detecting the noise state when noise is superimposed on the three-phase alternating current, and while the noise state is being detected, the dq axis detection current is replaced.
  • the motor control apparatus which has a dq axis detection electric current replacement means to implement.
  • (2) is obtained by adding more specific configuration requirements to (1).
  • current control is performed by converting a three-phase current into a two-phase dq-axis current. Therefore, the torque command value is converted into a two-phase dq-axis current command value by the current command calculation unit, and the U, V, and W three-phase AC current acquired by the three-phase current detection unit is converted into a three-phase to two-phase conversion. Is converted into a two-phase dq-axis detection current.
  • the current sensor detects a three-phase alternating current, and spike noise is superimposed on this sensor unit.
  • the dq axis detection current basically shows a constant value. Therefore, it can be determined that noise has been applied when a sudden change in the dq-axis detection current occurs (see Fig. 3).
  • sudden change in motor current control that is, sudden change in torque can be suppressed.
  • the dq-axis current command is set as the replacement unit as shown in (5), the dq-axis current deviation becomes 0, and the integral term of the current feedback control is held at the previous value during the transient response. It can be delayed. Therefore, the responsiveness can be maintained by setting the previous value of the dq axis detection current before noise generation as shown in (6) (see FIG. 5).
  • a value in consideration of a predetermined ratio of the difference between the previous value and the dq axis current command may be set as in the following equation.
  • the predetermined ratio may be variable with time.
  • the correction value A 0 to 1 are set.
  • Real_Iq replacement Real_Iq previous value + (Iq *-Real_Iq previous value) x correction value A
  • the q-axis current command value (Iq *) 1, it is possible to prevent overcorrection while ensuring responsiveness.
  • the degeneration mode is a safety measure for securing the power necessary to safely evacuate the vehicle to the shoulder or repair shop when an abnormality occurs.
  • the degeneration mode for example, in the case of a hybrid vehicle equipped with an engine, while switching to engine running, as the motor, the three-phase short-circuit mode in which the upper arm or lower arm of the three-phase gate is fully turned on, There is a method to set the phase open mode.
  • the torque command value is limited, and current control is performed only by feedforward control.
  • the dq axis current command value (Id *, Iq *) and the dq axis voltage command value (Vd *, Vq *) may be limited.
  • each of the above-described configurations, functions, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by a processor (microcomputer).
  • Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

スパイクノイズによるトルク急変を抑制することができるモータ制御装置を提供する。 制御装置300(モータ制御装置)は、モータ400に供給される電流が急変した場合、dq軸検知電流値real_Id、real_Iq(最新の検出電流値)の代わりに、dq軸電流指令値Id*、Iq*(電流指令値)又はノイズ状態を検出する前のdq軸検知電流値real_Id、real_Iq(前記電流が急変する前の検出電流値)を用いて、モータ制御を継続する。

