WO2019153387A1 - 一种磷酸氧钒催化剂、其制备方法及用途 - Google Patents

一种磷酸氧钒催化剂、其制备方法及用途 Download PDF

Info

Publication number
WO2019153387A1
WO2019153387A1 PCT/CN2018/077705 CN2018077705W WO2019153387A1 WO 2019153387 A1 WO2019153387 A1 WO 2019153387A1 CN 2018077705 W CN2018077705 W CN 2018077705W WO 2019153387 A1 WO2019153387 A1 WO 2019153387A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium
eutectic solvent
butane
alcohol
reaction
Prior art date
Application number
PCT/CN2018/077705
Other languages
English (en)
French (fr)
Inventor
刘瑞霞
贺滨
张瑞锐
唐红果
张锁江
Original Assignee
中国科学院过程工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院过程工程研究所 filed Critical 中国科学院过程工程研究所
Priority to US16/961,029 priority Critical patent/US11123718B2/en
Publication of WO2019153387A1 publication Critical patent/WO2019153387A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/372Phosphates of heavy metals of titanium, vanadium, zirconium, niobium, hafnium or tantalum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/60Two oxygen atoms, e.g. succinic anhydride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Definitions

  • the application belongs to the field of chemical catalysis, and relates to a vanadium phosphate catalyst, a preparation method thereof and use thereof.
  • Vanadium phosphate catalyst (also known as vanadium phosphorus oxide catalyst, abbreviated as VPO) is a composite metal oxide catalyst composed of three elements of V, P and O. Due to its special structure, it can selectively oxidize butane to form maleic anhydride. This is also the only catalyst currently available to catalyze this reaction.
  • the catalyst is crystalline phase is very complex, there are many different nature and composition of the crystal phase, reported in the literature VOPO 4 ⁇ 2H 2 O, ⁇ I -VOPO 4, ⁇ II -VOPO 4, ⁇ -VOPO 4, ⁇ -VOPO 4 , VOHPO 4 ⁇ 0.5H 2 O and (VO) 2 P 2 O 7 and the like. Different crystal phases will affect the acid strength and microscopic morphology of the VPO catalyst, which will affect the conversion and selectivity of the reaction.
  • the vanadium phosphorus oxide (VPO) catalyst is usually synthesized by an aqueous phase method or an organic phase method to obtain a precursor, which is then activated by filtration, drying, calcination and molding to obtain a final catalyst.
  • the preparation of early catalysts mostly adopts the aqueous phase method.
  • the preparation of VPO catalysts for industrial applications at home and abroad adopts the organic phase method, but the catalyst prepared by the method still has problems of small specific surface area, poor selectivity and easy over-oxidation.
  • the research mainly focuses on improving the performance of the catalyst by adding or impregnating different metals and rare earth auxiliaries after the synthesis process and the end of the synthesis, but the method greatly increases the cost of the catalyst due to the addition of metals and rare earth elements, and the reaction Nitrogen oxides are produced during the process, and during the use of the catalyst, metal elements are lost, causing pollution and degradation of catalyst performance.
  • an object of the present application is to provide a vanadium phosphate catalyst, a preparation method thereof and use thereof.
  • the method of the present application uses an inexpensive, non-toxic eutectic solvent to assist in the synthesis of a vanadium oxyphosphate catalyst, and can prepare a vanadium phosphate catalyst in an environmentally friendly manner, which can overcome the traditional improvement of its performance by relying on precious metals, secondary pollution, high cost, and preparation process.
  • Complex and other shortcomings are possible to provide a vanadium phosphate catalyst, a preparation method thereof and use thereof.
  • the prior art has low reaction yield of selective oxidation of n-butane with maleic anhydride, low catalyst selectivity, low conversion rate, loss of auxiliary elements and cost. Higher problems.
  • the present application provides a method for preparing a vanadium phosphate catalyst, the method comprising the steps of:
  • the eutectic solvent is a eutectic solvent formed by choline chloride and an organic carboxylic acid (referred to as a choline chloride-organic carboxylic acid eutectic solvent);
  • the alcohol is: benzyl alcohol, or a mixture of a C 3 -C 8 monohydric alcohol and benzyl alcohol.
  • the phosphorus-containing eutectic solvent can also be used as a phosphorus source.
  • the heating reaction is carried out in a range higher than the melting point of the eutectic solvent, and the flowability of the eutectic solvent and the high boiling state of the system can be maintained to ensure the rapid progress of the reaction, choline chloride and organic carboxylic acid.
  • the formed eutectic can form a complex with vanadium, regulate the concentration of vanadium source in the system, control the growth process of the crystal, and obtain a catalyst with better crystallinity.
  • C 3 -C 8 monohydric alcohol as used in the present application means any one or a combination of two monohydric alcohols having 3 to 8 carbon atoms, and may be, for example, propanol or isobutanol.
  • a combination of butanol, pentanol and octanol, etc., is preferably isobutanol.
  • a hydrogen bond donor such as an organic carboxylic acid
  • a hydrogen bond acceptor such as choline chloride
  • the organic carboxylic acid comprises any one or a combination of at least two of malonic acid, oxalic acid or tartaric acid (formed eutectic solvent such as choline chloride-malonic acid, choline chloride- Oxalic acid and choline chloride-tartaric acid, etc.), but not limited to the above-exemplified organic carboxylic acids, other commonly used in the art can react with choline chloride to form choline chloride-organic carboxylic acid eutectic solvent and achieve the same
  • the effect of the organic carboxylic acid can also be used in the present application, preferably oxalic acid.
  • the alcohol is a mixture of a C 3 -C 8 monohydric alcohol and benzyl alcohol, preferably a mixture of isobutanol and benzyl alcohol.
  • the volume ratio of the eutectic solvent to benzyl alcohol is (0.15 to 0.25):1, for example, 0.15:1, 0.17:1, 0.18:1, 0.20:1. 0.22:1 or 0.25:1 or the like.
  • the eutectic solvent volume of C 3 ⁇ C 8 monohydric alcohol and benzyl alcohol ratio (0.15 to 0.25): (3 ⁇ 5):1, for example, 0.15:3:1, 0.18:3:1, 0.2:3:1, 0.2:4:1, 0.2:4.5:1, 0.2:4.7:1, 0.2:5:1, 0.25 : 3:1, 0.25:4:1 or 0.25:5:1, and the like.
  • the method further comprises adding any one or a combination of two of a metal oxide or a metal salt in the process of adding the eutectic solvent.
  • the metal element in the metal oxide or metal salt is independently selected from any one of Fe, Cu, Co, Mn, Ni, Zr, Zn, Ce or Mo or a combination of at least two, preferably Zr and Mo.
  • the atomic molar ratio of the metal element to the vanadium element in the vanadium source is 0.0005 to 0.035, such as 0.0005, 0.0008, 0.001, 0.002, 0.003, 0.005, 0.01, 0.015, 0.02, 0.03 or 0.035.
  • the mass ratio of the vanadium source to the eutectic solvent is (50-10):1, for example 50:1, 45:1, 40:1, 30:1, 25:1, 20:1, 15 : 1 or 10:1, etc., preferably (20 to 30):1. If the mass ratio is less than 10:1, the excessive addition of the eutectic solvent may cause a large change in the crystal form and acidity of the catalyst, resulting in a decrease in selectivity; if the mass ratio is greater than 50:1, the system may be caused. The low eutectic content is low and does not enhance the catalyst.
