WO2019159505A1 - 伸縮性基板およびその製造方法 - Google Patents

伸縮性基板およびその製造方法 Download PDF

Info

Publication number
WO2019159505A1
WO2019159505A1 PCT/JP2018/044901 JP2018044901W WO2019159505A1 WO 2019159505 A1 WO2019159505 A1 WO 2019159505A1 JP 2018044901 W JP2018044901 W JP 2018044901W WO 2019159505 A1 WO2019159505 A1 WO 2019159505A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
insulating material
material layer
stretchable
substrate
Prior art date
Application number
PCT/JP2018/044901
Other languages
English (en)
French (fr)
Inventor
亮介 ▲高▼田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201890001480.5U priority Critical patent/CN212677438U/zh
Publication of WO2019159505A1 publication Critical patent/WO2019159505A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a stretchable substrate and a manufacturing method thereof.
  • a region on which a component is mounted (hereinafter referred to as a “mounting region”) in the stretchable substrate expands and contracts, there is a possibility of breakage between the component and the stretchable substrate. Therefore, in order to prevent expansion and contraction in the mounting region, it is conceivable that a non-stretchable insulating substrate is bonded to the mounting region in advance to make this portion a non-stretchable region.
  • the other part continues to be a stretchable region (hereinafter referred to as “stretchable region”).
  • stretchable region An example of such a configuration is described in Japanese Patent Laid-Open No. 2016-178121 (Patent Document 1).
  • non-stretchable insulating substrate is bonded to form a non-stretch region as a mounting region, stress tends to concentrate at the boundary between the non-stretch region and the stretch region. Therefore, planar conductor patterns, conductor vias, and the like are easily broken at this boundary. Further, the non-stretchable insulating substrate is bonded to the original stretchable substrate to increase the thickness in the mounting region, which hinders the overall thinning.
  • an object of the present invention is to provide a stretchable substrate that can suppress stress concentration at a specific location as much as possible, and that can hardly cause breakage due to stretch, and a method for manufacturing the stretchable substrate.
  • a stretchable substrate includes a stretchable base material and a conductor pattern formed on the base material.
  • the base material has a specific layer.
  • the specific layer includes a first region that is a hard region extending with the highest Young's modulus in the specific layer, a second region extending with the lowest Young's modulus within the specific layer, and the above And a third region located between the first region and the second region in the specific layer and having a Young's modulus lower than the first region and higher than the second region.
  • the conductor pattern includes a portion arranged so as to straddle both the first region and the second region via the third region.
  • the difference in Young's modulus depending on the part can be alleviated, and the stress concentration at a specific part can be suppressed as much as possible. Since the specific layer of the base material includes the first region which is a hard region, it is possible to make it difficult to cause breakage due to expansion and contraction.
  • FIG. 1 A cross-sectional view of the stretchable substrate 101 in this embodiment is shown in FIG.
  • FIG. 1 A plan view of the stretchable substrate 101 is shown in FIG.
  • the stretchable substrate 101 includes a base material 1 having stretchability and a planar conductor pattern 6 formed on the base material 1.
  • the substrate 1 is made of, for example, a silicone resin. However, the base material 1 should just have a stretching property and insulation, and is not specifically limited to a silicone resin.
  • the substrate 1 has a main surface 1u. Conductive pattern 6 is arranged on main surface 1u.
  • the base material 1 has a specific layer. In the present embodiment, since the substrate 1 has a single layer structure rather than a multilayer structure, this single resin layer corresponds to the specific layer as it is.
  • the specific layer includes a first region 31 which is a hard region extending in a state where the Young's modulus is the highest in the specific layer, a second region 32 extending in the state where the Young's modulus is the lowest in the specific layer, and the specific layer And a third region 33 located between the first region 31 and the second region 32 and having a Young's modulus lower than that of the first region 31 and higher than that of the second region 32.
  • the third region 33 is a quasi-hard region.
  • the third region 33 further includes two types of a first third region 33 a and a second third region 33 b.
  • the words “Ea, Eb, Ec, Ed” are displayed in the substrate 1, meaning that the Young's modulus in each region is Ea, Eb, Ec, Ed.
  • Ea> Eb> Ec> Ed is established.
  • the base material 1 is divided into a first region 31, a third region 33, and a second region 32, and a boundary line is displayed. There are not always lines.
  • the Young's modulus does not always change abruptly with a certain line as a boundary, and the Young's modulus value may change gradually so as to form a gradation from the first region 31 toward the second region 32. . Further, the Young's modulus may change stepwise from the first region 31 toward the second region 32.
  • the first region 31 may be a region hardened by some processing.
  • the first region 31 may be a region that is locally hardened by, for example, electron beam irradiation.
  • the first region 31 is a region that does not substantially expand or contract, or a region that has a large difference in stretchability compared to the second region 32.
  • the conductor pattern 6 includes a portion arranged so as to straddle both the first region 31 and the second region 32 via the third region 33.
  • Part of the conductor pattern 6 is land electrodes 7a and 7b.
  • the conductor pattern 6 may include both a linear portion and a widened portion.
  • the linear part may include a meandering part as illustrated in FIG.
  • the widened portion may have a substantially rectangular shape as illustrated in FIG.
  • the stretchable substrate 101 may or may not include the component 3.
  • the component 3 may be an electronic component.
  • the component 3 may be an IC chip for RFID, for example. In this case, the stretchable substrate 101 is used as an RFID tag.
  • the component 3 includes electrodes 3a and 3b on the surface thereof.
  • the component 3 is mounted on the land electrodes 7 a and 7 b via the bonding member 4. That is, the electrode 3 a is bonded to the land electrode 7 a via the bonding member 4, and the electrode 3 b is bonded to the land electrode 7 b via the bonding member 4.
  • FIG. 1 shows a state after the component 3 is mounted. In FIG. 2, the state before mounting the component 3 is displayed, and the external shape of the component 3 is indicated by a two-dot chain line.
  • the land electrodes 7 a and 7 b are disposed so as to overlap the first region 31.
  • the component 3 is mounted so as to straddle the land electrodes 7a and 7b.
  • the specific layer of the base material 1 includes the first region 31 and the second region 32 and also includes the third region 33 between them.
  • the stress concentration at a specific location can be suppressed as much as possible.
  • the conductor pattern 6 includes a portion arranged so as to straddle both the first region 31 and the second region 32 via the third region 33. Therefore, the first region 31 is used as a mounting location. Can be selected.
  • the conductor pattern 6 includes land electrodes 7 a and 7 b for mounting the component 3, and the land electrodes 7 a and 7 b are stretchable compared to a region that does not substantially stretch or the second region 32. Is overlapped with the first region 31 which is a region having a large difference between the conductor pattern 6 and the electrodes 3a and 3b on the component 3 side (that is, the component 3 is physically detached or the component 3 The electrical connection state becomes insufficient).
  • the conductor pattern 6 includes land electrodes 7a and 7b arranged on the substrate 1, and the land electrodes 7a and 7b are placed on the first region 31, and The two regions 32 are preferably arranged so as to avoid them.
  • the land electrodes 7a and 7b involved in component mounting avoid the second region 32 that is easily expanded and contracted, and are placed on the first region 31 that is not easily expanded and contracted. Can be effectively avoided.
  • the present embodiment it is preferable to include the component 3 mounted on the land electrodes 7a and 7b.
  • a stretchable substrate having some function based on the component 3 can be realized.
  • the stretchable substrate 101 does not have to include components as described above. That is, the present invention can also be used for a stretchable substrate provided with a region having a partially low stretchability.
  • a circuit element such as an inductor or a capacitor
  • the land electrodes 7a and 7b preferably include a metal foil.
  • the metal foil is preferably a copper foil.
  • the bondability with the solder can be improved.
  • the metal foil is harder than the conductor pattern obtained by curing the conductor paste.
  • the stretchable substrate 101 having the structure shown in FIG. 2 is shown and described when viewed in plan, but this is only an example.
  • a stretchable substrate 101i having a structure as shown in FIG. 3 may be used.
  • the portion formed using the stretchable conductive material can be a stretchable conductor portion.
  • the stretchable conductive material may be, for example, a mixture of Ag and silicone resin.
  • the conductor pattern 6 is not necessarily formed of a single material, and may be a combination of portions formed of two or more materials. A portion formed using the non-stretchable conductive material becomes a non-stretchable conductor portion.
  • the non-stretchable conductive material may be a copper foil, for example.
  • the conductor pattern 6 preferably includes a stretchable conductor portion and a non-stretchable conductor portion, and the non-stretchable conductor portion is preferably disposed only in the first region 31.
  • the non-stretchable conductor portion is disposed only in the first region 31, so that the stretchability of a desired portion becomes insufficient when the stretchable substrate is stretched, or the non-stretchable conductor The risk of the part breaking or the like is reduced.
  • FIG. 4 shows a flowchart of the method for manufacturing the stretchable substrate in the present embodiment.
  • the step S1 of preparing a structure including a portion where the conductive layer and the first insulating material layer overlap with each other, and the first insulating material layer in the structure is partially provided.
  • the step S2 of hardening A first region extending in the first insulating material layer with the highest Young's modulus in the first insulating material layer by the step S2 of partially hardening the first insulating material layer; A first region located between the first region and the second region in the first insulating material layer; and a second region extending in a state having the lowest Young's modulus in the first insulating material layer.
  • a third region having a Young's modulus lower than the region and higher than the second region is formed.
  • a copper foil 41 is prepared.
  • the copper foil 41 may have a reference hole 41e.
  • An insulating paste to be the insulating layer 43 having elasticity is applied to one surface of the copper foil 41.
  • the insulating paste includes, for example, a silicone resin.
  • the insulating paste may be applied by printing.
  • the insulating paste layer 42 is formed as shown in FIG.
  • the insulating paste layer 42 is dried at 170 ° C. for 20 minutes. Then, it heats at 200 degreeC for 120 minutes. As a result, the insulating paste layer 42 becomes an insulating layer 43 having elasticity as shown in FIG.
  • the copper foil pattern 44 is formed by patterning the copper foil 41. Up to this point corresponds to step S1.
  • a predetermined region of the insulating layer 43 is irradiated with the electron beam 5.
  • the insulating layer 43 as the first insulating material layer in the structure is partially hardened, that is, the Young's modulus is increased, as shown in FIG. That is, the hard region 43a is formed in the region irradiated with the electron beam 5. Due to the irradiation of the electron beam 5, quasi-hard regions 43b are also formed on both sides of the hard region 43a. A region outside the hard region 43a and the semi-hard region 43b remains as a non-hard region 43c.
  • the semi-hard region 43b here is a region having a value of Young's modulus between the hard region 43a and the non-hard region 43c.
  • the substrate 3 is turned upside down, and the component 3 is mounted so as to straddle the two copper foil patterns 44. Thereby, a product similar to the stretchable substrate 101 described in Embodiment 1 can be obtained.
  • the component 3 may be an IC chip for RFID, for example.
  • the component 3 may not be mounted on the insulating layer 43.
  • a step S2 for partially hardening the first insulating material layer is included, and the first region, the second region, and the third region are formed by this step S2. It is possible to obtain a stretchable substrate that can suppress the stress concentration in the layer as much as possible, and can hardly cause breakage due to stretching.
  • the method of hardening in process S2 is not restricted to this.
  • the formation of the hard region 43a and the semi-hard region 43b may be performed by other than electron beam irradiation.
  • the step S2 of partially hardening the base material as the first insulating material layer includes a step of irradiating the first insulating material layer with an electron beam, and a step of irradiating the first insulating material layer with UV light. And at least one step selected from the group consisting of a step of locally applying heat to the first insulating material layer and a step of locally applying water to the first insulating material layer. preferable. By satisfying this condition, a desired region of the first insulating material layer can be partially hardened. In the present embodiment, as an example, a case in which a step of irradiating an electron beam has been described.
  • a copper foil 41 shown in FIG. 5 is prepared.
  • a conductive paste is applied to one surface of the copper foil 41.
  • the conductive paste may be applied by printing.
  • the conductive paste used here may or may not be stretchable after curing. In the non-hard region, it is preferable to use a conductive paste having stretchability after curing so as not to inhibit stretchability.
  • the conductive paste is printed, for example, it is dried at 170 ° C. for 20 minutes.
  • a conductor pattern 46 is formed.
  • an insulating paste to be the insulating layer 43 having elasticity is applied to the surface on which the conductor pattern 46 is formed.
  • the insulating paste may be applied by printing.
  • an insulating paste layer 42 is formed as shown in FIG.
  • the insulating paste layer 42 is dried at 170 ° C. for 20 minutes, for example. Thereafter, for example, heating is performed at 200 ° C. for 120 minutes. As a result, the insulating paste layer 42 becomes a stretchable insulating layer 43 as shown in FIG.
  • the copper foil 41 is removed by etching the entire surface. Thereby, as shown in FIG. 14, a structure in which the conductor pattern 46 is embedded in the insulating layer 43 is obtained. Up to this point corresponds to step S1.
  • step S2 as shown in FIG. 15, a predetermined region of the insulating layer 43 is irradiated with the electron beam 5.
  • the insulating layer 43 as the first insulating material layer in the structure is partially hardened, as shown in FIG. That is, the hard region 43a is formed in the region irradiated with the electron beam 5. Due to the irradiation of the electron beam 5, quasi-hard regions 43b are also formed on both sides of the hard region 43a.
  • the stretchable substrate may be completed.
  • the component 3 is mounted so as to straddle the two conductor patterns 46 as shown in FIG. Thereby, a product similar to the stretchable substrate 101 described in Embodiment 1 can be obtained.
  • the component 3 may be an IC chip for RFID, for example.
  • the component 3 may not be mounted on the insulating layer 43.
  • the stretchable substrate obtained in the present embodiment includes a conductor pattern 46 derived from a conductive paste instead of a copper foil. As shown in FIG. 17, the surface of the conductor pattern 46 on the component 3 side is flush with the surface of the insulating layer 43 on the component 3 side.
  • the copper foil is completely removed in the middle, but even with such a manufacturing method, stress concentration at a specific location can be suppressed as much as possible, and breakage due to expansion and contraction is less likely to occur.
  • An elastic substrate that can be obtained can be obtained.
  • Embodiment 4 With reference to FIG. 18, the elastic substrate in Embodiment 4 based on this invention is demonstrated. A cross-sectional view of the stretchable substrate 102 in this embodiment is shown in FIG.
  • the stretchable substrate 102 includes a stretchable base material 1 and a conductor pattern 6 formed on the base material 1.
  • the substrate 1 has a main surface 1u.
  • the substrate 1 is a laminate of a plurality of resin layers.
  • the substrate 1 includes a resin layer 21 and a resin layer 22.
  • the base material 1 has a specific layer as one of a plurality of resin layers. In FIG. 18, any of the resin layers 21 and 22 may be regarded as a specific layer.
  • the specific layer includes a first region 31 which is a hard region extending in a state where the Young's modulus is the highest in the specific layer, a second region 32 extending in the state where the Young's modulus is the lowest in the specific layer, and the specific layer And a third region 33 located between the first region 31 and the second region 32 and having a Young's modulus lower than that of the first region 31 and higher than that of the second region 32.
  • the conductor pattern 6 includes a portion arranged so as to straddle both the first region 31 and the second region 32 via the third region 32. Each region such as the first region 31 and the second region 32 extends over the entire thickness direction so as to include not only the resin layer 22 but also the resin layer 21.
  • the substrate 1 includes a plurality of stacked layers.
  • the conductor pattern 6 includes a plurality of conductor pattern elements 61 and 62 arranged at a plurality of heights by being arranged on any surface of the plurality of layers.
  • the conductor pattern element 61 and the conductor pattern element 62 are electrically connected.
  • the conductor pattern element 61 is disposed on the main surface 1u.
  • the conductor pattern element 62 is disposed inside the substrate 1. Of the conductor pattern 6, at least a part of the conductor pattern element 61 overlaps the first region 31, and at least a part of the conductor pattern element 62 overlaps the second region 32.
  • the stretchable substrate 102 includes a plurality of interlayer connection conductors for connecting conductor pattern elements arranged at different heights.
  • the plurality of interlayer connection conductors include a stretchable via and a non-stretchable via.
  • the plurality of interlayer connection conductors include interlayer connection conductors 71 as non-stretchable vias.
  • Interlayer connection conductor 71 may be formed, for example, by curing a conductive paste containing an alloy of Cu and Sn.
  • the plurality of interlayer connection conductors include interlayer connection conductors 72 as stretchable vias.
  • the interlayer connection conductor 72 may be formed, for example, by curing a paste obtained by kneading Ag and silicone resin.
  • This stretchable via may be formed of the same material as at least one of the conductor pattern element 62 and the outer conductor 63.
  • the non-stretchable via is disposed in the first region 31.
  • the conductor pattern element 61 may be made of a metal foil such as a copper foil, or may be a cured conductive paste.
  • the substrate 1 includes a plurality of layers laminated, and the conductor pattern 6 includes a plurality of conductor pattern elements arranged at a plurality of heights, and a plurality of interlayer connection conductors connecting them. Therefore, the conductor pattern 6 can be arranged three-dimensionally, and the degree of freedom of layout of the conductor pattern 6 is increased.
  • Embodiment 5 With reference to FIG. 19, the elastic substrate in Embodiment 5 based on this invention is demonstrated.
  • a cross-sectional view of the stretchable substrate 103 in this embodiment is shown in FIG.
  • the basic configuration of the stretchable substrate 103 is the same as that of the stretchable substrate 102 shown in the fourth embodiment.
  • the conductor pattern element 61 is contained in the first region 31.
  • the conductor pattern 6 includes a stretchable conductor portion and a non-stretchable conductor portion, and the non-stretchable conductor portion is disposed only in the first region 31.
  • the effects described in the fourth embodiment can be obtained. Furthermore, in the present embodiment, since the non-stretchable conductor portion is disposed only in the first region 31, it is possible to more reliably avoid breakage.
  • FIG. 20 shows a flowchart of a method for manufacturing the stretchable substrate in the present embodiment.
  • FIG. 21 shows a modification of the method for manufacturing a stretchable substrate in the present embodiment. FIG. 21 will be described later.
  • the manufacturing method of the stretchable substrate in the present embodiment is basically the same as the stretchable substrate manufacturing method described in Embodiment 2, and includes steps S1 and S2. However, as a point different from the method for manufacturing the stretchable substrate described in the second embodiment, step S3 is included as shown in FIG.
  • the second insulating material layer is formed on the first insulating material layer after the step S2 of partially hardening the first insulating material layer. Step S3 to include.
  • a copper foil 51 is prepared.
  • the copper foil 51 may have a reference hole 51e.
  • An insulating paste is applied to one surface of the copper foil 41.
  • the insulating paste may be applied by printing.
  • the insulating paste layer is dried at 170 ° C. for 10 minutes, for example.
  • an insulating material layer 521 is formed as shown in FIG.
  • a via hole 52a is formed. Formation of the via hole 52a in the insulating material layer 521 can be performed by a known technique such as laser processing.
  • the desired region of the insulating material layer 521 is irradiated with an electron beam. Thereby, a desired region of the insulating material layer 521 becomes a hard region.
  • the conductive paste 57 is disposed.
  • the conductive paste 57 is disposed so as to fill the via hole 52 a and form a desired pattern on the surface of the insulating material layer 521.
  • the arrangement of the conductive paste 57 may be performed by printing.
  • the conductive paste 57 is dried at 170 ° C. for 10 minutes, for example.
  • an insulating paste is applied.
  • the insulating paste may be applied by printing.
  • the insulating paste layer is dried at 170 ° C. for 10 minutes, for example.
  • an insulating material layer 522 is formed as shown in FIG.
  • the insulating material layer 522 covers the pattern formed by the conductive paste 57.
  • the hard region is not shown in FIGS. 25 and 26, it is actually preferable that a part of the insulating material layer 521 is already a hard region.
  • a modification of the method for manufacturing the stretchable substrate in the present embodiment will be described.
  • a step S4 of partially hardening the second insulating material layer is included.
  • electron beam irradiation is performed on a desired region of the insulating material layer 522 as Step S4.
  • the desired region of the insulating material layer 522 becomes a hard region. In this way, the structure shown in FIG. 27 is obtained.
  • the laminated body of the insulating material layers 521 and 522 has modified regions 431 and 432.
  • the modified regions 431 and 432 are a combination of the hard region and the semi-hard region.
  • the insides of the modified regions 431 and 432 are not uniform and include hard regions and semi-hard regions, but the details of the modified regions 431 and 432 are not shown in detail here.
  • the modified region has not yet been formed at the stage shown in FIG. 26, and the modified region 431, as shown in FIG. A method of obtaining a structure with 432 is also conceivable.
  • the electron beam irradiation is performed every time one insulating material layer is formed. The method of forming the quality region and then forming the next insulating material layer is preferable.
  • a carrier film 19 is affixed.
  • heat treatment is performed at 200 ° C. for 2 hours.
  • the carrier film 19 is fixed.
  • the copper foil 51 is patterned to form a copper foil pattern 54.
  • the stretchable substrate is completed.
  • the component 3 is mounted after the stretchable substrate is turned upside down as shown in FIG. Implement.
  • the component 3 is mounted via the joining member 4.
  • the electrode of the component 3 and the copper foil pattern 54 are electrically connected via the bonding member 4.
  • the whole including the component 3 may be called a stretchable substrate.
  • the step S4 for partially hardening the second insulating material layer includes a step of irradiating the second insulating material layer with an electron beam, a step of irradiating the second insulating material layer with UV light, and the second step. It is preferable to include at least one step selected from the group consisting of a step of locally applying heat to the insulating material layer and a step of locally applying water to the second insulating material layer. By satisfying this condition, a desired region of the second insulating material layer can be partially hardened. In the present embodiment, as an example, a case in which a step of irradiating an electron beam has been described.
  • the provision of the semi-hard region between the region in which the insulating material layer having elasticity maintains the elasticity as it is and the hard region has been described in the second embodiment and the like.
  • the hard region and the hard region are preferably formed such that the Young's modulus gradually increases in this order. It is preferable that the Young's modulus is changed so as to form a gradation. In other words, the Young's modulus preferably has a gradient.
  • the semi-rigid region corresponds to the middle part of the gradient.
  • a Young's modulus gradient can be formed by scattering of the electron beam 5 as shown in FIG.
  • what is irradiated from the light source 12 toward the object 10 may be an electron beam or UV light.
  • an opening is provided in a region substantially corresponding to the hard region. Irradiation of the object 10 is performed through the opening of the mask 11.
  • the Young's modulus gradient can be formed in the insulating material layer by irradiating the photocrosslinking agent in the insulating material layer in advance and then irradiating with UV light.
  • the Young's modulus of the insulating material layer can be increased by applying water to the insulating material layer. In that case, water droplets are disposed in a desired region of the insulating material layer. In this case, the Young's modulus of a partial region of the insulating material layer is increased by reaction with water, and a gradient of Young's modulus can be formed in the insulating material layer.
  • the Young's modulus of the insulating material layer can be increased by applying heat to the substrate. Thermal diffusion may be used and scattering may be used.
  • UV light or the like is irradiated onto the object 10 through the opening of the mask 11 in a state where a large amount of the photocrosslinking agent is distributed in the center and distributed in advance.
  • the stretchable region, the semi-rigid region, and the hard region may be arranged in this order, and the Young's modulus may be increased by gradation in this order, but it is not limited to a complete gradient but has stretchability. It may be formed so that the Young's modulus increases in a stepped manner in multiple steps from the region to the hard region.
  • the base material 1 uses a silicone resin as a main material. By adopting this configuration, a stretchable substrate can be easily realized.
  • the stretchable conductor part preferably contains Ag and silicone resin.
  • the stretchable via preferably contains Ag and silicone resin.

Abstract

伸縮性基板(101)は、伸縮性を有する基材(1)と、基材(1)に形成された導体パターン(6)とを備え、基材(1)は、特定層を有する。前記特定層は、前記特定層内でヤング率が最も高い状態で延在する硬質領域である第1領域(31)と、前記特定層内でヤング率が最も低い状態で延在する第2領域(32)と、前記特定層内で第1領域(31)と第2領域(32)との間に位置して第1領域(31)より低く第2領域(32)より高いヤング率を有する第3領域(33)とを含む。導体パターン(6)は、第3領域(33)を経由して第1領域(31)と第2領域(32)との両方にまたがるように配置された部分を含む。

Description

伸縮性基板およびその製造方法
 本発明は、伸縮性基板およびその製造方法に関するものである。
 伸縮性の絶縁基材を用いた伸縮性基板にICなどの部品を実装する場合がある。伸縮性基板のうち部品が実装される領域(以下「実装領域」という。)が伸縮してしまうと、部品と伸縮性基板との間で破断が生じる可能性がある。そこで、実装領域における伸縮を防ぐために、実装領域には予め非伸縮性の絶縁基板を貼り合わせておくことによって、この部分を非伸縮性領域とすることが考えられる。他の部分は引き続き伸縮性を有する領域(以下「伸縮性領域」という。)となる。このような構成の一例が、特開2016-178121号公報(特許文献1)に記載されている。
特開2016-178121号公報
 しかし、非伸縮性の絶縁基板を貼り合わせて実装領域としての非伸縮性領域を形成したとしても、非伸縮性領域と伸縮性領域との境界では応力が集中しがちとなる。したがって、この境界においては、平面状の導体パターン、導体ビアなどが破断しやすい。また、元からある伸縮性基板に非伸縮性の絶縁基板を貼り合わせることによって実装領域では厚みが増してしまい、全体の薄型化には妨げとなる。
 そこで、本発明は、特定の箇所での応力集中をなるべく抑えることができ、伸縮による破断を生じにくくすることができる伸縮性基板およびその製造方法を提供することを目的とする。
 上記目的を達成するため、本発明に基づく伸縮性基板は、伸縮性を有する基材と、上記基材に形成された導体パターンとを備える。上記基材は、特定層を有する。上記特定層は、上記特定層内でヤング率が最も高い状態で延在する硬質領域である第1領域と、上記特定層内でヤング率が最も低い状態で延在する第2領域と、上記特定層内で上記第1領域と上記第2領域との間に位置して上記第1領域より低く上記第2領域より高いヤング率を有する第3領域とを含む。上記導体パターンは、上記第3領域を経由して上記第1領域と上記第2領域との両方にまたがるように配置された部分を含む。
 本発明によれば、部位によるヤング率の差を緩和することができ、特定の箇所での応力集中をなるべく抑えることができる。基材の特定層は、硬質領域である第1領域を備えるので、伸縮による破断を生じにくくすることができる。
本発明に基づく実施の形態1における伸縮性基板の断面図である。 本発明に基づく実施の形態1における伸縮性基板の平面図である。 本発明に基づく実施の形態1における伸縮性基板の変形例の平面図である。 本発明に基づく実施の形態2における伸縮性基板の製造方法のフローチャートである。 本発明に基づく実施の形態2,3における伸縮性基板の製造方法の第1の工程の説明図である。 本発明に基づく実施の形態2における伸縮性基板の製造方法の第2の工程の説明図である。 本発明に基づく実施の形態2における伸縮性基板の製造方法の第3の工程の説明図である。 本発明に基づく実施の形態2における伸縮性基板の製造方法の第4の工程の説明図である。 本発明に基づく実施の形態2における伸縮性基板の製造方法の第5の工程の説明図である。 本発明に基づく実施の形態2における伸縮性基板の製造方法の第6の工程の説明図である。 本発明に基づく実施の形態3における伸縮性基板の製造方法の第2の工程の説明図である。 本発明に基づく実施の形態3における伸縮性基板の製造方法の第3の工程の説明図である。 本発明に基づく実施の形態3における伸縮性基板の製造方法の第4の工程の説明図である。 本発明に基づく実施の形態3における伸縮性基板の製造方法の第5の工程の説明図である。 本発明に基づく実施の形態3における伸縮性基板の製造方法の第6の工程の説明図である。 本発明に基づく実施の形態3における伸縮性基板の製造方法の第7の工程の説明図である。 本発明に基づく実施の形態3における伸縮性基板の製造方法の第8の工程の説明図である。 本発明に基づく実施の形態4における伸縮性基板の断面図である。 本発明に基づく実施の形態5における伸縮性基板の断面図である。 本発明に基づく実施の形態6における伸縮性基板の製造方法のフローチャートである。 本発明に基づく実施の形態6における伸縮性基板の製造方法の変形例のフローチャートである。 本発明に基づく実施の形態6における伸縮性基板の製造方法の第1の工程の説明図である。 本発明に基づく実施の形態6における伸縮性基板の製造方法の第2の工程の説明図である。 本発明に基づく実施の形態6における伸縮性基板の製造方法の第3の工程の説明図である。 本発明に基づく実施の形態6における伸縮性基板の製造方法の第4の工程の説明図である。 本発明に基づく実施の形態6における伸縮性基板の製造方法の第5の工程の説明図である。 本発明に基づく実施の形態6における伸縮性基板の製造方法の第6の工程の説明図である。 本発明に基づく実施の形態6における伸縮性基板の製造方法の第7の工程の説明図である。 本発明に基づく実施の形態6における伸縮性基板の製造方法の第8の工程の説明図である。 本発明に基づく実施の形態6における伸縮性基板の製造方法の第9の工程の説明図である。 絶縁材料層にヤング率のグラデーションを形成する方法の第1の説明図である。 絶縁材料層にヤング率のグラデーションを形成する方法の第2の説明図である。 絶縁材料層にヤング率のグラデーションを形成する方法の第3の説明図である。
 図面において示す寸法比は、必ずしも忠実に現実のとおりを表しているとは限らず、説明の便宜のために寸法比を誇張して示している場合がある。以下の説明において、上または下の概念に言及する際には、絶対的な上または下を意味するとは限らず、図示された姿勢の中での相対的な上または下を意味する場合がある。
 (実施の形態1)
 図1~図2を参照して、本発明に基づく実施の形態1における伸縮性基板について説明する。本実施の形態における伸縮性基板101の断面図を図1に示す。伸縮性基板101の平面図を図2に示す。
 伸縮性基板101は、伸縮性を有する基材1と、基材1に形成された平面状の導体パターン6とを備える。基材1は、たとえばシリコーン樹脂からなる。ただし、基材1は、伸縮性と絶縁性とを有していればよく、特にシリコーン樹脂に限定されるものではない。基材1は、主表面1uを有する。導体パターン6は、主表面1uに配置されている。基材1は、特定層を有する。本実施の形態では、基材1は多層構造ではなく単層構造であるので、この単一の樹脂層がそのまま特定層に該当する。特定層は、特定層内でヤング率が最も高い状態で延在する硬質領域である第1領域31と、特定層内でヤング率が最も低い状態で延在する第2領域32と、特定層内で第1領域31と第2領域32との間に位置して第1領域31より低く第2領域32より高いヤング率を有する第3領域33とを含む。第3領域33は、準硬質領域である。図1に示した例では、第3領域33は、さらに第1の第3領域33aと第2の第3領域33bとの2種類を含んでいる。図1において基材1の中にEa,Eb,Ec,Edという文言が表示されているのは、それぞれの領域におけるヤング率がEa,Eb,Ec,Edであることを意味する。ここでは、Ea>Eb>Ec>Edという関係が成り立っている。図1では、説明の便宜上、基材1が第1領域31、第3領域33、第2領域32に分けられており、境界線が表示されているが、実際にはこのようにはっきりと境界線があるとは限らない。ヤング率は、ある線を境界として急激に変化しているとは限らず、第1領域31から第2領域32に向かうに従って緩やかにヤング率の値がグラデーションをなすように変化していてもよい。また、ヤング率は第1領域31から第2領域32に向かうに従って階段状に変化していてもよい。第1領域31は、何らかの処理によって硬質化された領域であってよい。第1領域31は、たとえば電子線照射などによって局所的に硬質化された領域であってよい。第1領域31は、ほぼ伸縮しない領域であるか、もしくは、第2領域32と比較して伸縮性に大きく差がある領域である。
 本実施の形態では、導体パターン6は、第3領域33を経由して第1領域31と第2領域32との両方にまたがるように配置された部分を含む。導体パターン6の一部はランド電極7a,7bとなっている。導体パターン6は、線状の部分と広くなった部分との両方を含んでよい。線状の部分は、図2に例示されるようにミアンダ状の部分を含んでいてもよい。広くなった部分では、図2に例示されるように略長方形の形状を有していてもよい。伸縮性基板101は、部品3を含んでもよく、含まなくてもよい。部品3は、電子部品であってよい。部品3は、たとえばRFID用のICチップであってもよい。この場合、伸縮性基板101は、RFIDタグとして用いられる。部品3は、その表面に電極3a,3bを備える。部品3は、接合部材4を介してランド電極7a,7bに実装されている。すなわち、電極3aは接合部材4を介してランド電極7aに接合され、電極3bは接合部材4を介してランド電極7bに接合されている。図1では、部品3を実装した後の状態を表示している。図2では、部品3を実装する前の状態を表示しており、部品3の外形は二点鎖線で表示している。ランド電極7a,7bは、第1領域31に重なるように配置されている。部品3は、ランド電極7a,7bにまたがるように実装される。
 本実施の形態では、基材1の特定層は、第1領域31と第2領域32とを備える他に、これらの間に第3領域33を含んでいるので、部位によるヤング率の差を緩和することができ、特定の箇所での応力集中をなるべく抑えることができる。
 本実施の形態では、導体パターン6は、第3領域33を経由して第1領域31と第2領域32との両方にまたがるように配置された部分を含むので、実装箇所として第1領域31を選ぶことができる。
 本実施の形態では、導体パターン6は、部品3を実装するためのランド電極7a,7bを含んでおり、ランド電極7a,7bは、ほぼ伸縮しない領域もしくは第2領域32と比較して伸縮性に大きく差がある領域である第1領域31に重なっているので、導体パターン6と部品3側の電極3a,3bとの間の破断(つまり、部品3が物理的に外れたり、部品3の電気的接合状態が不十分になったりすること)が起こりにくくなる。
 以上のように、本実施の形態では、特定の箇所での応力集中をなるべく抑えることができ、伸縮による破断を生じにくくすることができる伸縮性基板とすることができる。
 本実施の形態で示したように、導体パターン6は、基材1上に配置されたランド電極7a,7bを含み、ランド電極7a,7bは、第1領域31に載っており、かつ、第2領域32を避けるように配置されていることが好ましい。この構成を採用することにより、部品実装にかかわるランド電極7a,7bは、伸縮しやすい第2領域32を避けており、伸縮しにくい第1領域31に載っているので、実装後の破断をより効果的に避けることができる。
 本実施の形態で示したように、ランド電極7a,7bに実装された部品3を備えることが好ましい。この構成を採用することにより、部品3に基づく何らかの機能を有する伸縮性基板を実現することができる。なお、伸縮性基板101は、上述の通り部品を備えていなくてもよい。すなわち、本発明は部分的に伸縮性が低い領域を設けた伸縮性基板にも用いることができる。たとえば、伸縮性基板にインダクタやキャパシタなどの回路要素を、導体パターンを用いて形成する場合に、このようなインダクタのインダクタンス値やキャパシタのキャパシタンス値が変化しないように伸縮性が低い領域をもたせたい場合などに好適に用いることができる。
 ランド電極7a,7bは、金属箔を含むことが好ましい。この構成を採用することにより、導電性に優れたランド電極を容易に形成することができる。金属箔は銅箔であることが好ましい。金属箔が銅箔である場合には、はんだとの接合性を良くすることができる。導体ペーストを硬化させた導体パターンよりも金属箔の方が硬質である場合が多い。ランド電極7a,7bを形成する際に金属箔を用いることで、ランド電極7a,7bが形成された部分の伸縮性基板101の伸縮性を低くすることができる。したがって、部品3の実装後の破断を抑制できる。
 本実施の形態では、平面視したときに、図2に示す構造を備える伸縮性基板101を示して説明したが、これはあくまで一例である。たとえば図3に示すような構造を備える伸縮性基板101iであってもよい。
 伸縮性基板の伸縮幅が大きい場合、あるいは、伸縮性基板の伸縮回数が多い場合には、導体パターン6には伸縮性導電材料を用いることが好ましい。伸縮性導電材料を用いて形成された部分は、伸縮性導体部とすることができる。伸縮性導電材料とは、たとえばAgとシリコーン樹脂とを混練したものであってよい。導体パターン6は単一の材料で形成されるとは限らず、2種類以上の材料で形成された部分の組合せとしてもよい。非伸縮性導電材料を用いて形成された部分は、非伸縮性導体部となる。非伸縮性導電材料とは、たとえば銅箔であってよい。導体パターン6は、伸縮性導体部と非伸縮性導体部とを含み、前記非伸縮性導体部は第1領域31にのみ配置されていることが好ましい。この構成を採用することにより、非伸縮性導体部は、第1領域31にのみ配置されているので、伸縮性基板の伸縮時に所望の部分の伸縮性が不十分になったり、非伸縮性導体部が破断したりするなどのおそれが低減される。
 (実施の形態2)
 図4~図10を参照して、本発明に基づく実施の形態2における伸縮性基板の製造方法について説明する。本実施の形態における伸縮性基板の製造方法のフローチャートを図4に示す。
 本実施の形態における伸縮性基板の製造方法は、導電層と第1絶縁材料層とが重なった部分を含む構造体を用意する工程S1と、前記構造体における前記第1絶縁材料層を部分的に硬質化させる工程S2とを含む。前記第1絶縁材料層を部分的に硬質化させる工程S2によって、前記第1絶縁材料層の内部に、前記第1絶縁材料層内でヤング率が最も高い状態で延在する第1領域と、前記第1絶縁材料層内でヤング率が最も低い状態で延在する第2領域と、前記第1絶縁材料層内で前記第1領域と前記第2領域との間に位置して前記第1領域より低く前記第2領域より高いヤング率を有する第3領域とが形成される。この製造方法に含まれる各工程について、以下に詳しく説明する。
 まず、図5に示すように、銅箔41を用意する。銅箔41は基準孔41eを有するものであってもよい。銅箔41の一方の面に伸縮性を有する絶縁層43となる絶縁ペーストを塗布する。絶縁性ペーストはたとえばシリコーン樹脂を含む。絶縁ペーストの塗布は印刷によって行なってもよい。こうして、図6に示すように、絶縁ペースト層42が形成される。絶縁ペースト層42を170℃で20分間乾燥させる。その後、200℃で120分間加熱する。これにより、絶縁ペースト層42は、図7に示すように伸縮性を有する絶縁層43となる。銅箔41をパターニングすることにより、銅箔パターン44を形成する。ここまでが工程S1に相当する。
 工程S2として、図8に示すように、絶縁層43の所定の領域に電子線5を照射する。これにより、構造体における第1絶縁材料層としての絶縁層43が部分的に硬質化して、すなわちヤング率が高くなって、図9に示すようになる。すなわち、電子線5を照射された領域に硬質領域43aが形成される。電子線5の照射に起因して、硬質領域43aの両隣りに準硬質領域43bも形成される。硬質領域43aおよび準硬質領域43bの外側の領域は、非硬質領域43cとして残る。ここでいう準硬質領域43bは、硬質領域43aと非硬質領域43cとの間のヤング率の値を有する領域である。
 図10に示すように、基板を上下反転させ、2つの銅箔パターン44にまたがるように部品3を実装する。これにより、実施の形態1で説明した伸縮性基板101と同様の製品を得ることができる。部品3は、たとえばRFID用のICチップであってもよい。また、部品3は絶縁層43上に実装されていなくてもよい。
 本実施の形態では、第1絶縁材料層を部分的に硬質化させる工程S2を含んでおり、この工程S2によって、第1領域、第2領域、第3領域が形成されるので、特定の箇所での応力集中をなるべく抑えることができ、伸縮による破断を生じにくくすることができる伸縮性基板を得ることができる。
 なお、本実施の形態では、工程S2において電子線を照射する例を示したが、工程S2における硬質化の方法はこれに限らない。硬質領域43aおよび準硬質領域43bの形成は、電子線照射以外で行なってもよい。
 なお、前記第1絶縁材料層としての基材を部分的に硬質化させる工程S2は、前記第1絶縁材料層に電子線を照射する工程、前記第1絶縁材料層にUV光を照射する工程、前記第1絶縁材料層に局所的に熱を付与する工程、および前記第1絶縁材料層に局所的に水を付与する工程からなる群から選択される少なくともいずれか1つの工程を含むことが好ましい。この条件を満たすことにより、第1絶縁材料層の所望の領域を部分的に硬質化することができる。本実施の形態では、一例として、電子線を照射する工程を採用したものについて説明した。
 (実施の形態3)
 図4、図5および図11~図17を参照して、本発明に基づく実施の形態3における伸縮性基板の製造方法について説明する。本実施の形態における伸縮性基板の製造方法においても、基本的な部分のフローチャートは図4に示したものと同じである。この製造方法に含まれる各工程について、以下に詳しく説明する。
 まず、図5に示す銅箔41を用意する。銅箔41の一方の面に導電ペーストを塗布する。導電ペーストの塗布は印刷によって行なってもよい。ここで用いる導電ペーストは、硬化後に伸縮性を有するものであってもそうでないものであってもよい。非硬質領域においては、伸縮性を阻害しないように、硬化後に伸縮性を有する導電ペーストを用いることが好ましい。導電ペーストを印刷した場合、たとえば170℃で20分間乾燥させる。図11に示すように、導電体パターン46が形成される。導電体パターン46が形成された面にさらに、のちに伸縮性を有する絶縁層43となる予定の絶縁ペーストを塗布する。絶縁ペーストの塗布は印刷によって行なってもよい。こうして、図12に示すように、絶縁ペースト層42が形成される。絶縁ペースト層42をたとえば170℃で20分間乾燥させる。その後、たとえば200℃で120分間加熱する。これにより、絶縁ペースト層42は、図13に示すように伸縮性を有する絶縁層43となる。
 銅箔41を全面エッチングにより除去する。これにより図14に示すように、導電体パターン46が絶縁層43の中に埋まりこんだ構造体が得られる。ここまでが工程S1に相当する。
 工程S2として、図15に示すように、絶縁層43の所定の領域に電子線5を照射する。これにより、構造体における第1絶縁材料層としての絶縁層43が部分的に硬質化して、図16に示すようになる。すなわち、電子線5を照射された領域に硬質領域43aが形成される。電子線5の照射に起因して、硬質領域43aの両隣りに準硬質領域43bも形成される。
 ここまでで伸縮性基板の完成としてもよいが、さらに部品3の実装が求められる場合には、図17に示すように、2つの導電体パターン46にまたがるように部品3を実装する。これにより、実施の形態1で説明した伸縮性基板101と同様の製品を得ることができる。部品3は、たとえばRFID用のICチップであってもよい。また、部品3は絶縁層43上に実装されていなくてもよい。
 本実施の形態で得られる伸縮性基板は、銅箔の代わりに導電ペースト由来の導電体パターン46を備える。図17に示すように、導電体パターン46の部品3側の表面は、絶縁層43の部品3側の表面と同一平面上にある。
 本実施の形態では、銅箔を途中で完全に除去しているが、このような製造方法であっても、特定の箇所での応力集中をなるべく抑えることができ、伸縮による破断を生じにくくすることができる伸縮性基板を得ることができる。
 (実施の形態4)
 図18を参照して、本発明に基づく実施の形態4における伸縮性基板について説明する。本実施の形態における伸縮性基板102の断面図を図18に示す。
 伸縮性基板102は、伸縮性を有する基材1と、基材1に形成された導体パターン6とを備える。基材1は、主表面1uを有する。基材1は複数の樹脂層を積層したものである。図18に示した例では、基材1は、樹脂層21と樹脂層22とを含む。基材1は、複数の樹脂層のうちの1つとして特定層を有する。図18では、樹脂層21,22のいずれを特定層とみなしてもよい。特定層は、特定層内でヤング率が最も高い状態で延在する硬質領域である第1領域31と、特定層内でヤング率が最も低い状態で延在する第2領域32と、特定層内で第1領域31と第2領域32との間に位置して第1領域31より低く第2領域32より高いヤング率を有する第3領域33とを含む。導体パターン6は、第3領域32を経由して第1領域31と第2領域32との両方にまたがるように配置された部分を含む。第1領域31、第2領域32などの各領域は、それぞれ樹脂層22だけでなく樹脂層21も含むように厚み方向の全体にわたっている。
 基材1は、積層された複数の層を含む。導体パターン6は、前記複数の層のうちのいずれかの表面に配置されることによって複数通りの高さに配置された複数の導体パターン要素61,62を含む。導体パターン要素61と導体パターン要素62とは電気的に接続されている。図18に示す例では、導体パターン要素61は、主表面1uに配置されている。導体パターン要素62は基材1の内部に配置されている。導体パターン6のうち導体パターン要素61の少なくとも一部は第1領域31に重なっており、導体パターン要素62の少なくとも一部は第2領域32に重なっている。
 伸縮性基板102は、互いに異なる高さに配置された導体パターン要素同士を接続する複数の層間接続導体を備える。前記複数の層間接続導体は、伸縮性ビアと非伸縮性ビアとを含む。前記複数の層間接続導体は、非伸縮性ビアとして層間接続導体71を含む。層間接続導体71は、たとえばCuとSnとの合金を含む導電ペーストを硬化させることによって形成されていてよい。前記複数の層間接続導体は、伸縮性ビアとして層間接続導体72を含む。層間接続導体72は、たとえばAgとシリコーン樹脂とを混練したペーストを硬化させたものによって形成されていてよい。この伸縮性ビアは、導体パターン要素62および外部導体63の少なくとも一方と同じ材料によって形成されていてもよい。前記非伸縮性ビアは、第1領域31に配置されている。導体パターン要素61は、銅箔などの金属箔からなるものであってもよいし、導電ペーストを硬化させたものであってもよい。
 本実施の形態においても、特定の箇所での応力集中をなるべく抑えることができ、伸縮による破断を生じにくくすることができる。本実施の形態では、基材1が積層された複数の層を含み、導体パターン6が複数の高さに配置された複数の導体パターン要素を含んでおり、これらを接続する複数の層間接続導体を備えているので、導体パターン6を3次元的に配置することができ、導体パターン6のレイアウトの自由度が高くなる。
 (実施の形態5)
 図19を参照して、本発明に基づく実施の形態5における伸縮性基板について説明する。本実施の形態における伸縮性基板103の断面図を図19に示す。伸縮性基板103の基本的な構成は、実施の形態4で示した伸縮性基板102と同様であるが、伸縮性基板103においては、導体パターン要素61が第1領域31内に収まっている。
 本実施の形態では、導体パターン6は、伸縮性導体部と非伸縮性導体部とを含み、前記非伸縮性導体部は第1領域31にのみ配置されている。
 本実施の形態においても、実施の形態4で説明した効果を得ることができる。さらに、本実施の形態では、非伸縮性導体部は、第1領域31にのみ配置されているので、破断をより確実に避けることができる。
 (実施の形態6)
 図20~図21を参照して、本発明に基づく実施の形態6における伸縮性基板の製造方法について説明する。本実施の形態における伸縮性基板の製造方法のフローチャートを図20に示す。図21は、本実施の形態における伸縮性基板の製造方法の変形例を示す。図21については後述する。
 本実施の形態における伸縮性基板の製造方法は、基本的な部分においては、実施の形態2で説明した伸縮性基板の製造方法と同様であり、工程S1,S2を含む。しかし、実施の形態2で説明した伸縮性基板の製造方法とは異なる点として、図20に示すように工程S3を含む。
 すなわち、本実施の形態における伸縮性基板の製造方法は、前記第1絶縁材料層を部分的に硬質化させる工程S2の後で、前記第1絶縁材料層に重ねて第2絶縁材料層を形成する工程S3を含む。
 本実施の形態における伸縮性基板の製造方法に含まれる各工程について、以下に詳しく説明する。
 まず、図22に示すように、銅箔51を用意する。銅箔51は基準孔51eを有するものであってもよい。銅箔41の一方の面に絶縁ペーストを塗布する。絶縁ペーストの塗布は印刷によって行なってもよい。絶縁ペースト層をたとえば170℃で10分間乾燥させる。こうして、図23に示すように、絶縁材料層521が形成される。図24に示すように、ビア孔52aを形成する。絶縁材料層521に対するビア孔52aの形成は、レーザ加工などの公知技術によって行なうことができる。
 図24に示したビア孔52aの形成の前または後に、工程S2として、絶縁材料層521の所望領域に対して電子線の照射を行なう。これにより、絶縁材料層521の所望領域が硬質領域となる。
 図25に示すように、導電性ペースト57を配置する。導電性ペースト57は、ビア孔52aを満たしてなおかつ絶縁材料層521の表面に所望のパターンを形成するように配置される。導電性ペースト57の配置は、印刷によって行なってもよい。導電性ペースト57をたとえば170℃で10分間乾燥させる。
 工程S3として、絶縁ペーストを塗布する。絶縁ペーストの塗布は印刷によって行なってもよい。絶縁ペースト層をたとえば170℃で10分間乾燥させる。こうして、図26に示すように、絶縁材料層522が形成される。絶縁材料層522は、導電性ペースト57によって形成されたパターンを覆う。図25および図26では硬質領域が図示省略されているが、実際には絶縁材料層521の一部が既に硬質領域となっていることが好ましい。
 図21を参照して、本実施の形態における伸縮性基板の製造方法の変形例について説明する。この変形例では、図21にフローチャートで示すように、前記第2絶縁材料層を形成する工程S3の後に、前記第2絶縁材料層を部分的に硬質化させる工程S4を含む。この場合、工程S4として、絶縁材料層522の所望領域に対して電子線の照射を行なう。これにより、絶縁材料層522の所望領域が硬質領域となる。こうして、図27に示す構造を得る。
 絶縁材料層521,522の積層体は、改質領域431,432を有する。改質領域431,432は、硬質領域と準硬質領域とを合わせたものである。改質領域431,432の内部は均一ではなく、硬質領域と準硬質領域とが含まれるが、ここでは改質領域431,432の内訳を詳しく図示していない。
 たとえば図26に示す段階で改質領域がまだ全く形成されておらず、図26に示した状態のものに対して電子線の照射を行なうことで一気に図27に示すように改質領域431,432を備えた構造を得るという方法も考えられる。しかし、電子線の照射の際に導体パターンの陰になる部分では十分に改質されない可能性もあることを考慮すれば、絶縁材料層を1層形成するごとに電子線の照射を行ない、改質領域を形成してから次の絶縁材料層を形成するという方法の方が好ましい。
 図28に示すように、キャリアフィルム19を貼り付ける。ここでは、たとえば200℃で2時間の熱処理を行なう。こうすることにより、キャリアフィルム19は固定される。図29に示すように、銅箔51をパターニングして銅箔パターン54を形成する。ここまでで、伸縮性基板が完成する。ただし、この状態の伸縮性基板に部品3を実装したものが求められる場合には、図29に示した状態から、図30に示すように、伸縮性基板を上下反転してから、部品3を実装する。部品3の実装は接合部材4を介して行なわれる。部品3の電極と銅箔パターン54とが接合部材4を介して電気的に接続される。このように部品3を含む全体を伸縮性基板と呼んでもよい。
 なお、前記第2絶縁材料層を部分的に硬質化させる工程S4は、前記第2絶縁材料層に電子線を照射する工程、前記第2絶縁材料層にUV光を照射する工程、前記第2絶縁材料層に局所的に熱を付与する工程、および前記第2絶縁材料層に局所的に水を付与する工程からなる群から選択される少なくともいずれか1つの工程を含むことが好ましい。この条件を満たすことにより、第2絶縁材料層の所望の領域を部分的に硬質化することができる。本実施の形態では、一例として、電子線を照射する工程を採用したものについて説明した。
 (グラデーションの付け方)
 伸縮性を有する絶縁材料層がそのまま伸縮性を維持する領域と、硬質領域との間に、準硬質領域を設けることについては、実施の形態2などで説明したが、伸縮性を有する領域、準硬質領域、硬質領域は、この順でヤング率が徐々に上がっていくように形成されることが好ましい。ヤング率はグラデーションをなすように変化していることが好ましい。言い換えれば、ヤング率は勾配をなすことが好ましい。準硬質領域は勾配の途中部分に相当する。硬質領域の形成に電子線を用いる場合には、図31に示すように電子線5の散乱によってヤング率の勾配を形成することができる。図31で光源12から対象物10に向かって照射しているものは、電子線であってもよく、UV光であってもよい。マスク11においては、硬質領域にほぼ対応する領域に開口部が設けられている。対象物10に対する照射は、マスク11の開口部を介して行なわれる。
 電子線の照射の代わりにUV光の照射による場合は、絶縁材料層の中に予め光架橋剤を含めておくことが好ましい。UV光を照射することによって、UV光自体の散乱によって基材にヤング率の勾配を形成することができる。図32に示すように、絶縁材料層の内部で光架橋剤を予め拡散させておいてから、UV光を照射することによって、絶縁材料層内にヤング率の勾配を形成することができる。
 絶縁材料層に水を付与することによって絶縁材料層のヤング率を高めることができる場合もある。その場合、絶縁材料層の所望の領域に水滴を配置する。この場合、水との反応によって絶縁材料層の一部領域のヤング率が高まり、絶縁材料層内にヤング率の勾配を形成することができる。
 基材に熱を付与することによって絶縁材料層のヤング率を高めることができる場合もある。熱拡散を利用してもよく、散乱を利用してもよい。図33では、予め光架橋剤が中央に偏って多く分布するように配置された状態で、マスク11の開口部を通じて対象物10にUV光などを照射している。
 これらをまとめたものを表1に示す。ここでは、方法1~6を例示している。
Figure JPOXMLDOC01-appb-T000001
 伸縮性を有する領域、準硬質領域、硬質領域は、この順に並んで配置され、この順にグラデーションでヤング率が上がっていくものであってもよいが、完全な勾配に限らず、伸縮性を有する領域から硬質領域にかけて、ヤング率が多段階で階段状に上がっていくように形成されていてもよい。
 なお、基材1は、シリコーン樹脂を主材料とすることが好ましい。この構成を採用することにより、伸縮性を有する基板を容易に実現することができる。
 伸縮性導体部は、Agとシリコーン樹脂とを含むことが好ましい。この構成を採用することにより、伸縮性を有する導体部を実現することができる。
 伸縮性ビアは、Agとシリコーン樹脂とを含むことが好ましい。この構成を採用することにより、導電性と同時に伸縮性をもたせることができる。
 なお、上記実施の形態のうち複数を適宜組み合わせて採用してもよい。
 なお、今回開示した上記実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。
 1 基材、1u 主表面、3 部品、3a,3b (部品の)電極、4 接合部材、5 電子線、6 導体パターン、10 対象物、11 マスク、12 光源、13 光架橋剤、19 キャリアフィルム、21,22 樹脂層、31 第1領域、32 第2領域、33 第3領域、33a 第1の第3領域、33b 第2の第3領域、41,51 銅箔、41e,51e 基準孔、42 絶縁ペースト層、43 絶縁層、43a 硬質領域、43b 準硬質領域、43c 非硬質領域、44,54 銅箔パターン、46 導電体パターン、52a ビア孔、57 導電性ペースト、61,62 導体パターン要素、71,72 層間接続導体、101,101i,102,103 伸縮性基板、430,431,432 改質領域、521,522 絶縁材料層。

Claims (14)

  1.  伸縮性を有する基材と、
     前記基材に形成された導体パターンとを備え、
     前記基材は、特定層を有し、前記特定層は、前記特定層内でヤング率が最も高い状態で延在する硬質領域である第1領域と、前記特定層内でヤング率が最も低い状態で延在する第2領域と、前記特定層内で前記第1領域と前記第2領域との間に位置して前記第1領域より低く前記第2領域より高いヤング率を有する第3領域とを含み、
     前記導体パターンは、前記第3領域を経由して前記第1領域と前記第2領域との両方にまたがるように配置された部分を含む、伸縮性基板。
  2.  前記導体パターンは、前記基材上に配置されたランド電極を含み、
     前記ランド電極は、前記第1領域に載っており、かつ、前記第2領域を避けるように配置されている、請求項1に記載の伸縮性基板。
  3.  前記ランド電極に実装された部品を備える、請求項2に記載の伸縮性基板。
  4.  前記ランド電極は、金属箔を含む、請求項2または3に記載の伸縮性基板。
  5.  前記導体パターンは、伸縮性導体部と非伸縮性導体部とを含み、前記非伸縮性導体部は前記第1領域にのみ配置されている、請求項1から4のいずれかに記載の伸縮性基板。
  6.  前記基材は、積層された複数の層を含み、
     前記導体パターンは、前記複数の層のうちのいずれかの表面に配置されることによって複数通りの高さに配置された複数の導体パターン要素を含み、
     前記伸縮性基板は、互いに異なる高さに配置された前記導体パターン要素同士を接続する複数の層間接続導体を備え、前記複数の層間接続導体は、伸縮性ビアと非伸縮性ビアとを含み、前記非伸縮性ビアは、前記第1領域に配置されている、請求項1から5のいずれかに記載の伸縮性基板。
  7.  前記基材は、シリコーン樹脂を主材料とする、請求項1から6のいずれかに記載の伸縮性基板。
  8.  前記伸縮性導体部は、Agとシリコーン樹脂とを含む、請求項5に記載の伸縮性基板。
  9.  前記伸縮性ビアは、Agとシリコーン樹脂とを含む、請求項6に記載の伸縮性基板。
  10.  導電層と第1絶縁材料層とが重なった部分を含む構造体を用意する工程と、
     前記構造体における前記第1絶縁材料層を部分的に硬質化させる工程とを含み、
     前記第1絶縁材料層を部分的に硬質化させる工程によって、前記第1絶縁材料層の内部に、前記第1絶縁材料層内でヤング率が最も高い状態で延在する第1領域と、前記第1絶縁材料層内でヤング率が最も低い状態で延在する第2領域と、前記第1絶縁材料層内で前記第1領域と前記第2領域との間に位置して前記第1領域より低く前記第2領域より高いヤング率を有する第3領域とが形成される、伸縮性基板の製造方法。
  11.  前記第1絶縁材料層を部分的に硬質化させる工程は、前記第1絶縁材料層に電子線を照射する工程、前記第1絶縁材料層にUV光を照射する工程、前記第1絶縁材料層に局所的に熱を付与する工程、および前記第1絶縁材料層に局所的に水を付与する工程からなる群から選択される少なくともいずれか1つの工程を含む、請求項10に記載の伸縮性基板の製造方法。
  12.  前記第1絶縁材料層を部分的に硬質化させる工程の後で、前記第1絶縁材料層に重ねて第2絶縁材料層を形成する工程を含む、請求項10または11に記載の伸縮性基板の製造方法。
  13.  前記第2絶縁材料層を形成する工程の後に、前記第2絶縁材料層を部分的に硬質化させる工程を含む、請求項12に記載の伸縮性基板の製造方法。
  14.  前記第2絶縁材料層を部分的に硬質化させる工程は、前記第2絶縁材料層に電子線を照射する工程、前記第2絶縁材料層にUV光を照射する工程、前記第2絶縁材料層に局所的に熱を付与する工程、および前記第2絶縁材料層に局所的に水を付与する工程からなる群から選択される少なくともいずれか1つの工程を含む、請求項13に記載の伸縮性基板の製造方法。
PCT/JP2018/044901 2018-02-14 2018-12-06 伸縮性基板およびその製造方法 WO2019159505A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201890001480.5U CN212677438U (zh) 2018-02-14 2018-12-06 伸缩性基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018024425 2018-02-14
JP2018-024425 2018-02-14

Publications (1)

Publication Number Publication Date
WO2019159505A1 true WO2019159505A1 (ja) 2019-08-22

Family

ID=67619887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044901 WO2019159505A1 (ja) 2018-02-14 2018-12-06 伸縮性基板およびその製造方法

Country Status (2)

Country Link
CN (1) CN212677438U (ja)
WO (1) WO2019159505A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217464A (ja) * 1996-12-24 1999-08-10 Sumitomo Bakelite Co Ltd 水硬化性エラストマー組成物及びその成形体
WO2011124898A1 (en) * 2010-04-08 2011-10-13 Cambridge Enterprise Limited Elastically deformable sheet with regions of different elastic modulus for stretchable electronics
US20120051005A1 (en) * 2009-01-30 2012-03-01 Universiteit Gent Stretchable electronic device
JP2014165426A (ja) * 2013-02-27 2014-09-08 Fujikura Ltd 伸縮性配線基板及びその製造方法
JP2016076531A (ja) * 2014-10-03 2016-05-12 大日本印刷株式会社 弾性ウェアラブルフレキシブル基板、及び弾性ウェアラブル複合モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217464A (ja) * 1996-12-24 1999-08-10 Sumitomo Bakelite Co Ltd 水硬化性エラストマー組成物及びその成形体
US20120051005A1 (en) * 2009-01-30 2012-03-01 Universiteit Gent Stretchable electronic device
WO2011124898A1 (en) * 2010-04-08 2011-10-13 Cambridge Enterprise Limited Elastically deformable sheet with regions of different elastic modulus for stretchable electronics
JP2014165426A (ja) * 2013-02-27 2014-09-08 Fujikura Ltd 伸縮性配線基板及びその製造方法
JP2016076531A (ja) * 2014-10-03 2016-05-12 大日本印刷株式会社 弾性ウェアラブルフレキシブル基板、及び弾性ウェアラブル複合モジュール

Also Published As

Publication number Publication date
CN212677438U (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
US8883287B2 (en) Structured material substrates for flexible, stretchable electronics
US11723153B2 (en) Printed circuit board and method of fabricating the same
KR101070098B1 (ko) 인쇄회로기판 및 그의 제조 방법
JP5708814B2 (ja) モジュールの製造方法
JP2014502792A (ja) 液晶高分子はんだマスクとアウタシール層とを有する電子デバイス及びその関連方法
JP5280032B2 (ja) 配線基板
CN103460823B (zh) 柔性多层基板
JP2009170561A (ja) 配線基板およびその製造方法
JP2008147498A (ja) 多層配線板及び半導体装置パッケージ
WO2019159505A1 (ja) 伸縮性基板およびその製造方法
JP6597916B2 (ja) 回路モジュールおよびその製造方法
JP2004363379A (ja) 半導体装置
JP4672290B2 (ja) 回路基板、パッケージ基板の製造方法及びパッケージ基板
US20180068777A1 (en) Flexible plate adapted to be used in winged coil structure, winged coil structure, and method of manufacturing winged coil structure
TW201733414A (zh) 安裝有電子零件之基板和具備有散熱板之電子零件模組及其製造方法
CN104167369B (zh) 芯片封装结构的制作方法
JP2012209383A (ja) 多層基板およびその製造方法
KR101154352B1 (ko) 임베디드 인쇄회로기판용 부재 및 그 제조 방법 및 임베디드 인쇄회로기판용 부재를 이용한 임베디드 인쇄회로기판 제조 방법
JP2008311619A (ja) 印刷回路基板及びその製造方法
JP2007019380A (ja) 回路配線モジュール及び回路配線モジュールの製造方法
KR101089953B1 (ko) 인쇄회로기판 및 인쇄회로기판의 제조 방법
JPH0964542A (ja) 多層プリント配線板
JP2007311723A (ja) 多層回路基板
JP2010283189A (ja) 配線基板及びその製造方法
KR20120134265A (ko) 부품 내장형 인쇄회로기판의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP