WO2019153429A1 - 一种基于有限制稳定配对策略的柔性作业车间调度方法 - Google Patents
一种基于有限制稳定配对策略的柔性作业车间调度方法 Download PDFInfo
- Publication number
- WO2019153429A1 WO2019153429A1 PCT/CN2018/079333 CN2018079333W WO2019153429A1 WO 2019153429 A1 WO2019153429 A1 WO 2019153429A1 CN 2018079333 W CN2018079333 W CN 2018079333W WO 2019153429 A1 WO2019153429 A1 WO 2019153429A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sub
- preference
- solution
- matrix
- value
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 210000000349 chromosome Anatomy 0.000 claims abstract description 38
- 239000011159 matrix material Substances 0.000 claims description 33
- 239000013598 vector Substances 0.000 claims description 21
- 230000001174 ascending effect Effects 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 238000012546 transfer Methods 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 8
- 238000010606 normalization Methods 0.000 claims description 5
- 230000003044 adaptive effect Effects 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims 1
- 230000035772 mutation Effects 0.000 abstract description 4
- 238000009826 distribution Methods 0.000 abstract description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41865—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/12—Computing arrangements based on biological models using genetic models
- G06N3/126—Evolutionary algorithms, e.g. genetic algorithms or genetic programming
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/01—Probabilistic graphical models, e.g. probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06311—Scheduling, planning or task assignment for a person or group
- G06Q10/063116—Schedule adjustment for a person or group
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06316—Sequencing of tasks or work
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/04—Manufacturing
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/32—Operator till task planning
- G05B2219/32091—Algorithm, genetic algorithm, evolution strategy
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/32—Operator till task planning
- G05B2219/32252—Scheduling production, machining, job shop
Definitions
- the invention belongs to the field of job shop scheduling, and relates to a method for solving a multi-objective flexible job shop scheduling problem, in particular to a flexible job shop scheduling method based on a limited stable matching strategy.
- Job shop scheduling plays an important role in optimizing the allocation and scientific operation of resources, and is the key to achieving stable and efficient operation of the manufacturing system.
- Flexible Job-shop Scheduling Problem refers to the processing machine and working time of each workpiece process in the job shop where the parallel machine and the multi-function machine coexist, so as to achieve a given multi-performance index. optimization.
- FJSP breaks through the limitations of the classic shop scheduling problem on machine constraints. Each process can be machined on multiple machines, which can better reflect the flexible characteristics of modern manufacturing systems, and is closer to the actual production process.
- FJSP includes two problems of machine allocation and process scheduling. It has many constraints and high computational complexity, and is a typical NP-hard problem.
- the object of the present invention is to overcome the insufficiency of the original method to provide a broad optimization scheduling scheme, and propose a method for solving a multi-objective FJSP by using a constrained stable matching strategy, which can utilize the restriction information to improve the diversity of the solution, thereby making the decision maker Provide a better, more scheduling solution.
- a flexible job shop scheduling method based on a restricted stable matching strategy the steps are as follows:
- C2 selects the angle of the solution relative to the sub-problem as the position information ⁇ ;
- C3 constructs an adaptive transfer function and uses the position information ⁇ to obtain the restriction information
- C4 obtains the preference value by adding the preference value calculation formula of the restriction information to the sub-question of the solution, and sorts the preference value in ascending order, obtains the preference order of all the solutions of the sub-question, and performs the same operation on all the sub-problems to obtain the sub-problem solution.
- Preference matrix ⁇ p Preference matrix ⁇ p ;
- C5 obtains the preference value by solving the preference value of the pair of sub-questions, and sorts the preference values in ascending order to obtain the preference sequence of all sub-problems, and performs the same operation on all sub-problems to obtain the preference matrix of the solution to the sub-problem ⁇ x ;
- C6 takes the information of the preference matrix ⁇ p , ⁇ x as input, and obtains the stable pairing relationship between the sub-problem and the solution through the delay acceptance procedure, thereby selecting the progeny solution and simultaneously selecting the chromosome corresponding to the progeny solution;
- the population Pareto solution set is output, and the decision maker selects a chromosome from the Pareto solution set according to actual requirements, and decodes it to form a feasible scheduling scheme; otherwise, returns to step b.
- step c3 The restriction information described in step c3 is obtained by the position information ⁇ and the transfer function, and the transfer function is as shown in equation (1).
- L is the control parameter
- the calculation step of the sub-problem to the solution preference matrix ⁇ p is: the sub-question p calculates the preference value ⁇ p of the candidate solution x by the formula (2), thereby obtaining the sub-problem p for 2N candidate solutions. Preference value, the preference value is processed in ascending order, and the preference order of the solution is obtained by a sub-question. As a row of the preference matrix ⁇ p , the preference ranking of all sub-problems is calculated according to the same method, and the sub-problem with the restriction information is obtained.
- the preference matrix ⁇ p for the solution, so ⁇ p is an N ⁇ 2N matrix;
- step c5 the calculation steps of the preference matrix ⁇ x for solving the sub-problem are:
- the preference value of the solution x to the sub-problem p is calculated by the formula (3), whereby the preference value of the solution x to the N sub-problems can be obtained, and the preference value is processed in ascending order to obtain a preference ranking of the solution to the sub-problem, which is taken as a row of preference matrix ⁇ x , so ⁇ x is a 2N ⁇ N matrix;
- the invention has the beneficial effects that the restriction information is added to the sub-problem to calculate the solution preference value, so that the solution close to the sub-problem is in the front end of the sub-problem pair solution matrix to improve the selection of the solution close to the sub-problem in the target space. Probability. In this way, the diversity of the selected solutions in the evolution process is improved, and the selected solution is avoided from converging in a very narrow region, and the problem of excessive convergence is solved.
- the main purpose of the above approach is to balance the diversity and convergence of the solution in the evolution process to obtain a Pareto solution set with better convergence and diversity at the end of the algorithm.
- the Pareto solution set obtained by the above method can obtain an optimized scheduling scheme more in line with actual production requirements through the decoding operation.
- Figure 1 is a flow chart of the algorithm.
- Figure 2 is a diagram of the action of the limit operator.
- Figure 3 shows the Pareto frontier for solving the actual production order with different solution strategies.
- the method for solving a multi-target FJSP by using the limited stable matching strategy includes the following steps:
- each evolutionary operation generates N progeny chromosomes;
- L is the control parameter
- the preference value of the candidate solution x, x ⁇ S can be calculated by the formula (5).
- the preference value p r of the sub-problems 2N candidate solutions the preference values in ascending to give a sort of preference subproblem solutions will ⁇ p as a row, so ⁇ p matrix of N ⁇ 2N;
- ⁇ r is the weight vector of the sub-problem p r and z * is the reference point;
- the preference value of the solution x ⁇ X for the subproblem p ⁇ P is calculated by equation (6).
- the preference value of the solution x t for the N subproblems is calculated, and the preference values are processed in ascending order to obtain a preference for the pair of subproblems. sorting, as the line ⁇ x, and ⁇ x and therefore of 2N ⁇ N matrix;
- step b If g ⁇ K then return to step b, otherwise output Pareto solution set, and select a solution according to the will of the decision maker and decode it into a feasible scheduling scheme.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Quality & Reliability (AREA)
- Entrepreneurship & Innovation (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Marketing (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- General Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- Operations Research (AREA)
- Game Theory and Decision Science (AREA)
- Development Economics (AREA)
- Biomedical Technology (AREA)
- Manufacturing & Machinery (AREA)
- Genetics & Genomics (AREA)
- Physiology (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Automation & Control Theory (AREA)
- Educational Administration (AREA)
- Pure & Applied Mathematics (AREA)
- Primary Health Care (AREA)
Abstract
Description
Claims (8)
- 一种基于有限制稳定配对策略的柔性作业车间调度方法,其特征在于,步骤如下:(a)相关参数初始化:根据生产订单的具体内容,通过整数编码得到满足约束条件的初始染色体种群,确定每个子问题的临域,并计算适应度值;(b)从每个子问题的临域中选择父代染色体,通过模拟二进制交叉和多项式变异生成子代染色体,并计算适应度值;(c)选择子代种群:(c1)将新生成的子代染色体集合和原始父代染色体集合合并成待选染色体集合S={s 1,s 2,...,s 2N},并将其映射到目标空间中,得到待选解集合X={x 1,x 2,...,x 2N},子问题集合P={p 1,...,p t,...,p N},权向量集合w={ω 1,...,ω t,...,ω N},其中,N为染色体个数;(c2)选用解相对于子问题的角度作为位置信息θ;(c3)构造自适应转移函数,并利用位置信息θ得到限制信息;(c4)通过加入限制信息的子问题对解的偏好值计算式得到偏好值,将偏好值按升序排列,得到子问题对所有解的偏好排序,将所有子问题进行同样操作,得到子问题对解的偏好矩阵ψ p;(c5)通过解对子问题的偏好值计算式得到偏好值,将偏好值按升序排列,得到解对所有子问题的偏好序列,将所有子问题进行同样操作,得到解对子问题的偏好矩阵ψ x;(c6)将偏好矩阵ψ p、ψ x的信息作为输入,通过延迟接受程序得到子问题和解的稳定配对关系,从而选择子代解,并同时选择与子代解相对应的染色体;(d)当满足截止条件时,则输出种群Pareto解集,决策者根据实际要求,从Pareto解集中选择一条染色体,并将其解码形成可行的调度方案;否则返回步骤(b)。
- 根据权利要求1所述的柔性作业车间调度方法步骤,其特征在于:所述步骤(c2)中位置信息θ的获取过程如下:首先将m维目标空间F(x)=[f 1(x),…f l(x),…f m(x)]∈R m转化为 个二维空间F c(x)=[f u(x),f v(x)];其中,c为二维空间编号, u、v为空间维数编号,u、v∈[1,2,...,m];f u(x),f v(x)分别表示解x∈X在二维空间中的目标值;然后确定子问题p∈P对应的权向量ω∈w在二维空间的分量ω uv=(ω u,ω v);最后计算位置信息θ的一个夹角分量θ uv(x,p):
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2018407695A AU2018407695B2 (en) | 2018-02-07 | 2018-03-16 | Constrained stable matching strategy-based flexible job-shop scheduling method |
US16/325,571 US20200026264A1 (en) | 2018-02-07 | 2018-03-16 | Flexible job-shop scheduling method based on limited stable matching strategy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810124599.8A CN108320057B (zh) | 2018-02-07 | 2018-02-07 | 一种基于有限制稳定配对策略的柔性作业车间调度方法 |
CN201810124599.8 | 2018-02-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019153429A1 true WO2019153429A1 (zh) | 2019-08-15 |
Family
ID=62903883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/079333 WO2019153429A1 (zh) | 2018-02-07 | 2018-03-16 | 一种基于有限制稳定配对策略的柔性作业车间调度方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20200026264A1 (zh) |
CN (1) | CN108320057B (zh) |
AU (1) | AU2018407695B2 (zh) |
WO (1) | WO2019153429A1 (zh) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111105164A (zh) * | 2019-12-24 | 2020-05-05 | 北京理工大学 | 一种车间调度方法、装置及设备 |
CN111259312A (zh) * | 2020-01-15 | 2020-06-09 | 深圳大学 | 多目标流水车间调度方法、装置、计算机设备及存储介质 |
CN111598297A (zh) * | 2020-04-15 | 2020-08-28 | 浙江工业大学 | 基于剩余工序最大值优选的柔性作业车间调度机器选择方法 |
CN112327621A (zh) * | 2020-11-02 | 2021-02-05 | 金航数码科技有限责任公司 | 一种基于蚁群算法的柔性生产线自适应控制系统及方法 |
CN112381273A (zh) * | 2020-10-30 | 2021-02-19 | 贵州大学 | 一种基于u-nsga-iii算法的多目标作业车间节能优化方法 |
CN112418478A (zh) * | 2020-08-12 | 2021-02-26 | 贵州大学 | 一种柔性流水车间下的低碳调度模型及节能优化方法 |
CN112668864A (zh) * | 2020-12-24 | 2021-04-16 | 山东大学 | 一种基于狮群算法的车间生产排产方法及系统 |
CN112734280A (zh) * | 2021-01-20 | 2021-04-30 | 树根互联技术有限公司 | 生产订单配送方法、装置及电子设备 |
CN113050422A (zh) * | 2021-03-09 | 2021-06-29 | 东北大学 | 基于maximin函数多目标优化算法的多机器人调度方法 |
CN113377073A (zh) * | 2021-06-28 | 2021-09-10 | 西南交通大学 | 一种基于双层多智能体系统的柔性作业车间调度优化方法 |
CN113822525A (zh) * | 2021-07-22 | 2021-12-21 | 合肥工业大学 | 基于改进遗传算法的柔性作业车间多目标调度方法及系统 |
CN113867275A (zh) * | 2021-08-26 | 2021-12-31 | 北京航空航天大学 | 一种分布式车间预防维修联合调度的优化方法 |
CN114792147A (zh) * | 2021-01-25 | 2022-07-26 | 中国人民解放军战略支援部队航天工程大学 | 一种多平台空间目标观测协同调度方法及终端设备 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110286648B (zh) * | 2019-07-10 | 2021-11-09 | 华中农业大学 | 一种响应动态扰动的并行多目标加工参数优化方法 |
CN110703787A (zh) * | 2019-10-09 | 2020-01-17 | 南京航空航天大学 | 基于偏好矩阵的混合多目标pso算法的飞行器冗余控制方法 |
CN111652502A (zh) * | 2020-06-01 | 2020-09-11 | 中南大学 | 基于柔性作业车间调度的多梯级多线船闸联合调度方法 |
CN112462803B (zh) * | 2020-11-27 | 2022-06-17 | 北京工商大学 | 一种基于改进nsga-ii的无人机路径规划方法 |
CN112882449B (zh) * | 2021-01-13 | 2024-07-12 | 沈阳工业大学 | 一种多品种小批量多目标柔性作业车间能耗优化调度方法 |
CN113034026B (zh) * | 2021-04-09 | 2023-10-24 | 大连东软信息学院 | 基于Q-learning和GA的多目标柔性作业车间调度自学习方法 |
US12073252B2 (en) | 2021-04-23 | 2024-08-27 | Kabushiki Kaisha Toshiba | Allocation of processing computers based on priority lists |
US11983568B2 (en) | 2021-04-23 | 2024-05-14 | Kabushiki Kaisha Toshiba | Allocation of heterogeneous computational resource |
CN113450013A (zh) * | 2021-07-14 | 2021-09-28 | 陕西科技大学 | 基于改进nsga-ⅲ算法求解车间节能调度问题的方法 |
CN113792494B (zh) * | 2021-09-23 | 2023-11-17 | 哈尔滨工业大学(威海) | 基于迁徙鸟群算法和交叉融合的多目标柔性作业车间调度方法 |
CN114707294B (zh) * | 2022-01-28 | 2023-02-07 | 湘南学院 | 有限运输能力约束的作业车间多目标调度方法 |
CN114912826B (zh) * | 2022-05-30 | 2024-07-02 | 华中农业大学 | 一种基于多层深度强化学习的柔性作业车间调度方法 |
CN116300763B (zh) * | 2023-03-31 | 2024-05-24 | 华中科技大学 | 考虑机器配置的混合流水车间数学启发式调度方法及系统 |
CN117215275B (zh) * | 2023-11-08 | 2024-02-13 | 北京理工大学 | 一种基于遗传编程的柔性车间大规模动态双效调度方法 |
CN117555305B (zh) * | 2024-01-11 | 2024-03-29 | 吉林大学 | 一种基于nsgaii的多目标可变子批柔性车间作业调度方法 |
CN117933684B (zh) * | 2024-01-17 | 2024-09-03 | 深圳市链宇技术有限公司 | 考虑原材料齐套约束和多机器并行加工的车间调度方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05225203A (ja) * | 1992-02-17 | 1993-09-03 | Nippon Telegr & Teleph Corp <Ntt> | ジョブショップスケジューリング問題解決方式 |
CN102609767A (zh) * | 2012-01-09 | 2012-07-25 | 浙江大学 | 一种基于Fisher奔离过程的演化方法 |
CN106875094A (zh) * | 2017-01-11 | 2017-06-20 | 陕西科技大学 | 一种基于多色集合遗传算法的多目标车间调度方法 |
US20170220016A1 (en) * | 2016-02-03 | 2017-08-03 | Sap Se | Optimizing manufacturing schedule with time-dependent energy cost |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8250007B2 (en) * | 2009-10-07 | 2012-08-21 | King Fahd University Of Petroleum & Minerals | Method of generating precedence-preserving crossover and mutation operations in genetic algorithms |
CN101901425A (zh) * | 2010-07-15 | 2010-12-01 | 华中科技大学 | 一种基于多种群协同进化的柔性作业车间调度方法 |
CN106611230A (zh) * | 2015-12-14 | 2017-05-03 | 四川用联信息技术有限公司 | 结合关键工序的遗传局部搜索算法求解柔性作业车间调度 |
-
2018
- 2018-02-07 CN CN201810124599.8A patent/CN108320057B/zh active Active
- 2018-03-16 US US16/325,571 patent/US20200026264A1/en not_active Abandoned
- 2018-03-16 AU AU2018407695A patent/AU2018407695B2/en active Active
- 2018-03-16 WO PCT/CN2018/079333 patent/WO2019153429A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05225203A (ja) * | 1992-02-17 | 1993-09-03 | Nippon Telegr & Teleph Corp <Ntt> | ジョブショップスケジューリング問題解決方式 |
CN102609767A (zh) * | 2012-01-09 | 2012-07-25 | 浙江大学 | 一种基于Fisher奔离过程的演化方法 |
US20170220016A1 (en) * | 2016-02-03 | 2017-08-03 | Sap Se | Optimizing manufacturing schedule with time-dependent energy cost |
CN106875094A (zh) * | 2017-01-11 | 2017-06-20 | 陕西科技大学 | 一种基于多色集合遗传算法的多目标车间调度方法 |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111105164B (zh) * | 2019-12-24 | 2022-04-15 | 北京理工大学 | 一种车间调度方法、装置及设备 |
CN111105164A (zh) * | 2019-12-24 | 2020-05-05 | 北京理工大学 | 一种车间调度方法、装置及设备 |
CN111259312A (zh) * | 2020-01-15 | 2020-06-09 | 深圳大学 | 多目标流水车间调度方法、装置、计算机设备及存储介质 |
CN111598297A (zh) * | 2020-04-15 | 2020-08-28 | 浙江工业大学 | 基于剩余工序最大值优选的柔性作业车间调度机器选择方法 |
CN111598297B (zh) * | 2020-04-15 | 2023-04-07 | 浙江工业大学 | 基于剩余工序最大值优选的柔性作业车间调度机器选择方法 |
CN112418478B (zh) * | 2020-08-12 | 2024-03-15 | 贵州大学 | 一种柔性流水车间下的低碳调度模型及节能优化方法 |
CN112418478A (zh) * | 2020-08-12 | 2021-02-26 | 贵州大学 | 一种柔性流水车间下的低碳调度模型及节能优化方法 |
CN112381273A (zh) * | 2020-10-30 | 2021-02-19 | 贵州大学 | 一种基于u-nsga-iii算法的多目标作业车间节能优化方法 |
CN112381273B (zh) * | 2020-10-30 | 2024-03-05 | 贵州大学 | 一种基于u-nsga-iii算法的多目标作业车间节能优化方法 |
CN112327621B (zh) * | 2020-11-02 | 2022-07-08 | 金航数码科技有限责任公司 | 一种基于蚁群算法的柔性生产线自适应控制系统及方法 |
CN112327621A (zh) * | 2020-11-02 | 2021-02-05 | 金航数码科技有限责任公司 | 一种基于蚁群算法的柔性生产线自适应控制系统及方法 |
CN112668864A (zh) * | 2020-12-24 | 2021-04-16 | 山东大学 | 一种基于狮群算法的车间生产排产方法及系统 |
CN112668864B (zh) * | 2020-12-24 | 2022-06-07 | 山东大学 | 一种基于狮群算法的车间生产排产方法及系统 |
CN112734280B (zh) * | 2021-01-20 | 2024-02-02 | 树根互联股份有限公司 | 生产订单配送方法、装置及电子设备 |
CN112734280A (zh) * | 2021-01-20 | 2021-04-30 | 树根互联技术有限公司 | 生产订单配送方法、装置及电子设备 |
CN114792147A (zh) * | 2021-01-25 | 2022-07-26 | 中国人民解放军战略支援部队航天工程大学 | 一种多平台空间目标观测协同调度方法及终端设备 |
CN113050422B (zh) * | 2021-03-09 | 2022-02-22 | 东北大学 | 基于maximin函数多目标优化算法的多机器人调度方法 |
CN113050422A (zh) * | 2021-03-09 | 2021-06-29 | 东北大学 | 基于maximin函数多目标优化算法的多机器人调度方法 |
CN113377073A (zh) * | 2021-06-28 | 2021-09-10 | 西南交通大学 | 一种基于双层多智能体系统的柔性作业车间调度优化方法 |
CN113822525B (zh) * | 2021-07-22 | 2023-09-19 | 合肥工业大学 | 基于改进遗传算法的柔性作业车间多目标调度方法及系统 |
CN113822525A (zh) * | 2021-07-22 | 2021-12-21 | 合肥工业大学 | 基于改进遗传算法的柔性作业车间多目标调度方法及系统 |
CN113867275B (zh) * | 2021-08-26 | 2023-11-28 | 北京航空航天大学 | 一种分布式车间预防维修联合调度的优化方法 |
CN113867275A (zh) * | 2021-08-26 | 2021-12-31 | 北京航空航天大学 | 一种分布式车间预防维修联合调度的优化方法 |
Also Published As
Publication number | Publication date |
---|---|
AU2018407695A1 (en) | 2020-09-03 |
CN108320057B (zh) | 2021-06-18 |
CN108320057A (zh) | 2018-07-24 |
US20200026264A1 (en) | 2020-01-23 |
AU2018407695B2 (en) | 2022-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019153429A1 (zh) | 一种基于有限制稳定配对策略的柔性作业车间调度方法 | |
Lin et al. | A hybrid evolutionary immune algorithm for multiobjective optimization problems | |
CN107679750B (zh) | 一种基于自适应系数遗传算法的云制造服务资源匹配方法 | |
Jiao et al. | Clonal selection with immune dominance and anergy based multiobjective optimization | |
CN109840154B (zh) | 一种移动云环境下基于任务依赖的计算迁移方法 | |
Rosales-Pérez et al. | A hybrid surrogate-based approach for evolutionary multi-objective optimization | |
CN104035816A (zh) | 一种基于改进nsga-ii的云计算任务调度方法 | |
CN111325356A (zh) | 一种基于演化计算的神经网络搜索分布式训练系统及训练方法 | |
CN108470237B (zh) | 一种基于协同进化的多偏好高维目标优化方法 | |
CN111832101A (zh) | 一种水泥强度预测模型的构建方法及水泥强度预测方法 | |
CN109298930B (zh) | 一种基于多目标优化的云工作流调度方法及装置 | |
CN110909787A (zh) | 基于聚类的进化算法进行多目标批调度优化的方法和系统 | |
Reisizadeh et al. | Tree gradient coding | |
CN117745433B (zh) | 基于改进pbft共识机制的能源区块链节点共识方法 | |
CN115543556A (zh) | 一种基于多任务遗传编程算法的自适应符号回归方法 | |
Ming et al. | An improved genetic algorithm using opposition-based learning for flexible job-shop scheduling problem | |
CN116985146B (zh) | 退役电子产品的机器人并行拆解规划方法 | |
Bashir et al. | Hybrid evolutionary computation for continuous optimization | |
CN115730432A (zh) | 物联网数据处理任务的调度方法及系统、设备、存储介质 | |
Sagawa et al. | Learning variable importance to guide recombination on many-objective optimization | |
CN112734122A (zh) | 基于动态分解和选择的超多目标优化方法、系统、终端 | |
CN106055742A (zh) | 基于设计熵的产品自适应设计更改方法 | |
Khaparde et al. | A new distributed differential evolution algorithm | |
CN104767683B (zh) | 基于改进nsga‑ⅱ的光组播编码‑链路代价折中方法 | |
Sun et al. | Tree-based differential evolution algorithm for QoS multicast routing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18905823 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018407695 Country of ref document: AU Date of ref document: 20180316 Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18905823 Country of ref document: EP Kind code of ref document: A1 |