WO2022024398A1 - イオントラップ装置及び質量分析装置 - Google Patents

イオントラップ装置及び質量分析装置 Download PDF

Info

Publication number
WO2022024398A1
WO2022024398A1 PCT/JP2020/029587 JP2020029587W WO2022024398A1 WO 2022024398 A1 WO2022024398 A1 WO 2022024398A1 JP 2020029587 W JP2020029587 W JP 2020029587W WO 2022024398 A1 WO2022024398 A1 WO 2022024398A1
Authority
WO
WIPO (PCT)
Prior art keywords
trap
electrode
ion
electrodes
detector
Prior art date
Application number
PCT/JP2020/029587
Other languages
English (en)
French (fr)
Inventor
洋 関
義宣 有田
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2020/029587 priority Critical patent/WO2022024398A1/ja
Publication of WO2022024398A1 publication Critical patent/WO2022024398A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons

Definitions

  • the present invention relates to an ion trap device and a mass spectrometer.
  • an ion trap captures and traps ions by the action of a high-frequency electric field, sorts ions with a specific mass-to-charge ratio m / z, and even cleaves the sorted ions. Used to do.
  • a linear ion trap for example, a linear ion trap (LIT) including four rod electrodes arranged by a holder (holding member) while maintaining a predetermined relative position is known (see Patent Document 1). Further, as a linear ion trap, it is provided with four flat plate electrodes, one is an X electrode pair symmetrically arranged in the ⁇ X direction with the central axis as the origin, and the other is a Y electrode pair arranged symmetrically in the ⁇ Y direction. Is also known (see Non-Patent Document 1).
  • the pair of electrodes facing each other and the other pair of electrodes have an RF for traps having 180 degrees out of phase.
  • a voltage is applied.
  • the ions discharged from the ion trap are detected by a detector such as an electron doubling tube or a Faraday cup.
  • a detector that detects ions discharged from an ion trap generally has an electrode that receives ions, and forms an electric field that draws in ions by applying a voltage to this electrode. Since the RF voltage applied to the electrode of the ion trap becomes noise of the detector, a shielding electrode for blocking the RF voltage is often arranged between the ion trap and the detector. On the other hand, some of the ions discharged from the ion trap may collide with the shielding electrode or the like and do not reach the detector. Then, the number of ions reaching the detector decreases, and the detection sensitivity of the detector decreases.
  • the resolution of the mass spectrum deteriorates when the pressure in the chamber of the ion trap device becomes 10 -1 Pa or more.
  • the electrode of the ion trap It is necessary to reduce the interval between. In order to reduce the distance between the electrodes, it is necessary to reduce the distance between the electrodes themselves, which makes it difficult to accurately fix the electrodes to the holding member when assembling the ion trap. Then, the trap efficiency and the discharge efficiency of the ions of the ion trap are affected, and the detection sensitivity of the detector is lowered.
  • the problem to be solved by the present invention is to improve the efficiency of ions discharged from the trap space reaching the detector, and even if the electrode of the ion trap is made smaller, the detection sensitivity of the detector does not decrease. It is to provide a trap device and a mass spectrometer equipped with the trap device.
  • the ion trap device made to solve the above problems is Multiple rod-shaped trap electrodes arranged around the central axis to form a trap space for trapping ions, A detector that detects ions discharged from the trap space through an ion discharge port provided in at least one of the plurality of trap electrodes.
  • a shielding electrode arranged between the trap electrode provided with the ion discharge port and the detector and having an ion passage port for passing ions toward the detector. Equipped with The cross-sectional shape of the trap electrode provided with the ion discharge port on the plane orthogonal to the central axis is a U-shape that opens toward the ion passage port of the shielding electrode. The ion discharge port is provided at the bottom of the U-shape.
  • the trap electrode provided with the ion discharge port has a U-shape whose cross-sectional shape on the plane orthogonal to the central axis opens toward the ion passage port of the shielding electrode, so that an RF voltage is applied.
  • a pseudo-potential is generated between the electrode provided with the ion discharge port and the shield electrode to which the DC voltage is applied to shield the RF voltage, and the collision of ions with the shield electrode can be reduced. Therefore, it is possible to improve the rate at which the ions discharged from the trap space reach the detector.
  • an ion trap device in which the detection sensitivity of the detector does not decrease even when the electrode of the ion trap is made smaller, and a mass spectrometer provided with the ion trap device are provided.
  • FIG. 1 is a schematic configuration diagram of the mass spectrometer 1 of this embodiment.
  • the mass spectrometer 1 includes a chamber 10 and an ion source 2 attached to the chamber 10 for ionizing a liquid sample by an electron spray ionization method (ESI) or an atmospheric pressure chemical ionization method (APCI). Ions derived from the generated sample components are introduced into the chamber 10. An intermediate vacuum chamber 11 and a high vacuum chamber 12 are provided in the chamber 10.
  • the ion source 2 has a substantially atmospheric pressure atmosphere, and the intermediate vacuum chamber 11 has a medium pressure (for example, about 10 2 Pa), and the high vacuum chamber 12 has a lower pressure (for example, about 10 Pa). It is evacuated by driving.
  • the mass spectrometer 1 has a multi-stage differential exhaust system in which the degree of vacuum is gradually increased from the ion source 2 to the high vacuum chamber 12.
  • Various ions generated by the ion source 2 are sent to the intermediate vacuum chamber 11 through the heating capillary 13, converged by the ion funnel 14, and sent to the high vacuum chamber 12.
  • the high vacuum chamber 12 is provided with an ion guide 15, a linear ion trap 40, and a detector 60 for detecting ions.
  • the ion guide 15 is a quadrupole or multipole type ion guide, and transports ions while converging them by the action of a high-frequency electric field.
  • the ions introduced into the high vacuum chamber 12 are converged by the ion guide 15 and introduced into the linear ion trap 40.
  • the heating capillary 13, the ion funnel 14, and the ion guide 15 are arranged in the chamber 10 along the unidirectional ion optical axis.
  • the linear ion trap 40 is arranged in the chamber 10 so that the central axis C of the linear ion trap 40 coincides with the ion optical axis.
  • the extension direction of the central axis C of the linear ion trap 40 is defined as the Z direction, and the X direction and the Y direction orthogonal to the Z direction are shown in the figure.
  • a predetermined high frequency voltage is applied to the four trap electrodes 41 constituting the linear ion trap 40.
  • a pair of DC electrodes 16 for forming a potential in the Z direction are arranged at both ends of the trap electrode 41 of the linear ion trap 40.
  • the confinement of ions in the radial direction (XY directions) orthogonal to the central axis C is performed by a high-frequency electric field, and the confinement of ions in the Z direction along the central axis C is performed by a DC electric field.
  • ions having a specific mass-to-charge ratio are captured in the trap space surrounded by the trap electrode 41 and the DC electrode 16.
  • the ions captured in the trap space are discharged toward the detector 60 by sweeping with an RF voltage or by applying an additional AC voltage to the trap electrode 41.
  • the detector 60 generates a detection signal according to the amount of ions.
  • an electron double tube, a Faraday cup, or the like is adopted.
  • the detection signal of the detector 60 is input to the data processing unit 30, and a mass spectrum is created.
  • the linear ion trap 40 corresponds to the ion trap device of the present invention.
  • a shielding electrode 17 provided with an opening 19 through which ions pass is arranged between the ion discharge port of the linear ion trap 40 and the detector 60.
  • the shielding electrode 17 is for reducing the influence of the RF voltage applied to the trap electrode 41 of the linear ion trap 40 on the detector 60, and a predetermined DC voltage is applied.
  • the voltage applied to each electrode arranged in the chamber 10 is supplied by the voltage generating unit 21.
  • the voltage generation unit 21 includes a power supply capable of generating AC and DC voltages, and a voltage having a predetermined frequency is applied to each electrode under the control of the control unit 20. Although predetermined voltages are applied to the ion funnel 14, the ion guide 15, the detector 60, and the like, the description thereof is omitted in FIG.
  • FIG. 2 is a perspective view illustrating the trap electrode 41 of the linear ion trap 40 of this embodiment.
  • FIG. 3 is a front view illustrating the holder 50 that holds the trap electrode 41.
  • FIG. 4 is a front view of the linear ion trap 40, and
  • FIG. 5 is a right side view thereof.
  • the linear ion trap 40 includes four trap electrodes 41 arranged so as to surround the central axis C, and a holder 50 which is a holding member for holding the trap electrodes 41.
  • the linear ion trap 40 includes two pairs of two parallel electrodes extending along the central axis C, and the four rod-shaped trap electrodes 41 have the central axis C as the origin in the ⁇ X direction. It constitutes a pair of arranged X electrodes 41a and a pair of Y electrodes 41b arranged symmetrically in the ⁇ Y direction.
  • the X electrode of the paired trap electrode is designated by the reference numeral 41a
  • the Y electrode is designated by the reference numeral 41b.
  • the trap electrode 41 of this embodiment is a so-called flat plate electrode in which the electrode surface facing the trap space is a flat surface.
  • Each trap electrode 41 has a thickness of the electrode facing the trap space side in the front view (see FIG. 4) in order to bring the electrode surfaces facing each other in the X direction and the Y direction closer to each other while avoiding interference between the electrode members. It has a thin, convex shape.
  • the X electrode 41a is provided with an ion discharge port for discharging ions toward the detector 60.
  • the ion outlet is a slit 44 communicating with the trap space.
  • the X electrode 41a is provided with an opening 42 that opens toward the ion passage port of the shielding electrode 17 on the surface opposite to the side facing the trap space.
  • the shape of the recess 43 formed from the slit 44 toward the opening 42 is substantially U-shaped in cross-sectional view (see FIG. 6 described later). That is, the slit 44 is provided at the bottom of the U-shaped recess 43.
  • a screw hole 45a into which a fixing screw 56a for fixing the X electrode 41a to the holder 50 is screwed is provided on the surface of the X electrode 41a opposite to the surface facing the trap space. There is.
  • the Y electrode 41b has a convex shape with a thin thickness toward the trap space side of the electrode when viewed from the front (see FIG. 4), but the portion to be fitted into the fitting recess 51b of the holder 50, which will be described later, is the trap space. It is thicker than the tip that faces.
  • a screw hole 45b into which a fixing screw 56b for fixing the Y electrode 41b to the holder 50 is screwed is provided on the surface of the Y electrode 41b opposite to the surface facing the trap space.
  • the convex shape of the trap electrode 41 is not limited to this, although the convex shape is formed by processing the metal of the electrode material.
  • the Y electrode 41b may be fitted to the shape of the fitting recess 51b of the holder 50 by inserting, for example, a resin spacer that sandwiches the flat plate at both ends of a flat plate having a predetermined thickness. .. That is, the shape of the trap electrode may be deformed to one suitable for holding by the holder 50 by combining a flat plate and another member.
  • the holder 50 is made of an insulating material such as ceramic that is substantially annular and has a predetermined thickness, and is provided with fitting recesses 51a and 51b as holding portions for fitting and holding each trap electrode 41 inside. There is.
  • the shape of the fitting recess 51a corresponds to the shape of the X electrode 41a
  • the shape of the fitting recess 51b corresponds to the shape of the Y electrode 41b.
  • a plurality of holes 52a, 52b, 53 penetrating to the inner fitting recesses 51a, 51b are provided on the outer periphery of the holder 50 at predetermined intervals.
  • holes 52a, 52b, 53 are screw holes for inserting fixing screws 56a, 56b, and pressing screws 57 for fixing the trap electrode 41 fitted in the fitting recesses 51a, 51b into the recesses.
  • the holes 52a and 52b for inserting the fixing screws 56a and 56b are provided along the X-axis and the Y-axis.
  • the hole 53 for inserting the pressing screw 57 is provided at a position having a predetermined symmetry about the central axis C.
  • the positions having a predetermined symmetry in this embodiment are twice symmetric with respect to the fixing screw 56a and the pressing screw 57 connected to the two paired X electrodes 41a, with the central axis C as the center of rotation, and the two paired positions.
  • the fixing screw 56b and the pressing screw 57 connected to the Y electrode 41b are twice symmetrical with the central axis C as the center of rotation.
  • a resin can also be used as the insulating material constituting the holder 50.
  • the trap electrode 41 is fitted into the fitting recesses 51a and 51b of the holder 50, respectively.
  • the surface of the X electrode 41a opposite to the surface facing the trap space is screwed into the screw hole 45a at the tip of the fixing screw 56a, so that the surface is orthogonal to the X direction in the fitting recess 51a. It is attracted to the surface 54a of No. 1 to fit the X electrode 41a and is fixed in the recess 51a.
  • the tip of the pressing screw 57 is brought into contact with the surface of the X electrode 41a that is orthogonal to the surface fixed by the fixing screw 56a, and a force in the direction orthogonal to the longitudinal direction (Z direction) of the X electrode 41a is applied.
  • the surface of the X electrode 41a opposite to the surface with which the pressing screw 57 is in contact is pressed against the second surface 55a orthogonal to the first surface 54a of the fitting recess 51a.
  • the X electrode 41a is positioned and fixed from two directions toward the two surfaces of the first surface 54a and the second surface 55a of the fitting recess 51a.
  • the surface of the Y electrode 41b opposite to the surface facing the trap space is fitted by screwing the tip of the fixing screw 56b into the screw hole 45b.
  • the Y electrode 41b is attracted to the first surface 54b orthogonal to the Y direction of the recess 51b, and the Y electrode 41b is fitted and stopped in the recess 51b.
  • the tip of the pressing screw 57 is brought into contact with the surface of the Y electrode 41b that is orthogonal to the surface fixed by the fixing screw 56b, and a force in the direction orthogonal to the longitudinal direction (Z direction) of the Y electrode 41b is applied.
  • the surface of the Y electrode 41b opposite to the surface with which the pressing screw 57 is in contact is pressed against the second surface 55b orthogonal to the first surface 54b of the fitting recess 51b.
  • the Y electrode is positioned and fixed from two directions toward the two surfaces of the first surface 54b and the second surface 55b of the fitting recess 51b.
  • the fixing screws 56a and 56b which are fastening members, fix the X electrode 41a in the X direction, the Y electrode 41b in the Y direction is fixed, and the pressing screw 57, which is a pressing member, fixes the X electrode 41b in the Y direction.
  • the trap electrode 41 can be positioned more reliably.
  • the direction in which the trap electrode 41 is pushed by the pressing screw 57 to be the direction in which the pair of electrodes are alternated, the balance of the pressing force applied to the trap electrode 41 by the pressing screw 57 is maintained, and the X direction of the trap electrode 41 is maintained. And the symmetry in the Y direction is maintained.
  • each trap electrode 41 in order to more reliably position the trap electrode 41, two members, the fixing screws 56a and 56b and the pressing screw 57, are applied to each trap electrode 41 in two orthogonal directions.
  • one member may be used to apply a force in a direction in which the force can be decomposed in two orthogonal directions to fix each trap electrode to the holder 50.
  • the same screw member as the fixing screws 56a and 56b is adopted, each trap electrode 41 is provided with a screw hole to be screwed with the screw, and the holder 50 is fitted by being attracted by screw fastening. It may be positioned and fixed to the surfaces of the recesses 51a and 51b.
  • both ends of the trap electrode 41 are held by two holders 50, but the holding mode of the trap electrode 41 by the holding member is that the trap electrode 41 is held by one holder 50, so-called piece. You may have it on hand.
  • FIG. 6 is a diagram showing a simulation result of an ion orbit to the detector 60.
  • FIG. 4 schematically shows the AA cross section of the linear ion trap 40 of FIG.
  • the voltage applied to each electrode at this time is as follows.
  • RF voltage of trap electrode amplitude about 400Vpp, frequency 2.5MHz, voltage of shield electrode: about 0V, voltage of detector: about -1 to -1.5kV.
  • the ions discharged from the slit 44 of the X electrode 41a spread in the space (recessed portion 43) from the slit 44 toward the opening 42, but converge between the X electrode 41a and the shielding electrode 17.
  • a pseudopotential is generated between the X electrode 41a and the shielding electrode 17 due to the action of the RF voltage applied to the X electrode 41a and the DC voltage applied to the shielding electrode 17, and ions are generated on the surface of the shielding electrode 17. This is because the collision is suppressed.
  • this pseudopotential and the lens effect brought about by the shielding electrode 17 the ions spread in the recess 43 converge between the X electrode 41a and the shielding electrode 17.
  • the ions converged between the X electrode 41a and the shielding electrode 17 pass through the opening 19 which is the ion passage port of the shielding electrode 17 and reach the detector 60.
  • the cross-sectional shape of the X electrode 41a having the ion discharge port is U-shaped, so that the ions can be efficiently guided to the detector 60.
  • the U-shape of the concave portion 43 in this specification includes a V-shape and other similar shapes, and is not limited to a shape in which the bottom and side walls of the U-shape are integrally formed. That is, by electrically connecting a plurality of members (for example, a U-shaped bottom member and two side wall members) to form one electrode having the same potential, the recess 43 of the X electrode 41a becomes substantially U-shaped. It may be a thing.
  • the two paired X electrodes 41a adopt the same shape having the recess 43 from the viewpoint of the symmetry of the electric field, but the shape of the pair of X electrodes 41a does not have to be the same. That is, the X electrode 41a on the detector 60 side may be provided with a slit 44 serving as an ion discharge port, and the other X electrode 41a may not have a recess 43 from the slit 44 to the opening 42. .. Further, the X electrode 41a may be divided into two at a position corresponding to the slit 44.
  • the X electrode 41a is formed of one member having a concave portion 43 formed in a block having a convex appearance as shown in FIG. 2, both ends of the X electrode 41a in the longitudinal direction (Z direction). A space where the X electrode 41a can be fixed to the holder 50 by screwing can be secured in the portion, and the electrode can be fixed accurately. This makes it possible to improve the resolution of the mass spectrum and the efficiency of discharging ions from the ion trap.
  • the mass spectrometer In order to reduce the size of the mass spectrometer, it is required to reduce the size and output of the vacuum pump itself that performs vacuum exhaust. However, if this vacuum pump is made smaller, the vacuum state in the chamber becomes worse, and the ion trap is operated at a pressure of 10 -1 Pa or more, which is generally said to reduce the resolution of the mass spectrum. In order to operate the linear ion trap under such pressure, the frequency of the RF voltage must be increased, and in order to realize it, the distance between the electrodes must be shortened. Since the trap electrode 41 of the linear ion trap 40 can shorten the distance between the electrodes (for example, about 4 mm), the linear ion trap 40 can be operated at a pressure of 10 -1 Pa or more. .. Since the linear ion trap 40 itself can be miniaturized to reduce the volume of the chamber 10 and the vacuum pump for vacuum exhaust can be small, it is possible to provide a portable mass spectrometer.
  • (Section 1) In the ion trap device according to the first aspect, Multiple rod-shaped trap electrodes arranged around the central axis to form a trap space for trapping ions, A detector that detects ions discharged from the trap space through an ion discharge port provided in at least one of the plurality of trap electrodes. A shielding electrode arranged between the trap electrode provided with the ion discharge port and the detector and having an ion passage port for passing ions toward the detector. Equipped with The cross-sectional shape of the trap electrode provided with the ion discharge port on the plane orthogonal to the central axis is a U-shape that opens toward the ion passage port of the shielding electrode. The ion discharge port is provided at the bottom of the U-shape.
  • the trap electrode provided with the ion discharge port has a U-shape having a cross-sectional shape on a plane orthogonal to the central axis that opens toward the ion passage port of the shielding electrode. Therefore, a pseudo-potential is generated between the electrode provided with the ion discharge port to which the RF voltage is applied and the shield electrode to which the DC voltage is applied to shield the RF voltage, and the ions collide with the shield electrode. Can be reduced. Therefore, it is possible to improve the efficiency with which the ions discharged from the trap space reach the detector. Further, even if the electrode of the ion trap is made smaller, the detection sensitivity of the detector does not decrease.
  • the plurality of trap electrodes are composed of two pairs of electrodes facing each other.
  • the plurality of trap electrodes are composed of two pairs of electrodes facing each other, the relative positioning of the electrode pair with respect to the holding member can be easily performed, and the linear ion trap can be assembled. Can be easily performed.
  • the invention described in paragraph 3 is the ion trap device according to paragraph 1 or 2.
  • a holding member made of an insulating material having a holding portion for holding each of the plurality of trap electrodes at a predetermined position surrounding the central axis.
  • a fixing member for fixing each of the plurality of trap electrodes to the plurality of holding portions of the holding member in a direction having a predetermined symmetry with respect to the central axis. To prepare for.
  • the fixing members since a plurality of fixing members for fixing in a direction having a predetermined symmetry with respect to the central axis are provided, the fixing members do not interfere with each other, and the electrodes are attached to the holding member. Can be fixed. Therefore, the electrode of the ion trap can be accurately positioned in a narrow space.
  • the volume of the chamber in which the ion trap is arranged can be reduced, and the vacuum pump for vacuum exhaust can be small. , It becomes possible to provide a portable mass spectrometer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

イオントラップ装置では、中心軸を囲んで配置され、イオンを捕捉するトラップ空間を形成する棒状の複数のトラップ電極(41)と、複数のトラップ電極(41)のうちの少なくとも1つに設けられたイオン排出口(44)を介して前記トラップ空間から排出されたイオンを検出する検出器と、イオン排出口(44)が設けられたトラップ電極(41a)と検出器との間に配置され、検出器に向かうイオンを通過させるイオン通過口を有する遮蔽電極と、を備え、イオン排出口(44)が設けられたトラップ電極(41a)の、中心軸に直交する面での断面形状が遮蔽電極のイオン通過口に向けて開口するU字状であり、イオン排出口(44)は、該U字状の底部に設けられている。

Description

イオントラップ装置及び質量分析装置
 本発明は、イオントラップ装置及び質量分析装置に関する。
 質量分析装置において、イオントラップは、高周波電場の作用によりイオンを捕捉して閉じ込めたり、特定の質量電荷比m/zを持つイオンを選別したり、さらにはそうして選別したイオンを開裂させたりするために用いられる。
 イオントラップとしては、例えば、ホルダ(保持部材)により所定の相対位置を保って配置された4本のロッド電極を含む線形イオントラップ(LIT)が知られている(特許文献1参照)。また、線形イオントラップとして、中心軸を原点として、±X方向に対称に配置されたX電極対と、±Y方向に対称に配置されたY電極対との、4本の平板電極を備えるものも知られている(非特許文献1参照)。このような線形イオントラップでは、4本の電極に囲まれたトラップ空間にイオンを捕捉するために、対向する一対の電極と他の一対の電極とには、180度位相の異なるトラップ用のRF電圧が印加される。そして、イオントラップから排出されたイオンは、電子倍増管又はファラデーカップなどの検出器により検出される。
特開平10-106484号公報
Qingyu Song et al., Ion trap mass analysis at high pressure: an experimental characterization, Journal of Mass Spectrometry, 2010, 45, 26-34
 イオントラップから排出されたイオンを検出する検出器は、一般的に、イオンを受ける電極を有し、この電極に電圧を印加することでイオンを引き込む電場を形成している。イオントラップの電極に印加されているRF電圧は検出器のノイズになるため、イオントラップと検出器の間にRF電圧を遮るための遮蔽電極を配置することも多い。一方で、イオントラップから排出されたイオンの一部は、遮蔽電極などに衝突して検出器に到達しないことがある。そうすると、検出器に到達するイオンの数が減少し、検出器の検出感度が低下する。
 また、イオントラップをチャンバに格納したイオントラップ装置を備えた質量分析装置では、該イオントラップ装置のチャンバ内の圧力が10-1Pa以上となると、マススペクトルの分解能が悪化することが知られている。マススペクトルの分解能を維持しつつ、チャンバから排気する真空ポンプの負荷を低減して装置を小型化するために、イオントラップを10-1Pa以上の圧力下で動作させるには、イオントラップの電極の間隔を小さくする必要がある。電極の間隔を小さくするには、電極自体も小さくする必要があるため、イオントラップを組み立てる際に電極を保持部材に精度よく固定することが難しくなる。そうすると、イオントラップのイオンのトラップ効率や排出効率に影響が及び、検出器の検出感度が低下する。
 本発明が解決しようとする課題は、トラップ空間から排出されるイオンが検出器へ到達する効率を向上させるとともに、イオントラップの電極を小さくした場合でも、検出器の検出感度の低下が生じないイオントラップ装置、及び、これを備えた質量分析装置を提供することである。
 上記課題を解決するために成された本発明に係るイオントラップ装置は、
 中心軸を囲んで配置され、イオンを捕捉するトラップ空間を形成する棒状の複数のトラップ電極と、
 前記複数のトラップ電極のうちの少なくとも1つに設けられたイオン排出口を介して前記トラップ空間から排出されたイオンを検出する検出器と、
 前記イオン排出口が設けられたトラップ電極と前記検出器との間に配置され、前記検出器に向かうイオンを通過させるイオン通過口を有する遮蔽電極と、
 を備え、
 前記イオン排出口が設けられたトラップ電極の、前記中心軸に直交する面での断面形状が前記遮蔽電極の前記イオン通過口に向けて開口するU字状であり、
 前記イオン排出口は、該U字状の底部に設けられている。
 本発明は、イオン排出口が設けられたトラップ電極が、中心軸に直交する面での断面形状が遮蔽電極のイオン通過口に向けて開口するU字状であることから、RF電圧が印加されるイオン排出口が設けられた電極と、RF電圧を遮蔽するためにDC電圧が印加される遮蔽電極との間で擬ポテンシャルが発生し、遮蔽電極へのイオンの衝突を低減することができる。このため、トラップ空間から排出されるイオンが検出器へ到達する率を向上させることができる。そして、イオントラップの電極を小さくした場合でも、検出器の検出感度の低下が生じないイオントラップ装置、及び、これを備えた質量分析装置が提供される。
本実施例の質量分析装置の概略構成図。 本実施例の線形イオントラップのトラップ電極を説明する斜視図。 トラップ電極を保持するホルダを説明する正面図。 本実施例の線形イオントラップの正面図。 本実施例の線形イオントラップの右側面図。 検出器へのイオン軌道のシミュレーション結果を示す図。
 本発明に係る装置の一実施例について、以下、図面を参照して説明する。図1は本実施例の質量分析装置1の概略構成図である。
 <質量分析装置>
 質量分析装置1は、チャンバ10と、チャンバ10に取り付けられエレクトロンスプレーイオン化法(ESI)又は大気圧化学イオン化法(APCI)などによる液体試料のイオン化を行うイオン源2を備え、該イオン源2において生成された試料成分由来のイオンがチャンバ10内に導入される。チャンバ10内には中間真空室11と高真空室12が設けられている。イオン源2は、略大気圧雰囲気であり、中間真空室11は中程度(例えば、~10Pa)に、高真空室12はさらに低圧(例えば、~10Pa)に、それぞれ真空ポンプ(図示せず)の駆動により真空排気される。この質量分析装置1は、イオン源2から高真空室12まで段階的に真空度が高まる多段差動排気系の構成となっている。イオン源2で生成された各種イオンは加熱キャピラリ13を通して中間真空室11に送られ、イオンファンネル14で収束されて、高真空室12に送られる。高真空室12には、イオンガイド15と、線形イオントラップ40と、イオンを検出する検出器60が設けられている。イオンガイド15は、四重極型又は多重極型のイオンガイドであり、高周波電場の作用により、イオンを収束させつつ輸送する。高真空室12に導入されたイオンは、イオンガイド15で収束されて線形イオントラップ40に導入される。加熱キャピラリ13、イオンファンネル14、イオンガイド15は、一方向のイオン光軸に沿ってチャンバ10内に配置される。そして、線形イオントラップ40は、該線形イオントラップ40の中心軸Cがイオン光軸に一致するように、チャンバ10内に配置される。なお、説明の便宜上、線形イオントラップ40の中心軸Cの延伸方向をZ方向、Z方向に直交するX方向とY方向を図示するように定めている。
 線形イオントラップ40を構成する4本のトラップ電極41には、所定の高周波電圧(RF電圧)が印加される。なお、図1においては、4本のうち2本を図示している。そして、線形イオントラップ40のトラップ電極41の両端には、Z方向のポテンシャルを形成するための一対のDC電極16が配置される。線形イオントラップ40では、中心軸Cに直交する径方向(X―Y方向)のイオンの閉じ込めは高周波電場で行い、中心軸Cに沿ったZ方向のイオンの閉じ込めは直流電場で行う。これにより、特定の質量電荷比のイオンがトラップ電極41及びDC電極16で囲まれたトラップ空間に捕捉される。トラップ空間に捕捉されたイオンは、RF電圧による掃引、又は、トラップ電極41に付加的にAC電圧を印加することにより、検出器60に向けて排出される。検出器60は、イオンの量に応じた検出信号を生成する。このような検出器としては、電子倍増管又はファラデーカップ等が採用される。検出器60の検出信号はデータ処理部30に入力され、マススペクトルが作成される。この線形イオントラップ40は、本発明のイオントラップ装置に相当する。
 線形イオントラップ40のイオンの排出口と検出器60の間には、イオンが通過する開口19が設けられた遮蔽電極17が配置される。この遮蔽電極17は、線形イオントラップ40のトラップ電極41に印加されたRF電圧による検出器60への影響を低減するためのものであり、所定のDC電圧が印加される。
 チャンバ10内に配置された各電極に印加される電圧は、電圧発生部21により供給される。電圧発生部21は、交流及び直流電圧を発生可能な電源を備え、制御部20の制御により、所定の周波数の電圧を、各電極に印加する。なお、イオンファンネル14、イオンガイド15、検出器60などにもそれぞれ所定の電圧が印加されるが、それらについては、図1において記載を省略している。
 <線形イオントラップ>
 図2は、本実施例の線形イオントラップ40のトラップ電極41を説明する斜視図である。図3は、トラップ電極41を保持するホルダ50を説明する正面図である。図4は、線形イオントラップ40の正面図であり、図5はその右側面図である。
 線形イオントラップ40は、中心軸Cを囲んで配置された4本のトラップ電極41と、該トラップ電極41を保持する保持部材であるホルダ50を備える。
 この線形イオントラップ40は、中心軸Cに沿って延在する2本の平行電極を2対備えるものであり、棒状の4本のトラップ電極41は、中心軸Cを原点として、±X方向に配置されたX電極41aの対と、±Y方向に対称に配置されたY電極41bの対を構成する。なお、図2~5においては、対をなすトラップ電極のX電極に符号41a、Y電極に符号41bを付しているが、これらを総称するときは、トラップ電極41と称する。4本のトラップ電極41に囲まれたトラップ空間にイオンを捕捉するために、X電極41aとY電極41bとには、180度位相の異なるRF電圧が印加される。この実施例のトラップ電極41は、トラップ空間に面する電極面が平面である、所謂、平板電極である。
 各トラップ電極41は、電極部材同士の干渉を避けつつ、X方向とY方向に対向する電極面をより近づけるため、正面視(図4参照)において、電極のトラップ空間側を向く方の厚みが細い、凸形状を有する。
 X電極41aには、検出器60に向けてイオンを排出するためのイオン排出口が設けられている。この実施例では、イオン排出口は、トラップ空間と連通するスリット44である。X電極41aは、トラップ空間を向く側と逆側の面に、遮蔽電極17のイオン通過口に向けて開口する開口部42が設けられている。このX電極41aにおいて、スリット44から開口部42にむけて形成される凹部43の形状は、断面視において、略U字状である(後述する図6参照)。すなわち、該U字の凹部43の底部にスリット44が設けられていることになる。また、X電極41aにおけるトラップ空間を向く面とは逆側の面には、図2に示すように、X電極41aをホルダ50に固定する固定ネジ56aが螺合するネジ穴45aが設けられている。
 Y電極41bは、正面視(図4参照)において、電極のトラップ空間側を向く方の厚みが細い、凸形状としているが、後述するホルダ50の嵌め合い凹部51bに嵌め合わせる部分は、トラップ空間を向く先端部分より厚みを持たせている。Y電極41bにおけるトラップ空間を向く面とは逆側の面には、図2に示すように、Y電極41bをホルダ50に固定する固定ネジ56bが螺合するネジ穴45bが設けられている。
 この実施例では、トラップ電極41の凸形状は、電極材料の金属を加工して凸形状としているがこれに限定されない。例えば、Y電極41bは、所定の厚みの平板の両端に、例えば該平板を挟持する樹脂製のスペーサを介挿するなどして、ホルダ50の嵌め合い凹部51bの形状に合うようにしてもよい。すなわち、トラップ電極の形状は、平板と他の部材とを組み合わせて、ホルダ50による保持に適したものに変形してもよい。
 ホルダ50は、略円環状で所定の厚さを有するセラミック等の絶縁材料から成り、内側には、各トラップ電極41を嵌め合わせて保持する保持部としての嵌め合い凹部51a、51bが設けられている。嵌め合い凹部51aの形状は、X電極41aの形状に対応し、嵌め合い凹部51bの形状はY電極41bの形状に対応する。ホルダ50の外周には、所定の間隔で、内側の嵌め合い凹部51a、51bまで貫通する複数の孔部52a、52b、53が設けられている。これらの孔部52a、52b、53は、嵌め合い凹部51a、51bにはめ込まれたトラップ電極41を該凹部内に固定するための、固定ネジ56a、56b、押圧ネジ57を挿通するためのネジ孔である。固定ネジ56a、56bを挿通するための孔部52a、52bは、X軸及びY軸に沿って設けられる。押圧ネジ57を挿通するための孔部53は、中心軸Cを中心として所定の対称性を持つ位置に設けられる。この実施例での所定の対称性を持つ位置は、対をなす2つのX電極41aに接続する固定ネジ56a、押圧ネジ57に関して、中心軸Cを回転中心として2回対称、対をなす2つのY電極41bに接続する固定ネジ56b、押圧ネジ57に関して、中心軸Cを回転中心として2回対称である。なお、ホルダ50を構成する絶縁材料としては、樹脂を使用することもできる。
 次に、線形イオントラップ40の組み立てについて説明する。ホルダ50の嵌め合い凹部51a、51bに、それぞれトラップ電極41を嵌め合わせる。X電極41aの場合は、X電極41aにおけるトラップ空間を向く面とは逆側の面を、固定ネジ56aの先端をネジ穴45aにねじ込むネジ締結により、嵌め合い凹部51aにおけるX方向に直交する第1の面54aに引き付けて、X電極41aを嵌め合い凹部51a内に止める。次に、X電極41aにおける固定ネジ56aで止められた面と直交する面に、押圧ネジ57の先端を当接させて、X電極41aの長手方向(Z方向)に直交する方向の力を与えることにより、X電極41aにおける押圧ネジ57を当接させた面と逆側の面を、嵌め合い凹部51aの第1の面54aに直交する第2の面55aに押し付ける。これにより、X電極41aは、嵌め合い凹部51aの第1の面54aと第2の面55aの2つの面に向けて、2方向から位置決めされ、固定される。
 Y電極41bの場合も、X電極41aの場合と同様に、Y電極41bにおけるトラップ空間を向く面とは逆側の面を、固定ネジ56bの先端をネジ穴45bにねじ込むネジ締結により、嵌め合い凹部51bのY方向に直交する第1の面54bに引き付けて、Y電極41bを嵌め合い凹部51b内に止める。次に、Y電極41bにおける固定ネジ56bで止められた面と直交する面に、押圧ネジ57の先端を当接させて、Y電極41bの長手方向(Z方向)に直交する方向の力を与えることにより、Y電極41bにおける押圧ネジ57を当接させた面と逆側の面を、嵌め合い凹部51bの第1の面54bに直交する第2の面55bに押し付ける。これにより、Y電極は、嵌め合い凹部51bの第1の面54bと第2の面55bの2つの面に向けて、2方向から位置決めされ、固定される。
 このように、この線形イオントラップ40では、締結部材である固定ネジ56a、56bによるX方向のX電極41aの固定、Y方向のY電極41bの固定に、押圧部材である押圧ネジ57によるY方向のX電極41aの固定、X方向のY電極41bの固定を加えたことで、トラップ電極41の位置決めをより確実に行うことが可能となっている。押圧ネジ57によりトラップ電極41を押す方向を、対をなす電極で互い違いとなる方向としたことで、押圧ネジ57によりトラップ電極41に与えられる押圧力のバランスが保たれ、トラップ電極41のX方向及びY方向の対称性が維持される。
 この実施例では、トラップ電極41の位置決めをより確実に行うために、各トラップ電極41に対して、直交する2方向に力を作用させるに際し、固定ネジ56a、56bと押圧ネジ57の2つの部材を用いたが、1つの部材を用いて、直交する2方向に力を分解できる方向に力を与えて、各トラップ電極をホルダ50に固定するようにしてもよい。また、押圧ネジ57に換えて、固定ネジ56a、56bと同様のネジ部材を採用し、各トラップ電極41にネジと螺合するネジ穴を設けて、ネジ締結による引き付けにより、ホルダ50の嵌め合い凹部51a、51bの面に対して位置決めし、固定するようにしてもよい。
 この実施例では、トラップ電極41の両端を2個のホルダ50で保持しているが、保持部材によるトラップ電極41の保持態様は、1個のホルダ50でトラップ電極41を保持する、所謂、片手持ちであってもよい。
 <シミュレーション結果>
 図6は、検出器60へのイオン軌道のシミュレーション結果を示す図である。図4においては、図5の線形イオントラップ40のA-A断面を模式的に示している。シミュレーション条件は、線形イオントラップ40を動作させるチャンバ10内の圧力を10Paとし、質量電荷比:m/z=100程度のイオンをトラップ空間に捕捉して分離する条件とした。このときに各電極に印加されている電圧は次のとおりとする。トラップ電極のRF電圧:振幅約400Vpp、周波数2.5MHz、遮蔽電極の電圧:約0V、検出器の電圧:-1~-1.5kV程度。
 図6に示すように、X電極41aのスリット44から排出されたイオンは、スリット44から開口部42に向かう空間(凹部43)で広がるが、X電極41aと遮蔽電極17の間で収束する。これは、X電極41aに印加されたRF電圧と遮蔽電極17に印加されたDC電圧の作用により、X電極41aと遮蔽電極17との間で擬ポテンシャルが発生し、遮蔽電極17表面へのイオンの衝突が抑制されるためである。そして、この擬ポテンシャルと、遮蔽電極17によりもたらされるレンズ効果により、凹部43で広がったイオンがX電極41aと遮蔽電極17の間で収束する。X電極41aと遮蔽電極17の間で収束されたイオンは、遮蔽電極17のイオン通過口である開口19を通過し、検出器60に到達する。このように、この線形イオントラップ40では、イオンの排出口を有するX電極41aの断面形状をU字状としたことで、イオンを効率よく検出器60に誘導することができる。
 なお、この明細書での凹部43の形状のU字には、V字及びその他類する形状を含み、U字の底部と側壁とが一体的に形成された形状に限定されない。すなわち、複数の部材(例えば、U字の底部材と2つの側壁部材)を電気的に接続して同電位を持つ1電極として構成したことにより、X電極41aの凹部43が略U字になるものであってもよい。
 対をなす2つのX電極41aは、電場の対称性の観点から、いずれも凹部43を有する同形状のものを採用しているが、一対のX電極41aの形状は同じでなくてもよい。すなわち、検出器60側のX電極41aにイオンの排出口となるスリット44が設けられていればよく、他方のX電極41aには、スリット44から開口部42に向かう凹部43が無くてもよい。また、X電極41aは、スリット44に相当する位置で2分割されたものであってもよい。
 この実施例では、X電極41aを、図2に示すように外観凸形状のブロックに凹部43を形成した1つの部材で形成していることから、X電極41aの長手方向(Z方向)の両端部に、X電極41aをホルダ50にネジ締結により固定できるスペースを確保することができ、電極を精度よく固定することができるようになる。これにより、マススペクトルの分解能の向上及びイオントラップからのイオンの排出効率を向上させることができる。
 質量分析装置の小型化においては、真空排気を行う真空ポンプ自体の大きさ及び出力を小さくすることが求められる。しかしながら、この真空ポンプを小さくすると、チャンバ内の真空状態が悪くなり、一般的にマススペクトルの分解能が低下すると言われている10-1Pa以上の圧力でイオントラップを動作させることになる。このような圧力下で線形イオントラップを動作させるには、RF電圧の周波数を高くしなければならず、それを実現するには電極間距離を短くしなければならない。この線形イオントラップ40のトラップ電極41は、電極間距離を短く(例えば、4mm程度)にすることができるため、10-1Pa以上の圧力で、線形イオントラップ40を動作させることが可能である。線形イオントラップ40自体を小型化してチャンバ10の容積を小さくできるとともに、真空排気を行う真空ポンプも小型のもので済むため、持ち運びが可能な、質量分析装置を提供することが可能となる。
 [態様]
 上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
 (第1項)
 第1の態様に係るイオントラップ装置では、
 中心軸を囲んで配置され、イオンを捕捉するトラップ空間を形成する棒状の複数のトラップ電極と、
 前記複数のトラップ電極のうちの少なくとも1つに設けられたイオン排出口を介して前記トラップ空間から排出されたイオンを検出する検出器と、
 前記イオン排出口が設けられたトラップ電極と前記検出器との間に配置され、前記検出器に向かうイオンを通過させるイオン通過口を有する遮蔽電極と、
 を備え、
 前記イオン排出口が設けられたトラップ電極の、前記中心軸に直交する面での断面形状が前記遮蔽電極の前記イオン通過口に向けて開口するU字状であり、
 前記イオン排出口は、該U字状の底部に設けられている。
 第1項に記載のイオントラップ装置では、イオン排出口が設けられたトラップ電極が、中心軸に直交する面での断面形状が遮蔽電極のイオン通過口に向けて開口するU字状であることから、RF電圧が印加されるイオン排出口が設けられた電極と、RF電圧を遮蔽するためにDC電圧が印加される遮蔽電極との間で擬ポテンシャルが発生し、遮蔽電極へのイオンの衝突を低減することができる。このため、トラップ空間から排出されるイオンが検出器へ到達する効率を向上させることができる。さらに、イオントラップの電極を小さくした場合でも、検出器の検出感度の低下が生じない。
 (第2項)
 第2項に記載の発明は、第1項に記載のイオントラップ装置において、前記複数のトラップ電極は、互いに対向する2対の電極から成る。
 第2項に記載の発明によれば、複数のトラップ電極は、互いに対向する2対の電極から成ることから、保持部材への電極対の相対的な位置決めが容易に行え、線形イオントラップの組み立てを容易に行うことができる。
 (第3項)
 第3項に記載の発明は、第1項又は第2項に記載のイオントラップ装置において、
 前記複数のトラップ電極の各々を前記中心軸を囲む所定の位置に保持する保持部を有する、絶縁性材料からなる保持部材と、
 前記保持部材の複数の保持部に前記複数のトラップ電極の各々を前記中心軸に対して所定の対称性を持つ方向に固定する固定部材と、
 を備える。
 第3項に記載の発明によれば、中心軸に対して所定の対称性を持つ方向に固定する複数の固定部材を備えることから、各固定部材が互いに干渉することなく、保持部材に電極を固定することができる。このため、狭いスペースにイオントラップの電極を精度よく位置決めすることができる。
 (第4項)
 第4項に記載の発明は、第1項から第3項のいずれかに記載のイオントラップ装置を備えた、質量分析装置である。
 第1項から第3項のいずれかに記載のイオントラップ装置を備えることにより、イオントラップを配置するチャンバの容積を小さくすることができるとともに、真空排気を行う真空ポンプも小型のもので済むため、持ち運びが可能な、質量分析装置を提供することが可能となる。
1…質量分析装置
2…イオン源
10…チャンバ
 11…中間真空室
 12…高真空室
 13…加熱キャピラリ
 14…イオンファンネル
 15…イオンガイド
 16…DC電極
 17…遮蔽電極
 19…開口
20…制御部
 21…電圧発生部
30…データ処理部
40…線形イオントラップ
 41…トラップ電極
  41a…X電極
  41b…Y電極
 42…開口部
 43…凹部
 44…スリット
 45a、45b…ネジ穴
50…ホルダ
 51a、51b…嵌め合い凹部
 52a、52b…孔部
 53…孔部
 54a、54b…第1の面
 55a、55b…第2の面
 56a、56b…固定ネジ
 57…押圧ネジ
60…検出器

Claims (4)

  1.  中心軸を囲んで配置され、イオンを捕捉するトラップ空間を形成する棒状の複数のトラップ電極と、
     前記複数のトラップ電極のうちの少なくとも1つに設けられたイオン排出口を介して前記トラップ空間から排出されたイオンを検出する検出器と、
     前記イオン排出口が設けられたトラップ電極と前記検出器との間に配置され、前記検出器に向かうイオンを通過させるイオン通過口を有する遮蔽電極と、
     を備え、
     前記イオン排出口が設けられたトラップ電極の、前記中心軸に直交する面での断面形状が前記遮蔽電極の前記イオン通過口に向けて開口するU字状であり、
     前記イオン排出口は、該U字状の底部に設けられている、イオントラップ装置。
  2.  請求項1に記載のイオントラップ装置において、
     前記複数のトラップ電極は、互いに対向する2対の電極から成る、イオントラップ装置。
  3.  請求項1又は請求項2に記載のイオントラップ装置において、
     前記複数のトラップ電極の各々を前記中心軸を囲む所定の位置に保持する保持部を有する、絶縁性材料からなる保持部材と、
     前記保持部材の複数の保持部に前記複数のトラップ電極の各々を前記中心軸に対して所定の対称性を持つ方向に固定する固定部材と、
    を備える、イオントラップ装置。
  4.  請求項1から請求項3のいずれかに記載のイオントラップ装置を備えた、質量分析装置。
PCT/JP2020/029587 2020-07-31 2020-07-31 イオントラップ装置及び質量分析装置 WO2022024398A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/029587 WO2022024398A1 (ja) 2020-07-31 2020-07-31 イオントラップ装置及び質量分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/029587 WO2022024398A1 (ja) 2020-07-31 2020-07-31 イオントラップ装置及び質量分析装置

Publications (1)

Publication Number Publication Date
WO2022024398A1 true WO2022024398A1 (ja) 2022-02-03

Family

ID=80035338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029587 WO2022024398A1 (ja) 2020-07-31 2020-07-31 イオントラップ装置及び質量分析装置

Country Status (1)

Country Link
WO (1) WO2022024398A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017208326A (ja) * 2016-03-29 2017-11-24 株式会社島津製作所 イオン処理装置においてイオンを案内する又は閉じ込めるためのイオン操作装置
JP2018073703A (ja) * 2016-11-01 2018-05-10 株式会社島津製作所 質量分析装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017208326A (ja) * 2016-03-29 2017-11-24 株式会社島津製作所 イオン処理装置においてイオンを案内する又は閉じ込めるためのイオン操作装置
JP2018073703A (ja) * 2016-11-01 2018-05-10 株式会社島津製作所 質量分析装置

Similar Documents

Publication Publication Date Title
JP5307844B2 (ja) イオン移動度分析及びイオントラップ質量分析のための方法及システム
JP4931793B2 (ja) 質量分析計の焦点面検出器アセンブリ
CA2636821C (en) Concentrating mass spectrometer ion guide, spectrometer and method
US6784424B1 (en) Apparatus and method for focusing and selecting ions and charged particles at or near atmospheric pressure
US7326926B2 (en) Corona discharge ionization sources for mass spectrometric and ion mobility spectrometric analysis of gas-phase chemical species
EP3033763B1 (en) Sample quantitation with a miniature mass spectrometer
JP6615092B2 (ja) 質量分光計のための汚染フィルタ
JP6772764B2 (ja) 質量分析装置
US10410849B2 (en) Multipole ion guide
US20180114684A1 (en) Ion Current On-Off Switching Method and Device
WO2022024398A1 (ja) イオントラップ装置及び質量分析装置
US20230178356A1 (en) Apparatus and methods for injecting ions into an electrostatic trap
WO2022024397A1 (ja) イオントラップ装置及び質量分析装置
WO2017094146A1 (ja) 四重極マスフィルタ及び四重極型質量分析装置
JP6911948B2 (ja) 質量分析装置
US8314385B2 (en) System and method to eliminate radio frequency coupling between components in mass spectrometers
US11201044B2 (en) Multipole assembly configurations for reduced capacitive coupling
CN110767526B (zh) 一种倾斜多极杆导引系统
JP7217189B2 (ja) イオン検出装置
Medhe Mass Spectrometry: Analysers an Important Tool
JP7497779B2 (ja) 質量分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP