WO2019160084A1 - 成形方法および成形装置 - Google Patents

成形方法および成形装置 Download PDF

Info

Publication number
WO2019160084A1
WO2019160084A1 PCT/JP2019/005567 JP2019005567W WO2019160084A1 WO 2019160084 A1 WO2019160084 A1 WO 2019160084A1 JP 2019005567 W JP2019005567 W JP 2019005567W WO 2019160084 A1 WO2019160084 A1 WO 2019160084A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
pin
molding method
molded product
mold
Prior art date
Application number
PCT/JP2019/005567
Other languages
English (en)
French (fr)
Inventor
了太 尾▲崎▼
清水 正彦
翔也 真能
航介 池田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP19754137.8A priority Critical patent/EP3725490A4/en
Priority to US16/960,152 priority patent/US20210122094A1/en
Publication of WO2019160084A1 publication Critical patent/WO2019160084A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/0033Moulds or cores; Details thereof or accessories therefor constructed for making articles provided with holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • B29C45/0055Shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2628Moulds with mould parts forming holes in or through the moulded article, e.g. for bearing cages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • B29C45/0055Shaping
    • B29C2045/0058Shaping removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials

Definitions

  • the present invention relates to a molding method and a molding apparatus. This application claims priority based on Japanese Patent Application No. 2018-026485 for which it applied on February 16, 2018, and uses the content here.
  • Resin molded products are manufactured by, for example, injection molding.
  • the through hole is formed by a perforation pin provided in the mold.
  • the molten resin introduced into the mold is divided into two by the perforation pins, and merges on the back side of the perforation pins.
  • the resin temperature is slightly low, so that the two resin streams cannot be fused completely, and a weld line may be formed (see, for example, Patent Document 1).
  • the weld line may cause a decrease in strength of the resin molded product.
  • the aesthetics of the resin molded product may be impaired by the weld line.
  • the perforation pin can be protruded from the gap by a driving device.
  • the through holes are formed by projecting the perforated pins into the molten resin before curing.
  • the weld line is not formed because the resin flow is not hindered by the perforation pins when filling the gap with the molten resin.
  • Patent Document 1 When manufacturing a thick molded article using a high strength resin such as super engineering plastic (PEEK, PPS, PI, etc.), fiber-containing resin (resin containing carbon fiber, glass fiber, etc.), it is described in Patent Document 1.
  • a high strength resin such as super engineering plastic (PEEK, PPS, PI, etc.), fiber-containing resin (resin containing carbon fiber, glass fiber, etc.)
  • PEEK, PPS, PI, etc. fiber-containing resin
  • fiber-containing resin resin containing carbon fiber, glass fiber, etc.
  • An object of the present invention is to provide a molding method and a molding apparatus in which a resin molded product having holes can be easily produced and a weld line hardly occurs.
  • the molding method includes a first step of injecting a molten resin into a gap of a mold, and an opening at a tip toward the resin in the gap in an uncured state of the resin.
  • tip is used, the pushing load at the time of a punch pin being pushed into resin can be suppressed. Therefore, it becomes easy to produce a resin molded product having holes. In addition, since the pushing load can be reduced, a small drive mechanism with a low output can be used, so that the installation of the drive mechanism is unlikely to occur. Therefore, a resin molded product can be easily manufactured. According to the molding method, since the resin flow is not easily disturbed by the perforation pins, the weld line is difficult to be formed.
  • the drill pin may penetrate the resin.
  • the hollow portion may be a hole extending in the length direction of the drill pin.
  • the molding method Prior to the first step, includes a preliminary step of projecting the piercing pin into the gap, and in the second step, the projecting length of the piercing pin is set to the drilling length in the preliminary step. It can be longer than the protruding length of the pin.
  • the moving distance of the piercing pin in the second step can be reduced, and the pushing load when the piercing pin is pushed into the resin can be suppressed. Therefore, it becomes easy to produce a resin molded product having holes. Further, since the pushing load can be reduced, a small drive mechanism with low output can be used, and the installation of the drive mechanism is unlikely to occur. Therefore, a resin molded product can be easily manufactured. According to the molding method, since the protruding length of the drill pin in the first step is short, the weld line is difficult to form.
  • a molding apparatus includes a mold for injection molding, and a perforation pin that has a hollow portion that is open at the tip and can protrude from the gap portion of the mold.
  • tip is provided, the pushing load at the time of a piercing pin being pushed into resin can be suppressed. Therefore, it becomes easy to produce a resin molded product having holes. Further, since the pushing load can be reduced, a small drive mechanism with low output can be used, and the installation of the drive mechanism is unlikely to occur. Therefore, a resin molded product can be easily manufactured. According to the molding apparatus, since the resin flow is not easily disturbed by the perforation pins, the weld line is hardly formed.
  • a resin molded product having holes can be easily produced, and a weld line is hardly generated.
  • FIG. 1 is a schematic view of a molding apparatus 10 (resin molded product manufacturing apparatus) used in the molding method (resin molded product manufacturing method) according to the first embodiment.
  • FIG. 2A is a perspective view of the piercing pin 2.
  • FIG. 2B is a plan view of the piercing pin 2.
  • 3 to 5 are schematic views showing each step in the molding method according to the first embodiment.
  • the molding apparatus 10 includes a mold 1, a perforation pin 2, a drive mechanism 3, and a control unit 4.
  • the mold 1 is a mold for injection molding, and includes a first mold 11 and a second mold 12.
  • a gap 13 is secured between the first mold 11 and the second mold 12.
  • the gap portion 13 has a shape corresponding to the resin molded product 20 (see FIG. 5) to be manufactured.
  • the inner surface 11 a of the first mold 11 and the inner surface 12 a of the second mold 12 are opposed to each other through the gap portion 13.
  • the thickness direction of the gap 13 (the vertical direction in FIG. 1) is also referred to as the Z direction.
  • the first mold 11 has an insertion hole 15 through which the piercing pin 2 is inserted.
  • the inner surface 11 a of the first mold 11 faces the gap portion 13.
  • the inner surface 11a has a shape corresponding to the first surface 20a (see FIG. 5) of the resin molded product 20.
  • the inner surface 12 a of the second mold 12 faces the gap portion 13.
  • the inner surface 12a has a shape conforming to the second surface 20b (see FIG. 5) of the resin molded product 20.
  • the second surface 20 b is a surface opposite to the first surface 20 a of the resin molded product 20.
  • the piercing pin 2 (piercing member) has a hollow portion 5 opened at the tip 2a.
  • the hollow portion 5 is a hole extending in the length direction of the perforation pin 2. Therefore, in the second step, the resin 16 is easily introduced into the hollow portion 5, and the pressing load when the perforating pin 2 is pushed into the resin 16 can be suppressed.
  • the perforation pin 2 is also opened at the base end 2d (the end opposite to the front end 2a). Thereby, in the 2nd process, when resin 16 is introduced into hollow part 5, the air in hollow part 5 becomes easy to be discharged from base end 2d. Therefore, the pushing load when the perforating pin 2 is pushed into the resin 16 can be reduced.
  • the perforation pin 2 may have a cylindrical shape having a central axis along the thickness direction (Z direction) of the gap 13, for example, a cylindrical shape, a rectangular tube shape (a square tube shape, a triangular tube shape, or the like).
  • 2A and 2B has a cylindrical shape.
  • the inner diameter ratio of the perforated pin 2 (ratio d / D between the inner diameter d and the outer diameter D) can be set to 0.5 to 0.8, for example.
  • the perforation pin 2 can form a through hole 18 (see FIG. 5) having a circular cross section perpendicular to the length direction.
  • the length direction of the perforation pin 2 is oriented in the thickness direction (vertical direction in FIG. 1) (Z direction) of the gap portion 13.
  • the piercing pin 2 is inserted into the insertion hole 15.
  • a portion 2 b including the tip 2 a can protrude from the gap portion 13 of the mold 1.
  • the perforating pin 2 is movable in the length direction (vertical direction in FIG. 1) (Z direction). Therefore, the perforation pin 2 is configured to protrude with respect to the gap portion 13 of the mold 1.
  • the piercing pin 2 can be disposed at a position (non-projecting position) that does not protrude from the inner surface 11a to the gap portion 13 (see FIG. 1), or a portion 2b including the tip 2a protrudes from the inner surface 11a to the gap portion 13. It can also be arranged at the position (protruding position) (see FIG. 4). The tip 2a of the piercing pin 2 comes into contact with the inner surface 12a of the second die 12 at the lowest position (most protruding position) (see FIG. 4).
  • the drive mechanism 3 is, for example, a motor or the like, and can move the drill pin 2 in the protruding direction (downward in FIG. 1) and in the opposite direction.
  • the control unit 4 drives the drive mechanism 3 based on the position information of the piercing pin 2 detected by a sensor (not shown) (for example, an optical sensor), and the length of the piercing pin 2 in the protruding direction (projecting dimension from the inner surface 11a). Can be controlled.
  • molten resin 16 is introduced (injected) from the resin introduction hole 1 a into the gap 13 of the mold 1.
  • the introduction direction of the resin 16 is a direction that intersects the Z direction (the protruding direction of the perforating pins 2).
  • the introduction direction of the resin 16 is a direction orthogonal to the Z direction.
  • the resin 16 is filled in the gap 13.
  • the resin 16 is preferably a thermoplastic resin.
  • the thermoplastic resin include polyether ether ketone (PEEK), polyphenylene sulfide (PPS), polyimide (PI), polyether sulfone (PES), aromatic polyamide (PA), and polyamideimide (PAI).
  • the resin 16 may be a fiber reinforced resin.
  • the fiber reinforced resin for example, a carbon fiber reinforced resin, a glass fiber reinforced resin, or the like can be used.
  • the tensile strength (for example, conforming to ASTM D638) of the resin molded product made of the resin 16 is, for example, 90 MPa or more (for example, 90 MPa to 262 MPa).
  • the drive mechanism 3 is operated by the control unit 4 in a state where the resin 16 is uncured, and the perforation pins 2 are projected toward the resin 16 in the gap portion 13.
  • the piercing pin 2 is in the lowest position (the most protruding position), and the tip 2 a comes into contact with the inner surface 12 a of the second mold 12. Thereby, the perforation pin 2 penetrates the resin 16.
  • the protruding length L of the piercing pin 2 is equal to the total thickness T of the gap 13. A part of the resin 16 is introduced into the hollow portion 5.
  • the protruding length L of the piercing pin 2 is a dimension in the Z direction (the thickness direction of the gap 13) from the inner surface 11a of the first die 11 to the tip 2a of the piercing pin 2.
  • the total thickness T is the dimension of the gap 13 in the protruding direction (Z direction) of the punch pin 2.
  • the piercing pin 2 has the hollow portion 5 opened at the tip 2a, the area of the tip surface of the piercing pin 2 is small. Therefore, it is possible to suppress the pressing load when the punch pin 2 is pushed into the resin 16. Therefore, formation of the through hole 18 (see FIG. 5) by the perforating pin 2 is facilitated. Further, since the pushing load can be reduced, the small drive mechanism 3 with low output can be used. Therefore, it is difficult for the installation of the drive mechanism 3 to be hindered.
  • FIG. 6 is a diagram showing the relationship between the inner diameter ratio of the punch pin 2 and the pressing load.
  • the “inner diameter ratio” is a ratio d / D between the inner diameter d and the outer diameter D of the drill pin 2 shown in FIG. 2B.
  • the “push load ratio” is a ratio “W1 / W2” between the push load W1 of the punch pin 2 in the second step and the push load W2 when a solid structure punch pin is used instead of the punch pin 2. .
  • the push load ratio decreases as the inner diameter ratio of the perforated pin 2 increases. Therefore, by using the perforation pin 2 having the hollow portion 5, the pressing load of the perforation pin 2 in the second step can be reduced as compared with the case where the perforation pin having a solid structure is used.
  • the resin 16 (see FIG. 4) is cured by cooling or the like.
  • the resin 16 may be cooled using a refrigerant such as water or air, or may be allowed to cool.
  • the cured resin 16 becomes a resin molded product 20.
  • the resin molded product 20 is taken out from the mold 1.
  • the perforated pins 2 are extracted from the resin molded product 20.
  • a portion where the piercing pin 2 was provided becomes a through hole 18.
  • the molding method of the first embodiment since the piercing pin 2 having the hollow portion 5 opened at the tip 2a is used, the pressing load when the piercing pin 2 is pushed into the resin 16 can be suppressed. Therefore, the resin molded product 20 (see FIG. 5) having the through hole 18 can be easily manufactured. Further, since the push load can be reduced, the small drive mechanism 3 with a low output can be used, so that the installation of the drive mechanism 3 is unlikely to be hindered. Therefore, the resin molded product 20 can be easily manufactured. According to the molding method of the first embodiment, since the flow of the resin 16 is not hindered by the perforation pins 2, the weld line is not easily formed.
  • the resin molded product 20 having the through hole 18 can be easily manufactured.
  • the molding apparatus 10 includes the piercing pin 2 having the hollow portion 5 opened at the tip 2a, the pressing load when the piercing pin 2 is pushed into the resin 16 can be suppressed. Therefore, the resin molded product 20 (see FIG. 5) having the through hole 18 can be easily manufactured. Further, since the push load can be reduced, the small drive mechanism 3 with a low output can be used, so that the installation of the drive mechanism 3 is unlikely to be hindered. Therefore, the resin molded product 20 can be easily manufactured. According to the molding apparatus 10, when the molding method of the first embodiment is adopted, the flow of the resin 16 is not hindered by the perforation pins 2, so that the weld line is not easily formed.
  • FIG. 7 is a perspective view showing a perforation pin 2A which is a modified example of the perforation pin 2.
  • the perforation pin 2A has a rectangular tube shape (rectangular tube shape).
  • the perforation pin 2A can form a through hole having a quadrangular cross section perpendicular to the length direction.
  • the piercing pin 2 is in the non-projecting position.
  • the drive mechanism 3 is operated by the control unit 4, and the portion 2 b including the tip 2 a of the drill pin 2 is protruded into the gap portion 13.
  • the protruding length L of the piercing pin 2 in this step is “L1”.
  • the protruding length L1 of the piercing pin 2 is smaller than the total thickness T of the gap 13. Therefore, the tip 2 a of the piercing pin 2 does not reach the inner surface 12 a of the second mold 12.
  • the protrusion length L1 is desirably 25% to 40% with respect to the total thickness T.
  • the protruding length L1 is 25% or more with respect to the total thickness T, it is possible to reduce the pressing load when the perforating pin 2 is further protruded in the process described later.
  • the protruding length L1 is 40% or less with respect to the total thickness T, formation of a weld line in the resin molded product 20 (see FIG. 5) can be suppressed.
