WO2019161755A1 - 光学次模块及光模块 - Google Patents

光学次模块及光模块 Download PDF

Info

Publication number
WO2019161755A1
WO2019161755A1 PCT/CN2019/075259 CN2019075259W WO2019161755A1 WO 2019161755 A1 WO2019161755 A1 WO 2019161755A1 CN 2019075259 W CN2019075259 W CN 2019075259W WO 2019161755 A1 WO2019161755 A1 WO 2019161755A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat sink
module
light emitter
base body
sub
Prior art date
Application number
PCT/CN2019/075259
Other languages
English (en)
French (fr)
Inventor
王果果
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2019161755A1 publication Critical patent/WO2019161755A1/zh
Priority to US16/879,985 priority Critical patent/US11973311B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02315Support members, e.g. bases or carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/0231Stems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06226Modulation at ultra-high frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Definitions

  • the present application relates to the field of optical communications, and in particular, to an optical sub-module and an optical module.
  • the optical module is used for photoelectric conversion in optical communication, and the optical module usually includes one or more optical sub-modules, which may be a light-emitting sub-module, a light-receiving sub-module or a light-emitting receiving sub-module.
  • the laser is an important optoelectronic device in the optical sub-module.
  • Distributed Feedback Laser (DFB) is widely used in optical communication because of its good monochromaticity (ie, spectral purity).
  • the present application provides an optical sub-module and an optical module.
  • an optical sub-module comprising:
  • a base body including a first surface and a second surface opposite the first surface
  • a pin mounted on the base body and extending from the second surface of the base body to the first surface;
  • a heat sink mounted on the first surface of the base body, the heat sink being provided with a groove toward the side of the pin;
  • a temperature regulator located in the recess of the heat sink, the first heat exchange surface of the temperature regulator being in contact with the inner wall of the recess;
  • a light emitter is disposed on the second heat exchange surface of the temperature regulator to ensure efficient heat transfer between the light emitter and the temperature regulator.
  • the present application further provides an optical module including a circuit board and at least one optical sub-module as described above disposed on the circuit board.
  • Figure 1 is a schematic view showing the structure of a DFB laser and a refrigerator TO package
  • FIG. 2 is a schematic overall structural diagram of an optical sub-module according to an embodiment of the present application.
  • FIG. 3 is a schematic view showing the internal structure of the optical sub-module after the cap is removed according to the embodiment of the present application;
  • FIG. 4 is a schematic structural view of a temperature regulator, a light emitter, and a heat sink mounted on a base body according to an embodiment of the present application;
  • Figure 5 is an exploded view of Figure 4.
  • FIG. 6 is a schematic structural view of a heat sink mounted on a base body according to an embodiment of the present application.
  • FIG. 7 is a top plan view of a heat sink mounted on a base body according to an embodiment of the present application.
  • FIG. 8 is a schematic structural view of a temperature regulator and a light emitter according to an embodiment of the present application.
  • FIG. 9 is a schematic structural view of a metal wire connection pin and an optoelectronic device according to an embodiment of the present application.
  • 25Gbit/s DFB laser has become an important part of the international telecommunication standard 5G and data center, and has gradually gained maturity and received unprecedented attention.
  • the operating temperature range of 25Gbit/s DFB laser is divided into commercial grade -5 ⁇ 75 °C, industrial grade -40 ⁇ 85 °C (even -40 ⁇ 95 °C), extended grade -5 ⁇ 85 °C, -5 ⁇ 95 °C, etc. .
  • the commercial grade DFB laser is the simplest, and many manufacturers in the industry have launched mass production products.
  • the industrial grade high speed (25Gbit/s and above) DFB lasers are difficult to produce, the yield is low, and the price is 1.5-2 times of commercial grade. .
  • the second solution is economically advantageous, but due to the complicated packaging process of the optical sub-module including the TEC refrigerator, the packaging cost is high, which limits the scope of its application.
  • the TO (Transistor-Outline) package has been widely used in many fields including optical communication because of its advantages such as miniaturization, low cost, simple packaging process, and easy industrial large-scale mass production.
  • the TO package can be used to package the chiller and the DFB laser, as shown in Figure 1, the structure of the DFB laser and the chiller TO package.
  • the refrigerator 104 is mounted on a coaxial base 102
  • the heat sink 103 is mounted on the refrigerator 104
  • the DFB laser 101 is mounted on the side wall of the heat sink 103. Since the heat generated by the DFB laser 101 can be transferred to the refrigerator 104 through the heat sink 103, the heat dissipation effect of the DFB laser 101 is not good, and it is difficult to control the temperature of the DFB laser to a commercial temperature range.
  • FIG. 2 is a schematic diagram of the overall structure of an optical sub-module according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of the internal structure of the optical sub-module after the cap is removed.
  • the optical sub-module 10 includes a base body 11, a plurality of pins 12, a heat sink 13, a temperature regulator 14, a light emitter 15, and a cap 16.
  • the heat sink 13 is directly fixed to the base body 11.
  • the cap 16 is overlaid on the base body 11 to enclose the heat sink 13, the temperature regulator 14 and the light emitter 15 in a chamber enclosed by the cap 16 and the base body 11.
  • the cap 16 includes a lens and a metal piece that supports the lens.
  • the light emitted from the light emitter 15 is perpendicular to the surface of the base body 11 and is transmitted directly through the lens, and there is no need to change the direction of propagation of light between the passing lenses.
  • a lens is disposed at the opening 161 at the top of the cap 16 and seals the opening 161 such that light emitted by the light emitter 15 can be transmitted through the lens to the exterior of the optical sub-module 10.
  • a sleeve (not shown) can be mounted on the exterior of the cap 16 for insertion of a receptacle for an external fiber patch to enable light emitted by the light emitter 15 to be coupled into the core of the external fiber patch cord .
  • the base body 11 has a cylindrical shape including a second surface 111 and a first surface 112; wherein, for convenience of description, the second surface 111 corresponds to the bottom surface 111, and the first surface 112 corresponds to the top surface 112.
  • the base body 11 is provided with a plurality of pin holes through which the pins 12 pass.
  • the pin 12 is inserted into the pin hole and penetrates from the bottom surface 111 of the base body 11 to the top surface 112. After the pin 12 is inserted, it is fixed to the base body 11 by soldering.
  • the pins 12 are mounted on the same side of the heat sink 13.
  • These pins 12 include two pins 121 for transmitting high frequency signals.
  • FIG. 4 is a schematic structural view of a temperature regulator, a light emitter and a heat sink mounted on a base body according to an embodiment of the present invention
  • FIG. 5 is an exploded view of FIG. 4
  • the heat sink 13 has a recess 131 toward the side of the pin 12, and the temperature regulator 14 is embedded in the recess 131.
  • the first heat exchange surface of the temperature regulator 14 is fitted to the inner wall 131 of the recess, and the light emitter is attached.
  • 15 is attached to the second heat exchange surface of the temperature regulator 14 toward the pin 12 through the substrate 151.
  • the light emitter can also be attached directly to the heat exchange surface of the temperature regulator.
  • the light emitter 15 is disposed at the second of the temperature regulator 14.
  • the heat exchange surface ensures efficient heat transfer between the light emitter 15 and the temperature regulator 14. Therefore, the light emitter 15 and the temperature regulator 14 have a good heat transfer effect, and the heat received by the temperature regulator 14 or the heat generated by the heat regulator 14 can directly dissipate heat through the heat sink 13, further accelerating the heat dissipation of the light emitter 15. The effect, whereby the light emitter temperature is controlled within the commercial temperature range (ie -5 to 75 ° C).
  • FIG. 7 is a top view of the heat sink mounted on the base body in the embodiment of the present application.
  • the heat sink 13 may be made of an alloy, for example, a nickel-based (iron) alloy, a copper alloy, or the like, which mainly functions as a heat sink and a load.
  • the heat sink 13 is U-shaped as a whole, is mounted flat on the top surface of the base body 11, and has an opening facing the pin 12, that is, all the pins 12 are located on the side of the opening of the heat sink 13.
  • the heat sink 13 includes a heat sink base 132 and two side arms 133 extending along a first side of the heat sink base 132.
  • the two sides of the arms 133 are spaced apart by a predetermined distance such that the heat sink 13 has a U shape as a whole and both sides
  • the inner side wall 1331 of the arm 133 and the inner side wall 1321 of the heat sink base 132 enclose the groove 131.
  • the side arms 133 each have an end face 1332 facing the pin 12.
  • a ceramic plate 17 is attached to each end surface 1332.
  • Conductive lines 171 are printed on each of the ceramic plates 17.
  • the two ceramic plates 17 are parallel to each other, and the patterns of the conductive lines 171 of the two ceramic plates 17 are mirror symmetrical patterns.
  • the conductive line 171 is electrically connected to a pin 121 for transmitting a high frequency signal in the vicinity thereof.
  • the conductive line 171 may be a metal strip coated on the ceramic board 17, for example, a microstrip line.
  • the impedance of the microstrip line can be 25 ohms or 50 ohms.
  • the surface of the microstrip line is gold plated and can be joined to the wire by a gold wire bonding process.
  • the groove 131 penetrates from the lower surface of the heat sink 13 to the upper surface of the heat sink 13.
  • the groove depth of the groove 131 matches the temperature regulator 14, ensuring that the entire temperature regulator 14 can be embedded in the groove 131.
  • FIG. 8 is a schematic structural diagram of a temperature regulator and a light emitter according to an embodiment of the present application.
  • the temperature regulator 14 may be a thermoelectric cooler, that is, a TEC (Thermo-Electric Cooler) refrigerator including two heat exchange faces 141, 142 and a plurality of spaced-apart semiconductors 143 located between the two heat exchange faces 141, 142.
  • the semiconductors may include an N-type semiconductor and a P-type semiconductor.
  • the bottom of the temperature regulator 14 is provided with two electrode columns 144 for accessing an external power source, wherein one electrode column 144 is used to connect the positive pole of the power source, and the other electrode column 144 is used to connect the negative pole of the power source.
  • the two electrode posts 144 can be electrically connected to the corresponding pins 12 by wires or conductive silver glue, and the corresponding pins 12 are connected to the power source.
  • the N-type semiconductor and the P-type semiconductor are connected in a loop, and the temperature of one of the connection points of the N-type semiconductor and the P-type semiconductor becomes higher, and the temperature of the other connection point becomes lower, that is, the temperature One of the two end faces 141, 142 of the regulator 14 is a hot end face, and the other heat exchange face is a cold end face.
  • the hot end face and the cold end face are present in the use state, and in the case of changing the energization direction of the electrode, the hot end face can also be changed to the cold end face.
  • the light emitter 15 is disposed on the heat exchange surface 142 of the temperature regulator 14 toward the pin 12 through the substrate 151. It can be understood that in the case where the electrode is normally energized, the heat exchange surface 142 is a cold end surface; when the electrode energization direction changes, the heat exchange surface 142 is converted into a hot end surface.
  • the energization direction of the electrode is adjusted, and the heat exchange surface 142 is a cold end surface for lowering the temperature of the light emitter;
  • the energization direction of the electrode is adjusted, and the heat exchange surface 142 is a hot end surface for increasing the temperature of the light emitter.
  • a light emitter having a narrow operating temperature range can be applied to a field requiring a higher temperature range.
  • a commercial grade (typically operating at -5 to 75 ° C) light emitters can be applied to industrial (industrial grade light emitters operating at -40 to 95 ° C), despite industrial work on light emitters.
  • the temperature requirement is high, but through the temperature regulation of the temperature regulator 14, the operating temperature of the light emitter can still be controlled at the commercial level to meet the industrial use requirements.
  • the distance between the cold end face and the hot end face of the temperature regulator 14 (i.e., the distance between the two heat exchange faces 142, 143) is substantially equal to the depth of the recess 131 of the heat sink 13, so that the entire temperature adjuster 14 can be embedded in the recess. In the slot 131.
  • FIG. 9 is a schematic structural view of a metal wire connection pin and an optoelectronic device according to an embodiment of the present application.
  • the light emitter 15 is mounted on a substrate 151 on which an optoelectronic device such as a photodetector 156 is mounted.
  • the substrate 151 may be a ceramic plate or a plastic film plate.
  • the upper side surface of the substrate 151 is aligned with the top surface 134 of the heat sink 13, and the side surface of the substrate 151 adjacent to the ceramic board 17 is aligned with the ceramic board 17.
  • the substrate 151 is mounted on the temperature regulator 14 and above the electrode post 144 of the temperature regulator 14.
  • One side of the substrate 151 is attached to the other heat exchange surface 142 of the two heat exchange surfaces of the temperature adjuster 14, and the other surface facing the central axis of the base body 11 is used to mount an optoelectronic device such as the light emitter 15 and the like.
  • a portion of the other side is plated with a conductive layer, which may be a gold plated layer.
  • the area plated with the conductive layer is divided into three functional areas for mounting different devices, a first functional area 152 for mounting the light emitter 15, a second functional area 153 for mounting the detector 156, and
  • the third functional area 154 is located between the first functional area 152 and the second functional area 153, and the first functional area 152, the second functional area 153, and the third functional area 153 are insulated from each other.
  • the first functional area 152 is divided into two sub-function areas 1521, 1522, wherein one sub-function area 1522 is used to mount the light emitter 15 and is used with one of the PN poles (P pole or N pole of the light emitter 15).