Description

モータ制御装置
 本発明は、モータ制御装置に関する。
 モータを動力源とするハイブリッド自動車や電気自動車が知られており、このような電動車両に搭載されるモータ制御システムでは、通常、インバータを用いたモータ駆動制御が行われている。
 モータ駆動制御では、上位からのトルク指令値に従い、モータを駆動するのに必要な電流指令値を算出し、実際にモータに流れる電流が、電流指令値と一致するようにフィードバック制御を行っている。
 なお、トルク指令値は、ポジションセンサ等で検出されるアクセルやブレーキのポジション(踏み込み量)に基づき上位コントローラで計算される。モータに流れる電流は、インバータとモータを接続する電力ラインに設けられる電流センサによって検出される。
 従来技術として、誘導電動機のベクトル制御装置が知られている(例えば、特許文献1参照)。特許文献1では、モータを制御するのにベクトル制御を用いており、フィードフォワード制御によるモータ電圧生成値とフィードバック制御によるモータ電圧生成値を合算したものをモータの電圧生成値として制御することが記載されている。
特許第3520002号明細書
 特許文献1では、電流センサに何らかのスパイクノイズが印可された時の振る舞いについてなんら言及されていない。特許文献1に開示されるような技術では、スパイクノイズが発生すると、そのノイズが印可された検出電流を使って電流フィードバック制御を実施するため、モータ駆動電流の急変、ひいてはトルク急変を引き起こすという課題がある。
 本発明の目的は、スパイクノイズによるトルク急変を抑制することができるモータ制御装置を提供することにある。
 上記目的を達成するために、本発明のモータ制御装置は、モータに供給される電流が急変した場合、最新の検出電流値の代わりに、電流指令値又は前記電流が急変する前の検出電流値を用いて、モータ制御を継続する。
 本発明によれば、スパイクノイズによるトルク急変を抑制することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の実施形態に係る制御装置(モータ制御装置)を含むモータ制御システムを説明する図である。 U相の電流センサにスパイクノイズが印可された状態の一例を示す図である。 電流センサにスパイクノイズが印可された状態の一例を示す図である。 電流センサにスパイクノイズが印可された時の置き換え処理の一例を示す図である。 電流センサにスパイクノイズが印可された時の置き換え処理の別の一例を示す図である。 電流センサにスパイクノイズが印加され及びその状態が所定時間継続した場合の動作の一例を示す図である。
 以下、図面を用いて、モータ制御システムの構成及び動作について説明する。本発明の実施形態に係るモータ制御システムは、トルク急変を防止するため、電流センサにスパイクノイズが印可された時に、検出電流を置き換える。
 ここで、スパイクノイズとは、モータ制御のソフトウェアを実行するマイコンで認識する電流値が、物理的な電流値の挙動とは異なる振る舞いを引き起こす要因の総称を意味する。たとえば、外乱がセンシング部(電流センサ)に印可されたり、センサ値をマイコンに取り込む際にAD変換部にノイズが発生したり、センサ自体の接触不良などが考えられる。三相交流電流センサの場合、通常サイン波の交流波形となるが、その波形から外れた状態を指す。
 (システム構成)
 まず、モータ制御システムの構成を説明する。図1は、本発明の実施形態に係る制御装置300(モータ制御装置)を含むモータ制御システム1を説明する図である。
 モータ制御システム1は、モータ400(三相交流モータとしての回転電機)とHVバッテリ200(バッテリ)と、これらを制御する制御装置300から構成される。
 制御装置300は、マイコン310、マイコン310からの信号出力をIGBTなどのパワーモジュール素子を駆動する信号に変換するゲートドライブ回路360、ゲートドライブ回路360からの信号をもとに、HVバッテリ200(電源回路)からの電力を3相の交流波形にスイッチングするパワーモジュールを有するインバータ回路370、及びU相、V相、W相に流れる電流を検知する電流センサ380で構成されている。
 モータ400に取り付けられている回転位置センサ410は、ロータの回転位置を回転角度として検出する機能を有する。回転位置センサとして、たとえばレゾルバが用いられ、本信号はマイコンに取り込まれ、位置速度演算部325(位置速度演算器)にて磁極位置θdや、回転角度の時間微分からモータ400の回転速度ωが算出される。磁極位置θdは2相3相変換部322や3相2相変換部324の変換に使用され、回転速度ωは、電流指令値算出に用いられる。
 HVバッテリ200は、モータ400に駆動電力を供給する電力源であり、たとえば300Vの端子間電圧を有するリチウムイオン電池あるいはニッケル水素電池などが用いられる。
 HVバッテリ200は、インバータ回路370を介してモータ400と接続されており、モータ400が力行運転する場合には、これに電力を供給し、モータ400が回生運転する場合には、回生電力を受け取りバッテリに充電を行う。