  • molten resin 16 is introduced (injected) from the resin introduction hole 1 a into the gap 13 of the mold 1.
  • the introduction direction of the resin 16 is a direction that intersects the Z direction (the protruding direction of the perforating pins 2).
  • the introduction direction of the resin 16 is a direction orthogonal to the Z direction.
  • the resin 16 is filled in the gap 13.
  • the resin 16 that has reached the piercing pin 2 is divided into a plurality of directions, and wraps around the piercing pin 2 to join.
  • the angle at which the resin flow in the direction around one axis of the piercing pin 2 and the resin flow in the direction around the other axis of the piercing pin 2 meet on the back surface 2c side of the piercing pin 2 is referred to as an association angle.
  • the meeting angle is an angle formed by the surfaces of the resin flow surfaces in the direction around the two axes that meet at the back surface 2c at the same height as the inner surface 11a when viewed from the direction parallel to the Z direction.
  • the resin 16 flows including the protruding portion of the perforation pin 2 and fills the gap portion 13. A part of the resin 16 is introduced into the hollow portion 5.
  • the protruding length L1 of the drill pin 2 is short, the weld line is difficult to form. As the reason why the weld line is difficult to be formed, the following guess is possible. Since the protruding length L1 of the piercing pin 2 is short, the resin 16 hitting the piercing pin 2 is not only in the direction around the axis of the piercing pin 2, but also in other directions (for example, the direction of wrapping around the rear surface 2c from the front end side of the piercing pin 2). Also easy to shunt. Therefore, since the multi-directional resin flows merge on the back surface 2c of the perforation pin 2, the meeting angle tends to be large. If the meeting angle is large, the weld line is difficult to form.
  • the drive mechanism 3 is operated by the control unit 4 to further protrude the perforating pin 2. That is, the protrusion length L of the perforation pin 2 is set to a protrusion length L2 longer than the protrusion length L1 (see FIG. 10).
  • the protruding length L2 is equal to the total thickness T of the gap 13.
  • the piercing pin 2 is in the lowest position (the most protruding position), and the tip 2 a comes into contact with the inner surface 12 a of the second mold 12. Thereby, the perforation pin 2 penetrates the resin 16.
  • the moving distance of the piercing pin 2 to the most protruding position when the piercing pin 2 is protruded is smaller than the moving distance of the piercing pin 2 from the non-projecting position (see FIG. 8) to the most protruding position. Therefore, it is possible to suppress the pressing load when the punch pin 2 is pushed into the resin 16. Therefore, formation of the through hole 18 (see FIG. 5) by the perforating pin 2 is facilitated. Further, since the pushing load can be reduced, the small drive mechanism 3 with low output can be used. Therefore, it is difficult for the installation of the drive mechanism 3 to be hindered.
  • the resin 16 is cured by cooling or the like.
  • the cured resin 16 becomes a resin molded product 20 (see FIG. 5).
  • the resin molded product 20 is taken out from the mold 1.
  • the perforated pins 2 are extracted from the resin molded product 20.
  • a portion where the piercing pin 2 was provided becomes a through hole 18.
  • the piercing pin 2 having the hollow portion 5 opened at the tip 2a is used, the piercing pin 2 is pushed into the resin 16 as in the molding method of the first embodiment.
  • the pressing load at the time can be reduced. Therefore, the resin molded product 20 can be easily manufactured.
  • the resin 16 in the first step, the resin 16 is filled in the gap 13 with the perforated pin 2 protruding (see FIG. 10), and the perforated pin 2 is further protruded in the second step. (See FIG. 11). Therefore, the moving distance of the piercing pin 2 in the second step can be reduced, and the pushing load when the piercing pin 2 is pushed into the resin 16 can be suppressed. Therefore, the resin molded product 20 (see FIG. 5) having the through hole 18 can be easily manufactured. Further, since the push load can be reduced, the small drive mechanism 3 with a low output can be used, so that the installation of the drive mechanism 3 is unlikely to be hindered. Therefore, the resin molded product 20 can be easily manufactured. According to the molding method of the second embodiment, since the protruding length L1 (see FIG. 10) of the perforation pin 2 in the first step is short, the weld line is difficult to be formed as described above.
  • the resin molded product 20 having the through hole 18 can be easily manufactured.
  • the molding apparatus 10 includes the control unit 4, the pressing load of the perforating pin 2 is suppressed by causing the perforating pin 2 to protrude in two stages, thereby facilitating the production of the resin molded product 20. Since the shaping
  • FIG. 12 is a schematic view of a molding apparatus 110 used in the molding method according to the third embodiment.
  • 13 to 15 are schematic views showing each step in the molding method according to the third embodiment.
  • the molding apparatus 110 has the same configuration as the molding apparatus 10 (see FIG. 1) of the first embodiment except that the molding apparatus 110 includes an insertion body 14 that is inserted into the perforation pin 2.
  • the molding apparatus 110 includes an insertion body 14 that is inserted into the perforation pin 2.
  • illustration of the drive mechanism and the control unit is omitted.
  • the insertion body 14 has a columnar shape corresponding to the shape of the hollow portion 5 of the perforating pin 2, for example, a columnar shape, a prismatic shape (a quadrangular prism shape, a triangular prism shape, etc.).
  • the insertion body 14 has, for example, a cylindrical shape having an outer diameter that is substantially the same as or slightly smaller than the inner diameter of the cylindrical drill pin 2.
  • the piercing pin 2 is in a non-projecting position, and the insertion body 14 is inserted over the entire length.
  • the height position (Z-direction position) of the distal end 14 a of the insertion body 14 is the same as the height position of the distal end 2 a of the drill pin 2.
  • the resin 16 (see FIG. 14) is cured by cooling or the like.
  • the cured resin 16 becomes a resin molded product 20.
  • the resin molded product 20 is taken out from the mold 1.
  • the perforated pins 2 are extracted from the resin molded product 20.
  • a portion where the piercing pin 2 was provided becomes a through hole 18.
  • the piercing pin 2 returns to the non-projecting position and enters the insertion body 14 again. Therefore, the resin 17 in the hollow portion 5 is discharged from the perforation pin 2.
  • the molding method of the third embodiment since the piercing pin 2 having the hollow portion 5 opened at the tip 2a is used, the pressing load when the piercing pin 2 is pushed into the resin 16 can be suppressed. Therefore, the resin molded product 20 having the through hole 18 can be easily manufactured. According to the molding method of the third embodiment, since the flow of the resin 16 is not hindered by the perforation pins 2, the weld line is difficult to form.
  • the resin 17 does not remain in the hollow portion 5 of the perforation pin 2 after the molding of the resin molded product 20. Therefore, maintenance of the molding apparatus 110 is easy.
  • the piercing pins are projected in two stages, but the number of stages in which the piercing pins are projected may be any number of three or more.
  • the hole formed in a resin molded product is not specifically limited, A through-hole is preferable.
  • the number of perforation pins used in the molding methods of the first to third embodiments is 1, the number of perforation pins used for resin molding may be any number of 2 or more. Further, the number of holes formed in the resin molded product is not limited to 1, and may be any number of 2 or more.
  • a resin molded product having holes can be easily produced, and a weld line is hardly generated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

溶融した樹脂(16)を金型(1)の空隙部(13)に射出する第1工程と、樹脂(16)が未硬化の状態で、空隙部(13)内の樹脂(16)に向けて、先端(2a)で開口している中空部(5)を有する穿孔ピン(2)を突出させる第2工程と、樹脂(16)を硬化させて樹脂成形品を得る第3工程と、を有する成形方法。

Description

成形方法および成形装置
 本発明は、成形方法および成形装置に関する。
 本願は、2018年2月16日に出願された特願2018-026485号に基づき優先権を主張し、その内容をここに援用する。
 樹脂成形品は、例えば射出成形によって製造される。樹脂成形品が貫通孔を有する場合、貫通孔は、金型内に設けられた穿孔ピンによって形成される。金型内に導入された溶融樹脂は穿孔ピンによって2つに分かれ、穿孔ピンの背面側で合流する。この合流部においては、樹脂温度がやや低くなっているため、2つの樹脂流が完全には融合することができず、ウェルドラインが形成されることがある(例えば、特許文献1を参照)。ウェルドラインは、樹脂成形品の強度低下の原因となる可能性がある。また、ウェルドラインによって樹脂成形品の美観が損なわれることがある。
 特許文献1に記載の成形方法に用いられる金型では、穿孔ピンは、駆動装置によって空隙部に対して突出させることができる。この成形方法においては、穿孔ピンが突出していない空隙部に溶融樹脂を充てんした後、硬化前の溶融樹脂に穿孔ピンを突出させて貫通孔を形成する。この成形方法によれば、空隙部に溶融樹脂を充てんする際に樹脂の流れが穿孔ピンによって妨げられないため、ウェルドラインは形成されない。
特許第2717896号公報
 スーパーエンプラ(PEEK、PPS、PI等)、繊維含有樹脂(炭素繊維、ガラス繊維等を含有する樹脂)などの高強度樹脂を用いて厚肉の成形品を製造する場合、特許文献1に記載の成形方法では、樹脂に貫通孔を形成する際の穿孔ピンの押し荷重が大きくなる。そのため、貫通孔を形成しにくくなることがある。また、穿孔ピンを駆動するために大型の駆動装置が必要となってその設置が難しくなる場合がある。
 本発明は、孔を有する樹脂成形品を容易に作製でき、かつウェルドラインが生じにくい成形方法および成形装置を提供することを目的とする。
 本発明の一態様に係る成形方法は、溶融した樹脂を金型の空隙部に射出する第1工程と、前記樹脂が未硬化の状態で、前記空隙部内の前記樹脂に向けて、先端で開口している中空部を有する穿孔ピンを突出させる第2工程と、前記樹脂を硬化させて前記穿孔ピンを抜出すことによって、孔を有する樹脂成形品を得る第3工程と、を有する。
 前記成形方法によれば、先端で開口している中空部を有する穿孔ピンを用いるため、穿孔ピンが樹脂に押し込まれる際の押し荷重を抑制できる。よって、孔を有する樹脂成形品の作製が容易となる。また、押し荷重を小さくできるため、低出力で小型の駆動機構を使用できることから、駆動機構の設置に支障が生じにくい。よって、樹脂成形品を容易に製造できる。
 前記成形方法によれば、樹脂の流れが穿孔ピンによって妨げられにくいため、ウェルドラインは形成されにくい。
 前記第2工程において、前記穿孔ピンは前記樹脂を貫通してもよい。
 これにより、貫通孔を有する樹脂成形品を容易に作製できる。
 前記中空部は、前記穿孔ピンの長さ方向に延びる孔であってもよい。
 これにより、樹脂が中空部に導入されやすくなり、穿孔ピンが樹脂に押し込まれる際の押し荷重を抑制できる。
 前記成形方法では、前記第1工程に先だって、前記空隙部に、前記穿孔ピンを突出させる予備工程を有し、前記第2工程では、前記穿孔ピンの突出長さを、前記予備工程における前記穿孔ピンの突出長さより長くすることができる。
 前記成形方法によれば、第2工程における穿孔ピンの移動距離を小さくでき、穿孔ピンが樹脂に押し込まれる際の押し荷重を抑制できる。よって、孔を有する樹脂成形品の作製が容易となる。また、押し荷重を小さくできるため、低出力で小型の駆動機構を使用でき、駆動機構の設置に支障が生じにくい。よって、樹脂成形品を容易に製造できる。
 前記成形方法によれば、第1工程における穿孔ピンの突出長さは短いため、ウェルドラインは形成されにくい。
 本発明の一態様に係る成形装置は、射出成形用の金型と、先端で開口している中空部を有し、前記金型の空隙部に対して突出可能な穿孔ピンと、を備える。
 前記成形装置によれば、先端で開口している中空部を有する穿孔ピンを備えるため、穿孔ピンが樹脂に押し込まれる際の押し荷重を抑制できる。よって、孔を有する樹脂成形品の作製が容易となる。また、押し荷重を小さくできるため、低出力で小型の駆動機構を使用でき、駆動機構の設置に支障が生じにくい。よって、樹脂成形品を容易に製造できる。
 前記成形装置によれば、樹脂の流れが穿孔ピンによって妨げられにくいため、ウェルドラインは形成されにくい。
 本発明の一態様によれば、孔を有する樹脂成形品を容易に作製でき、かつウェルドラインが生じにくい。
第1実施形態に係る成形方法に用いられる成形装置の概略図である。 図1に示す成形装置に用いられる穿孔ピンの斜視図である。 図1に示す成形装置に用いられる穿孔ピンの平面図である。 第1実施形態に係る成形方法における第1工程を示す概略図である。 第1実施形態に係る成形方法における第2工程を示す概略図である。 第1実施形態に係る成形方法における第3工程を示す概略図である。 穿孔ピンの内径比と押し荷重との関係を示す図である。 穿孔ピンの変形例を示す斜視図である。 第2実施形態に係る成形方法に用いられる成形装置の概略図である。 第2実施形態に係る成形方法における予備工程を示す概略図である。 第2実施形態に係る成形方法における第1工程を示す概略図である。 第2実施形態に係る成形方法における第2工程を示す概略図である。 第3実施形態に係る成形方法に用いられる成形装置の概略図である。 第3実施形態に係る成形方法における第1工程を示す概略図である。 第3実施形態に係る成形方法における第2工程を示す概略図である。 第3実施形態に係る成形方法における第3工程を示す概略図である。
 以下、図面を参照して本発明を適用した実施形態について詳細に説明する。以下の説明で用いる図面は、本発明の実施形態の構成を説明するためのものであり、図示される各部の大きさや厚さや寸法等は、実際の装置の寸法関係とは異なる場合がある。
[第1実施形態](成形装置)
 図1は、第1実施形態に係る成形方法(樹脂成形品の製造方法)に用いられる成形装置10(樹脂成形品の製造装置)の概略図である。図2Aは、穿孔ピン2の斜視図である。図2Bは、穿孔ピン2の平面図である。図3~図5は、第1実施形態に係る成形方法における各工程を示す概略図である。
 図1に示すように、成形装置10は、金型1と、穿孔ピン2と、駆動機構3と、制御部4と、を備えている。
 金型1は、射出成形用の金型であって、第1の型11と、第2の型12とを備える。第1の型11と第2の型12との間には空隙部13が確保される。空隙部13は、製造するべき樹脂成形品20(図5参照)に応じた形状を有する。第1の型11の内面11aと第2の型12の内面12aとは、空隙部13を介して対向する。空隙部13の厚み方向(図1の上下方向)をZ方向ともいう。
 第1の型11は、穿孔ピン2が挿通する挿通孔15を有する。第1の型11の内面11aは、空隙部13に臨む。内面11aは、樹脂成形品20の第1面20a(図5参照)に即した形状を有する。
 第2の型12の内面12aは、空隙部13に臨む。内面12aは、樹脂成形品20の第2面20b(図5参照)に即した形状を有する。第2面20bは、樹脂成形品20の第1面20aとは反対の面である。
 図2Aおよび図2Bに示すように、穿孔ピン2(穿孔部材)は、先端2aで開口している中空部5を有する。中空部5は、穿孔ピン2の長さ方向に延びる孔である。そのため、第2工程において、樹脂16が中空部5に導入されやすくなり、穿孔ピン2が樹脂16に押し込まれる際の押し荷重を抑制できる。
 穿孔ピン2は、基端2d(先端2aと反対の端)も開口していることが望ましい。これにより、第2工程において、樹脂16が中空部5に導入されたときに、中空部5内の空気が基端2dから排出されやすくなる。そのため、穿孔ピン2が樹脂16に押し込まれる際の押し荷重を小さくできる。
 穿孔ピン2は、空隙部13の厚み方向(Z方向)に沿う中心軸を有する筒状、例えば円筒状、角筒状(四角筒状、三角筒状等)などであってよい。図2Aおよび図2Bに示す穿孔ピン2は、円筒状とされている。図2Bに示すように、穿孔ピン2の内径比(内径dと外径Dとの比d/D)は、例えば0.5~0.8とすることができる。これにより、穿孔ピン2が樹脂16に押し込まれる際の押し荷重を抑制でき、かつ穿孔ピン2の機械的強度を確保できる。穿孔ピン2は、長さ方向に直交する断面が円形の貫通孔18(図5参照)を形成できる。
 図1に示すように、穿孔ピン2は、長さ方向が空隙部13の厚み方向(図1の上下方向)(Z方向)に向けられている。穿孔ピン2は、挿通孔15に挿通する。穿孔ピン2は、先端2aを含む部分2bが金型1の空隙部13に対して突出可能とされている。
 穿孔ピン2は、長さ方向(図1の上下方向)(Z方向)に移動可能である。そのため、穿孔ピン2は、金型1の空隙部13に対して突出可能に構成されている。穿孔ピン2は、内面11aから空隙部13に突出していない位置(非突出位置)に配置されることもできるし(図1参照)、先端2aを含む部分2bが内面11aから空隙部13に突出した位置(突出位置)に配置されることもできる(図4参照)。穿孔ピン2は、最も下降した位置(最突出位置)において、先端2aが第2の型12の内面12aに当接する(図4参照)。
 駆動機構3は、例えばモータ等であって、穿孔ピン2を突出方向(図1の下方)およびその反対方向に向けて移動させることができる。
 制御部4は、図示しないセンサ(例えば光センサ)によって検出された穿孔ピン2の位置情報に基づいて駆動機構3を駆動し、穿孔ピン2の突出方向の長さ(内面11aからの突出寸法)を制御することができる。
[第1実施形態](成形方法)
 次に、第1実施形態に係る成形方法を、図3~図5を参照して説明する。
(第1工程)
 図3に示すように、金型1の空隙部13に、樹脂導入孔1aから、溶融した樹脂16を導入する(射出する)。樹脂16の導入方向は、Z方向(穿孔ピン2の突出方向)に対して交差する方向である。例えば、樹脂16の導入方向は、Z方向に対して直交する方向である。樹脂16は、空隙部13に充てんされる。
 樹脂16としては、熱可塑性樹脂が好ましい。熱可塑性樹脂としては、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンスルファイド(PPS)、ポリイミド(PI)、ポリエーテルスルホン(PES)、芳香族ポリアミド(PA)、ポリアミドイミド(PAI)等が挙げられる。樹脂16は、繊維強化樹脂であってもよい。繊維強化樹脂としては、例えば、炭素繊維強化樹脂、ガラス繊維強化樹脂等を用いることができる。樹脂16からなる樹脂成形品の引張強度(例えばASTM D638に準拠)は、例えば90MPa以上(例えば90MPa~262MPa)である。
(第2工程)
 図4に示すように、樹脂16が未硬化の状態で、制御部4によって駆動機構3を稼働させて、空隙部13内の樹脂16に向けて穿孔ピン2を突出させる。穿孔ピン2は、最も下降した位置(最突出位置)となり、先端2aが第2の型12の内面12aに当接する。これにより、穿孔ピン2は、樹脂16を貫通する。穿孔ピン2の突出長さLは、空隙部13の全厚みTと等しくなる。樹脂16の一部は中空部5に導入される。
 なお、穿孔ピン2の突出長さLは、第1の型11の内面11aから穿孔ピン2の先端2aまでのZ方向(空隙部13の厚み方向)の寸法である。全厚みTは、穿孔ピン2の突出方向(Z方向)についての空隙部13の寸法である。
 上述のように、穿孔ピン2は、先端2aで開口している中空部5を有するため、穿孔ピン2の先端面の面積は小さい。そのため、穿孔ピン2が樹脂16に押し込まれる際の押し荷重を抑制できる。よって、穿孔ピン2による貫通孔18(図5参照)の形成が容易となる。また、押し荷重を小さくできるため、低出力で小型の駆動機構3を使用できる。そのため、駆動機構3の設置に支障が生じにくい。
 図6は、穿孔ピン2の内径比と押し荷重との関係を示す図である。「内径比」とは、図2Bに示す穿孔ピン2の内径dと外径Dとの比d/Dである。「押し荷重比」は、第2工程における穿孔ピン2の押し荷重W1と、穿孔ピン2に代えて中実構造の穿孔ピンを用いた場合の押し荷重W2との比「W1/W2」である。
 図6に示すように、穿孔ピン2の内径比が大きいほど押し荷重比は小さくなる。そのため、中空部5を有する穿孔ピン2を用いることによって、中実構造の穿孔ピンを用いる場合に比べて、第2工程における穿孔ピン2の押し荷重を小さくできる。
(第3工程)
 図5に示すように、冷却等により樹脂16(図4参照)を硬化させる。樹脂16は水、空気などの冷媒を用いて冷却してもよいし、放冷してもよい。硬化した樹脂16は、樹脂成形品20となる。樹脂成形品20は、金型1から取り出される。穿孔ピン2は樹脂成形品20から抜き出される。樹脂成形品20において、穿孔ピン2があった部分は貫通孔18となる。
 第1実施形態の成形方法によれば、先端2aで開口している中空部5を有する穿孔ピン2を用いるため、穿孔ピン2が樹脂16に押し込まれる際の押し荷重を抑制できる。よって、貫通孔18を有する樹脂成形品20(図5参照)の作製が容易となる。また、押し荷重を小さくできるため、低出力で小型の駆動機構3を使用できることから、駆動機構3の設置に支障が生じにくい。よって、樹脂成形品20を容易に製造できる。
 第1実施形態の成形方法によれば、樹脂16の流れが穿孔ピン2によって妨げられないため、ウェルドラインは形成されにくい。
 第1実施形態の成形方法では、第2工程において穿孔ピン2は樹脂16を貫通するため、貫通孔18を有する樹脂成形品20を容易に作製できる。
 成形装置10は、先端2aで開口している中空部5を有する穿孔ピン2を備えるため、穿孔ピン2が樹脂16に押し込まれる際の押し荷重を抑制できる。よって、貫通孔18を有する樹脂成形品20(図5参照)の作製が容易となる。また、押し荷重を小さくできるため、低出力で小型の駆動機構3を使用できることから、駆動機構3の設置に支障が生じにくい。よって、樹脂成形品20を容易に製造できる。
 成形装置10によれば、第1実施形態の成形方法を採用した場合、樹脂16の流れが穿孔ピン2によって妨げられないため、ウェルドラインは形成されにくい。
 図7は、穿孔ピン2の変形例である穿孔ピン2Aを示す斜視図である。穿孔ピン2Aは、四角筒状(矩形筒状)とされている。穿孔ピン2Aは、長さ方向に直交する断面が四角形の貫通孔を形成できる。
[第2実施形態](成形方法)
 次に、第2実施形態に係る成形方法を、図8~図10を参照して説明する。
(予備工程)
 図8に示す成形装置10では、穿孔ピン2は非突出位置にある。
 図9に示すように、制御部4によって駆動機構3を稼働させ、穿孔ピン2の先端2aを含む部分2bを空隙部13に突出させる。この工程における穿孔ピン2の突出長さLは「L1」である。穿孔ピン2の突出長さL1は、空隙部13の全厚みTより小さい。よって、穿孔ピン2の先端2aは第2の型12の内面12aに達していない。
 突出長さL1は、全厚みTに対して25%~40%であることが望ましい。突出長さL1が全厚みTに対して25%以上であると、後述する工程において穿孔ピン2をさらに突出させる際の押し荷重を小さくできる。突出長さL1が全厚みTに対して40%以下であると、樹脂成形品20(図5参照)におけるウェルドラインの形成を抑止できる。
(第1工程)
 図10に示すように、金型1の空隙部13に、樹脂導入孔1aから、溶融した樹脂16を導入する(射出する)。樹脂16の導入方向は、Z方向(穿孔ピン2の突出方向)に対して交差する方向である。例えば、樹脂16の導入方向は、Z方向に対して直交する方向である。樹脂16は、空隙部13に充てんされる。
 穿孔ピン2に達した樹脂16は複数の方向に分かれ、穿孔ピン2を回り込んで合流する。穿孔ピン2の一方の軸周り方向の樹脂流と、穿孔ピン2の他方の軸周り方向の樹脂流とが穿孔ピン2の背面2c側で会合する際の角度を会合角という。会合角は、Z方向と平行な方向から見て、内面11aと同じ高さ位置において背面2cで会合する2つの軸周り方向の樹脂流の表面がなす角度である。
 樹脂16は穿孔ピン2の突出部分を包含して流れ、空隙部13に充てんされる。樹脂16の一部は中空部5に導入される。
 穿孔ピン2の突出長さL1は短いため、ウェルドラインは形成されにくい。ウェルドラインは形成されにくい理由としては、次の推測が可能である。穿孔ピン2の突出長さL1は短いため、穿孔ピン2に当たった樹脂16は、穿孔ピン2の軸周り方向だけでなく他の方向(例えば穿孔ピン2の先端側から背面2cに回り込む方向)にも分流しやすい。そのため、穿孔ピン2の背面2cでは多方向の樹脂流が合流することから、前記会合角は大きくなりやすい。会合角が大きいと、ウェルドラインは形成されにくい。
(第2工程)
 図11に示すように、樹脂16が未硬化の状態で、制御部4によって駆動機構3を稼働させ、穿孔ピン2をさらに突出させる。すなわち、穿孔ピン2の突出長さLを、突出長さL1(図10参照)より長い突出長さL2とする。突出長さL2は、空隙部13の全厚みTと等しい。穿孔ピン2は、最も下降した位置(最突出位置)となり、先端2aが第2の型12の内面12aに当接する。これにより、穿孔ピン2は樹脂16を貫通する。