  • the contact forms an electrical connection and the other sub-functional area is electrically connected by contact of the wire with another PN pole (N-pole or P-pole) of the light emitter 15.
  • the surfaces of the sub-function regions 1521, 1522 are gold plated to form a microstrip line.
  • the area of the substrate 151 that is plated with a conductive layer can also be divided into four or more functional areas for mounting different electronic devices.
  • a plurality of functional zones for mounting different devices may also be formed on the heat exchange face of the temperature regulator.
  • Two ceramic plates 17 are distributed on both sides of the substrate 151, and the conductive lines 171 on the ceramic plates 17 on one side are electrically connected to the adjacent sub-function regions 1522 through the short wires, and the conductive lines on the ceramic plates 17 on the other side.
  • the 171 is electrically connected to its adjacent sub-function area 1521 by a short wire.
  • the pin 121 for transmitting the high-frequency signal can be electrically connected to the light emitter 15 by connecting the conductive line 171 on the ceramic board 17 to the conductive line 171 through the ceramic board 17 and the short wire.
  • the sub-function area is electrically connected to the light emitter 15 to avoid direct connection of the pin 121 and the light emitter 15 by using a long wire, thereby reducing the coupling of the high-frequency signal to other components adjacent thereto, thereby improving the transmission of the high-frequency signal. quality.
  • the short wire may be connected to the conductive line 171 and the sub-function area 1521 (or 1522) by a gold wire bonding process.
  • the light emitter 15 can be a distributed feedback laser DFB.
  • the light emitter 15 has a P pole and an N pole, the P pole (or N pole) is in electrical contact with the sub-function region 1522, and the N pole (or P pole) is located on the other side of the P pole (or N pole), which passes The wire is electrically connected to another sub-function zone 1521.
  • the p-n junction When the current injected into the p-n junction reaches a threshold current, the p-n junction generates a laser.
  • the light emitter 15 can be mounted in the sub-function area 1522 by silver paste or eutectic solder and close to the upper side of the substrate 151.
  • the intermediate position of the light emitter 15 has a light-emitting strip 1551 whose axis coincides almost with the central axis of the base body 11.
  • Photodetector 156 can be a backlight detector that can be mounted on second functional region 156 by silver paste or eutectic solder. The photodetector 156 is electrically connected to the corresponding pin through a conductive line.
  • the optical sub-module also includes a temperature sensor 157 and a heater (not shown).
  • the temperature sensor 157 can be a thermistor and the heater can be a heating resistor.
  • the temperature sensor 157 can be mounted in the second functional area 153 by silver paste or eutectic solder.
  • the heater may be mounted in the third functional region 154 by silver paste or eutectic solder to compensate for the lack of heating capability of the temperature regulator 14.
  • the heater can be a TaN film resistor, wire resistance, chip resistor or other resistor. Both the temperature sensor 157 and the heater are electrically connected to the corresponding pins 12 by conductive wires.
  • the third functional area 154 may also not be provided with a heating resistor, which may be an empty pad.
  • the second functional area 153 may not be mounted with the temperature sensor 157.
  • the installation process of the various components of the optical sub-module can be as described in detail below.
  • the heat sink 13 and the base body 11 are integrally formed by a mold or a machining method, and the heat sink 13 is perpendicular to the base body 11.
  • the two ceramic plates 17 are bonded to the heat sink 13 by eutectic welding or the like.
  • the temperature regulator 14 is installed to insert the temperature regulator 14 into the recess 131 of the heat sink 13, and one of the heat exchange surfaces 141 of the temperature regulator and the recess 131 of the heat sink 13
  • the inner wall fits, the other heat exchange face 142 of the thermostat faces the pin 12, and the upper side of the thermostat 14 is aligned with the top surface of the heat sink 13.
  • the substrate 151 is placed on the heat exchange surface 142 of the temperature adjuster 14 such that the upper side of the substrate 151 is aligned with the top surface of the heat sink 13, and the substrate 151 is adjacent to the side of the ceramic board 17 and the ceramic board. 17 is relatively uniform.
  • the mounting of the substrate 151 After the mounting of the substrate 151 is completed, the mounting of the optoelectronic device such as the light emitter 15, the photodetector 156, and the temperature sensor 157 is performed.
  • the optoelectronic device such as the light emitter 15, the photodetector 156, and the temperature sensor 157 is performed.
  • the position of the light emitter 15 is adjusted by using the side arms on both sides of the heat sink 13 as a reference, so that the light strip of the light emitter 15 coincides with the central axis of the base body 11, that is, the light emitter is adjusted.
  • the distance separating the top surface of the device 15 from the base body 11 satisfies the distance required for external fiber jumper coupling.
  • the position of the heat sink 13 relative to the base body 11 is determined, and the structural design of the recess 131 of the heat sink 13 has determined the position of the light emitter 15 in the Y-axis direction. That is, the distance between the light emitter 15 and the plane of the central axis of the base body 11 is determined. Therefore, when the light emitter 15 is mounted on the substrate 151, it is only necessary to adjust its two dimensions in the Z-axis direction and the X-axis direction. The position can determine the position of the light emitter 15 and reduce the alignment difficulty of the light emitter 15. Accordingly, the production efficiency is improved, the production cost is reduced, and the batch consistency of the product is good. Relative to the light emitter 15 requires a three-direction position adjustment scheme, which reduces the alignment difficulty of the light emitter.
  • the Z-axis direction refers to the direction in which the bottom surface of the base body 11 is directed to the top surface of the base body 11
  • the X-axis direction refers to the direction in which the one side arm 133 of the heat sink 13 is directed to the other side arm 133 ( That is, the direction from left to right in FIG. 5)
  • the Y-axis direction refers to the direction in which the heat sink 13 is directed to the central axis of the base body 11.
  • the temperature regulator 14 of the embodiment of the present application is directly embedded in the recess 131 of the heat sink 13, and does not need to greatly adjust the position of the temperature regulator 14 with respect to the heat sink 13, reducing the difficulty of mounting the temperature regulator 14, and High positioning accuracy.
  • the optical sub-module of the embodiment of the present invention has a simple installation method, low requirements on equipment and tooling, and good batch consistency, is favorable for improving yield, improving packaging efficiency, and reducing cost, and is suitable for mass production.
  • the scheme of the optical sub-module of the embodiment of the present application is applicable to a high transmission rate light emitter, for example, a 25 Gbit/s light emitter, or even a light emitter of up to 50 Gbit/s.
  • the above metal wires and conductive wires may be gold wires.
  • an embodiment of the present application further provides an optical module, the optical module comprising a circuit board and at least one of the foregoing optical sub-modules disposed on the circuit board.
  • the circuit board can be a PCB (Printed circuit board).

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种光学次模块及光模块,光模块包括至少一光学次模块。光学次模块包括底座本体(11)、管脚(12)、热沉(13)、温度调节器(14)和光发射器(15)。管脚(12)安装在底座本体(11)上,且从底座本体(11)的底面(111)贯穿至顶面(112)。热沉(13)安装在底座本体(11)的顶面(112)上,且该热沉(13)朝向管脚(12)的一侧设有一凹槽(131)。温度调节器(14)位于热沉的凹槽(131)中。温度调节器(14)的其中一热交换面与凹槽(131)的内壁相贴合,光发射器(15)设置在温度调节器(14)的另一热交换面上,以确保光发射器(15)与温度调节器(14)之间进行高效的热传递,可改善光发射器(15)的散热效果。

Description

光学次模块及光模块
本申请要求在2018年02月22日提交中国专利局、申请号为201810153984.5、申请名称为“光学次模块及光模块”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,特别涉及一种光学次模块及光模块。
背景技术
光模块在光通信中用于光电转换,光模块通常包括一个或多个的光学次模块,该光学次模块可以是光发射次模块、光接收次模块或光发射接收次模块。
激光器是光学次模块中的一个重要的光电子器件。分布式反馈激光器(Distributed Feedback Laser,DFB),因其具有良好的单色性(即光谱纯度)而在光通信中被广泛使用。
随着科学技术的发展,光模块的传输速率越来越高。相应的,激光器的传输速率也不断提升。随着国际电信标准5G的成熟和数据中心大数据流量的驱动,25Gbit/s、40Gbit/s、100Gbit/s的DFB激光器获得了较快的发展。
发明内容
为了解决TO封装存在的DFB激光器散热不佳问题,本申请提供了一种光学次模块及光模块。
第一方面,本申请提供了一种光学次模块,包括:
底座本体,包括第一表面和与所述第一表面相对的第二表面;
管脚,安装在底座本体上,且从底座本体的所述第二表面贯穿至所述第一表面;
热沉,安装在底座本体的第一表面上,热沉朝向管脚一侧设有一凹槽;
温度调节器,位于热沉的凹槽中,温度调节器的第一热交换面与凹槽的内壁相贴合;
光发射器,设置在温度调节器的第二热交换面上,以确保所述光发射器与所述温度调节器之间进行高效的热传递。
第二方面,本申请还提供了一种光模块,包括电路板和设置在电路板上的至少一如上述的光学次模块。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为DFB激光器和制冷器TO封装的结构示意图;
图2为本申请实施例的光学次模块的整体结构示意图;
图3为本申请实施例的光学次模块揭开管帽后的内部结构示意图;
图4为本申请实施例的的温度调节器、光发射器和热沉安装在底座本体上的结构示意图;
图5为图4的分解图;
图6为本申请实施例的热沉安装在底座本体上的结构示意图;
图7为本申请实施例的热沉安装在底座本体上的俯视图;
图8为本申请实施例的温度调节器和光发射器的结构示意图;
图9为本申请实施例的金属线连接管脚和光电子器件的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
需要说明的是,25Gbit/s的DFB激光器作为国际电信标准5G和数据中心的重要部件,逐渐成熟并获得了空前关注。25Gbit/s的DFB激光器的工作温度范围分为商业级-5~75℃,工业级-40~85℃(甚至-40~95℃),扩展级-5~85℃,-5~95℃等。其中商业级DFB激光器最简单,业界也有很多厂家推出了量产的产品,工业级高速(25Gbit/s及以上)DFB激光器的制作难道大,成品率低,且价格是商业级的1.5-2倍。25Gbit/s工业级主要有两种方案:1.采用工业级的DFB激光器,无制冷封装,但该类DFB激光器不成熟价格非常贵。2.采用商业级或扩展级DFB激光器利用TEC(Thermo electric cooler,即半导体致冷器)在高低温下把DFB激光器温度控制在商业级的温度范围内。
第二种方案由于在经济上的优势,但是由于包含TEC制冷器的光学次模块的封装工艺复杂,封装成本高,而限制了其应用的范围。
另一方面,TO(Transistor-Outline)封装因其小型化、低成本、封装工艺简单、易于工业化大规模批量制造等优点,在包含光通信在内的众多领域获得了广泛的应用。
目前可以采用TO封装来封装制冷器和DFB激光器,如图1所示,DFB激光器和制冷器TO封装的结构示意图。制冷器104安装在同轴底座102上,热沉103安装在制冷器104上,DFB激光器101安装于热沉103的侧壁上。由于DFB激光器101产生的热量通过热沉103才能传递至制冷器104上,因此,DFB激光器101的散热效果不佳,难以将DFB激光器温度控制在商业级的温度范围内。
本申请实施例提供了一种光学次模块。如图2和图3所示,图2为本申请实施例的光学次模块的整体结构示意图,图3为本申请实施例的光学次模块揭开管帽后的内部结构示意图。光学次模块10包括底座本体11、多个管脚12、热沉13、温度调节器14、光发射器15和管帽16。热沉13直接固定在底座本体11上。管帽16覆盖在底座本体11上,将热沉13、温度调节器14和光发射器15包围在管帽16和底座本体11围成的腔室内。管帽16包含透镜和支撑透镜的金属件。光发射器15发出的光垂直于底座本体11的表面,直 接通过透镜传出,在穿过透镜之间并不需要改变光的传播方向。透镜设置在管帽16的顶部的开孔161处并密封该开孔161,使得光发射器15发射的光可通过透镜传输到光学次模块10的外部。管帽16的外部可安装一套筒(未图示),该套管用于供外部光纤跳线的插座插入,以使光发射器15发射出的光能够耦合至外部光纤跳线的纤芯中。
底座本体11呈圆柱形,其包括第二表面111和第一表面112;其中,为了便于描述,下述将第二表面111与底面111相对应、第一表面112与顶面112相对应。该底座本体11上设有多个供管脚12穿过的管脚孔。管脚12插入管脚孔中并从底座本体11的底面111贯穿至顶面112。管脚12插入后通过焊锡固定在底座本体11上。为便于管脚12与光发射器15建立电连接,该些管脚12均安装于热沉13的同一侧。
这些管脚12中包括两个用于传输高频信号的管脚121。
如图4至图6所示,图4为本申请实施例的的温度调节器、光发射器和热沉安装在底座本体上的结构示意图,图5为图4的分解图,图6为本申请实施例的热沉安装在底座本体上的结构示意图。热沉13朝向管脚12的一侧具有凹槽131,温度调节器14嵌入在凹槽131中,温度调节器14的其第一热交换面与凹槽的内壁131相贴合,光发射器15通过基板151贴合在温度调节器14朝向管脚12的第二热交换面上。
在其它实施例中,光发射器也可直接贴在温度调节器的热交换面上。
由于温度调节器14的第一热交换面与热沉13直接接触,使温度调节器14产生的热量通过热沉13迅速发散,另一方面,光发射器15设置在温度调节器14的第二热交换面,保证了光发射器15与温度调节器14之间能够进行高效的热传递。因此,光发射器15与温度调节器14之间具有良好的热传递效果,并且温度调节器14接收的热量或自身产生的热量能够通过热沉13直接散热,进一步加快了光发射器15的散热效果,藉此,将光发射器温度控制在商业级的温度范围内(即-5~75℃)。
结合图7所示,图7为本申请实施例的热沉安装在底座本体上的俯视图。 热沉13可由合金制成,例如,镍基(铁)合金、铜合金等,其主要起散热和承载作用。该热沉13整体呈U形,平躺安装在底座本体11的顶面,且开口朝向管脚12,即所有管脚12均位于热沉13的开口所在的一侧。
热沉13包括热沉基体132和沿着热沉基体132的第一侧延伸的两侧臂133,两侧臂133之间间隔预定的距离,使得热沉13整体呈一U形,且两侧臂133的内侧壁1331与热沉基体132的内侧壁1321围成该凹槽131。
两侧臂133分别具有一朝向管脚12的端面1332。每一端面1332处均贴合一陶瓷板17。每一陶瓷板17上印制有导电线路171。两陶瓷板17相互平行,且两陶瓷板17的导电线路171的图案为镜像对称图案。
导电线路171与其附近的用于传输高频信号的管脚121电连接。导电线路171可以是涂覆在陶瓷板17上的金属带,例如,微带线。该微带线的阻抗可为25欧姆或50欧姆。微带线的表面镀金,其可采用金丝键合工艺与金属丝进行连接。
凹槽131从热沉13的下表面贯穿至热沉13的上表面。凹槽131的槽深与温度调节器14相匹配,确保整个温度调节器14能够嵌入至该凹槽131中。
结合图8所示,图8为本申请实施例的温度调节器和光发射器的结构示意图。温度调节器14可以是热电制冷器,即TEC(Thermo-Electric Cooler)制冷器,其包括两个热交换面141、142和位于两热交换面141、142之间的多个间隔排列的半导体143,该些半导体可以包括N型半导体和P型半导体。温度调节器14的底部设有用以接入外部电源的两电极柱144,其中一电极柱144用于连接电源的正极,另一电极柱144用于连接电源的负极。两电极柱144可采用金属丝或导电银胶与对应的管脚12电连接,该对应的管脚12与电源连接。当两电极柱144接上电源时,N型半导体和P型半导体连接成一个回路,N型半导体和P型半导体的其中一个连接点温度变高,另一连接点的温度变低,即使得温度调节器14的两个端面141、142中的其中一个热交换面为热端面,另一个热交换面为冷端面。
可以理解,热端面和冷端面是在使用状态下呈现的,在更改电极通电方 向的情况下,热端面也可变为冷端面。
如图8所示,光发射器15通过基板151设置在温度调节器14的朝向管脚12的一热交换面142上。可以理解,在电极正常通电的情况下,该热交换面142是冷端面;当电极通电方向发生变化时,该热交换面142转换为热端面。例如,当光发射器15的光发射器的温度高于最高温度(例如,75℃)时,调整电极的通电方向,热交换面142为冷端面,用于降低光发射器的温度;当光发射器的温度低于最低温度(例如,-5℃)时,调整电极的通电方向,热交换面142为热端面,用于增加光发射器的温度。藉此,通过温度调节器14的温度调节使光发射器的温度维持在工作温度范围内。也就是说,通过温度调节器14调温作用,可将工作温度范围较窄的光发射器应用到对温度范围要求较高的领域。例如,将商业级(工作温度一般在-5~75℃)的光发射器应用到工业(工业级光发射器的工作温度为-40~95℃)上,尽管工业上对光发射器的工作温度要求较高,但通过温度调节器14的调温作用,光发射器的工作温度仍可控制在商业级,满足工业上的使用要求。
温度调节器14的冷端面和热端面之间的距离(即两热交换面142、143之间的距离)大致等于热沉13凹槽131的深度,使得整个温度调节器14能够嵌入在该凹槽131中。
结合图9所示,图9为本申请实施例的金属线连接管脚和光电子器件的结构示意图。光发射器15安装基板151上,基板151上还安装有光探测器156等光电子器件。基板151可以是陶瓷板,也可以是塑料膜板。基板151的上侧面与热沉13的顶面134相对齐,基板151靠近陶瓷板17的侧面与陶瓷板17相对齐。
基板151安装在温度调节器14上,且位于温度调节器14电极柱144的上方。基板151的其中一面与温度调节器14的两个热交换面的另一热交换面142相贴合,朝向底座本体11中心轴的另一面用于安装有光发射器15等光电子器件,且该另一面的部分区域镀有导电层,该导电层可以是镀金层。镀有导电层的区域被分为三个用于安装不同的器件的功能区,分别为用于安装光 发射器15的第一功能区152、用于安装探测器156的第二功能区153和位于第一功能区152和第二功能区153之间的第三功能区154,第一功能区152、第二功能区153和第三功能区153彼此之间相互绝缘。其中,第一功能区152分为两个子功能区1521、1522,其中一个子功能区1522用于安装光发射器15,且用于与光发射器15的其中一PN极(P极或N极)接触形成电连接,另一个子功能区通过金属丝与光发射器15的另一PN极(N极或P极)接触形成电连接。子功能区1521、1522的表面镀金形成微带线。
在其他实施例中,基板151上镀有导电层的区域也可被分为四个或四个以上的功能区,以用于安装不同的电子器件。
在其他实施例中,当光发射器直接设置在温度调节器的热交换面上时,也可在温度调节器的热交换面形成多个用于安装不同的器件的功能区。
两陶瓷板17分布在基板151的两侧,其中一侧的陶瓷板17上的导电线路171通过短金属丝与其相邻的子功能区1522电连接,另一侧的陶瓷板17上的导电线路171通过短金属丝与其相邻的子功能区1521电连接。由此,用于传输高频信号的管脚121通过连接陶瓷板17上的导电线路171,即可与光发射器15建立电连接管脚121通过陶瓷板17上的导电线路171、短金属丝、子功能区与光发射器15电连接,避免采用长的金属丝直接连接管脚121和光发射器15,藉此,减少高频信号与其邻近的其他元器件发生耦合,提高高频信号的传输质量。
短金属丝可通过金丝键合工艺连接导电线路171和子功能区1521(或1522)。
光发射器15可以是分布式反馈激光器DFB。该光发射器15具有P极和N极,P极(或N极)与子功能区1522接触形成电连接,N极(或P极)位于P极(或N极)的另一面,其通过金属丝与另一子功能区1521电连接。当注入p-n结的电流达到阈值电流时,p-n结产生激光。
光发射器15可通过银胶或共晶焊料贴装在子功能区1522中,且靠近基板151的上侧面。光发射器15的中间位置具有一发光条1551,该发光条1551 的轴线几乎与底座本体11的中心轴重合。
光探测器156可以是背光探测器,其可通过银胶或共晶焊料贴装在第二功能区156上。光探测器156通过导电线与对应的引脚电连接。
光学次模块还包括温度传感器157和加热器(未图示)。该温度传感器157可以是热敏电阻,加热器可以是加热电阻。温度传感器157可通过银胶或共晶焊料贴装在第二功能区153中。加热器可通过银胶或共晶焊料贴装在第三功能区154中,用以弥补温度调节器14加热能力的不足。加热器可以是TaN薄膜电阻、打线电阻、贴片电阻或其他电阻。温度传感器157和加热器均通过导电线与对应的管脚12电连接。
可以理解,第三功能区154也可以不贴装加热电阻,其可以是空焊盘。
可以理解,第二功能区153也可以不贴装温度传感器157。
在一些实施方式中,光学次模块的各个部件的安装过程可以如下面具体描述。
结合图5所示,热沉13和底座本体11通过模具或机械加工的方式一体成型,热沉13垂直于底座本体11。
两陶瓷板17通过共晶焊或其他方式与热沉13贴合在一起。
陶瓷板17安装完成后,安装温度调节器14,使温度调节器14插入至热沉13的凹槽131中,且使温度调节器的其中一热交换面141与热沉13的凹槽131的内壁贴合,温度调节器的另一热交换面142朝向管脚12,并且使温度调节器14的上侧面与热沉13的顶面相对齐。
温度调节器14安装完成后,在温度调节器14的热交换面142上贴装基板151,使基板151的上侧面与热沉13的顶面相对齐,基板151靠近陶瓷板17的侧面与陶瓷板17相对齐。
基板151安装完成后,进行光发射器15、光探测器156和温度传感器157等光电子器件的安装。
因光发射器15的安装位置的准确度直接影响外部光纤跳线的耦合效率,因此必须保证光发射器15安装到位。在安装光发射器15时,以热沉13两侧 的侧臂为参照物,调节光发射器15的位置使光发射器15的发光条与底座本体11的中心轴重合,即调节光发射器15在X轴方向的位置;以热沉13的上表面为参照面,调节光发射器15相对于底座本体11顶面的距离,即调节光发射器15在Z轴方向的位置,使光发射器15相对于底座本体11顶面间隔的距离满足外部光纤跳线耦合所要求的距离。
由于热沉13和底座本体11一体成型,热沉13相对于底座本体11的位置确定了,同时热沉13凹槽131的结构设计已将光发射器15在Y轴方向上的位置确定了,即光发射器15与底座本体11中心轴所在平面之间的距离就确定了,因此将光发射器15安装在基板151上时,只需调整其在Z轴方向和X轴方向两个维度的位置,即可确定光发射器15的位置,降低了光发射器15的对位难度,相应的,提高了生产效率,降低了生产成本,产品的批量一致性好。相对于光发射器15需要进行三个方向的位置调整的方案,降低了光发射器的对位难度。
需说明的是,Z轴方向是指底座本体11的底面指向底座本体11的顶面所在的方向,X轴方向是指由热沉13的其中一侧臂133指向另一侧臂133的方向(即图5中由左指向右的方向),Y轴方向是指由热沉13指向底座本体11中心轴的方向。
本申请实施例的温度调节器14直接嵌入到热沉13的凹槽131中,并不需要大幅度调整温度调节器14相对于热沉13的位置,降低了温度调节器14的安装难度,并且定位精度高。
因此,本申请实施例的光学次模块安装方式简单,对设备和工装的要求低,并且批量一致性好,有利于提高良率,提高封装效率,降低成本,适合规模化批量生产。
此外,本申请实施例的光学次模块的方案适用于高传输速率的光发射器,例如,25Gbit/s的光发射器,甚至是高达50Gbit/s的光发射器。
上述金属线、导电线可为金丝。
第二方面,本申请实施例还提供一种光模块,该光模块包括电路板和设 置在电路板上的至少一上述的光学次模块。该电路板可以是PCB板(印制电路板,Printed circuit board)。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种光学次模块,包括:
    底座本体,包括第一表面和与所述第一表面相对的第二表面;
    管脚,安装在所述底座本体上,且从所述底座本体的所述第二表面贯穿至所述第一表面;
    热沉,安装在所述底座本体的第一表面上,所述热沉朝向所述管脚一侧设有凹槽;
    温度调节器,位于所述热沉的凹槽中,所述温度调节器的第一热交换面与所述凹槽的内壁相贴合;
    光发射器,设置在所述温度调节器的第二热交换面上,以确保所述光发射器与所述温度调节器之间进行高效的热传递。
  2. 根据权利要求1所述的光学次模块,所述温度调节器靠近底座本体的底部设有两电极柱,所述两电极柱与管脚电连接,用以接入外部电源。
  3. 根据权利要求1所述的光学次模块,所述热沉包括热沉基体和沿着所述热沉基体的第一侧延伸的两侧臂,所述热沉基体和所述两侧臂形成所述凹槽;
    所述光学次模块还包括陶瓷板,所述陶瓷板贴合在所述热沉的侧臂的端面上,所述陶瓷板朝向所述管脚的一面设置有导电线路;
    所述管脚中包括两个用于传输高频信号的管脚,所述导电线路连接所述用于传输高频信号的管脚和所述光发射器。
  4. 根据权利要求3所述的光学次模块,所述光发射器设置在基板上,所述基板贴合在所述温度调节器的第二热交换面上,所述基板朝向所述底座本体中心轴的另一面的第一区域镀有导电层,镀有导电层的第一区域分为多个相互绝缘的功能区,用于安装不同的器件;
    所述温度调节器安装在所述多个相互绝缘的功能区中的第一功能区中,所述第一功能区分为第一子功能区和第二子功能区,其中第一子功能区用于 安装所述光发射器,且用于与所述光发射器的其中一PN极接触形成电连接,第二子功能区通过金属丝与所述光发射器的另一PN极接触形成电连接;
    所述陶瓷板的导电线路通过金属丝分别与邻近的第一子功能区或第二子功能区电连接。
  5. 根据权利要求4所述的光学次模块,所述光学次模块还包括温度传感器和加热器,所述温度传感器和所述加热器分别安装在所述多个相互绝缘的功能区中的第二功能区和第三功能区。
  6. 根据权利要求4所述的光学次模块,所述基板的上侧面与所述热沉的顶面相对齐,所述基板靠近所述陶瓷板的侧面与所述陶瓷板相对齐。
  7. 根据权利要求3所述的光学次模块,所述热沉的两侧臂上均设置有所述陶瓷板,所述热沉的两侧臂上的陶瓷板的导电线路的图案为镜像对称图案。
  8. 根据权利要求1所述的光学次模块,所述热沉和所述底座本体一体成型。
  9. 根据权利要求1所述的光学次模块,所述光学次模块还包括管帽,所述管帽覆盖在所述底座本体上,将所述热沉、所述温度调节器和所述光发射器包围在所述管帽和所述底座本体围成的腔室内;
    所述管帽包含透镜和支撑透镜的金属件,所述光发射器发射的光可通过透镜传输到所述光学次模块的外部;
    所述温度调节器包括多个半导体,所述多个半导体包括N型半导体和P型半导体。
  10. 一种光模块,包括电路板和设置在所述电路板上的至少一如权利要求1至9任一项所述的光学次模块。
PCT/CN2019/075259 2018-02-22 2019-02-15 光学次模块及光模块 WO2019161755A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/879,985 US11973311B2 (en) 2018-02-22 2020-05-21 To package for DFB laser with TEC vertically mounted in groove of heatsink

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810153984.5A CN108390255A (zh) 2018-02-22 2018-02-22 光学次模块及光模块
CN201810153984.5 2018-02-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/879,985 Continuation-In-Part US11973311B2 (en) 2018-02-22 2020-05-21 To package for DFB laser with TEC vertically mounted in groove of heatsink

Publications (1)

Publication Number Publication Date
WO2019161755A1 true WO2019161755A1 (zh) 2019-08-29

Family

ID=63069006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075259 WO2019161755A1 (zh) 2018-02-22 2019-02-15 光学次模块及光模块

Country Status (3)

Country Link
US (1) US11973311B2 (zh)
CN (1) CN108390255A (zh)
WO (1) WO2019161755A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021104885A1 (de) 2020-03-04 2021-09-09 Schott Ag Sockel und Gehäuse mit integriertem Kühler für elektronische Bauelemente
JP2021150454A (ja) * 2020-03-18 2021-09-27 京セラ株式会社 配線基体および電子装置
DE102020120167A1 (de) 2020-07-30 2022-02-03 Schott Ag Gehäuse, vorzugsweise TO-Gehäuse, Sockel für Gehäuse und Baugruppe mit einem solchen Gehäuse und/oder Sockel
CN115832860A (zh) * 2022-11-21 2023-03-21 武汉泵浦科技有限公司 一种可调谐激光器芯片

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108390255A (zh) 2018-02-22 2018-08-10 青岛海信宽带多媒体技术有限公司 光学次模块及光模块
CN109473866B (zh) * 2018-11-23 2020-11-24 武汉电信器件有限公司 一种具有加热功能的to-can发射组件
CN113296198A (zh) * 2020-02-21 2021-08-24 佑胜光电股份有限公司 光发射组件、光学收发模块及光纤缆线模块
CN110542957B (zh) * 2019-09-02 2021-07-23 青岛海信宽带多媒体技术有限公司 一种光模块
WO2021042775A1 (zh) * 2019-09-02 2021-03-11 青岛海信宽带多媒体技术有限公司 一种光模块
CN110376691A (zh) * 2019-09-02 2019-10-25 青岛海信宽带多媒体技术有限公司 一种光模块
JP7382872B2 (ja) 2020-03-24 2023-11-17 新光電気工業株式会社 半導体パッケージ用ステム、半導体パッケージ
JP7382871B2 (ja) 2020-03-24 2023-11-17 新光電気工業株式会社 半導体パッケージ用ステム、半導体パッケージ
CN111721440A (zh) * 2020-05-28 2020-09-29 武汉华工正源光子技术有限公司 一种光模块的高低温测试系统
CN111934188B (zh) * 2020-07-08 2022-06-10 武汉光迅科技股份有限公司 激光器的形成方法和形成设备
CN112134623A (zh) * 2020-09-23 2020-12-25 北京安石科技有限公司 一种可实现高速信号传输且低损耗的链路设计
CN115079351B (zh) * 2021-03-10 2023-08-04 青岛海信宽带多媒体技术有限公司 一种光模块
CN113471808A (zh) * 2021-06-30 2021-10-01 青岛镭创光电技术有限公司 一种封装热沉、半导体激光器和半导体激光器模组
WO2023240949A1 (zh) * 2022-06-14 2023-12-21 青岛海信宽带多媒体技术有限公司 一种光模块

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HK1054126A1 (en) * 2001-09-06 2003-11-14 Finisar Corp Compact laser package with integrated temperature control
CN1643751A (zh) * 2002-03-25 2005-07-20 三洋电机株式会社 半导体激光器件
US20080276624A1 (en) * 2007-05-10 2008-11-13 Aisin Seiki Kabushiki Kaisha Thermoelectric module and optical transmission apparatus
JP2010016323A (ja) * 2008-07-02 2010-01-21 Kostecsys Co Ltd 半導体レーザーダイオードの構造
JP2010034137A (ja) * 2008-07-25 2010-02-12 Sharp Corp 半導体レーザ装置
CN101924323A (zh) * 2009-06-09 2010-12-22 三菱电机株式会社 多波长半导体激光器装置
CN108390255A (zh) * 2018-02-22 2018-08-10 青岛海信宽带多媒体技术有限公司 光学次模块及光模块

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8800140A (nl) * 1988-01-22 1989-08-16 Philips Nv Laserdiode module.
JP4262937B2 (ja) * 2001-07-26 2009-05-13 シャープ株式会社 半導体レーザ装置
US6703561B1 (en) * 2001-09-06 2004-03-09 Finisar Corporation Header assembly having integrated cooling device
JP3987716B2 (ja) * 2001-12-10 2007-10-10 シャープ株式会社 半導体レーザ装置およびその製造方法
US7066659B2 (en) * 2002-02-14 2006-06-27 Finisar Corporation Small form factor transceiver with externally modulated laser
US6852928B2 (en) * 2002-02-14 2005-02-08 Finisar Corporation Cooled externally modulated laser for transmitter optical subassembly
US6867368B2 (en) * 2002-02-14 2005-03-15 Finisar Corporation Multi-layer ceramic feedthrough structure in a transmitter optical subassembly
JP4617636B2 (ja) * 2003-03-19 2011-01-26 住友電気工業株式会社 光モジュール
JP3775397B2 (ja) * 2003-03-27 2006-05-17 住友電気工業株式会社 光送信モジュール
JP3947495B2 (ja) * 2003-06-02 2007-07-18 ローム株式会社 モールド型半導体レーザ
KR100526504B1 (ko) * 2003-06-04 2005-11-08 삼성전자주식회사 광소자 모듈 패키지 및 그 제조 방법
KR100576881B1 (ko) * 2005-01-03 2006-05-10 삼성전기주식회사 반도체 레이저 다이오드장치 및 그 제조방법
JP4815814B2 (ja) * 2005-02-04 2011-11-16 三菱電機株式会社 光モジュール
JP4923542B2 (ja) * 2005-11-30 2012-04-25 三菱電機株式会社 光素子用ステムとこれを用いた光半導体装置
JP4970924B2 (ja) * 2006-03-28 2012-07-11 三菱電機株式会社 光素子用パッケージとこれを用いた光半導体装置
US7801191B2 (en) * 2007-10-22 2010-09-21 Sanyo Electric Co., Ltd. Semiconductor laser device
US8699533B1 (en) * 2009-02-23 2014-04-15 Cirrex Systems, Llc Method and system for managing thermally sensitive optical devices
US8811439B2 (en) * 2009-11-23 2014-08-19 Seminex Corporation Semiconductor laser assembly and packaging system
CN201887327U (zh) * 2010-10-15 2011-06-29 武汉华工正源光子技术有限公司 内置致冷器、温度可控的半导体激光器同轴to封装结构
EP2846423B1 (en) * 2012-05-01 2017-06-21 Mitsubishi Electric Corporation Semiconductor package
CN203119289U (zh) * 2012-12-31 2013-08-07 华为技术有限公司 一种激光设备及光模块
JP6303481B2 (ja) * 2013-12-20 2018-04-04 セイコーエプソン株式会社 発光素子モジュール、量子干渉装置、原子発振器、電子機器および移動体
CN203660271U (zh) * 2014-01-02 2014-06-18 大连藏龙光电子科技有限公司 10g小型化高速激光发射器
JP6614811B2 (ja) * 2015-05-29 2019-12-04 新光電気工業株式会社 半導体装置用ステム及び半導体装置
JP6319257B2 (ja) * 2015-09-30 2018-05-09 ウシオ電機株式会社 半導体レーザ装置
JP2018041835A (ja) * 2016-09-07 2018-03-15 セイコーエプソン株式会社 発光素子モジュール、原子発振器、電子機器および移動体
CN110612645B (zh) * 2017-05-17 2021-04-02 三菱电机株式会社 半导体封装件
US10819084B2 (en) * 2017-06-02 2020-10-27 Hisense Broadband Multimedia Technologies Co., Ltd. TO-CAN packaged laser and optical module
CN107508141A (zh) * 2017-08-16 2017-12-22 青岛海信宽带多媒体技术有限公司 一种同轴封装的激光器及光模块
CN107482470A (zh) * 2017-07-20 2017-12-15 广东格斯泰气密元件有限公司 5G通讯20GHz激光器双芯片封装基座及其制造方法
DE102017120216B4 (de) * 2017-09-01 2019-05-23 Schott Ag TO-Gehäuse für einen DFB-Laser
CN110391586A (zh) * 2018-04-17 2019-10-29 住友电工光电子器件创新株式会社 发射器组件
DE102019127593B4 (de) * 2019-10-14 2021-08-26 Schott Ag Sockel für ein Gehäuse mit einer elektronischen Komponente zur Hochfrequenz-Signalübertragung
EP3965146A1 (en) * 2020-09-03 2022-03-09 Schott Ag Header for an electronic component
JP2022143754A (ja) * 2021-03-18 2022-10-03 CIG Photonics Japan株式会社 光モジュール

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HK1054126A1 (en) * 2001-09-06 2003-11-14 Finisar Corp Compact laser package with integrated temperature control
CN1643751A (zh) * 2002-03-25 2005-07-20 三洋电机株式会社 半导体激光器件
US20080276624A1 (en) * 2007-05-10 2008-11-13 Aisin Seiki Kabushiki Kaisha Thermoelectric module and optical transmission apparatus
JP2010016323A (ja) * 2008-07-02 2010-01-21 Kostecsys Co Ltd 半導体レーザーダイオードの構造
JP2010034137A (ja) * 2008-07-25 2010-02-12 Sharp Corp 半導体レーザ装置
CN101924323A (zh) * 2009-06-09 2010-12-22 三菱电机株式会社 多波长半导体激光器装置
CN108390255A (zh) * 2018-02-22 2018-08-10 青岛海信宽带多媒体技术有限公司 光学次模块及光模块

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021104885A1 (de) 2020-03-04 2021-09-09 Schott Ag Sockel und Gehäuse mit integriertem Kühler für elektronische Bauelemente
US12009634B2 (en) 2020-03-04 2024-06-11 Schott Ag Header and package with integrated cooler for electronic components
JP2021150454A (ja) * 2020-03-18 2021-09-27 京セラ株式会社 配線基体および電子装置
DE102020120167A1 (de) 2020-07-30 2022-02-03 Schott Ag Gehäuse, vorzugsweise TO-Gehäuse, Sockel für Gehäuse und Baugruppe mit einem solchen Gehäuse und/oder Sockel
WO2022023403A1 (en) 2020-07-30 2022-02-03 Schott Ag Housing, preferably a transistor outline housing, socket for housing, and assembly comprising such a housing and/or socket
CN115832860A (zh) * 2022-11-21 2023-03-21 武汉泵浦科技有限公司 一种可调谐激光器芯片

Also Published As

Publication number Publication date
CN108390255A (zh) 2018-08-10
US20200287347A1 (en) 2020-09-10
US11973311B2 (en) 2024-04-30

Similar Documents

Publication Publication Date Title
WO2019161755A1 (zh) 光学次模块及光模块
US9507109B2 (en) Optical modules
CN106526763B (zh) 一种同轴封装光通信器件
WO2018219318A1 (zh) 同轴封装的激光器和光模块
WO2021164669A1 (zh) 光学收发模块及光纤缆线模块
TW201428925A (zh) 光電模組結構
WO2019085232A1 (zh) 一种高速dml发射组件
CN208334718U (zh) 水平式光通讯次组件的散热结构
KR20050046893A (ko) 티오-캔 구조의 광 모듈
CN114514663B (zh) 具有用于高频信号传输的电子部件的壳体的基座
CN114637081B (zh) 一种光模块
WO2022057866A1 (zh) 一种光模块
KR101920320B1 (ko) 광송신기 및 이를 포함하는 광모듈
CN114637079B (zh) 一种光模块
US20220329323A1 (en) Optical emitting device with built-in thermoelectric cooler and optical transceiver module having the same
CN213602645U (zh) 一种光模块
CN213302589U (zh) 一种光模块
JP2015106663A (ja) 配線基板の接続方法、および配線基板の実装構造
JP6260167B2 (ja) 光電融合モジュール
CN207706472U (zh) 一种应用于工业温度范围的光组件
CN114637082B (zh) 一种光模块
CN114637080B (zh) 一种光模块
CN214798175U (zh) 一种同轴封装的25g高速激光器
JP7036286B1 (ja) 光半導体装置
JPH02197185A (ja) 電子式冷却素子内蔵半導体レーザアセンブリ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757290

Country of ref document: EP

Kind code of ref document: A1