 マイコン310は、電流指令演算部320、電流制御部321、2相3相変換部322、ゲート信号演算部323、3相2相変換部324、位置速度演算部325、ノイズ検出部331、dq軸検知電流置き換え部332を有しており、3相交流系の座標を2相座標に変換して電流を制御するベクトル制御方式となっている。なお、マイコン310は、CPU(Central Processing Unit)等のプロセッサ、RAM(Random Access Memory)、ROM(Read Only Memory)等のメモリ、入出力回路等から構成される。
 電流指令演算部320は、上位コントローラから入力されたモータ400が出力すべきトルク指令値T*をもとに、たとえば、あらかじめモータ適合にて導出しておいた、モータトルクと電流指令値の関係を埋め込んだ電流マップ等から、回転速度やHVバッテリ電圧を考慮して、必要なd軸電流指令値Id*及びq軸電流指令値Iq*を算出する。
 すなわち、電流指令演算部320は、トルク指令をdq軸電流指令に変換する。dq軸電流指令値を算出する際、モータ温度センサ420から取得したモータ温度やインバータの温度(図示なし)などからコンポーネントの保護も考慮する。
 電流制御部321は、電流指令演算部320から算出されたdq軸電流指令値(Id*、Iq*)と、電流センサ380で検知された電流値(Iu、Iv、Iw)から3相2相変換部324でdq軸電流に変換され、さらにdq軸検知電流置き換え部232で所定の処理を経て得られた、dq軸検知電流値(real_Id、real_Iq)から、d軸電圧指令Vd*とq軸電圧指令Vq*を算出する。
 すなわち、3相2相変換部324は、電流センサ380で検知される三相交流電流をdq軸検知電流としてdq軸電流に変換する。電流制御部321は、dq軸電流指令及びdq軸検知電流に基づいてフィードバック制御を行う。
 より具体的に言うと、電流制御部321は電流フィードフォワード制御と電流フィードバック制御から構成されており、電流フィードバック制御としては、比例積分制御(PI制御)が含まれている。dq軸電流指令値とdq軸検知電流値からd軸電流偏差ΔId及びq軸電流偏差ΔIqが算出され、これらからPI制御を使ってd軸電圧偏差ΔVd及びq軸電圧偏差ΔVqがフィードバック項(FB項)として算出され、dq軸電流指令値から求まるフィードフォワード項(FF項)と合算されてd軸電圧指令Vd*とq軸電圧指令Vq*が算出される。
 2相3相変換部322は、電流制御部321で算出されたdq軸電圧指令を各相電圧に変換する機能を有する。すなわち、モータ400の磁極位置角度θdに基づき、d軸電圧指令Vd*とq軸電圧指令Vq*を各相電圧指令Vu*、Vv*、Vw*に変換する。
 ゲート信号演算部323は、各相電圧指令Vu*、Vv*、Vw*とキャリア搬送波との比較により、インバータ回路370内の各パワーモジュール素子を制御するPWM信号を生成する。インバータ回路370には、各相ごとにパワーモジュール素子が上アーム及び下アームの2個存在することにより、合計6個有しており、PWM信号としても6本出力される。HVバッテリ電圧やデットタイム補償なども考慮されて最終的なPWM信号が生成される。
 インバータ回路370は、6本のPWM信号に従いパワーモジュール素子の上下アームをON/OFFすることで、所望のトルクを実現するための電力をHVバッテリからモータ400へ供給する。
 ノイズ検出部331及びdq軸検知電流置き換え部332が本発明の特徴部である。
 ノイズ検出部331は、電流センサ380で検知された電流値(Iu、Iv、Iw)にスパイクノイズが印可されたか否かを判断する部分であり、後述するように電流センサ380で検知された電流値(Iu、Iv、Iw)から判定する方法やId、Iq軸に変換後に判定する方法がある。
 換言すれば、ノイズ検出部331は、三相交流電流がサイン波形から逸脱した状態を示すノイズ状態を検出する。
 ノイズ検出部331でノイズが発生したと判断される場合には、後述するようにdq軸検知電流置き換え部332は、3相2相変換部324から算出されたdq軸検知電流を別の値に置き換えて、real_Id、real_Iqを算出する。
 換言すれば、dq軸検知電流置き換え部332は、ノイズ状態を検出している間、dq軸検知電流の置き換え処理を実施する。
 (スパイクノイズの第1の判定方法)
 次に、ノイズ検出部331によるスパイクノイズの第1の判定方法を説明する。図2は、U相の電流センサ380にスパイクノイズが印可された状態の一例を示す図である。
 モータ400の各相コイルの中性点は共通接続されているため、モータに流れるU、V、Wの三相の電流和(三相和電流)は理論的に0であるが、本図のようにスパイクノイズが印可されるとその関係性が崩れる。
 そこで、ノイズ検出部331は、三相和電流が所定値Ithを超えた場合に、スパイクノイズが印可されたと判断する。すなわち、ノイズ検出部331は、三相交流電流の三相和が所定値Ithを超えた場合、ノイズ状態が検出されたと判断する。誤検出を防ぐために、三相和電流が所定値Ithを超えた状態が所定時間継続したときにノイズ状態が検出されたと判断してもよい。
 (スパイクノイズの第2の判定方法)
 次に、ノイズ検出部331によるスパイクノイズの第2の判定方法を説明する。図3は、電流センサ380にスパイクノイズが印可された状態の一例を示す図である。なお、図3は、Iq電流の例を示している。
 トルク指令一定の状態において、スパイクノイズが印可されると、三相二相変換により変換されたIq電流は急変することになる。
 ノイズ検出部331は、Δreal_Iq/Δtよりその変化度合い(傾き)を求め、その値が所定値を超えている場合には、スパイクノイズが印可されたと判断する。すなわち、ノイズ検出部331は、dq軸検知電流の変化度が所定値を超えた場合、ノイズ状態が検出されたと判断する。
 また、ノイズ検出部331は、スパイクノイズ発生後、検出したときと反対方向(符号が逆)の変化度が発生した場合にはスパイクノイズが除去されたと判断する。
 なお、トルク指令が急変した場合も、上記Real_Iqの変化度合いが大きくなり、誤判定してしまう可能性もあるため、Iq電流指令の変化度(ΔIq*/Δt)を算出して、そのIq電流指令との変化度と、Iq検出電流の変化度の比較からスパイクノイズが印可されたと判定したほうがロバスト性が高い。
 具体的には、ノイズ検出部331は、Δreal_Iq/Δtが所定値を超え、かつ、Δreal_Iq/ΔtがΔIq*/Δtより大きく乖離している場合には、スパイクノイズが印可されたと判断する。つまり、ノイズ検出部331は、Δreal_Iq/Δtが所定値を超え、かつ、Δreal_Iq/ΔtとΔIq*/Δtとの絶対値の差が閾値より大きい場合、スパイクノイズが印可されたと判断する。
 換言すれば、ノイズ検出部331は、dq軸検知電流の変化度が所定値を超え、かつ、dq軸検知電流の変化度がdq軸電流指令の変化度と比較して大きい場合、ノイズ状態が検出されたと判断する。
 (電流検出値の第1の置き換え方法)
 次に、dq軸検知電流置き換え部332による電流検出値の第1の置き換え方法を説明する。図4は、電流センサにスパイクノイズが印可された時の置き換え処理の一例を示す図である。なお、図4は、Iq電流検出値の置き換え処理を示している。ここで、ノイズ発生判定は、一例として、三相和電流に基づいて実施しているものとする。
 電流センサ380からの出力値の取り込みは、電流制御演算の周期で行われており、t1、t2の演算間隔は、たとえば100us(マイクロ秒)で実施している。
 t1とt2の間で三相交流電流センサノイズが発生すると、三相和電流が0以外の値を示すことにより、ノイズ検出部331は、ノイズ印可と判定する。ノイズ印可と判定された場合、dq軸検知電流置き換え部332は、Real_Iq = Iq*として、置き換え処理を実施する。
 すなわちdq軸検知電流置き換え部332は、電流センサ380で検知された電流値を電流指令値に置き換える。詳細には、dq軸検知電流置き換え部332は、最新のdq軸検知電流を、dq軸電流指令で置き換える。なお、ノイズが発生していない場合、図4に示すように、検知電流Real_Iqは破線の動きとなる。
 ノイズ発生後、t2で電流センサ380の出力値の取り込みタイミングで、ノイズ検出部331は、三相和電流によりノイズ発生と判断し、dq軸検知電流置き換え部332は即、Real_Iqの置き換えを実施する。そのため、ノイズ発生時の値(検知電流)は演算に使用されないことになる。
 t3とt4の間で三相交流電流センサノイズが除去されると、三相和電流が凡そ0(所定値Ith以下)を示すことにより、ノイズ検出部331は、ノイズ除去と判定する。ノイズ除去と判定された場合、dq軸検知電流置き換え部332はReal_Iqの置き換え処理を中止し、「Real_Iq = 電流センサ380からの算出値(検出値)」に戻して、通常の制御を実施する。
 (電流検出値の第2の置き換え方法)
 次に、dq軸検知電流置き換え部332による電流検出値の第2の置き換え方法を説明する。図5は、電流センサ380にスパイクノイズが印可された時の置き換え処理の別の一例を示す図である。なお、図5は、Iq電流検出値の置き換え処理を示している。
 ノイズ発生検知動作に関しては、図4と同じである。すなわち、ノイズ検出部331は、一例として、三相和電流に基づいてスパイクノイズが印可されたか否かを判定する。
 ノイズ発生時には、dq軸検知電流置き換え部332は、Real_Iq = Real_Iq前回値(ノイズ発生前)として、置き換え処理を実施する。すなわち、dq軸検知電流置き換え部332は、電流センサ380で検知された最新の電流値を1周期前に電流センサ380で検知された電流値に置き換える。換言すれば、dq軸検知電流置き換え部332は、最新の前記dq軸検知電流を、ノイズ状態を検出する前のdq軸検知電流で置き換える。
 ノイズ除去と判定された場合には、Real_Iqの置き換え処理を中止し、 「Real_Iq = 電流センサ380からの算出値(検出値)」に戻して、通常の制御を実施する。
 (縮退モードへの移行)
 次に、縮退モード(フェイルセーフ)へ移行する処理を説明する。図6は、電流センサ380にスパイクノイズが印加され及びその状態が所定時間継続した場合の動作の一例を示す図である。
 電流の三相和からスパイクノイズが印可されたと判断された場合(t1、t2、t3)、dq軸検知電流置き換え部332は、カウンタをUpするとともにdq軸検知電流の置き換え処理を実施する。
 dq軸検知電流置き換え部332は、カウンタが増加する期間を示すスパイクノイズ継続時間が、長時間(例えば、閾値以上)継続した場合には縮退モードに移行する。ノイズ発生・除去のハンチング動作の場合でも、異常確定が必ずできるように、ノイズ発生時には2カウントアップさせ、ノイズ除去された場合には1カウントダウンする構成としている。
 スパイクノイズ継続時間が長時間となりカウンタが異常確定閾値を超える(t4)と、dq軸検知電流置き換え部332は、異常確定と判断して、縮退モードへ移行する。
 なお、dq軸検知電流置き換え部332は、ノイズ状態が所定時間継続した場合、又はノイズ状態を断続的に所定回数検出した場合に、縮退モードに移行してもよい。縮退モードへ移行した後、所定条件(例えば、マイコンのリセット時等)を満たす場合、通常モードへ復帰してもよい。
 以上説明したように、本実施形態の制御装置300(モータ制御装置)は、モータ400に供給される電流が急変した場合、最新の検出電流値の代わりに、電流指令値又は前記電流が急変する前の検出電流値を用いて、モータ制御を継続する。本実施形態によれば、スパイクノイズによるトルク急変を抑制することができる。
 なお、本発明の実施形態は、以下の態様であってもよい。
 (1).U,V,Wの三相交流電流を検出し、前記三相交流電流の三相和が所定値以上となるノイズ発生期間では、前記三相交流検出電流値の代わりに電流指令値を用いて、もしくは、前記三相交流検出電流値の代わりに前回ノイズ発生前の検出電流値を用いてモータ制御を継続するモータ制御装置。
 U、V、Wの三相交流の各相電流の合計は、理論的には0であるが、ノイズなどが印加されると0でない状態発生する。よって、三相電流和の値からノイズ発生状態を検知することができる。
 検出電流にノイズが印可された状態で制御を継続すると、ノイズが印可された検出電流に基づき電流制御を実施してしまうため、モータ駆動電流の急変、及びトルク急変を起こす可能性がある。
 そこで、ノイズ発生時には、検出電流を電流指令値置き換えることにより、ノイズの影響を除去し、モータ駆動電流の急変を抑制することができる。また、もう一つの手段として、検出電流をノイズ発生前の検出電流値に置き換えることにより、同様にモータ駆動電流の急変を抑制することができる。
 なお、検出電流の置き換え処理として、(i)三相交流電流(Iu、Iv、Iw)での置き換えと、(ii)三相をdq軸の二相に変換した電流(Id、Iq)での置き換え、の2通りがある。(i)での置き換え処理の場合、電流は交流波形となるため、固定値にはできず、モータ位相に応じて変化させる必要があり、処理が複雑化するので、(ii)の手法が有効である。
 (1)によれば、三相交流電流センサにノイズが印可されたとしても、モータ駆動電流の急変を起こさずにモータを制御することができる。
 (2).交流モータの駆動を制御するインバータの駆動装置であって、トルク指令値をdq軸電流指令に変換する電流指令演算手段と、U,V,Wの三相交流電流を検知する三相電流検知手段と、前記三相交流電流をdq軸検知電流に変換する三相二相変換手段と、前記dq軸電流指令及び前記dq軸検知電流に基づき前記交流モータを駆動するための制御を行う電流制御手段を有し、前記三相交流電流にノイズが重畳された場合に、前記ノイズ状態を検知するノイズ検出手段を有し、前記ノイズ状態を検知している間、前記dq軸検知電流の置き換え処理を実施するdq軸検知電流置き換え手段を有するモータ制御装置。
 (2)は、(1)に対して、より具体的な構成要件を追加したものである。ベクトル制御では、三相電流を二相のdq軸電流に変換して電流制御を実施している。よってトルク指令値は、電流指令演算部により二相のdq軸電流指令値に、また、三相電流検知部にて取得されたU、V、Wの三相交流電流は、3相2相変換部により、二相のdq軸検知電流に変換している。電流センサは三相交流電流を検知するものであり、このセンサ部にスパイクノイズが重畳されることになる。
 三相交流電流にスパイクノイズが重畳されると、これに基づき三相二相変換されたdq軸検知電流にもその影響が発生する。モータ駆動制御として、dq軸検知電流とdq軸電流指令値の偏差をフィードバック制御する機能を備えているため、たとえばdq軸検知電流が正の方向にノイズが印可されると、dq軸電流指令値に対して、dq軸検知電流が大きい状態となるため、フィードバック制御としては、急激にモータ駆動電流を減らす方向に働き、トルク急減を招くことになる。
 そこで、上記スパイクノイズ発生状態を検知した場合、dq軸検知電流の置き換え処理を実施する。
 (2)により、dq軸検知電流のスパイクノイズの影響を除去することが可能であるため、モータ駆動電流の急変を防ぐことが可能となる。すなわち、三相交流電流センサにノイズが印可されたとしても、モータ駆動電流の急変を起こさずにモータを制御することができる。
 (3).前記ノイズ検出手段は、前記U、V、Wの三相交流電流の三相和が所定値以上である時にノイズ発生と判断することを特徴とする(2)に記載のモータ制御装置。
 U、V、W相それぞれに電流センサが接続されている前提である。U、V、Wの三相交流の各相電流の合計は、モータの各相コイルの中性点は共通接続されているため、理論的には0となるが、ノイズなどが印加されると0でない状態が発生する。よって、三相電流和の値からノイズ発生状態を検知することができる(図2参照)。
 (3)によれば、三相交流電流センサにノイズが発生している状態を検知することができる。三相電流和でノイズを判定しているため、どの相にノイズが印可されたかは判定できないが、簡易な構成でノイズを検知することができるというメリットがある。
 (4).前記ノイズ検出手段は、前記dq軸検知電流の急変が発生した時にノイズ発生と判断することを特徴とする(2)に記載のモータ制御装置。