  • the concentration of the vanadium source in the mixture is from 0.02 g/mL to 0.12 g/mL, for example, 0.02 g/mL, 0.04 g/mL, 0.06 g/mL, 0.07 g/mL, 0.08 g/mL, 0.09 g/mL, 0.1 g/mL or 0.12 g/mL, and the like. If the concentration is lower than 0.02 g/mL, the vanadium-phosphorus ratio is lowered, and the active crystal phase cannot be formed; if the concentration is higher than 0.12 g/mL, more hetero phases are formed, resulting in a decrease in selectivity.
  • the molar ratio of phosphorus in the phosphorus source to vanadium in the vanadium source is (0.8 to 1.5):1, such as 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3 : 1, 1.4:1 or 1.5:1, etc., preferably (0.9 to 1.2):1. If the molar ratio is less than 0.8:1, the phosphorus in the catalytic system will be lost faster and the catalyst life will be reduced; if the molar ratio is greater than 1.5:1, more heterophase will be formed.
  • the mixing in the step (1) is carried out by first placing a vanadium source in a container, and then adding a mixture of a eutectic solvent and an alcohol.
  • the vanadium source of step (1) comprises any one or a combination of at least two of vanadium salts or vanadium oxides, preferably including V 2 O 5 , NH 4 VO 3 , V 2 O 4 or V 2 O Any one of 3 or a combination of at least two.
  • vanadium source listed above and other sources of vanadium which are commonly used in the art to achieve the same effect can also be used in the present application, preferably V 2 O 5 .
  • the temperature of the reaction in the step (1) is from 100 ° C to 180 ° C, such as 100 ° C, 110 ° C, 120 ° C, 130 ° C, 140 ° C, 145 ° C, 150 ° C, 155 ° C, 165 ° C, 170 ° C or 180 ° C or the like, preferably 130 ° C to 140 ° C.
  • the reaction time in the step (1) is from 2 h to 8 h, for example, 2 h, 3 h, 4 h, 5 h, 5.5 h, 6 h, 7 h or 8 h, etc., preferably from 3 h to 5 h.
  • the reaction in the step (1) it is cooled to 30 ° C to 80 ° C, for example, 30 ° C, 35 ° C, 40 ° C, 50 ° C, 60 ° C, 70 ° C or 80 ° C, and the like.
  • the phosphorus source according to step (2) comprises any one of phosphoric acid, phosphate or phosphorus oxide or a combination of at least two, preferably comprising 85% by mass of phosphoric acid (such as commercially available concentrated phosphoric acid), phosphate. Or any one or a combination of at least two of phosphoric acid oxides, further preferably including 85% by mass of phosphoric acid, (NH 4 ) 3 PO 4 , (NH 4 ) 2 HPO 4 , NH 4 H 2 PO 4 , P Any one of 2 O 5 or P 2 O 3 or a combination of at least two.
  • it is not limited to the above-listed phosphorus sources, and other phosphorus sources commonly used in the art to achieve the same effects can also be used in the present application.
  • step (2) is raised to a temperature higher than 35 ° C to 200 ° C of the melting point of the eutectic solvent, for example, 35 ° C, 40 ° C, 42 ° C, 45 ° C, 50 ° C, 55 ° C, 60 ° C, 65 ° C, 70 ° C, 75 ° C, 85 ° C, 100 ° C, 110 ° C, 125 ° C, 150 ° C, 175 ° C or 200 ° C.
  • step (2) is raised to 100 ° C to 200 ° C, such as 100 ° C, 120 ° C, 130 ° C, 140 ° C, 150 ° C, 160 ° C, 170 ° C, 180 ° C or 200 ° C, and the like.
  • the reaction in the step (2) is continued for 10h to 24h, for example, 10h, 12h, 13h, 15h, 17h, 18h, 20h, 21h, 22h, 23h or 24h.
  • the steps of filtration, washing and drying are carried out.
  • the atmosphere of the calcination in the step (3) is a nitrogen atmosphere, or a mixed atmosphere of n-butane and air, or a mixed atmosphere of n-butane, oxygen and nitrogen.
  • the volume ratio of n-butane to air in the mixed atmosphere of n-butane and air is (0.8 to 1.8):100, for example, 0.8:100, 1:100, 1.2:100, 1.5:100 or 1.8. : 100 and so on.
  • the volume ratio of n-butane, oxygen and nitrogen is (0.8 to 1.8): (10 to 25): (75 to 85), for example, 0.8:10. : 75, 1:10:85, 1.5:10:80, 1.8:10:75, 0.8:20:75, 1:20:80, 1.5:20:85, 1.8:25:75 or 1:20:85 Wait.
  • the calcination temperature in the step (3) is 350 ° C to 550 ° C, for example, 350 ° C, 360 ° C, 370 ° C, 380 ° C, 400 ° C, 420 ° C, 430 ° C, 450 ° C, 475 ° C, 500 ° C, 515 ° C, 530 ° C or 550 ° C and so on.
  • the calcination time in the step (3) is from 10 h to 24 h, for example, 10 h, 12 h, 13.5 h, 15 h, 16 h, 18 h, 20 h, 22 h or 24 h, and the like.
  • the calcination step described in the present application may be carried out after the vanadium phosphate precursor is formed, and directly used for evaluation of the catalyst effect after calcination; or may be calcined and then molded, and then used for evaluation of the catalyst effect.
  • the method comprises the following steps:
  • the eutectic solvent is a eutectic solvent formed by choline chloride and an organic carboxylic acid
  • the mass ratio of the vanadium pentoxide to the eutectic solvent is (20 to 30):1;
  • the volume ratio of the eutectic solvent, isopropanol and benzyl alcohol is (0.15-0.25): (3 ⁇ 5): 1;
  • the concentration of vanadium pentoxide is 0.02 g/mL to 0.12 g/mL;
  • the molar ratio of phosphorus in the phosphorus source to vanadium in the vanadium source is (0.9 to 1.2):1.
  • the present application provides a vanadium oxyphosphate catalyst prepared by the method of the first aspect, wherein the vanadyl phosphate catalyst has a specific surface area of from 25 m 2 /g to 35 m 2 /g.
  • the vanadyl phosphate catalyst has a specific surface area of 29 m 2 /g.
  • the present application provides the use of a vanadyl phosphate catalyst as described in the second aspect for the selective oxidation of n-butane to maleic anhydride.
  • the reaction conditions of the selective oxidation of n-butane to maleic anhydride are: a reaction temperature of 400 ° C to 550 ° C, a pressure of 0.1 MPa to 0.3 MPa, and a space velocity of n-butane gas mixture of 1000 h -1 to 2500 h -1
  • the n-butane concentration is from 1.3 wt% to 1.8 wt%.
  • the eutectic solvent used in the present application is simple in synthesis, non-toxic, inexpensive, and can be prepared in a large amount and biodegradable.
  • the method of the present application is a method for intensifying preparation of a vanadium phosphate catalyst by a eutectic solvent, wherein the eutectic solvent is used as both a structure directing agent and a crystal plane directing agent, and also as a solvent.
  • the function of the auxiliary agent, the nature of the catalyst is modulated during the synthesis process, and the eutectic solvent is designed through the process of the present application to exert the above various synergistic strengthening effects, so that the selectivity and conversion rate of the VPO catalyst strengthened by the eutectic solvent are both Larger improvement, achieving or superior to the same effect of prior art doping metal additives.
  • the method of the present application simplifies the preparation process of the catalyst, has low cost, is simple in operation, and is suitable for industrial production.
  • the present application uses eutectic solvent to enhance the activity and selectivity of the VPO catalyst, overcomes the metal and rare earth elements as an auxiliary agent in the conventional method, and generates nitrogen oxide gas during the addition process, and the cost is high, during the use of the catalyst.
  • the shortcomings of metal loss and secondary pollution are in line with the development requirements of green chemistry, and the selectivity and conversion rate of VPO catalysts strengthened by eutectic solvents are greatly improved.
  • Example 1 is a scanning electron micrograph of a vanadium phosphate precursor obtained in the step (2) of Example 1 of the present application.
  • Example 2 is a scanning electron micrograph of the activated vanadyl phosphate catalyst obtained in the step (4) of Example 1 of the present application.
  • Example 3 is a scanning electron micrograph of a precursor of a vanadyl phosphate vanadium phosphate catalyst obtained in the step (2) of Example 2 of the present application.
  • Example 4 is a scanning electron micrograph of the vanadium phosphate catalyst obtained after the step (4) of Example 2 of the present application.
  • Example 5 is a scanning electron micrograph of a vanadium phosphate phosphate vanadium phosphate precursor obtained in the step (2) of Example 3 of the present application.
  • Figure 6 is a scanning electron micrograph of the vanadyl phosphate catalyst obtained in the step (4) of Example 3 of the present application.
  • the embodiment of the present application provides a method for preparing a vanadium phosphate catalyst, which comprises the following steps:
  • the vanadium phosphate precursor is calcined at a temperature of 350 ° C to 550 ° C for 10 h to 24 h to be activated and cooled to obtain an activated vanadium phosphate catalyst.
  • the vanadium source is a vanadium salt or a vanadium oxide
  • the vanadium salt is NH 4 VO 3
  • the vanadium oxide is any one or at least two of V 2 O 5 , V 2 O 4 and V 2 O 3
  • the phosphorus source is at least one of phosphoric acid, phosphate or phosphorus oxide
  • the phosphate is at least one of (NH 4 ) 3 PO 4 , (NH 4 ) 2 HPO 4 and NH 4 H 2 PO 4
  • the phosphorus oxide is P 2 O 5 or P 2 O 3 .
  • the eutectic solvent selected includes any one or a combination of at least two of choline chloride-malonic acid, choline chloride-oxalic acid or choline chloride-tartaric acid.
  • the calcination step described in the present application can be carried out after the vanadium phosphate precursor is formed, and is directly used for evaluation of the catalyst effect after calcination; it can also be calcined and then molded, and then used for catalyst effect evaluation.
  • the embodiment of the present application further provides the use of the vanadium phosphate catalyst obtained by the above method for preparing vanadium phosphate catalyst in the selective oxidation of n-butane to maleic anhydride.
  • the embodiment of the present application further provides the use of the vanadium phosphate catalyst obtained by the above method for preparing vanadium phosphate catalyst in the selective oxidation of n-butane to maleic anhydride.
  • reaction conditions of the vanadium phosphorus oxide to produce maleic anhydride are: reaction temperature 380 ° C ⁇ 450 ° C, pressure is normal pressure 0.1 MPa ⁇ 0.5 MPa, n-butane gas mixture space velocity is 1000h -1 ⁇ 3500h -1 , n-butane The concentration is from 1.0% to 1.8%.
  • the preparation method of the vanadyl phosphate catalyst is exemplified below by way of specific examples.
  • the compounds in the following examples can be directly prepared according to the existing methods, and of course, they can be directly commercially available in other examples, and are not limited thereto.
  • the crystallographic data of the vanadyl phosphate precursor obtained in the step (2) of Example 1 are shown in Table 1.
  • the crystallographic data of the activated vanadyl phosphate catalyst obtained in the step (4) are shown in Table 2.
  • the crystallographic data of the vanadyl phosphate precursor obtained in the step (2) of Example 2 are shown in Table 1.
  • the crystallographic data of the activated vanadyl phosphate catalyst obtained in the step (4) are shown in Table 2.
  • the crystallographic data of the vanadyl phosphate precursor obtained in the step (2) of Example 3 are shown in Table 1.
  • the crystallographic data of the activated vanadyl phosphate catalyst obtained in the step (4) are shown in Table 2.
  • the adjustment step (1) reflux condition is 100 ° C reflux 8h;
  • the adjustment step (4) was raised to 350 ° C for in situ activation for 24 h.
  • the adjustment step (1) reflux condition is 140 ° C reflux for 5 h;
  • the adjustment step (4) was raised to 550 ° C for in situ activation for 10 h.
  • Example 2 The test was carried out in the same manner and under the same conditions as in Example 1. The test results showed that the n-butane conversion was 92.05%, the selectivity of maleic anhydride was 55.36%, and the yield of maleic anhydride was 50.96%.
  • Adjustment step (1) reflux conditions are 170 ° C reflux 2h;
  • the adjustment step (4) was raised to 450 in situ for 18 h.
  • Example 2 The test was carried out in the same manner and under the same conditions as in Example 1. The test results showed that the n-butane conversion was 93.02%, the maleic anhydride selectivity was 54.17%, and the maleic anhydride yield was 50.38%.
  • the type and amount of the solvent to be added were adjusted, and the amounts of vanadium pentoxide, choline chloride-tartaric acid eutectic solvent, isobutanol, benzyl alcohol and phosphoric acid were 5 g, 1 g, 10 mL, 40 mL and 3.77 mL, respectively.
  • the adjustment step (1) reflux condition is 100 ° C reflux 5.5 h;
  • the adjustment step (4) was raised to 350 ° C for in situ activation for 48 h.
  • V 2 O 5 weigh 10g of V 2 O 5 into a 250mL three-necked flask, add a mixture of 80mL of isobutanol and 20mL of benzyl alcohol, mix well by mechanical stirring, reflux at 135 °C for 3h, then cool to 60 ° C, then slowly add 7.53mL 85% H 3 PO 4 was heated to 135 ° C and refluxed for 16 h. After filtration and washing with absolute ethanol, a blue precipitate was obtained, which was dried in air at 120 ° C for 24 hours to obtain a vanadyl phosphate catalyst precursor powder. The obtained vanadium oxyphosphate catalyst precursor powder was tableted under a pressure of 15 MPa, crushed, and 20-40 mesh catalyst particles were sieved.
  • the catalyst particles were heated in a n-butane/oxygen/nitrogen mixed reaction gas atmosphere at a volume ratio of 1.5:17:81.5 from room temperature to a temperature of 2 ° C/min to 430 ° C for 12 h to obtain activated phosphoric acid.
  • Vanadium catalyst
  • FIG. 1 is a scanning electron micrograph of a vanadyl phosphate precursor obtained in the step (2) of Example 1
  • FIG. 2 is a scanning electron micrograph of the activated vanadyl phosphate catalyst obtained in the step (4) of Example 1.
  • FIG. 4 is a scanning electron micrograph after activation of the vanadium phosphate catalyst obtained in the step (4) of Example 2
  • FIG. 5 is a step (3) of the embodiment 3.
  • FIG. 6 is a scanning electron micrograph after activation of the vanadium phosphate catalyst obtained in the step (4) of Example 3.
  • the vanadyl phosphate catalysts of Examples 1 to 3 were compared with the vanadyl phosphate catalyst prepared in Comparative Example 1 without the addition of a eutectic solvent, I(001)/I. (130) has different degrees of improvement, indicating that the addition of eutectic solvent can induce the growth of the (001) surface of the precursor, which is also the main crystal plane converted into the active surface.
  • Comparative Example 1 the crystal size was large, and the crystallinity of the active surface was low, which was also the reason why the catalyst in Comparative Example 1 was not active and easily deactivated in the reaction of selective oxidation of n-butane to maleic anhydride.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Furan Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供一种磷酸氧钒催化剂、其制备方法及用途。所述方法包括:1)将钒源、氯化胆碱-有机羧酸低共熔溶剂和醇混合,反应;2)将所得反应产物与磷源混合,升温至温度高于低共熔溶剂的熔点,继续反应,得到磷酸氧钒前驱体;3)焙烧,得到磷酸氧钒催化剂;其中,所述醇为:苯甲醇,或C 3~C 8的一元醇与苯甲醇的混合物。该方法使用绿色廉价的低共熔溶剂强化制备磷酸氧钒催化剂,避免了现有技术的缺点,在应用于催化正丁烷选择性氧化制顺酐反应时,克服了收率低、选择性差等难题。

Description

一种磷酸氧钒催化剂、其制备方法及用途 技术领域
本申请属于化工催化领域,涉及一种磷酸氧钒催化剂、其制备方法及用途。
背景技术
磷酸氧钒催化剂(又名钒磷氧催化剂,简称VPO)是由V、P、O三种元素组成的复合金属氧化物催化剂,由于其结构的特殊性,能够选择性氧化丁烷生成顺酐,这也是目前唯一实现催化该反应的催化剂。该催化剂晶相组成十分复杂,存在着许多性质和组成相异的晶相,文献报道有VOPO 4·2H 2O、α I-VOPO 4、α II-VOPO 4、β-VOPO 4、γ-VOPO 4、VOHPO 4·0.5H 2O和(VO) 2P 2O 7等。不同的晶相均会对VPO催化剂的酸强度、微观形态等产生影响,进而影响到反应的转化率、选择性等。
钒磷氧(VPO)催化剂通常采用水相法或有机相法合成得到前驱体,然后通过过滤、干燥、焙烧活化和成型得到最终催化剂。早期催化剂的制备大多采用水相法,目前国内外工业应用的VPO催化剂的制备均采用有机相法,但该方法制备的催化剂仍然存在比表面积小,选择性差及易过度氧化等问题。目前研究主要集中在通过在合成过程、合成结束后添加或浸渍不同的金属及稀土助剂,以此提高催化剂的性能,但是该方法由于加入金属及稀土元素,使催化剂的成本大大提高,并且反应过程中会产生氮氧化物,同时催化剂在使用的过程中,金属元素会流失,造成污染及催化剂性能的下降。
发明内容
针对现有技术中存在的上述问题,本申请的目的在于提供一种磷酸氧钒催化剂、其制备方法及用途。本申请的方法使用廉价、无毒的低共熔溶剂辅助合成磷酸氧钒催化剂,可以环境友好地制备磷酸氧钒催化剂,能够克服传统依靠 贵金属提高其性能,产生二次污染、成本高、制备过程复杂等缺点。该催化剂在用于催化正丁烷选择性氧化制顺酐反应时,改进了现有技术中正丁烷选择性氧化顺酐反应收率低、催化剂选择性、转化率低、助剂元素流失和成本高等问题。
为达上述目的,本申请采用以下技术方案:
第一方面,本申请提供一种磷酸氧钒催化剂的制备方法,所述方法包括以下步骤:
(1)将钒源、低共熔溶剂和醇混合,得到混合料,反应;
(2)将步骤(1)所得反应产物与磷源混合,升温至温度高于低共熔溶剂的熔点,继续反应,得到磷酸钒氧前驱体;以及
(3)焙烧,得到磷酸钒氧催化剂;
其中,所述低共熔溶剂为:氯化胆碱与有机羧酸形成的低共熔溶剂(简称为氯化胆碱-有机羧酸低共熔溶剂);并且
所述醇为:苯甲醇,或者C 3~C 8的一元醇与苯甲醇的混合物。
本申请中,含磷的低共熔溶剂还可作为磷源使用。
本申请中,在高于低共熔溶剂熔点的范围内进行加热反应,能保持低共熔溶剂较好的流动性及体系的高沸状态,保证反应迅速进行,氯化胆碱和有机羧酸形成的低共熔能够与钒形成配合物,调控体系中钒源的浓度,控制晶体的生长过程,获得结晶性更好的催化剂。
本申请中所述“C 3~C 8的一元醇”指:碳原子数为3~8的一元醇中的任意一种或两种的组合,例如可以是:丙醇,异丁醇,正丁醇,戊醇,己醇,庚醇,辛醇,丙醇和异丁醇的组合,丙醇和戊醇的组合,正丁醇和己醇的组合,正丁醇和辛醇的组合,丙醇、异丁醇、戊醇和辛醇的组合等,优选为异丁醇。
本申请中,氯化胆碱与有机羧酸形成低共熔溶剂的方法为现有技术,本领域技术人员可参照现有技术公开的方法进行制备,例如按照如下方法进行:
将所述的低共熔溶剂中氢键供体(比如有机羧酸)与氢键受体(比如氯化胆碱)按摩尔比0.5~2∶0.5~1加入到反应容器中,混合搅拌,加热至50~100℃直至形成均一透明的混合物。
以下作为本申请优选的技术方案,但不作为对本申请提供的技术方案的限制,通过以下优选的技术方案,可以更好的达到和实现本申请的技术目的和有益效果。
优选地,所述有机羧酸包括丙二酸、草酸或酒石酸中的任意一种或至少两种的组合(形成的低共熔溶剂例如:氯化胆碱-丙二酸、氯化胆碱-草酸和氯化胆碱-酒石酸等),但并不限于上述列举的有机羧酸,其他本领域常用的可与氯化胆碱反应形成氯化胆碱-有机羧酸低共熔溶剂并达到相同效果的有机羧酸也可用于本申请,优选为草酸。
优选地,所述醇为:C 3~C 8的一元醇与苯甲醇的混合物,优选为异丁醇与苯甲醇的混合物。
优选地,当所述醇为苯甲醇时,所述低共熔溶剂和苯甲醇的体积比为(0.15~0.25)∶1,例如0.15∶1、0.17∶1、0.18∶1、0.20∶1、0.22∶1或0.25∶1等。
或者当所述醇为C 3~C 8的一元醇与苯甲醇的混合物时,所述低共熔溶剂、C 3~C 8的一元醇和苯甲醇的体积比为(0.15~0.25)∶(3~5)∶1,例如0.15∶3∶1、0.18∶3∶1、0.2∶3∶1、0.2∶4∶1、0.2∶4.5∶1、0.2∶4.7∶1、0.2∶5∶1、0.25∶3∶1、0.25∶4∶1或0.25∶5∶1等。
作为本申请所述方法的优选技术方案,所述方法还包括:在加入低共熔溶剂的过程中加入金属氧化物或金属盐中的任意一种或两种的组合。
优选地,所述金属氧化物或金属盐中的金属元素独立地选自Fe、Cu、Co、 Mn、Ni、Zr、Zn、Ce或Mo中的任意一种或至少两种的组合,优选为Zr和Mo。
优选地,所述金属元素与钒源中的钒元素的原子摩尔比为0.0005~0.035,例如0.0005、0.0008、0.001、0.002、0.003、0.005、0.01、0.015、0.02、0.03或0.035等。
优选地,所述钒源与低共熔溶剂的质量比为(50~10)∶1,例如50∶1、45∶1、40∶1、30∶1、25∶1、20∶1、15∶1或10∶1等,优选为(20~30)∶1。若质量比小于10∶1,低共熔溶剂的加入量过多,会导致催化剂的晶型、酸度等发生较大的变化,导致选择性降低;若质量比大于50∶1,会导致体系中低共熔含量较低,无法对催化剂起到强化作用。
优选地,所述混合料中,钒源的浓度为0.02g/mL~0.12g/mL,例如0.02g/mL、0.04g/mL、0.06g/mL、0.07g/mL、0.08g/mL、0.09g/mL、0.1g/mL或0.12g/mL等。若浓度低于0.02g/mL,会导致钒磷比降低,无法形成活性晶相;若浓度高于0.12g/mL,会形成较多的杂相,,导致选择性降低。
优选地,所述磷源中的磷和钒源中的钒的摩尔比为(0.8~1.5)∶1,例如0.8∶1、0.9∶1、1∶1、1.1∶1、1.2∶1、1.3∶1、1.4∶1或1.5∶1等,优选为(0.9~1.2)∶1。若摩尔比小于0.8∶1,会导致催化体系中磷会较快流失,催化剂寿命降低;若摩尔比大于1.5∶1,会导致较多杂相形成。
作为本申请所述方法的优选技术方案,步骤(1)所述混合的方式为:先将钒源置于容器中,然后加入低共熔溶剂和醇的混合液。
优选地,步骤(1)所述钒源包括钒盐或钒氧化物中的任意一种或至少两种的组合,优选包括V 2O 5、NH 4VO 3、V 2O 4或V 2O 3中的任意一种或至少两种的组合。但并不限于上述列举的钒源,其他本领域常用的可达到相同效果的钒源也可用于本申请,优选为V 2O 5
优选地,步骤(1)所述反应的温度为100℃~180℃,例如100℃、110℃、120℃、130℃、140℃、145℃、150℃、155℃、165℃、170℃或180℃等,优选为130℃~140℃。
优选地,步骤(1)所述反应的时间为2h~8h,例如2h、3h、4h、5h、5.5h、6h、7h或8h等,优选为3h~5h。
优选地,步骤(1)所述反应后,冷却至30℃~80℃,例如30℃、35℃、40℃、50℃、60℃、70℃或80℃等。
优选地,步骤(2)所述磷源包括磷酸、磷酸盐或磷氧化物中的任意一种或至少两种的组合,优选包括质量分数85%的磷酸(比如市售浓磷酸)、磷酸盐或磷酸氧化物中的任意一种或至少两种的组合,进一步优选包括质量分数85%的磷酸、(NH 4) 3PO 4、(NH 4) 2HPO 4、NH 4H 2PO 4、P 2O 5或P 2O 3中的任意一种或至少两种的组合。但不限于上述列举的磷源,其他本领域常用的可达到相同效果的磷源也可用于本申请。
优选地,步骤(2)升温至高于低共熔溶剂熔点的35℃~200℃,例如比熔点高35℃、40℃、42℃、45℃、50℃、55℃、60℃、65℃、70℃、75℃、85℃、100℃、110℃、125℃、150℃、175℃或200℃。
优选地,步骤(2)升温至100℃~200℃,例如100℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃或200℃等。
优选地,步骤(2)所述继续反应的时间为10h~24h,例如10h、12h、13h、15h、17h、18h、20h、21h、22h、23h或24h等。
优选地,步骤(2)所述继续反应完成后,进行过滤、洗涤和干燥的步骤。
优选地,步骤(3)所述焙烧的气氛为氮气气氛、或者正丁烷与空气的混合气氛,或者正丁烷、氧气和氮气的混合气氛。
优选地,所述正丁烷与空气的混合气氛中,正丁烷和空气的体积比为(0.8~1.8)∶100,例如0.8∶100、1∶100、1.2∶100、1.5∶100或1.8∶100等。
优选地,所述正丁烷、氧气和氮气的混合气氛中,正丁烷、氧气和氮气的体积比为(0.8~1.8)∶(10~25)∶(75~85),例如0.8∶10∶75、1∶10∶85、1.5∶10∶80、1.8∶10∶75、0.8∶20∶75、1∶20∶80、1.5∶20∶85、1.8∶25∶75或1∶20∶85等。
优选地,步骤(3)所述焙烧的温度为350℃~550℃,例如350℃、360℃、370℃、380℃、400℃、420℃、430℃、450℃、475℃、500℃、515℃、530℃或550℃等。
优选地,步骤(3)所述焙烧的时间为10h~24h,例如10h、12h、13.5h、15h、16h、18h、20h、22h或24h等。
为了便于催化剂的效果评价,本申请所述焙烧步骤可以在磷酸氧钒前驱体成型后进行,焙烧后直接用于催化剂效果评价;也可以先焙烧再成型,然后用于催化剂效果评价。
作为本申请所述方法的进一步优选技术方案,所述方法包括以下步骤:
(1)先将五氧化二钒置于容器中,然后加入低共熔溶剂、异丁醇和苯甲醇混合,得到混合料,于130℃~140℃反应3h~5h,然后冷却至30~80℃;
(2)再向容器中加入磷源,升温至100℃~200℃,继续反应10h~24h,过滤、洗涤并干燥,得到磷酸氧钒前驱体;以及
(3)在氮气气氛、或者正丁烷与空气的混合气氛、或者正丁烷、氧气和氮气的混合气氛中,350℃~550℃焙烧10h~24h实现原位活化,得到磷酸氧钒催化剂;
其中,所述低共熔溶剂为:氯化胆碱与有机羧酸形成的低共熔溶剂;
所述五氧化二钒与低共熔溶剂的质量比为(20~30)∶1;
所述低共熔溶剂、异丙醇和苯甲醇的体积比为(0.15~0.25)∶(3~5)∶1;
所述混合料中,五氧化二钒的浓度为0.02g/mL~0.12g/mL;并且
所述磷源中的磷和钒源中的钒的摩尔比为(0.9~1.2)∶1。
第二方面,本申请提供如第一方面所述方法制备得到的磷酸氧钒催化剂,所述磷酸氧钒催化剂的比表面积在25m 2/g~35m 2/g。
优选地,所述磷酸氧钒催化剂比表面积为29m 2/g。
第三方面,本申请提供如第二方面所述的磷酸氧钒催化剂用于正丁烷选择性氧化制顺酐的用途。优选地,所述正丁烷选择性氧化制顺酐的反应条件为:反应温度400℃~550℃,压力为0.1MPa~0.3MPa,正丁烷混合气空速为1000h -1~2500h -1,正丁烷浓度为1.3wt%~1.8wt%。
与已有技术相比,本申请具有如下有益效果:
(1)本申请使用的低共熔溶剂合成简单,无毒、廉价、可大量制备且生物可降解。
(2)本申请的方法是一种低共熔溶剂强化制备磷酸氧钒催化剂的方法,该方法中,低共熔溶剂既作为结构导向剂和晶面导向剂,又作为溶剂使用,还起到了助剂的作用,在合成过程中调变催化剂的性质,经过本申请的工序设计低共熔溶剂发挥上述多种协同强化作用,使经低共熔溶剂强化的VPO催化剂选择性及转化率均有较大提升,达到或优于现有技术掺杂金属助剂相同的效果。
(3)相比传统的浸渍金属法,本申请的方法简化了催化剂的制备流程,成本低,操作简单,适合工业化生产。
(4)本申请采用低共熔溶剂强化提高VPO催化剂的活性及选择性,克服了传统方法中金属及稀土元素作为助剂,添加过程中产生氮氧化物气体,成本高,在催化剂使用过程中金属流失、造成二次污染等缺点,符合绿色化学的发 展要求,并且经低共熔溶剂强化的VPO催化剂选择性及转化率均有较大提升。
附图说明
图1为本申请实施例1步骤(2)获得的磷酸氧钒前驱体的扫描电镜图。
图2为本申请实施例1步骤(4)获得的活化后的磷酸氧钒催化剂扫描电镜图。
图3为本申请实施例2步骤(2)获得的磷酸氧钒磷酸氧钒催化剂前驱体的扫描电镜图。
图4为本申请实施例2步骤(4)获得的磷酸氧钒催化剂活化后的扫描电镜图。
图5为本申请实施例3步骤(2)获得的磷酸氧钒磷酸氧钒催化剂前驱体的扫描电镜图。
图6为本申请实施例3步骤(4)获得的磷酸氧钒催化剂活化后的扫描电镜图。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本申请的技术方案。
本申请实施例提供一种磷酸氧钒催化剂的制备方法,其包括如下步骤:
S01:将钒源置于容器中,加入低共熔溶剂∶异丁醇∶苯甲醇(体积比)=(0.15~0.25)∶(3~5)∶1的混合液,升温至100℃~180℃反应2h~8h,之后冷却至30℃~80℃,再加入磷源,升温至100℃~200℃继续反应10h~24h,产物经过过滤、洗涤、干燥得到磷酸氧钒前驱体,其中,所述磷源中的磷和钒源中的钒的摩尔比为(0.8~1.5)∶1,所述五氧化二钒在异丁醇和苯甲醇混合液中的浓度为0.02g/mL~0.12g/mL,所述钒源与低共熔溶剂的质量比为(50~10)∶1;
S02:将所述磷酸氧钒前驱体在350℃~550℃温度下焙烧10h~24h,实现活 化,冷却,获得活化后的磷酸氧钒催化剂。
具体地,所述钒源为钒盐或钒氧化物,钒盐为NH 4VO 3,钒氧化物为V 2O 5、V 2O 4和V 2O 3中的任意一种或至少两种的组合;磷源为磷酸、磷酸盐或磷氧化物中的至少一种,磷酸盐为(NH 4) 3PO 4、(NH 4) 2HPO 4和NH 4H 2PO 4中的至少一种,磷氧化物为P 2O 5或P 2O 3。所选用的低共熔溶剂包括氯化胆碱-丙二酸、氯化胆碱-草酸或氯化胆碱-酒石酸中的任意一种或至少两种的组合。
本申请所述焙烧步骤可以在磷酸氧钒前驱体成型后进行,焙烧后直接用于催化剂效果评价;也可以先焙烧再成型,然后用于催化剂效果评价。
本申请实施例还提供上述磷酸氧钒催化剂的制备方法获得的磷酸氧钒催化剂在正丁烷选择性氧化制顺酐中的应用。
本申请实施例还提供上述磷酸氧钒催化剂的制备方法获得的磷酸氧钒催化剂在正丁烷选择性氧化制顺酐中的应用。
所述钒磷氧制备顺酐的反应条件为:反应温度380℃~450℃,压力为常压0.1MPa~0.5MPa,正丁烷混合气空速为1000h -1~3500h -1,正丁烷浓度为1.0%~1.8%。
以下通过具体实施例来举例说明磷酸氧钒催化剂的制备方法。下面实施例中的化合物可分别根据现有方法直接制备而得,当然,在其它实施例中也可以直接从市场上购得,并不限于此。
实施例1
制备磷酸氧钒催化剂:
(1)称取10g V 2O 5置于250mL的三口烧瓶中,加入1g氯化胆碱-草酸低共熔溶剂、80mL异丁醇和20mL苯甲醇的混合液,机械搅拌混合均匀,135℃条件下回流3h后降温至60℃。
(2)缓慢滴加7.53mL 85%的H 3PO 4,并升温至135℃温度下继续回流16h。过滤、无水乙醇洗涤得蓝色沉淀物,在120℃的空气中干燥24h,得到磷酸氧钒催化剂前驱体粉末。
(3)将得到的磷酸氧钒催化剂前驱体粉末在15MPa的压力下压片,破碎,筛取20-40目催化剂颗粒。
(4)之后将催化剂颗粒在体积比为1.5∶17∶81.5的正丁烷/氧气/氮气混合反应气气氛下由室温以2℃/min的升温速率升至430℃原位活化12h,获得磷酸氧钒催化剂。
检测:
称取磷酸氧钒催化剂2.6g,置于内径为14mm的固定床反应器中进行催化剂性能评价,与原料气组成为C 4H 10/O 2/N 2=1.4/19.5/79(v/v/v),反应温度420℃,反应压力0.12MPa,气体空速2000h -1的条件下反应,反应尾气通过气相色谱在线分析,得到正丁烷转化率为86.94%,顺酐的选择性为60.21%,顺酐收率为55.24%。
实施例1步骤(2)获得的磷酸氧钒前驱体的晶体学数据见表1,步骤(4)获得的活化后的磷酸氧钒催化剂的晶体学数据见表2。
实施例2
制备磷酸氧钒催化剂:
(1)称取10g V 2O 5置于250mL的三口烧瓶中,加入1g氯化胆碱-酒石酸低共熔溶剂、80mL异丁醇和20mL苯甲醇的混合液,机械搅拌混合均匀,135℃条件下回流3h后降温至60℃。
(2)缓慢滴加7.53mL 85%的H 3PO 4,并升温至135℃温度下继续回流16h。过滤、无水乙醇洗涤得蓝黑色沉淀物,在120℃的空气中干燥24h,得到磷酸氧 钒催化剂前驱体粉末。
(3)将得到的磷酸氧钒催化剂前驱体粉末在15MPa的压力下压片,破碎,筛取20-40目催化剂颗粒。
(4)之后将催化剂颗粒在体积比为1.5∶17∶81.5的正丁烷/氧气/氮气混合反应气气氛下由室温以2℃/min的升温速率升至430℃原位活化12h,获得磷酸氧钒催化剂。
检测:
称取磷酸氧钒催化剂2.6g,置于内径为14mm的固定床反应器中进行催化剂性能评价,与原料气组成为C 4H 10/O 2/N 2=1.4/19.5/79(v/v/v),反应温度420℃,反应压力0.12MPa,气体空速2000h -1的条件下反应,反应尾气通过气相色谱在线分析,得到正丁烷转化率为88.46%,顺酐的选择性为58.57%,顺酐收率为52.81%。
实施例2步骤(2)获得的磷酸氧钒前驱体的晶体学数据见表1,步骤(4)获得的活化后的磷酸氧钒催化剂的晶体学数据见表2。
实施例3
制备磷酸氧钒催化剂:
(1)称取10g V 2O 5置于250mL的三口烧瓶中,加入1g氯化胆碱-丙二酸低共熔溶剂、80mL异丁醇和20mL苯甲醇的混合液,机械搅拌混合均匀,135℃条件下回流3h后降温至60℃.
(2)缓慢滴加7.53mL 85%的H 3PO 4,并升温至135℃温度下继续回流16h。过滤、无水乙醇洗涤得蓝色沉淀物,在120℃的空气中干燥24h,得到磷酸氧钒催化剂前驱体粉末。
(3)将得到的磷酸氧钒催化剂前驱体粉末在15MPa的压力下压片,破碎, 筛取20-40目催化剂颗粒。
(4)之后将催化剂颗粒在体积比为1.5∶17∶81.5的正丁烷/氧气/氮气混合反应气气氛下由室温以2℃/min的升温速率升至430℃原位活化12h,获得磷酸氧钒催化剂。
检测:
称取磷酸氧钒催化剂2.6g,置于内径为14mm的固定床反应器中进行催化剂性能评价,与原料气组成为C 4H 10/O 2/N 2=1.4/19.5/79(v/v/v),反应温度420℃,反应压力0.12MPa,气体空速2000h -1的条件下反应,反应尾气通过气相色谱在线分析,得到正丁烷转化率为94.31%,顺酐的选择性为56.27%,顺酐收率为53.07%。
实施例3步骤(2)获得的磷酸氧钒前驱体的晶体学数据见表1,步骤(4)获得的活化后的磷酸氧钒催化剂的晶体学数据见表2。
实施例4
除以下内容外,其他制备方法和条件与实施例1相同:
调节五氧化二钒、氯化胆碱-酒石酸低共熔溶剂、异丁醇、苯甲醇和磷酸的加入量分别为5g、1g、10ml、40mL和3.77mL。
调节步骤(1)回流条件为100℃回流8h;
调节步骤(2)升温至150℃继续回流12h;
调节步骤(4)升至350℃原位活化24h。
采用与实施例1相同的方法和条件进行检测,检测结果为:正丁烷转化率为92.31%,顺酐的选择性为51.27%,顺酐收率为47.32%。
实施例5
除以下内容外,其他制备方法和条件与实施例1相同:
调节五氧化二钒、氯化胆碱-酒石酸低共熔溶剂、异丁醇、苯甲醇和磷酸的加入量分别为3g、1g、15mL、40mL和2.26mL。
调节步骤(1)回流条件为140℃回流5h;
调节步骤(2)升温至180℃继续回流10h;
调节步骤(4)升至550℃原位活化10h。
采用与实施例1相同的方法和条件进行检测,检测结果为正丁烷转化率为92.05%,顺酐的选择性为55.36%,顺酐收率为50.96%。
实施例6
除以下内容外,其他制备方法和条件与实施例1相同:
调节五氧化二钒、氯化胆碱-酒石酸低共熔溶剂、异丁醇、苯甲醇和磷酸的加入量分别为1.5g、1g、15mL、35mL和1.3mL。
调节步骤(1)回流条件为170℃回流2h;
调节步骤(2)升温至160℃继续回流15h;
调节步骤(4)升至450原位活化18h。
采用与实施例1相同的方法和条件进行检测,检测结果为正丁烷转化率为93.02%,顺酐的选择性为54.17%,顺酐收率为50.38%。
实施例7
除以下内容外,其他制备方法和条件与实施例1相同:
调节加入溶剂的种类及用量,五氧化二钒、氯化胆碱-酒石酸低共熔溶剂、异丁醇、苯甲醇和磷酸的加入量分别为5g、1g、10mL、40mL和3.77mL。
调节步骤(1)回流条件为100℃回流5.5h;
调节步骤(2)升温至150℃继续回流12h;
调节步骤(4)升至350℃原位活化48h。
采用与实施例1相同的方法和条件进行检测,检测结果为:正丁烷转化率为90.52%,顺酐的选择性为55.26%,顺酐收率为50.02%。
实施例8
制备磷酸氧钒催化剂:
(1)称取10g V 2O 5置于250mL的三口烧瓶中,加入1g氯化胆碱-草酸低共熔溶剂、80mL异丁醇和20mL苯甲醇的混合液,机械搅拌混合均匀,145℃条件下回流3.5h后降温至40℃。
(2)缓慢滴加7.53mL 85%的H 3PO 4,并升温至165℃温度下继续回流14h。过滤、无水乙醇洗涤得蓝色沉淀物,在100℃的空气中干燥18h,得到磷酸氧钒催化剂前驱体粉末。
(3)将磷酸氧钒催化剂前驱体粉末在体积比为1.5∶17∶81.5的正丁烷/氧气/氮气混合反应气气氛下由室温以2℃/min的升温速率升至475℃原位活化15h,获得磷酸氧钒催化剂。
(4)之后将得到的催化剂在15MPa的压力下压片,破碎,筛取20-40目催化剂颗粒。
采用与实施例1相同的方法和条件进行检测,检测结果为:正丁烷转化率为93.42%,顺酐的选择性为55.26%,顺酐收率为51.62%。
对比例1
称取10g V 2O 5置于250mL的三口烧瓶中,加入80mL异丁醇和20mL苯甲醇的混合液,机械搅拌混合均匀,135℃条件下回流3h后降温至60℃,之后缓慢滴加7.53mL 85%的H 3PO 4,并升温至135℃温度下继续回流16h。过滤、无水乙醇洗涤得蓝色沉淀物,在120℃的空气中干燥24h,得到磷酸氧钒催化剂前驱体粉末。将得到的磷酸氧钒催化剂前驱体粉末在15MPa的压力下压片,破 碎,筛取20-40目催化剂颗粒。之后将催化剂颗粒在体积比为1.5∶17∶81.5的正丁烷/氧气/氮气混合反应气气氛下由室温以2℃/min的升温速率升至430℃原位活化12h,得到活化的磷酸氧钒催化剂。
称取活化后的催化剂2.6g,置于内径为14mm的固定床反应器中进行催化剂性能评价,与原料气组成为C 4H 10/O 2/N 2=1.5/19.5/79(v/v/v),反应温度420℃,反应压力0.12MPa,气体空速2000h -1的条件下反应,反应尾气通过气相色谱在线分析,得到正丁烷转化率为80.86%,顺酐的选择性为55.74%,顺酐收率为45.07%。
图1为实施例1步骤(2)获得的磷酸氧钒前驱体的扫描电镜图;图2为实施例1步骤(4)获得的活化后的磷酸氧钒催化剂扫描电镜图;图3为实施例2步骤(2)获得的磷酸氧钒催化剂前驱体的扫描电镜图;图4为实施例2步骤(4)获得的磷酸氧钒催化剂活化后的扫描电镜图;图5为实施例3步骤(2)获得的磷酸氧钒催化剂前驱体的扫描电镜图;图6为实施例3步骤(4)获得的磷酸氧钒催化剂活化后的扫描电镜图。
由图1~6可以看出,使用低共熔溶剂强化后的磷酸氧钒催化剂前驱体变得更加分散,片层厚度变厚,比表面较大,改进后催化剂活化后,结构相对能够保持稳定,不易坍塌。
表1
Figure PCTCN2018077705-appb-000001
表2
Figure PCTCN2018077705-appb-000002
从表1前驱体的晶体学数据中可以看出,实施例1~3中的磷酸氧钒催化剂相对于对比例1的不加低共熔溶剂制备的磷酸氧钒催化剂,I(001)/I(130)均有不同程度的提高,说明低共熔溶剂的加入能够诱导前体(001)面的生长,而该晶面也是转化为活性面的主要晶面。从表2活化后催化剂的晶体学数据可以看出,添加低共熔溶剂的催化剂,I(020)/I(204)强度明显增大,这证明低共熔溶剂对活性面有诱导生长的作用,并且其晶粒尺寸明显减小,有利于暴露更多的活性位点。尤其是实施例2中,(020)面的相对含量最高。由于(020)面的暴露,增大了磷酸氧钒催化剂的活性。而在对比例1中晶体尺寸较大,活性面结晶度低,这也是对比例1中的催化剂在正丁烷选择性氧化制顺酐的反应中活性不高,容易失活的原因。
申请人声明,本申请通过上述实施例来说明本申请的详细方法,但本申请并不局限于上述详细方法,即不意味着本申请必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。

Claims (15)

  1. 一种磷酸氧钒催化剂的制备方法,其包括以下步骤:
    (1)将钒源、低共熔溶剂和醇混合,得到混合料,反应;
    (2)将步骤(1)所得反应产物与磷源混合,升温至温度高于低共熔溶剂的熔点,继续反应,得到磷酸氧钒前驱体;以及
    (3)焙烧,得到磷酸氧钒催化剂;
    其中,所述低共熔溶剂为:氯化胆碱与有机羧酸形成的低共熔溶剂;并且
    所述醇为:苯甲醇,或者C 3~C 8的一元醇与苯甲醇的混合物。
  2. 根据权利要求1所述的方法,其中,所述有机羧酸包括丙二酸、草酸或酒石酸中的任意一种或至少两种的组合。
  3. 根据权利要求2所述的方法,其中,所述C 3~C 8的一元醇为丙醇、异丁醇、正丁醇、戊醇、己醇、庚醇或辛醇中的任意一种或至少两种的组合。
  4. 根据权利要求3所述的方法,其中,所述醇为:异丁醇与苯甲醇的混合物。
  5. 根据权利要求1-4中任一项所述的方法,其中,当所述醇为苯甲醇时,所述低共熔溶剂和苯甲醇的体积比为(0.15~0.25)∶1;或者
    当所述醇为C 3~C 8的一元醇与苯甲醇的混合物时,所述低共熔溶剂、C 3~C 8的一元醇和苯甲醇的体积比为(0.15~0.25)∶(3~5)∶1。
  6. 根据权利要求1-5中任一项所述的方法,其中,所述方法还包括:在加入低共熔溶剂的过程中加入金属氧化物或金属盐中的任意一种或两种的组合。
  7. 根据权利要求6所述的方法,其中,所述金属氧化物或金属盐中的金属元素独立地选自Fe、Cu、Co、Mn、Ni、Zr、Zn、Ce或Mo中的任意一种或至少两种的组合,优选为Zr和Mo。
  8. 根据权利要求7所述的方法,其中,所述金属元素与钒源中的钒元素的 原子摩尔比为0.0005~0.035。
  9. 根据权利要求1-8中任一项所述的方法,其中,所述钒源与低共熔溶剂的质量比为(50~10)∶1,优选为(20~30)∶1;
    所述混合料中,钒源的浓度为0.02g/mL~0.12g/mL;
    所述磷源中的磷和钒源中的钒的摩尔比为(0.8~1.5)∶1,优选为(0.9~1.2)∶1。
  10. 根据权利要求1-9中任一项所述的方法,其中,步骤(1)所述混合的方式为:先将钒源置于容器中,然后加入低共熔溶剂和醇的混合液;
    优选地,步骤(1)所述钒源包括钒盐或钒氧化物中的任意一种或至少两种的组合,优选包括V 2O 5、NH 4VO 3、V 2O 4或V 2O 3中的任意一种或至少两种的组合,优选为V 2O 5
    优选地,步骤(1)所述反应的温度为100℃~180℃,优选为130℃~140℃;
    优选地,步骤(1)所述反应的时间为2h~8h,优选为3h~5h;
    优选地,步骤(1)所述反应后,冷却至30℃~80℃;
    优选地,步骤(2)所述磷源包括磷酸、磷酸盐或磷氧化物中的任意一种或至少两种的组合,优选包括质量分数85%的磷酸、磷酸盐或磷酸氧化物中的任意一种或至少两种的组合,进一步优选包括质量分数85%的磷酸、(NH 4) 3PO 4、(NH 4) 2HPO 4、NH 4H 2PO 4、P 2O 5或P 2O 3中的任意一种或至少两种的组合;
    优选地,步骤(2)升温至高于低共熔溶剂熔点的35℃-200℃;
    优选地,步骤(2)升温至100℃~200℃;
    优选地,步骤(2)所述继续反应的时间为10h~24h;
    优选地,步骤(2)所述继续反应完成后,进行过滤、洗涤和干燥的步骤。
  11. 根据权利要求1-10中任一项所述的方法,其中,步骤(3)所述焙烧的气氛为氮气气氛、或者正丁烷与空气的混合气氛、或者正丁烷、氧气和氮气 的混合气氛;
    优选地,所述正丁烷与空气的混合气氛中,正丁烷和空气的体积比为(0.8~1.8)∶100;
    优选地,所述正丁烷、氧气和氮气的混合气氛中,正丁烷、氧气和氮气的体积比为(0.8~1.8)∶(10~25)∶(75~85);
    优选地,步骤(3)所述焙烧的温度为350℃~550℃;
    优选地,步骤(3)所述焙烧的时间为10h~24h。
  12. 根据权利要求1-11中任一项所述的方法,其中,所述方法包括以下步骤:
    (1)先将五氧化二钒置于容器中,然后加入低共熔溶剂、异丁醇和苯甲醇混合,得到混合料,于130℃~140℃反应3h~5h,然后冷却至30~80℃;
    (2)再向容器中加入磷源,升温至100℃~200℃,继续反应10h~24h,过滤、洗涤并干燥,得到磷酸氧钒前驱体;以及
    (3)在氮气气氛、或者正丁烷与空气的混合气氛、或者正丁烷、氧气和氮气的混合气氛中,350℃~550℃焙烧10h~24h实现原位活化,得到磷酸氧钒催化剂;
    其中,所述低共熔溶剂为:氯化胆碱与有机羧酸形成的低共熔溶剂;
    所述五氧化二钒与低共熔溶剂的质量比为(20~30)∶1;
    所述低共熔溶剂、异丙醇和苯甲醇的体积比为(0.15~0.25)∶(3~5)∶1;
    所述混合料中,五氧化二钒的浓度为0.02g/mL~0.12g/mL;并且
    所述磷源中的磷和钒源中的钒的摩尔比为(0.9~1.2)∶1。
  13. 一种通过权利要求1-12中任一项所述的方法制备得到的磷酸氧钒催化剂。
  14. 如权利要求13所述的磷酸氧钒催化剂用于正丁烷选择性氧化制顺酐的用途。
  15. 根据权利要求14所述的用途,其中,所述正丁烷选择性氧化制顺酐的反应条件为:反应温度400℃~550℃,压力为0.1MPa~0.3MPa,正丁烷混合气空速为1000h -1~2500h -1,正丁烷浓度为1.3wt%~1.8wt%。
PCT/CN2018/077705 2018-02-09 2018-03-01 一种磷酸氧钒催化剂、其制备方法及用途 WO2019153387A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/961,029 US11123718B2 (en) 2018-02-09 2018-03-01 Oxovanadium phosphate catalyst, and preparation method and application therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810136362.1 2018-02-09
CN201810136362.1A CN108325545B (zh) 2018-02-09 2018-02-09 一种磷酸氧钒催化剂、其制备方法及用途

Publications (1)

Publication Number Publication Date
WO2019153387A1 true WO2019153387A1 (zh) 2019-08-15

Family

ID=62928743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077705 WO2019153387A1 (zh) 2018-02-09 2018-03-01 一种磷酸氧钒催化剂、其制备方法及用途

Country Status (3)

Country Link
US (1) US11123718B2 (zh)
CN (1) CN108325545B (zh)
WO (1) WO2019153387A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112473707A (zh) * 2019-09-12 2021-03-12 北京化工大学 一种调控晶面的钒磷氧催化剂制备方法及丁烷氧化应用
CN112919442A (zh) * 2021-01-25 2021-06-08 中南大学 一种钠离子电池正极材料氟磷酸钒钠的制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111701609B (zh) * 2020-07-09 2021-10-08 中国科学院过程工程研究所 一种稀土基水滑石辅助钒磷氧催化剂的方法
CN111701608B (zh) * 2020-07-09 2021-08-31 中国科学院过程工程研究所 一种水滑石辅助制备钒磷氧催化剂的方法
CN111841590B (zh) * 2020-09-04 2023-02-10 兰州石化职业技术学院 一种二元混合溶剂体系可控合成钒磷氧催化剂的方法
CN112479875A (zh) * 2020-12-01 2021-03-12 厦门大学 一种α-羟基羧酸酯选择性氧化制备α-氧代羧酸酯的方法
CN114605252B (zh) * 2020-12-09 2023-05-26 中国科学院大连化学物理研究所 一种制备甲基丙烯酸及其甲酯的方法
CN112851844B (zh) * 2021-01-06 2022-08-02 齐河力厚化工有限公司 一种共晶溶剂及其制备方法和应用、聚苯乙烯马来酸酐溶液及其制备方法和应用
CN114672839B (zh) * 2022-03-23 2023-09-12 山东大学 一种二维多孔金属有机杂化材料及其制备方法与在电催化转化生物质中的应用
CN115722239B (zh) * 2022-12-07 2024-04-09 攀钢集团钒钛资源股份有限公司 一种低共熔溶剂辅助制备钒磷氧催化剂的方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103551175A (zh) * 2013-11-06 2014-02-05 兰州理工大学 磷酸氧钒催化剂及其制备方法与用途
CN103769181A (zh) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 一种钒磷氧催化剂及其制备方法
CN106540729A (zh) * 2016-11-07 2017-03-29 山东齐鲁科力化工研究院有限公司 负载型催化剂及其用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8658557B2 (en) * 2011-10-25 2014-02-25 Ineos Usa Llc Catalyst for n-butane oxidation to maleic anhydride
CN105921161B (zh) * 2016-04-27 2018-10-19 常州大学 一种用于对二氯苯羟基化制备2,5-二氯苯酚的催化剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103769181A (zh) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 一种钒磷氧催化剂及其制备方法
CN103551175A (zh) * 2013-11-06 2014-02-05 兰州理工大学 磷酸氧钒催化剂及其制备方法与用途
CN106540729A (zh) * 2016-11-07 2017-03-29 山东齐鲁科力化工研究院有限公司 负载型催化剂及其用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI ET AL: "Ionothermal Synthesis of Amorphous Vanadium Phosphate Catalyst in Eutectic Mixture for the Oxidation Reaction", JOURNAL OF MOLECULAR CATALYSIS (CHINA), vol. 28, no. 2, 30 April 2014 (2014-04-30), pages 105 - 111, ISSN: 1001-3555 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112473707A (zh) * 2019-09-12 2021-03-12 北京化工大学 一种调控晶面的钒磷氧催化剂制备方法及丁烷氧化应用
CN112473707B (zh) * 2019-09-12 2023-01-20 北京化工大学 一种调控晶面的钒磷氧催化剂制备方法及丁烷氧化应用
CN112919442A (zh) * 2021-01-25 2021-06-08 中南大学 一种钠离子电池正极材料氟磷酸钒钠的制备方法
CN112919442B (zh) * 2021-01-25 2022-06-21 中南大学 一种钠离子电池正极材料氟磷酸钒钠的制备方法

Also Published As

Publication number Publication date
US11123718B2 (en) 2021-09-21
CN108325545B (zh) 2021-01-26
CN108325545A (zh) 2018-07-27
US20200368730A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
WO2019153387A1 (zh) 一种磷酸氧钒催化剂、其制备方法及用途
CN108355690B (zh) 一种磷酸氧钒催化剂、其制备方法及用途
KR100613240B1 (ko) 촉매 제조방법
US10137437B2 (en) Method for producing a catalyst for the partial oxidation/ammoxidation of olefins
CN108246325B (zh) 一种磷酸氧钒催化剂的制备方法及其用途
KR101579702B1 (ko) 포화 및 불포화 알데히드의 불포화 카복실산으로의 산화 촉매, 이의 제조방법 및 사용방법
JP6195246B2 (ja) ブテンの脱水素に用いるフェライト系触媒の製造方法
US8298981B2 (en) Process to produce high surface area nanoparticle vanadium phosphorus oxide catalyst and product derives thereof
CN109550515A (zh) 一种钒磷氧催化剂的制备方法及应用
US20150086471A1 (en) Multimetallic mixed oxides, its preparation and use for the oxidative dehydrogenation of ethane for producing ethylene
JP2893539B2 (ja) バナジウム―リン系結晶性酸化物およびそれを含有する触媒の製造法
KR101880623B1 (ko) 복합 산화물, 그의 제조 방법 및 그의 용도
JP3560070B2 (ja) ニオブを含む複合金属酸化物の製造方法
CN112264032A (zh) 一种用于催化糠醛加氢脱氧制备2-甲基呋喃的催化剂
CN115722239B (zh) 一种低共熔溶剂辅助制备钒磷氧催化剂的方法及其应用
JP4242842B2 (ja) ピロリン酸バナジル触媒を製造する方法
CN112619645A (zh) 用于制备丙烯酸的催化剂及其制备方法和应用
CN105727979B (zh) 一种用于丙烷氧化脱氢制丙烯的催化剂制备方法
KR20120021858A (ko) 감마-비스무스 몰리브데이트 단일상 촉매 및 이를 이용한 1,3-부타디엔의 제조방법
CN110935479B (zh) 正丁烷氧化制顺酐的催化剂及其制备方法
CN111097467B (zh) 低碳烃选择氧化的钒磷催化剂前驱体的活化方法
JP7188707B2 (ja) メタクリル酸製造用触媒およびその製造方法、並びにメタクリル酸およびメタクリル酸エステルの製造方法
CN111097465B (zh) 钒磷氧化物催化剂的制备方法
CN114163378A (zh) 一种n-羟基邻苯二甲酰亚胺的合成方法
CN111036215A (zh) 一种单原子Ni催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905422

Country of ref document: EP

Kind code of ref document: A1