WO2019159367A1 - 炭素質粒子、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 - Google Patents

炭素質粒子、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2019159367A1
WO2019159367A1 PCT/JP2018/005787 JP2018005787W WO2019159367A1 WO 2019159367 A1 WO2019159367 A1 WO 2019159367A1 JP 2018005787 W JP2018005787 W JP 2018005787W WO 2019159367 A1 WO2019159367 A1 WO 2019159367A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion secondary
secondary battery
negative electrode
carbonaceous particles
Prior art date
Application number
PCT/JP2018/005787
Other languages
English (en)
French (fr)
Inventor
達也 碓井
元宏 伊坂
崇 坂本
本棒 英利
西田 達也
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2020500241A priority Critical patent/JP7047892B2/ja
Priority to KR1020207025939A priority patent/KR102608550B1/ko
Priority to PCT/JP2018/005787 priority patent/WO2019159367A1/ja
Priority to TW108105502A priority patent/TWI823900B/zh
Publication of WO2019159367A1 publication Critical patent/WO2019159367A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to carbonaceous particles, a negative electrode material for lithium ion secondary batteries, a negative electrode for lithium ion secondary batteries, and a lithium ion secondary battery.
  • Lithium ion secondary batteries have higher input / output characteristics than other secondary batteries such as nickel cadmium batteries, nickel metal hydride batteries, lead storage batteries, etc. There is an increasing expectation as a power source used in applications requiring high input / output.
  • Carbon materials generally used as negative electrode materials (negative electrode active materials) for lithium ion secondary batteries are broadly classified into graphite and amorphous carbon.
  • Graphite has a structure in which hexagonal network surfaces of carbon atoms are regularly stacked, and charging / discharging is performed by an insertion / extraction reaction of lithium ions from the end portions of the stacked network surfaces.
  • the insertion / desorption reaction proceeds only at the end of the hexagonal mesh surface, there is a limit to improving the input / output performance.
  • the crystallinity is high and there are few surface defects, there is a problem that the affinity with the electrolytic solution is poor and the life characteristics of the lithium ion secondary battery are deteriorated.
  • amorphous carbon has irregular hexagonal network stacking or no network structure, the lithium insertion / extraction reaction proceeds on the entire surface of the particle, and lithium ions with excellent input / output characteristics. It is easy to obtain a secondary battery.
  • amorphous carbon used as a negative electrode active material of a lithium ion secondary battery those using coke, carbon black or the like as a raw material are known (see, for example, Patent Document 1 and Patent Document 2).
  • lithium ion secondary batteries using amorphous carbon as a negative electrode material have excellent input / output characteristics, but for applications requiring high input / output, such as power sources for electric vehicles and hybrid electric vehicles. As demand increases, further resistance reduction is required.
  • the present invention provides a carbonaceous particle and a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery capable of producing a low resistance lithium ion secondary battery. This is the issue.
  • Means for solving the above problems include the following embodiments.
  • ⁇ 1> In a frequency distribution of R values representing a peak intensity ratio (G / D) of G band (1580 cm ⁇ 1 ) and D band (1360 cm ⁇ 1 ) of graphite obtained by Raman mapping measurement, the following condition (1) and Carbonaceous particles for a negative electrode material of a lithium ion secondary battery that satisfy (2).
  • the mode value (Rc) of the R value is 0.87 to 0.96.
  • the R value (R 50 ) when the cumulative frequency from the smaller R value is 50% is 0.88 to 0.92.
  • ⁇ 1> a first carbon material as a nucleus, and a second carbon material that is present in at least part of the surface of the first carbon material and has lower crystallinity than the first carbon material.
  • Carbonaceous particles as described in 1.
  • ⁇ 3> The carbonaceous particle according to ⁇ 1> or ⁇ 2>, wherein the crystallite size (Lc) in the c-axis direction is 4.5 nm to 5.2 nm.
  • ⁇ 4> having a specific surface area of 2.0m 2 /g ⁇ 5.0m 2 / g, ⁇ 1> ⁇ carbonaceous particles according to any one of ⁇ 3>.
  • ⁇ 5> The carbonaceous particles according to any one of ⁇ 1> to ⁇ 4>, wherein the average particle size (50% D) is 5 ⁇ m to 20 ⁇ m.
  • a negative electrode material for a lithium ion secondary battery comprising the carbonaceous material according to any one of ⁇ 1> to ⁇ 5>.
  • the negative electrode material for a lithium ion secondary battery according to ⁇ 6> further comprising graphite particles.
  • a negative electrode for a lithium ion secondary battery comprising the negative electrode material for a lithium ion secondary battery according to ⁇ 6> or ⁇ 7>.
  • ⁇ 9> A lithium ion secondary battery comprising the negative electrode for a lithium ion secondary battery according to ⁇ 8>.
  • carbonaceous particles and a negative electrode material for a lithium ion secondary battery and a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery capable of producing a low resistance lithium ion secondary battery.
  • FIG. 4 is a graph showing a cumulative curve of R values in carbonaceous particles produced in Example 1, Comparative Example 1 and Comparative Example 2.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes.
  • numerical ranges indicated using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical description.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • each component may contain a plurality of corresponding substances.
  • the content or content of each component is the total content or content of the multiple types of substances present in the composition unless otherwise specified.
  • a plurality of particles corresponding to each component may be included.
  • the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
  • the term “layer” or “film” includes only a part of the region in addition to the case where the layer or film is formed over the entire region. The case where it is formed is also included.
  • the carbonaceous particles of the present disclosure have the following frequency distribution of R values representing the peak intensity ratio (G / D) of G band (1580 cm ⁇ 1 ) and D band (1360 cm ⁇ 1 ) of graphite obtained by Raman mapping measurement.
  • the carbonaceous particles for the negative electrode material of the lithium ion secondary battery satisfying the conditions (1) and (2).
  • the mode value (Rc) of the R value is 0.87 to 0.96.
  • the R value (R 50 ) when the cumulative frequency from the smaller R value is 50% is 0.88 to 0.92.
  • a lithium ion secondary battery obtained using a negative electrode material containing carbonaceous particles that satisfies the above conditions (1) and (2) has excellent input / output characteristics and low resistance. Became clear.
  • the frequency distribution of the R value of the carbonaceous particles can be obtained by Raman mapping.
  • the measurement conditions for Raman mapping are: magnification of the objective lens: 50 times, exposure time: 2 seconds, number of integrations: 4 times, sampling range: 100 ⁇ m ⁇ 100 ⁇ m, measurement interval: 2 ⁇ m.
  • a measuring device for example, DXR microscopic laser Raman manufactured by Thermo Fisher Scientific Co. can be used.
  • Rc is preferably 0.90 to 0.92.
  • the interplanar spacing (d002) of the carbonaceous particles is preferably 0.34 nm to 0.37 nm.
  • d002 is 0.34 nm or more, good initial charge / discharge efficiency tends to be obtained, and when it is 0.37 nm or less, life characteristics and input / output characteristics tend to be excellent.
  • the carbonaceous particles are preferably produced from coke.
  • the type of coke used for producing the carbonaceous particles is not particularly limited, and examples thereof include coal-based coke and petroleum-based coke. Coke is roughly classified into mosaic coke having relatively low crystallinity and needle coke having relatively high crystallinity, and needle coke is more preferable. Only one type or two or more types of coke may be used for producing the carbonaceous particles.
  • the carbonaceous particles have a first carbon material as a nucleus and a second carbon material that is present on at least a part of the surface of the first carbon material and has lower crystallinity than the first carbon material. There may be.
  • the carbonaceous particles have a first carbon material as a nucleus and a second carbon material that is present in at least a part of the surface of the first carbon material and has lower crystallinity than the first carbon material, the nucleus Even if the 2nd carbon material exists in the whole surface of this, it may exist only in a part.
  • the carbonaceous particles have a first carbon material as a nucleus and a second carbon material that is present in at least a part of the surface of the first carbon material and has lower crystallinity than the first carbon material
  • the nucleus The first carbon material to be produced from coke, and the second carbon material present on at least a part of the surface of the first carbon material can be changed to a carbonaceous material by heat treatment (precursor of the second carbon material) It may be manufactured from.
  • the precursor of the second carbon material is not particularly limited, and examples thereof include thermoplastic resins, naphthalene, anthracene, phenanthrolene, coal tar, tar, and pitch.
  • the carbonaceous particles have a first carbon material as a nucleus and a second carbon material that is present on at least a part of the surface of the first carbon material and has lower crystallinity than the first carbon material
  • the amount of the two-carbon material is not particularly limited.
  • the R value increases as the amount of the second carbon material increases, and the R value decreases as the amount of the second carbon material decreases.
  • the amount of the second carbon material is not too small from the viewpoint of suppressing an increase in the specific surface area so that side reaction with the electrolytic solution hardly occurs and obtaining good input / output characteristics.
  • the amount of the second carbon material is not too large from the viewpoint of suppressing the resistance of the second carbon material itself from increasing and deteriorating the input / output characteristics.
  • a method for producing carbonaceous particles comprising: a first carbon material as a nucleus; and a second carbon material that is present on at least a part of the surface of the first carbon material and has lower crystallinity than the first carbon material.
  • a method for producing carbonaceous particles comprising: a first carbon material as a nucleus; and a second carbon material that is present on at least a part of the surface of the first carbon material and has lower crystallinity than the first carbon material.
  • it can be produced by a method for producing carbonaceous particles described later.
  • the crystallite size (Lc) in the c-axis direction calculated by the Scherrer equation of the carbonaceous particles is preferably 4.5 nm to 5.4 nm.
  • a larger crystallite size (Lc) in the c-axis direction means higher crystallinity.
  • Examples of the carbonaceous particles having a crystallite size (Lc) in the c-axis direction of 4.5 nm to 5.4 nm include needle coke particles.
  • the crystallite size (Lc) in the c-axis direction of the carbonaceous particles is a value calculated by the Scherrer equation from the half-value width of the d002 diffraction peak obtained by X-ray diffraction measurement.
  • the specific surface area of the carbonaceous particles is preferably 2.0m 2 /g ⁇ 5.0m 2 / g, more preferably not more than 2.5m 2 /g ⁇ 4.0m 2 / g, 2 . further preferably 7m 2 /g ⁇ 3.3m 2 / g.
  • the specific surface area of the carbonaceous particles is a value obtained by the BET method (nitrogen gas adsorption method).
  • the average particle size (50% D) of the carbonaceous particles is preferably 5 ⁇ m to 20 ⁇ m, more preferably 8 ⁇ m to 18 ⁇ m, and even more preferably 9 ⁇ m to 16 ⁇ m.
  • the average particle size of the carbonaceous particles is 5 ⁇ m or more, the specific surface area does not become too large, and the decrease in the initial charge / discharge efficiency of the lithium ion secondary battery tends to be suppressed. Further, sufficient contact between particles tends to be ensured and deterioration of input / output characteristics tends to be suppressed.
  • the average particle size of the carbonaceous particles is 20 ⁇ m or less, unevenness is generated on the electrode surface and the short circuit of the battery tends to be suppressed. Further, the diffusion distance of Li from the particle surface to the inside does not become too long, and the input / output characteristics tend to be maintained well.
  • the average particle diameter (50% D) of the carbonaceous particles is a particle diameter when the accumulation from the small diameter side becomes 50% in the volume-based particle size distribution obtained by the laser diffraction / scattering method.
  • the method for producing the carbonaceous particles of the present disclosure is not particularly limited.
  • it may be manufactured by a method including a step of heat-treating a mixture including a first carbon material serving as a nucleus and a precursor of a second carbon material having lower crystallinity than the first carbon material. .
  • details and preferred embodiments of the first carbon material and the second carbon material are the same as those described in the item of the negative electrode material for a lithium ion secondary battery described above.
  • the temperature at which the mixture is heat-treated is preferably 800 ° C. to 1500 ° C., more preferably 850 ° C. to 1100 ° C., more preferably 900 ° C. to 900 ° C. from the viewpoint of improving input / output characteristics in the lithium ion secondary battery. More preferably, it is 1000 ° C.
  • the temperature at which the mixture is heat treated may be constant from the start to the end of the heat treatment or may vary.
  • the mixture after the heat treatment may be subjected to treatments such as pulverization, crushing, and particle size adjustment as necessary.
  • the contents of the precursors of the first carbon material and the second carbon material in the mixture before the heat treatment are not particularly limited.
  • the content of the first carbon material is preferably 85% by mass to 99.9% by mass with respect to the total mass of the mixture, and is 90% by mass. More preferably, it is ⁇ 99% by mass, and still more preferably 95% by mass to 99% by mass.
  • the content of the precursor of the second carbon material is 0.1% by mass to 15% by mass with respect to the total mass of the mixture from the viewpoint of improving input / output characteristics in the lithium ion secondary battery. It is preferably 1% by mass to 10% by mass, more preferably 1% by mass to 5% by mass.
  • the negative electrode material for lithium ion secondary batteries of the present disclosure (hereinafter also referred to as negative electrode material) includes the carbonaceous particles described above.
  • the negative electrode material of the present disclosure may be composed of only the carbonaceous particles described above, or may be a combination of carbonaceous particles and other negative electrode materials. For example, by combining carbon particles with graphite particles, the input / output characteristics of the lithium ion secondary battery tend to be further improved as compared with the case where only graphite particles are used.
  • the proportion of the carbonaceous particles in the total of the carbonaceous particles and the graphite particles is preferably 5% by mass to 50% by mass, and 10% by mass to 40% by mass. More preferably, it is more preferably 15% by mass to 30% by mass.
  • the negative electrode for lithium ion secondary batteries of the present disclosure includes the negative electrode material described above.
  • a specific configuration of the negative electrode includes, for example, a configuration including a current collector and a negative electrode material layer including a negative electrode material disposed on at least one surface of the current collector.
  • the method for producing the negative electrode is not particularly limited.
  • the negative electrode material and the organic binder are kneaded together with a solvent by a dispersing device such as a stirrer, ball mill, super sand mill, pressure kneader, etc., to prepare a negative electrode material slurry, which is applied to a current collector and applied to the negative electrode layer
  • a dispersing device such as a stirrer, ball mill, super sand mill, pressure kneader, etc.
  • Organic binder used for preparing the negative electrode material slurry is not particularly limited.
  • Organic binders include ethylenically unsaturated compounds such as styrene-butadiene copolymer, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl (meth) acrylate, etc.
  • Ions such as carboxylic acid esters, acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, etc., ethylenically unsaturated carboxylic acids, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, etc. Examples thereof include high-conductivity polymer compounds.
  • the content of the organic binder in the negative electrode material slurry is preferably, for example, 1% by mass to 20% by mass of the total of the negative electrode material and the organic binder of the present disclosure.
  • (meth) acrylate means at least one of acrylate and methacrylate
  • (meth) acrylonitrile means at least one of acrylonitrile and methacrylonitrile
  • a thickener for adjusting the viscosity may be added to the negative electrode material slurry.
  • the thickener include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, and casein.
  • the conductive material may be mixed in the negative electrode material slurry.
  • the conductive auxiliary material include carbon black, graphite, acetylene black, conductive oxide, and conductive nitride.
  • the amount of the conductive auxiliary agent used may be, for example, 1% by mass to 15% by mass with respect to the whole negative electrode material (nonvolatile content).
  • the material and shape of the current collector used for producing the negative electrode are not particularly limited.
  • a belt-like material made of copper, nickel, titanium, stainless steel, or the like in a foil shape, a punched foil shape, a mesh shape, or the like may be used.
  • a porous material such as porous metal (foamed metal), carbon paper, or the like may be used.
  • the method of applying the negative electrode material slurry to the current collector is not particularly limited. Metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure coating method, screen printing method Etc. After the application, rolling treatment with a flat plate press, a calender roll or the like may be performed as necessary.
  • a method for integrating the negative electrode material slurry and the current collector formed into a sheet shape, a pellet shape or the like is not particularly limited, and examples thereof include a roll, a press, and a combination thereof.
  • the lithium ion secondary battery of the present disclosure includes the above-described negative electrode for a lithium ion secondary battery of the present disclosure. Specifically, at least the negative electrode of the present disclosure, a positive electrode, a separator as necessary, and an electrolytic solution are provided.
  • the positive electrode may be formed by forming a positive electrode layer containing a positive electrode material on a current collector, similarly to the negative electrode of the present disclosure.
  • a current collector a belt-shaped member made of a metal or an alloy such as aluminum, titanium, or stainless steel in a foil shape, a punched foil shape, a mesh shape, or the like can be used.
  • the separator for example, a nonwoven fabric, a cloth, a microporous film, or a combination thereof having a polyolefin as a main component such as polyethylene or polypropylene can be used.
  • a separator when it is set as the structure where the positive electrode and negative electrode of the lithium ion secondary battery to produce are not in direct contact, it is not necessary to use a separator.
  • the electrolytic solution a so-called organic electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent can be used.
  • the electrolyte include lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , and LiSO 3 CF 3 .
  • Non-aqueous solvents include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl-1,3-oxazolidine-2-one, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1, Examples include 3-dioxolane, methyl acetate, ethyl acetate, and mixtures thereof.
  • the structure of the lithium ion secondary battery is not particularly limited.
  • the electrode plate group obtained by winding in a roll shape or as a flat laminate is sealed in the outer package, and the interior of the outer package is filled with the electrolyte. It is common to have a structure.
  • the shape of the lithium ion secondary battery is not particularly limited, and examples include a paper type battery, a button type battery, a coin type battery, a stacked type battery, and a cylindrical type battery.
  • Example 1 Commercially available coke having d002 of 0.346 nm and Lc of 4.6 nm was pulverized using an impact pulverizer equipped with a classifier. 1 part by mass of coal tar pitch (softening point 98 ° C., residual carbon ratio (carbonization rate) 50%) was added to 99 parts by mass of the pulverized product to obtain a mixture. Next, this mixture was heated to 900 ° C. at a temperature rising rate of 20 ° C./hour under a nitrogen flow, and kept at 900 ° C. (firing temperature) for 1 hour to obtain a heat-treated product.
  • coal tar pitch softening point 98 ° C., residual carbon ratio (carbonization rate) 50%
  • the average particle diameter (50% D) of the obtained carbonaceous particles was measured by a laser diffraction / scattering method. Specifically, using a laser diffraction particle size distribution measuring apparatus (SALD-3000J, Shimadzu Corporation), a dispersion liquid in which carbonaceous particles are dispersed in purified water together with a surfactant is placed in a water tank of the apparatus. It was measured while circulating with a pump in the state of applying sound waves. The particle size (50% D) when the accumulation in the obtained volume-based particle size distribution was 50% was defined as the average particle size. The results are shown in Table 1.
  • the resulting measurement of Rc and R 50 of the carbonaceous particles was carried out by Raman mapping. Specifically, using a Raman mapping apparatus (DXR microscope laser Raman manufactured by Thermo Fisher Scientific), the magnification of the objective lens is 50 times, the exposure time is 2 seconds, the number of integrations is 4 times, the sampling range is 100 ⁇ m ⁇ The measurement was performed at 100 ⁇ m and measurement interval: 2 ⁇ m.
  • the peak intensity ratio (G / D) of the G band (1580 cm ⁇ 1 ) and D band (1360 cm ⁇ 1 ) of the graphite obtained by the measurement is defined as an R value, and the mode (Rc) and frequency accumulation are 50%.
  • the R value (R 50 ) was calculated. The results are shown in Table 1.
  • the specific surface area (m 2 / g) of the obtained carbonaceous particles was determined by a BET method (nitrogen gas adsorption method) using a specific surface area meter (FlowSorb, Shimadzu Corporation).
  • a paste-like negative electrode material slurry was prepared by adding 1% by mass of carboxymethylcellulose (CMC) and 1% by mass of styrene-butadiene rubber (SBR) with respect to 98% by mass of carbonaceous particles. This slurry was applied to an electrolytic copper foil having a thickness of 11 ⁇ m so as to form a circle having a diameter of 9.5 mm using a mask having a thickness of 200 ⁇ m. This was dried at 105 ° C. to prepare a negative electrode for a monopolar test.
  • CMC carboxymethylcellulose
  • SBR styrene-butadiene rubber
  • the produced negative electrode, separator, and positive electrode are sequentially stacked and placed in a coin cell container, and LiPF 6 is added to a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (EC and EMC are 1: 1 by volume).
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • An electrolyte solution in which a concentration of 1.0 mol / liter was dissolved was injected to prepare a coin battery.
  • Metallic lithium was used for the positive electrode, and a polyethylene microporous film having a thickness of 20 ⁇ m was used for the separator.
  • the initial charge / discharge efficiency was calculated as discharge capacity (Ah / kg) / charge capacity (Ah / kg) ⁇ 100 (%).
  • a laminate of an anode, a separator, and a cathode (Li metal) in that order was set in a coin cell container.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • Direct current resistance was measured using the produced lithium ion secondary battery. Specifically, first, charging is performed at a constant current of 0.2 C and a constant voltage of 0 V in a 25 ° C. atmosphere until the current value becomes 0.02 C. Subsequently, a constant current of 0.2 C is 1.5 V. Discharge was performed to a voltage value. After carrying out charging / discharging on the said conditions, it charged so that it might be in a 50% charge condition (SOC) with a constant current of 0.2C. Thereafter, constant current discharge was performed at 1C for 1 minute, followed by constant current discharge at 3C for 1 minute, followed by constant current discharge at 5C for 1 minute.
  • SOC 50% charge condition
  • the lithium ion secondary battery was placed in a thermostat set at 25 ° C., and charged and discharged for one cycle under the following conditions. Charging: CC / CV 0.2C 0V 0.02C Cut Discharge: CC 0.2C 1.5V Cut
  • Example 2 Carbonaceous particles were obtained in the same manner as in Example 1 except that a commercially available coke having d002 of 0.346 nm and Lc of 5.2 nm was pulverized using an impact pulverizer equipped with a classifier. . The same measurement as in Example 1 was performed on the carbonaceous particles. Moreover, a lithium ion secondary battery was produced using the carbonaceous particles, and the same measurement as in Example 1 was performed. The results are shown in Table 1.
  • Example 3 Carbonaceous particles were obtained in the same manner as in Example 1 except that a commercially available coke having d002 of 0.347 nm and Lc of 5.4 nm was pulverized using an impact pulverizer equipped with a classifier. . The same measurement as in Example 1 was performed on the carbonaceous particles. Moreover, a lithium ion secondary battery was produced using the carbonaceous particles, and the same measurement as in Example 1 was performed. The results are shown in Table 1.
  • Example 4 Carbonaceous particles were obtained in the same manner as in Example 1 except that a commercially available coke having d002 of 0.345 nm and Lc of 4.7 nm was pulverized using an impact pulverizer equipped with a classifier. . The same measurement as in Example 1 was performed on the carbonaceous particles. Moreover, a lithium ion secondary battery was produced using the carbonaceous particles, and the same measurement as in Example 1 was performed. The results are shown in Table 1.
  • Example 5 Carbonaceous particles were obtained in the same manner as in Example 1 except that a commercially available coke having d002 of 0.346 nm and Lc of 5.1 nm was pulverized using an impact pulverizer equipped with a classifier. . The same measurement as in Example 1 was performed on the carbonaceous particles. Moreover, a lithium ion secondary battery was produced using the carbonaceous particles, and the same measurement as in Example 1 was performed. The results are shown in Table 1.
  • Carbonaceous particles were obtained in the same manner as in Example 1 except that a commercially available coke having d002 of 0.347 nm and Lc of 5.2 nm was pulverized using an impact pulverizer equipped with a classifier. . The same measurement as in Example 1 was performed on the carbonaceous particles. Moreover, a lithium ion secondary battery was produced using the carbonaceous particles, and the same measurement as in Example 1 was performed. The results are shown in Table 1.
  • Carbonaceous particles were obtained in the same manner as in Example 1 except that a commercially available coke having d002 of 0.347 nm and Lc of 3.5 nm was pulverized using an impact pulverizer equipped with a classifier. . The same measurement as in Example 1 was performed on the carbonaceous particles. Moreover, a lithium ion secondary battery was produced using the carbonaceous particles, and the same measurement as in Example 1 was performed. The results are shown in Table 1.
  • Carbonaceous particles were obtained in the same manner as in Example 1 except that a commercially available coke having d002 of 0.346 nm and Lc of 5.7 nm was pulverized using an impact pulverizer equipped with a classifier. . The same measurement as in Example 1 was performed on the carbonaceous particles. Moreover, a lithium ion secondary battery was produced using the carbonaceous particles, and the same measurement as in Example 1 was performed. The results are shown in Table 1.
  • Carbonaceous particles were obtained in the same manner as in Example 1 except that a commercially available coke having d002 of 0.346 nm and Lc of 4.7 nm was pulverized using an impact pulverizer equipped with a classifier. . The same measurement as in Example 1 was performed on the carbonaceous particles. Moreover, a lithium ion secondary battery was produced using the carbonaceous particles, and the same measurement as in Example 1 was performed. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

ラマンマッピング測定で得られる黒鉛のGバンド(1580cm-1)とDバンド(1360cm-1)のピーク強度比(G/D)を表すR値の度数分布において、下記条件(1)及び(2)を満たす、リチウムイオン二次電池の負極材用の炭素質粒子。(1)R値の最頻値(Rc)が0.87~0.96である。(2)R値が小さい側からの頻度の累積が50%のときのR値(R50)が0.88~0.92である。

Description

炭素質粒子、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
 本発明は、炭素質粒子、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、ニッケルカドミウム電池、ニッケル水素電池、鉛蓄電池等の他の二次電池に比べて高い入出力特性を有することから、近年、電気自動車、ハイブリッド型電気自動車等の電源などの高入出力が求められる用途に用いる電源としての期待が高まっている。
 リチウムイオン二次電池の負極材(負極活物質)として一般的に用いられる炭素材料は、黒鉛系と非晶質炭素系とに大別される。黒鉛は炭素原子の六角網面が規則正しく積層した構造を有するもので、積層した網面の端部よりリチウムイオンの挿入脱離反応が進行して充放電を行う。しかしながら、挿入脱離反応が六角網面の端部でのみ進行するため、入出力性能の向上に限界がある。また、結晶性が高く表面の欠陥が少ないがゆえに、電解液との親和性が悪く、リチウムイオン二次電池の寿命特性が低下するという問題点を有する。
 非晶質炭素は、六角網面の積層が不規則であるか、網目構造を有しないため、リチウムの挿入脱離反応は粒子の全表面で進行することとなり、入出力特性に優れたリチウムイオン二次電池を得られやすい。
 リチウムイオン二次電池の負極活物質として用いられる非晶質炭素としては、コークス、カーボンブラック等を原料とするものが知られている(例えば、特許文献1及び特許文献2参照)。
特開平04-370662号公報 特開平05-307956号公報
 上述のように非晶質炭素を負極材として用いたリチウムイオン二次電池は入出力特性に優れているが、電気自動車、ハイブリッド型電気自動車等の電源などの高入出力が求められる用途への需要拡大に応じ、更なる低抵抗化が求められる。
 本発明は上記事情に鑑み、低抵抗なリチウムイオン二次電池を製造可能な炭素質粒子及びリチウムイオン二次電池用負極材、並びにリチウムイオン二次電池用負極及びリチウムイオン二次電池を提供することを課題とする。
 上記課題を解決するための手段には以下の実施態様が含まれる。
<1> ラマンマッピング測定で得られる黒鉛のGバンド(1580cm-1)とDバンド(1360cm-1)のピーク強度比(G/D)を表すR値の度数分布において、下記条件(1)及び(2)を満たす、リチウムイオン二次電池の負極材用の炭素質粒子。
(1)R値の最頻値(Rc)が0.87~0.96である。
(2)R値が小さい側からの頻度の累積が50%のときのR値(R50)が0.88~0.92である。
<2> 核としての第一炭素材と、前記第一炭素材の表面の少なくとも一部に存在し、前記第一炭素材よりも結晶性の低い第二炭素材と、を有する、<1>に記載の炭素質粒子。
<3> c軸方向の結晶子サイズ(Lc)が4.5nm~5.2nmである、<1>又は<2>に記載の炭素質粒子。
<4> 比表面積が2.0m/g~5.0m/gである、<1>~<3>のいずれか1項に記載の炭素質粒子。
<5> 平均粒径(50%D)が5μm~20μmである、<1>~<4>のいずれか1項に記載の炭素質粒子。
<6> <1>~<5>のいずれか1項に記載の炭素質材料を含む、リチウムイオン二次電池用負極材。
<7> 黒鉛粒子をさらに含む、<6>に記載のリチウムイオン二次電池用負極材。
<8> <6>又は<7>に記載のリチウムイオン二次電池用負極材を含む、リチウムイオン二次電池用負極。
<9> <8>に記載のリチウムイオンン二次電池用負極を備える、リチウムイオン二次電池。
 本発明によれば、低抵抗なリチウムイオン二次電池を製造可能な炭素質粒子及びリチウムイオン二次電池用負極材、並びにリチウムイオン二次電池用負極及びリチウムイオン二次電池が提供される。
実施例1、比較例1及び比較例2で作製した炭素質粒子におけるR値の度数分布を示すグラフである。 実施例1、比較例1及び比較例2で作製した炭素質粒子におけるR値の累積曲線を示すグラフである。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
<炭素質粒子>
 本開示の炭素質粒子は、ラマンマッピング測定で得られる黒鉛のGバンド(1580cm-1)とDバンド(1360cm-1)のピーク強度比(G/D)を表すR値の度数分布において、下記条件(1)及び(2)を満たす、リチウムイオン二次電池の負極材用の炭素質粒子である。
(1)R値の最頻値(Rc)が0.87~0.96である。
(2)R値が小さい側からの頻度の累積が50%のときのR値(R50)が0.88~0.92である。
 本発明者らの検討の結果、上記条件(1)及び(2)を満たす炭素質粒子を含む負極材を用いて得られるリチウムイオン二次電池は入出力特性に優れ、かつ低抵抗であることが明らかとなった。
 本開示において炭素質粒子のR値の度数分布は、ラマンマッピングにより得ることができる。ラマンマッピングの測定条件は、対物レンズの倍率:50倍、露光時間:2秒、積算回数:4回、サンプリング範囲:100μm×100μm、測定間隔:2μmとする。測定装置としては、例えば、サーモフィッシャーサイエンティフィック社のDXR顕微レーザーラマンを用いることができる。
 リチウムイオン二次電池の低抵抗化の観点からは、Rcは0.90~0.92であることが好ましい。
 不可逆容量、充放電容量、サイクル寿命等の電池特性を向上する観点からは、炭素質粒子の002面の面間隔(d002)は、0.34nm~0.37nmであることが好ましい。d002が0.34nm以上であると、良好な初回充放電効率が得られる傾向にあり、0.37nm以下であると、寿命特性及び入出力特性に優れる傾向にある。
 炭素質粒子の002面の面間隔(d002)は、XRD測定より求めることができる。具体的には、X線(CuKα線)を試料に照射し、回折線をゴニオメーターにより測定して得られる回折プロファイルより、回折角2θ=24°~26°付近に現れる炭素002面に対応した回折ピークより、ブラッグの式を用いて算出することができる。
 リチウムイオン二次電池の不可逆容量、寿命特性及び充放電容量を高めるという観点からは、炭素質粒子は、コークスから製造されるものであることが好ましい。炭素質粒子の製造に用いるコークスの種類は特に制限されず、石炭系コークス、石油系コークス等が挙げられる。コークスは結晶性が比較的低いモザイクコークスと結晶性が比較的高いニードルコークスとに大別されるが、ニードルコークスがより好ましい。炭素質粒子の製造に用いるコークスは、1種のみでも2種以上であってもよい。
 炭素質粒子は、核としての第一炭素材と、前記第一炭素材の表面の少なくとも一部に存在し、前記第一炭素材よりも結晶性の低い第二炭素材と、を有するものであってもよい。炭素質粒子が核としての第一炭素材と、前記第一炭素材の表面の少なくとも一部に存在し、前記第一炭素材よりも結晶性の低い第二炭素材と、を有する場合、核の表面の全体に第二炭素材が存在していても、一部にのみ存在していてもよい。
 炭素質粒子が核としての第一炭素材と、前記第一炭素材の表面の少なくとも一部に存在し、前記第一炭素材よりも結晶性の低い第二炭素材と、を有する場合、核となる第一炭素材がコークスから製造され、前記第一炭素材の表面の少なくとも一部に存在する第二炭素材が、熱処理により炭素質に変化しうる材料(第二炭素材の前駆体)から製造されるものであってもよい。第二炭素材の前駆体は、特に制限はないが、熱可塑性樹脂、ナフタレン、アントラセン、フェナントロレン、コールタール、タール、ピッチ等が挙げられる。
 炭素質粒子が核としての第一炭素材と、前記第一炭素材の表面の少なくとも一部に存在し、前記第一炭素材よりも結晶性の低い第二炭素材と、を有する場合、第二炭素材の量は特に制限されない。第二炭素材の量が多いほどR値が大きくなり、第二炭素材の量が少ないほどR値が小さくなるという関係性がある。また、比表面積の増大を抑えて電解液との副反応を起こりにくくし、良好な入出力特性を得る観点からは、第二炭素材の量は少なすぎないことが好ましい。一方、第二炭素材そのものの抵抗が高くなり、入出力特性が悪化するのを抑える観点からは、被第二炭素材の量は多すぎないことが好ましい。
 核としての第一炭素材と、前記第一炭素材の表面の少なくとも一部に存在し、前記第一炭素材よりも結晶性の低い第二炭素材と、を有する炭素質粒子の製造方法は、特に制限されない。たとえば、後述する炭素質粒子の製造方法によって製造することができる。
 リチウムイオン二次電池の低抵抗化の観点からは、炭素質粒子のシェラーの式で算出されるc軸方向の結晶子サイズ(Lc)が4.5nm~5.4nmであることが好ましい。c軸方向の結晶子サイズ(Lc)が大きいほど結晶性が高いことを意味する。c軸方向の結晶子サイズ(Lc)が4.5nm~5.4nmである炭素質粒子としては、ニードルコークスの粒子が挙げられる。炭素質粒子のc軸方向の結晶子サイズ(Lc)は、X線回折測定により得られるd002の回折ピークの半価幅からシェラーの式により算出される値とする。
 炭素質粒子の比表面積は、2.0m/g~5.0m/gであることが好ましく、2.5m/g~4.0m/g以下であることがより好ましく、2.7m/g~3.3m/gであることがさらに好ましい。本開示において炭素質粒子の比表面積は、BET法(窒素ガス吸着法)により得られる値とする。
 炭素質粒子の平均粒径(50%D)は、5μm~20μmであることが好ましく、8μm~18μmであることがより好ましく、9μm~16μmであることがさらに好ましい。炭素質粒子の平均粒径が5μm以上であると、比表面積が大きくなりすぎず、リチウムイオン二次電池の初回充放電効率の低下が抑制される傾向にある。また、粒子同士の接触が充分確保されて入出力特性の低下が抑制される傾向にある。炭素質粒子の平均粒径が20μm以下であると、電極面に凸凹が発生して電池の短絡が生じるのが抑制される傾向にある。また、粒子表面から内部へのLiの拡散距離が長くなりすぎず、入出力特性が良好に維持される傾向にある。
 本開示において炭素質粒子の平均粒径(50%D)は、レーザー回折・散乱法により得られる体積基準の粒度分布において小径側からの累積が50%となるときの粒径である。
 本開示の炭素質粒子の製造方法は、特に制限されない。例えば、核となる第一炭素材と、第一炭素材よりも結晶性の低い第二炭素材の前駆体と、を含む混合物を熱処理する工程を含む方法により製造されるものであってもよい。
 上記方法によれば、核としての第一炭素材と、前記第一炭素材の表面の少なくとも一部に存在し、前記第一炭素材よりも結晶性の低い第二炭素材と、を有する炭素質粒子を効率よく製造することができる。
 上記方法において、第一炭素材及び第二炭素材の詳細並びに好ましい態様は、前述のリチウムイオン二次電池用負極材の項目にて説明したものと同様である。
 混合物を熱処理する際の温度は、リチウムイオン二次電池における入出力特性を向上させる点から、800℃~1500℃であることが好ましく、850℃~1100℃であることがより好ましく、900℃~1000℃であることがさらに好ましい。混合物を熱処理する際の温度は、熱処理の開始から終了まで一定であっても、変化してもよい。
 熱処理後の混合物は、必要に応じて粉砕、解砕、粒度調整等の処理を施してもよい。
 上記方法において、熱処理前の混合物中の第一炭素材及び第二炭素材の前駆体の含有率は、特に制限されない。リチウムイオン二次電池における入出力特性を向上させる点から、第一炭素材の含有率は、混合物の総質量に対して、85質量%~99.9質量%であることが好ましく、90質量%~99質量%であることがより好ましく、95質量%~99質量%であることがさらに好ましい。一方、第二炭素材の前駆体の含有率は、リチウムイオン二次電池における入出力特性を向上させる点から、混合物の総質量に対して、0.1質量%~15質量%であることが好ましく、1質量%~10質量%であることがより好ましく、1質量%~5質量%であることがさらに好ましい。
<リチウムイオン二次電池用負極材>
 本開示のリチウムイオン二次電池用負極材(以下、負極材とも称する)は、上述した炭素質粒子を含む。
 本開示の負極材は、上述した炭素質粒子のみからなるものであっても、炭素質粒子とその他の負極材との組み合わせであってもよい。例えば、黒鉛粒子に炭素質粒子を組み合わせることで、黒鉛粒子のみを用いた場合に比べてリチウムイオン二次電池の入出力特性がいっそう向上する傾向にある。
 本開示の負極材が炭素質粒子と黒鉛粒子を含む場合、炭素質粒子と黒鉛粒子の合計に占める炭素質粒子の割合は5質量%~50質量%であることが好ましく、10質量%~40質量%であることがより好ましく、15質量%~30質量%であることがさらに好ましい。
<リチウムイオン二次電池用負極>
 本開示のリチウムイオン二次電池用負極(以下、負極とも称する)は、上述した負極材を含む。負極の具体的な構成としては、例えば、集電体と、集電体の少なくとも一方の面に配置される負極材を含む負極材層と、からなる構成が挙げられる。
 負極を作製する方法は、特に制限されない。例えば、負極材と有機系結着材を溶剤とともに撹拌機、ボールミル、スーパーサンドミル、加圧ニーダー等の分散装置により混練し、負極材スラリーを調製し、これを集電体に塗布して負極層を形成する方法、ペースト状の負極材スラリーをシート状、ペレット状等の形状に成形し、これを集電体と一体化する方法などが挙げられる。
 負極材スラリーの調製に用いる有機系結着材は、特に限定されない。有機系結着材としては、スチレン-ブタジエン共重合体、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸、ポリ弗化ビニリデン、ポリエチレンオキサイド、ポリエピクロヒドリン、ポリフォスファゼン、ポリアクリロニトリル等のイオン導電性の大きな高分子化合物などが挙げられる。負極材スラリー中の有機系結着剤の含有量は、例えば、本開示の負極材と有機系結着材の合計の1質量%~20質量%の量であることが好ましい。
 本開示において「(メタ)アクリレート」はアクリレート及びメタクリレートの少なくとも一方を意味し、「(メタ)アクリロニトリル」はアクリロニトリル及びメタクリロニトリルの少なくとも一方を意味する。
 負極材スラリーには、粘度を調整するための増粘剤を添加してもよい。増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。
 負極材スラリーには、導電補助材を混合してもよい。導電補助材としては、カーボンブラック、グラファイト、アセチレンブラック、導電性を示す酸化物、導電性を示す窒化物等が挙げられる。導電補助剤の使用量は、例えば、負極材(不揮発分)全体の1質量%~15質量%であってもよい。
 負極の作製に用いる集電体の材質及び形状は、特に限定されない。例えば、銅、ニッケル、チタン、ステンレス鋼等を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いてもよい。また、ポーラスメタル(発泡メタル)等の多孔性材料、カーボンペーパーなどを用いてもよい。
 負極材スラリーを集電体に塗布する方法は特に限定されず、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等が挙げられる。塗布後は、必要に応じて平板プレス、カレンダーロール等による圧延処理を行ってもよい。
 シート状、ペレット状等の形状に成形された負極材スラリーと集電体とを一体化する方法は特に限定されず、ロール、プレス、これらの組み合わせ等が挙げられる。
<リチウムイオン二次電池>
 本開示のリチウムイオン二次電池は、上述した本開示のリチウムイオン二次電池用負極を備える。具体的には、本開示の負極と、正極と、必要に応じてセパレータと、電解液とを少なくとも備える。
 正極は、本開示の負極と同様に、集電体上に正極材料を含む正極層を形成したものであってもよい。集電体としては、アルミニウム、チタン、ステンレス鋼等の金属又は合金を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いることができる。
 正極層に含まれる正極材料は特に制限されず、リチウムイオンをドーピングまたはインターカレーション可能な金属化合物、金属酸化物、金属硫化物、導電性高分子材料等から選択できる。具体的には、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、及びこれらの複酸化物(LiCoxNiyMnzO、x+y+z=1)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(MはCo、Ni、Mn又はFe)等の無機材料、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素等などが挙げられる。正極材料は、1種を単独で用いても2種以上を併用してもよい。
 セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものを使用することができる。なお、作製するリチウムイオン二次電池の正極と負極が直接接触しない構造にした場合は、セパレータを使用する必要はない。
 電解液としては、電解質を非水系溶剤に溶解した、いわゆる有機電解液を使用することができる。
 電解質としては、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩が挙げられる。
 非水系溶剤としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、シクロペンタノン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン、3-メチル-1,3-オキサゾリジン-2-オン、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、酢酸メチル、酢酸エチル、これらの混合物等が挙げられる。
 リチウムイオン二次電池の構造は、特に限定されない。例えば、正極と負極の間にセパレータを配置した状態で、ロール状に巻回したり、平板状の積層体として得た極板群を外装体中に封入し、電解液で外装体内部を満たした構造とするのが一般的である。
 リチウムイオン二次電池の形状は特に限定されず、ぺーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池等が挙げられる。
 以下、実施例に基づいて本開示の実施形態をより具体的に説明するが、本開示はこれらの実施例に制限されるものではない。
<実施例1>
 d002が0.346nm、Lcが4.6nmの市販のコークスを、分級機付きの衝撃粉砕機を用いて粉砕した。この粉砕物99質量部にコールタールピッチ(軟化点98℃、残炭率(炭化率)50%)1質量部を加えて混合物を得た。次いでこの混合物を窒素流通下、20℃/時間の昇温速度で900℃まで昇温し、900℃(焼成処理温度)にて1時間保持して、熱処理物を得た。得られた熱処理物をカッターミルで解砕した後、300メッシュ篩で篩分けを行い粗粉を除去して、コークスに由来する第一炭素材(核)と、前記第一炭素材の表面の少なくとも一部に存在するコールタールピッチに由来する第二炭素材と、を有する炭素質粒子を得た。
(d002及びLcの測定)
 得られた炭素質粒子のd002とLcの測定を、X線回折測定により行った。具体的には、理学電気株式会社の広角X線回折装置を用いて、モノクロメーターで単色化したCu-Kα線を用い、高純度シリコンを標準物質として測定した。d002は、回折角2θ=24°~26°付近に現れる002面に対応した回折ピークより、ブラッグの式を用いて算出した。Lcは、d002の回折ピークの半価幅からシェラーの式により算出した。結果を表1に示す。
(平均粒径の測定)
 得られた炭素質粒子の平均粒径(50%D)の測定を、レーザー回折・散乱法により行った。具体的には、レーザー回折式粒度分布測定装置(株式会社島津製作所のSALD-3000J)を用いて、炭素質粒子を界面活性剤と共に精製水中に分散させた分散液を装置の水槽に入れ、超音波をかけた状態でポンプで循環させながら測定した。得られた体積基準の粒度分布における累積が50%のときの粒径(50%D)を平均粒径とした。結果を表1に示す。
(Rc及びR50の測定)
 得られた炭素質粒子のRcとR50の測定を、ラマンマッピングにより行った。具体的には、ラマンマッピング装置(サーモフィッシャーサイエンティフィック社のDXR顕微レーザーラマン)を用いて、対物レンズの倍率:50倍、露光時間:2秒、積算回数:4回、サンプリング範囲:100μm×100μm、測定間隔:2μmとして行った。測定で得られた黒鉛のGバンド(1580cm-1)とDバンド(1360cm-1)のピーク強度比(G/D)をR値とし、その最頻値(Rc)と頻度の累積が50%となるときのR値(R50)を算出した。結果を表1に示す。
 得られたR値の度数分布を示すグラフを図1に、累積曲線を図2に、後述する比較例1と比較例2で得られた結果とともに示す。
(比表面積の測定)
 得られた炭素質粒子の比表面積(m/g)を、比表面積計(株式会社島津製作所のFlowSorb)を用いてBET法(窒素ガス吸着法)により求めた。
(充放電容量の測定)
 炭素質粒子98質量%に対し、カルボキシメチルセルロース(CMC)1質量%、スチレン・ブタジエンゴム(SBR)1質量%になるように加え、混練してペースト状の負極材スラリーを作製した。このスラリーを厚さ11μmの電解銅箔に厚さ200μmのマスクを用いて直径9.5mmの円形となるよう塗布した。これを105℃で乾燥して、単極試験用の負極を作製した。
 次いで、作製した負極、セパレータ、正極の順に積層したものをコインセル容器に入れ、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)(ECとEMCは体積比で1:1)の混合溶媒にLiPFを1.0モル/リットルの濃度になるように溶解した電解液を注入し、コイン電池を作製した。正極には金属リチウムを使用し、セパレータには厚み20μmのポリエチレン微孔膜を使用した。
 得られたコイン電池を用い、負極と正極の間に0.1Cの定電流を通電し、正極に対する負極の電位が0.005V(Vvs.Li/Li)に達するまで充電(負極にリチウムを吸蔵)し、次いで0.005Vの定電圧で電流が0.01Cに減衰するまで充電した。次に30分間の休止を設けた後に、0.1Cの定電流で正極に対する負極の電位が1.5V(Vvs.Li/Li)に達するまで放電(負極からリチウムを放出)した。この充放電試験を1サイクル行い、初回充放電における充電容量と放電容量を測定し、得られた値から初回充放電効率を求めた。結果を表1に示す。
 初回充放電効率は、放電容量(Ah/kg)/充電容量(Ah/kg)×100(%)として算出した。
(直流抵抗値の測定)
 炭素質粒子98質量%に、CMC1質量%、SBR1質量%となるよう加えて混練し、ペースト状の負極材スラリーを作製した。このスラリーを、厚さ11μmの電解銅箔に単位面積当りの塗布量が4.5mg/cmとなるように塗工機を用いて塗布した。その後、105℃で乾燥し、さらに、ロールプレス機により合材密度が1.05g/cmとなるように圧縮成型して、負極を作製した。
 次いで、負極、セパレータ、正極(Li金属)の順に積層したものをコインセル容器にセットした。これにエチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)(ECとEMCは体積比で1:1)の混合溶媒にLiPFを1.0モル/リットルの濃度になるように溶解した電解液溶液を3ml注入し、コインセル容器をかしめ合わせ、コインセル型のリチウムイオン二次電池を作製した。
 作製したリチウムイオン二次電池を用いて、直流抵抗(DCR)を測定した。具体的には、まず、25℃雰囲気下で0.2Cの定電流、0Vの定電圧で電流値が0.02Cになるまで充電し、続いて、0.2Cの定電流で1.5Vの電圧値まで放電を行った。
 上記条件で充放電を実施した後、0.2Cの定電流で50%の充電状態(SOC)になるように充電を行った。その後、1Cで1分間定電流放電し、続いて3Cで1分間定電流放電し、続いて5Cで1分間定電流放電を行った。以上の試験から、SOCが50%のときの電圧値と各電流値での放電10秒後の電圧値の差(ΔV)を求め、横軸に電流値、縦軸にΔVをプロットした図の傾きを25℃での直流抵抗(25℃DCR)値(Ω)とした。結果を表1に示す。
 上記リチウムイオン二次電池を25℃に設定した恒温槽内に入れ、下記条件で1サイクル充放電を行った。
 充電:CC/CV 0.2C 0V 0.02C Cut
 放電:CC 0.2C 1.5V Cut
 次いで、電流値0.2Cで、SOCが50%になるまで定電流充電を行った。その後、-30℃に設定した恒温槽に入れ、0.1Cで1分間の定電流放電を行い、続いて0.3Cで1分間の定電流放電を行い、続いて0.5Cで1分間の定電流放電を行った。そしてSOCが50%のときの電圧値と各電流値での放電10秒後の電圧値の差(ΔV)を求め、横軸に電流値、縦軸にΔVをプロットした図の傾きを-30℃での直流抵抗(-30℃DCR)の値(Ω)とした。結果を表1に示す。
<実施例2>
 d002が0.346nm、Lcが5.2nmの市販のコークスを、分級機付きの衝撃粉砕機を用いて粉砕したものを用いたこと以外は実施例1と同様にして、炭素質粒子を得た。この炭素質粒子に対して実施例1と同様の測定を行った。また、この炭素質粒子を用いてリチウムイオン二次電池を作製し、実施例1と同様の測定を行った。結果を表1に示す。
<実施例3>
 d002が0.347nm、Lcが5.4nmの市販のコークスを、分級機付きの衝撃粉砕機を用いて粉砕したものを用いたこと以外は実施例1と同様にして、炭素質粒子を得た。この炭素質粒子に対して実施例1と同様の測定を行った。また、この炭素質粒子を用いてリチウムイオン二次電池を作製し、実施例1と同様の測定を行った。結果を表1に示す。
<実施例4>
 d002が0.345nm、Lcが4.7nmの市販のコークスを、分級機付きの衝撃粉砕機を用いて粉砕したものを用いたこと以外は実施例1と同様にして、炭素質粒子を得た。この炭素質粒子に対して実施例1と同様の測定を行った。また、この炭素質粒子を用いてリチウムイオン二次電池を作製し、実施例1と同様の測定を行った。結果を表1に示す。
<実施例5>
 d002が0.346nm、Lcが5.1nmの市販のコークスを、分級機付きの衝撃粉砕機を用いて粉砕したものを用いたこと以外は実施例1と同様にして、炭素質粒子を得た。この炭素質粒子に対して実施例1と同様の測定を行った。また、この炭素質粒子を用いてリチウムイオン二次電池を作製し、実施例1と同様の測定を行った。結果を表1に示す。
<比較例1>
 d002が0.347nm、Lcが5.2nmの市販のコークスを、分級機付きの衝撃粉砕機を用いて粉砕したものを用いたこと以外は実施例1と同様にして、炭素質粒子を得た。この炭素質粒子に対して実施例1と同様の測定を行った。また、この炭素質粒子を用いてリチウムイオン二次電池を作製し、実施例1と同様の測定を行った。結果を表1に示す。
<比較例2>
 d002が0.347nm、Lcが3.5nmの市販のコークスを、分級機付きの衝撃粉砕機を用いて粉砕したものを用いたこと以外は実施例1と同様にして、炭素質粒子を得た。この炭素質粒子に対して実施例1と同様の測定を行った。また、この炭素質粒子を用いてリチウムイオン二次電池を作製し、実施例1と同様の測定を行った。結果を表1に示す。
<比較例3>
 d002が0.346nm、Lcが5.7nmの市販のコークスを、分級機付きの衝撃粉砕機を用いて粉砕したものを用いたこと以外は実施例1と同様にして、炭素質粒子を得た。この炭素質粒子に対して実施例1と同様の測定を行った。また、この炭素質粒子を用いてリチウムイオン二次電池を作製し、実施例1と同様の測定を行った。結果を表1に示す。
<比較例4>
 d002が0.346nm、Lcが4.7nmの市販のコークスを、分級機付きの衝撃粉砕機を用いて粉砕したものを用いたこと以外は実施例1と同様にして、炭素質粒子を得た。この炭素質粒子に対して実施例1と同様の測定を行った。また、この炭素質粒子を用いてリチウムイオン二次電池を作製し、実施例1と同様の測定を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001

 
 表1に示すように、ラマンマッピングで得られるRcが0.87~0.96の範囲にあり、かつR50が0.88~0.92の範囲にある実施例の炭素質粒子を用いて作製したリチウムイオン二次電池は、RcとR50の少なくとも一方が上記範囲外である比較例の炭素質粒子を用いて作製したリチウムイオン二次電池よりも直流抵抗の値が小さく、特に低温(-30℃)において直流抵抗の値が顕著に小さいことがわかった。
 以上の結果より、本開示の炭素質粒子を負極材として用いることで、低抵抗なリチウムイオン二次電池が得られることがわかった。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。

Claims (9)

  1.  ラマンマッピング測定で得られる黒鉛のGバンド(1580cm-1)とDバンド(1360cm-1)のピーク強度比(G/D)を表すR値の度数分布において、下記条件(1)及び(2)を満たす、リチウムイオン二次電池の負極材用の炭素質粒子。
    (1)R値の最頻値(Rc)が0.87~0.96である。
    (2)R値が小さい側からの頻度の累積が50%のときのR値(R50)が0.88~0.92である。
  2.  核としての第一炭素材と、前記第一炭素材の表面の少なくとも一部に存在し、前記第一炭素材よりも結晶性の低い第二炭素材と、を有する、請求項1に記載の炭素質粒子。
  3.  c軸方向の結晶子サイズ(Lc)が4.5nm~5.2nmである、請求項1又は請求項2に記載の炭素質粒子。
  4.  比表面積が2.0m/g~5.0m/gである、請求項1~請求項3のいずれか1項に記載の炭素質粒子。
  5.  平均粒径(50%D)が5μm~20μmである、請求項1~請求項4のいずれか1項に記載の炭素質粒子。
  6.  請求項1~請求項5のいずれか1項に記載の炭素質材料を含む、リチウムイオン二次電池用負極材。
  7.  黒鉛粒子をさらに含む、請求項6に記載のリチウムイオン二次電池用負極材。
  8.  請求項6又は請求項7に記載のリチウムイオン二次電池用負極材を含む、リチウムイオン二次電池用負極。
  9.  請求項8に記載のリチウムイオンン二次電池用負極を備える、リチウムイオン二次電池。
PCT/JP2018/005787 2018-02-19 2018-02-19 炭素質粒子、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 WO2019159367A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020500241A JP7047892B2 (ja) 2018-02-19 2018-02-19 炭素質粒子、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
KR1020207025939A KR102608550B1 (ko) 2018-02-19 2018-02-19 탄소질 입자, 리튬 이온 이차 전지용 음극재, 리튬 이온 이차 전지용 음극, 및 리튬 이온 이차 전지
PCT/JP2018/005787 WO2019159367A1 (ja) 2018-02-19 2018-02-19 炭素質粒子、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
TW108105502A TWI823900B (zh) 2018-02-19 2019-02-19 碳質粒子、鋰離子二次電池用負極材料、鋰離子二次電池用負極及鋰離子二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/005787 WO2019159367A1 (ja) 2018-02-19 2018-02-19 炭素質粒子、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2019159367A1 true WO2019159367A1 (ja) 2019-08-22

Family

ID=67619792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005787 WO2019159367A1 (ja) 2018-02-19 2018-02-19 炭素質粒子、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池

Country Status (4)

Country Link
JP (1) JP7047892B2 (ja)
KR (1) KR102608550B1 (ja)
TW (1) TWI823900B (ja)
WO (1) WO2019159367A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021059727A1 (ja) * 2019-09-27 2021-04-01

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014026826A (ja) * 2012-07-26 2014-02-06 Jfe Chemical Corp リチウムイオン二次電池用負極材料、リチウムイオン二次電池負極およびリチウムイオン二次電池
JP2016186912A (ja) * 2015-03-27 2016-10-27 三菱化学株式会社 非水系二次電池用複合炭素材、及び、非水系二次電池
WO2017195979A1 (ko) * 2016-05-12 2017-11-16 에스케이이노베이션 주식회사 이차전지용 활물질의 평가방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3335366B2 (ja) 1991-06-20 2002-10-15 三菱化学株式会社 二次電池用電極
JP3395200B2 (ja) 1992-04-28 2003-04-07 三洋電機株式会社 非水系二次電池
JP5671775B2 (ja) * 2006-01-27 2015-02-18 三菱化学株式会社 リチウムイオン二次電池
JP6278596B2 (ja) * 2010-07-30 2018-02-14 日立化成株式会社 炭素材料、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
CN103518279B (zh) * 2011-05-13 2016-02-17 三菱化学株式会社 非水系二次电池用碳材料、使用该碳材料的负极及非水系二次电池
WO2014200063A1 (ja) * 2013-06-12 2014-12-18 日立化成株式会社 アルミニウムケイ酸塩複合体、導電材料、リチウムイオン二次電池用導電材料、リチウムイオン二次電池負極形成用組成物、リチウムイオン二次電池正極形成用組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極及びリチウムイオン二次電池
WO2017191820A1 (ja) * 2016-05-02 2017-11-09 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014026826A (ja) * 2012-07-26 2014-02-06 Jfe Chemical Corp リチウムイオン二次電池用負極材料、リチウムイオン二次電池負極およびリチウムイオン二次電池
JP2016186912A (ja) * 2015-03-27 2016-10-27 三菱化学株式会社 非水系二次電池用複合炭素材、及び、非水系二次電池
WO2017195979A1 (ko) * 2016-05-12 2017-11-16 에스케이이노베이션 주식회사 이차전지용 활물질의 평가방법

Also Published As

Publication number Publication date
TW201937785A (zh) 2019-09-16
KR102608550B1 (ko) 2023-12-01
JP7047892B2 (ja) 2022-04-05
JPWO2019159367A1 (ja) 2021-01-28
KR20200121321A (ko) 2020-10-23
TWI823900B (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
JP5439701B2 (ja) リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP5927788B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6938914B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP5811999B2 (ja) リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2019012646A (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP5590159B2 (ja) リチウムイオン二次電池用負極材、その製造方法、該負極材を用いたリチウムイオン二次電池用負極およびリチウムイオン二次電池
US20220069303A1 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
EP3454400A1 (en) Negative electrode material for lithium ion secondary cell, method for manufacturing negative electrode material for lithium ion secondary cell, negative electrode for lithium ion secondary cell, and lithium ion secondary cell
JP5707707B2 (ja) リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2009187924A (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びこれを用いてなるリチウムイオン二次電池
JP5636689B2 (ja) 黒鉛粒子、これを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
TWI752112B (zh) 鋰離子二次電池用負極材料、鋰離子二次電池用負極及鋰離子二次電池
JP6102231B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池、並びにリチウムイオン二次電池用負極材の製造方法
JP2020187988A (ja) リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP7047892B2 (ja) 炭素質粒子、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP5885919B2 (ja) リチウムイオン二次電池用負極、およびリチウムイオン二次電池
KR20210094080A (ko) 리튬 이온 이차 전지용 음극재, 리튬 이온 이차 전지용 음극재의 제조 방법, 리튬 이온 이차 전지용 음극 및 리튬 이온 이차 전지
CN114175311A (zh) 锂离子二次电池用负极材料的制造方法及锂离子二次电池的制造方法
JP2019087460A (ja) リチウムイオン二次電池用負極材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906024

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500241

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207025939

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18906024

Country of ref document: EP

Kind code of ref document: A1