 本工程において、穿孔ピン2を突出させる際の最突出位置までの穿孔ピン2の移動距離は、非突出位置(図8参照)から最突出位置までの穿孔ピン2の移動距離に比べて小さい。そのため、穿孔ピン2が樹脂16に押し込まれる際の押し荷重を抑制できる。よって、穿孔ピン2による貫通孔18(図5参照)の形成が容易となる。また、押し荷重を小さくできるため、低出力で小型の駆動機構3を使用できる。そのため、駆動機構3の設置に支障が生じにくい。
(第3工程)
 冷却等により樹脂16を硬化させる。硬化した樹脂16は、樹脂成形品20(図5参照)となる。樹脂成形品20は、金型1から取り出される。穿孔ピン2は樹脂成形品20から抜き出される。樹脂成形品20において、穿孔ピン2があった部分は貫通孔18となる。
 第2実施形態の成形方法によれば、先端2aで開口している中空部5を有する穿孔ピン2を用いるため、第1実施形態の成形方法と同様に、穿孔ピン2が樹脂16に押し込まれる際の押し荷重を小さくできる。よって、樹脂成形品20を容易に製造できる。
 第2実施形態の成形方法によれば、第1工程において、穿孔ピン2を突出させた状態で空隙部13に樹脂16を充てんし(図10参照)、第2工程において穿孔ピン2をさらに突出させる(図11参照)。そのため、第2工程における穿孔ピン2の移動距離を小さくでき、穿孔ピン2が樹脂16に押し込まれる際の押し荷重を抑制できる。よって、貫通孔18を有する樹脂成形品20(図5参照)の作製が容易となる。また、押し荷重を小さくできるため、低出力で小型の駆動機構3を使用できることから、駆動機構3の設置に支障が生じにくい。よって、樹脂成形品20を容易に製造できる。
 第2実施形態の成形方法によれば、第1工程における穿孔ピン2の突出長さL1(図10参照)は短いため、上述のように、ウェルドラインは形成されにくい。
 第2実施形態の成形方法では、第2工程において穿孔ピン2は樹脂16を貫通するため、貫通孔18を有する樹脂成形品20を容易に作製できる。
 成形装置10は、制御部4を備えるため、穿孔ピン2を2段階で突出させることによって、穿孔ピン2の押し荷重を抑制し、樹脂成形品20の作製を容易にする。成形装置10は、制御部4によって、第1工程における穿孔ピン2の突出長さL1を短く設定することができるため、ウェルドラインを抑制できる。
[第3実施形態](成形装置)
 図12は、第3実施形態に係る成形方法に用いられる成形装置110の概略図である。図13~図15は、第3実施形態に係る成形方法における各工程を示す概略図である。
 図12に示すように、成形装置110は、穿孔ピン2に挿通する挿通体14を備えていること以外は、第1実施形態の成形装置10(図1参照)と同様の構成である。図12以降の図では駆動機構および制御部の図示は省略する。
 挿通体14は、穿孔ピン2の中空部5の形状に応じた柱状、例えば円柱状、角柱状(四角柱状、三角柱状等)などである。挿通体14は、例えば、円筒状の穿孔ピン2の内径とほぼ同じまたはこれよりやや小さい外径を有する円柱状である。
 図12では、穿孔ピン2は非突出位置にあり、全長にわたって挿通体14が挿通されている。挿通体14の先端14aの高さ位置(Z方向位置)は、穿孔ピン2の先端2aの高さ位置と同じである。
[第3実施形態](成形方法)
 次に、第3実施形態に係る成形方法を、図13~図15を参照して説明する。
(第1工程)
 図13に示すように、金型1の空隙部13に、溶融した樹脂16を導入する(射出する)。
(第2工程)
 図14に示すように、樹脂16が未硬化の状態で、空隙部13内の樹脂16に向けて穿孔ピン2を突出させる。この際、挿通体14は移動しないため、穿孔ピン2は挿通体14を伴わずに樹脂16に押し込まれる。
 穿孔ピン2は、最突出位置となり、先端2aが第2の型12の内面12aに当接する。樹脂16の一部は中空部5に導入される。
(第3工程)
 図15に示すように、冷却等により樹脂16(図14参照)を硬化させる。硬化した樹脂16は、樹脂成形品20となる。樹脂成形品20は、金型1から取り出される。穿孔ピン2は樹脂成形品20から抜き出される。樹脂成形品20において、穿孔ピン2があった部分は貫通孔18となる。
 穿孔ピン2は、非突出位置に戻り、再び挿通体14を挿通した状態となる。そのため、中空部5内にあった樹脂17は穿孔ピン2から排出される。
 第3実施形態の成形方法によれば、先端2aで開口している中空部5を有する穿孔ピン2を用いるため、穿孔ピン2が樹脂16に押し込まれる際の押し荷重を抑制できる。よって、貫通孔18を有する樹脂成形品20を容易に製造できる。
 第3実施形態の成形方法によれば、樹脂16の流れが穿孔ピン2によって妨げられないため、ウェルドラインは形成されにくい。
 第3実施形態の成形方法では、穿孔ピン2に挿通可能な挿通体14を備えるため、樹脂成形品20の成形後に、穿孔ピン2の中空部5内に樹脂17が残らない。そのため、成形装置110のメンテナンスが容易である。
 以上、本発明の好ましい実施形態について詳述したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 例えば、第2実施形態の成形方法では、穿孔ピンを2段階で突出させるが、穿孔ピンを突出させる段階の数は3以上の任意の数であってもよい。
 樹脂成形品に形成される孔は特に限定されないが、貫通孔が好ましい。
 第1~第3実施形態の成形方法で用いる穿孔ピンの数は1であるが、樹脂成形に用いる穿孔ピンの数は2以上の任意の数であってもよい。また、樹脂成形品に形成される孔の数は1に限らず、2以上の任意の数であってよい。
 上記の成形方法および成形装置によれば、孔を有する樹脂成形品を容易に作製でき、かつウェルドラインが生じにくい。
 1  金型
 2,2A  穿孔ピン
 2a  先端
 5  中空部
 10,110  成形装置
 13  空隙部
 16  樹脂
 18  貫通孔(孔)
 20  樹脂成形品

Claims (5)

  1.  溶融した樹脂を金型の空隙部に射出する第1工程と、
     前記樹脂が未硬化の状態で、前記空隙部内の前記樹脂に向けて、先端で開口している中空部を有する穿孔ピンを突出させる第2工程と、
     前記樹脂を硬化させて前記穿孔ピンを抜出すことによって、孔を有する樹脂成形品を得る第3工程と、を有する、成形方法。
  2.  前記第2工程において、前記穿孔ピンは前記樹脂を貫通する、請求項1に記載の成形方法。
  3.  前記中空部は、前記穿孔ピンの長さ方向に延びる孔である、請求項1または2に記載の成形方法。
  4.  前記第1工程に先だって、前記空隙部に、前記穿孔ピンを突出させる予備工程を有し、
     前記第2工程では、前記穿孔ピンの突出長さを、前記予備工程における前記穿孔ピンの突出長さより長くする、請求項1~3のうちいずれか1項に記載の成形方法。
  5.  射出成形用の金型と、
     先端で開口している中空部を有し、前記金型の空隙部に対して突出可能な穿孔ピンと、
     を備える、成形装置。
PCT/JP2019/005567 2018-02-16 2019-02-15 成形方法および成形装置 WO2019160084A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19754137.8A EP3725490A4 (en) 2018-02-16 2019-02-15 MOLDING PROCESS AND MOLDING DEVICE
US16/960,152 US20210122094A1 (en) 2018-02-16 2019-02-15 Molding method and molding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018026485A JP7014628B2 (ja) 2018-02-16 2018-02-16 成形方法および成形装置
JP2018-026485 2018-02-16

Publications (1)

Publication Number Publication Date
WO2019160084A1 true WO2019160084A1 (ja) 2019-08-22

Family

ID=67619512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005567 WO2019160084A1 (ja) 2018-02-16 2019-02-15 成形方法および成形装置

Country Status (4)

Country Link
US (1) US20210122094A1 (ja)
EP (1) EP3725490A4 (ja)
JP (1) JP7014628B2 (ja)
WO (1) WO2019160084A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100879A (ja) * 1993-08-12 1995-04-18 Nachi Fujikoshi Corp 射出成形装置及びその装置による射出成形方法
JPH09141698A (ja) * 1995-11-27 1997-06-03 New Raito Kogyo:Kk 射出成形用金型装置
JP2717896B2 (ja) 1991-10-15 1998-02-25 シャープ株式会社 射出成形機用金型
JP2007098714A (ja) * 2005-10-03 2007-04-19 Toshiba Corp 樹脂成形装置、樹脂成形品製造方法、樹脂成形品
JP2018026485A (ja) 2016-08-12 2018-02-15 富士通株式会社 半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100338994B1 (ko) * 1995-03-10 2002-06-01 요시노 쇼이치로 적층박리용기와 그 관련기술

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2717896B2 (ja) 1991-10-15 1998-02-25 シャープ株式会社 射出成形機用金型
JPH07100879A (ja) * 1993-08-12 1995-04-18 Nachi Fujikoshi Corp 射出成形装置及びその装置による射出成形方法
JPH09141698A (ja) * 1995-11-27 1997-06-03 New Raito Kogyo:Kk 射出成形用金型装置
JP2007098714A (ja) * 2005-10-03 2007-04-19 Toshiba Corp 樹脂成形装置、樹脂成形品製造方法、樹脂成形品
JP2018026485A (ja) 2016-08-12 2018-02-15 富士通株式会社 半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3725490A4

Also Published As

Publication number Publication date
US20210122094A1 (en) 2021-04-29
JP7014628B2 (ja) 2022-02-01
EP3725490A1 (en) 2020-10-21
JP2019142043A (ja) 2019-08-29
EP3725490A4 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
US7510335B1 (en) Optical connector
JP6792827B2 (ja) 複合成形体の製造方法
WO2019160091A1 (ja) 成形方法および成形装置
WO2019160084A1 (ja) 成形方法および成形装置
KR101699939B1 (ko) 곡선 튜브 사출 성형 금형
US10994459B2 (en) Injection mold for manufacturing an injection-molded component and method for manufacturing an injection-molded component
JP6422610B1 (ja) 管継手の製造装置
US20090239015A1 (en) Resin injection molding apparatus and tubular resin member
JP4710638B2 (ja) 樹脂成形品
JP5967014B2 (ja) 成形構造体の製造方法
WO2017077949A1 (ja) 金型装置、及び、樹脂部材の製造方法
JP2006035543A (ja) 成形品の型内組立方法
KR102228122B1 (ko) 성형 장치 및 수지 성형품의 제조 방법
JP6132927B2 (ja) 成型用金型と成型製品の製造方法
CN218966032U (zh) 注塑模具
US20060049544A1 (en) Method of composite injection molding and mold
JP4600980B2 (ja) 射出成形機及び射出成形方法
JP2002018898A (ja) 中空成形体及び中空成形体の製造方法
JP2003080569A (ja) 射出成形用金型
JP2015123711A (ja) 繊維強化樹脂材料成形品の製造方法
JP2021142703A (ja) 成形構造体
CN115027003A (zh) 一种管接头注塑模具及模内组装方法
JP5686695B2 (ja) 射出成形方法及びその装置
JP5760554B2 (ja) アパーチャアレイの製造装置及び製造方法
JP2007144939A (ja) 中子組立体、射出成形装置、転動体連結体用連結ベルトの製造方法および転動体連結体用連結ベルト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019754137

Country of ref document: EP

Effective date: 20200713

NENP Non-entry into the national phase

Ref country code: DE