WO2019163263A1 - 粉末冶金用混合粉 - Google Patents

粉末冶金用混合粉 Download PDF

Info

Publication number
WO2019163263A1
WO2019163263A1 PCT/JP2018/045746 JP2018045746W WO2019163263A1 WO 2019163263 A1 WO2019163263 A1 WO 2019163263A1 JP 2018045746 W JP2018045746 W JP 2018045746W WO 2019163263 A1 WO2019163263 A1 WO 2019163263A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
lubricant
mixed
carbon atoms
iron
Prior art date
Application number
PCT/JP2018/045746
Other languages
English (en)
French (fr)
Inventor
葉菜子 島本
宇波 繁
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US16/965,299 priority Critical patent/US11643710B2/en
Priority to CA3090455A priority patent/CA3090455C/en
Priority to EP18907048.5A priority patent/EP3756790A4/en
Priority to JP2019518337A priority patent/JP6760495B2/ja
Priority to CN201880089795.4A priority patent/CN111741824A/zh
Publication of WO2019163263A1 publication Critical patent/WO2019163263A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/56Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
    • C10M105/58Amines, e.g. polyalkylene polyamines, quaternary amines
    • C10M105/60Amines, e.g. polyalkylene polyamines, quaternary amines having amino groups bound to an acyclic or cycloaliphatic carbon atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/40Carbon, graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a mixed powder for powder metallurgy, in particular, it is not necessary to use a metal soap that causes dirt, and has excellent extraction properties, and in addition, when carbon black is used, excellent fluidity and extraction properties. It is related with the mixed powder for powder metallurgy which can make it compatible.
  • Powder metallurgy technology is a technique that allows parts with complex shapes to be formed into shapes that are very close to product shapes and that can be manufactured with high dimensional accuracy. Powder metallurgy technology can greatly reduce cutting costs. Therefore, powder metallurgy products are used in various fields as various machines and parts.
  • iron-base powder as the main raw material is mixed with alloy powder such as copper powder, graphite powder and iron phosphide powder as needed, and machinability improving powder such as MnS and lubricant. Powder (hereinafter referred to as “mixed powder for powder metallurgy” or simply “mixed powder”) is used.
  • the lubricant contained in the powder mixture for powder metallurgy plays an extremely important role.
  • the operation of the lubricant will be described.
  • the lubricant has a lubricating action when the mixed powder is molded with a mold.
  • This action is further roughly divided into the following two.
  • One is an action of reducing friction between particles contained in the mixed powder.
  • the lubricant enters between the particles to reduce the friction, thereby promoting the rearrangement of the particles.
  • the other is to reduce the friction between the mold used for molding and the particles.
  • the lubricant enters between the mold and the particles, so that the friction between the mold and the particles is reduced.
  • the lubricant exerts a lubricating action when taking out (extracting) the mixed powder (a green compact) compressed and molded in the mold.
  • the green compact is extracted from the mold by pushing it out with a punch, but a large frictional resistance is generated by the friction between the green compact and the mold surface. Also in this case, the frictional force is reduced by the lubricant contained in the mixed powder that exists in contact with the mold surface.
  • the lubricant contained in the powder mixture for powder metallurgy plays a very important role in manufacturing products.
  • the lubricant is required until the molding and extraction from the mold are completed, and after that, it is not necessary, but it disappears when the green compact is sintered, and the final sintering It is required not to remain in the body.
  • the lubricant since the lubricant generally has a stronger adhesive force than the iron-based powder, it deteriorates the fluidity of the mixed powder. Furthermore, since the specific gravity of the lubricant is smaller than that of the iron-based powder, there is a problem that the density of the green compact is reduced when a large amount is contained in the mixed powder.
  • the lubricant used in the powder mixture for powder metallurgy may be required to function as a binder.
  • the binder refers to a component for adhering the powder for an alloy as an additive component to the surface of the iron-based powder as a main component.
  • General powder metallurgy powders are simply mixed with iron-based powders, such as alloy powders, machinability improving powders, and lubricants.
  • iron-based powders such as alloy powders, machinability improving powders, and lubricants.
  • Each component may segregate inside the powder.
  • graphite powder generally used as an alloy powder has a lower specific gravity than other components, and therefore easily segregates when the mixed powder is caused to flow or vibrate.
  • an additive component to the surface of the iron-based powder through a binder.
  • Such powder is a kind of mixed powder for powder metallurgy, but is also called segregation prevention treated powder.
  • segregation preventing treatment powder since the additive component adheres to the iron-based powder, segregation of the component as described above can be prevented.
  • a compound that also functions as a lubricant is often employed. This is because the total amount of the binder and lubricant added to the mixed powder can be reduced by providing the binder with lubricating performance.
  • Such a mixed powder for powder metallurgy is generally press-molded at a pressure of 300 to 1000 MPa to form a predetermined part shape, and then sintered at a high temperature of 1000 ° C. or more to obtain a final part shape.
  • the total amount of the lubricant and binder contained in the mixed powder is generally about 0.1 to 2 parts by mass with respect to 100 parts by mass of the iron-based powder.
  • the lubricant is required to exhibit excellent lubricity with a small amount of blending.
  • metal soaps such as zinc stearate have been widely used as the lubricant.
  • the metal soap causes contamination of the furnace, workpiece, and sintered body surface when the green compact is sintered. Therefore, various lubricants that replace metal soap have been proposed.
  • Patent Document 1 it is proposed to use diamide wax as a lubricant and binder.
  • Patent Document 2 proposes using polyhydroxycarboxylic acid amide as a lubricant.
  • Patent Document 3 proposes improving fluidity by adding a fluidity improver such as silica to a mixed powder containing a lubricant and binder such as diamide wax.
  • Patent Document 4 proposes to improve fluidity and apparent density by adding carbon black to a mixed powder containing a lubricant and binder such as diamide wax.
  • the polyhydroxycarboxylic acid amide proposed in Patent Document 2 needs to be synthesized by an amidation reaction using polyhydroxycarboxylic acid or its equivalent and an aliphatic amine as raw materials, and is not readily available. There was a problem.
  • the present invention has been made in view of the above circumstances, includes a readily available compound as a lubricant, does not need to include a metal soap that causes dirt, has excellent pull-out properties, and further includes carbon black. It is an object of the present invention to provide a powder mixture for powder metallurgy that can exhibit excellent fluidity without lowering the drawability.
  • R 4 is an alkyl group having 12 or more carbon atoms or an alkenyl group having 12 or more carbon atoms
  • R 5, R 6 and R 7 are each independently a hydrogen atom, an alkyl group having 1 or more carbon atoms or an alkenyl group having 2 or more carbon atoms
  • R 8 is an alkylene group having 1 to 5 carbon atoms.
  • the mixed powder for powder metallurgy according to the present invention can exhibit an extremely excellent extraction property without containing a metal soap that causes dirt. Furthermore, even when hard fine particles such as carbon black are added to improve fluidity, excellent fluidity can be exhibited without lowering the drawability. Moreover, since the aliphatic amine used as a lubricant in the present invention can be easily obtained as a commercial product, it is advantageous in terms of production and cost.
  • the mixed powder for powder metallurgy of the present invention contains the following (a) and (b) as essential components.
  • the mixed powder for powder metallurgy according to the present invention may contain one or more selected from the following (c) to (f) in addition to the following (a) and (b).
  • the mixed powder for powder metallurgy according to the present invention can contain components other than the following (a) to (f) as long as the effects of the present invention are not impaired.
  • A) Iron-based powder (b) Lubricant (c) Powder for alloy (d) Powder for improving machinability (e) Binder (f) Carbon black
  • iron-based powder refers to a metal powder containing 50 mass% or more of Fe.
  • the iron-based powder is not particularly limited, and examples thereof include iron powder and iron alloy powder.
  • iron powder (generally referred to as “pure iron powder” in this technical field) refers to a powder composed of Fe and inevitable impurities.
  • the iron alloy powder is not particularly limited as long as it is an alloy powder having Fe of 50% by mass or more, and includes an alloy steel powder.
  • the alloy steel powder is not particularly limited, and is pre-alloyed steel powder (alloyed steel powder) that is pre-alloyed when the alloy element is melted, and partial diffusion alloying that is alloyed by partially diffusing the alloy element into iron powder.
  • Hybrid steel powder in which alloy elements are further partially diffused into steel powder and pre-alloyed steel powder is not particularly limited, and examples thereof include C, Cu, Ni, Mo, Mn, Cr, V, and Si.
  • the alloy element may be one type or two or more types.
  • the method for producing the iron-based powder is not particularly limited, and examples thereof include reduced iron-based powder produced by reducing iron oxide and atomized iron-based powder produced by the atomizing method.
  • the average particle diameter of the iron-based powder is not particularly limited, but is preferably 30 ⁇ m or more, more preferably 60 ⁇ m or more, and preferably 120 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the average particle diameter refers to the median diameter (D50) measured with a laser diffraction particle size distribution measuring apparatus.
  • the mass ratio of the iron-based powder in the total mass of the powder mixture for powder metallurgy is not particularly limited, but is preferably 85% by mass or more, and more preferably 90% by mass or more.
  • the aliphatic amine may be one type or two or more types.
  • R 1 is an alkyl group having 12 or more carbon atoms or an alkenyl group having 12 or more carbon atoms, preferably an alkyl group having 12 or more carbon atoms
  • R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 or more carbon atoms, or an alkenyl group having 2 or more carbon atoms, preferably, both R 2 and R 3 are hydrogen atoms.
  • R 2 and R 3 is a hydrogen atom, and the other is an alkyl group having 12 or more carbon atoms.
  • R 4 is an alkyl group having 12 or more carbon atoms or an alkenyl group having 12 or more carbon atoms, preferably an alkyl group having 12 or more carbon atoms
  • R 5, R 6 and R 7 are each independently a hydrogen atom, an alkyl group having 1 or more carbon atoms, or an alkenyl group having 2 or more carbon atoms, preferably all of R 6 , R 5 and R 7 are R 5 and R 7 are each independently a hydrogen atom, an alkyl group having 1 or more carbon atoms or an alkenyl group having 2 or more carbon atoms, and R 6 is 12 or more carbon atoms.
  • R 8 is an alkylene group having 1 to 5 carbon atoms, preferably an alkylene group having 1 to 3 carbon atoms.
  • the aliphatic amine As a lubricant, it is possible to realize an excellent pulling out property without containing a metal soap. Moreover, when it uses together with carbon black so that it may mention later, the fall of the extractability by carbon black can be suppressed. Further, the aliphatic amine is advantageous in that it can be easily obtained as a commercial product.
  • the alkyl group, alkenyl group or alkylene group may be either linear or branched unless otherwise specified.
  • the alkyl group having 12 or more carbon atoms or the alkenyl group having 12 or more carbon atoms in the formulas (1) and (2) is preferably linear.
  • the upper limit of the number of carbon atoms is not particularly limited, it is preferably 30 or less, more preferably 25 or less, from the viewpoint of easy availability of aliphatic amines.
  • the alkyl group having 1 or more carbon atoms or the alkenyl group having 2 or more carbon atoms in the formulas (1) and (2) is preferably linear.
  • the upper limit of the number of carbon atoms is not particularly limited, but is preferably 30 or less, more preferably 25 or less, from the viewpoint of easy availability of aliphatic amines.
  • the melting point of the aliphatic amine is preferably 20 ° C. or higher. If the melting point of the aliphatic amine is 20 ° C. or higher, it is easy to obtain a solid form lubricant near the normal temperature of 20 ° C., it is possible to sufficiently avoid the loss of fluidity of the mixed powder, and increase the blending amount of the lubricant. It is because it can be made.
  • the melting point of the aliphatic amine is more preferably 25 ° C. or higher, further preferably 30 ° C. or higher, and particularly preferably 40 ° C. or higher.
  • the melting point of the aliphatic amine is preferably 100 ° C. or less, more preferably 85 ° C. or less, from the viewpoint of handleability.
  • the melting point of the aliphatic amine is preferably 40 ° C. or higher. This is because even in the case where these powders are mixed at a temperature near room temperature, the inside of the mixer may become close to 40 ° C. due to frictional heat.
  • an aliphatic amine having a melting point of 40 ° C. or higher as a lubricant it is possible to sufficiently prevent the formation of aggregates during mixing.
  • the aliphatic amine is preferably a primary or secondary amine. Since the primary or secondary amine has a hydrogen atom directly bonded to a nitrogen atom, the aliphatic amine and the iron-based powder or mold are compared with a tertiary amine having no hydrogen atom directly bonded to the nitrogen atom. The interaction with the surface is large, and it can be expected to exhibit excellent performance as a lubricant.
  • R 1 is a linear alkyl group having 15 to 25 carbon atoms, and both R 2 and R 3 are a hydrogen atom or a linear alkyl group having 1 to 4 carbon atoms.
  • R 1 is a linear alkyl group having 15 to 25 carbon atoms, one of R 2 and R 3 is a hydrogen atom, and the other is 15 carbon atoms.
  • R 4 is a linear alkyl group having 15 to 25 carbon atoms
  • R 5 to R 7 are all hydrogen atoms
  • R 8 is a straight chain having 2 to 4 carbon atoms.
  • Examples of the aliphatic amine include the following compounds. Stearylamine (C 18 H 37 —NH 2 ) • Behenylamine (C 22 H 45 —NH 2 ) Distearylamine [(C 18 H 37 ) 2 —NH] Cetylamine (C 16 H 33 —NH 2 ) Dimethylbehenylamine [C 22 H 45 —N— (CH 3 ) 2 ] Behenyl propylene diamine (C 22 H 45 —NH—C 3 H 6 —NH 2 )
  • the mixed powder for powder metallurgy according to the present invention can contain only the aliphatic amine as a lubricant, other lubricants can be used in combination.
  • the other lubricant is not particularly limited, and is an amide compound such as fatty acid monoamide, fatty acid bisamide, and amide oligomer, a polymer compound such as polyamide, polyethylene, polyester, polyol, and saccharide, and a metal soap such as zinc stearate and calcium stearate. Is mentioned.
  • the mixed powder for powder metallurgy does not contain the metal soap.
  • the mass of the lubricant is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, and preferably 2.0 parts by mass or less, relative to 100 parts by mass of the iron-based powder. Part or less is more preferable.
  • the mass proportion of the aliphatic amine and the other lubricant in the mass of the lubricant is not particularly limited, but from the viewpoint of sufficiently exhibiting the excellent characteristics of the aliphatic amine, the mass proportion of the other lubricant is Low is desirable.
  • the mass ratio of the aliphatic amine in the mass of the lubricant is preferably 50% by mass or more, and can be, for example, 55% by mass or more.
  • the upper limit of the mass ratio of the aliphatic amine is not particularly limited, and may be 100% by mass.
  • the mass of the aliphatic amine is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, and preferably 1.0 parts by mass or less, relative to 100 parts by mass of the iron-based powder. 9 parts by mass or less is more preferable.
  • the lubricant may be in the form of a powder, or may be a composite powder adhered to other components.
  • the powder and the composite powder may be used in combination.
  • the average particle diameter is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • a powder in which a lubricant is attached to the iron-based powder is exemplified, and this form includes a powder in which the iron-based powder is coated with a lubricant.
  • the mixed powder mixed powder for powder metallurgy according to the present invention includes one or both of an alloy powder and a machinability improving powder, which will be described later, these powders are adhered to the iron-based powder with a lubricant that also serves as a binder.
  • a lubricant that also serves as a binder.
  • the above-mentioned aliphatic amine can be used as a lubricant that also serves as a binder.
  • an aliphatic amine which is a primary or secondary amine is preferred.
  • amide compounds such as fatty acid monoamides, fatty acid bisamides, and amide oligomers, and high molecular compounds such as polyamides, polyethylenes, polyesters, polyols, and saccharides can also be used as lubricants that also serve as binders.
  • the lubricant When the lubricant also serves as a binder, the total amount of the binder and the lubricant in the entire mixed powder can be reduced. Therefore, it is preferable to use a lubricant that also serves as a binder.
  • the lubricant may be a lubricant in which at least a part also serves as a binder, or may be a lubricant in which all serve as a binder.
  • the mixed powder for powder metallurgy of the present invention can contain one or both of (c) powder for alloy and (d) powder for improving machinability.
  • the (c) alloy powder and (d) machinability improving powder are optional components, and the respective mass and total mass may be, for example, 0 parts by mass with respect to 100 parts by mass of the iron-based powder.
  • the alloy powder refers to a powder in which, when the mixed powder is sintered, the alloy elements in the alloy powder are dissolved in iron and alloyed. By using the alloy powder, the strength of the finally obtained sintered body can be improved.
  • the alloy powder may be one type or two or more types.
  • the alloy element is not particularly limited, and examples thereof include C, Cu, Ni, Mo, Mn, Cr, V, and Si.
  • the alloy powder may be a metal powder composed of one kind of alloy element or an alloy powder composed of two or more kinds. An alloy powder composed of Fe and one or more of alloy elements and Fe less than 50% by mass can also be used. Moreover, when using C as an alloy component, it is preferable to use graphite powder as the alloy powder. As the alloy powder, Cu powder and graphite powder are preferable.
  • the machinability improving powder is a component that improves the machinability (workability) of a sintered body obtained by sintering the mixed powder, and includes MnS, CaF 2 and talc.
  • machinability improving powder one or more machinability improving powders can be used.
  • the mass of one or both of the (c) alloy powder and the (d) machinability improving powder is preferably 10 parts by mass or less, more preferably 7 parts by mass or less, with respect to 100 parts by mass of the iron-based powder. 5 parts by mass or less is more preferable.
  • the mass of one or both of (c) the alloy powder and (d) the machinability improving powder within the above range, the density of the sintered body can be further increased and the strength of the sintered body can be further improved. it can.
  • these masses are preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, and further preferably 1 part by mass or more.
  • the average particle size of the (c) alloy powder and (d) machinability improving powder is not particularly limited, but is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less. .
  • (E) Binder When the powder mixture for powder metallurgy according to the present invention contains at least one of an alloy powder and a machinability improving powder, a binder is preferably used to prevent segregation. By attaching one or both of the alloy powder and the machinability improving powder to the surface of the iron-based powder with the binder, segregation can be prevented and the properties of the sintered body can be further improved. That is, the mixed powder for powder metallurgy can be used as the segregation preventing powder.
  • the binder is not particularly limited as long as it can adhere one or both of the alloy powder and the machinability improving powder to the surface of the iron-based powder.
  • the lubricant can also serve as a binder.
  • the mass of the binder is preferably 5 parts by mass or more, more preferably 10 parts by mass or more from the viewpoint of adhesion, when one or both of the alloy powder and the machinability improving powder is 100 parts by mass. From the viewpoint of the density of the sintered body, 50 parts by mass or less is preferable, and 40 parts by mass or less is more preferable.
  • the mass of the binder includes the mass of the lubricant that also serves as the binder. By using such a lubricant, it is possible to reduce the total amount of binder and lubricant in the entire mixed powder.
  • the binder it is preferable to use a binder that has lubricity and can function as a lubricant. In that case, it can be said that the binder also serves as a lubricant.
  • a lubricant that also serves as a binder and other binders may be used in combination.
  • the mixed powder of the present invention can contain carbon black as a fluidity improving powder in order to further improve fluidity.
  • carbon black it is preferable to blend carbon black.
  • the specific surface area of the carbon black is not particularly limited, but is preferably 50 m 2 / g or more, and preferably 120 m 2 / g or less.
  • the specific surface area is a value measured by the BET method.
  • the average particle size of carbon black is not particularly limited, but is preferably 5 nm or more, and more preferably 500 nm or less.
  • the average particle diameter of carbon black is the arithmetic average of the particle diameters of the particles observed with an electron microscope.
  • the amount of carbon black added can be 0.06 to 3.0 parts by mass with respect to 100 parts by mass of the iron-based powder. If the content of carbon black is 0.06 parts by mass or more, a sufficient fluidity improving effect can be easily obtained. On the other hand, if the amount of carbon black added is 3.0 parts by mass or less, it depends on the blending of carbon black. A decrease in compressibility and pullability can be sufficiently prevented.
  • the manufacturing method of the mixed powder for powder metallurgy of the present invention is not particularly limited.
  • a powder mixture for powder metallurgy can be obtained by mixing the above components using a mixer.
  • the addition and mixing of each component can be performed once, but can also be performed in two or more steps.
  • the mixing is preferably performed at room temperature (20 ° C.).
  • the above components are stirred at a temperature equal to or higher than the melting point of the binder (for example, a temperature range 10 to 100 ° C. higher than the melting point), and gradually mixed while being mixed. It only has to be cooled.
  • the surface of the iron-based powder can be coated with the molten binder.
  • the alloy powder and the machinability improving powder can be present during heating and stirring, these powders can be attached to the iron-based powder via a binder.
  • carbon black may be mixed after the alloy powder and the machinability improving powder are adhered to the iron-based powder via a binder.
  • a binder that also serves as a lubricant may be used as the binder.
  • the mixing means is not particularly limited, and any of various known mixers can be used. From the viewpoint of easy heating, it is preferable to use a high-speed bottom stirring mixer, an inclined rotary pan mixer, a rotary mulberry mixer, and a conical planetary screw mixer.
  • a sintered body can be obtained using the mixed powder for powder metallurgy of the present invention.
  • the method for producing the sintered body is not particularly limited, and the powder metallurgy mixed powder of the present invention is filled in a mold and compression molded to obtain a green compact, which is then taken out and subjected to a sintering treatment. Can do.
  • the compression molding method is not particularly limited, and examples thereof include press molding.
  • the pressure for press molding can be set to 300 to 1000 MPa, for example.
  • the method of sintering treatment is not particularly limited, and for example, sintering can be performed at a high temperature of 1000 ° C. or higher.
  • the temperature for the sintering treatment is preferably 1300 ° C. or lower.
  • the atmosphere of the sintering treatment is not particularly limited, and examples thereof include an inert gas atmosphere such as nitrogen and argon.
  • the obtained sintered body can be subjected to a known post-treatment.
  • a product with a predetermined size may be obtained by cutting or the like.
  • the mixed powder for powder metallurgy according to the present invention is excellent in fluidity, it is advantageous in compression molding. Further, the use of the mixed powder for metallurgy according to the present invention is advantageous because the green compact can be extracted from the mold with a low extraction force.
  • Example 1 The mixed powder for powder metallurgy was prepared by the following procedure, and the characteristics of the obtained powder mixture for powder metallurgy and the characteristics of the green compact produced using the powder mixture for powder metallurgy were evaluated.
  • iron powder pure iron powder manufactured by the atomizing method (JIP301A manufactured by JFE Steel Corporation) was used.
  • the median diameter D50 of the iron powder was 80 ⁇ m.
  • the median diameter D50 was measured with a laser diffraction particle size distribution measuring device. In the following, the median diameter D50 was measured in the same manner for powders other than carbon black.
  • Table 1 shows the components used as the powder for the (b) lubricant and (c) alloy, and the blending amount of each component.
  • the median diameter D50 of the lubricant used is as shown in Table 1.
  • the median diameter D50 of the copper powder used as the alloy powder was 25 ⁇ m, and the median diameter D50 of the graphite powder was 4.2 ⁇ m.
  • the lubricant also serves as a binder. That is, the alloy powder adheres to the surface of the iron-based powder through a lubricant that also serves as a binder.
  • the apparent density was evaluated according to the method specified in JIS Z 2504 using a funnel with a diameter of 2.5 mm.
  • the powder fluidity was evaluated by the critical outflow diameter.
  • a container having a cylindrical shape with an inner diameter of 67 mm and a height of 33 mm and having a discharge hole with a variable diameter at the bottom was prepared.
  • the container was filled with an amount of mixed powder that slightly overflowed from the container with the discharge hole closed. After holding in that state for 5 minutes, the powder swelled on the container was scraped off along the top of the container with a spatula. Subsequently, the discharge holes were gradually opened, the minimum diameter at which the mixed powder could be discharged was measured, and the minimum diameter was defined as the limit outflow diameter. The smaller the critical outflow diameter, the better the fluidity.
  • a green compact was produced using the powder mixture for powder metallurgy, and the density (green compact density) and the unloading power of the obtained green compact were evaluated.
  • a tablet-type green compact with a diameter of 11.3 mm ⁇ 10 mm was manufactured by molding at a pressure of 686 MPa according to JIS Z 2508 and JPMA P 10.
  • the green density was calculated from the size and weight of the obtained molded body.
  • the extraction output was obtained from the extraction load when extracting from the mold. The measurement results are shown in Table 1.
  • the mixed powder for powder metallurgy satisfying the conditions of the present invention had a lower extraction force than the comparative example and was excellent in extraction performance.
  • Example 2 powder metallurgy mixed powder containing carbon black was prepared and evaluated in the same manner as in Example 1.
  • Table 2 shows the types and amounts of the components used.
  • the carbon black used had a specific surface area (according to a BET specific surface area measurement method) of 95 m 2 / g and an average particle diameter (according to an arithmetic average of particle diameters observed with an electron microscope) of 25 nm.
  • the average particle size of the iron-based powder, the copper powder used as the alloy powder, and the graphite powder is the same as in Example 1, and the average particle size of the lubricant is as shown in Table 2.
  • Example 3 In the above Examples 1 and 2, mixed powder for powder metallurgy was manufactured by heating and mixing above the melting point of the lubricant. Therefore, in Examples 1 and 2, the lubricant also serves as a binder. However, the present invention is also effective when no binder is used, that is, when the lubricant is simply mixed without heating.
  • the average particle diameters of the iron-based powder, the copper powder used as the alloy powder, and the graphite powder are the same as in Example 1, and the specific surface area and the average particle diameter of carbon black are the same as in Example 2.
  • the average particle diameter of the lubricant is as shown in Table 3.
  • the extraction force was lower than that of the comparative example, and the extraction property was excellent.
  • the mixed powder of the comparative example has a low extraction property due to the addition of carbon black, the mixed powder for powder metallurgy satisfying the conditions of the present invention maintained a good extraction property.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Powder Metallurgy (AREA)
  • Lubricants (AREA)

Abstract

容易に入手可能な化合物を潤滑剤として含み、汚れの原因となる金属石鹸を含む必要がなく、抜出し性に優れ、さらにカーボンブラックを含む場合にも抜出し性を低下させることなく優れた流動性を発揮することができる、粉末冶金用混合粉を提供する。 (a)鉄基粉末および(b)潤滑剤を含有する粉末冶金用混合粉であって、前記(b)潤滑剤が特定の脂肪族アミンを含有する粉末冶金用混合粉。

Description

粉末冶金用混合粉
 本発明は、粉末冶金用混合粉に関し、特に、汚れの原因となる金属石鹸を用いる必要がなく、優れた抜出し性を有し、さらにカーボンブラックを用いた場合には優れた流動性と抜出し性を両立させることができる粉末冶金用混合粉に関する。
 粉末冶金技術は、複雑な形状の部品を、製品形状に極めて近い形状に成形でき、しかも高い寸法精度で製造できる手法であり、粉末冶金技術によれば切削コストを大幅に低減することができる。そのため、粉末冶金製品は各種の機械や部品として、多方面に利用されている。
 粉末冶金では、主原料となる鉄基粉末に、必要に応じて銅粉、黒鉛粉、リン化鉄粉等の合金用粉末や、MnS等の切削性改善用粉末および潤滑剤を混合した、混合粉(以下、粉末冶金用混合粉」または単に「混合粉」という)が用いられる。
 このような粉末冶金用混合粉を成形して製品を製造する上で、該粉末冶金用混合粉に含まれる潤滑剤が果たす役割は極めて大きい。以下、潤滑剤の作用について説明する。
 まず、潤滑剤は、混合粉を金型で成形する際の潤滑作用を有している。この作用は、さらに次の2つに大別される。一つは、混合粉に含まれる粒子間の摩擦を低減する作用である。成形時、潤滑剤が粒子間に入りこんで摩擦を小さくすることにより、粒子の再配列が促される。もう一つは、成形に用いられる金型と粒子との間の摩擦を低減する作用である。成形時に、潤滑剤が該金型と粒子との間に入り込むことで、金型-粒子間の摩擦が低減される。上記2つの作用により、成形時に混合粉を高い密度まで圧縮することが可能となる。
 さらに、潤滑剤は、金型内で圧縮成形された混合粉(圧粉体)を金型から取り出す(抜出す)際にも潤滑作用を発揮する。一般的に、圧粉体の金型からの抜出しは、パンチによって押し出すことによって行われるが、圧粉体と金型表面との摩擦により大きな摩擦抵抗が生じる。この際にも、混合粉に含まれる潤滑剤のうち、金型表面と接して存在するものによって摩擦力が低減される。
 このように、粉末冶金用混合粉に含まれる潤滑剤は、製品を製造する上で非常に大きな役割を果たす。しかし、潤滑剤が必要となるのは成形と、金型からの抜出しが終わるまでであり、それ以降は不要であるだけでなく、圧粉体の焼結時には消失して、最終的な焼結体には残留しないことが求められる。
 また、一般に潤滑剤は鉄基粉末に比べて付着力が強いため、混合粉の流動性を悪化させる。さらに潤滑剤は、比重が鉄基粉末に比べ小さいため、混合粉中に、多量に含有させると圧粉体の密度が低下するという問題がある。
 さらに、粉末冶金用混合粉において用いられる潤滑剤には、結合剤として機能することが求められる場合がある。ここで、結合剤とは、主成分である鉄基粉末の表面に、添加成分である合金用粉末等を付着させるための成分を指す。一般的な粉末冶金用混合粉は、鉄基粉末に、合金用粉末、切削性改善用粉末、および潤滑剤等の添加成分を混合しただけであるが、このような状態の混合粉では、混合粉の内部で各成分が偏析する場合がある。特に、合金用粉として一般的に用いられる黒鉛粉は、他の成分に比べて比重が小さいため、混合粉を流動させたり、振動させたりすることで容易に偏析する。このような偏析を防止するために、鉄基粉末の表面に結合剤を介して添加成分を付着させることが提案されている。このような粉末は、粉末冶金用混合粉の1種であるが、偏析防止処理粉とも呼ばれる。偏析防止処理粉では、添加成分が鉄基粉末に付着しているため、上述したような成分の偏析を防止できる。
 このような偏析防止処理粉に用いられる結合剤としては、潤滑剤としても機能する化合物がしばしば採用される。これは、結合剤に潤滑性能をもたせることで、混合粉に添加する結合剤と潤滑剤の総量を減らすことができるからである。
 このような粉末冶金用混合粉は、一般に、300~1000MPaの圧力でプレス成形して、所定の部品形状とした後、1000℃以上の高温で焼結し、最終的な部品形状とする。その際、混合粉に含まれる潤滑剤および結合剤の総量は、一般的には、鉄基粉末100質量部に対し0.1~2質量部程度である。圧粉密度を大きくするためには潤滑剤および結合剤の添加量は少ないほうがよい。したがって、潤滑剤には、少量の配合で優れた潤滑性を発揮することが求められる。
 上記潤滑剤としては、従来、ステアリン酸亜鉛等の金属石鹸が広く用いられてきた。しかし、金属石鹸は、圧粉体を焼結する際に、炉やワーク、焼結体表面の汚れの原因となる。そのため、金属石鹸に代わる様々な潤滑剤が提案されている。
 例えば、特許文献1では、ジアミドワックスを潤滑剤兼結合剤として用いることが提案されている。また、特許文献2では、ポリヒドロキシカルボン酸アミドを潤滑剤として用いることが提案されている。
 また、潤滑剤を含有する粉末冶金用混合粉の流動性を改善するために、粉末冶金用混合粉に、さらに流動性改善用の粉末を添加する技術が提案されている。
 例えば、特許文献3では、ジアミドワックス等の潤滑剤兼結合剤を含む混合粉に、シリカ等の流動性改善剤を添加することによって流動性を改善することが提案されている。また、特許文献4では、ジアミドワックス等の潤滑剤兼結合剤を含む混合粉に、カーボンブラックを添加することによって流動性および見掛密度を改善することが提案されている。
特表平06-506726号公報 国際公開第2005/068588号公報 特表2003-508635号公報 特開2010-280990号公報
 しかし、特許文献2で提案されているポリヒドロキシカルボン酸アミドは、ポリヒドロキシカルボン酸またはその等価体と脂肪族アミンとを原料とするアミド化反応により合成する必要があり、入手が容易ではないという問題があった。
 また、特許文献1等で潤滑剤として用いられているジアミドワックスは、金属石鹸に比べて良好な抜出し性を有しているものの、さらなる抜出性の向上が求められていた。
 さらに、従来の潤滑剤には、特許文献3、4で提案されているように、流動性を改善するためにシリカやカーボンブラック等の粒子を添加した場合、混合粉の圧縮性が低下してしまうという問題があった。圧縮性が低下すると、成形時のスプリングバックが大きくなり、抜出し性が低下してしまう。
 本発明は、上記事情に鑑みてなされたものであり、容易に入手可能な化合物を潤滑剤として含み、汚れの原因となる金属石鹸を含む必要がなく、抜出し性に優れ、さらにカーボンブラックを含む場合にも抜出し性を低下させることなく優れた流動性を発揮することができる、粉末冶金用混合粉を提供することを目的とする。
 本発明者らは、上記課題を解決する方法について鋭意検討した結果、市販品として容易に入手できる特定の脂肪族アミンを潤滑剤として用いた場合に、上記課題を解決できることを見出した。本発明は上記知見に基づいてなされたものであり、その要旨構成は以下のとおりである。
1.(a)鉄基粉末および(b)潤滑剤を含有する粉末冶金用混合粉であって、
 前記(b)潤滑剤が、式(1)または(2)で表される脂肪族アミンの1種以上を含有する、粉末冶金用混合粉。
Figure JPOXMLDOC01-appb-C000003
(式中、
は、炭素原子数12以上のアルキル基または炭素原子数12以上のアルケニル基であり、
およびRは、それぞれ独立に、水素原子、炭素原子数1以上のアルキル基または炭素原子数2以上のアルケニル基である。)
Figure JPOXMLDOC01-appb-C000004
(式中、
は、炭素原子数12以上のアルキル基または炭素原子数12以上のアルケニル基であり、
5、およびRは、それぞれ独立に、水素原子、炭素原子数1以上のアルキル基または炭素原子数2以上のアルケニル基であり、
は、炭素原子数1~5のアルキレン基である。)
2.前記脂肪族アミンの融点が20℃以上である、上記1に記載の粉末冶金用混合粉。
3.前記脂肪族アミンの融点が40℃以上である、上記2に記載の粉末冶金用混合粉。
4.前記脂肪族アミンが、1級アミンまたは2級アミンである、上記1~3のいずれかの粉末冶金用混合粉。
5.(c)合金用粉末および(d)切削性改善用粉末の一方または両方を含有する、上記1~4のいずれかの粉末冶金用混合粉。
6.前記(c)合金用粉末および(d)切削性改善用粉末の一方または両方が、(e)結合剤によって前記(a)鉄基粉末の表面に付着している、上記5の粉末冶金用混合粉。
7.前記(b)潤滑剤の少なくとも一部が、前記(e)結合剤を兼ねる、上記6に記載の粉末冶金用混合粉。
8.前記(b)潤滑剤に含有される前記脂肪族アミンが、前記(e)結合剤を兼ねる、上記7の粉末冶金用混合粉。
9.(f)カーボンブラックを含有する、上記1~8のいずれかの粉末冶金用混合粉。
10.前記(f)カーボンブラックが、前記(a)鉄基粉末100質量部に対し0.06~3.0質量部である、上記9の粉末冶金用混合粉。
11.上記1~10のいずれかの粉末冶金用混合粉を用いた焼結体。
 本発明の粉末冶金用混合粉は、汚れの原因となる金属石鹸を含むことなく、極めて優れた抜出し性を発揮することができる。さらに、流動性向上のためにカーボンブラックのような硬質微粒子を添加した場合であっても、抜出し性を低下させることなく、かつ優れた流動性を発揮することができる。また、本発明において潤滑剤として用いられる脂肪族アミンは、市販品として容易に入手できるため、製造面およびコスト面においても有利である。
 以下、本発明について具体的に説明するが、これらは例示であって、本発明の範囲を限定するものではない。
 本発明の粉末冶金用混合粉は、下記(a)および(b)を必須成分として含有する。本発明の粉末冶金用混合粉は、下記(a)および(b)に加え、下記(c)~(f)から選択される1または2以上を含有することができる。また、本発明の粉末冶金用混合粉は、本発明の効果が損なわれない範囲で、下記(a)~(f)以外の成分を含有することができる。以下、これらの各成分について説明する。
(a)鉄基粉末
(b)潤滑剤
(c)合金用粉末
(d)切削性改善用粉末
(e)結合剤
(f)カーボンブラック
(a)鉄基粉末
 本明細書において、鉄基粉末は、Feを50質量%以上含む金属粉末を指すものとする。鉄基粉末は、特に限定されず、鉄粉および鉄合金粉が挙げられる。鉄粉(本技術分野においては一般的に「純鉄粉」と称される。)は、本明細書において、Feおよび不可避不純物からなる粉末を指すものとする。前記鉄合金粉は、Feが50質量%以上である合金粉であれば、特に限定されず、合金鋼粉を含む。前記合金鋼粉は、特に限定されず、合金元素を溶製時に予め合金化した予合金鋼粉(完全合金化鋼粉)、鉄粉に合金元素を部分拡散させて合金化した部分拡散合金化鋼粉、予合金化鋼粉にさらに合金元素を部分拡散させたハイブリッド鋼粉が挙げられる。前記合金元素は、特に限定されず、C、Cu、Ni、Mo、Mn、Cr、V、Siが挙げられる。前記合金元素は、1種または2種以上であることができる。
 前記鉄基粉末の製造方法は、特に限定されず、酸化鉄を還元して製造される還元鉄基粉末、アトマイズ法によって製造されるアトマイズ鉄基粉末が挙げられる。また、前記鉄基粉末の平均粒径は特に限定されないが、30μm以上が好ましく、60μm以上がより好ましく、また、120μm以下が好ましく、100μm以下がより好ましい。本明細書において、特段の断りがない限り、平均粒径は、レーザ回折式粒子径分布測定装置で測定したメジアン径(D50)を指すものとする。
 粉末冶金用混合粉の全質量に占める前記鉄基粉末の質量割合は特に限定されないが、85質量%以上が好ましく、90質量%以上がより好ましい。
(b)潤滑剤
[脂肪族アミン]
 本発明では、前記潤滑剤として、下記の一般式(1)または(2)で表される脂肪族アミンを用いることが重要である。前記脂肪族アミンは、1種または2種以上であることができる。
Figure JPOXMLDOC01-appb-C000005
(式中、
は、炭素原子数12以上のアルキル基または炭素原子数12以上のアルケニル基であり、好ましくは炭素原子数12以上のアルキル基であり、
およびRは、それぞれ独立に、水素原子または炭素原子数1以上のアルキル基または炭素原子数2以上のアルケニル基であり、好ましくは、RおよびRの両方が水素原子であるか、またはRおよびRの一方が水素原子であり、他方が炭素原子数12以上のアルキル基である。)
Figure JPOXMLDOC01-appb-C000006
(式中、Rは、炭素原子数12以上のアルキル基または炭素原子数12以上のアルケニル基であり、好ましくは炭素原子数12以上のアルキル基であり、
5、およびRは、それぞれ独立に、水素原子、炭素原子数1以上のアルキル基または炭素原子数2以上のアルケニル基であり、好ましくはR、RおよびRの全てが水素原子であるか、またはRおよびRが、それぞれ独立に、水素原子、炭素原子数1以上のアルキル基または炭素原子数2以上のアルケニル基であり、Rが炭素原子数12以上のアルキル基または炭素原子数12以上のアルケニル基であり、
は、炭素原子数1~5のアルキレン基であり、好ましくは炭素原子数1~3のアルキレン基である。)
 前記脂肪族アミンを潤滑剤として用いることにより、金属石鹸を含有せずとも優れた抜出し性を実現することができる。また、後述するようにカーボンブラックと併用した場合には、カーボンブラックによる抜出し性の低下を抑制することができる。さらに、前記脂肪族アミンは市販品として容易に入手できるという点でも有利である。
 本明細書において、アルキル基、アルケニル基またはアルキレン基は、特段の記載がない限り、直鎖状または分岐状のいずれであってもよい。
 前記式(1)および(2)における炭素原子数12以上のアルキル基または炭素原子数12以上のアルケニル基は、好ましくは直鎖状である。また、炭素原子数の上限は特に限定されないが、脂肪族アミンの入手の容易さの観点からは、30以下が好ましく、25以下がより好ましい。
 また、式(1)および(2)における炭素原子数1以上のアルキル基または炭素原子数2以上のアルケニル基は、好ましくは直鎖状である。炭素原子数の上限は特に限定されないが、脂肪族アミンの入手の容易さの観点からは、30以下が好ましく、25以下がより好ましい。
 前記脂肪族アミンの融点は20℃以上であることが好ましい。前記脂肪族アミンの融点が20℃以上であれば、20℃という常温付近で固体形態の潤滑剤を得やすく、混合粉の流動性が損なわれることを十分回避でき、潤滑剤の配合量を増加させることができるためである。前記脂肪族アミンの融点は25℃以上がより好ましく、30℃以上がさらに好ましく、特に好ましくは40℃以上である。前記脂肪族アミンの融点は、取り扱い性の点から、100℃以下が好ましく、より好ましくは85℃以下である。
 特に、粉末形態の潤滑剤を鉄基粉末に混合する場合、前記脂肪族アミンの融点は40℃以上であることが好ましい。これは、常温付近の温度でこれらの粉末を混合する場合であっても、摩擦熱によって混合機内が40℃近くになる可能性があるためである。融点が40℃以上である脂肪族アミンを潤滑剤として使用することにより、混合の際に凝集塊が生じることを十分に防ぐことができる。
 前記脂肪族アミンとしては、1級または2級アミンが好ましい。1級または2級アミンは、窒素原子に直接結合した水素原子を有するので、窒素原子に直接結合した水素原子を有さない3級アミンに比べて、該脂肪族アミンと鉄基粉末や金型表面との間の相互作用が大きく、潤滑剤として優れた性能を発揮することが期待できる。
 前記脂肪族アミンとしては、式(1)または(2)で表される化合物であれば、任意のものを用いることができるが、以下の化合物が好ましい。
・式(1)において、Rが炭素原子数15~25の直鎖状のアルキル基であり、RおよびRの両方が水素原子または炭素原子数1~4の直鎖状のアルキル基である脂肪族アミン
・式(1)において、Rが炭素原子数15~25の直鎖状のアルキル基であり、RおよびRの一方が水素原子であり、他方が炭素原子数15~25の直鎖状のアルキル基である脂肪族アミン(ここで、Rと、炭素原子数15~25の直鎖状のアルキル基であるRまたはRとは、同じであることがより好ましい。)
・式(2)において、Rが炭素原子数15~25の直鎖状のアルキル基であり、R~Rの全てが水素原子であり、Rが炭素原子数2~4の直鎖状または分岐状のアルキレン基である脂肪族アミン 
前記脂肪族アミンとしては、例えば、以下の化合物が挙げられる。
・ステアリルアミン(C1837-NH
・ベヘニルアミン(C2245-NH
・ジステアリルアミン[(C1837-NH]
・セチルアミン(C1633-NH
・ジメチルベヘニルアミン[C2245-N-(CH
・ベヘニルプロピレンジアミン(C2245-NH-C-NH
[その他の潤滑剤]
 本発明の粉末冶金用混合粉は、潤滑剤として前記脂肪族アミンのみを含有することもできるが、その他の潤滑剤を併用することもできる。前記その他の潤滑剤は、特に限定されず、脂肪酸モノアミド、脂肪酸ビスアミド、アミドオリゴマー等のアミド化合物、ポリアミド、ポリエチレン、ポリエステル、ポリオール、糖類等の高分子化合物、ステアリン酸亜鉛、ステアリン酸カルシウム等の金属石鹸が挙げられる。ただし、先に述べたように、金属石鹸は、炉やワーク、焼結体表面の汚れの原因となるため、前記粉末冶金用混合粉は金属石鹸を含有しないことが好ましい。
[潤滑剤の量および形態]
 潤滑剤の質量は、鉄基粉末100質量部に対して、0.1質量部以上が好ましく、0.2質量部以上がより好ましく、また、2.0質量部以下が好ましく、1.8質量部以下がより好ましい。
 潤滑剤の質量中の脂肪族アミンおよびその他の潤滑剤の質量割合は、特に限定されないが、前記脂肪族アミンの優れた特性を十分に発揮させるという観点からは、その他の潤滑剤の質量割合は低いことが望ましい。具体的には、潤滑剤の質量中の脂肪族アミンの質量割合は、50質量%以上が好ましく、例えば55質量%以上とすることができる。脂肪族アミンの質量割合の上限は特に限定されず、100質量%であってよい。
 前記脂肪族アミンの質量は、鉄基粉末100質量部に対して、0.1質量部以上が好ましく、0.2質量部以上がより好ましく、また、1.0質量部以下が好ましく、0.9質量部以下がより好ましい。
 前記潤滑剤は、粉末の形態であってもよく、または他の成分に付着した複合粉末であってもよい。前記粉末と、前記複合粉末とを併用してもよい。
 潤滑剤が粉末の形態の場合、平均粒径(メジアン径(D50))は、1μm以上が好ましく、5μm以上がより好ましく、また、100μm以下が好ましく、50μm以下がより好ましい。
 潤滑剤が他の成分に付着した複合粉末の場合、前記鉄基粉末に、潤滑剤が付着した粉末が挙げられ、この形態は、鉄基粉末が潤滑剤で被覆された粉末を包含する。
 本発明の粉末冶金用混合粉合粉が、後述する合金用粉末および切削性改善用粉末の一方または両方を含む場合、結合剤を兼ねる潤滑剤により、これらの粉末を鉄基粉末に付着させることができる。結合剤を兼ねる潤滑剤としては、前記脂肪族アミンを用いることができる。鉄基粉末、合金用粉末および切削性改善用粉末の相互作用の点から、1級または2級アミンである脂肪族アミンが好ましい。また、脂肪酸モノアミド、脂肪酸ビスアミド、アミドオリゴマー等のアミド化合物、ポリアミド、ポリエチレン、ポリエステル、ポリオール、糖類等の高分子化合物等も結合剤を兼ねる潤滑剤として用いることができる。
 潤滑剤が結合剤を兼ねることによって、混合粉全体に占める結合剤と潤滑剤の総量を減らすことができるため、結合剤を兼ねる潤滑剤の使用が好ましい。潤滑剤は、少なくとも一部が結合剤を兼ねる潤滑剤であることができ、全部が結合剤を兼ねる潤滑剤であってもよい。
(c)合金用粉末および(d)切削性改善用粉末
 本発明の粉末冶金用混合粉は、(c)合金用粉末および(d)切削性改善用粉末の一方または両方を含有することができる。(c)合金用粉末および(d)切削性改善用粉末は、任意成分であり、それぞれの質量および合計質量は、例えば鉄基粉末100質量部に対して0質量部であってもよい。
 合金用粉末は、混合粉を焼結すると、合金用粉末中の合金元素が鉄に固溶して合金化する粉末を指すものとする。合金用粉末を用いることにより、最終的に得られる焼結体の強度を向上させることができる。合金用粉末を用いる場合、合金用粉末は1種または2種以上であってよい。
 合金元素は、特に限定されず、C、Cu、Ni、Mo、Mn、Cr、V、Siが挙げられる。合金用粉末は、合金元素の1種から構成される金属粉末であっても、2種以上から構成される合金粉末であってもよい。Feと合金元素の1種以上で構成され、Feが50質量%未満である合金粉末も使用できる。また、Cを合金成分として用いる場合、合金用粉末として黒鉛粉を用いることが好ましい。合金用粉末としては、Cu粉末、黒鉛粉末が好ましい。
 切削性改善用粉末は、混合粉を焼結して得られる焼結体の切削性(加工性)を向上させる成分であり、MnS、CaFおよびタルクが挙げられる。切削性改善用粉末を用いる場合、切削性改善用粉末は1種または2種以上を用いることができる。
 ここで、(c)合金用粉末および(d)切削性改善粉末の一方または両方の質量は、鉄基粉末100質量部に対して、10質量部以下が好ましく、7質量部以下がより好ましく、5質量部以下がさらに好ましい。(c)合金用粉末および(d)切削性改善用粉末の一方または両方の質量を前記範囲内とすることにより、焼結体の密度をさらに高め、焼結体の強度を一層向上させることができる。一方、これらの質量は0.1質量部以上が好ましく、0.5質量部以上がより好ましく、1質量部以上がさらに好ましい。(c)合金用粉末および(d)切削性改善用粉末の合計質量を前記範囲内とすることにより、これら成分の添加効果をより高めることができる。
 (c)合金用粉末および(d)切削性改善粉末の平均粒径は、特に限定されないが、0.1μm以上が好ましく、1μm以上がより好ましく、また、100μm以下が好ましく、50μm以下がより好ましい。
(e)結合剤
 本発明の粉末冶金用混合粉が合金用粉末および切削性改善用粉末の少なくとも一方を含有する場合、偏析を防止するために、結合剤を用いることが好ましい。結合剤によって、前記合金用粉末および切削性改善用粉末の一方または両方を、前記鉄基粉末の表面に付着させることにより、偏析を防止し、焼結体の特性をさらに向上させることができる。すなわち、粉末冶金用混合粉を、偏析防止処理粉とすることができる。
 前記結合剤は、特に限定されず、前記合金用粉末および切削性改善用粉末の一方または両方を前記鉄基粉末の表面に付着させることができるものであればよい。上記のとおり、潤滑剤が結合剤を兼ねることもできる。
 前記結合剤の質量は、合金用粉末および切削性改善用粉末の一方または両方を100質量部とした場合、付着性の点から、5質量部以上が好ましく、10質量部以上がより好ましく、また、焼結体の密度の点からは、50質量部以下が好ましく、40質量部以下がより好ましい。潤滑剤が結合剤を兼ねる場合、上記結合剤の質量には、結合剤を兼ねる潤滑剤の質量も含まれる。このような潤滑剤を使用することにより、混合粉全体に占める結合剤と潤滑剤の総量を減らすことができる。反対に結合剤としては、潤滑性を有し、潤滑剤として機能し得るものを用いることが好ましい。その場合、結合剤が潤滑剤を兼ねているということができる。結合剤として、結合剤を兼ねる潤滑剤と、それ以外の結合剤を併用してもよい。
(f)カーボンブラック
 本発明の混合粉は、流動性をさらに向上させるために、流動性改善用粉末としてカーボンブラックを含有することができる。(c)合金用粉末および(d)切削性改善用粉末の一方または両方を含有する場合、カーボンブラックを配合することが好ましい。
 カーボンブラックの比表面積は、特に限定されないが、50m/g以上が好ましく、また、120m/g以下が好ましい。ここで、比表面積はBET法で測定した値である。また、カーボンブラックの平均粒径は、特に限定されないが、5nm以上が好ましく、また、500nm以下が好ましい。ここで、カーボンブラックの平均粒径は、電子顕微鏡で観察した粒子の粒径の算術平均である。
 カーボンブラックを用いる場合、該カーボンブラックの添加量は、鉄基粉末100質量部に対して0.06~3.0質量部とすることができる。カーボンブラックの含有量が0.06質量部以上であれば、十分な流動性改善効果が得られやすく、一方、カーボンブラックの添加量が3.0質量部以下であれば、カーボンブラックの配合による圧縮性と抜出し性の低下を十分防止することができる。
[製造方法]
 本発明の粉末冶金用混合粉の製造方法は、特に限定されない。例えば、上記各成分を、混合機を用いて混合することにより、粉末冶金用混合粉を得ることができる。各成分の添加と混合は、1回で行うこともできるが、2回以上に分けて行うこともできる。混合は、室温(20℃)で行うことが好ましい。
 結合剤を使用する場合には、例えば、結合剤の融点以上(例えば、融点よりも10~100℃高い温度範囲が挙げられる)で、上記各成分を加熱しつつ撹拌し、混合しながら徐々に冷却すればよい。加熱撹拌を通して、鉄基粉末の表面を、溶融した結合剤によって被覆することができる。また、加熱撹拌時に、合金用粉末および切削性改善用粉末を存在させることによって、これらの粉末を、結合剤を介して鉄基粉末に付着させることができる。カーボンブラックを用いる場合、結合剤を介して、合金用粉末および切削性改善用粉末を鉄基粉末に付着させた後、カーボンブラックを混合してもよい。上記の製造方法において、結合剤として、潤滑剤を兼ねる結合剤を用いてもよい。
 混合手段は、特に限定されず、各種公知の混合機等の任意のものを使用できる。加熱が容易であるという観点からは、高速底部撹拌式混合機、傾斜回転パン型混合機、回転クワ型混合機および円錐遊星スクリュー形混合機を用いることが好ましい。
[焼結体]
 本発明の粉末冶金用混合粉を用いて、焼結体を得ることができる。焼結体の製造方法は、特に限定されず、本発明の粉末冶金用混合粉を金型に充填して圧縮成形し、圧粉体とした後、これを取り出して、焼結処理に付すことができる。圧縮成形の方法は特に限定されず、プレス成形等が挙げられる。プレス成形の圧力は、例えば300~1000MPaとすることができる。
 焼結処理の方法は特に限定されず、例えば、1000℃以上の高温で焼結することができる。焼結処理の温度は、1300℃以下が好ましい。焼結処理の雰囲気は、特に限定されず、窒素、アルゴン等の不活性ガス雰囲気等が挙げられる。
 得られた焼結体は、公知の後処理に付すことができる。例えば、切削加工等により、所定寸法の製品にしてもよい。
 本発明の粉末冶金用混合粉は流動性に優れているので、圧縮成形において有利である。また、本発明の冶金用混合粉を用いることにより、低い抜出し力で圧粉体を金型から抜出すことができ、有利である。
(実施例1)
 以下の手順で粉末冶金用混合粉を調製し、得られた粉末冶金用混合粉の特性と、該粉末冶金用混合粉を用いて作製した圧粉体の特性を評価した。
 まず、(a)鉄基粉末に対して、(b)合金用粉末および(c)潤滑剤を添加し、前記潤滑剤の融点以上の温度で加熱混合した後、室温(20℃)まで冷却した。
 (a)鉄基粉末としては、アトマイズ法によって製造された鉄粉(純鉄粉)(JFEスチール株式会社製 JIP301A)を用いた。前記鉄粉のメジアン径D50は80μmであった。メジアン径D50はレーザ回折式粒子径分布測定装置により測定した。以下においてカーボンブラック以外の他の粉末も、同様にしてメジアン径D50を測定した。
 (b)潤滑剤および(c)合金用粉末として用いた成分と、各成分の配合量を表1に示す。用いた潤滑剤のメジアン径D50は表1に示すとおりである。合金用粉末として用いた銅粉のメジアン径D50は25μmであり、黒鉛粉のメジアン径D50は4.2μmであった。
 本実施例では潤滑剤が結合剤を兼ねる。すなわち、合金用粉末は、結合剤を兼ねる潤滑剤を介して、鉄基粉末の表面に付着している。
 次いで、得られた粉末冶金用混合粉のそれぞれについて、見掛密度および粉体流動性を以下の手順で評価した。測定結果を表1に併記する。
(見掛密度)
 見掛密度は、直径2.5mmのロートを使用し、JIS Z 2504に規定された方法に従って評価した。
(限界流出径)
 粉体流動性は、限界流出径によって評価した。まず、内径67mm、高さ33mmの円筒状であって、径を変えることのできる排出孔を底部に備えた容器を用意した。前記容器に、排出孔を閉じた状態で、該容器から少し溢れる程度の量の混合粉を充填した。その状態で5分間保持した後、容器上に盛り上がった粉末を容器上部に沿ってヘラで摺り切った。次いで、排出孔を徐々に開いていき、混合粉末が排出できた最小径を測定し、前記最小径を限界流出径とした。限界流出径が小さいほど流動性に優れている。
 さらに、前記粉末冶金用混合粉を用いて圧粉体を作製し、得られた圧粉体の密度(圧粉密度)と抜出力を評価した。前記評価では、JIS Z 2508、JPMA P 10に従い、圧力686MPaでの成形により、直径11.3mm×10mmのタブレット型の圧粉体を作製した。また、圧粉密度は、得られた成形体の寸法と重量から算出した。また、抜出力は、金型から抜出す際の抜出し荷重から求めた。測定結果を表1に示す。
 表1に示した結果から分かるように、本発明の条件を満たす粉末冶金用混合粉は、比較例に比べて抜出し力が低く、抜出し性に優れていた。
Figure JPOXMLDOC01-appb-T000007
 
 
(実施例2)
 さらに、(f)カーボンブラックを含む粉末冶金用混合粉を調製し、実施例1と同様の評価を行った。使用した成分の種類と配合量を表2に示す。使用したカーボンブラックの比表面積(BET比表面積測定法による)は95m/g、平均粒径(電子顕微鏡で観察した粒子の粒径の算術平均による)は25nmであった。鉄基粉末、合金用粉末として用いた銅粉、黒鉛粉の平均粒径は、実施例1と同様であり、潤滑剤の平均粒径は、表2に示すとおりである。
 混合粉の調製においては、まず(a)鉄基粉末に対して、(b)合金用粉末、および(c)潤滑剤を添加し、前記潤滑剤の融点以上の温度で加熱混合した後、室温(20℃)まで冷却した。その後、冷却後の粉末に、(f)カーボンブラックを添加し、混合して粉末冶金用混合粉とした。その他の条件は実施例1と同様とした。評価結果を表2に示す。
 表2に示した結果から分かるように、比較例の混合粉では、カーボンブラックを添加したことにより抜出し性が低下しているが、本発明の条件を満たす粉末冶金用混合粉は良好な抜出し性を保っていた。このように、本発明の粉末冶金用混合粉では、カーボンブラックを用いた場合には、優れた流動性と抜出し性を両立させることができる。
Figure JPOXMLDOC01-appb-T000008
 
 
(実施例3)
 上記実施例1、2では、潤滑剤の融点以上で加熱混合して粉末冶金用混合粉を製造した。したがって、実施例1、2では、潤滑剤が結合剤を兼ねている。しかし、本発明は結合剤を用いない場合、すなわち、潤滑剤を加熱することなく単に混合した場合にも有効である。鉄基粉末、合金用粉末として用いた銅粉、黒鉛粉の平均粒径は、実施例1と同様であり、カーボンブラックの比表面積および平均粒径は、実施例2と同様である。また、潤滑剤の平均粒径は、表3に示すとおりである。
 そこで、(a)鉄基粉末に対して、(b)合金用粉末、(c)潤滑剤および(f)カーボンブラックを添加し、V型ブレンダ―を用いて室温(20℃)下で15分間混合し、粉末冶金用混合粉とした。使用した成分の種類と配合量および評価結果を表3に示す。
 表3に示した結果から分かるように、実施例3の混合粉では、比較例に比べて抜出し力が低く、抜出し性に優れていた。また、比較例の混合粉はカーボンブラックを添加したことにより抜出し性が低下しているが、本発明の条件を満たす粉末冶金用混合粉は良好な抜出し性を保っていた。
Figure JPOXMLDOC01-appb-T000009

Claims (11)

  1.  (a)鉄基粉末および(b)潤滑剤を含有する粉末冶金用混合粉であって、
     前記(b)潤滑剤が、式(1)または(2)で表される脂肪族アミンの1種以上を含有する、粉末冶金用混合粉。
    Figure JPOXMLDOC01-appb-C000001
    (式中、
    は、炭素原子数12以上のアルキル基または炭素原子数12以上のアルケニル基であり、
    およびRは、それぞれ独立に、水素原子、炭素原子数1以上のアルキル基または炭素原子数2以上のアルケニル基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、
    は、炭素原子数12以上のアルキル基または炭素原子数12以上のアルケニル基であり、
    5、およびRは、それぞれ独立に、水素原子、炭素原子数1以上のアルキル基または炭素原子数2以上のアルケニル基であり、
    は、炭素原子数1~5のアルキレン基である。)
  2.  前記脂肪族アミンの融点が20℃以上である、請求項1に記載の粉末冶金用混合粉。
  3.  前記脂肪族アミンの融点が40℃以上である、請求項2に記載の粉末冶金用混合粉。
  4.  前記脂肪族アミンが、1級アミンまたは2級アミンである、請求項1~3のいずれか一項に記載の粉末冶金用混合粉。
  5.  (c)合金用粉末および(d)切削性改善用粉末の一方または両方を含有する、請求項1~4のいずれか一項に記載の粉末冶金用混合粉。
  6.  前記(c)合金用粉末および(d)切削性改善用粉末の一方または両方が、(e)結合剤によって前記(a)鉄基粉末の表面に付着している、請求項5に記載の粉末冶金用混合粉。
  7.  前記(b)潤滑剤の少なくとも一部が、前記(e)結合剤を兼ねる、請求項6に記載の粉末冶金用混合粉。
  8.  前記(b)潤滑剤に含有される前記脂肪族アミンが、前記(e)結合剤を兼ねる、請求項7に記載の粉末冶金用混合粉。
  9.  (f)カーボンブラックを含有する、請求項1~8のいずれ一項に記載の粉末冶金用混合粉。
  10.  前記(f)カーボンブラックが、前記(a)鉄基粉末100質量部に対し0.06~3.0質量部である、請求項9に記載の粉末冶金用混合粉。
  11.  請求項1~10のいずれか一項に記載の粉末冶金用混合粉を用いた焼結体。
PCT/JP2018/045746 2018-02-21 2018-12-12 粉末冶金用混合粉 WO2019163263A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/965,299 US11643710B2 (en) 2018-02-21 2018-12-12 Mixed powder for powder metallurgy
CA3090455A CA3090455C (en) 2018-02-21 2018-12-12 Mixed powder for powder metallurgy
EP18907048.5A EP3756790A4 (en) 2018-02-21 2018-12-12 MIXED POWDER FOR POWDER METALLURGY
JP2019518337A JP6760495B2 (ja) 2018-02-21 2018-12-12 粉末冶金用混合粉
CN201880089795.4A CN111741824A (zh) 2018-02-21 2018-12-12 粉末冶金用混合粉

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018028886 2018-02-21
JP2018-028886 2018-02-21

Publications (1)

Publication Number Publication Date
WO2019163263A1 true WO2019163263A1 (ja) 2019-08-29

Family

ID=67687593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045746 WO2019163263A1 (ja) 2018-02-21 2018-12-12 粉末冶金用混合粉

Country Status (6)

Country Link
US (1) US11643710B2 (ja)
EP (1) EP3756790A4 (ja)
JP (1) JP6760495B2 (ja)
CN (1) CN111741824A (ja)
CA (1) CA3090455C (ja)
WO (1) WO2019163263A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102364527B1 (ko) 2018-05-28 2022-02-17 제이에프이 스틸 가부시키가이샤 분말 야금용 분말 혼합물 및 그 제조 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212271A (ja) * 1988-02-18 1989-08-25 Sanyo Chem Ind Ltd 成形用組成物および使用法
JPH0230701A (ja) * 1988-07-19 1990-02-01 Sanyo Chem Ind Ltd 焼結性粉末成形体の脱脂方法
JPH06506726A (ja) 1991-04-18 1994-07-28 ホガナス アクチボラゲット 粉末混合物及びその製造方法
JPH1167514A (ja) * 1997-08-19 1999-03-09 Sumitomo Metal Ind Ltd ボンド型永久磁石の製造方法と製造用原料粉末
JP2003508635A (ja) 1999-09-09 2003-03-04 ホガナス アクチボラゲット 鉄粉と添加材の集合体および流動材からなる粉末組成物、並びにその製造方法
WO2005068588A1 (ja) 2004-01-20 2005-07-28 Kabushiki Kaisha Kobe Seiko Sho 粉末冶金用潤滑剤、粉末冶金用混合粉末及び焼結体の製造方法
JP2009180376A (ja) * 2009-04-13 2009-08-13 Komatsu Ltd 滑り軸受およびそれを用いる作業機連結装置
JP2010280990A (ja) 2004-07-02 2010-12-16 Hoganas Ab 流動性増加剤としてカーボンブラックを含有する粉末冶金組成物
WO2014103287A1 (ja) * 2012-12-28 2014-07-03 Jfeスチール株式会社 粉末冶金用鉄基粉末

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68912613T2 (de) 1988-02-18 1994-05-11 Sanyo Chemical Ind Ltd Formbare Zusammensetzung.
JPH07228901A (ja) * 1994-02-16 1995-08-29 Kobe Steel Ltd 粉末冶金用混合粉末の見掛密度調整法および粉末冶金用混合粉末
US5648160A (en) * 1994-04-14 1997-07-15 Hitachi Maxell, Ltd. Magnetic powder, method for producing the same and use of the same
JP3842580B2 (ja) * 2001-04-13 2006-11-08 ハリマ化成株式会社 合金形成用金属粒子組成物
US7390345B2 (en) 2004-07-02 2008-06-24 Höganäs Ab Powder additive
JP2010285633A (ja) 2009-06-09 2010-12-24 Kobe Steel Ltd 粉末冶金用混合粉末の製造方法、及び焼結体の製造方法
JP5544928B2 (ja) * 2010-02-26 2014-07-09 セイコーエプソン株式会社 造粒粉末および造粒粉末の製造方法
CN104388154A (zh) * 2014-10-24 2015-03-04 苏州莱特复合材料有限公司 不锈钢用粉末冶金润滑剂及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212271A (ja) * 1988-02-18 1989-08-25 Sanyo Chem Ind Ltd 成形用組成物および使用法
JPH0230701A (ja) * 1988-07-19 1990-02-01 Sanyo Chem Ind Ltd 焼結性粉末成形体の脱脂方法
JPH06506726A (ja) 1991-04-18 1994-07-28 ホガナス アクチボラゲット 粉末混合物及びその製造方法
JPH1167514A (ja) * 1997-08-19 1999-03-09 Sumitomo Metal Ind Ltd ボンド型永久磁石の製造方法と製造用原料粉末
JP2003508635A (ja) 1999-09-09 2003-03-04 ホガナス アクチボラゲット 鉄粉と添加材の集合体および流動材からなる粉末組成物、並びにその製造方法
WO2005068588A1 (ja) 2004-01-20 2005-07-28 Kabushiki Kaisha Kobe Seiko Sho 粉末冶金用潤滑剤、粉末冶金用混合粉末及び焼結体の製造方法
JP2010280990A (ja) 2004-07-02 2010-12-16 Hoganas Ab 流動性増加剤としてカーボンブラックを含有する粉末冶金組成物
JP2009180376A (ja) * 2009-04-13 2009-08-13 Komatsu Ltd 滑り軸受およびそれを用いる作業機連結装置
WO2014103287A1 (ja) * 2012-12-28 2014-07-03 Jfeスチール株式会社 粉末冶金用鉄基粉末

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3756790A4

Also Published As

Publication number Publication date
CA3090455C (en) 2022-06-28
JP6760495B2 (ja) 2020-09-23
US11643710B2 (en) 2023-05-09
CA3090455A1 (en) 2019-08-29
EP3756790A1 (en) 2020-12-30
US20210114093A1 (en) 2021-04-22
EP3756790A4 (en) 2021-03-03
JPWO2019163263A1 (ja) 2020-04-09
CN111741824A (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
JP4832433B2 (ja) 流動性増加剤としてカーボンブラックを含有する粉末冶金組成物
WO2007105429A1 (ja) 鉄基混合粉末ならびに鉄基粉末成形体および鉄基粉末焼結体の製造方法
KR101355040B1 (ko) 분말 야금용 철기 혼합 분말
JP6760495B2 (ja) 粉末冶金用混合粉
JP6874905B2 (ja) 粉末冶金用混合粉
JP2005232595A (ja) 高強度焼結部品用の鉄基粉末混合物
JP6680422B1 (ja) 粉末冶金用混合粉および粉末冶金用潤滑剤
JP6877375B2 (ja) 粉末冶金用混合粉
WO2024053141A1 (ja) 粉末冶金用混合粉
KR101202371B1 (ko) 유동 강화제로서 탄소 블랙을 포함하는 분말 야금학적 조성물
JP2022090488A (ja) 粉末冶金用混合粉
JP2024017984A (ja) 粉末冶金用鉄基混合粉、鉄基焼結体、および焼結機械部品
WO2019230259A1 (ja) 粉末冶金用粉末混合物およびその製造方法
WO2018230568A1 (ja) 粉末冶金用粉末混合物およびその製造方法
JP2019002068A (ja) 粉末冶金用粉末混合物およびその製造方法
CN105251990A (zh) 一种铁基粉末冶金组合物及其制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019518337

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3090455

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018907048

Country of ref document: EP

Effective date: 20200921