 トルク指令が一定の場合、基本的にdq軸の検知電流は凡そ一定値を示すことになる。そこで、dq軸検知電流の急変が発生した場合にノイズが印可されたと判断できる(図3参照)。
 (4)によれば、三相交流電流センサにノイズが発生している状態を検知することができる。
 (5).前記dq軸検知電流置き換え手段は、前記dq軸検知電流に前記dq軸電流指令を設定することを特徴とする(2)~(4)に記載のモータ制御装置。
 電流センサにノイズが印可されると、その検出値は大きく跳ね上がることになるが、それをそのまま使用すると電流フィードバック制御の補正が実施され、トルク急変が発生することになる。
 そこで、電流センサにノイズが印可された場合の電流センサの検出値を実際の検出値ではなく電流指令値に置き換えることにより、電流フィードバック制御への電流検出急変値の入力を防止することができる(図4参照)。
 なお、電流センサノイズは、三相交流電流センサで発生するが、電流値の置き換え処理自体は、dq軸電流で実施することで、構成を簡素化している。三相交流電流センサで置き換え処理を実施する場合には、サイン波形をトレースする必要があり、ノイズ発生時には、位相に応じたサイン波形に置き換える必要があるが、dq軸電流で行うことにより、補正を容易にしている。
 (5)によれば、モータ電流制御の急変、すなわちトルク急変を抑制することができる。
 (6).前記dq軸検知電流置き換え手段は、前記ノイズ検出前の前記dq軸検知電流を設定することを特徴とする(2)~(4)に記載のモータ制御装置。
 (5)のように置き換え部として、dq軸電流指令をセットした場合、dq軸電流偏差が0となり、過渡応答中では電流フィードバック制御の積分項が前回値保持となってしまうため、電流応答が遅れることが考えられる。そこで、(6)のようにノイズ発生前のdq軸検知電流の前回値を設定することで応答性を維持することが可能となる(図5参照)。
 ただし、短時間のスパイクノイズ発生時には問題ないが、ノイズ発生期間が長くなり、前回値を保持した状態が継続してしまうと、積分項が蓄積されていき、電流の過補正等が発生するため、途中からdq軸電流指令値に切り替える制御を組み込んでもよい。
 また、前回値そのものを設定するのではなく、たとえば下記式のように前回値とdq軸電流指令との差分の所定割合を考慮した値を設定してもよい。所定割合は時間とともに可変としてもよい。補正値Aとしては、0~1を設定する。
 Real_Iq置き換え = Real_Iq前回値  +  (Iq* - Real_Iq前回値)×補正値A
 例えば、ノイズ発生直後は補正値A=0として、前回値をそのまま保持するが、次の演算周期では補正値A=0.2などにしてq軸電流指令値(Iq*)を考慮していき、最終的には補正値A=1にすることでq軸電流指令値(Iq*)に置き換えることにより、応答性を確保しつつ、過補正を防ぐことが可能である。
 (6)によれば、電流制御の応答性を維持しつつ、モータ電流制御の急変、すなわちトルク急変を抑制することができる。
 (7).前記ノイズ検出状態が所定時間継続した場合もしくは、前記ノイズ検出状態を断続的に所定回数経験した場合には、電流センサ異常確定と判断し、前記dq軸検出電流の置き換え処理に加えて、縮退モードに移行することを特徴とする(2)~(6)に記載のモータ制御装置。
 ノイズ発生状態が継続すると、検知電流での置き換えでは、上位コントローラからのトルク要求に追従することができなくなり、安全に制御を行うことができなくなる。そこで、(7)のように、ノイズでなく、長時間継続する異常が発生した場合には、置き換え処理に加えて、別途縮退モードに移行することで安全状態を確保する(図6参照)。
 縮退モードとは、異常発生時に車両を路肩や修理工場等まで安全に退避走行させるのに必要な動力を確保するための安全対策である。縮退モードの一例としては、たとえばエンジンを搭載するハイブリッド車の場合、エンジン走行に切り替える一方で、モータとしては、3相ゲートの上アームもしくは下アームを全ONする三相短絡モードや全OFFする三相オープンモードなどにする方法がある。
 モータ400のみの電気自動車の場合には、たとえばトルク指令値制限して、フィードフォワード制御のみで電流制御を実施するなどがある。トルク指令値の代わりにdq軸電流指令値(Id*、Iq*)やdq軸電圧指令値(Vd*、Vq*)を制限してもよい。
 (7)によれば、スパイクノイズが発生するシーンでは、トルクの急変なく電流制御を継続するとともに、本当の故障が発生した場合には、安全な運転動作状態に移行することができる。
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、上記の各構成、機能等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサ(マイコン)がそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
1…モータ制御システム
200…HVバッテリ
300…制御装置
310…マイコン
320…電流指令演算部
321…電流制御部
322…2相3相変換部
323…ゲート信号演算部
324…3相2相変換部
325…位置速度演算部
331…ノイズ検出部
332…dq軸検知電流置き換え部
360…ゲートドライブ回路
370…インバータ回路
380…電流センサ
400…モータ
410…回転位置センサ
420…モータ温度センサ

Claims (8)

  1.  モータに供給される電流が急変した場合、最新の検出電流値の代わりに、電流指令値又は前記電流が急変する前の検出電流値を用いて、モータ制御を継続するモータ制御装置。
  2.  請求項1に記載のモータ制御装置であって、
     トルク指令をdq軸電流指令に変換する電流指令演算部と、
     電流センサで検知される三相交流電流をdq軸検知電流としてdq軸電流に変換する3相2相変換部と、
     前記dq軸電流指令及び前記dq軸検知電流に基づいてフィードバック制御を行う電流制御部と、
     前記三相交流電流がサイン波形から逸脱した状態を示すノイズ状態を検出するノイズ検出部と、
     前記ノイズ状態を検出している間、前記dq軸検知電流の置き換え処理を実施するdq軸検知電流置き換え部と、を備える
     ことを特徴とするモータ制御装置。
  3.  請求項2に記載のモータ制御装置であって、
     前記ノイズ検出部は、
     前記三相交流電流の三相和が所定値を超えた場合、前記ノイズ状態が検出されたと判断する
     ことを特徴とするモータ制御装置。
  4.  請求項2に記載のモータ制御装置であって、
     前記ノイズ検出部は、
     前記dq軸検知電流の変化度が所定値を超えた場合、前記ノイズ状態が検出されたと判断する
     ことを特徴とするモータ制御装置。
  5.  請求項4に記載のモータ制御装置であって、
     前記ノイズ検出部は、
     前記dq軸検知電流の変化度が所定値を超え、かつ、前記dq軸検知電流の変化度が前記dq軸電流指令の変化度と比較して乖離している場合、前記ノイズ状態が検出されたと判断する
     ことを特徴とするモータ制御装置。
  6.  請求項2に記載のモータ制御装置であって、
     前記dq軸検知電流置き換え部は、
     最新の前記dq軸検知電流を、前記dq軸電流指令で置き換える
     ことを特徴とするモータ制御装置。
  7.  請求項2に記載のモータ制御装置であって、
     前記dq軸検知電流置き換え部は、
     最新の前記dq軸検知電流を、前記ノイズ状態を検出する前の前記dq軸検知電流で置き換える
     ことを特徴とするモータ制御装置。
  8.  請求項2に記載のモータ制御装置であって、
     前記dq軸検知電流置き換え部は、
     前記ノイズ状態が所定時間継続した場合、又は前記ノイズ状態を断続的に所定回数検出した場合に、縮退モードに移行する
     ことを特徴とするモータ制御装置。
PCT/JP2019/002179 2018-02-26 2019-01-24 モータ制御装置 WO2019163382A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19758189.5A EP3719990B1 (en) 2018-02-26 2019-01-24 Motor control device
US16/971,516 US11290044B2 (en) 2018-02-26 2019-01-24 Motor control device
CN201980015280.4A CN111771330B (zh) 2018-02-26 2019-01-24 马达控制装置
JP2020501599A JP7047056B2 (ja) 2018-02-26 2019-01-24 モータ制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-032572 2018-02-26
JP2018032572 2018-02-26

Publications (1)

Publication Number Publication Date
WO2019163382A1 true WO2019163382A1 (ja) 2019-08-29

Family

ID=67686804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002179 WO2019163382A1 (ja) 2018-02-26 2019-01-24 モータ制御装置

Country Status (5)

Country Link
US (1) US11290044B2 (ja)
EP (1) EP3719990B1 (ja)
JP (1) JP7047056B2 (ja)
CN (1) CN111771330B (ja)
WO (1) WO2019163382A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522B2 (ja) 1971-11-12 1977-01-05
WO2009113509A1 (ja) * 2008-03-12 2009-09-17 三洋電機株式会社 インバータ装置
JP2013225991A (ja) * 2012-04-22 2013-10-31 Denso Corp 交流電動機の制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3520002B2 (ja) 1999-12-08 2004-04-19 三菱電機株式会社 誘導電動機のベクトル制御装置
JP4942425B2 (ja) 2006-08-22 2012-05-30 東芝エレベータ株式会社 エレベータの制御装置
JP2009113509A (ja) * 2007-11-01 2009-05-28 Fuji Heavy Ind Ltd 車両用操舵装置
JP2009131043A (ja) 2007-11-22 2009-06-11 Hitachi Ltd モータ制御装置
CN100586003C (zh) * 2008-10-17 2010-01-27 清华大学 一种用于交流异步电机的无速度传感器的矢量控制方法
JP5760778B2 (ja) * 2011-07-13 2015-08-12 トヨタ自動車株式会社 モータ駆動制御システム
JP5452551B2 (ja) * 2011-07-25 2014-03-26 日立オートモティブシステムズ株式会社 電力変換装置及び電力変換システム
JP5958253B2 (ja) * 2012-09-28 2016-07-27 株式会社デンソー 交流電動機の制御装置
JP5939228B2 (ja) * 2012-12-28 2016-06-22 株式会社デンソー 交流電動機の制御装置
JP5888567B2 (ja) * 2014-02-12 2016-03-22 株式会社デンソー 交流電動機の制御装置
JP6614825B2 (ja) * 2015-06-30 2019-12-04 日立ジョンソンコントロールズ空調株式会社 電力変換装置およびモータ駆動装置、冷凍装置
CN105162138A (zh) * 2015-09-11 2015-12-16 合肥工业大学 基于电压序分解的无功及谐波电流快速检测方法
US11529993B2 (en) * 2017-11-07 2022-12-20 Mitsubishi Electric Corporation Motor controller and electric power steering apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522B2 (ja) 1971-11-12 1977-01-05
WO2009113509A1 (ja) * 2008-03-12 2009-09-17 三洋電機株式会社 インバータ装置
JP2013225991A (ja) * 2012-04-22 2013-10-31 Denso Corp 交流電動機の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3719990A4

Also Published As

Publication number Publication date
EP3719990B1 (en) 2022-12-14
CN111771330A (zh) 2020-10-13
JP7047056B2 (ja) 2022-04-04
JPWO2019163382A1 (ja) 2021-01-14
EP3719990A4 (en) 2021-07-28
CN111771330B (zh) 2024-02-02
EP3719990A1 (en) 2020-10-07
US20200389107A1 (en) 2020-12-10
US11290044B2 (en) 2022-03-29

Similar Documents

Publication Publication Date Title
JP5353867B2 (ja) 回転機の制御装置
JP5826292B2 (ja) モータ制御装置および電動パワーステアリング装置
JP7102407B2 (ja) インバータ装置、及び、電動パワーステアリング装置
JP5833360B2 (ja) モータ制御装置及び車両用操舵装置
JP2010268566A (ja) 独立車輪駆動電動車の制御装置
JP4010195B2 (ja) 永久磁石式同期モータの制御装置
US9520824B2 (en) Inverter apparatus
JP5316551B2 (ja) 回転機の制御装置
US20130026960A1 (en) Brushless-motor drive apparatus
JP6983305B2 (ja) 車両制御装置
CN104779872A (zh) 同步电动机的控制装置及控制方法
US11290036B2 (en) Control device
US10946890B2 (en) Steering control unit
JP2010273500A (ja) 電動車両の制御装置
JP6394885B2 (ja) 電動パワーステアリング装置
JP7006428B2 (ja) モータ制御装置
JP4775145B2 (ja) 同期モータ制御装置
WO2019163382A1 (ja) モータ制御装置
JP5595436B2 (ja) モータ制御装置
JP2010268599A (ja) 永久磁石モータの制御装置
JP2019050684A (ja) パワーステアリング装置の制御装置
JP2018057210A (ja) 多相回転機の制御装置
JP2014230311A (ja) モータの駆動制御装置
JP7317250B2 (ja) 回転電機の制御装置及び電動パワーステアリング装置
JP7271954B2 (ja) モータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19758189

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019758189

Country of ref document: EP

Effective date: 20200630

ENP Entry into the national phase

Ref document number: 2020501599

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE