WO2019155542A1 - 質量分析装置 - Google Patents

質量分析装置 Download PDF

Info

Publication number
WO2019155542A1
WO2019155542A1 PCT/JP2018/004159 JP2018004159W WO2019155542A1 WO 2019155542 A1 WO2019155542 A1 WO 2019155542A1 JP 2018004159 W JP2018004159 W JP 2018004159W WO 2019155542 A1 WO2019155542 A1 WO 2019155542A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass spectrometer
rod
spectrometer according
mass
optical element
Prior art date
Application number
PCT/JP2018/004159
Other languages
English (en)
French (fr)
Inventor
学 上田
航太 永棹
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US16/771,396 priority Critical patent/US11043371B2/en
Priority to PCT/JP2018/004159 priority patent/WO2019155542A1/ja
Priority to JP2019570192A priority patent/JP6860092B2/ja
Publication of WO2019155542A1 publication Critical patent/WO2019155542A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/421Mass filters, i.e. deviating unwanted ions without trapping
    • H01J49/4215Quadrupole mass filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/067Ion lenses, apertures, skimmers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/24Vacuum systems, e.g. maintaining desired pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/422Two-dimensional RF ion traps
    • H01J49/4225Multipole linear ion traps, e.g. quadrupoles, hexapoles
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/14Producing integrally coloured layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt

Definitions

  • the present invention relates to a mass spectrometer using a quadrupole mass filter or a linear ion trap as a mass separator.
  • ions are generated from a compound contained in a sample gas in an ion source, and the generated various ions are divided into four. Separation is performed according to the mass-to-charge ratio m / z with a quadrupole mass filter, and the separated ions are detected with an ion detector.
  • mass-to-charge ratio m / z with a quadrupole mass filter
  • the separated ions are detected with an ion detector.
  • a quadrupole mass filter has four rod electrodes, each having a substantially cylindrical outer shape, separated from each other around a linear central axis by being substantially parallel to each other and at the same angular interval (ie, 90 ° interval) around the central axis.
  • the arrangement is arranged.
  • a voltage of + (U + Vcos ⁇ t) in which a high frequency voltage is superimposed on a positive DC voltage is applied to two rod electrodes facing each other across the central axis
  • a voltage of ⁇ (U + Vcos ⁇ t) is applied to the two rod electrodes by superimposing a negative DC voltage with a voltage whose phase is inverted from the previous high-frequency voltage.
  • the four rod electrodes are fitted into a groove formed in a rod holder made of an insulating material such as ceramic so that the positional relationship between the rod electrodes can be determined.
  • FIG. 7 is a plan view showing a state in which the rod electrode is held by the rod holder in the conventional quadrupole mass spectrometer
  • FIG. 8 is a cross-sectional view taken along the line A-AA in FIG.
  • the four rod electrodes 50 a to 50 d are fixed to the rod holder 51 in a state of being fitted in the groove inside the annular rod holder 51.
  • the relative position relationship between the four rod electrodes 50a to 50d can be obtained by providing the inner groove of the rod holder 51 so that the size, shape, and position thereof are accurately rotationally symmetric about the central axis C. It can be in an ideal state or a state close thereto.
  • the rod holder 51 itself is caused by dielectric loss of the material of the rod holder 51.
  • the distance between the rod electrodes 50a to 50d changes due to heat generation and thermal expansion. If the distance between the rod electrodes 50a to 50d changes, the mass-to-charge ratio may be shifted between the ions to be passed and the ions that are actually passing, or the range of the mass-to-charge ratio of the passing ions may be expanded. . That is, the thermal expansion due to the heat generation of the rod holder 51 causes a decrease in mass accuracy and mass resolution.
  • the simplest method for solving the above problem is to use a material having a low coefficient of thermal expansion for the rod holder.
  • a material having a low coefficient of thermal expansion is expensive, and using such a material leads to an increase in cost.
  • such a material may not necessarily have other characteristics such as workability suitable for the rod holder, and it may be difficult to select a material having a low coefficient of thermal expansion.
  • the thermal expansion due to heat generation cannot be completely eliminated. Therefore, when higher accuracy and resolution are required, measures other than the selection of the material are required. .
  • Patent Document 1 discloses an apparatus configured to promote heat dissipation by sandwiching a rod holder between a pair of heat sinks connected by a spring and releasing heat generated in the rod holder to the heat sink contacting the rod holder. Has been. However, such a configuration is complicated and the maintainability of the rod electrode is also deteriorated.
  • Patent Document 2 discloses a technique for reducing the mass deviation by detecting the strain amount of the rod holder due to thermal expansion and finely adjusting the voltage applied to each rod electrode accordingly.
  • it is necessary to obtain in advance the relationship between the temperature change amount, the strain amount, and the voltage adjustment amount in advance, and if such a change occurs, the mass deviation may not be sufficiently corrected.
  • the configuration itself is considerably complicated, and a significant increase in cost is inevitable.
  • the above problems are not limited to mass spectrometers using quadrupole mass filters, and ion optical elements having a configuration in which a plurality of rod electrodes need to be arranged around the central axis with high positional accuracy.
  • a linear ion trap having a function of mass separation itself has the same problem.
  • the present invention has been made to solve these problems, and its object is to reduce the heat generation of a rod holder that holds a plurality of rod electrodes constituting a quadrupole mass filter or a linear ion trap. Then, it is providing the mass spectrometer which can reduce the fall of the mass accuracy and mass resolution resulting from the thermal expansion.
  • a mass spectrometer made to solve the above problems is as follows. a) a space including a plurality of rod electrodes arranged around a linear axis and a rod holder made of an insulating material that holds the plurality of rod electrodes, the space being surrounded by the plurality of rod electrodes An ion optical element that separates ions introduced into the rod electrode according to a mass-to-charge ratio by the action of an electric field formed by a high-frequency voltage applied to the rod electrode; b) a boundary member defining a region in which the ion optical element is disposed; And at least a part of the surface of the boundary member facing the ion optical element is subjected to a radiation rate improving process.
  • At least a part of the boundary member is a vacuum housing, and a surface on which the emissivity improving process is performed is an inner wall surface of the vacuum housing. it can.
  • At least a part of the boundary member converges ions arranged on the upstream side of the ion flow to the ion optical element so as to converge the space of the ion optical element.
  • At least one of a lens to be introduced into the lens or a lens that converges ions arranged on the downstream side of the ion flow from the ion optical element and sends the ions to the subsequent stage, and the surface on which the emissivity improvement treatment is performed It can be set as the structure which is in a lens and faces the said ion optical element. Of course, it can also be set as the structure which employ
  • the ion optical element is typically a quadrupole mass filter or a linear ion trap.
  • the mass spectrometer When the ion optical element is a quadrupole mass filter, the mass spectrometer according to the present invention includes a single type quadrupole mass spectrometer, a triple quadrupole in which quadrupole mass filters are arranged before and after a collision cell.
  • Q-TOF type quadrupole-time-of-flight
  • the mass spectrometer according to the present invention is a linear ion trap type mass spectrometer, and after the ions selected by the mass by the linear ion trap are cleaved in the ion trap, Mass spectrometer of the type that performs mass analysis using a time-of-flight mass spectrometer or a Fourier transform ion cyclotron resonance mass spectrometer.
  • the vacuum housing and lens that can be part of the boundary member.
  • the emissivity of stainless steel is about 0.3, and the emissivity of aluminum is even lower and is 0.1 or less.
  • Heat generated by the dielectric loss of the rod holder is radiated into the region defined by the boundary member either directly from the rod holder or through another member that secures the rod holder to the boundary member. If the emissivity of the surface of the boundary member facing the ion optical element is low, as described above, the radiated heat is reflected by the boundary member without being absorbed so much, and the heat is trapped in the region defined by the boundary member. As a result, the heat dissipation efficiency decreases.
  • heat absorption on the inner wall surface of the vacuum housing is improved by applying a predetermined emissivity improving process to at least a part of the inner wall surface of the vacuum housing.
  • a part of the lens surface disposed immediately before or immediately after the ion optical element is subjected to a predetermined emissivity improving process to improve heat absorption on those surfaces.
  • the radiation is radiated directly into the region defined by the boundary member from the rod holder or through another member fixing the rod holder to the boundary member such as a vacuum housing. Heat is efficiently absorbed by the lens. As a result, the heat dissipation from the rod holder is improved, and the temperature rise of the rod holder can be reduced.
  • the above emissivity improvement processing can be various processing techniques.
  • the emissivity improvement treatment may be a surface treatment for the surface of the material forming the boundary member.
  • the surface treatment is roughly classified into a film forming process for forming a thin film on the surface by plating, painting or coating, spraying, and the like, and the surface is roughened by chemically or physically scraping the surface. And processing (forming irregularities).
  • the surface treatment can be anodized.
  • the surface treatment may be a nickel plating process.
  • the surface treatment can be a carbon film forming treatment.
  • the emissivity can be further improved by black alumite processing that makes the surface black by a method such as coloring with a black dye after alumite processing.
  • the emissivity can be further improved by performing black nickel plating processing that makes the surface black by a method such as oxidation to black after nickel plating.
  • the surface treatment may be a ceramic spraying treatment.
  • the emissivity improving process may be a process of attaching a thin plate or thin foil of another material to the inner wall surface of the material forming the boundary member.
  • a stainless steel thin plate may be attached to the surface of the boundary member facing the ion optical element.
  • the mass spectrometer According to the mass spectrometer according to the present invention, the heat dissipation from the rod holder holding the rod electrode is improved, and the temperature rise of the rod holder can be reduced. Thereby, it is possible to reduce a decrease in mass accuracy and mass resolution caused by thermal expansion of the rod holder.
  • the degree of the cost increase varies depending on the processing method of the radiation rate improvement process, the increase in cost can be suppressed considerably as compared with the method employed in the conventional apparatus.
  • a material having a certain thermal expansion coefficient can be used for the rod holder, the range of selection of the material can be widened, and the cost can be reduced.
  • FIG. 3 is an exploded view of the quadrupole mass filter unit shown in FIG. 2. Schematic which shows the short spring which connects rod electrodes in a quadrupole mass filter unit.
  • the block diagram of the principal part of the quadrupole-type mass spectrometer which is another Example of this invention. The assembly exploded view of the other example of a quadrupole mass filter unit.
  • the top view which shows the state by which the rod electrode is hold
  • FIG. 6 is a cross-sectional view taken along the line AAA in FIG.
  • FIG. 1 is a schematic configuration diagram of the mass spectrometer of the present embodiment.
  • This mass spectrometer is a single-type quadrupole mass spectrometer that analyzes components in a sample gas.
  • an ion source 2 that performs ionization by an electron ionization method, a chemical ionization method, or the like is attached to a vacuum housing 1 that is evacuated by a vacuum pump (not shown).
  • the ions derived from the sample components are introduced into the vacuum housing 1.
  • Inside the vacuum housing 1 are an ion guide 3 that transports ions while converging them, and four pieces arranged around a central axis C that is also an ion optical axis (however, only two of the four in FIG. 1 are provided).
  • the quadrupole mass filter unit 5 including the rod electrodes 50a to 50d (which can be seen), the ion detector 7 for detecting ions, and the partition wall that partitions the ion guide 3 and the quadrupole mass filter unit 5 ,
  • a lens 6 is disposed. That is, in this embodiment, a part of the vacuum housing 1, the entrance lens 4, and the exit lens 6 correspond to the boundary member in the present invention, and the quadrupole mass filter unit 5 is an internal region defined by this boundary member. 20 is arranged.
  • the ion optical axis is defined as the Z-axis direction
  • the X-axis and the Y-axis orthogonal to the Z-axis are defined as illustrated.
  • the vacuum housing 1 is made of a conductive material, and here, aluminum which is relatively inexpensive is used.
  • the entrance lens 4 and the exit lens 6 are also made of a conductive material, and here, aluminum is used as in the vacuum housing 1.
  • these materials are not limited to this, and for example, stainless steel or the like may be used.
  • FIG. 2 is a plan view of the quadrupole mass filter unit 5 in FIG. 1 as viewed from the ion incident side (leftward in FIG. 1)
  • FIG. 3 is an assembly of the quadrupole mass filter unit 5 shown in FIG.
  • FIG. 4 is an exploded view
  • FIG. 4 is a schematic view showing a short spring for connecting the rod electrodes 50a to 50d in the quadrupole mass filter unit 5.
  • Each of the four rod electrodes 50a to 50d having a substantially cylindrical outer shape is fitted in a groove on the inner side of the rod holder 51 having a substantially annular shape and a predetermined thickness. It is fixed to.
  • One rod holder 51 is provided for each of the front end side and the rear end side of the rod electrodes 50a to 50d, whereby the relative positional relationship between the four rod electrodes 50a to 50d is determined.
  • Each of the two rod holders 51 is placed in a substantially semicircular recess 52 a of a holder holding base 52 attached on the bottom surface of the vacuum housing 1. That is, the substantially lower half of the rod holder 51 is accommodated in the recess 52 a of the holder holding base 52.
  • the substantially upper half of the rod holder 51 is fixed downward by a fixing band 53 fixed to the holder holding base 52 with two screws 56, that is, pressed against the recess 52 a of the holder holding base 52.
  • a fixing band 53 fixed to the holder holding base 52 with two screws 56, that is, pressed against the recess 52 a of the holder holding base 52.
  • a pair of rod electrodes 50a and 50c and rod electrodes 50b and 50d facing each other across the central axis C are each composed of two short springs 54a, 54b is electrically connected.
  • the short springs 54a and 54b are in close contact with the rod electrodes 50a to 50d by elastic force.
  • a voltage U + Vcos ⁇ t obtained by superimposing a DC voltage U and a high-frequency voltage Vcos ⁇ t is applied to one short spring 54a from a voltage source (not shown), and a high-frequency whose phase is reversed to the DC voltage ⁇ U whose polarity is reversed to the other short spring 54b.
  • a voltage ⁇ (U + Vcos ⁇ t) obtained by superimposing the voltage ⁇ Vcos ⁇ t is applied.
  • the four rod electrodes 50a to 50d are made of a conductor, and for example, stainless steel or molybdenum is used.
  • the rod holder 51 is made of an insulator, and an appropriate ceramic is used.
  • the holder holding base 52 is made of the same material as the vacuum housing 1, for example, aluminum. Other members will be described later.
  • the ion source 2 ionizes components in the sample gas introduced from the outside.
  • the generated ions are extracted from the ion source 2 and introduced into the vacuum housing 1, converged by the ion guide 3, passed through the openings 4 a of the entrance lens 4, and surrounded by the four rod electrodes 50 a to 50 d.
  • the four rod electrodes 50a to 50d are applied with a voltage obtained by superimposing a DC voltage and a high-frequency voltage corresponding to the mass-to-charge ratio of the target ion to be measured through the short springs 54a and 54b.
  • the target ions Only the target ions pass through the separation space while stably oscillating by the quadrupole electric field formed by the voltage. On the other hand, other ions diverge on the way.
  • the target ions selected according to the mass-to-charge ratio pass through the separation space, and reach the ion detector 7 through the opening 6a of the exit lens 6.
  • the ion detector 7 outputs a detection signal having a signal intensity corresponding to the amount of ions that have reached.
  • a high frequency voltage ⁇ Vcos ⁇ t having a relatively large amplitude is applied to the four rod electrodes 50a to 50d, thereby forming a strong high frequency electric field in the separation space. Therefore, the rod holder 51 itself generates heat due to the dielectric loss of the material of the rod holder 51, and the relative positional relationship between the four rod electrodes 50a to 50 changes due to the thermal expansion. In addition, the heat of the rod holder 51 may be transmitted to the rod electrodes 50a to 50d, and the rod electrodes 50a to 50d themselves may be deformed by thermal expansion to change the mutual distance.
  • the characteristics as a quadrupole mass filter that is, mass resolution and mass accuracy may be deteriorated. Therefore, in the mass spectrometer of the present embodiment, various measures are taken in order to reduce the change or deformation of the relative positional relationship of the rod electrodes 50a to 50d caused by the heat generated by the rod holder 51. This will be described in detail.
  • the heat dissipation of the rod holder 51 may be increased. There are the following five heat dissipation paths. (1) Heat conduction from the rod holder 51 to the holder holding base 52 to the vacuum housing 1, and heat release from the vacuum housing 1 to the outside. (2) Heat conduction from the rod holder 51 ⁇ the fixed band 53 ⁇ the holder holding base 52 ⁇ the vacuum housing 1 and the heat release from the vacuum housing 1 to the outside. (3) Heat conduction from the rod holder 51 to the fixed band 53, fixed band to heat radiation to the vacuum atmosphere in the vacuum housing 1, and heat release from the vacuum housing 1 to the outside.
  • Rod holder 51 Heat conduction to rod electrodes 50a to 50d and short springs 54a and 54b, Rod electrodes 50a to 50d and short springs 54a and 54b ⁇ Thermal radiation to vacuum atmosphere in vacuum housing 1, and vacuum Heat release from the housing 1 to the outside. (5) Heat radiation from the rod holder 51 to the vacuum atmosphere in the vacuum housing 1 and heat release from the vacuum housing 1 to the outside.
  • heat radiation to the vacuum atmosphere in the vacuum housing 1 is included in the heat dissipation path. Therefore, by increasing the efficiency of this heat radiation, the heat radiation performance in the heat radiation paths (3), (4), and (5) can be enhanced.
  • One of the major factors that reduce the efficiency of heat radiation is that heat is trapped in the internal region 20 where the quadrupole mass filter unit 5 is disposed. Therefore, in the apparatus of the present embodiment, the quadrupole mass filter unit is provided on the inner wall surface of the vacuum housing 1 that defines the inner region 20 and the entrance lens 4 and the exit lens 6 so as to increase the efficiency of the heat radiation.
  • the surface facing 5 is subjected to a surface treatment that increases the emissivity.
  • the inner wall surface of the vacuum housing 1 that defines the inner region 20 is a bottom surface, a top surface, and a side surface (a surface on the other side of the quadrupole mass filter unit 5 and a surface on the near side that cannot be seen in FIG. 1). .
  • the coating layer 10 is formed on the inner wall surface of the vacuum housing 1 and the partial surfaces of the entrance lens 4 and the exit lens 6 by the black nickel plating treatment.
  • black nickel plating is one of the platings generally used for the purpose of antireflection and decoration, and the processing cost is relatively low.
  • the coating layer 10 is formed by black nickel plating, the surface becomes black, and the emissivity is improved as compared with the case where the surface is an aluminum surface.
  • a high emissivity means a high heat absorption rate.
  • the heat radiated to the vacuum atmosphere from the rod electrodes 50a to 50d, the fixed band 53 and the like is efficiently absorbed by the inner wall surface of the vacuum housing 1, the entrance lens 4 and the exit lens 6, and the quadrupole mass filter unit 5 Heat is less likely to stay in the vicinity.
  • the heat radiation performance in the heat radiation paths of the above (3), (4), and (5) can be improved as compared with the conventional case.
  • the surface treatment processing that increases the emissivity is not limited to black nickel plating.
  • a coating layer may be formed by alumite processing (preferably black alumite processing).
  • a coating layer capable of improving the emissivity may be formed on the surface by a carbon coating forming process, a ceramic spraying process, a plating process, a coating or coating process, a spraying process, or the like.
  • irregularities are formed by chemically or physically scraping the surfaces of these members themselves.
  • a thin plate of another material having a higher emissivity than the material of these members is formed on the inner wall surface of the vacuum housing 1, the entrance lens 4 and the exit lens 6.
  • a thin foil may be attached, or a black body tape may be attached. Such is also one of surface treatments in a broad sense.
  • the surface treatment for increasing the emissivity as described above may be performed not only on the inner wall surface of the vacuum housing 1, the entrance lens 4 and the exit lens 6, but only on a part thereof. Further, different types of surface treatments may be combined. As a matter of course, the entrance lens 4 and the exit lens 6 each form an electric field for converging ions. Therefore, it is necessary to perform surface treatment within a range that does not hinder the formation of such an electric field.
  • the fixing band 53 fixes the rod holder 51 so as to press against the holder holding base 52, and requires an appropriate spring property. If the spring property of the fixing band 53 is low, the rod holder 51 is prevented from spreading outward when thermally expanded, so that deformation due to heat concentrates on the inside, that is, the portion holding the rod electrodes 50a to 50d, and the rod The deviation of the relative positions of the electrodes 50a to 50d is increased. In contrast, if the fixing band 53 has an appropriate spring property, when the rod holder 51 is thermally expanded, the fixing band 53 extends and the rod holder 51 spreads outward. Small positional shift is sufficient. However, if the spring property of the fixing band 53 is too high, the fixing of the rod holder 51 becomes unstable, and the absolute position of the rod electrodes 50a to 50d may be shifted due to vibration or the like.
  • the thickness of the fixing band 53 is increased in order to obtain the same level of elasticity as that of the fixing band made of stainless steel.
  • the thermal conductivity becomes higher than when it is thin. That is, not only the thermal conductivity of the material itself is high, but also the thermal conductivity can be increased by increasing the thickness, so that the heat dissipation in the heat dissipation path of (2) can be improved as compared with the conventional case.
  • phosphor bronze is more susceptible to rust than stainless steel, the surface of the phosphor bronze is gold plated to prevent rust. Of course, other antirust surface treatments may be performed.
  • phosphor bronze is used for the short springs 54a and 54b, and the surface thereof is gold-plated.
  • the temperature of the upper rod electrodes 50a and 50d becomes higher than that of the lower rod electrodes 50b and 50c due to heat transfer from the rod holder 51.
  • the heat of the upper rod electrodes 50a and 50d is transferred to the lower rod electrodes 50b and 50c via the short springs 54a and 54b. Therefore, the temperature difference between the upper rod electrodes 50a and 50d and the lower rod electrodes 50b and 50c can be reduced. Thereby, the displacement of the rod electrodes 50a to 50d themselves due to thermal expansion can be suppressed.
  • the fixing band 53 and the short springs 54a and 54b are made of phosphor bronze which has been subjected to a gold plating surface treatment. Further, the surface treatment for increasing the radiation rate is the same as that of the coating layer 10 on the surface. A coating layer is formed by processing. That is, as shown in FIG. 2, the fixing band 53 has a coating layer 532 formed by a black nickel plating process on the entire surface of a phosphor bronze main member 531 subjected to a gold plating surface process. Although not shown, the same applies to the short springs 54a and 54b.
  • the coating layer 532 on the surfaces of the fixed band 53 and the short springs 54a and 54b, the efficiency of heat radiation from the fixed band 53 and the short springs 54a and 54b to the surrounding space is increased. That is, not only the heat is easily transmitted through the fixed band 53 and the short springs 54a and 54b, but also the heat is diffused along the path of the heat transfer. Thereby, the heat dissipation in the heat dissipation path of said (3), (4) can be improved further.
  • the coating layer 532 formed on the surfaces of the fixed band 53 and the short springs 54a and 54b is not limited to the one formed by the black nickel plating process, and may be formed by various other methods similar to the coating layer 10. it can.
  • the heat dissipation layer is interposed between the fixing band 53 and the rod holder 51 and the holder holding base 52. 55 is formed.
  • a coating layer silicone rubber sheet, silicone tape, etc.
  • a heat dissipation grease coating layer or the like may be used.
  • the rod holder 51 and the rod electrodes 50a to 50a are improved by making some structural improvements to improve the heat dissipation in the heat dissipation paths (1) to (5).
  • the temperature rise of 50d can be reduced.
  • the temperature rise of the rod holder 51 and the rod electrodes 50a to 50d can be reduced as compared with the conventional device.
  • the quadrupole mass filter unit 5 is directly arranged inside the vacuum housing 1. However, like the apparatus described in Patent Document 3, the quadrupole mass filter unit 5 is arranged. In some cases, a configuration may be employed in which the is disposed in the vacuum housing 1 in a state of being mounted in a cylindrical container.
  • FIG. 5 is a configuration diagram of a main part of the quadrupole mass spectrometer when such a configuration is adopted. In this configuration, the inner region 20 is formed inside the container 57 in which the inlet opening 57 a and the outlet opening 57 b are formed, and the quadrupole mass filter unit 5 is disposed in the inner region 20.
  • the container 57 corresponds to the boundary member in the present invention.
  • the coating layer 10 by black nickel plating processing may be formed on the inner wall surface of the container 57 that defines the inner region 20, or other surface processing processing that increases the above-described emissivity may be performed. Thereby, the heat dissipation efficiency of the heat dissipation path to the vacuum housing 1 via the container 57 can be increased.
  • the rod holder 51 is fixed to the holder holding base 52 by the thin plate-like fixing band 53, but there may be various forms as a fixing member for fixing the rod holder 51 to the holder holding base 52.
  • a block-shaped fixing member 58 having a recess 58 a similar to the recess 52 a of the holder holding base 52 may be fixed to the holder holding base 52 with a screw 59.
  • a band shape is preferable to a block shape, but even when a block-shaped fixing member 58 is adopted, By subjecting the surface of the fixing member 58 to surface treatment for increasing the emissivity, it is possible to improve the heat dissipation in the heat dissipation paths of (3) and (4).
  • the above embodiment is an example in which the present invention is applied to a single type quadrupole mass spectrometer, but other types of mass spectrometers using a quadrupole mass filter, specifically, triple quadrupoles. It is clear that the present invention can be applied to a quadrupole mass spectrometer and a quadrupole-time-of-flight mass spectrometer.
  • the present invention is not a quadrupole mass filter but a mass spectrometer equipped with a linear ion trap having a rod electrode structure similar to a quadrupole mass filter and having a function of separating ions according to a mass-to-charge ratio. Can be applied.
  • a linear ion trap ions are once confined in a trapping space surrounded by four rod electrodes, and then confined by applying a high-frequency voltage corresponding to the mass-to-charge ratio of the target ions to the four rod electrodes. Some of the ions are excited and emitted from the capture space to the outside.
  • the mass-to-charge ratio of ions emitted from the trapping space will shift or the mass-to-charge ratio width may change. To do.
  • changes in the relative positional relationship of the rod electrodes can be reduced, and the mass accuracy and mass resolution of ions emitted from the capture space can be increased.

Abstract

イオンを質量電荷比に応じて分離するための4本のロッド電極(50a~50d)は、セラミック製である2個のロッドホルダ(51)に保持され、ロッドホルダ(51)は真空ハウジング(1)の底面上に設置された金属製のホルダ保持台(52)に取り付けられる。真空ハウジング(1)内の壁面、入口レンズ(4)、及び出口レンズ(6)にあって四重極マスフィルタユニット(5)に面する部分には黒ニッケルメッキ加工処理による被膜層(10)が形成されている。被膜層(10)の輻射率はAl等に比べて高いため、四重極マスフィルタユニット(5)からの輻射熱は効率良く被膜層(10)に吸収される。そのため、誘電損によりロッドホルダ(51)で発生する熱は効率的に放散され、その変形を軽減することができる。それにより、ロッド電極(50a~50d)の間の距離の変化や変形が軽減され、高い質量精度、質量分解能を達成することができる。

Description

質量分析装置
 本発明は、質量分離器として四重極マスフィルタ又はリニアイオントラップを用いた質量分析装置に関する。
 ガスクロマトグラフ質量分析装置(GC-MS)等に用いられる一般的な四重極型質量分析装置では、イオン源において試料ガス中に含まれる化合物からイオンを生成し、その生成された各種イオンを四重極マスフィルタで質量電荷比m/zに応じて分離し、その分離されたイオンをイオン検出器で検出する。四重極マスフィルタにおいて所定の質量電荷比範囲に亘る質量走査を繰り返すことで、質量電荷比とイオン強度との関係を示すマススペトルを繰り返し取得することができる。
 四重極マスフィルタは一般に、外形が略円柱状である4本のロッド電極が直線状の中心軸の周りに互いに略平行に且つ中心軸の周りに同じ角度間隔(つまりは90°間隔)離して配置された構成を有する。質量電荷比に応じてイオンを分離する際には、中心軸を挟んで対向する2本のロッド電極に、正の直流電圧に高周波電圧を重畳した+(U+Vcosωt)なる電圧を印加し、他の2本のロッド電極に、負の直流電圧に先の高周波電圧とは位相が反転した電圧を重畳した-(U+Vcosωt)なる電圧を印加する。この直流電圧の電圧値Uと高周波電圧の振幅値Vとを目的の質量電荷比に応じた所定の値とすることで、その目的の質量電荷比を有するイオンを選択的に通過させることができる。
 高い効率で且つ高い選択性で以て目的とするイオンが四重極マスフィルタを通過するようにするには、4本のロッド電極を高い位置精度で以て配置する必要がある。一方で、そうした高い位置精度でロッド電極を配置するための組立作業の手間はできるだけ低減する必要がある。そのため、従来の装置では一般的に、4本のロッド電極をセラミックなどの絶縁材料から成るロッドホルダに形成された溝に嵌め込むことで、それらロッド電極の位置関係を定めることができるような構成が採られている(特許文献1、2参照)。
 図7は従来の四重極型質量分析装置においてロッド電極がロッドホルダに保持されている状態を示す平面図、図8は図7中のA-AA線断面図である。図示するように、4本のロッド電極50a~50dは円環状のロッドホルダ51の内側の溝に嵌め込まれた状態で該ロッドホルダ51に固定される。この場合、ロッドホルダ51の内側の溝をその大きさ、形状、位置が中心軸Cの周りに正確に回転対称になるように設けることで、4本のロッド電極50a~50dの相対位置関係を理想的な状態又はそれに近い状態にすることができる。
 しかしながら、こうした構成の四重極マスフィルタでは、上記特許文献にも開示されているように、ロッド電極50a~50dに高周波電圧を印加するとロッドホルダ51の材料の誘電損失によって該ロッドホルダ51自体が発熱し、熱膨張によってロッド電極50a~50d間の距離が変化してしまうという問題がある。ロッド電極50a~50d間の距離が変化すると、通過させようとしているイオンと実際に通過するイオンとで質量電荷比にずれが生じたり、通過するイオンの質量電荷比の範囲が広がってしまったりする。即ち、ロッドホルダ51の発熱による熱膨張は質量精度や質量分解能の低下をもたらす。
 上記問題を解決するための最も簡単な方法は、ロッドホルダに熱膨張率が小さい材料を用いることである。しかしながら、一般に熱膨張率が小さい材料は高価であり、こうした材料を用いるとコスト増加に繋がる。また、そうした材料は必ずしも加工性等の他の特性がロッドホルダに適さない場合があり、熱膨張率が小さい材料を選択することが難しい場合もある。さらに、熱膨張率が小さい材料を用いたとしても、発熱による熱膨張を完全に無くすことはできないため、より高い精度や分解能が要求される場合には、材料の選択以外の対策も必要になる。
 一方、特許文献1には、バネで接続した一対の放熱板の間にロッドホルダを挟み込み、ロッドホルダに発生した熱を該ロッドホルダに接触した放熱板に逃がすことで放熱を促進させる構成の装置が開示されている。しかしながら、こうした構成は複雑であるとともに、ロッド電極のメンテナンス性も悪くなる。
 また特許文献2には、熱膨張によるロッドホルダの歪み量を検出し、それに応じて、各ロッド電極に印加する電圧を微調整することで質量ずれを軽減する技術が開示されている。しかしながら、こうした方法では、温度変化量や歪み量と電圧の調整量との関係を予め精度良く求めておく必要があり、そうした関係に変化が生じると質量ずれの補正が十分に行えないおそれがある。また、構成自体もかなり複雑になり、コストの大幅な増加が避けられない。
特開平7-142026号公報(図1、図2) 特開平10-106484号公報(図5、図6) 米国特許公開第5525084号明細書
 上記のような問題は四重極マスフィルタを用いた質量分析装置に限るものではなく、高い位置精度で複数本のロッド電極を中心軸の周りに配置する必要がある構成のイオン光学素子、具体的には、それ自体で質量分離の機能を有するリニアイオントラップでも同様の問題がある。
 本発明はこうした課題を解決するために成されたものであり、その目的とするところは、四重極マスフィルタやリニアイオントラップを構成する複数本のロッド電極を保持するロッドホルダの発熱を低減して、その熱膨張に起因する質量精度や質量分解能の低下を軽減することができる質量分析装置を提供することである。
 上記課題を解決するために成された本発明に係る質量分析装置は、
 a)直線状の軸の周りに配置された複数本のロッド電極と、該複数本のロッド電極を保持する絶縁性材料から成るロッドホルダと、を含み、該複数本のロッド電極で囲まれる空間に導入されたイオンを該ロッド電極に印加される高周波電圧により形成される電場の作用で質量電荷比に応じて分離するイオン光学素子と、
 b)前記イオン光学素子が内部に配置される領域を画定する境界部材と、
 を備え、前記境界部材にあって前記イオン光学素子に向いた面の少なくとも一部に輻射率向上処理が施されていることを特徴としている。
 本発明の第1の態様の質量分析装置では、前記境界部材の少なくとも一部が真空ハウジングであり、前記輻射率向上処理が施される面は前記真空ハウジングの内壁面である構成とすることができる。
 また本発明の第2の態様の質量分析装置では、前記境界部材の少なくとも一部が、前記イオン光学素子へのイオン流の上流側に配置されたイオンを収束させて該イオン光学素子の前記空間に導入するレンズ、又は前記イオン光学素子からのイオン流の下流側に配置されたイオンを収束させて後段へと送るレンズ、の少なくとも一方であり、前記輻射率向上処理が施される面は前記レンズにあって前記イオン光学素子に向いた面である構成とすることができる。
 もちろん、上記第1の態様と第2の態様との両方を併せて採用する構成とすることもできる。
 本発明に係る質量分析装置において、前記イオン光学素子は典型的には四重極マスフィルタ又はリニアイオントラップである。
 イオン光学素子が四重極マスフィルタである場合、本発明に係る質量分析装置は、シングルタイプの四重極型質量分析装置、コリジョンセルを挟んで前後に四重極マスフィルタを配置したトリプル四重極型質量分析装置、コリジョンセルの前段に四重極マスフィルタを、後段に飛行時間型質量分析器を配置した四重極-飛行時間型(Q-TOF型)質量分析装置などである。また、イオン光学素子がリニアイオントラップである場合、本発明に係る質量分析装置は、リニアイオントラップ型質量分析装置、リニアイオントラップで質量選別したイオンを該イオントラップ内で開裂させたあと、外部の飛行時間型質量分析器やフーリエ変換イオンサイクロトロン共鳴質量分析器などで質量分析するタイプの質量分析装置などである。
 この種の質量分析装置では、境界部材の一部となり得る真空ハウジングやレンズにはアルミニウム又はステンレスが用いられる。ステンレスの輻射率は約0.3であり、アルミニウムの輻射率はさらに低く0.1以下である。ロッドホルダの誘電損失により発生した熱は、ロッドホルダから直接的に又はロッドホルダを境界部材に対して固定している別の部材を通して、その境界部材で画定される領域中に輻射される。イオン光学素子に向いた境界部材の面の輻射率が低いと、上述したように輻射された熱がその境界部材であまり吸収されずに反射され、境界部材で画定された領域内に熱がこもってしまって放熱効率が低下する。
 これに対し本発明の第1の態様では、真空ハウジングの内壁面の少なくとも一部に所定の輻射率向上処理を施すことで、真空ハウジングの内壁面での熱吸収を良好にする。それにより、ロッドホルダから直接的に又はロッドホルダを真空ハウジング内に固定している別の部材を通して、真空雰囲気中に輻射された熱が効率良く真空ハウジングの内壁に吸収される。その結果、ロッドホルダからの放熱性が向上し、ロッドホルダの温度上昇を軽減することができる。
 また本発明の第2の態様では、イオン光学素子の直前に又は直後に配置されたレンズの面の一部に、所定の輻射率向上処理を施すことでそれら面での熱吸収を良好にする。それにより、第1の態様と同様に、ロッドホルダから直接的に又はロッドホルダを真空ハウジング等の境界部材に固定している別の部材を通して、境界部材で画定されている領域中に輻射された熱が効率良くレンズに吸収される。その結果、ロッドホルダからの放熱性が向上し、ロッドホルダの温度上昇を軽減することができる。
 本発明において上記輻射率向上処理は様々な処理手法とすることができる。
 本発明の一つの態様として、前記輻射率向上処理は前記境界部材を形成する材料の面に対する表面処理であるものとすることができる。
 表面処理には、大別して、メッキ加工処理、塗装又は塗布加工処理、溶射処理などによって表面に何らかの薄い被膜を形成する被膜形成処理と、表面を化学的に又は物理的に削って表面を粗くする(凹凸を形成する)加工処理とがある。
 境界部材がアルミニウム製である場合、上記表面処理はアルマイト加工処理とすることができる。また、上記表面処理はニッケルメッキ加工処理とすることができる。また、上記表面処理はカーボン被膜形成処理とすることができる。アルマイト加工処理の場合、アルマイト加工後に黒色の染料で着色する等の方法により表面を黒色にする黒アルマイト加工処理とすることで、さらに輻射率を向上させることができる。ニッケルメッキ加工処理の場合、ニッケルメッキ加工後に黒色に酸化させる等の方法により表面を黒色にする黒ニッケルメッキ加工処理とすることで、さらに輻射率を向上させることができる。また、上記表面処理はセラミック溶射処理とすることもできる。
 さらにまた別の態様として、前記輻射率向上処理は前記境界部材を形成する材料の内壁面に別の材料の薄板又は薄箔を貼り付ける処理であるものとすることができる。例えば、境界部材がアルミニウム製である場合、イオン光学素子に向いた境界部材の面にステンレス製の薄板を貼り付けるようにするとよい。
 どのような処理方法を採用するのかは、境界部材で画定される領域の雰囲気(通常は真空雰囲気)の下でそれら処理による形成物から放出されるガス(アウトガス)の影響やコストなどを考慮して決めればよい。
 本発明に係る質量分析装置によれば、ロッド電極を保持するロッドホルダからの放熱性が向上し、ロッドホルダの温度上昇を軽減することができる。それにより、ロッドホルダの熱膨張に起因する質量精度や質量分解能の低下を軽減することができる。また、コスト増加の程度は輻射率向上処理の処理方法によって異なるものの、従来装置で採用されている方法に比べればコストの増加はかなり抑えられる。また、ロッドホルダにも熱膨張率が或る程度大きな材料を用いることができるので、その材料の選択の幅を広げることができ、コスト削減を図ることができる。
本発明の一実施例である四重極型質量分析装置の要部の構成図。 本実施例の四重極型質量分析装置における四重極マスフィルタユニットをイオン入射側から見た状態の平面図。 図2に示した四重極マスフィルタユニットの組立分解図。 四重極マスフィルタユニットにおいてロッド電極同士を接続するショートバネを示す概略図。 本発明の他の実施例である四重極型質量分析装置の要部の構成図。 四重極マスフィルタユニットの他の例の組立分解図。 一般的な四重極型質量分析装置においてロッド電極がロッドホルダに保持されている状態を示す平面図。 図5中のA-AA線断面図。
 本発明に係る質量分析装置の一実施例について、添付図面を参照して説明する。
 図1は本実施例の質量分析装置の概略構成図である。この質量分析装置は、試料ガス中の成分を分析するシングルタイプの四重極型質量分析装置である。
 図1に示すように、真空ポンプ(図示せず)によって真空排気される真空ハウジング1には、電子イオン化法や化学イオン化法などによるイオン化を行うイオン源2が取り付けられ、該イオン源2において生成された試料成分由来のイオンが真空ハウジング1内に導入される。真空ハウジング1の内部には、イオンを収束させつつ輸送するイオンガイド3と、イオン光軸でもある中心軸Cの周りに配置された4本(但し図1では 4本のうちの2本のみが見えている)のロッド電極50a~50dを含む四重極マスフィルタユニット5と、イオンを検出するイオン検出器7と、イオンガイド3と四重極マスフィルタユニット5との間を仕切る隔壁を兼ね、イオンが通過する開口4aが形成されている入口レンズ4と、四重極マスフィルタユニット5とイオン検出器7との間を仕切る隔壁を兼ね、イオンが通過する開口6aが形成されている出口レンズ6と、が配置されている。即ち、本実施例では、真空ハウジング1の一部、入口レンズ4、及び出口レンズ6が本発明における境界部材に相当し、四重極マスフィルタユニット5は、この境界部材により確定される内部領域20に配置されている。なお、説明の便宜上、イオン光軸をZ軸方向とし、該Z軸に直交するX軸、Y軸を図示するように定めている。
 真空ハウジング1は導電体材料から成り、ここでは比較的安価であるアルミニウムが用いられている。また、入口レンズ4及び出口レンズ6も同じく導電体材料から成り、ここでは真空ハウジング1と同様にアルミニウムが用いられている。但し、これらの材料はこれに限らず、例えばステンレスなどを用いてもよい。
 図2は図1中の四重極マスフィルタユニット5をイオン入射側(図1では左方向)から見た状態の平面図、図3は図2に示した四重極マスフィルタユニット5の組立分解図、図4は四重極マスフィルタユニット5においてロッド電極50a~50d同士を接続するショートバネを示す概略図である。
 外形が略円柱状である4本のロッド電極50a~50dはそれぞれ、略円環状で所定の厚さを有するロッドホルダ51の内側の溝に嵌め込まれた状態で、図示しないネジにより該ロッドホルダ51に固定されている。ロッドホルダ51はロッド電極50a~50dの前端側と後端側とにそれぞれ1個ずつ設けられ、これにより、4本のロッド電極50a~50dの相対的な位置関係は定まっている。2個のロッドホルダ51はそれぞれ、真空ハウジング1の底面上に取り付けられたホルダ保持台52の略半円状の凹部52aに載置される。即ち、ロッドホルダ51の略下半分はホルダ保持台52の凹部52aに収容される。ロッドホルダ51の略上半分は、ホルダ保持台52に2本のネジ56で固定される固定バンド53によって下方に、つまりホルダ保持台52の凹部52aに押し付けられるように固定される。これにより、4本のロッド電極50a~50dの絶対的な位置が定まっている。
 四重極マスフィルタでは、中心軸Cを挟んで対向する2本のロッド電極に同じ電圧が印加され、中心軸Cの周りに隣接する2本のロッド電極には互いに異なる電圧が印加される。そこで本実施例の装置では、中心軸Cを挟んで対向する2本一組のロッド電極50a、50cとロッド電極50bと50dとはそれぞれ、図4に示すように、2本のショートバネ54a、54bによって電気的に接続されている。ショートバネ54a、54bは弾性力によって各ロッド電極50a~50dに密着するものである。この一方のショートバネ54aに図示しない電圧源より、直流電圧Uと高周波電圧Vcosωtとを重畳した電圧U+Vcosωtが印加され、他方のショートバネ54bに極性が反転した直流電圧-Uと位相が反転した高周波電圧-Vcosωtとを重畳した電圧-(U+Vcosωt)が印加される。
 4本のロッド電極50a~50dは導電体から成り、例えばステンレスやモリブデンなどが用いられる。ロッドホルダ51は絶縁体から成り、適当なセラミックが用いられる。また、ホルダ保持台52は真空ハウジング1と同じ材料、例えばアルミニウムなどから成る。それ以外の部材については後述する。
 本実施例の質量分析装置における基本的な分析動作を簡単に説明する。
 イオン源2は外部から導入された試料ガス中の成分をイオン化する。生成されたイオンはイオン源2から引き出されて真空ハウジング1内に導入され、イオンガイド3により収束されて入口レンズ4の開口4aを経て4本のロッド電極50a~50dで囲まれる、Z軸方向に延在する分離空間に導入される。4本のロッド電極50a~50dには、上述したようにショートバネ54a、54bを通して測定対象である目的イオンの質量電荷比に応じた直流電圧と高周波電圧とを重畳した電圧が印加される。その電圧により形成される四重極電場によって上記目的イオンのみが安定的に振動しつつ分離空間を通過する。一方、他のイオンは途中で発散する。こうして質量電荷比に応じて選択された目的イオンが分離空間を通り抜け、出口レンズ6の開口6aを経てイオン検出器7に到達する。イオン検出器7は到達したイオンの量に応じた信号強度の検出信号を出力する。
 上述したような分析の際に、4本のロッド電極50a~50dには比較的大きな振幅の高周波電圧±Vcosωtが印加され、それによって強い高周波電場が分離空間に形成される。そのため、ロッドホルダ51の材料の誘電損失によってロッドホルダ51自体が発熱し、その熱膨張によって4本のロッド電極50a~50の相対的な位置関係が変化する。また、ロッドホルダ51の熱がロッド電極50a~50dに伝わり、ロッド電極50a~50d自体が熱膨張によって変形して相互の距離が変化する場合もある。ロッド電極50a~50の相対的な位置関係や距離が変化すると、四重極マスフィルタとしての特性、即ち、質量分解能や質量精度が低下するおそれがある。そこで、本実施例の質量分析装置では、ロッドホルダ51の発熱に起因するロッド電極50a~50dの相対的な位置関係の変化や変形を軽減するために、種々の方策が採られている。その点について詳細に説明する。
 ロッドホルダ51の発熱を軽減するには、ロッドホルダ51の放熱性を高めればよい。ここで考えられる放熱経路は次の五つである。
 (1)ロッドホルダ51→ホルダ保持台52→真空ハウジング1への熱伝導、及び、真空ハウジング1から外部への熱放出。
 (2)ロッドホルダ51→固定バンド53→ホルダ保持台52→真空ハウジング1への熱伝導、及び、真空ハウジング1から外部への熱放出。
 (3)ロッドホルダ51→固定バンド53への熱伝導、固定バンド→真空ハウジング1内の真空雰囲気への熱輻射、及び、真空ハウジング1から外部への熱放出。
 (4)ロッドホルダ51→ロッド電極50a~50d及びショートバネ54a、54bへの熱伝導、ロッド電極50a~50d及びショートバネ54a、54b→真空ハウジング1内の真空雰囲気への熱輻射、並びに、真空ハウジング1から外部への熱放出。
 (5)ロッドホルダ51→真空ハウジング1内の真空雰囲気への熱輻射、及び、真空ハウジング1から外部への熱放出。
 上記(3)、(4)、(5)ではいずれも真空ハウジング1内の真空雰囲気への熱輻射が放熱経路に含まれる。したがって、この熱輻射の効率を高めることで、(3)、(4)、(5)の放熱経路での放熱性を高めることができる。熱輻射の効率を低下させる大きな要因の一つは、四重極マスフィルタユニット5が配置される内部領域20に熱がこもってしまうことである。そこで本実施例の装置では、この熱輻射の効率が高くなるように、内部領域20を画定する真空ハウジング1の内壁面、並びに、入口レンズ4及び出口レンズ6にあって四重極マスフィルタユニット5に向いた面に、輻射率が高まるような表面処理加工が施されている。ここで、内部領域20を画定する真空ハウジング1の内壁面とは、底面、天面、側面(図1では四重極マスフィルタユニット5の向こう側の面及び見えない手前側の面)である。
 本実施例の装置では上記表面処理加工として、黒ニッケルメッキ加工処理による被膜層10を真空ハウジング1の内壁面や入口レンズ4及び出口レンズ6の一部の面に形成している。よく知られているように黒色ニッケルメッキは反射防止や装飾を目的としてごく一般に利用されているメッキの一つであり、加工コストが比較的安価である。黒色ニッケルメッキによる被膜層10を形成すると表面が黒色になり、表面がアルミニウムの面である場合に比べて輻射率が向上する。輻射率が高いことは熱吸収率が高いことを意味する。これにより、ロッド電極50a~50dや固定バンド53等から真空雰囲気へと輻射された熱が真空ハウジング1の内壁面や入口レンズ4、出口レンズ6に効率良く吸収され、四重極マスフィルタユニット5付近に熱がこもりにくくなる。その結果、上記(3)、(4)、(5)の放熱経路における放熱性を従来よりも高めることができる。
 なお、輻射率が高まるような表面処理加工は黒色ニッケルメッキに限らない。例えば上述したように真空ハウジング1がアルミニウム製である場合、黒色ニッケルメッキの代わりに通常のニッケルメッキでもよいし、アルマイト加工処理(好ましくは黒アルマイト加工処理)による被膜層を形成してもよい。或いは、カーボン被膜形成処理やセラミック溶射処理、さらにはそれ以外のメッキ加工処理、塗装又は塗布加工処理、溶射処理などによって、輻射率の改善が可能な被膜層を表面に形成してもよい。また、真空ハウジング1や入口レンズ4、出口レンズ6の材料とは異なる材料から成る被膜層を形成するのではなく、それら部材そのものの表面を化学的に又は物理的に削ることで凹凸を形成するようにしてもよい。また、各種の加工処理によって被膜層を形成するのではなく、真空ハウジング1の内壁面、入口レンズ4、及び出口レンズ6に、それら部材の材料に比べて輻射率が高い別の材料の薄板や薄箔を貼り付けたり、黒体テープを貼り付けたりしてもよい。こうしたものも、広い意味での表面処理加工の一つである。
 もちろん、上述したような輻射率を上げるための表面処理加工は、真空ハウジング1の内壁面、入口レンズ4、及び出口レンズ6の全てではなく、その一部にのみ行ってもよい。また、異なる種類の表面処理加工を組み合わせてもよい。なお、当然のことながら、入口レンズ4や出口レンズ6はそれぞれイオンを収束させる電場を形成するものであるので、そうした電場の形成に障害とならない範囲で表面処理加工を行う必要がある。
 上記(1)と(2)の放熱経路を比べれば分かるように、(2)では固定バンド53を経てロッドホルダ51からホルダ保持台52に熱が伝導するため(1)に比べて放熱効率が悪い。そのため、ロッドホルダ51の上部は下部に比べて温度上昇が大きくなる傾向にある。(2)の放熱経路における放熱効率を改善するには、固定バンド53自体の熱伝導性を向上させることが必要である。こうした固定バンド53の材料としては一般的にステンレスが用いられるが、ステンレスは熱伝導率が比較的低い。そこで、本実施例の装置では、固定バンド53の材料として、熱伝導率がステンレスに比べて高く且つ比較的安価であるリン青銅を用いている。
 上述したように固定バンド53はロッドホルダ51をホルダ保持台52に押し付けるように固定するものであり、適度なバネ性が必要である。固定バンド53のバネ性が低いと、ロッドホルダ51が熱膨張したときに外側に広がることが妨げられるため、熱による変形が内側、つまりはロッド電極50a~50dを保持する部分に集中し、ロッド電極50a~50dの相対位置のずれを大きくする。これに対し、固定バンド53が適度なバネ性を有していると、ロッドホルダ51が熱膨張したときに固定バンド53が延びてロッドホルダ51が外側に広がるため、ロッド電極50a~50dの相対位置のずれが小さくて済む。但し、固定バンド53のバネ性が高すぎるとロッドホルダ51の固定が不安定になり、振動等によってロッド電極50a~50dの絶対位置がずれるおそれがある。
 リン青銅はステンレスに比べて縦弾性係数が小さいため、ステンレス製の固定バンドと同程度のバネ性を得るために、固定バンド53の厚さを厚くしている。このように固定バンド53を厚くすると、薄い場合に比べて熱伝導性が高くなる。即ち、その材料自体の熱伝導率が高いだけでなく、厚さが厚いことでも熱伝導性を上げることができるので、上記(2)の放熱経路における放熱性を従来よりも高めることができる。
 なお、リン青銅はステンレスに比べて錆が生じ易いため、その表面に金メッキ処理を行うことで錆の発生を防止するようにしている。もちろん、それ以外の防錆表面処理を行ってもよい。
 また、固定バンド53と同様にショートバネ54a、54bにもリン青銅を用い、その表面に金メッキ処理を施している。上述したようにロッドホルダ51の上部の温度が下部に比べて高い場合、ロッドホルダ51からの伝熱により上側のロッド電極50a、50dの温度は下側のロッド電極50b、50cよりも高くなる。ステンレスに比べて熱伝導性が高いリン青銅製のショートバネ54a、54bを用いることで、上側のロッド電極50a、50dの熱がショートバネ54a、54bを経て下側のロッド電極50b、50cに伝わり易くなるので、上側のロッド電極50a、50dと下側のロッド電極50b、50cとの温度差を低減することができる。それによって、ロッド電極50a~50d自体の熱膨張による変形の片寄りを抑えることができる。
 また、上述したように固定バンド53及びショートバネ54a、54bは金メッキ表面処理が施されたリン青銅製であるが、さらにその表面に上記被膜層10と同様の、輻射率を上げるための表面処理加工による被膜層が形成されている。即ち、図2中に示すように、固定バンド53は、金メッキ表面処理が施されたリン青銅製の主部材531の表面全体に、黒ニッケルメッキ加工処理による被膜層532が形成されている。図示しないが、ショートバネ54a、54bも同様である。
 このように固定バンド53及びショートバネ54a、54bの表面に被膜層532を設けることで、固定バンド53及びショートバネ54a、54bからその周囲の空間への熱輻射の効率が高くなる。即ち、固定バンド53、ショートバネ54a、54bをそれぞれ熱が伝わり易くなるだけでなく、その伝熱の途中経路での熱の放散も盛んになる。それにより、上記(3)、(4)の放熱経路における放熱性をさらに一層高めることができる。
 固定バンド53及びショートバネ54a、54bの表面に形成される被膜層532も黒ニッケルメッキ加工処理によるものに限らず、被膜層10と同様の他の様々な手法により形成されるものとすることができる。
 また、本実施例の装置では、間にロッドホルダ51を挟んで固定バンド53をホルダ保持台52に固定する際に、固定バンド53とロッドホルダ51及びホルダ保持台52との間に放熱性層55を形成するようにしている。本実施例の装置では、放熱性層55として放熱シリコーンによる適宜の厚さの被膜層(シリコーンゴムシートやシリコーンテープなど)を用いているが、これに限らず、放熱グリスの塗布層などでもよい。固定バンド53とロッドホルダ51やホルダ保持台52とを直接接触させた場合、両者の接触面にはごく微細なレベルでの隙間が生じ、その隙間が一種の熱抵抗となる。これに対し、間に放熱性層55を設けることでそうしたごく微細なレベルでの隙間が埋まり伝熱性が高まる。さらに、放熱シリコーンや放熱グリスはそれ自体に熱伝導性の高い成分や粒子が含まれる。それにより、ロッドホルダ51から固定バンド53への伝熱性、及び、固定バンド53からホルダ保持台52への伝熱性が高まり、上記(2)、(3)の放熱経路における放熱性をさらに一層高めることができる。
 上述したように本実施例の装置では、上記(1)~(5)の放熱経路での放熱性を高めるような幾つかの構成上の工夫を行うことで、ロッドホルダ51やロッド電極50a~50dの温度上昇を軽減することができる。もちろん、上述した全ての構成上の工夫を盛り込むのではなく、その一部のみを用いても従来装置に比べればロッドホルダ51やロッド電極50a~50dの温度上昇を軽減することができる。
 なお、上記実施例の質量分析装置では、真空ハウジング1の内部に四重極マスフィルタユニット5が直接配置されていたが、特許文献3に記載の装置のように、四重極マスフィルタユニット5が筒状の容器内に取り付けられた状態で真空ハウジング1内に配置される構成が採られる場合もある。図5はこうした構成が採られる場合の四重極型質量分析装置の要部の構成図である。この構成では、入口開口57a、出口開口57bが形成されている容器57の内側に内部領域20が形成され、この内部領域20に四重極マスフィルタユニット5が配置される。容器57が本発明における境界部材に相当する。この構成では、内部領域20を画定する容器57の内壁面に黒ニッケルメッキ加工処理による被膜層10を形成したり、或いは、そのほかの上述の輻射率が高まる表面処理加工を施したりすればよい。これにより、容器57を介した真空ハウジング1への放熱経路の放熱効率を高めることができる。
 また、上記実施例では、薄板状の固定バンド53でロッドホルダ51をホルダ保持台52に固定していたが、ロッドホルダ51をホルダ保持台52に固定する固定部材としては種々の形態があり得る。例えば、図6に示すように、ホルダ保持台52の凹部52aと同様の凹部58aが形成されているブロック形状の固定部材58をネジ59でホルダ保持台52に固定するようにしてもよい。上述したように、適切なバネ性を持たせてロッドホルダ51をホルダ保持台52に固定するにはブロック形状よりもバンド形状のほうが好ましいものの、ブロック形状の固定部材58を採用する場合においても、固定部材58の表面に輻射率を上げるための表面処理加工を施すことで、上記(3)、(4)の放熱経路における放熱性を高めることができる。
 また、上記実施例は本発明をシングルタイプの四重極型質量分析装置に適用した例であるが、四重極マスフィルタを使用した他のタイプの質量分析装置、具体的には、トリプル四重極型質量分析装置や四重極-飛行時間型質量分析装置に本発明を適用できることは明らかである。
 また、四重極マスフィルタではなく、四重極マスフィルタに類似したロッド電極構造であってイオンを質量電荷比に応じて分離する機能を有するリニアイオントラップを備えた質量分析装置にも本発明を適用することができる。こうしたリニアイオントラップでは、4本のロッド電極で囲まれる捕捉空間にイオンを一旦閉じ込め、そのあとに4本のロッド電極に目的イオンの質量電荷比に応じた高周波電圧を印加することで、閉じ込めていたイオンの一部を励振させて捕捉空間から外部へと放出する。そのため、ロッド電極を保持するロッドホルダが誘電損失によって発熱しロッド電極の相対位置関係が変化すると、捕捉空間から放出されるイオンの質量電荷比にずれが生じたりその質量電荷比幅が変化したりする。こうした質量分析装置に本発明を適用することで、ロッド電極の相対位置関係の変化を軽減することができ、捕捉空間から放出されるイオンの質量精度や質量分解能を高めることができる。
 さらにまた、上記の実施例や変形例は本発明の一例であるから、本発明の趣旨の範囲でさらに適宜、変形、追加、修正を行っても本願特許請求の範囲に包含されることは明らかである。
1…真空ハウジング
2…イオン源
3…イオンガイド
4…入口レンズ
4a…開口
5…四重極マスフィルタユニット
50a~50d…ロッド電極
51…ロッドホルダ
52…ホルダ保持台
52a…凹部
53…固定バンド
531…主部材
532…被膜層
54a、54b…ショートバネ
55…放熱性層
56、59…ネジ
57…容器
57a…入口開口
57b…出口開口
58…固定部材
58a…凹部
6…出口レンズ
6a…開口
7…イオン検出器
10…被膜層
C…中心軸(イオン光軸)

Claims (15)

  1.  a)直線状の軸の周りに配置された複数本のロッド電極と、該複数本のロッド電極を保持する絶縁性材料から成るロッドホルダと、を含み、該複数本のロッド電極で囲まれる空間に導入されたイオンを該ロッド電極に印加される高周波電圧により形成される電場の作用で質量電荷比に応じて分離するイオン光学素子と、
     b)前記イオン光学素子が内部に配置される領域を画定する境界部材と、
     を備え、前記境界部材にあって前記イオン光学素子に向いた面の少なくとも一部に輻射率向上処理が施されていることを特徴とする質量分析装置。
  2.  請求項1に記載の質量分析装置であって、
     前記境界部材の少なくとも一部が真空ハウジングであり、
     前記輻射率向上処理が施される面は前記真空ハウジングの内壁面であることを特徴とする質量分析装置。
  3.  請求項1に記載の質量分析装置であって、
     前記境界部材の少なくとも一部が、前記イオン光学素子へのイオン流の上流側に配置されたイオンを収束させて該イオン光学素子の前記空間に導入するレンズ、又は前記イオン光学素子からのイオン流の下流側に配置されたイオンを収束させて後段へと送るレンズ、の少なくとも一方であり、前記輻射率向上処理が施される面は前記レンズにあって前記イオン光学素子に向いた面であることを特徴とする質量分析装置。
  4.  請求項1に記載の質量分析装置であって、
     前記輻射率向上処理は前記境界部材を形成する材料の面に対する表面処理であることを特徴とする質量分析装置。
  5.  請求項4に記載の質量分析装置であって、
     前記表面処理は前記境界部材を形成する材料の表面に薄い被膜を形成する被膜形成処理であることを特徴とする質量分析装置。
  6.  請求項4に記載の質量分析装置であって、
     前記表面処理は前記境界部材を形成する材料の表面を化学的に又は物理的に削って表面を粗くする加工処理であることを特徴とする質量分析装置。
  7.  請求項5に記載の質量分析装置であって、
     前記境界部材はアルミニウムからなり、前記表面処理はアルマイト加工処理であることを特徴とする質量分析装置。
  8.  請求項7に記載の質量分析装置であって、
     前記アルマイト加工処理は黒アルマイト加工処理であることを特徴とする質量分析装置。
  9.  請求項5に記載の質量分析装置であって、
     前記表面処理はニッケルメッキ加工処理であることを特徴とする質量分析装置。
  10.  請求項9に記載の質量分析装置であって、
     前記ニッケルメッキ加工処理は黒ニッケルメッキ加工処理であることを特徴とする質量分析装置。
  11.  請求項5に記載の質量分析装置であって、
     前記表面処理はカーボン被膜形成処理であることを特徴とする質量分析装置。
  12.  請求項5に記載の質量分析装置であって、
     前記表面処理はセラミック溶射処理であることを特徴とする質量分析装置。
  13.  請求項1に記載の質量分析装置であって、
     前記輻射率向上処理は前記境界部材の面に別の材料の薄板又は薄箔を貼り付ける処理であることを特徴とする質量分析装置。
  14.  請求項1に記載の質量分析装置であって、
     前記イオン光学素子は四重極マスフィルタであることを特徴とする質量分析装置。
  15.  請求項1に記載の質量分析装置であって、
     前記イオン光学素子はリニアイオントラップであることを特徴とする質量分析装置。
PCT/JP2018/004159 2018-02-07 2018-02-07 質量分析装置 WO2019155542A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/771,396 US11043371B2 (en) 2018-02-07 2018-02-07 Mass spectrometer
PCT/JP2018/004159 WO2019155542A1 (ja) 2018-02-07 2018-02-07 質量分析装置
JP2019570192A JP6860092B2 (ja) 2018-02-07 2018-02-07 質量分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/004159 WO2019155542A1 (ja) 2018-02-07 2018-02-07 質量分析装置

Publications (1)

Publication Number Publication Date
WO2019155542A1 true WO2019155542A1 (ja) 2019-08-15

Family

ID=67549343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004159 WO2019155542A1 (ja) 2018-02-07 2018-02-07 質量分析装置

Country Status (3)

Country Link
US (1) US11043371B2 (ja)
JP (1) JP6860092B2 (ja)
WO (1) WO2019155542A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013274A1 (ja) 2021-08-06 2023-02-09 株式会社日立ハイテク 質量分析装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11139158B2 (en) * 2018-02-07 2021-10-05 Shimadzu Corporation Mass spectrometer including a fixation band
JP7205446B2 (ja) * 2019-11-20 2023-01-17 株式会社島津製作所 質量分析装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126161U (ja) * 1981-01-27 1982-08-06
JPS5998448A (ja) * 1982-11-29 1984-06-06 Seiko Instr & Electronics Ltd 四重極質量分析計
JPS60117535A (ja) * 1983-11-29 1985-06-25 Shimadzu Corp 荷電粒子線エネルギ−分析装置
JPH03262931A (ja) * 1990-03-13 1991-11-22 Aloka Co Ltd 光電子増倍管の感度校正用光源装置
JPH10228880A (ja) * 1997-02-14 1998-08-25 Yaskawa Electric Corp 真空容器
US6239429B1 (en) * 1998-10-26 2001-05-29 Mks Instruments, Inc. Quadrupole mass spectrometer assembly

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032782A (en) * 1976-06-04 1977-06-28 Finnigan Corporation Temperature stable multipole mass filter and method therefor
JPH0624105B2 (ja) * 1987-11-20 1994-03-30 株式会社日立製作所 多重極レンズ
JPH03285246A (ja) 1990-03-30 1991-12-16 Shimadzu Corp 四重極質量分折装置
JP3279023B2 (ja) 1993-11-18 2002-04-30 株式会社島津製作所 四重極質量分析装置
US5525084A (en) 1994-03-25 1996-06-11 Hewlett Packard Company Universal quadrupole and method of manufacture
JP3509424B2 (ja) 1996-09-30 2004-03-22 株式会社島津製作所 四重極質量分析装置
EP1137046A2 (en) * 2000-03-13 2001-09-26 Agilent Technologies Inc. a Delaware Corporation Manufacturing precision multipole guides and filters
US6646256B2 (en) * 2001-12-18 2003-11-11 Agilent Technologies, Inc. Atmospheric pressure photoionization source in mass spectrometry
DE102004037511B4 (de) * 2004-08-03 2007-08-23 Bruker Daltonik Gmbh Multipole durch Drahterosion
DE102004054835A1 (de) * 2004-11-12 2006-05-24 VACUTEC Hochvakuum- & Präzisionstechnik GmbH Verfahren zur Herstellung einer Elektrode bzw. mehrpoligen Elektrodenanordnung sowie mehrpolige Elektrodenanordnung und Elektrode für eine mehrpolige Elektrodenanordnung
US10276358B2 (en) * 2006-01-02 2019-04-30 Excellims Corporation Chemically modified ion mobility separation apparatus and method
US10073056B2 (en) * 2006-02-14 2018-09-11 Excellims Corporation Practical ion mobility spectrometer apparatus and methods for chemical and/or biological detection
US8395112B1 (en) * 2006-09-20 2013-03-12 Mark E. Bier Mass spectrometer and method for using same
EP2260503B1 (en) * 2008-04-04 2018-10-10 Agilent Technologies, Inc. Electrospray ion sources for improved ionization
US8193489B2 (en) * 2009-05-28 2012-06-05 Agilent Technologies, Inc. Converging multipole ion guide for ion beam shaping
US8173976B2 (en) * 2009-07-24 2012-05-08 Agilent Technologies, Inc. Linear ion processing apparatus with improved mechanical isolation and assembly
US8492713B2 (en) * 2011-07-14 2013-07-23 Bruker Daltonics, Inc. Multipole assembly and method for its fabrication
JP6345899B2 (ja) 2016-02-23 2018-06-20 鴻海精密工業股▲ふん▼有限公司 蒸着マスク、蒸着マスクの製造方法および有機el表示装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126161U (ja) * 1981-01-27 1982-08-06
JPS5998448A (ja) * 1982-11-29 1984-06-06 Seiko Instr & Electronics Ltd 四重極質量分析計
JPS60117535A (ja) * 1983-11-29 1985-06-25 Shimadzu Corp 荷電粒子線エネルギ−分析装置
JPH03262931A (ja) * 1990-03-13 1991-11-22 Aloka Co Ltd 光電子増倍管の感度校正用光源装置
JPH10228880A (ja) * 1997-02-14 1998-08-25 Yaskawa Electric Corp 真空容器
US6239429B1 (en) * 1998-10-26 2001-05-29 Mks Instruments, Inc. Quadrupole mass spectrometer assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013274A1 (ja) 2021-08-06 2023-02-09 株式会社日立ハイテク 質量分析装置

Also Published As

Publication number Publication date
JPWO2019155542A1 (ja) 2020-11-19
US11043371B2 (en) 2021-06-22
JP6860092B2 (ja) 2021-04-14
US20200395206A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
WO2019155543A1 (ja) 質量分析装置
WO2019155545A1 (ja) 質量分析装置
JP4931793B2 (ja) 質量分析計の焦点面検出器アセンブリ
WO2019155542A1 (ja) 質量分析装置
US9859106B2 (en) Reflectrons and methods of producing and using them
US6239429B1 (en) Quadrupole mass spectrometer assembly
US20220122829A1 (en) Integrated low cost curtain plate, orifice pcb and ion lens assembly
JP2021082496A (ja) 質量分析装置
KR102421640B1 (ko) 추출 플레이트, 추출 세트, 및 작업물 프로세싱 시스템
WO2019155544A1 (ja) 質量分析装置
CN113228227A (zh) 质谱仪采样锥和接口以及将其彼此密封的方法
US20230326732A1 (en) Ion spectrometer
US20230178354A1 (en) Integrated qjet and q0 rodsets sharing the same rod diameters and rf potential
US11201044B2 (en) Multipole assembly configurations for reduced capacitive coupling
TWI808202B (zh) 微通道板總成及帶電粒子檢測器
WO2022024398A1 (ja) イオントラップ装置及び質量分析装置
WO2019167158A1 (ja) 四重極型質量分析装置
WO2022024397A1 (ja) イオントラップ装置及び質量分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905768

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019570192

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905768

Country of ref document: EP

Kind code of ref document: A1