WO2019161589A1 - 一种结构模态参数实时追踪方法 - Google Patents

一种结构模态参数实时追踪方法 Download PDF

Info

Publication number
WO2019161589A1
WO2019161589A1 PCT/CN2018/080581 CN2018080581W WO2019161589A1 WO 2019161589 A1 WO2019161589 A1 WO 2019161589A1 CN 2018080581 W CN2018080581 W CN 2018080581W WO 2019161589 A1 WO2019161589 A1 WO 2019161589A1
Authority
WO
WIPO (PCT)
Prior art keywords
modal
mode
modality
order
time
Prior art date
Application number
PCT/CN2018/080581
Other languages
English (en)
French (fr)
Inventor
伊廷华
杨小梅
曲春绪
李宏男
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/342,929 priority Critical patent/US20200065438A1/en
Publication of WO2019161589A1 publication Critical patent/WO2019161589A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0008Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Definitions

  • the invention belongs to the technical field of structural health monitoring and relates to a real-time tracking method for structural modal parameters.
  • Changes in modal parameters can reflect the long-term service performance of the structure.
  • Existing modal parameter identification methods such as least squares complex frequency domain method, frequency domain decomposition method, random subspace method and feature system implementation algorithm have been widely used in the field of structural modal identification.
  • these methods divide the structural response into a number of sub-segments by time, identify the data of each time period, and obtain modal parameters.
  • the number of modes acquired in each period is not necessarily the same and the modal parameters of each order are not one-to-one correspondence.
  • the purpose of the modal tracking technology is to ensure that the various modes of the structure identified in different time periods can maintain the correct front-to-back correspondence and avoid the phenomenon of “modal intersection”.
  • the existing modal tracking methods are mainly divided into three categories: 1) Manual sorting method: judge whether the modal parameters identified in the two periods before and after are in the same order according to experience; 2) Allowable limit method: set frequency deviation according to experience Or Modal Assurance Criterion (MAC) tolerance limit to track, generally including fixed tolerance value and adaptive adjustment tolerance value; 3) Prediction-correction method: predicting the latter period based on perturbation theory The modal parameters are then compared to the predicted modal parameters and the identified modal parameters.
  • MAC Modal Assurance Criterion
  • the first type of method requires a lot of manpower and time; the second type has the problem that the threshold setting is unreasonable, which is easy to cause modal error classification or loss; the last type of prediction calculation is inefficient and difficult to be in actual large-scale structural engineering. Application. For this reason, modal tracking technology that is accurate and does not require human analysis has important engineering significance.
  • the invention provides a real-time tracking method for structural modal parameters, which is characterized by using natural excitation technology to deal with structural random response, and using a feature system to implement an algorithm combined with a stability map to extract modal parameters at different time periods;
  • the modal collection is used as the reference reference mode.
  • the tracking is performed according to the principle of minimum frequency deviation and maximum modal confidence.
  • a real-time tracking method for structural modal parameters the steps are as follows:
  • Step 1 Obtain modal parameters of each time period
  • r ij ( ⁇ ) represents the cross-correlation function between the acceleration response at the measuring point i and the measuring point j;
  • Step 2 Track the modal parameters of each time period
  • the collection of the recognition modes in each time of the day is selected as the reference reference mode; wherein the reference frequency of each order is expressed as f 1, ref , f 2, ref , ..., f ⁇ , ref , correspondingly, the reference reference mode shape
  • the invention has the beneficial effects that the automatic tracking mode is performed according to the principle of minimum frequency deviation and maximum modal confidence, which can effectively avoid the problem of manual participation in time consuming and partial threshold loss caused by setting threshold.
  • Figure 1 is a layout diagram of 14 vertical acceleration sensors of a main bridge of a bridge.
  • Figure 3 is a modal tracking result based on the modal parameter deviation tolerance limits.
  • the analyzed bridge is a single tower double cable plane asymmetric prestressed concrete cable-stayed bridge.
  • 14 vertical acceleration sensors are arranged on the main beam, as shown in Figure 1.
  • the vertical acceleration response data under the environmental excitation is collected.
  • the sampling frequency is 100 Hz.
  • the acquisition time is from August 1, 2016 to August 31, 2016.
  • the response time interval for each modal parameter identification is selected as one hour.
  • the feature system implementation algorithm calculates the modal parameters under various calculation orders, including the system eigenvalue ⁇ i , the natural frequency f i , the damping ratio ⁇ i , and the mode shape
  • the number of recognition modes is different.
  • the conventional frequency deviation limit is used.
  • the way to track the first-order mode, as shown by the red mark in Figure 3, is not tracked for modalities where the frequency deviation is greater than the limit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Algebra (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种结构模态参数实时追踪方法,首先,利用自然激励技术处理随机响应,并采用特征系统实现算法结合稳定图提取不同时段的模态参数;然后,考虑环境激励水平对识别模态数量的影响,基于一天的分析结果选取识别模态的合集作为基准参考模态,并根据频率偏差与模态置信度进行自动模态追踪;最后,为避免不设阈值引起的模态交叉问题,将搜索到的基准参考模态与指定被追踪模态所在的时段内的所有模态,按照频率偏差最小和模态置信度最大原则进行比较,搜索到被追踪模态。

Description

一种结构模态参数实时追踪方法 技术领域
本发明属于结构健康监测技术领域,涉及结构模态参数实时追踪方法。
背景技术
模态参数的变化可以反映结构的长期服役性能。现有的模态参数识别方法如最小二乘复频域法、频域分解法、随机子空间法和特征系统实现算法等已在结构模态识别领域得到广泛应用。为获取模态参数的实时变化,这些方法均将结构响应按时间分成许多子段,对每一时间段的数据进行识别,进而获取模态参数。然而受激励水平、环境干扰以及算法稳定性的影响,各时段获取的模态数量未必相同且各阶模态参数并非一一对应。而模态追踪技术的目的就是保证在不同时段内识别的结构各阶模态能够保持正确的前后对应关系,避免发生“模态交叉”现象。现有的模态追踪方法主要分为三类:1)人工排序法:根据经验判断前后两个时段内识别的模态参数是否属于同一阶;2)容许限值法:依照经验设定频率偏差或模态置信度(Modal Assurance Criterion,简称MAC)容许限值来追踪,一般包括固定容限值和自适应调整容限值两种;3)预测-校正法:基于摄动理论预测后一时段的模态参数,然后比较预测的模态参数与识别的模态参数。其中,第一类方法需要耗费大量人力和时间;第二类存在阈值设定不合理,易造成模态错误归类或丢失的问题;最后一类的预测计算效率低,难以在实际大型结构工程中应用。为此,精确且无需人为分析的模态追踪技术具有重要的工程意义。
发明内容
本发明的目的是提供一种自动追踪结构模态的方法,解决实时提取结构模态中由于人工参与耗时以及经验阈值造成模态追踪不准确的问题。
本发明提出一种结构模态参数实时追踪方法,其特点是利用自然激励技术处理结构随机响应,并利用特征系统实现算法结合稳定图提取在不同时段的模态参数;基于一天的分析结果选取识别模态的合集作为基准参考模态,对于后续时间段获取的任意阶模态,与每一阶参考模态进行比较,按照频率偏差最小 且模态置信度最大的原则进行追踪。
本发明的技术方案:
一种结构模态参数实时追踪方法,步骤如下:
步骤一:获取各时段的模态参数
(1)选取第h时段内的结构随机响应y(t)=[y 1(t),y 2(t),...,y z(t)] T,t=1,2,...,N,其中N为样本时程点数,z为传感器个数;利用自然激励方法获得各个时间延迟下的相关函数矩阵r(τ):
Figure PCTCN2018080581-appb-000001
式中:r ij(τ)表示测点i和测点j处加速度响应之间的互相关函数;
(2)利用矩阵r(τ)构造如下形式的Hankel矩阵H ms(k-1)和H ms(k):
Figure PCTCN2018080581-appb-000002
(3)令k=1,对矩阵H ms(k-1)利用特征系统实现算法,求解各个模型阶次下的模态参数,包括频率、阻尼比和模态振型,模型阶次从偶数δ开始按照偶数倍δ递增到n uδ;
(4)设定频率误差限值Δ f,lim、阻尼比误差限值Δ ξ,lim和模态置信度指标限值Δ MAC,lim,将满足这三个限值的模态作为稳定模态;若相邻模型阶次下的两个稳定模态同时满足频率偏差小于Δ f,lim,模态置信度大于Δ MAC,lim,则归为同一类;对于模态数量大于限值n tol的类称为物理类;在各物理类内按照模态参数平均值选择物理模态代表,从而获得在第h时段下的α个模态对应的模态参数,其中,识别的各阶频率表示为f 1,h,f 2,h,...,f α,h,相应地,各阶模态振型表示为
Figure PCTCN2018080581-appb-000003
步骤二:追踪各时段的模态参数
(5)由于不同时段内的激励水平差异会造成识别模态数量不同,选取一天中每一时段识别模态的合集作为基准参考模态;其中,各阶基准参考频率表示为f 1,ref,f 2,ref,...,f β,ref,相应地,基准参考模态振型
Figure PCTCN2018080581-appb-000004
(6)对于第h时段下的第j阶模态与第χ阶基准参考模态,若满足下列公式,则追踪为同一类模态:
Figure PCTCN2018080581-appb-000005
Figure PCTCN2018080581-appb-000006
Figure PCTCN2018080581-appb-000007
Figure PCTCN2018080581-appb-000008
本发明的有益效果:按照频率偏差最小且模态置信度最大的原则进行自动追踪模态,可有效避免人工参与耗时及设置阈值造成部分模态丢失的问题。
附图说明
图1是某大桥主桥14个竖向加速度传感器布置图。
图2是依据本发明的自动模态追踪结果。
图3是依据模态参数偏差容许限值的模态追踪结果。
具体实施方式
以下结合技术方案和附图,进一步阐明本发明的具体实施方式。
分析的桥梁为某独塔双索面不对称预应力混凝土斜拉桥,为监测桥梁在运营阶段的动力特性,在主梁上布置14个竖向加速度传感器,如附图1所示。采集环境激励下的竖向加速度响应数据,采样频率为100Hz,采集时间为2016年8月1日到2016年8月31日,每次进行模态参数识别的响应时程选为一个小时。
具体实施方案如下:
(1)以2016年8月1日0:00-1:00的结构随机响应为例。此时,h=1,首先对响应y(t)=[y 1(t),y 2(t),...,y 14(t)] T,其中t=1,2,...,N,利用自然激励技术获得各个时间延迟下的相关函数矩阵,如公式(1)。
(2)令m=200,s=200;分别选取τ=1~399和τ=2~400处的相关函数矩阵构造Hankel矩阵H ms(0)和H ms(1),如公式(2)。
(3)令最小计算阶次为δ=4,并按照δ=4的倍数递增至280,共选定阶次n u=70;对Hankel矩阵H ms(0)和H ms(1),利用特征系统实现算法计算在各个计算阶次下的模态参数,包括系统特征值λ i,固有频率f i,阻尼比ξ i,模态振型
Figure PCTCN2018080581-appb-000009
(4)设定特征频率误差限值Δ f,lim=5%、阻尼比误差限值Δ ξ,lim=20%、模态置信度指标限值Δ MAC,lim=90%;将满足这三个限值的模态作为稳定模态;若相邻模型阶次下的两个稳定模态同时满足频率偏差小于Δ f,lim,模态置信度大于Δ MAC,lim,则归为同一类;对于模态数量大于限值n tol=0.5n u的类称为物理类;在各物理类内按照模态参数平均值选择物理模态代表。从而获得在此时段下频率小于3Hz的α=18个模态对应的模态参数,其中频率:f 1,1=0.378Hz,f 2,1=0.642Hz,f 3,1=0.750Hz,f 4,1=0.937Hz,f 5,1=0.998Hz,f 6,1=1.066Hz,f 7,1=1.266Hz,f 8,1=1.336Hz,f 9,1=1.519Hz,f 10,1=1.618Hz,f 11,1=1.692Hz,f 12,1=1.946Hz,f 13,1=2.018Hz,f 14,1=2.050Hz,f 15,1=2.245Hz,f 16,1=2.297Hz,f 17,1=2.586Hz,f 18,1=2.884Hz。
(5)考虑不同时段内的激励水平差异造成识别模态数量不同,选取一天中每一时段的识别模态的合集作为基准参考模态;其中参考频率:f 1,ref=0.378Hz,f 2,ref=0.642Hz,f 3,ref=0.750Hz,f 4,ref=0.937Hz,f 5,ref=0.998Hz, f 6,ref=1.066Hz,f 7,ref=1.266Hz,f 8,ref=1.336Hz,f 9,ref=1.519Hz,f 10,ref=1.618Hz,f 11,ref=1.692Hz,f 12,ref=1.946Hz,f 13,ref=2.018Hz,f 14,ref=2.050Hz,f 15,ref=2.245Hz,f 16,ref=2.297Hz,f 17,ref=2.586Hz,f 18,ref=2.627Hz,f 19,ref=2.884Hz。
(6)对于时段h=1下的各阶模态j与基准参考模态x若满足公式(3)-(6),则追踪为同一类模态。追踪结果如附图2所示。
为了说明本方法的优越性,以传统的根据频率偏差限值
Figure PCTCN2018080581-appb-000010
Figure PCTCN2018080581-appb-000011
的方式来追踪第一阶模态,如附图3中红色标记所示,对于频率偏差大于限值的模态追踪不到。

Claims (1)

  1. 一种结构模态参数实时追踪方法,其特征在于,步骤如下:
    步骤一:获取各时段的模态参数
    (1)选取第h时段内的结构随机响应y(t)=[y 1(t),y 2(t),…,y z(t)] T,t=1,2,…,N,其中N为样本时程点数,z为传感器个数;利用自然激励方法,获得各个时间延迟下的相关函数矩阵r(τ):
    Figure PCTCN2018080581-appb-100001
    式中:r ij(τ)表示测点i和测点j处加速度响应之间的互相关函数;
    (2)利用矩阵r(τ)构造如下形式的Hankel矩阵H ms(k-1)和H ms(k):
    Figure PCTCN2018080581-appb-100002
    (3)令k=1,对矩阵H ms(k-1)利用特征系统实现算法,求解各个模型阶次下的模态参数,包括频率、阻尼比和模态振型,模型阶次从偶数δ开始按照偶数倍δ递增到n uδ;
    (4)设定频率误差限值Δ f,lim、阻尼比误差限值Δ ξ,lim和模态置信度指标限值Δ MAC,lim,将满足这三个限值的模态作为稳定模态;若相邻模型阶次下的两个稳定模态同时满足频率偏差小于Δ f,lim,模态置信度大于Δ MAC,lim,则归为同一类;对于模态数量大于限值n tol的类称为物理类;在各物理类内按照模态参数平均值选择物理模态代表,从而获得在第h时段下的α个模态对应的模态参数,其中,识别的各阶频率表示为f 1,h,f 2,h,…,f α,h,相应地,各阶模态振型表示为
    Figure PCTCN2018080581-appb-100003
    步骤二:追踪各时段的模态参数
    (5)由于不同时段内的激励水平差异会造成识别模态数量不同,选取一天中每一时段识别模态的合集作为基准参考模态;其中,各阶基准参考频率表示为f 1,ref,f 2,ref,…,f β,ref,相应地,基准参考模态振型
    Figure PCTCN2018080581-appb-100004
    (6)对于第h时段下的第j阶模态与第χ阶基准参考模态,若满足下列公式,则追踪为同一类模态:
    Figure PCTCN2018080581-appb-100005
    Figure PCTCN2018080581-appb-100006
    Figure PCTCN2018080581-appb-100007
    Figure PCTCN2018080581-appb-100008
PCT/CN2018/080581 2018-02-24 2018-03-27 一种结构模态参数实时追踪方法 WO2019161589A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/342,929 US20200065438A1 (en) 2018-02-24 2018-03-27 A method for tracking structural modal parameters in real time

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810156694.6 2018-02-24
CN201810156694.6A CN108415884B (zh) 2018-02-24 2018-02-24 一种结构模态参数实时追踪方法

Publications (1)

Publication Number Publication Date
WO2019161589A1 true WO2019161589A1 (zh) 2019-08-29

Family

ID=63128903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080581 WO2019161589A1 (zh) 2018-02-24 2018-03-27 一种结构模态参数实时追踪方法

Country Status (3)

Country Link
US (1) US20200065438A1 (zh)
CN (1) CN108415884B (zh)
WO (1) WO2019161589A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410833A (zh) * 2021-05-25 2021-09-17 国网天津市电力公司电力科学研究院 一种主动频率响应控制同调机群辨识方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110597300B (zh) * 2019-05-29 2022-03-29 北京工业大学 一种激光跟踪测量系统俯仰模块的配重计算方法
US11562661B2 (en) 2021-01-14 2023-01-24 Sheila Hall Absolute teaching device
CN113158785B (zh) * 2021-03-11 2022-11-15 复旦大学 一种振荡信号模态参数的识别方法
CN114674511B (zh) * 2022-03-24 2022-11-15 大连理工大学 一种用于剔除时变环境因素影响的桥梁模态异常预警方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185661A (ja) * 1996-12-26 1998-07-14 Canon Inc 1自由度力学系のパラメータ推定装置および方法
GB201204920D0 (en) * 2012-01-23 2012-05-02 Airbus Operations Ltd System and method for automatic modal parameter extraction in structural dynamics analysis
CN105188069A (zh) * 2015-08-09 2015-12-23 大连理工大学 一种基于网络效率的桥梁监测系统节点布设方法
CN105976018A (zh) * 2016-04-22 2016-09-28 大连理工大学 用于结构健康监测传感器优化布设的离散鸽群算法
CN106844935A (zh) * 2017-01-18 2017-06-13 大连理工大学 一种大阻尼工程结构模态参数识别方法
CN107133195A (zh) * 2017-04-14 2017-09-05 大连理工大学 一种工程结构模态识别的模型定阶方法
CN107315874A (zh) * 2017-06-26 2017-11-03 大连三维土木监测技术有限公司 一种用于结构局部变形与整体模态信息同时获取的传感器布设方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5145784B2 (ja) * 2007-06-15 2013-02-20 富士ゼロックス株式会社 情報処理システム及び情報処理プログラム
CN102043019A (zh) * 2010-10-21 2011-05-04 重庆大学 一种框架结构损伤识别方法
US10069915B2 (en) * 2015-02-27 2018-09-04 International Business Machines Corporation Storing data in a dispersed storage network
CN107391818B (zh) * 2017-07-07 2019-10-11 大连理工大学 一种基于状态观测器的振动模态参数识别方法
CN107729592B (zh) * 2017-08-14 2021-07-09 西安理工大学 基于广义子空间溯踪的时变结构模态参数辨识方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185661A (ja) * 1996-12-26 1998-07-14 Canon Inc 1自由度力学系のパラメータ推定装置および方法
GB201204920D0 (en) * 2012-01-23 2012-05-02 Airbus Operations Ltd System and method for automatic modal parameter extraction in structural dynamics analysis
CN105188069A (zh) * 2015-08-09 2015-12-23 大连理工大学 一种基于网络效率的桥梁监测系统节点布设方法
CN105976018A (zh) * 2016-04-22 2016-09-28 大连理工大学 用于结构健康监测传感器优化布设的离散鸽群算法
CN106844935A (zh) * 2017-01-18 2017-06-13 大连理工大学 一种大阻尼工程结构模态参数识别方法
CN107133195A (zh) * 2017-04-14 2017-09-05 大连理工大学 一种工程结构模态识别的模型定阶方法
CN107315874A (zh) * 2017-06-26 2017-11-03 大连三维土木监测技术有限公司 一种用于结构局部变形与整体模态信息同时获取的传感器布设方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410833A (zh) * 2021-05-25 2021-09-17 国网天津市电力公司电力科学研究院 一种主动频率响应控制同调机群辨识方法
CN113410833B (zh) * 2021-05-25 2024-04-19 国网天津市电力公司电力科学研究院 一种主动频率响应控制同调机群辨识方法

Also Published As

Publication number Publication date
US20200065438A1 (en) 2020-02-27
CN108415884B (zh) 2021-07-02
CN108415884A (zh) 2018-08-17

Similar Documents

Publication Publication Date Title
WO2019161589A1 (zh) 一种结构模态参数实时追踪方法
WO2020248228A1 (zh) 一种Hadoop平台计算节点负载预测方法
WO2016155241A1 (zh) 基于Kalman滤波器的容量预测方法、系统和计算机设备
WO2015172560A1 (zh) 基于bp神经网络的中央空调冷负荷的预测方法
WO2019173943A1 (zh) 一种自动追踪结构模态参数的方法
CN105717556B (zh) 一种基于大数据的自分型雷达估测降水方法
CN110378504B (zh) 一种基于高维Copula技术的光伏发电爬坡事件概率预测方法
CN104091216A (zh) 基于果蝇优化最小二乘支持向量机的交通信息预测方法
CN104021430A (zh) 一种城市轨道交通站点客流不确定性分析方法
CN107895014B (zh) 一种基于MapReduce框架的时间序列桥梁监测数据分析方法
CN104407688A (zh) 基于树回归的虚拟化云平台能耗测量方法及系统
CN112836720B (zh) 建筑运维设备异常诊断方法、系统及计算机可读存储介质
CN104992010A (zh) 一种基于拓扑分区的多断面联合参数估计方法
CN111784023A (zh) 一种短时邻近雾能见度预测方法
CN103885867B (zh) 一种模拟电路性能的在线评价方法
CN110991776A (zh) 一种基于gru网络实现水位预测的方法及系统
CN111721834A (zh) 一种电缆局部放电在线监测缺陷辨识方法
CN116756825A (zh) 一种中小跨径桥梁的群结构性能预测系统
CN105488598A (zh) 一种基于模糊聚类的中长期电力负荷预测方法
CN114462688A (zh) 一种基于lstm模型和动态阈值确定算法的爆管检测方法
CN107808209B (zh) 基于加权kNN距离的风电场异常数据辨识方法
CN113742993A (zh) 干式变压器寿命损失预测方法、装置、设备及存储介质
CN104680010A (zh) 一种汽轮机组稳态运行数据筛选方法
CN111126694A (zh) 一种时间序列数据预测方法、系统、介质及设备
CN108960332A (zh) 一种基于多向主元素分析法的在线监测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907054

Country of ref document: EP

Kind code of ref document: A1