WO2019159441A1 - 光波長変換装置 - Google Patents

光波長変換装置 Download PDF

Info

Publication number
WO2019159441A1
WO2019159441A1 PCT/JP2018/040537 JP2018040537W WO2019159441A1 WO 2019159441 A1 WO2019159441 A1 WO 2019159441A1 JP 2018040537 W JP2018040537 W JP 2018040537W WO 2019159441 A1 WO2019159441 A1 WO 2019159441A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
light
conversion member
light wavelength
joint
Prior art date
Application number
PCT/JP2018/040537
Other languages
English (en)
French (fr)
Inventor
翔平 高久
洋介 八谷
祐介 勝
智雄 田中
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to JP2020500269A priority Critical patent/JP6845372B2/ja
Priority to CN201880089083.2A priority patent/CN111699420B/zh
Priority to US16/968,693 priority patent/US11287107B2/en
Priority to KR1020207022854A priority patent/KR102501831B1/ko
Priority to EP18906586.5A priority patent/EP3754386A4/en
Publication of WO2019159441A1 publication Critical patent/WO2019159441A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • F21V7/30Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings the coatings comprising photoluminescent substances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/181Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/113Fluorescence

Definitions

  • the present disclosure relates to an optical wavelength conversion device.
  • white light is generated by converting the wavelength of blue light, such as light emitting diodes (LEDs, Light Emitting Diodes) and semiconductor lasers (LDs, Laser Diodes), using phosphors that are light wavelength conversion members. Have gained.
  • LEDs Light emitting diodes
  • LDs Laser Diodes
  • the phosphor generates heat when irradiated with light.
  • temperature quenching occurs in which the fluorescence function such as the intensity of light emitted from the phosphor (ie, emission intensity: fluorescence intensity) is reduced. Therefore, in order to efficiently emit the phosphor, it is necessary to exhaust heat from the phosphor to the outside.
  • an optical wavelength conversion device in which a heat dissipation member is joined to an optical wavelength conversion member using solder is known (see Patent Document 1).
  • the melting point of the solder is 200 ° C. or less
  • the solder is remelted by the heat generation of the phosphor due to the laser irradiation, and the bonding strength between the heat dissipation member and the optical wavelength conversion member is lowered.
  • defects such as detachment and breakage of the light wavelength conversion member from the heat dissipation member occur.
  • the occurrence of defects due to remelting of solder is suppressed.
  • One aspect of the present disclosure preferably provides an optical wavelength conversion device that can efficiently exhaust heat of the optical wavelength conversion member while maintaining the bonding strength between the optical wavelength conversion member and the heat dissipation member.
  • One aspect of the present disclosure includes: a light wavelength conversion member configured to convert the wavelength of incident light; a heat dissipation member that has better heat dissipation than the light wavelength conversion member; and a light wavelength conversion member and a heat dissipation member. It is an optical wavelength converter provided with the junction part to join.
  • the light wavelength conversion member includes a plate-shaped ceramic phosphor and a reflective film disposed on the surface of the ceramic phosphor on the heat dissipation member side.
  • the thermal conductivity of the joint is 120 W / mK or more.
  • the melting point of the joint is 240 ° C. or higher.
  • the heat transfer performance of the junction part used as the thermal radiation path between an optical wavelength conversion member and a thermal radiation member can be made high, and the waste heat from an optical wavelength conversion member is performed more efficiently. be able to.
  • the joined portion for joining the light wavelength conversion member and the heat radiating member is hardly melted. Therefore, high heat resistance and bonding strength can be maintained up to the high output range of the laser. As a result, the heat radiation path between the light wavelength conversion member and the heat radiation member can be maintained even in a high output range, and the heat exhausted from the light wavelength conversion member can be efficiently performed.
  • the joint may be composed of only gold, silver, copper, or a combination thereof. According to such a configuration, it is possible to easily and reliably form a joint that can efficiently exhaust heat from the light wavelength conversion member.
  • the joint may have pores.
  • the porosity of the joint may be 40% or less. According to such a configuration, the thermal expansion difference between the heat radiating member and the light wavelength conversion member is reduced while maintaining the heat transfer property of the joint, so that it is possible to suppress damage to the joint due to thermal shock. it can.
  • the average thickness of the bonding region disposed between the light wavelength conversion member and the heat dissipation member in the bonding portion may be 1 ⁇ m or more. According to such a configuration, the bonding strength between the light wavelength conversion member and the heat dissipation member can be further increased.
  • the average thickness of the bonding region disposed between the light wavelength conversion member and the heat dissipation member in the bonding portion is the total thickness of the average thickness of the ceramic phosphor and the average thickness of the bonding region. It may be 50% or less. According to such a structure, it can suppress that a joining area
  • One aspect of the present disclosure may further include a resin layer that covers at least a part of a surface of the joint that is not joined to the light wavelength conversion member and the heat dissipation member. According to such a configuration, oxidation, sulfidation, and the like at the joint interface of the joint can be suppressed. As a result, the durability of the optical wavelength conversion device can be improved.
  • the resin layer may include a fluoride-based resin as a main component. According to such a configuration, since the permeability of gases such as O 2 , H 2 S, SO 2 and moisture of the resin layer can be reduced, the durability of the optical wavelength conversion device can be improved more reliably.
  • the heat dissipating member may have at least one notch disposed on a surface to be joined to the joint. According to such a configuration, it is possible to suppress the stress generated due to the difference in thermal expansion between the light wavelength conversion member and the heat dissipation member. Therefore, joint strength improves and heat dissipation improves. Moreover, since the thermal stress which generate
  • the light wavelength conversion member may be rounded at least one corner as viewed from the thickness direction. According to such a configuration, it is possible to suppress the stress generated due to the difference in thermal expansion between the light wavelength conversion member and the heat dissipation member. Therefore, joint strength improves and heat dissipation improves. Moreover, the stress generated in the light wavelength conversion member during laser irradiation tends to be uniform in the surface direction. Therefore, since the force which generate
  • FIG. 1A is a schematic plan view of the optical wavelength conversion device according to the embodiment
  • FIG. 1B is a schematic cross-sectional view taken along line IB-IB in FIG. 1A. It is typical sectional drawing of the optical wavelength converter of embodiment different from FIG. 1B. It is typical sectional drawing of the optical compound apparatus provided with the optical wavelength converter of embodiment. It is explanatory drawing of a light source unit.
  • FIG. 5A is a schematic cross-sectional view of an optical wavelength conversion device of an embodiment different from FIGS. 1B and 2
  • FIG. 5B is an optical wavelength of an embodiment different from FIGS. 1A, 1 ⁇ / b> B, 2, and 5 ⁇ / b> A. It is typical sectional drawing of a converter.
  • FIG. 6A is a schematic plan view of an optical wavelength conversion device of an embodiment different from FIGS. 1A and 1B, FIG. 2 and FIGS. 5A and 5B, and FIG. 6B is a schematic view taken along line VIB-VIB in FIG. 6A.
  • FIG. 6A is a schematic plan view of an optical wavelength conversion device of an embodiment different from FIGS. 1A and 1B, FIG. 2 and FIGS. 5A and 5B, and FIG. 6B is a schematic view taken along line VIB-VIB in FIG. 6A.
  • An optical wavelength conversion device 1 shown in FIGS. 1A and 1B includes an optical wavelength conversion member 2, a heat radiating member 3, and a joint portion 4.
  • the light wavelength conversion member 2 is a member that converts the wavelength of incident light.
  • the light wavelength conversion member 2 includes a plate-shaped ceramic phosphor 21, a reflection film 22, an antireflection film 23, and an intermediate film 24.
  • the ceramic phosphor 21 is a ceramic sintered body having a fluorescent phase mainly composed of fluorescent crystal particles and a translucent phase mainly composed of translucent crystal particles.
  • the “fluorescent phase” is a phase mainly composed of fluorescent crystal particles
  • the “translucent phase” is a crystal particle having a translucent property, more specifically, a crystal having a composition different from that of the fluorescent phase crystal particles. It is a phase mainly composed of particles.
  • the fluorescent phase contains 50% by volume or more, preferably 90% by volume or more of fluorescent crystal particles.
  • the light-transmitting phase contains light-transmitting crystal particles of 50% by volume or more, preferably 90% by volume or more.
  • the light transmitting phase for example, alumina, glass, or the like can be used.
  • the light transmitting phase may be a single crystal.
  • Each crystal particle of the ceramic sintered body constituting the ceramic phosphor 21 and its grain boundary may contain a translucent phase and inevitable impurities other than the translucent phase.
  • the material of the ceramic phosphor 21 is not particularly limited.
  • the crystal particles of the light transmitting phase have a composition represented by the chemical formula (1) Al 2 O 3
  • the crystal particles of the fluorescent phase are represented by the chemical formula (2) A 3.
  • B 5 O 12: may have a composition represented by Ce (i.e. garnet structure).
  • a 3 B 5 O 12 : Ce indicates that Ce is dissolved in A 3 B 5 O 12 and a part of the element A is substituted with Ce.
  • the crystal particles in the fluorescent phase exhibit fluorescence characteristics due to the solid solution of Ce.
  • the A element in the chemical formula (1) and the B element in the chemical formula (2) are each composed of at least one element selected from the following element group.
  • A Sc, Y, lanthanoid (excluding Ce) (However, G may further contain Gd)
  • the ceramic sintered body has excellent thermal conductivity, heat generated by laser light irradiation can be easily discharged to the heat radiating member 3. Therefore, the fluorescence function can be maintained even in the high output range of the laser.
  • the ceramic phosphor 21 has a single composition, light scattering does not occur, so that the angle dependency of the light color increases, and the light color may be uneven.
  • the thermal conductivity is lowered, and there is a possibility that temperature quenching may occur without sufficient heat dissipation.
  • the average thickness of the ceramic phosphor 21 (that is, the average distance from the upper surface to the lower surface) is preferably 100 ⁇ m or more and 500 ⁇ m or less.
  • the reflection film 22 is disposed on the lower surface of the ceramic phosphor 21 (that is, the surface on the heat dissipation member 3 side).
  • the reflection film 22 reflects light generated inside the ceramic phosphor 21 so that the light is efficiently emitted to the outside of the light wavelength conversion member 2. Thereby, the emitted light intensity of the light wavelength conversion member 2 improves.
  • Examples of the material of the reflective film 22 include, in addition to metals such as metallic aluminum and silver, niobium oxide, titanium oxide, lanthanum oxide, tantalum oxide, yttrium oxide, gadolinium oxide, tungsten oxide, hafnium oxide, aluminum oxide, silicon nitride, and the like. Can be adopted.
  • metals such as metallic aluminum and silver, niobium oxide, titanium oxide, lanthanum oxide, tantalum oxide, yttrium oxide, gadolinium oxide, tungsten oxide, hafnium oxide, aluminum oxide, silicon nitride, and the like. Can be adopted.
  • the average thickness of the reflective film 22 is preferably 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the reflective film 22 may have a single layer structure or a multilayer structure.
  • the antireflection film 23 is disposed on the upper surface of the ceramic phosphor 21 (that is, the surface opposite to the heat dissipation member 3).
  • the antireflection film 23 is an antireflection coating (AR coating) for suppressing light reflection on the ceramic phosphor 21.
  • the antireflection film 23 allows the ceramic phosphor 21 to efficiently absorb light. Moreover, the light generated inside the ceramic phosphor 21 can be efficiently extracted to the outside. As a result, the light emission intensity of the light wavelength conversion member 2 is improved.
  • niobium oxide, titanium oxide, tantalum oxide, aluminum oxide, zirconium oxide, silicon oxide, aluminum nitride, silicon nitride, magnesium fluoride, etc. can be adopted.
  • the average thickness of the antireflection film 23 is preferably 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the antireflection film 23 may have a single layer structure or a multilayer structure.
  • the intermediate film 24 is disposed on the lower surface of the reflective film 22 (that is, the surface opposite to the ceramic phosphor 21 side).
  • the intermediate film 24 is disposed between the reflective film 22 and a joint 4 described later. That is, the bonding portion 4 is bonded to the intermediate film 24 in the light wavelength conversion member 2. Due to the intermediate film 24, the bonding property between the bonding portion 4 and the light wavelength conversion member 2 is improved.
  • the intermediate film 24 has a metal film and an oxide film.
  • the material of the metal film for example, gold, silver, nickel, etc. can be adopted.
  • the material of the oxide film for example, aluminum oxide, titanium oxide or the like can be used.
  • the intermediate film 24 preferably has a nickel film as a metal film and an aluminum oxide film as an oxide film.
  • the average thickness of the intermediate film 24 is preferably 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the light wavelength conversion member 2 may have at least one corner 12 as viewed from the thickness direction.
  • the stress generated in the light wavelength conversion member 2 during laser irradiation tends to be uniform in the surface direction. Therefore, since the force which generate
  • the heat radiating member 3 is a member that is more excellent in heat dissipation than the light wavelength conversion member 2.
  • the heat radiating member 3 is attached to the light wavelength conversion member 2 via the joint portion 4.
  • the heat radiating member 3 promotes the exhaust of heat generated by the laser light irradiation in the ceramic phosphor 21. Thereby, the fluorescence function of the ceramic phosphor 21 in the high output range is maintained.
  • the thermal radiation member 3 may have the main-body part comprised with the metal, and the oxide film formed in the surface of a main-body part. This oxide film increases the bonding strength with the bonding portion 4.
  • the heat radiating member 3 is configured in a plate shape, for example. Moreover, the heat radiating member 3 may have a plate-shaped part and at least one heat radiating fin protruding from the plate-shaped part.
  • the average thickness of the plate-like portion of the heat radiating member 3 is preferably 0.1 mm or greater and 5 mm or less.
  • Friction stir welding may be used as a method for joining the heat radiation fin and the plate-like portion.
  • FSW is a bonding method in which the materials to be bonded are integrated, and an increase in thermal resistance at the bonding interface can be suppressed. Therefore, reduction of the heat dissipation effect can be suppressed.
  • the joint 4 joins the light wavelength conversion member 2 and the heat dissipation member 3.
  • the joint portion 4 is disposed between the lower surface of the intermediate film 24 of the light wavelength conversion member 2 and the upper surface of the heat dissipation member 3 (that is, the surface on the light wavelength conversion member 2 side). The surfaces are joined.
  • the melting point of the joint 4 is 240 ° C. or higher. If the melting point of the bonded portion 4 is less than 240 ° C., the bonded portion 4 is melted by heat from the light wavelength conversion member 2 in the high-power region of the laser, and defects such as detachment and breakage occur.
  • fusing point of the junction part 4 300 degreeC or more is preferable, 500 degreeC or more is more preferable, and 800 degreeC or more is further more preferable.
  • the thermal conductivity of the joint 4 is 120 W / mK or more. If the thermal conductivity of the joint 4 is less than 120 W / mK, there may be a shortage in terms of more effectively exhausting heat from the light wavelength conversion member 2, and the fluorescence function is reduced in the high output region of the laser. There is a risk.
  • a heat conductivity of the junction part 4 150 W / mK or more is preferable.
  • the thermal conductivity of the joint 4 can be measured by, for example, a pulsed light thermoreflectance method. Specifically, the optical wavelength conversion device 1 is cut obliquely with respect to the incident surface, and the joint portion 4 is exposed. The exposed portion is irradiated with pulsed light and laser light, and the reflected laser light is measured, whereby the thermal resistance of the joint 4 is obtained. The thermal conductivity is calculated from the obtained thermal resistance and the area and thickness of the joint 4.
  • the material of the joint 4 is not particularly limited as long as at least the melting point of the joint 4 can satisfy the above conditions. However, it is more preferable that the melting point and thermal conductivity of the joint 4 satisfy the above conditions. Furthermore, in order to satisfy the above conditions, the joint 4 may be composed of only gold, silver, copper, or a combination thereof.
  • the joint 4 may have pores. Since the joining part 4 has pores, the difference in thermal expansion between the heat radiation member 3 and the light wavelength conversion member 2 is alleviated, so that damage to the joining part 4 due to thermal shock can be suppressed.
  • the joint 4 having pores can be obtained, for example, by sintering the above-described metal nanoparticles.
  • the nanoparticle here is a group of particles having an average particle diameter of several nanometers to several micrometers including particles of nanosize order.
  • the sintered compact of a metal nanoparticle is preferable.
  • pores are formed by voids between nanoparticles bonded to each other by sintering.
  • the maximum pore width (that is, the maximum pore diameter) is preferably 5 ⁇ m or less.
  • the porosity of the joint 4 is preferably 1% or more and 40% or less. If the porosity is less than 1%, the effect of mitigating the difference in thermal expansion between the heat dissipation member 3 and the light wavelength conversion member 2 may not be obtained. On the other hand, if the porosity exceeds 40%, the exhaust heat efficiency of the optical wavelength conversion member 2 may be reduced as the heat conductivity of the joint 4 is reduced.
  • the “porosity” is, for example, the ratio of the area occupied by pores in the observation cross section obtained by observing the cross section of the joint 4 with a scanning electron microscope (SEM) (that is, the porosity relative to the total area of the pores and the material layer) Of the total area).
  • SEM scanning electron microscope
  • the upper surface of the bonding portion 4 (that is, the surface on the light wavelength conversion member 2 side) is bonded to the entire lower surface of the light wavelength conversion member 2.
  • the junction part 4 is arrange
  • the joint portion 4 may be disposed in a range larger than the lower surface of the light wavelength conversion member 2 or may be disposed so as to cover the entire upper surface of the heat dissipation member 3. Moreover, the junction part 4 may be arrange
  • the average thickness of the bonding region disposed between the light wavelength conversion member 2 and the heat radiation member 3 in the bonding portion 4 is preferably 1 ⁇ m or more. When the average thickness of the bonding region is less than 1 ⁇ m, the bonding strength by the bonding portion 4 may be insufficient. Moreover, there is a possibility that a sufficient heat radiation path between the light wavelength conversion member 2 and the heat radiation member 3 cannot be secured.
  • the average thickness of the bonding region is preferably 50% or less of the total thickness of the average thickness of the ceramic phosphor 21 and the average thickness of the bonding region.
  • the average thickness of the joining region exceeds 50% of the total thickness, the distance from the ceramic phosphor 21 to the heat radiating member 3 increases with respect to the thickness of the ceramic phosphor 21, and the light wavelength with respect to the heat radiating member 3 is reduced. It becomes difficult to transfer the heat generated from the conversion member 2 faster, and the exhaust heat efficiency may be reduced.
  • the optical composite device 10 shown in FIG. 3 includes an optical wavelength conversion device 1 and a package 5 in which the optical wavelength conversion device 1 is accommodated.
  • Package 5 is a box-shaped container or a plate-shaped substrate.
  • the package 5 is mainly composed of ceramics such as alumina.
  • the “main component” means a component that is contained, for example, by 80% by mass or more.
  • the package 5 may be provided with a light emitting element mounting region for mounting a light emitting element such as an LED or an LD.
  • the optical composite device 10 is used in the light source unit 20 shown in FIG.
  • the light source unit 20 includes an optical composite device 10, a plurality of known blue laser oscillators (that is, a first blue laser oscillator 27 and a second blue laser oscillator 29) including a light emitting element, a dichroic mirror 25, and a lens 26. And.
  • the first blue light B1 is irradiated from the first blue laser oscillator 27 to the light wavelength conversion device 1 in the right direction of FIG.
  • the first blue light B1 is wavelength-converted and reflected by the light wavelength conversion device 1, and is output as yellow light Y in the left direction of FIG.
  • the yellow light Y is reflected by the dichroic mirror 25 inclined by 45 ° with respect to the horizontal direction in FIG.
  • the second blue light B2 irradiated upward from FIG. 4 toward the lens 26 from the second blue laser oscillator 29 passes through the dichroic mirror 25 and is output to the lens 26 as it is.
  • the lens 26 the first blue light B1 and the yellow light Y are mixed to generate white light.
  • the light source unit 20 outputs white light from the lens 26 upward in FIG.
  • the melting point of the joint 4 is 240 ° C. or higher, the joint 4 that joins the light wavelength conversion member 2 and the heat radiating member 3 even when the temperature of the ceramic phosphor 21 is increased due to laser irradiation. Is difficult to melt. Therefore, high heat resistance and bonding strength can be maintained up to the high output range of the laser. As a result, the heat radiation path between the light wavelength conversion member 2 and the heat radiation member 3 can be maintained even in a high output range, and the heat exhausted from the light wavelength conversion member 2 can be efficiently performed.
  • An optical wavelength conversion device 1A shown in FIGS. 5A and 5B includes an optical wavelength conversion member 2, a heat dissipation member 3, a joint portion 4, and a resin layer 6.
  • optical wavelength conversion member 2 Since the optical wavelength conversion member 2, the heat radiation member 3, and the joint portion 4 are the same as those of the optical wavelength conversion device 1 in FIGS. 1A and 1B, the same reference numerals are given and description thereof is omitted.
  • the resin layer 6 covers (that is, coats) at least a part of the surface of the joint portion 4 that is not joined to the light wavelength conversion member 2 and the heat dissipation member 3.
  • the resin layer 6 covers the entire side surface of the joint portion 4 and a part of the side surface of the light wavelength conversion member 2.
  • the resin layer 6 also covers a part of the upper surface of the heat dissipation member 3. Specifically, the resin layer 6 in FIG. 5A reaches the side surface of the ceramic phosphor 21 from the upper surface of the heat dissipation member 3.
  • the resin layer 6 may cover the entire side surface of the light wavelength conversion member 2. Furthermore, as shown in FIG. 5B, the resin layer 6 may cover a part of the upper surface of the light wavelength conversion member 2 (that is, the upper surface of the antireflection film 23) in addition to the entire side surface of the light wavelength conversion member 2. .
  • the main component of the resin layer 6 is preferably a fluoride-based resin.
  • a fluoride-based resin By using a fluoride-based resin, permeability of gases such as O 2 , H 2 S, and SO 2 and moisture of the resin layer 6 can be reduced, and oxidation (especially in the case of copper) and sulfurization at the interface of the joint 4. (Especially in the case of silver) can be effectively suppressed.
  • the resin layer 6 can suppress oxidation, sulfurization, and the like at the joint interface of the joint portion 4. As a result, the durability of the optical wavelength conversion device 1A can be improved.
  • An optical wavelength conversion device 1B shown in FIGS. 6A and 6B includes an optical wavelength conversion member 2, a heat dissipation member 3B, and a joint portion 4.
  • optical wavelength conversion member 2 and the joint 4 are the same as those of the optical wavelength conversion device 1 of FIGS. 1A and 1B, the same reference numerals are given and description thereof is omitted.
  • the heat dissipating member 3B of the present embodiment has a notch 13 disposed on a surface (that is, an upper surface) to be bonded to the bonding portion 4.
  • the notch 13 is an annular groove that is disposed around the optical wavelength conversion member 2 and is recessed on the opposite side to the joint 4.
  • the notch 13 is formed so that the inner edge is flush with the side surfaces of the light wavelength conversion member 2 and the joint 4.
  • the notch 13 is disposed at a position that does not overlap the optical wavelength conversion member 2 and the joint 4 in the thickness direction. That is, the notch 13 is not joined to the joint 4 and is exposed on the upper surface of the heat dissipation member 3B.
  • the notch 13 may be provided at a position overlapping the optical wavelength conversion member 2 and the joint 4. Further, the notch 13 is not limited to an annular shape. Furthermore, the heat radiating member 3 ⁇ / b> B may have a plurality of notches 13.
  • the notch 13 of the heat radiating member 3B can suppress the stress generated due to the difference in thermal expansion between the light wavelength conversion member 2 and the heat radiating member 3B. Therefore, joint strength improves and heat dissipation improves. Moreover, since the thermal stress which generate
  • the light wavelength conversion member 2 does not necessarily have to have the antireflection film 23 and the intermediate film 24.
  • the light wavelength conversion member 2 may have a film or layer other than the ceramic phosphor 21, the reflection film 22, the antireflection film 23, and the intermediate film 24.
  • the light wavelength conversion member 2 may have an auxiliary bonding layer disposed between the intermediate film 24 and the bonding portion 4.
  • the auxiliary bonding layer is provided for the purpose of improving the bonding strength between the intermediate film 24 and the bonding portion 4 and is formed of, for example, metal.
  • Example 1 (Production of ceramic phosphor) Al 2 O 3 (average particle size 0.2 ⁇ m), Y 2 O 3 (average particle size 1.2 ⁇ m), Gd 2 O 3 (average particle size 1.1 ⁇ m), and CeO 2 (average particle size 1.5 ⁇ m) The particles were weighed so that the amount of A 3 B 5 O 12 : Ce was 30% by volume of the entire sintered body.
  • the obtained ceramic phosphor was processed into a 16 mm square plate having an average thickness of 200 ⁇ m.
  • An antireflection film was formed on the upper surface of the ceramic phosphor, and a reflection film and an intermediate film were formed on the lower surface to obtain a light wavelength conversion member.
  • multi-layer coating consisting of SiO 2 layer and the Ta 2 O 5 layer as an antireflection film
  • a Ni layer and the Al 2 O 3 layer as an intermediate layer
  • the light wavelength conversion member obtained in the above process was cut into 3.5 mm square. Moreover, the copper heat radiating member was cut into a 12 mm square plate having an average thickness of 2 mm.
  • Samples 1 to 3 were formed by sintering silver nanoparticles, copper nanoparticles, or mixed particles of silver nanoparticles and copper nanoparticles between the cut light wavelength conversion member and the heat dissipation member. An optical wavelength converter was obtained. Table 1 shows the melting point and thermal conductivity of the joint in each sample.
  • Each sample was irradiated with a laser beam having a wavelength of 465 nm (that is, blue LD light) condensed to 1 mm width with a lens. Then, the chromaticity value in the X direction was measured with respect to the light reflected by each sample using a spectral irradiance meter (“CL-500A” manufactured by Konica Minolta). In this measurement, the power density for irradiating the blue LD light was gradually increased from 0 W / mm 2 to 200 W / mm 2 .
  • CL-500A spectral irradiance meter
  • the output density at which the chromaticity value is 60% or less is determined as the output density at which the temperature quenching occurs, and this output density is the laser output resistance for each sample.
  • Example 2 The same light wavelength conversion member and heat dissipation member as in Example 1 were joined with silver nanoparticles and the porosity was changed from that in Example 1 to obtain light wavelength conversion devices of Samples 7-12. Table 1 shows the measurement results of the laser output resistance performance and porosity of each sample.
  • Example 3 Al 2 O 3 (average particle size 0.2 ⁇ m), Y 2 O 3 (average particle size 1.2 ⁇ m), Gd 2 O 3 (average particle size 1.1 ⁇ m), CeO 2 (average particle size 1.5 ⁇ m), Particles of Lu 2 O 3 (average particle size 1.1 ⁇ m), Sc 2 O 3 (average particle size 1.2 ⁇ m), and Ga 2 O 3 (average particle size 1.1 ⁇ m) are converted into A 3 B 5 O 12 : The light wavelength conversion devices of Samples 13 to 24 were obtained in the same procedure as in Example 1 except that the amount of Ce was 30% by volume of the entire sintered body and was weighed so as to have the composition shown in Table 1. . Table 1 shows the measurement results of the laser output resistance performance and porosity of each sample.
  • Example 4 A light wavelength conversion device of Samples 25 to 30 was obtained in the same procedure as in Example 1 except that the average thickness of the ceramic phosphor and the average thickness in the bonded region of the bonded portion were changed as shown in Table 1.
  • Table 1 shows the measurement results of the laser output resistance performance and porosity of each sample.
  • the sample 30 was unable to measure the laser output resistance due to insufficient strength of the joint.
  • Example 5 A light wavelength conversion device of Sample 31 was obtained in the same procedure as in Example 1 except that the side surface of the joint was covered with a fluorine-based resin layer. Moreover, the light wavelength converter of the sample 32 was obtained in the same procedure as Example 1 except the point which provided the notch in the upper surface of the heat radiating member. Furthermore, a light wavelength conversion device of Sample 33 was obtained in the same procedure as in Example 1 except that the corner portion viewed from the thickness direction of the light wavelength conversion member was subjected to R processing with a radius of 5 mm.
  • Example 2 From the results of Example 2, it can be seen that a higher output range can be accommodated by setting the porosity of the joint to 40% or less. Moreover, it can be seen from the results of Example 3 that the ceramic phosphors having various compositions can cope with a high output range.
  • the ratio of the average thickness in the bonded region of the bonded portion to the total thickness of the ceramic phosphor and the bonded region (“average thickness ratio of bonded portion” in Table 1) is 50% or less. By doing so, it can be seen that it can cope with a higher output range.
  • Example 5 it can be seen from the results of Example 5 that by covering the joint with a resin layer, it is possible to suppress a decrease in laser output resistance after being heated at a high temperature for a long time. It can also be seen that the notch and the R processing improve the bonding strength of the optical wavelength conversion device and improve the laser output resistance.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Filters (AREA)

Abstract

光波長変換部材と放熱部材との接合強度を維持しつつ、光波長変換部材の排熱を効率的に行える光波長変換装置を提供する。本開示は、入射した光の波長を変換するように構成された光波長変換部材と、光波長変換部材よりも放熱性に優れた放熱部材と、光波長変換部材と放熱部材とを接合する接合部と、を備える光波長変換装置である。光波長変換部材は、板状のセラミックス蛍光体と、セラミックス蛍光体の放熱部材側の面に配置された反射膜と、を有する。接合部の熱伝導率は120W/mK以上である。接合部の融点は240℃以上である。

Description

光波長変換装置 関連出願の相互参照
 本国際出願は、2018年2月14日に日本国特許庁に出願された日本国特許出願第2018-24282号に基づく優先権を主張するものであり、日本国特許出願第2018-24282号の全内容を本国際出願に参照により援用する。
 本開示は、光波長変換装置に関する。
 ヘッドランプ、各種照明機器、レーザープロジェクター等では、発光ダイオード(LED、Light Emitting Diode)や半導体レーザー(LD、Laser Diode)等の青色光を光波長変換部材である蛍光体によって波長変換することにより白色を得ている。
 この蛍光体としては、樹脂系やガラス系などが知られているが、レーザーを用いた光源の高出力化に対応するため、耐久性に優れたセラミックス蛍光体が光波長変換装置に使用されつつある。
 また、蛍光体は、光の照射によって発熱する。蛍光体が発熱し高温となると、蛍光体が発する光の強度(即ち、発光強度:蛍光強度)等の蛍光機能が低下する温度消光が発生する。そのため、効率よく蛍光体を発光させるためには、蛍光体から外部への排熱が必要となる。
 そこで、半田を用いて光波長変換部材に放熱部材を接合した光波長変換装置が知られている(特許文献1参照)。しかし、半田の融点は200℃以下であるため、上記光波長変換装置では、レーザー照射による蛍光体の発熱によって半田が再溶融し、放熱部材と光波長変換部材との接合強度が低下する。その結果、光波長変換部材の放熱部材からの脱離や破損といった欠陥が生じる。
 また、この欠陥により、光波長変換部材から放熱部材への伝熱が不十分となり、排熱効率が低下する。このような不具合は、半田の代わりに樹脂系接着剤を用いて接合をした場合にも起こりうる。
 これに対し、銀ナノ粒子を用いて光波長変換部材と放熱部材とを接合した光波長変換装置が考案されている(特許文献2参照)。
国際公開第2014/065051号 国際公開第2017/110031号
 上記銀ナノ粒子を用いた光波長変換装置では、半田の再溶融に基づく欠陥の発生が抑制される。しかし、上記光波長変換装置において、光波長変換部材から放熱部材への伝熱性については改善の余地がある。
 本開示の一局面は、光波長変換部材と放熱部材との接合強度を維持しつつ、光波長変換部材の排熱を効率的に行える光波長変換装置を提供することが好ましい。
 本開示の一態様は、入射した光の波長を変換するように構成された光波長変換部材と、光波長変換部材よりも放熱性に優れた放熱部材と、光波長変換部材と放熱部材とを接合する接合部と、を備える光波長変換装置である。光波長変換部材は、板状のセラミックス蛍光体と、セラミックス蛍光体の放熱部材側の面に配置された反射膜と、を有する。接合部の熱伝導率は120W/mK以上である。接合部の融点は240℃以上である。
 このような構成によれば、光波長変換部材と放熱部材との間の放熱経路となる接合部の熱伝達性能を高くすることができ、光波長変換部材からの排熱をより効率的に行なうことができる。
 また、レーザー照射によってセラミックス蛍光体の温度が上昇することとなっても、光波長変換部材と放熱部材とを接合する接合部が溶融しにくい。そのため、レーザーの高出力域まで、高い耐熱性と接合強度とを維持できる。その結果、高出力域でも光波長変換部材と放熱部材との間の放熱経路を維持することができ、光波長変換部材からの排熱を効率的に行なえる。
 本開示の一態様では、接合部は、金、銀、銅、又はこれらの組み合わせのみから構成されてもよい。このような構成によれば、光波長変換部材からの排熱を効率的に行なえる接合部を容易かつ確実に形成できる。
 本開示の一態様では、接合部は、気孔を有してもよい。接合部の気孔率は、40%以下であってもよい。このような構成によれば、接合部の伝熱性を維持しつつ、放熱部材と光波長変換部材との間の熱膨張差が緩和されるので、熱衝撃による接合部の破損を抑制することができる。
 本開示の一態様では、接合部のうち、光波長変換部材と放熱部材との間に配置された接合領域の平均厚みは、1μm以上であってもよい。このような構成によれば、光波長変換部材と放熱部材との接合強度をより高めることができる。
 本開示の一態様では、接合部のうち、光波長変換部材と放熱部材との間に配置された接合領域の平均厚みは、セラミックス蛍光体の平均厚みと接合領域の平均厚みとの合計厚みの50%以下であってもよい。このような構成によれば、接合領域が過度に厚くなることを抑制し、放熱部材に、光波長変換部材から発生した熱をより速く伝えることができる。その結果、光波長変換部材からの排熱をより効率的に行なうことができる。
 本開示の一態様は、接合部のうち、光波長変換部材及び放熱部材と接合されていない面の少なくとも一部を被覆する樹脂層をさらに備えてもよい。このような構成によれば、接合部の接合界面における酸化、硫化等を抑制することができる。その結果、光波長変換装置の耐久性を向上できる。
 本開示の一態様では、樹脂層は、フッ化物系の樹脂を主成分としてもよい。このような構成によれば、樹脂層のO、HS、SOなどのガスや水分の透過性を低減できるので、より確実に光波長変換装置の耐久性を向上できる。
 本開示の一態様では、放熱部材は、接合部と接合される面に配置された少なくとも1つの切欠きを有してもよい。このような構成によれば、光波長変換部材と放熱部材との接合時に、両者間の熱膨張差異に起因して発生する応力を抑制できる。そのため、接合強度が向上し、放熱性が向上する。また、高温環境下で放熱部材に発生する熱応力が低減されるので、動作中の光波長変換部材における剥離等の破損を抑制できる。
 本開示の一態様では、光波長変換部材は、厚み方向から視た少なくとも1つの隅部が丸み付けられてもよい。このような構成によれば、光波長変換部材と放熱部材との接合時に、両者間の熱膨張差異に起因して発生する応力を抑制できる。そのため、接合強度が向上し、放熱性が向上する。また、レーザー照射時に光波長変換部材内に発生する応力が面方向で均一になりやすい。そのため、光波長変換部材の上面及び下面に発生する力を抑制できるので、動作中の光波長変換部材における剥離等の破損を抑制できる。
図1Aは、実施形態の光波長変換装置の模式的な平面図であり、図1Bは、図1AのIB-IB線での模式的な断面図である。 図1Bとは異なる実施形態の光波長変換装置の模式的な断面図である。 実施形態の光波長変換装置を備えた光複合装置の模式的な断面図である。 光源ユニットの説明図である。 図5Aは、図1B及び図2とは異なる実施形態の光波長変換装置の模式的な断面図であり、図5Bは、図1A,1B、図2及び図5Aとは異なる実施形態の光波長変換装置の模式的な断面図である。 図6Aは、図1A,1B、図2及び図5A,5Bとは異なる実施形態の光波長変換装置の模式的な平面図であり、図6Bは、図6AのVIB-VIB線での模式的な断面図である。
 1,1A,1B…光波長変換装置、2…光波長変換部材、3,3B…放熱部材、4…接合部、5…パッケージ、6…樹脂層、10…光複合装置、12…隅部、13…切欠き、20…光源ユニット、21…セラミックス蛍光体、22…反射膜、23…反射防止膜、24…中間膜、25…ダイクロイックミラー、26…レンズ、27…第1青色レーザー発振器、29…第2青色レーザー発振器。
 以下、本開示が適用された実施形態について、図面を用いて説明する。
 [1.第1実施形態]
 [1-1.構成]
 図1A,1Bに示す光波長変換装置1は、光波長変換部材2と、放熱部材3と、接合部4とを備える。
 <光波長変換部材>
 光波長変換部材2は、入射した光の波長を変換する部材である。光波長変換部材2は、板状のセラミックス蛍光体21と、反射膜22と、反射防止膜23と、中間膜24とを有する。
 (セラミックス蛍光体)
 セラミックス蛍光体21は、蛍光性を有する結晶粒子を主体とする蛍光相と、透光性を有する結晶粒子を主体とする透光相とを有するセラミックス焼結体である。
 「蛍光相」とは、蛍光性を有する結晶粒子を主体とする相であり、「透光相」とは、透光性を有する結晶粒子、詳しくは蛍光相の結晶粒子とは異なる組成の結晶粒子を主体とする相である。
 また、「主体」とは、各相において、最も多く存在する成分を意味する。例えば、蛍光相には、蛍光性を有する結晶粒子が50体積%以上、好ましくは90体積%以上含まれる。また、例えば、透光相には、透光性を有する結晶粒子が50体積%以上、好ましくは90体積%以上含まれる。透光相としては、例えば、アルミナ、ガラス等が使用できる。また、透光相は、単結晶であってもよい。
 セラミックス蛍光体21を構成するセラミックス焼結体の各結晶粒子やその粒界には、透光相及び透光相以外の不可避不純物が含まれていてもよい。
 セラミックス蛍光体21の材質は特に限定されないが、例えば、透光相の結晶粒子が化学式(1)Alで表される組成を有し、蛍光相の結晶粒子が化学式(2)A12:Ceで表される組成(つまりガーネット構造)を有するとよい。
 なお、「A12:Ce」とは、A12中にCeが固溶し、元素Aの一部がCeに置換されていることを示す。蛍光相の結晶粒子は、Ceの固溶により、蛍光特性を示す。
 化学式(1)中のA元素及び化学式(2)中のB元素は、それぞれ下記の元素群から選択される少なくとも1種の元素から構成されている。
  A:Sc、Y、ランタノイド(但し、Ceは除く)
      (但し、Aとして更にGdを含んでいてもよい)
  B:Al(但し、Bとして更にGaを含んでいてもよい)
 セラミックス蛍光体21として、上記セラミックス焼結体を使用することで、蛍光相と透光相との界面での光の散乱が起き、光の色の角度依存性を減らすことができる。その結果、色の均質性を向上できる。
 また、上記セラミックス焼結体は、熱伝導率が優れているため、レーザー光の照射によって発生した熱を放熱部材3に排しやすい。そのため、レーザーの高出力域でも蛍光機能を維持することができる。
 一方で、セラミックス蛍光体21が単一組成であると、光の散乱が起こらないため、光の色の角度依存性が大きくなり、光の色のムラが生じるおそれがある。また、蛍光体として樹脂を用いると、熱伝導率が低下し、放熱が十分にできずに温度消光が起きるおそれがある。
 セラミックス蛍光体21の平均厚み(つまり、上面から下面までの平均距離)としては、100μm以上500μm以下が好ましい。
 (反射膜)
 反射膜22は、セラミックス蛍光体21の下面(つまり、放熱部材3側の面)に配置されている。
 反射膜22は、セラミックス蛍光体21内部で発生する光を反射することで、この光を光波長変換部材2の外部に効率よく放射させる。これにより、光波長変換部材2の発光強度が向上する。
 反射膜22の材質としては、例えば、金属アルミニウム、銀などの金属に加え、酸化ニオブ、酸化チタン、酸化ランタン、酸化タンタル、酸化イットリウム、酸化ガドリニウム、酸化タングステン、酸化ハフニウム、酸化アルミニウム、窒化ケイ素等が採用できる。
 反射膜22の平均厚みとしては、0.1μm以上2μm以下が好ましい。
 また、反射膜22は、単層構造であってもよいし、多層構造であってもよい。
 (反射防止膜)
 反射防止膜23は、セラミックス蛍光体21の上面(つまり、放熱部材3とは反対側の面)に配置されている。
 反射防止膜23は、セラミックス蛍光体21での光の反射を抑制するための反射防止コーティング(ARコーティング)である。反射防止膜23により、セラミックス蛍光体21に光を効率よく吸収させることができる。また、セラミックス蛍光体21の内部で発生する光を効率よく外部に取り出すことができる。その結果、光波長変換部材2の発光強度が向上する。
 反射防止膜23の材質としては、例えば、酸化ニオブ、酸化チタン、酸化タンタル、酸化アルミニウム、酸化ジルコニウム、酸化ケイ素、窒化アルミニウム、窒化ケイ素、フッ化マグネシウム等が採用できる。
 反射防止膜23の平均厚みとしては、0.01μm以上1μm以下が好ましい。
 また、反射防止膜23は、単層構造であってもよいし、多層構造であってもよい。
 (中間膜)
 中間膜24は、反射膜22の下面(つまり、セラミックス蛍光体21側とは反対側の面)に配置されている。
 中間膜24は、反射膜22と後述する接合部4との間に配置されている。つまり、接合部4は、光波長変換部材2のうち、中間膜24と接合されている。中間膜24により、接合部4と光波長変換部材2との接合性が向上する。
 中間膜24は、金属膜と酸化物膜とを有する。
 金属膜の材質としては、例えば、金、銀、ニッケル等が採用できる。酸化物膜の材質としては、例えば、酸化アルミニウム、酸化チタン等が採用できる。
 中間膜24は、金属膜としてのニッケル膜と酸化物膜としての酸化アルミニウム膜とを有することが好ましい。
 中間膜24の平均厚みとしては、0.01μm以上1μm以下が好ましい。
 図1Aに示すように、光波長変換部材2は、厚み方向から視た少なくとも1つの隅部12が丸み付けられているとよい。これにより、光波長変換部材2と放熱部材3との接合時に、両者間の熱膨張差異に起因して発生する応力を抑制できる。そのため、接合強度が向上し、放熱性が向上する。
 また、レーザー照射時に光波長変換部材2内に発生する応力が面方向で均一になりやすい。そのため、光波長変換部材2の上面及び下面に発生する力を抑制できるので、動作中の光波長変換部材2における剥離等の破損を抑制できる。
 <放熱部材>
 放熱部材3は、光波長変換部材2よりも放熱性に優れた部材である。放熱部材3は、接合部4を介して光波長変換部材2に取り付けられている。
 放熱部材3により、セラミックス蛍光体21においてレーザー光の照射によって生じた熱の排熱が促進される。これにより、高出力域でのセラミックス蛍光体21の蛍光機能が維持される。
 放熱部材3の材質としては、銅、アルミニウム、窒化アルミニウム等が採用できる。これらの中でも銅が好ましい。なお、放熱部材3は、金属で構成された本体部と、本体部の表面に形成された酸化被膜とを有していてもよい。この酸化被膜により、接合部4との接合強度が高められる。
 放熱部材3は、例えば板状に構成される。また、放熱部材3は、板状部と、板状部から突出する少なくとも1つの放熱フィンとを有していてもよい。放熱部材3の板状部の平均厚みとしては、0.1mm以上5mm以下が好ましい。
 放熱フィンと板状部との接合方法としては、摩擦撹拌接合(FSW)を用いるとよい。FSWは、被接合材を一体化させる接合法であり、接合界面での熱抵抗の上昇を抑えられる。そのため、放熱効果の低減が抑制できる。
 <接合部>
 接合部4は、光波長変換部材2と放熱部材3とを接合している。本実施形態では、接合部4は、光波長変換部材2の中間膜24の下面と、放熱部材3の上面(つまり、光波長変換部材2側の面)との間に配置され、これら2つの面を接合している。
 接合部4の融点は、240℃以上である。接合部4の融点が240℃未満であると、レーザーの高出力域において、光波長変換部材2からの熱で接合部4が溶融し、脱離、破損等の欠陥が発生する。なお、接合部4の融点としては、300℃以上が好ましく、500℃以上がより好ましく、800℃以上がさらに好ましい。
 接合部4の熱伝導率は、120W/mK以上である。接合部4の熱伝導率が120W/mK未満であると、光波長変換部材2からの排熱をより効果的に行う点において不足が生じるおそれがあり、レーザーの高出力域で蛍光機能が低下するおそれがある。なお、接合部4の熱伝導率としては、150W/mK以上が好ましい。
 接合部4の熱伝導率は、例えば、パルス光サーモリフレクタンス法によって測定できる。具体的には、光波長変換装置1を入射面に対し斜めに切断し、接合部4を露出させる。露出した部分にパルス光とレーザー光とを照射し、反射するレーザー光を測定することで、接合部4の熱抵抗が得られる。得られた熱抵抗と接合部4の面積及び厚みとから熱伝導率が算出される。
 接合部4の材質は、少なくとも接合部4の融点が上記条件を満たすことができれば特に限定されない。ただし、接合部4の融点及び熱伝導率が上記条件を満たすことがより好ましい。さらに、上記条件を満たすために、接合部4は、金、銀、銅、又はこれらの組み合わせのみから構成されるとよい。
 接合部4は、気孔を有するとよい。接合部4が気孔を有することにより、放熱部材3と光波長変換部材2との間の熱膨張差が緩和されるので、熱衝撃による接合部4の破損を抑制することができる。
 気孔を有する接合部4は、例えば、上述した金属のナノ粒子を焼結することで得られる。ここでいうナノ粒子とは、ナノサイズオーダーの粒子を含む、平均粒径が数ナノメートルから数マイクロメートルの粒子群である。そして、接合部4としては、金属のナノ粒子の焼結体が好ましい。この焼結体では、焼結により互いに結合したナノ粒子間の空隙によって気孔が構成される。なお、気孔の最大幅(つまり、最大気孔径)は、5μm以下が好ましい。
 接合部4の気孔率としては、1%以上40%以下が好ましい。気孔率が1%未満であると、放熱部材3と光波長変換部材2との間の熱膨張差の緩和効果が得られないおそれがある。一方、気孔率が40%を超えると、接合部4の伝熱性の低下に伴って、光波長変換部材2の排熱効率が低下するおそれがある。
 なお、「気孔率」は、例えば接合部4の断面を走査型電子顕微鏡(SEM)で観察して得られる観察断面において、気孔の占める面積割合(つまり、気孔と材料層との合計面積に対する気孔の合計面積の割合)として求められる。
 接合部4の上面(つまり、光波長変換部材2側の面)は、光波長変換部材2の下面全体に接合している。また、本実施形態では、接合部4は、光波長変換部材2と放熱部材3とに挟まれた領域(つまり、放熱部材3の上面の一部)のみに層状に配置されている。
 ただし、接合部4は、光波長変換部材2の下面よりも大きい範囲で配置されてもよく、放熱部材3の上面全体を覆うように配置されてもよい。また、接合部4は、図2に示すように、光波長変換部材2の側面(つまり、厚み方向と平行な面)を覆うように配置されていてもよい。接合部4が光波長変換部材2の側面を覆う場合、接合部4は光波長変換部材2の上面(つまり、反射防止膜23の上面)の一部を覆ってもよい。
 接合部4のうち、光波長変換部材2と放熱部材3との間に配置された接合領域の平均厚みとしては、1μm以上が好ましい。上記接合領域の平均厚みが1μm未満であると、接合部4による接合強度が不十分となるおそれがある。また、光波長変換部材2と放熱部材3との間の放熱経路を十分に確保できないおそれがある。
 また、上記接合領域の平均厚みとしては、セラミックス蛍光体21の平均厚みと上記接合領域の平均厚みとの合計厚みの50%以下が好ましい。上記接合領域の平均厚みが上記合計厚みの50%を超えると、セラミックス蛍光体21から放熱部材3までの距離がセラミックス蛍光体21の厚みに対して大きくなり、放熱部材3に対して、光波長変換部材2から発生した熱をより速く伝えることが困難となり、排熱効率が低下するおそれがある。
 <光複合装置>
 図3に示す光複合装置10は、光波長変換装置1と、光波長変換装置1が収容されたパッケージ5とを備える。
 パッケージ5は、箱状の容器、又は板状の基板である。パッケージ5は、例えば、アルミナ等のセラミックスを主成分としている。なお、「主成分」とは、例えば80質量%以上含まれている成分を意味する。パッケージ5には、LED、LD等の発光素子を搭載する発光素子搭載領域が設けられていてもよい。
 光複合装置10は、図4に示す光源ユニット20に用いられる。光源ユニット20は、光複合装置10と、発光素子等を備えた周知の複数の青色レーザー発振器(つまり、第1青色レーザー発振器27及び第2青色レーザー発振器29)と、ダイクロイックミラー25と、レンズ26とを備えている。
 光源ユニット20では、第1青色レーザー発振器27から光波長変換装置1に対して、図4の右方向に第1青色光B1が照射される。第1青色光B1は、光波長変換装置1にて波長変換されると共に反射され、黄色光Yとして、図4の左方向に出力される。黄色光Yは、図4の左右方向に対して45°傾斜したダイクロイックミラー25にて反射され、レンズ26に出力される。
 また、第2青色レーザー発振器29からレンズ26に向かって図4の上方向に照射された第2青色光B2は、ダイクロイックミラー25を透過して、レンズ26にそのまま出力される。
 これにより、レンズ26において、第1青色光B1と黄色光Yとが混合され、白色光が生成される。その結果、光源ユニット20では、レンズ26から図4の上方に向かって白色光が出力される。
 [1-2.効果]
 以上詳述した実施形態によれば、以下の効果が得られる。
 (1a)接合部4の融点が240℃以上であるため、レーザー照射によってセラミックス蛍光体21の温度が上昇し高温となっても、光波長変換部材2と放熱部材3とを接合する接合部4が溶融しにくい。そのため、レーザーの高出力域まで、高い耐熱性と接合強度とを維持できる。その結果、高出力域でも光波長変換部材2と放熱部材3との間の放熱経路を維持することができ、光波長変換部材2からの排熱を効率的に行なえる。
 (1b)接合部4の熱伝導率が120W/mK以上であるため、光波長変換部材2と放熱部材3との間の放熱経路となる接合部4の熱伝達性能を高くすることができ、光波長変換部材2からの排熱をより効率的に行なうことができる。
 [2.第2実施形態]
 [2-1.構成]
 図5A,5Bに示す光波長変換装置1Aは、光波長変換部材2と、放熱部材3と、接合部4と、樹脂層6とを備える。
 光波長変換部材2、放熱部材3及び接合部4は、図1A,1Bの光波長変換装置1と同じものであるため、同一の符号を付して説明を省略する。
 樹脂層6は、接合部4のうち、光波長変換部材2及び放熱部材3と接合されていない面の少なくとも一部を被覆(つまりコーティング)する。
 図5Aでは、樹脂層6は、接合部4の側面全体と、光波長変換部材2の側面の一部とを被覆している。また、樹脂層6は、放熱部材3の上面の一部も被覆している。具体的には、図5Aの樹脂層6は、放熱部材3の上面から、セラミックス蛍光体21の側面まで到達している。
 また、樹脂層6は、光波長変換部材2の側面全体を被覆してもよい。さらに、図5Bに示すように、樹脂層6は、光波長変換部材2の側面全体に加え、光波長変換部材2の上面(つまり反射防止膜23の上面)の一部を被覆してもよい。
 樹脂層6の主成分としては、フッ化物系の樹脂が好ましい。フッ化物系の樹脂を用いることで、樹脂層6のO、HS、SOなどのガスや水分の透過性を低減でき、接合部4の界面の酸化(特に銅の場合)、硫化(特に銀の場合)等を効果的に抑制できる。
 [2-2.効果]
 以上詳述した実施形態によれば、以下の効果が得られる。
 (2a)樹脂層6によって、接合部4の接合界面における酸化、硫化等を抑制することができる。その結果、光波長変換装置1Aの耐久性を向上できる。
 (2b)樹脂層6によって光波長変換部材2の側面を覆うことで、光波長変換部材2の酸化、硫化等も抑制できる。その結果、光波長変換部材2の劣化による蛍光強度の低下を抑制できる。
 [3.第2実施形態]
 [3-1.構成]
 図6A,6Bに示す光波長変換装置1Bは、光波長変換部材2と、放熱部材3Bと、接合部4とを備える。
 光波長変換部材2及び接合部4は、図1A,1Bの光波長変換装置1と同じものであるため、同一の符号を付して説明を省略する。
 本実施形態の放熱部材3Bは、接合部4と接合される面(つまり上面)に配置された切欠き13を有する。本実施形態では、切欠き13は、光波長変換部材2の周囲に配置され、接合部4とは反対側に凹んだ環状の溝である。
 切欠き13は、内縁が光波長変換部材2及び接合部4の側面と面一となるように形成されている。切欠き13は、光波長変換部材2及び接合部4と厚み方向に重ならない位置に配置されている。つまり、切欠き13は、接合部4と接合されておらず、放熱部材3Bの上面において露出している。
 なお、切欠き13は、光波長変換部材2及び接合部4と重なる位置に設けられてもよい。また、切欠き13は、環状に限定されない。さらに、放熱部材3Bは、複数の切欠き13を有してもよい。
 [3-2.効果]
 以上詳述した実施形態によれば、以下の効果が得られる。
 (3a)放熱部材3Bの切欠き13によって、光波長変換部材2と放熱部材3Bとの接合時に、両者間の熱膨張差異に起因して発生する応力を抑制できる。そのため、接合強度が向上し、放熱性が向上する。また、高温環境下で放熱部材3Bに発生する熱応力が低減されるので、動作中の光波長変換部材2における剥離等の破損を抑制できる。
 [4.他の実施形態]
 以上、本開示の実施形態について説明したが、本開示は、上記実施形態に限定されることなく、種々の形態を採り得ることは言うまでもない。
 (4a)上記実施形態の光波長変換装置1,1A,1Bにおいて、光波長変換部材2は、必ずしも反射防止膜23及び中間膜24を有しなくてもよい。
 また、光波長変換部材2は、セラミックス蛍光体21、反射膜22、反射防止膜23、及び中間膜24以外の膜又は層を有してもよい。例えば、光波長変換部材2は、中間膜24と接合部4との間に配置される補助接合層を有してもよい。この補助接合層は、中間膜24と接合部4との接合強度を向上させる目的で設けられ、例えば金属で形成される。
 (4b)上記実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。
 [5.実施例]
 以下に、本開示の効果を確認するために行った試験の内容とその評価とについて説明する。
 <実施例1>
 (セラミックス蛍光体の作製)
 Al(平均粒径0.2μm)、Y(平均粒径1.2μm)、Gd(平均粒径1.1μm)、及びCeO(平均粒径1.5μm)の粒子を、A12:Ce量が焼結体全体の30体積%になるように秤量した。
 これらの粒子をエタノールと共にボールミル中に投入し、16時間粉砕混合を行った。得られたスラリーを乾燥及び造粒し、得られた造粒粉をプレス成形した。さらに、得られた成形体を大気雰囲気中で、焼成温度を1600℃、保持時間を10時間として焼成を行い、セラミックス蛍光体を作製した。得られたセラミックス蛍光体の相対密度は99%以上で十分に緻密化されていた。なお、相対密度は、JIS-R1634(1998)に準拠して測定した気孔率に基づいて求めた。
 (反射膜及び反射防止膜の形成)
 得られたセラミックス蛍光体を16mm角の平均厚さ200μmの板状に加工した。このセラミックス蛍光体の上面に反射防止膜を形成すると共に、下面に反射膜及び中間膜を形成し、光波長変換部材を得た。
 なお、反射防止膜としてSiO層とTa層とからなる複層コーティング、反射膜としてTiO層とAg層とからなる複層コーティング、中間膜としてNi層とAl層とからなる複層コーティングを施した。
 (光波長変換部材と放熱部材との接合)
 上記工程で得られた光波長変換部材を3.5mm角に切断した。また、銅製の放熱部材を12mm角の平均厚さ2mmの板状に切断した。
 切断した光波長変換部材と放熱部材との間に、銀ナノ粒子、銅ナノ粒子、又は銀ナノ粒子と銅ナノ粒子との混合粒子を焼結することによって接合部を形成し、試料1~3の光波長変換装置を得た。なお、表1には、各試料における接合部の融点と熱伝導率とを示す。
 (耐レーザー出力性能)
 各試料に対して、465nmの波長を有するレーザー光(つまり青色LD光)を、レンズで1mm幅まで集光して照射した。そして、各試料にて反射した光に対し、分光放射照度計(コニカミノルタ社製の「CL-500A」)によってX方向の色度値を測定した。この測定の際には、青色LD光を照射する出力密度を、0W/mmから200W/mmまで徐々に増加させた。
 出力密度が5W/mm時の色度値に対して、色度値が60%以下になった出力密度を温度消光が生じた出力密度と判断し、この出力密度を各試料における耐レーザー出力性能とした。結果を表1に示す。耐レーザー出力性能としては、90W/mm以上が良好と判断できる。
 (気孔率)
 各試料の接合部を切断した断面をSEMで観察し、5000倍の断面画像を得た。この断面画像に対し、画像解析ソフト「WinROOF」を使用し、材料層と気孔とで2値化する処理を行った。この2値化した画像から気孔の面積比を算出し、接合部の気孔率とした。結果を表1に示す。
 (耐熱性)
 各資料に対し雰囲気温度を-50℃から150℃まで繰り返し変化させる熱サイクルを実施した。1000サイクル後に、上記耐レーザー出力性能を評価し、熱サイクル実施前の耐レーザー出力性能に対する、熱サイクル実施後の耐レーザー出力性能の比を求めた。この比としては、80%以上が好ましい。
 <比較例>
 実施例1と同じ光波長変換部材と放熱部材とを用意し、シリコーンペースト(熱伝導率0.9W/mK)、銀を含む導電ペースト(熱伝導率14W/mK)、又は半田(熱伝導率60W/mK)を用いて接合部を形成し、試料4~6の光波長変換装置を得た。各試料における耐レーザー出力性能及び気孔率の測定結果を表1に示す。
 <実施例2>
 実施例1と同じ光波長変換部材と放熱部材とに対し、銀ナノ粒子を用い気孔率を実施例1と変えた接合部を形成し、試料7~12の光波長変換装置を得た。各試料における耐レーザー出力性能及び気孔率の測定結果を表1に示す。
 <実施例3>
 Al(平均粒径0.2μm)、Y(平均粒径1.2μm)、Gd(平均粒径1.1μm)、CeO(平均粒径1.5μm)、Lu(平均粒径1.1μm)、Sc(平均粒径1.2μm)、及びGa(平均粒径1.1μm)の粒子を、A12:Ce量が焼結体全体の30体積%になり、かつ、表1に示す組成となるように秤量した以外は、実施例1と同様の手順で試料13~24の光波長変換装置を得た。各試料における耐レーザー出力性能及び気孔率の測定結果を表1に示す。
 <実施例4>
 セラミックス蛍光体の平均厚み及び接合部の接合領域における平均厚みを表1に示すように変えた以外は、実施例1と同様の手順で試料25~30の光波長変換装置を得た。各試料における耐レーザー出力性能及び気孔率の測定結果を表1に示す。なお、試料30は、接合部の強度不足により、耐レーザー出力性能が測定不能であった。
 <実施例5>
 接合部の側面をフッ素系の樹脂層で被覆した点以外は、実施例1と同様の手順で試料31の光波長変換装置を得た。また、放熱部材の上面に切欠きを設けた点以外は、実施例1と同様の手順で試料32の光波長変換装置を得た。さらに、光波長変換部材の厚み方向から視た隅部に半径5mmのR加工をした点以外は、実施例1と同様の手順で試料33の光波長変換装置を得た。
 さらに、上記樹脂層と上記切欠きとを組み合わせた試料34の光波長変換装置、上記樹脂層と上記R加工とを組み合わせた試料35の光波長変換装置、及び上記樹脂層と上記切欠きと上記R加工とを組み合わせた試料36の光波長変換装置を得た。各試料における耐レーザー出力性能及び気孔率の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 <考察>
 表1に示すように、接合部の熱伝導率が120W/mK以上かつ融点が240℃以上の実施例1~4では、耐レーザー出力性能が良好であり、レーザーの高出力域まで対応できることがわかる。一方、接合部の熱伝導率が120W/mK未満かつ融点が240℃未満の比較例では、レーザーの高出力域で温度消光が発生し、高出力域への対応ができない。
 実施例2の結果から、接合部の気孔率を40%以下とすることで、より高出力域に対応できることがわかる。また、実施例3の結果から、様々な組成のセラミックス蛍光体において高出力域への対応が可能なことがわかる。
 さらに、実施例4の結果から、セラミックス蛍光体と接合領域との合計厚みに対する、接合部の接合領域における平均厚みの比率(表1中の「接合部の平均厚み比」)を50%以下とすることで、より高出力域に対応できることがわかる。
 また、実施例5の結果から、接合部を樹脂層で被覆することで、高温で長時間加熱された後の耐レーザー出力性能の低下を抑制できることがわかる。また、切欠き及びR加工によって、光波長変換装置の接合強度が向上し、耐レーザー出力性能が向上することがわかる。

Claims (9)

  1.  入射した光の波長を変換するように構成された光波長変換部材と、
     前記光波長変換部材よりも放熱性に優れた放熱部材と、
     前記光波長変換部材と前記放熱部材とを接合する接合部と、
     を備え、
     前記光波長変換部材は、
     板状のセラミックス蛍光体と、
     前記セラミックス蛍光体の前記放熱部材側の面に配置された反射膜と、
     を有し、
     前記接合部の熱伝導率は120W/mK以上であり、
     前記接合部の融点は240℃以上である、光波長変換装置。
  2.  前記接合部は、金、銀、銅、又はこれらの組み合わせのみから構成される、請求項1に記載の光波長変換装置。
  3.  前記接合部は、気孔を有し、
     前記接合部の気孔率は、40%以下である、請求項1又は請求項2に記載の光波長変換装置。
  4.  前記接合部のうち、前記光波長変換部材と前記放熱部材との間に配置された接合領域の平均厚みは、1μm以上である、請求項1から請求項3のいずれか1項に記載の光波長変換装置。
  5.  前記接合部のうち、前記光波長変換部材と前記放熱部材との間に配置された接合領域の平均厚みは、前記セラミックス蛍光体の平均厚みと前記接合領域の平均厚みとの合計厚みの50%以下である、請求項1から請求項4のいずれか1項に記載の光波長変換装置。
  6.  前記接合部のうち、前記光波長変換部材及び前記放熱部材と接合されていない面の少なくとも一部を被覆する樹脂層をさらに備える、請求項1から請求項5のいずれか1項に記載の光波長変換装置。
  7.  前記樹脂層は、フッ化物系の樹脂を主成分とする、請求項6に記載の光波長変換装置。
  8.  前記放熱部材は、前記接合部と接合される面に配置された少なくとも1つの切欠きを有する、請求項1から請求項7のいずれか1項に記載の光波長変換装置。
  9.  前記光波長変換部材は、厚み方向から視た少なくとも1つの隅部が丸み付けられる、請求項1から請求項8のいずれか1項に記載の光波長変換装置。
PCT/JP2018/040537 2018-02-14 2018-10-31 光波長変換装置 WO2019159441A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020500269A JP6845372B2 (ja) 2018-02-14 2018-10-31 光波長変換装置
CN201880089083.2A CN111699420B (zh) 2018-02-14 2018-10-31 光波长转换装置
US16/968,693 US11287107B2 (en) 2018-02-14 2018-10-31 Optical wavelength conversion device
KR1020207022854A KR102501831B1 (ko) 2018-02-14 2018-10-31 광 파장 변환 장치
EP18906586.5A EP3754386A4 (en) 2018-02-14 2018-10-31 DEVICE FOR CONVERSING OPTICAL WAVELENGTHS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018024282 2018-02-14
JP2018-024282 2018-02-14

Publications (1)

Publication Number Publication Date
WO2019159441A1 true WO2019159441A1 (ja) 2019-08-22

Family

ID=67618608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040537 WO2019159441A1 (ja) 2018-02-14 2018-10-31 光波長変換装置

Country Status (7)

Country Link
US (1) US11287107B2 (ja)
EP (1) EP3754386A4 (ja)
JP (1) JP6845372B2 (ja)
KR (1) KR102501831B1 (ja)
CN (1) CN111699420B (ja)
TW (1) TWI771564B (ja)
WO (1) WO2019159441A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205716A1 (ja) * 2020-04-09 2021-10-14 シャープ株式会社 波長変換素子及び光学機器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020001955T5 (de) * 2019-04-18 2021-12-30 Nippon Electric Glass Co., Ltd. Wellenlängen-umwandlungselement, verfahren zur herstellung desselben und lichtemittierende vorrichtung
TWI725564B (zh) * 2019-09-30 2021-04-21 台達電子工業股份有限公司 波長轉換裝置
CN117716167A (zh) * 2021-07-29 2024-03-15 昕诺飞控股有限公司 激光照明设备
CN113507035A (zh) * 2021-09-09 2021-10-15 四川光天下激光科技有限公司 一种激光非线性波长转换系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201354A (ja) * 2006-01-30 2007-08-09 Matsushita Electric Ind Co Ltd 発光モジュール
WO2014065051A1 (ja) 2012-10-26 2014-05-01 ウシオ電機株式会社 蛍光光源装置
WO2014123145A1 (ja) * 2013-02-08 2014-08-14 ウシオ電機株式会社 蛍光光源装置
JP2015226002A (ja) * 2014-05-29 2015-12-14 日亜化学工業株式会社 発光装置
WO2017110031A1 (ja) 2015-12-24 2017-06-29 パナソニックIpマネジメント株式会社 発光素子および照明装置
WO2018007306A1 (en) * 2016-07-08 2018-01-11 Nestec Sa Rotary compressor arrangement
WO2018042825A1 (ja) * 2016-08-30 2018-03-08 パナソニックIpマネジメント株式会社 色変換素子

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4205902B2 (ja) * 2001-09-20 2009-01-07 イソライト工業株式会社 セラミックセッター及びその製造方法
DE202005022114U1 (de) 2004-10-01 2014-02-10 Nichia Corp. Lichtemittierende Vorrichtung
JP5239043B2 (ja) * 2008-07-18 2013-07-17 シャープ株式会社 発光装置および発光装置の製造方法
CN201462686U (zh) * 2009-02-18 2010-05-12 绎立锐光科技开发(深圳)有限公司 光波长转换材料的封装结构及led光源
JPWO2011021402A1 (ja) * 2009-08-21 2013-01-17 パナソニック株式会社 発光装置
JPWO2011030594A1 (ja) * 2009-09-11 2013-02-04 旭化成イーマテリアルズ株式会社 点光源用光拡散板及び直下型点光源バックライト装置
JP2011124449A (ja) * 2009-12-11 2011-06-23 Seiko Instruments Inc 発光部品、発光器及び発光部品の製造方法
US20120074434A1 (en) 2010-09-24 2012-03-29 Jun Seok Park Light emitting device package and lighting apparatus using the same
JP2012104267A (ja) * 2010-11-08 2012-05-31 Stanley Electric Co Ltd 光源装置および照明装置
JP2012190628A (ja) * 2011-03-10 2012-10-04 Stanley Electric Co Ltd 光源装置および照明装置
JP5812090B2 (ja) 2011-03-10 2015-11-11 富士電機株式会社 電子部品および電子部品の製造方法
ES2660252T3 (es) * 2012-08-02 2018-03-21 Nichia Corporation Dispositivo de conversión de longitud de onda
US9000415B2 (en) 2012-09-12 2015-04-07 Lg Innotek Co., Ltd. Light emitting device
JP6182084B2 (ja) * 2013-03-25 2017-08-16 日本碍子株式会社 緻密質複合材料、その製法、接合体及び半導体製造装置用部材
CN106255674B (zh) * 2014-04-30 2019-11-01 日本碍子株式会社 陶瓷部件与金属部件的接合体及其制法
JP2016081562A (ja) * 2014-10-09 2016-05-16 ソニー株式会社 表示装置、表示装置の製造方法および電子機器
CN107112246B (zh) * 2014-12-26 2020-11-10 汉高股份有限及两合公司 可烧结的粘合材料及使用所述可烧结的粘合材料的半导体装置
CN104668551B (zh) * 2015-01-28 2017-01-04 哈尔滨工业大学深圳研究生院 一种用作热界面材料的双峰分布纳米银膏及其制备方法
JPWO2016125611A1 (ja) * 2015-02-03 2017-11-16 日本電気硝子株式会社 波長変換部材及びそれを用いた発光デバイス
JP2018013670A (ja) * 2016-07-22 2018-01-25 日本電気硝子株式会社 波長変換部材及びそれを用いた発光デバイス
TWI753161B (zh) * 2017-06-14 2022-01-21 日商日本電氣硝子股份有限公司 波長轉換構件及發光裝置
WO2019064980A1 (ja) * 2017-09-27 2019-04-04 パナソニックIpマネジメント株式会社 光源装置及び投光装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201354A (ja) * 2006-01-30 2007-08-09 Matsushita Electric Ind Co Ltd 発光モジュール
WO2014065051A1 (ja) 2012-10-26 2014-05-01 ウシオ電機株式会社 蛍光光源装置
WO2014123145A1 (ja) * 2013-02-08 2014-08-14 ウシオ電機株式会社 蛍光光源装置
JP2015226002A (ja) * 2014-05-29 2015-12-14 日亜化学工業株式会社 発光装置
WO2017110031A1 (ja) 2015-12-24 2017-06-29 パナソニックIpマネジメント株式会社 発光素子および照明装置
WO2018007306A1 (en) * 2016-07-08 2018-01-11 Nestec Sa Rotary compressor arrangement
WO2018042825A1 (ja) * 2016-08-30 2018-03-08 パナソニックIpマネジメント株式会社 色変換素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3754386A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205716A1 (ja) * 2020-04-09 2021-10-14 シャープ株式会社 波長変換素子及び光学機器

Also Published As

Publication number Publication date
JPWO2019159441A1 (ja) 2021-01-07
CN111699420A (zh) 2020-09-22
US11287107B2 (en) 2022-03-29
TWI771564B (zh) 2022-07-21
CN111699420B (zh) 2023-01-13
EP3754386A1 (en) 2020-12-23
KR102501831B1 (ko) 2023-02-21
TW201937761A (zh) 2019-09-16
US20210018160A1 (en) 2021-01-21
KR20200106527A (ko) 2020-09-14
JP6845372B2 (ja) 2021-03-17
EP3754386A4 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
WO2019159441A1 (ja) 光波長変換装置
JP6460162B2 (ja) 波長変換装置の製造方法
JP6320531B2 (ja) 金属はんだ接合部を有するコンバーター・冷却体複合体
TWI696685B (zh) 光波長轉換裝置及光複合裝置
KR20180107203A (ko) 파장 변환 부재, 그 제조 방법 및 발광 장치
JP6943984B2 (ja) 光波長変換装置及び発光装置
JP2013187043A (ja) 光源装置および照明装置
KR20180095645A (ko) 파장 변환 부재 및 발광 장치
JP7068040B2 (ja) 光波長変換装置
JP7188893B2 (ja) 光波長変換部材及び光波長変換装置
JP7148291B2 (ja) 光波長変換装置
JP5781367B2 (ja) 光源装置および照明装置
JP7244297B2 (ja) 光波長変換部品
WO2018079501A1 (ja) 光波長変換部材の製造方法、光波長変換部材、光波長変換部品、及び発光装置
US20230213171A1 (en) Fluorescent plate, wavelength conversion member, and light source device
JP2019197143A (ja) 光波長変換装置
JP6486441B2 (ja) 光波長変換部材の製造方法、光波長変換部材、光波長変換部品、及び発光装置
TW202409616A (zh) 波長轉換構件及光源裝置
KR20230029986A (ko) 파장 변환 부재 및 그것을 구비하는 광원 장치
JP2023167773A (ja) 波長変換部材および光源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500269

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207022854

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018906586

Country of ref document: EP

Effective date: 20200914