WO2019151346A1 - 荷揚げ装置 - Google Patents

荷揚げ装置 Download PDF

Info

Publication number
WO2019151346A1
WO2019151346A1 PCT/JP2019/003230 JP2019003230W WO2019151346A1 WO 2019151346 A1 WO2019151346 A1 WO 2019151346A1 JP 2019003230 W JP2019003230 W JP 2019003230W WO 2019151346 A1 WO2019151346 A1 WO 2019151346A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
distance
scraping
hatch combing
unloader
Prior art date
Application number
PCT/JP2019/003230
Other languages
English (en)
French (fr)
Inventor
諒太郎 久保
肇 坂野
良夫 香月
圭 阿久根
紀彦 水崎
Original Assignee
株式会社Ihi
Ihi運搬機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi, Ihi運搬機械株式会社 filed Critical 株式会社Ihi
Priority to CN201980005676.0A priority Critical patent/CN111433143B/zh
Publication of WO2019151346A1 publication Critical patent/WO2019151346A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G67/00Loading or unloading vehicles
    • B65G67/60Loading or unloading ships

Definitions

  • the unloading device carries the cargo loaded in the garage out of the garage.
  • An example of the unloading device is an unloader device.
  • the unloader device it is often difficult or impossible for an operator to directly check the state of the load, the distance to the wall surface of the garage, and the like.
  • a technique for example, Patent Document 1
  • Patent Document 1 a technique has been developed in which a sensor is attached to the scraping unit and the distance to the wall of the hangar is measured.
  • This indication aims at providing the unloading device which can derive the relative relation with a ship in view of such a subject.
  • the unloading device is disposed in a vertical conveyance mechanism unit that holds a scraping unit that scrapes off a load in a shed at a lower end, a vertical conveyance mechanism unit, and A distance measuring sensor capable of measuring distance toward the side.
  • Three or more distance measuring sensors may be provided so that the measuring range is different or one measuring sensor whose measuring direction is not parallel to the measuring direction of other distance measuring sensors is included.
  • a display unit may be provided that displays an image showing at least a part of the garage, the vertical transport mechanism unit, and the scraping unit based on the measurement result measured by the distance measuring sensor.
  • the display unit may display, as an image, a cross section where the scraping part is present and a cross section where hatch combing is provided in the upper part of the berth.
  • the cross section may be a cross section parallel to the top surface of the hatch combing or parallel to the horizontal.
  • the display unit may display the distance between the vertical transport mechanism unit and the hatch combing based on the measurement result measured by the distance measuring sensor.
  • the display unit may display the distance between the vertical conveyance mechanism unit and the hatch combing only when the distance between the vertical conveyance mechanism unit and the hatch combing is equal to or less than a preset first threshold value.
  • the display unit is vertical when the distance between the vertical transport mechanism unit and the hatch combing is equal to or smaller than the first threshold and equal to or larger than the second threshold smaller than the first threshold and smaller than the second threshold. You may display the distance of a conveyance mechanism part and hatch combing in a different aspect.
  • the display unit may display the distance between the scraping unit and the garage based on the measurement result measured by the distance measuring sensor.
  • the display unit may display the distance between the scraping unit and the garage only when the distance between the scraping unit and the garage is equal to or less than a preset third threshold value.
  • the display unit scrapes when the distance between the scraping unit and the garage is equal to or smaller than a third threshold value and equal to or greater than a fourth threshold value that is smaller than the third threshold value and less than the fourth threshold value. You may display the distance of a part and a shipyard in a different aspect.
  • FIG. 1 is a diagram illustrating an unloader system.
  • FIG. 2 is a diagram illustrating the configuration of the unloader device.
  • FIG. 3 is a diagram for explaining the measurement range of the distance measuring sensor.
  • FIG. 4 is a diagram for explaining the measurement range of the distance measuring sensor.
  • FIG. 5 is a diagram illustrating the measurement range of the distance measuring sensor.
  • FIG. 6 is a diagram illustrating the measurement range of the distance measuring sensor.
  • FIG. 7 is a diagram illustrating the electrical configuration of the unloader system.
  • FIG. 8A is a diagram illustrating a coordinate system of the unloader device.
  • FIG. 8B is a diagram illustrating a coordinate system of the unloader device.
  • FIG. 9 is a diagram for explaining measurement points of the distance measuring sensor.
  • FIG. 8A is a diagram illustrating a coordinate system of the unloader device.
  • FIG. 8B is a diagram illustrating a coordinate system of the unloader device.
  • FIG. 9 is
  • FIG. 10 is a diagram illustrating a state in which edge points are detected.
  • 11A, 11B, and 11C are diagrams illustrating the arrangement of the three-dimensional model.
  • FIG. 12 is a diagram illustrating the upper viewpoint image.
  • FIG. 13 is a diagram illustrating the scraping portion peripheral image.
  • 14A and 14B are diagrams for explaining the automatic route.
  • FIG. 1 is a diagram for explaining the unloader system 1.
  • the unloader system 1 includes an unloader device 100 as an example of a lifting device and a control device 200. Although an example in which four unloader devices 100 are provided will be described, the number of unloader devices 100 may be any number.
  • the unloader device 100 can travel on the pair of rails 3 laid along the quay 2 in the extending direction of the rails 3.
  • the plurality of unloader devices 100 are arranged on the same rail 3, but may be arranged on different rails 3.
  • the unloader device 100 is communicably connected to the control device 200.
  • the communication method between the unloader device 100 and the control device 200 may be wired or wireless.
  • the unloader device 100 carries the load 6 loaded in the hangar 5 of the ship 4 anchored on the quay 2 to the outside.
  • the load 6 is assumed to be a bulk load, and an example is coal.
  • FIG. 2 is a diagram for explaining the configuration of the unloader apparatus 100.
  • the quay 2 and the ship 4 are shown in the cross section.
  • the unloader device 100 includes a traveling body 102, a revolving body 104, a boom 106, a top frame 108, an elevator 110, a scraping unit 112, and a boom conveyor 114.
  • the traveling body 102 can travel on the rail 3 by driving an actuator (not shown).
  • the traveling body 102 is provided with a position sensor 116.
  • the position sensor 116 is a rotary encoder, for example.
  • the position sensor 116 measures the position of the traveling body 102 on the horizontal plane with respect to a predetermined origin position based on the number of rotations of the wheels of the traveling body 102.
  • the turning body 104 is provided on the upper part of the traveling body 102 so as to be rotatable about a vertical axis.
  • the turning body 104 can turn with respect to the traveling body 102 by driving an actuator (not shown).
  • the boom 106 is provided in the upper part of the revolving structure 104 so that the inclination angle can be changed.
  • the boom 106 can change an inclination angle with respect to the swing body 104 by driving an actuator (not shown).
  • the turning body 104 is provided with a turning angle sensor 118 and an inclination angle sensor 120.
  • the turning angle sensor 118 and the inclination angle sensor 120 are, for example, rotary encoders.
  • the turning angle sensor 118 measures the turning angle of the turning body 104 with respect to the traveling body 102.
  • the tilt angle sensor 120 measures the tilt angle of the boom 106 with respect to the revolving structure 104.
  • the top frame 108 is provided at the tip of the boom 106.
  • the top frame 108 is provided with an actuator for turning the elevator 110.
  • the elevator 110 is formed in a substantially cylindrical shape.
  • the elevator 110 is supported by the top frame 108 so as to be rotatable about a central axis.
  • the top frame 108 is provided with a turning angle sensor 122.
  • the turning angle sensor 122 is, for example, a rotary encoder.
  • the turning angle sensor 122 measures the turning angle of the elevator 110 with respect to the top frame 108.
  • the scraping unit 112 is provided at the lower end of the elevator 110.
  • the scraping unit 112 turns integrally with the elevator 110 as the elevator 110 turns.
  • the scraping unit 112 is rotatably held by the top frame 108 and the elevator 110 that function as a vertical conveyance mechanism unit.
  • the scraping unit 112 is provided with a plurality of buckets 112a and a chain 112b.
  • the plurality of buckets 112a are continuously arranged on the chain 112b.
  • the chain 112 b is spanned inside the scraping portion 112 and the elevator 110.
  • the scraping unit 112 is provided with a link mechanism (not shown).
  • the link mechanism moves to change the length of the bottom portion of the scraping portion 112.
  • the scraping unit 112 varies the number of buckets 112 a in contact with the load 6 in the hangar 5.
  • the scraping unit 112 scrapes the load 6 in the hangar 5 with the bucket 112a at the bottom by rotating the chain 112b.
  • the bucket 112a which scraped off the load 6 moves to the upper part of the elevator 110 with rotation of the chain 112b.
  • the boom conveyor 114 is provided below the boom 106.
  • the boom conveyor 114 carries out the load 6 moved to the upper part of the elevator 110 by the bucket 112a.
  • the unloader device 100 having such a configuration moves in the extending direction of the rail 3 by the traveling body 102 and adjusts the relative positional relationship in the longitudinal direction with the ship 4. Further, the unloader device 100 turns the boom 106, the top frame 108, the elevator 110, and the scraper 112 by the turning body 104, and adjusts the relative positional relationship in the short direction with the ship 4. Further, the unloader device 100 moves the top frame 108, the elevator 110, and the scraping unit 112 in the vertical direction using the boom 106, and adjusts the vertical relative positional relationship with the ship 4. Further, the unloader device 100 turns the elevator 110 and the scraping unit 112 by the top frame 108. Thereby, the unloader apparatus 100 can move the scraping part 112 to arbitrary positions and angles.
  • the ship 4 has a bay 5 divided into a plurality of sections.
  • the hangar 5 is provided with a hatch combing 7 at the top.
  • the hatch combing 7 has a wall surface of a predetermined height in the vertical direction. Further, the hatch combing 7 has an opening area smaller than that of a horizontal section near the center of the hangar 5. That is, the hangar 5 has a shape in which the opening is narrowed by the hatch combing 7.
  • a hatch cover 8 that opens and closes the hatch combing 7 is provided above the hatch combing 7.
  • the unloader device 100 is provided with distance measuring sensors 130 to 136. Then, the unloader system 1 according to the present disclosure displays the positional relationship between the unloader device 100 and the garage 5 or the load 6 based on the distance measured by the distance measuring sensors 130 to 136, so that the garage 5 So that the worker can grasp the situation inside.
  • the distance measuring sensors 130 to 136 are laser sensors capable of measuring distance, for example, VLP-16 manufactured by Velodyne, VLP-32, M8 manufactured by Quanergy, and the like.
  • the distance measuring sensors 130 to 136 are provided with, for example, 16 laser irradiation units spaced along the axial direction on the side surface of a cylindrical main body.
  • a laser irradiation part is provided in a main-body part so that 360 degree rotation is possible.
  • the laser irradiation units are arranged so that the difference in the laser emission angle in the axial direction from the laser irradiation units arranged adjacent to each other is 2 degrees.
  • the distance measuring sensors 130 to 136 can irradiate laser in the range of 360 degrees in the circumferential direction of the main body.
  • the distance measuring sensors 130 to 136 can emit a laser within a range of ⁇ 15 degrees with reference to a plane orthogonal to the axial direction of the main body.
  • a receiving section for receiving a laser is provided in the main body section.
  • Distance measuring sensors 130 to 136 irradiate laser at predetermined angles while rotating the laser irradiation unit.
  • the distance measuring sensors 130 to 136 receive the laser beams irradiated (projected) from a plurality of laser irradiation units and reflected by an object (measurement point) by the reception units. Then, the distance measuring sensors 130 to 136 derive the distance to the object based on the time from the irradiation of the laser to the reception.
  • FIG. 3 and 4 are diagrams for explaining the measurement range of the distance measuring sensors 130 to 132.
  • FIG. 3 is a diagram for explaining the measurement range of the distance measuring sensors 130 to 132 when the unloader device 100 is viewed from above.
  • FIG. 4 is a diagram for explaining the measurement range of the distance measuring sensors 130 to 132 when the unloader device 100 is viewed from the side. 3 and 4, the measurement range of the distance measuring sensors 130 to 132 is indicated by a one-dot chain line.
  • the distance measuring sensors 130 to 132 are mainly used when detecting the upper edge of the hatch combing 7.
  • the distance measuring sensors 130 to 132 are attached to the side surface of the top frame 108 as shown in FIGS. Specifically, the distance measuring sensors 130 to 132 are arranged 120 degrees apart from each other in the circumferential direction with respect to the central axis of the elevator 110.
  • the distance measuring sensors 130 to 132 are arranged so that the central axis of the main body is along the radial direction of the elevator 110. In the distance measuring sensors 130 to 132, the upper half of the vertical direction is covered with a cover (not shown).
  • the distance measuring sensors 130 to 132 are present in the range of ⁇ 15 degrees below the horizontal plane and with reference to the tangent line that contacts the side surface of the top frame 108 as the measurement direction. The distance to the object to be measured can be measured.
  • FIG. 5 and 6 are diagrams for explaining the measurement range of the distance measuring sensors 133 to 136.
  • FIG. FIG. 5 is a diagram for explaining the measurement range of the distance measuring sensors 133 to 136 when the scraping unit 112 is viewed from above. In FIG. 5, only the scraping unit 112 of the unloader device 100 is illustrated.
  • FIG. 5 shows a horizontal section of the ship 4 at the same position in the vertical direction as the scraping portion 112.
  • FIG. 6 is a diagram for explaining the measurement range of the distance measuring sensors 133 to 136 when the unloader device 100 is viewed from the side.
  • the measurement ranges of the distance measuring sensors 133 and 134 are indicated by a one-dot chain line.
  • 5 and 6 the measurement ranges of the distance measuring sensors 135 and 136 are indicated by two-dot chain lines.
  • Ranging sensors 133 to 136 are mainly used when detecting the load 6 in the hangar 5 and the wall surface of the hangar 5.
  • the distance measuring sensors 133 and 134 are attached to the side surface 112c and the side surface 112d of the scraping portion 112, respectively, as shown in FIGS.
  • the distance measuring sensors 133 and 134 are arranged such that the central axis of the main body is orthogonal to the side surface 112c and the side surface 112d of the scraping unit 112, respectively.
  • the distance measuring sensors 133 and 134 are covered with a cover (not shown) in the upper half of the vertical direction.
  • the distance measuring sensors 133 and 134 have a measurement direction of ⁇ 15 with respect to positions below the side surface 112c and the side surface 112d of the scraping unit 112 and parallel to the side surface 112c and the side surface 112d of the scraping unit 112.
  • the distance of an object existing in the range of degrees can be measured. More specifically, the distance measuring sensors 133 and 134 can measure the distance to the object (the load 6) on the bottom side of the scraping unit 112 and on both sides of the scraping unit 112.
  • the distance measuring sensors 133 and 134 are arranged so that at least a range equal to or larger than the maximum length of the bottom of the scraping unit 112 can be measured on the plane where the bottom of the scraping unit 112 is located.
  • the distance measuring sensors 135 and 136 are attached to the side surface 112c and the side surface 112d of the scraping unit 112, respectively.
  • the distance measuring sensors 135 and 136 are arranged such that the central axis of the main body is orthogonal to the bottom surface of the scraping unit 112.
  • the distance measuring sensors 135 and 136 exist in the range of ⁇ 15 degrees as a measurement direction, outside the scraping unit 112 and with respect to a horizontal plane orthogonal to the side surface 112c and the side surface 112d of the scraping unit 112. The distance of an object can be measured.
  • FIG. 7 is a diagram for explaining the electrical configuration of the unloader system 1.
  • the unloader device 100 includes an unloader control unit 140, a storage unit 142, and a communication device 144.
  • the unloader control unit 140 is connected to the position sensor 116, the turning angle sensor 118, the tilt angle sensor 120, the turning angle sensor 122, the distance measuring sensors 130 to 136, and the communication device 144.
  • the unloader control unit 140 is configured by a semiconductor integrated circuit including a CPU (Central Processing Unit).
  • the unloader control unit 140 reads programs, parameters, and the like for operating the CPU itself from the ROM.
  • the unloader control unit 140 manages and controls the entire unloader device 100 in cooperation with a RAM as a work area and other electronic circuits.
  • the unloader control unit 140 includes a drive control unit 150, an edge detection unit 152, a coordinate transformation derivation unit 154, a model placement unit 156, a state monitoring unit 158, a route generation unit 160, an automatic operation command unit 162, and an automatic operation end determination unit. 164, which functions as a collision prevention unit 166. Details of the unloader control unit 140 will be described later.
  • the storage unit 142 is a storage medium such as a hard disk or a nonvolatile memory.
  • the storage unit 142 stores data of the three-dimensional model of the unloader device 100 and the ship 4.
  • the data of the three-dimensional model of the unloader device 100 is voxel data of at least the outer shape of the elevator 110 and the scraping unit 112.
  • the data of the three-dimensional model of the ship 4 is voxel data of the outer shape of the hatch combing 7, and the wall surface shape of the hangar 5 and voxel data of the internal space.
  • the data of the three-dimensional model may be data that can grasp the three-dimensional shape of the unloader device 100 and the ship 4, and may be polygon data, contour (straight line), point group, or the like. Good.
  • the data of the three-dimensional model of the ship 4 is provided for each type of ship 4.
  • the data of the three-dimensional model of the unloader device 100 can be calculated from the shape information at the time of design and the measurement results of the position sensor 116, the turning angle sensor 118, the inclination angle sensor 120, and the turning angle sensor 122 of the unloader device 100. It is. Further, as the data of the three-dimensional model of the ship 4, ship design data may be used, or data measured at the time of past port entry may be used. Measurement at the time of entering the port can be performed using a device capable of generating data of a three-dimensional model such as a laser sensor. The data of the three-dimensional model may be restored by accumulating information from the distance measuring sensors 130 to 136.
  • the communication device 144 communicates with the control device 200 by wire or wireless.
  • the control device 200 includes a monitoring control unit 210, an operation unit 220, a display unit 230, and a communication device 240.
  • the monitoring control unit 210 is composed of a semiconductor integrated circuit including a CPU (Central Processing Unit).
  • the monitoring control unit 210 reads programs, parameters, and the like for operating the CPU itself from the ROM.
  • the supervisory control unit 210 collectively manages and controls the plurality of unloader devices 100 in cooperation with a RAM as a work area and other electronic circuits. Further, the monitoring control unit 210 functions as a remote operation switching unit 212, a display switching unit 214, and a situation determination unit 216. Details of the monitoring control unit 210 will be described later.
  • the operation unit 220 receives an input operation for operating the unloader device 100.
  • the display unit 230 displays an image that allows the operator to grasp the relative positional relationship between the unloader device 100 and the hangar 5 and the cargo 6.
  • the communication device 240 communicates with the unloader device 100 by wire or wireless.
  • FIGS. 8A and 8B are diagrams illustrating the coordinate system of the unloader device 100.
  • FIG. FIG. 8A is a view of the unloader device 100 as viewed from above.
  • FIG. 8B is a view of the unloader device 100 as viewed from the side.
  • the unloader apparatus 100 has three coordinate systems, that is, a ground coordinate system 300, a top frame coordinate system 310, and a hatch combing coordinate system 320.
  • the ground coordinate system 300 uses the initial position of the unloader device 100 set in advance as the origin.
  • the ground coordinate system 300 sets the direction orthogonal to the extending direction of the rail 3 and the vertical direction as the X-axis direction.
  • the ground coordinate system 300 sets the extending direction of the rail 3 as the Y-axis direction.
  • the ground coordinate system 300 sets the vertical direction to the Z-axis direction.
  • the top frame coordinate system 310 is on the central axis of the elevator 110 and has the origin at the lower end of the top frame 108 in the vertical direction.
  • the top frame coordinate system 310 sets the extending direction of the boom 106 as the X-axis direction.
  • the direction perpendicular to the extending direction and the vertical direction of the boom 106 is defined as the Y-axis direction.
  • the vertical direction is the Z-axis direction.
  • Hatch combing coordinate system 320 is the center position of the stern side wall surface of hatch coaming 7 of ship 4, and has the upper end of hatch coaming 7 as the origin.
  • the longitudinal direction of the ship 4, that is, the extending direction of the hatch combing 7 along the ship 4 is defined as the X-axis direction.
  • the transverse direction (width direction) of the ship 4 is set as the Y-axis direction.
  • a direction orthogonal to the upper end surface of the hatch combing 7 is defined as a Z-axis direction.
  • the ground coordinate system 300 and the top frame coordinate system 310 can be converted based on the shape of the unloader device 100 and the movement of the unloader device 100.
  • the positions with respect to the scraping unit 112 are known in advance. Then, the position of the top frame coordinate system 310 can be derived based on the turning angle of the elevator 110.
  • the position of the top frame coordinate system 310 is known in advance.
  • the relative positional relationship between the top frame coordinate system 310 and the hatch combing coordinate system 320 changes as the unloader device 100 and the ship 4 move.
  • the top frame coordinate system 310 and the hatch coaming coordinate system 320 are relative to each other when the ship 4 is shaken, or the ship 4 is moved in the vertical direction due to tide fullness or the load of the load 6. The positional relationship changes.
  • the edge detection unit 152 detects the upper edge of the hatch combing 7 based on the measurement points measured by the distance measuring sensors 130 to 132.
  • the coordinate transformation deriving unit 154 derives transformation parameters for the top frame coordinate system 310 and the hatch coaming coordinate system 320 based on the detected upper edge of the hatch combing 7.
  • the edge detection unit 152 determines the three-dimensional position of the measurement point in the top frame coordinate system 310 based on the position of the distance measurement sensors 130 to 132 and the distance to the measurement point measured by the distance measurement sensors 130 to 132. Is derived.
  • FIG. 9 is a diagram for explaining the measurement points of the distance measuring sensors 130 to 132.
  • the measurement range of the distance measuring sensors 130 to 132 on the hatch combing 7 is indicated by a thick line.
  • the distance measuring sensors 130 to 132 are located below the horizontal plane, and the distance from the distance measuring sensors 130 to 132 to an object existing within a range of ⁇ 15 degrees with respect to the plane in contact with the top frame 108. Measure distance. Therefore, in the distance measuring sensors 130 to 132, the edge of the hatch combing 7 that is different between the front side and the rear side becomes the measurement range with respect to the vertically lower side of the distance measuring sensors 130 to 132 (rotation center of the elevator 110).
  • the front side refers to a measurement range measured in the first half in one measurement. Further, the rear side refers to a measurement range measured in the second half in one measurement.
  • the measurement points measured by the distance measuring sensors 130 to 132 are divided into two parts, the front side and the rear side, with the vertical bottom of the distance measuring sensors 130 to 132 as a reference.
  • FIG. 10 is a diagram showing a state in which edge points are detected.
  • the measurement points are indicated by black circles.
  • FIG. 10 illustrates measurement points at which laser beams emitted at predetermined angles from one laser irradiation unit of the distance measuring sensors 130 to 132 are reflected.
  • the edge detection unit 152 performs the following processing for each measurement point group (front side and rear side) measured by being irradiated by one laser irradiation unit.
  • the edge detection unit 152 derives a vector (orientation) of each measurement point irradiated and measured by one laser irradiation unit.
  • the measurement point vector is derived as the vector of one measurement point from the direction (vector) of the next measurement point with respect to one measurement point among the measurement points continuously measured.
  • the edge detection unit 152 extracts a measurement point whose measurement point vector is in the vertical direction. This is because the wall surface of the hatch combing 7 measured by the distance measuring sensors 130 to 132 extends substantially in the vertical direction, and therefore when the measurement point is on the wall surface of the hatch combing 7, the vector of the measurement point is the vertical direction. Because it becomes.
  • the edge detection unit 152 extracts the uppermost point in the vertical direction when there are a plurality of measurement points continuously extracted among the extracted measurement points. This is because the uppermost edge of the hatch combing 7 may be the uppermost point in the continuously measured measurement point group in order to detect the upper edge of the hatch combing 7.
  • the edge detection unit 152 extracts a measurement point closest to the origin in the X-axis direction and the Y-axis direction in the top frame coordinate system 310 among the extracted measurement points. This is because the hatch combing 7 is located closest to the elevator 110 among the structures of the ship 4.
  • the edge detection unit 152 re-extracts measurement points existing in a predetermined range (for example, a range of several tens of centimeters) in the X-axis direction and the Y-axis direction in the top frame coordinate system 310 with respect to the extracted measurement points. To do.
  • the measurement points on the hatch combing 7 are extracted.
  • the edge detection unit 152 extracts the re-extracted measurement point, that is, the uppermost measurement point in the vertical direction among the measurement points on the hatch combing 7 as the edge point of the hatch combing 7.
  • the edge detection unit 152 extracts front and rear edge points for each measurement point group irradiated and measured by one laser irradiation unit of the distance measuring sensors 130 to 132.
  • the edge detection unit 152 detects a straight line of the edge of the hatch combing 7. Specifically, the edge detection unit 152 sets the edge points respectively extracted on the front side of the distance measuring sensor 130 as one group. Similarly, the edge detection unit 152 sets the edge points respectively extracted on the rear side of the distance measuring sensor 130 as one group. Further, the edge detection unit 152 groups the edge points extracted on the front side and the rear side of the distance measuring sensors 131 and 132, respectively.
  • the straight line of the upper edge of the hatch combing 7 measured on the front side and the rear side of the distance measuring sensors 130 to 132 includes two corners when the corner of the hatch combing 7 is included. Will be measured.
  • the edge detection unit 152 derives a candidate vector having the most similar line segments among the extracted line segments between the edge points. Then, the edge detection unit 152 extracts edge points that exist within a preset range for the candidate vector. Then, the edge detection unit 152 recalculates a straight line using the extracted edge points.
  • the edge detection unit 152 repeatedly performs the above processing using the edge points that have not been extracted. However, when the number of extracted edge points is less than a preset threshold value, a straight line is not derived. Thereby, even when the corner of the hatch combing 7 is included, a straight line of two edges can be derived.
  • the edge detection unit 152 derives a straight line of the edge by repeatedly performing the above processing for each group.
  • the edge detection unit 152 derives an angle formed between the straight lines among the detected straight lines. Then, when the angle formed by the edge detection unit 152 is equal to or less than a predetermined threshold, the edge detection unit 152 integrates the same straight line. Specifically, a straight line is re-derived by least square approximation using edge points that form a straight line whose angle formed is equal to or less than a predetermined threshold.
  • the edge detection unit 152 obtains edge side information including a three-dimensional direction vector of each side, a three-dimensional barycentric coordinate of each side, a length of each side, and coordinates of end points of each side from the detected straight line of the edge. To derive. In this way, by using the distance measuring sensors 130 to 132 provided above the ship 4 to derive the edge side information of the hatch combing 7 provided in the upper part of the ship 5, the position of the ship 5 ( (Posture) can be easily and accurately derived.
  • the coordinate transformation deriving unit 154 reads the three-dimensional model information of the hatch combing 7 stored in advance in the storage unit 142 from the storage unit 142.
  • the three-dimensional model information includes a three-dimensional direction vector of the upper end side of the hatch combing 7, a three-dimensional barycentric coordinate of each side, a length of each side, and a coordinate of an end point of each side. Further, the three-dimensional model information is expressed by a hatch combing coordinate system 320. Then, the coordinate transformation deriving unit 154 determines the top frame coordinate system 310, the hatch combing coordinate system 320, and the edge frame information (detection result) expressed in the top frame coordinate system 310 based on the read three-dimensional model information. Deriving transformation parameters for
  • the coordinate transformation deriving unit 154 performs rough correction by rotating the direction of the detected straight line of the hatch combing 7 by the turning angle of the boom 106. Also, the coordinate transformation deriving unit 154 associates the detected straight line of the hatch combing 7 with the upper edge of the hatch combing 7 in the three-dimensional model information with the straight lines having the closest edge direction. Thereby, since the correct association is made, the conversion parameter of the solution that is stably close to the correct answer can be obtained.
  • the detected straight line of the edge of the hatch combing 7 is represented by a three-dimensional point group, and the average value of the shortest distance between the three-dimensional point group and the upper edge of the hatch combing 7 in the three-dimensional model information. Those close to each other may be associated with each other. Further, the correspondence may be made in consideration of both the direction of the edge and the average value of the shortest distance.
  • the LM method for example, the sum of squares of the difference in distance between the edge point and the upper edge of the hatch combing 7 based on the three-dimensional model information is used as an evaluation function, and a conversion parameter that minimizes the evaluation function is obtained.
  • the conversion parameter is obtained so that the area of the curved surface is minimized.
  • the method for obtaining the conversion parameter is not limited to the LM method, and other methods such as the steepest descent method and the Newton method may be used.
  • the coordinate transformation deriving unit 154 derives transformation parameters for transforming the top frame coordinate system 310 into the hatch combing coordinate system 320.
  • the unloader device 100 grasps the relative positional relationship between the elevator 110 and the scraping unit 112 expressed by the top frame coordinate system 310 and the hangar 5 and the hatch combing 7 expressed by the hatch combing coordinate system 320. It becomes possible.
  • the unloader device 100 has a simple configuration in which distance measuring sensors 130 to 132 capable of measuring a distance downward are arranged on the side surface of the top frame 108, and the positional relationship between the unloader device 100 and the garage 5 is determined. Can be easily derived.
  • the unloader device 100 can estimate the position and orientation of the hatch combing 7 expressed by the hatch combing coordinate system 320 using the top frame coordinate system 310.
  • the two distance measuring sensors may not be able to measure two edge sides having different directions depending on the attitude of the unloader device 100 except for the square hatch combing 7.
  • the distance measuring sensors 130 to 132 are arranged at 120 degrees in the circumferential direction of the elevator 110, as long as the aspect ratio of the edge side is hatch combing 7 within 1.73: 1, the unloader device 100 Regardless of the position and orientation, two edge sides having different directions can be detected. Therefore, two edge sides having different directions can be detected.
  • FIG. 11A, FIG. 11B, and FIG. 11C are diagrams for explaining the arrangement of the three-dimensional model.
  • the model placement unit 156 first places the three-dimensional model 400 of the elevator 110 and the scraping unit 112 stored in the storage unit 142 on the hatch combing coordinate system 320.
  • a three-dimensional model 400 of the elevator 110 and the scraping unit 112 is expressed by a top frame coordinate system 310. Therefore, the model placement unit 156 converts the three-dimensional model 400 of the elevator 110 and the scraping unit 112 into the hatch combing coordinate system 320 using the conversion parameters derived by the coordinate transformation deriving unit 154.
  • the model placement unit 156 measures the position sensor 116, the turning angle sensor 118, the inclination angle sensor 120, and the turning angle sensor 122 of the unloader device 100. Based on the result, the rotation of the elevator 110 and the length of the scraping unit 112 are reflected in the three-dimensional model 400.
  • the three-dimensional model 400 may be a model that filters noise and moving objects from the accumulation result of measurement values during scraping of the load 6, a model that accumulates measurement values at the end of previous scraping, or a model of a design drawing.
  • a model obtained by separately bringing a measuring instrument into the hangar and measuring it may be used.
  • the model placement unit 156 places the three-dimensional model 400 of the elevator 110 and the scraping unit 112 converted into the hatch combing coordinate system 320 on the hatch combing coordinate system 320 (FIG. 11A).
  • the model placement unit 156 places the 3D model 410 of the hatch combing 7 stored in the storage unit 142 so as to overlap the 3D model 400 of the elevator 110 and the scraping unit 112 (FIG. 11B). Since the three-dimensional model 410 of the hatch combing 7 is expressed by the hatch combing coordinate system 320, it is arranged as it is without performing coordinate conversion.
  • the model placement unit 156 also superimposes the three-dimensional model 420 of the shed 5 stored in the storage unit 142 on the three-dimensional model 400 of the elevator 110 and the scraping unit 112 and the three-dimensional model 410 of the hatch combing 7. (FIG. 11C).
  • the model placement unit 156 determines the relative positions of the elevator 110 and the scraping unit 112 that are part of the unloader device 100, the hatch combing 7 and the garage 5 that are part of the ship 4, and the three-dimensional model. It can be easily grasped by using.
  • the position of the scraping unit 112 with respect to the garage 5 can be easily grasped. It becomes possible to make it.
  • the state monitoring unit 158 includes a three-dimensional model 410 of the hatch coaming 7 arranged on the hatch coaming coordinate system 320 by the model arranging unit 156, a three-dimensional model 420 of the garage 5, the elevator 110, and the scraping unit 112.
  • the distance (distance information) of each voxel from the three-dimensional model 400 is derived as a brute force.
  • the state monitoring unit 158 derives the situation in the hangar 5 based on the measurement points measured by the distance measuring sensors 133 to 136. Specifically, the state monitoring unit 158 determines the three measurement points in the top frame coordinate system 310 based on the distances to the measurement points measured by the distance measurement sensors 133 to 136 and the positions of the distance measurement sensors 133 to 136. Deriving the dimension position.
  • the state monitoring unit 158 converts the three-dimensional position of the measurement point in the top frame coordinate system 310 into the hatch combing coordinate system 320 using the conversion parameter. Then, using the position of each measurement point and the three-dimensional model 420 of the garage 5, it is determined whether each measurement point is the wall surface of the garage 5 or the load 6.
  • the measurement points having the relationship between the position of each measurement point and the position of the three-dimensional model 420 of the garage 5 within a preset range are determined as the wall surface of the garage 5, and the other points are loaded 6. Is determined.
  • the state monitoring unit 158 sets the voxel including the measurement point determined to be the load 6 among the voxels in the internal space of the three-dimensional model 420 of the hangar 5 as the voxel of the load 6 and the voxel set as the load 6. Also, the voxel vertically below is also the voxel of the load 6.
  • the model placement unit 156 rearranges the voxels determined as the voxels of the load 6 among the voxels in the internal space of the three-dimensional model 420 of the garage 5 as the three-dimensional model of the load 6. Thereby, the status of the load 6 in the hangar 5 can be grasped.
  • the unloader device 100 uses a three-dimensional model of the hatch combing 7 and the unloader device 100 that are in a precise relative position. Therefore, the unloader device 100 can detect and prevent collision / approach to all side surfaces of the hatch combing 7 even if the distance sensors 130 to 132 cannot detect all the edge sides of the hatch combing 7.
  • the distance measuring sensors 133 and 135 are provided on the side surface 112c of the scraping unit 112.
  • the distance measuring sensors 134 and 136 are provided on the side surface 112 d of the scraping unit 112. Then, the scraping unit 112 scrapes the load 6 while moving from the side surface 112d side to the side surface 112c side. Therefore, the unloader device 100 can grasp the status of the load 6 on the traveling direction side of the scraping unit 112 by the distance measuring sensors 133 and 135. Further, the unloader device 100 can grasp the status of the load 6 on the side opposite to the traveling direction of the scraping unit 112 by the distance measuring sensors 134 and 136.
  • Each process by the coordinate transformation deriving unit 154, the model arranging unit 156, and the state monitoring unit 158 described above is repeatedly performed at predetermined intervals.
  • the communication device 144 transmits the data of the three-dimensional model arranged by the model arrangement unit 156 and the distance information derived by the state monitoring unit 158 to the control device 200.
  • FIG. 12 is a diagram for explaining the upper viewpoint image 500.
  • FIG. 13 is a diagram for explaining the scraping portion peripheral image 510.
  • the monitoring control unit 210 of the control device 200 receives the data of the three-dimensional model and the distance information transmitted from the unloader device 100 by the communication device 240.
  • the monitoring control unit 210 displays the upper viewpoint image 500 and the scraping unit peripheral image 510 on the display unit 230 based on the received data.
  • the upper viewpoint image 500 displays a cross section perpendicular to the Z-axis direction (a cross section parallel to the top surface of the hatch coaming 7 or parallel to the horizontal) at the position where the three-dimensional model 410 of the hatch coaming 7 exists.
  • the upper viewpoint image 500 the three-dimensional model 400 of the scraping unit 112, the three-dimensional model 420 of the ship 5 and the three-dimensional model 430 of the load 6 existing at the same position in the Z-axis direction as the scraping unit 112 are displayed. Is displayed. That is, the upper viewpoint image 500 displays a cross section perpendicular to the Z-axis direction at the position where the three-dimensional model 400 of the scraping unit 112 exists.
  • the XY cross section at the position where the three-dimensional model 410 of the hatch combing 7 is present and the XY cross section at the position where the three-dimensional model 400 of the scraping unit 112 is superimposed are displayed.
  • the upper viewpoint image 500 is located outside the three-dimensional model 420 of the hangar 5, the distance between the hatch coaming 7 and the elevator 110 (“hatch ⁇ m”), and the scraper 112 and the wall surface of the hangar 5.
  • Distance (“ship yard ⁇ m”) is displayed.
  • the distance between the hatch combing 7 and the elevator 110 displayed here is displayed only when the distance is equal to or less than a preset first threshold (here, 1.5 m). More specifically, when the distance is equal to or smaller than the first threshold value and equal to or larger than the second threshold value (here, 1.0 m) smaller than the first threshold value, the distance is displayed on a yellow background. If the distance is less than the second threshold, the distance is displayed on a red background.
  • a preset first threshold here, 1.5 m. More specifically, when the distance is equal to or smaller than the first threshold value and equal to or larger than the second threshold value (here, 1.0 m) smaller than the first threshold value, the distance is displayed on a yellow background. If the distance
  • the distance between the scraping unit 112 and the wall surface of the hangar 5 is displayed only when it is equal to or less than a preset third threshold (here, 1.5 m). More specifically, when the distance is equal to or smaller than the third threshold and equal to or larger than the fourth threshold (here, 1.0 m) smaller than the third threshold, the distance is displayed on a yellow background. When the distance is less than the fourth threshold, the distance is displayed on a red background.
  • a preset third threshold here, 1.5 m.
  • the distance between the hatch combing 7 and the elevator 110 and the distance between the scraping part 112 and the wall surface of the hangar 5 are close by displaying the distance of the position that becomes the first threshold value or the third threshold value. Can be easily grasped. Moreover, a distance feeling can be easily grasped
  • the distance between the hatch combing 7 and the elevator 110 and the distance between the scraping unit 112 and the wall surface of the hangar 5 are derived based on the distance information transmitted from the unloader device 100.
  • the upper viewpoint image 500 facilitates the positional relationship between the hatch combing 7 and the elevator 110 that may collide, and the positional relationship between the scraping portion 112 that may collide and the wall surface of the hangar 5. Can be grasped. Therefore, the operator can avoid the collision between the hatch combing 7 and the elevator 110 and the collision between the scraping unit 112 and the wall surface of the hangar 5 by viewing the upper viewpoint image 500. In addition, since it is not necessary to arrange a conductor for commanding the operation of the unloader device 100 in the hangar 5 or on the ship 4, it is possible to reduce the personnel required for scraping off the load 6.
  • the upper viewpoint image 500 can easily grasp the state of the load 6 at the height where the scraping unit 112 exists.
  • the scraping part peripheral image 510 includes a scraping part peripheral image 512 viewed from the side surface 112c side of the scraping part 112, a scraping part peripheral image 514 viewed from the front side,
  • the scraping portion peripheral image 516 viewed from the side surface 112d side of the scraping portion 112 is displayed side by side.
  • the scraping unit 112 scrapes the load 6 while moving from the side surface 112d side to the side surface 112c side. Accordingly, in the scraping portion peripheral image 512, the three-dimensional model 430 of the load 6 that has not been scraped is displayed. On the other hand, in the scraping portion peripheral image 516, the three-dimensional model 430 of the load 6 scraped by the scraping portion 112 is displayed. In the scraping portion peripheral image 514, the load 6 that is not scraped off on the side surface 112c side and scraped off on the side surface 112d side is displayed. Thereby, the state of scraping off the load 6 can be easily grasped.
  • the operator looks at the scraping part peripheral image 514 or compares the scraping part peripheral images 512 and 516, so that the load 6 in the traveling direction of the scraping unit 112 and the direction opposite to the traveling direction can be reduced.
  • the height difference and the height of the load 6 in the traveling direction can be grasped.
  • the worker can quantitatively grasp how deep the cargo 6 is scraped outside the hangar 5.
  • the scraping portion peripheral image 510 is displayed in the hatch combing coordinate system 320, the cargo 6 and the scraping portion 112 in the hangar 5 can be always presented from a viewpoint fixed to the ship 4. It becomes easy to grasp the situation of the person.
  • the difference with respect to the cutting depth of the scraping portion 112 and the interval between the scraping portion 112 and the bottom surface of the hangar 5, which will be described in detail later, are displayed.
  • the cut depth is displayed on the side surface 112c side and the side surface 112d side, respectively.
  • the depth of cut and the distance between the scraping portion 112 and the bottom surface of the hangar 5 are derived based on the distance information transmitted from the unloader device 100.
  • the above-described upper viewpoint image 500 and scraping unit peripheral image 510 are updated and displayed each time data of the three-dimensional model and distance information are transmitted from the unloader apparatus 100.
  • FIG. 14A and FIG. 14B are diagrams for explaining an automatic route.
  • the first step is a step of flattening the cargo 6 in the hangar 5.
  • the first step is performed by the operator operating the unloader device 100 via the operation unit 220. More specifically, when a signal corresponding to the operation of the operation unit 220 is transmitted to the unloader device 100, the drive control unit 150 operates the various actuators to cause the unloader device 100 to respond to the operation of the operation unit 220. Drive.
  • the scraping portion 112 is moved a plurality of times along the wall surface of the hangar 5 and then the center 1 Move it times.
  • This second process can be automated because the path for moving the scraping section 112 is simple and the scraping amount of the load 6 is stable.
  • the third step is performed by the operator operating the unloader device 100 via the operation unit 220. Also here, when a signal corresponding to the operation of the operation unit 220 is transmitted to the unloader device 100, the drive control unit 150 drives the unloader device 100 according to the operation of the operation unit 220 by operating various actuators. .
  • the second step can automate the unloader device 100.
  • the route generation unit 160 translates the scraping unit 112 along the side wall of the hangar 5 from a predetermined position, which is indicated by a solid line in FIG. 14A, as an automatic route. Then, the scraper 112 is moved to a place where it can turn with reference to the central axis of the elevator 110. Thereafter, the scraping unit 112 is turned 90 degrees along the side wall of the hangar 5. Moreover, the scraping part 112 is translated along the side wall of the hangar 5. By repeatedly performing this, the scraping portion 112 is moved 360 degrees along the side wall of the hangar 5. Then, change the depth of cut and move it several more times.
  • the scraping unit 112 is turned 90 degrees at the center position of the garage 5 and then moved along the center of the garage 5. As a result, the load 6 remaining in the center is scraped off by the scraping portion 112.
  • control device 200 can control a plurality of unloader devices 100 in parallel. Then, the operator who operates the operation unit 220 of the control device 200 selects one unloader device 100 as a target for remote operation, and among the three steps described above for the selected unloader device 100, the first step and the first step Step 3 is performed. Moreover, the unloader apparatus 100 which can perform a 2nd process is selected as the unloader apparatus 100 of the object of automatic operation, and the unloader apparatus 100 of the object of automatic operation is made to drive automatically.
  • the operator When there is an unloader device 100 that is a target of remote operation for performing the first step and the third step, the operator operates the operation unit 220 to select the unloader device 100 that is a target of remote operation.
  • the remote operation switching unit 212 determines the unloader device 100 as a remote operation target in accordance with the operation of the operation unit 220. Then, the remote operation switching unit 212 establishes bidirectional communication via the communication device 240 with respect to the unloader device 100 that is the target of remote operation. However, the monitoring control unit 210 continues to receive the three-dimensional model data and distance information from the unloader device 100 that is not the target of remote operation.
  • the display switching unit 214 displays the data (upper viewpoint image 500, scraping unit peripheral image 510) based on the three-dimensional model data and distance information received from the unloader device 100 that is the target of remote operation. To display. Thereby, the state of the unloader apparatus 100 which is the object of the remote operation can be easily grasped.
  • the operator when there is an unloader device 100 that is an object of automatic operation for performing the second step, the operator operates the operation unit 220 to select the unloader device 100 that is an object of automation.
  • the remote operation switching unit 212 determines the unloader device 100 to be subjected to automatic driving according to the operation of the operation unit 220. Then, the remote operation switching unit 212 transmits an automation instruction command to the unloader device 100 that is the target of automatic driving.
  • the automatic operation command unit 162 upon receiving the automation instruction command, causes the route generation unit 160 to generate an automatic route. And the drive control part 150 drives the unloader apparatus 100 based on an automatic path
  • the automatic driving end determination unit 164 stops (limits) driving of the unloader device 100 when the automatic driving end condition is satisfied or when an error occurs. As the automatic operation end condition, the position of the scraping unit 112 is lower than the position determined by the automatic route, or the scraping amount of the load 6 exceeds a preset amount.
  • the display switching unit 214 displays only the minimum information necessary for automatic driving on the display unit 230 based on the three-dimensional model data and distance information received from the unloader device 100 during automatic driving.
  • the situation determination unit 216 determines the target height of the scraping unit 112 and the cumulative amount of scraping of the unloader device 100 during automatic operation from the change in the height of the scraping unit 112 and the average scraping amount. Is predicted for each unloader device 100. And when there exists the unloader apparatus 100 with the near completion
  • the state monitoring unit 158 determines the distance between the hatch combing 7 and the wall surface of the hangar 5, the elevator 110 and the scraping unit 112 based on the data of the three-dimensional model transmitted from the unloader device 100 and the distance information. The smallest minimum distance and its direction are derived. Then, the collision prevention unit 166 restricts (stops) the operation of the unloader device 100 when the derived minimum distance is equal to or smaller than a predetermined threshold (collision prevention function). The collision prevention unit 166 may limit the operation of the elevator 110 and the scraping unit 112 in the derived direction when the derived minimum distance is equal to or less than a predetermined threshold. Thereby, automatic operation of unloader device 100 can be enabled more safely.
  • a predetermined threshold collision prevention function
  • the worker causes the remaining three unloader apparatuses 100 to perform the second process while performing the first process for one unloader apparatus 100. Then, the worker transmits an automation instruction command via the operation unit 220 to the unloader device 100 that has completed the first step. In addition, the worker performs the third process on the unloader device 100 that has completed the second process.
  • a plurality of unloader devices 100 can be controlled by a single control device 200 by automating a part of the plurality of steps.
  • the state monitoring unit 158 is configured so that the drive control unit is configured when the distance between the hatch combing 7 and the elevator 110 and the distance between the scraping unit 112 and the wall surface of the hangar 5 are less than the distance at which the collision occurs.
  • the automation may be stopped at 150.
  • a plurality of unloader devices 100 are controlled by one control device 200.
  • one control device 200 may be provided for one unloader device 100.
  • the unloader control unit 140 and the monitoring control unit 210 may be integrated into one.
  • the communication device 144 and the communication device 240 may not be provided.
  • the unloader control unit 140 includes the drive control unit 150, the edge detection unit 152, the coordinate transformation derivation unit 154, the model placement unit 156, the state monitoring unit 158, the route generation unit 160, the automatic operation command unit 162, automatic It functions so as to function as an operation end determination unit 164 and a collision prevention unit 166.
  • the monitoring control unit 210 has a drive control unit 150, a coordinate transformation derivation unit 154, a model placement unit 156, a state monitoring unit 158, a route generation unit 160, an automatic driving command unit 162, an automatic driving end determination unit 164, and a collision prevention unit 166. You may make it function as a part or all of.
  • the distance measuring sensors 130 to 132 are arranged on the top frame 108. However, the distance measuring sensors 130 to 132 may be arranged in the elevator 110. In the above embodiment, the distance measuring sensors 133 to 136 are arranged in the scraping unit 112. However, the distance measuring sensors 133 to 136 may be installed on the half side near the scraping portion 112 in the elevator 110.
  • a part (cross section) of the three-dimensional model is displayed as the upper viewpoint image 500, but the measurement results (measurement points) measured by the distance measuring sensors 130 to 132 are displayed as images as they are.
  • the straight line of the edge detected by the edge detection unit 152 may be displayed as an image. That is, the upper viewpoint image 500 showing at least a part of the elevator 110, the scraping unit 112, the garage 5, and the hatch combing 7 may be displayed based on the measurement results measured by the distance measuring sensors 130 to 132.
  • a part (cross section) of the three-dimensional model is displayed as the scraping portion peripheral image 510.
  • the measurement results (measurement points) measured by the distance measuring sensors 133 to 136 are displayed as images. May be displayed. That is, based on the measurement results measured by the distance measuring sensors 133 to 136, the elevator 110, the scraping unit 112, and the scraping unit peripheral image 510 indicating at least a part of the hangar 5 may be displayed.
  • the unloader apparatus 100 was mentioned as an example and demonstrated as an example of the unloading apparatus.
  • the unloading device may be a continuous unloader (bucket type, belt type, vertical screw conveyor type, etc.), a pneumatic unloader, or the like.
  • the three distance measuring sensors 130 to 132 are provided so as to measure 120 degrees apart in the circumferential direction of the elevator 110 and within a certain angle range from the plane direction in contact with the cylinder.
  • the number of distance measuring sensors may be three or more.
  • the distance measuring sensor does not have to be installed so as to measure in the direction of the plane in contact with the cylinder, and may be installed inclined from the plane. At least one may be provided in a direction different from the other distance measurement center by 45 degrees or more in the circumferential direction (including a plane). The distance measuring sensor may be provided so that the measurement range is different.
  • the vertical transport mechanism unit exemplified by the elevator 110 or the like indicates a mechanism that transports the cargo mainly upward from the scraping unit 112, and does not indicate that it is strictly vertical.
  • the present disclosure can be used for an unloading device.
  • Unloader apparatus unloading apparatus
  • Elevator vertical conveyance mechanism part
  • Scraping part 130, 131, 132 Ranging sensor
  • Edge detection part 154: Coordinate conversion derivation part 156: Model arrangement part 230: Display Part

Landscapes

  • Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Ship Loading And Unloading (AREA)

Abstract

荷揚げ装置(100)は、船庫(5)内の積荷(6)を掻き取る掻取部(112)を下端に保持する垂直運搬機構部(110)と、垂直運搬機構部(110)に配置され、下方側に向かって測距可能な測距センサ(130~132)と、を備える。 測距センサ(130~132)は、計測範囲が異なるように、または、計測方向が他の測距センサの計測方向と平行とならない1つの測距センサを含むように3つ以上設けられてもよい。 測距センサ(130~132)によって計測された計測結果に基づいて、船庫(5)と、垂直運搬機構部(110)および掻取部(112)との少なくとも一部を示す画像を表示する表示部(230)を備えてもよい。 表示部(230)は、掻取部(112)が存在する断面と、船庫(5)の上部に設けられたハッチコーミング(7)が存在する断面とを画像として表示してもよい。

Description

荷揚げ装置
 本開示は、荷揚げ装置に関する。本出願は2018年2月2日に提出された日本特許出願第2018-017502号に基づく優先権の利益を主張するものであり、その内容は本出願に援用される。
 荷揚げ装置は、船庫内に積載された積荷を、船庫外に搬出する。荷揚げ装置の一例としてアンローダ装置がある。アンローダ装置では、積荷の状態や、船庫の壁面までの距離等を作業者が直接目視することが困難または不可能なことが多い。アンローダ装置では、掻取部にセンサを取り付け、船庫の壁までの距離を計測する技術(例えば、特許文献1)が開発されている。
特開平8-012094号公報
 上記特許文献1に記載されたような技術では、上記したように、掻取部と船庫の壁までの距離を把握することができる。しかし、例えば、アンローダ装置のエレベータ等の垂直運搬機構部と船舶のハッチコーミングの位置関係等、アンローダ装置と船舶との相対関係を導出することは困難であった。
 本開示は、このような課題に鑑み、船舶との相対関係を導出することが可能な荷揚げ装置を提供することを目的としている。
 上記課題を解決するために、本開示の一態様に係る荷揚げ装置は、船庫内の積荷を掻き取る掻取部を下端に保持する垂直運搬機構部と、垂直運搬機構部に配置され、下方側に向かって測距可能な測距センサと、を備える。
 測距センサは、計測範囲が異なるように、または、計測方向が他の測距センサの計測方向と平行とならない1つの測距センサを含むように3つ以上設けられてもよい。
 測距センサによって計測された計測結果に基づいて、船庫と、垂直運搬機構部および掻取部との少なくとも一部を示す画像を表示する表示部を備えてもよい。
 表示部は、掻取部が存在する断面と、船庫の上部に設けられたハッチコーミングが存在する断面とを画像として表示してもとよい。
 断面は、ハッチコーミングの上面と平行、または、水平と平行な断面であってもよい。
 表示部は、測距センサによって計測された計測結果に基づいて、垂直運搬機構部とハッチコーミングとの距離を表示してもよい。
 表示部は、垂直運搬機構部とハッチコーミングとの距離が予め設定された第1閾値以下である場合のみ、垂直運搬機構部とハッチコーミングとの距離を表示してもよい。
 表示部は、垂直運搬機構部とハッチコーミングとの距離が第1閾値以下であり、かつ、第1閾値よりも小さい第2閾値以上である場合と、第2閾値未満である場合とで、垂直運搬機構部とハッチコーミングとの距離を異なる態様で表示してもよい。
 表示部は、測距センサによって計測された計測結果に基づいて、掻取部と船庫との距離を表示してもよい。
 表示部は、掻取部と船庫との距離が予め設定された第3閾値以下である場合のみ、掻取部と船庫との距離を表示してもよい。
 表示部は、掻取部と船庫との距離が第3閾値以下であり、かつ、第3閾値よりも小さい第4閾値以上である場合と、第4閾値未満である場合とで、掻取部と船庫との距離を異なる態様で表示してもよい。
 船舶との相対関係を導出することが可能となる。
図1は、アンローダシステムを説明する図である。 図2は、アンローダ装置の構成を説明する図である。 図3は、測距センサの計測範囲を説明する図である。 図4は、測距センサの計測範囲を説明する図である。 図5は、測距センサの計測範囲を説明する図である。 図6は、測距センサの計測範囲を説明する図である。 図7は、アンローダシステムの電気的な構成を説明する図である。 図8Aは、アンローダ装置の座標系を説明する図である。 図8Bは、アンローダ装置の座標系を説明する図である。 図9は、測距センサの計測点を説明する図である。 図10は、エッジ点を検出する様子を示す図である。 図11A、図11B、図11Cは、3次元モデルの配置を説明する図である。 図12は、上方視点画像を説明する図である。 図13は、掻取部周辺画像を説明する図である。 図14A、図14Bは、自動経路を説明する図である。
 以下に添付図面を参照しながら、本開示の一実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本開示に直接関係のない要素は図示を省略する。
 図1は、アンローダシステム1を説明する図である。図1に示すように、アンローダシステム1は、荷揚げ装置の一例としてのアンローダ装置100、および、制御装置200を含んで構成される。なお、アンローダ装置100が4つ設けられている例を挙げて説明するが、アンローダ装置100の数は、いくつであってもよい。
 アンローダ装置100は、岸壁2に沿って敷設された一対のレール3上を、レール3の延在方向に走行可能である。なお、図1において、複数のアンローダ装置100は、同一のレール3上に配置されているようにしているが、異なるレール3上に配置されていてもよい。
 アンローダ装置100は、制御装置200と通信可能に接続されている。なお、アンローダ装置100と制御装置200との通信方法は、有線であっても無線であってもよい。
 アンローダ装置100は、岸壁2に停泊された船舶4の船庫5内に積載された積荷6を外部に搬出する。積荷6は、ばら荷が想定されており、一例として石炭が挙げられる。
 図2は、アンローダ装置100の構成を説明する図である。なお、図2では、岸壁2および船舶4を断面で示している。図2に示すように、アンローダ装置100は、走行体102、旋回体104、ブーム106、トップフレーム108、エレベータ110、掻取部112、ブームコンベア114を含んで構成されている。
 走行体102は、不図示のアクチュエータが駆動することで、レール3上を走行可能である。走行体102には、位置センサ116が設けられている。位置センサ116は、例えばロータリーエンコーダである。位置センサ116は、走行体102の車輪の回転数に基づき、所定の原点位置に対する走行体102の水平面上の位置を計測する。
 旋回体104は、走行体102の上部に、垂直軸を中心に旋回自在に設けられている。旋回体104は、不図示のアクチュエータが駆動することで、走行体102に対して旋回可能である。
 ブーム106は、旋回体104の上部に、傾斜角度を変更可能に設けられている。ブーム106は、不図示のアクチュエータが駆動することで、旋回体104を基準とした傾斜角度を変更可能である。
 旋回体104には、旋回角度センサ118および傾斜角度センサ120が設けられている。旋回角度センサ118および傾斜角度センサ120は、例えばロータリーエンコーダである。旋回角度センサ118は、走行体102に対する旋回体104の旋回角度を計測する。傾斜角度センサ120は、旋回体104に対するブーム106の傾斜角度を計測する。
 トップフレーム108は、ブーム106の先端に設けられている。トップフレーム108には、エレベータ110を旋回させるアクチュエータが設けられている。
 エレベータ110は、略円柱形状に形成されている。エレベータ110は、中心軸を中心として旋回自在にトップフレーム108に支持されている。トップフレーム108には、旋回角度センサ122が設けられている。旋回角度センサ122は、例えばロータリーエンコーダである。旋回角度センサ122は、トップフレーム108に対するエレベータ110の旋回角度を計測する。
 掻取部112は、エレベータ110の下端に設けられている。掻取部112は、エレベータ110の旋回に伴って、エレベータ110と一体的に旋回する。このように、掻取部112は、垂直運搬機構部として機能するトップフレーム108およびエレベータ110によって旋回自在に保持されている。
 掻取部112は、複数のバケツ112aおよびチェーン112bが設けられている。複数のバケツ112aは、チェーン112bに連続的に配置されている。チェーン112bは、掻取部112およびエレベータ110の内部に架け渡されている。
 掻取部112は、不図示のリンク機構が設けられている。リンク機構は、可動することにより、掻取部112の底部の長さを可変させる。これにより、掻取部112は、船庫5内の積荷6と接するバケツ112aの数を可変させる。掻取部112は、チェーン112bを回動させることにより、底部のバケツ112aによって船庫5内の積荷6を掻き取る。そして、積荷6を掻き取ったバケツ112aは、チェーン112bの回動に伴ってエレベータ110の上部に移動する。
 ブームコンベア114は、ブーム106の下方に設けられている。ブームコンベア114は、バケツ112aによってエレベータ110の上部に移動された積荷6を外部に搬出させる。
 このような構成でなるアンローダ装置100は、走行体102によってレール3の延在方向に移動し、船舶4との長手方向の相対位置関係を調整する。また、アンローダ装置100は、旋回体104によって、ブーム106、トップフレーム108、エレベータ110および掻取部112を旋回させ、船舶4との短手方向の相対位置関係を調整する。また、アンローダ装置100は、ブーム106によって、トップフレーム108、エレベータ110および掻取部112を鉛直方向に移動させ、船舶4との鉛直方向の相対位置関係を調整する。また、アンローダ装置100は、トップフレーム108によってエレベータ110および掻取部112を旋回させる。これにより、アンローダ装置100は、掻取部112を任意の位置及び角度に移動させることができる。
 ここで、船舶4は、船庫5が複数に区画されている。船庫5は、上部にハッチコーミング7が設けられている。ハッチコーミング7は、鉛直方向に所定高さの壁面を有している。また、ハッチコーミング7は、船庫5における中央付近の水平断面に比べて、開口面積が小さい。つまり、船庫5は、ハッチコーミング7により開口が窄まった形状をしている。なお、ハッチコーミング7の上方には、ハッチコーミング7を開閉するハッチカバー8が設けられている。
 このように、ハッチコーミング7により開口が窄まっているので、作業者は、掻取部112により積荷6を掻き取らせる際、船庫5内の状況を視認することが困難である。そこで、本開示の、アンローダ装置100には、測距センサ130~136が設けられる。そして、本開示のアンローダシステム1は、測距センサ130~136で計測される距離に基づいて、アンローダ装置100と船庫5や積荷6との位置関係を表示したりすることで、船庫5内の状況を作業者に把握させることができるようにしている。
 測距センサ130~136は、例えば、測距可能なレーザセンサであり、Velodyne社製のVLP-16、VLP-32、Quanergy社製のM8等が適用される。測距センサ130~136は、例えば円柱形状の本体部の側面に、軸方向に沿って離隔した16のレーザー照射部が設けられている。レーザー照射部は、360度回転可能に本体部に設けられる。レーザー照射部は、互いに隣接して配置されたレーザー照射部との軸方向のレーザーの発射角度の差が2度となるようにそれぞれ配置されている。つまり、測距センサ130~136は、本体部の周方向に360度の範囲でレーザーを照射可能である。また、測距センサ130~136は、本体部の軸方向に直交する平面を基準として、±15度の範囲でレーザーを発射可能である。また、測距センサ130~136は、レーザーを受信する受信部が本体部に設けられている。
 測距センサ130~136は、レーザー照射部を回転させながら所定角度毎にレーザーを照射する。測距センサ130~136は、複数のレーザー照射部から照射(投影)されて物体(計測点)で反射したレーザーを受信部でそれぞれ受信する。そして、測距センサ130~136は、レーザーが照射されてから受信するまでの時間に基づいて、物体までの距離を導出する。
 図3および図4は、測距センサ130~132の計測範囲を説明する図である。図3は、アンローダ装置100を上方から見た際の測距センサ130~132の計測範囲を説明する図である。図4は、アンローダ装置100を側方から見た際の測距センサ130~132の計測範囲を説明する図である。図3および図4において、測距センサ130~132の計測範囲を一点鎖線で示す。
 測距センサ130~132は、主に、ハッチコーミング7の上端のエッジを検出する際に用いられる。測距センサ130~132は、図3および図4に示すように、トップフレーム108の側面に取り付けられる。具体的には、測距センサ130~132は、エレベータ110の中心軸を基準として、周方向に互いに120度離して配置される。また、測距センサ130~132は、本体部の中心軸が、エレベータ110の径方向に沿うように配置される。なお、測距センサ130~132は、鉛直方向の上半分が不図示のカバーで覆われる。
 したがって、測距センサ130~132は、図3および図4に示すように、計測方向として、水平面よりも下方であって、トップフレーム108の側面に接する接線を基準として±15度の範囲に存在する物体までの距離を計測することができる。
 図5および図6は、測距センサ133~136の計測範囲を説明する図である。図5は、掻取部112を上方から見た際の測距センサ133~136の計測範囲を説明する図である。なお、図5では、アンローダ装置100のうち、掻取部112のみを図示している。また、図5では、船舶4について、掻取部112と鉛直方向の同位置での水平断面を示している。図6は、アンローダ装置100を側方から見た際の測距センサ133~136の計測範囲を説明する図である。図5および図6において、測距センサ133、134の計測範囲を一点鎖線で示す。また、図5および図6において、測距センサ135、136の計測範囲を二点鎖線で示す。
 測距センサ133~136は、主に、船庫5内の積荷6、および、船庫5の壁面を検出する際に用いられる。測距センサ133、134は、図5および図6に示すように、掻取部112の側面112cおよび側面112dにそれぞれ取り付けられる。測距センサ133、134は、本体部の中心軸が、掻取部112の側面112cおよび側面112dにそれぞれ直交するように配置される。測距センサ133、134は、鉛直方向の上半分が不図示のカバーで覆われる。
 したがって、測距センサ133、134は、計測方向として、掻取部112の側面112cおよび側面112dの下方側であって、掻取部112の側面112cおよび側面112dと平行な位置を基準として±15度の範囲に存在する物体の距離を計測することができる。より具体的には、測距センサ133、134は、掻取部112の底部側であって、掻取部112の両側に存在する物体(積荷6)までの距離を計測することができる。なお、測距センサ133、134は、掻取部112の底部が位置する平面上において、少なくとも掻取部112の底部の最大長さ以上の範囲を計測できるように配置されている。
 測距センサ135、136は、掻取部112の側面112cおよび側面112dにそれぞれ取り付けられる。測距センサ135、136は、本体部の中心軸が、掻取部112の底面と直交するように配置される。
 したがって、測距センサ135、136は、計測方向として、掻取部112の外方であって、掻取部112の側面112cおよび側面112dに直交する水平面を基準として±15度の範囲に存在する物体の距離を計測することができる。
 図7は、アンローダシステム1の電気的な構成を説明する図である。図7に示すように、アンローダ装置100には、アンローダ制御部140、記憶部142および通信装置144が設けられている。
 アンローダ制御部140は、位置センサ116、旋回角度センサ118、傾斜角度センサ120、旋回角度センサ122、測距センサ130~136および通信装置144と接続されている。アンローダ制御部140は、CPU(中央処理装置)を含む半導体集積回路で構成されている。アンローダ制御部140は、ROMからCPU自体を動作させるためのプログラムやパラメータ等を読み出す。そして、アンローダ制御部140は、ワークエリアとしてのRAMや他の電子回路と協働して、アンローダ装置100全体を管理および制御する。また、アンローダ制御部140は、駆動制御部150、エッジ検出部152、座標変換導出部154、モデル配置部156、状態監視部158、経路生成部160、自動運転指令部162、自動運転終了判定部164、衝突防止部166として機能する。なお、アンローダ制御部140の詳細については後述する。
 記憶部142は、ハードディスク、不揮発性メモリ等の記憶媒体である。記憶部142は、アンローダ装置100および船舶4の3次元モデルのデータを記憶する。アンローダ装置100の3次元モデルのデータは、エレベータ110および掻取部112の少なくとも外形形状のボクセルデータである。船舶4の3次元モデルのデータは、ハッチコーミング7の外形形状のボクセルデータ、および、船庫5の壁面形状および内部空間のボクセルデータである。なお、3次元モデルのデータは、アンローダ装置100および船舶4の3次元形状が把握可能なデータであればよく、ポリゴンデータ、輪郭(直線)や点群等であってもそれらを併用してもよい。また、船舶4の3次元モデルのデータは、船舶4の種類毎に設けられている。
 アンローダ装置100の3次元モデルのデータは、設計時の形状情報と、アンローダ装置100の位置センサ116、旋回角度センサ118、傾斜角度センサ120および旋回角度センサ122の計測結果とから算出することが可能である。また、船舶4の3次元モデルのデータは、船の設計データを用いてもよく、また、過去の入港時に計測したデータを用いてもよい。入港時の計測は、レーザセンサ等の3次元モデルのデータを生成可能な装置を用いて計測することができる。また、3次元モデルのデータは、測距センサ130~136からの情報を蓄積して形状を復元してもよい。
 通信装置144は、制御装置200と有線または無線により通信を行う。
 制御装置200は、監視制御部210、操作部220、表示部230および通信装置240を含んで構成されている。監視制御部210は、CPU(中央処理装置)を含む半導体集積回路で構成されている。監視制御部210は、ROMからCPU自体を動作させるためのプログラムやパラメータ等を読み出す。そして、監視制御部210は、ワークエリアとしてのRAMや他の電子回路と協働して、複数のアンローダ装置100を統括的に管理および制御する。また、監視制御部210は、遠隔操作切替部212、表示切替部214、状況判定部216として機能する。なお、監視制御部210の詳細については後述する。
 操作部220は、アンローダ装置100を動作させるための入力操作を受け付ける。表示部230は、詳しくは後述するように、アンローダ装置100と船庫5および積荷6との相対位置関係が作業者に把握可能な画像を表示する。通信装置240は、アンローダ装置100と有線または無線により通信を行う。
 図8Aおよび図8Bは、アンローダ装置100の座標系を説明する図である。図8Aは、アンローダ装置100を上方から見た図である。図8Bは、アンローダ装置100を側方から見た図である。図8Aおよび図8Bに示すように、アンローダ装置100は、3つの座標系、すなわち、地上座標系300、トップフレーム座標系310およびハッチコーミング座標系320を有する。
 地上座標系300は、予め設定されたアンローダ装置100の初期位置を原点としている。地上座標系300は、レール3の延在方向および鉛直方向に直交する方向をX軸方向とする。地上座標系300は、レール3の延在方向をY軸方向とする。地上座標系300は、鉛直方向をZ軸方向とする。
 トップフレーム座標系310は、エレベータ110の中心軸上であって、鉛直方向におけるトップフレーム108の下端を原点としている。トップフレーム座標系310は、ブーム106の延在方向をX軸方向とする。トップフレーム座標系310は、ブーム106の延在方向および鉛直方向に直交する方向をY軸方向とする。トップフレーム座標系310は、鉛直方向をZ軸方向とする。
 ハッチコーミング座標系320は、船舶4のハッチコーミング7における船尾側の壁面の中心位置であって、ハッチコーミング7の上端を原点としている。ハッチコーミング座標系320は、船舶4の長手方向、つまり、船舶4に沿ったハッチコーミング7の延在方向をX軸方向とする。ハッチコーミング座標系320は、船舶4の短手方向(幅方向)をY軸方向とする。ハッチコーミング座標系320は、ハッチコーミング7の上端面に直交する方向をZ軸方向とする。
 ここで、地上座標系300、トップフレーム座標系310は、アンローダ装置100の形状、および、アンローダ装置100の移動に基づいて変換が可能である。
 例えば、測距センサ133~136は、掻取部112に取り付けられているため、掻取部112に対する位置は予め既知となっている。そして、エレベータ110の旋回角度に基づいて、トップフレーム座標系310の位置を導出することができる。
 また、測距センサ130~132は、トップフレーム108に取り付けられているため、トップフレーム座標系310の位置が予め既知となっている。
 ここで、トップフレーム座標系310と、ハッチコーミング座標系320とは、アンローダ装置100および船舶4の移動に伴って相対的な位置関係が変化する。例えば、船舶4が揺れたり、潮の満ち引きや積荷6の積載量によって船舶4が鉛直方向に移動したりすることで、トップフレーム座標系310と、ハッチコーミング座標系320とは、相対的な位置関係が変化する。
 そこで、エッジ検出部152は、測距センサ130~132により測定される計測点に基づいてハッチコーミング7の上端のエッジを検出する。そして、座標変換導出部154は、検出したハッチコーミング7の上端のエッジに基づいて、トップフレーム座標系310とハッチコーミング座標系320との変換パラメータを導出する。
 まず、エッジ検出部152は、測距センサ130~132の位置、および、測距センサ130~132により計測された計測点までの距離に基づいて、トップフレーム座標系310における計測点の3次元位置を導出する。
 図9は、測距センサ130~132の計測点を説明する図である。なお、図9では、ハッチコーミング7上の測距センサ130~132の計測範囲を太線で示す。図9に示すように、測距センサ130~132は、水平面よりも下方であって、トップフレーム108に接する平面を基準として測距センサ130~132から±15度の範囲に存在する物体までの距離を計測する。したがって、測距センサ130~132は、測距センサ130~132の鉛直下方(エレベータ110の回転中心)を基準として、前方側と後方側とで異なるハッチコーミング7のエッジが計測範囲となる。なお、前方側とは、1回の計測において前半に計測された計測範囲をいう。また、後方側とは、1回の計測において後半に計測された計測範囲をいう。
 そこで、測距センサ130~132で計測された測定点を、測距センサ130~132の鉛直下方を基準として、前方側および後方側の2つに分割する。
 図10は、エッジ点を検出する様子を示す図である。なお、図10において、計測点を黒丸で示す。図10では、測距センサ130~132の1つのレーザー照射部から所定角度毎に照射されるレーザーが反射する計測点を図示している。
 エッジ検出部152は、1つのレーザー照射部により照射されて計測された計測点群毎(前方側、後方側毎)に以下の処理を行う。エッジ検出部152は、1つのレーザー照射部により照射されて計測された各計測点のベクトル(向き)を導出する。なお、計測点のベクトルは、連続して計測される計測点のうち、1の計測点に対する、次に計測される計測点の方向(ベクトル)を、1の計測点のベクトルとして導出する。
 そして、エッジ検出部152は、計測点のベクトルが鉛直方向とされる計測点を抽出する。これは、測距センサ130~132により計測されるハッチコーミング7の壁面が概ね鉛直方向に延在しているので、ハッチコーミング7の壁面に計測点がある場合、計測点のベクトルが鉛直方向となるからである。
 そして、エッジ検出部152は、抽出された計測点のうち、連続して抽出された計測点が複数ある場合、鉛直方向における最も上方の点を抽出する。これは、ハッチコーミング7の上端のエッジを検出するため、連続して計測された計測点群においては、最も上方の点が、ハッチコーミング7の上端のエッジである可能性があるからである。
 続いて、エッジ検出部152は、抽出された計測点のうち、トップフレーム座標系310におけるX軸方向およびY軸方向における最も原点に近い計測点を抽出する。これは、ハッチコーミング7が船舶4の各構造物のうち、最もエレベータ110に近い位置にあるからである。
 そして、エッジ検出部152は、抽出された計測点に対して、トップフレーム座標系310におけるX軸方向およびY軸方向の所定の範囲(例えば数十cmの範囲)に存在する計測点を再抽出する。ここでは、ハッチコーミング7上の計測点を抽出することになる。
 そして、エッジ検出部152は、再抽出した計測点、つまり、ハッチコーミング7上の計測点のうち、鉛直方向における最も上方の計測点をハッチコーミング7のエッジ点として抽出する。
 エッジ検出部152は、測距センサ130~132の1つのレーザー照射部により照射されて計測された計測点群毎に、前方側および後方側のエッジ点を抽出する。
 そして、全てのエッジ点が抽出されると、エッジ検出部152は、ハッチコーミング7のエッジの直線を検出する。具体的には、エッジ検出部152は、測距センサ130の前方側でそれぞれ抽出されたエッジ点を1つのグループとする。同様に、エッジ検出部152は、測距センサ130の後方側でそれぞれ抽出されたエッジ点を1つのグループとする。さらに、エッジ検出部152は、測距センサ131、132の前方側および後方側でそれぞれ抽出されたエッジ点をそれぞれグループとする。
 ここで、図9に示したように、測距センサ130~132の前方側および後方側でそれぞれ計測されるハッチコーミング7の上端のエッジの直線は、ハッチコーミング7の角を含む場合、2本計測されることになる。
 そこで、エッジ検出部152は、グループごとに、抽出されたエッジ点間の線分のうち、最も多くの類似の線分をもつものを候補ベクトルとして導出する。そして、エッジ検出部152は、候補ベクトルに対して予め設定された範囲以内に存在するエッジ点を抽出する。そして、エッジ検出部152は、抽出したエッジ点を用いて直線を再計算する。
 次に、エッジ検出部152は、抽出されなかったエッジ点を用いて上記した処理を繰り返し行う。ただし、抽出されたエッジ点の数が、予め設定された閾値未満である場合、直線を導出しない。これにより、ハッチコーミング7の角を含む場合であっても、2本のエッジの直線を導出することができる。
 エッジ検出部152は、グループごとに、上記した処理を繰り返し行うことで、エッジの直線を導出する。
 このように、エッジの直線は、1箇所で最大2つの直線が検出されるため、最大で12本検出されることになる。
 そして、エッジ検出部152は、検出された直線のうち、各直線間におけるなす角を導出する。そして、エッジ検出部152は、なす角が予め決められた閾値以下である場合、同一の直線であるとして統合する。具体的には、なす角が予め決められた閾値以下である直線を構成するエッジ点を用いて、最小二乗近似により直線を再導出する。
 続いて、エッジ検出部152は、検出したエッジの直線から、各辺の3次元方向ベクトル、各辺の3次元重心座標、各辺の長さ、各辺の端点の座標を含むエッジ辺情報を導出する。このように、船舶4の上方に設けられた測距センサ130~132を用いて、船庫5の上部に設けられたハッチコーミング7のエッジ辺情報を導出することで、船庫5の位置(姿勢)を精度よく容易に導出することが可能となる。
 次に、座標変換導出部154は、記憶部142に予め記憶されたハッチコーミング7の3次元モデル情報を記憶部142から読み出す。3次元モデル情報は、ハッチコーミング7の上端の辺の3次元方向ベクトル、各辺の3次元重心座標、各辺の長さ、各辺の端点の座標を含む。また、3次元モデル情報は、ハッチコーミング座標系320で表現されている。そして、座標変換導出部154は、読み出した3次元モデル情報と、トップフレーム座標系310で表現されるエッジ辺情報(検出結果)とに基づいて、トップフレーム座標系310とハッチコーミング座標系320との変換パラメータを導出する。
 座標変換導出部154は、ブーム106の旋回角度だけ、検出したハッチコーミング7のエッジの直線の向きを回転させることで大まかな補正を行う。また、座標変換導出部154は、検出したハッチコーミング7のエッジの直線と、3次元モデル情報におけるハッチコーミング7の上端の辺とを、エッジの向きが最も近い直線同士を対応付ける。これにより、正しい対応付けがなされているため、安定して正解に近い解の変換パラメータが得られる。なお、対応付けにおいては、検出したハッチコーミング7のエッジの直線を3次元点群で表し、その3次元点群と、3次元モデル情報におけるハッチコーミング7の上端の辺との最短距離の平均値が近いもの同士を対応付けてもよい。また、エッジの向きおよび最短距離の平均値の双方を考慮して対応付けてもよい。
 そして、座標変換導出部154は、変換パラメータである、X軸、Y軸、Z軸回りの回転角度α、β、γと、進行ベクトルt=(tx,ty,tz)とを例えばLM法により求める。LM法では、例えばエッジ点と、3次元モデル情報に基づくハッチコーミング7の上端の辺との距離の差の二乗和を評価関数とし、その評価関数を最小にする変換パラメータを求める。具体的には、エッジ点と3次元モデル情報に基づくハッチコーミング7の上端の辺との距離の合計、または、エッジの直線と3次元モデル情報に基づくハッチコーミング7の上端の辺とにより形成される曲面の面積が最小となるように変換パラメータを求める。なお、変換パラメータを求める手法は、LM法に限らず、最急降下法、ニュートン法など他の手法であってもよい。
 このようにして、座標変換導出部154は、トップフレーム座標系310をハッチコーミング座標系320に変換するための変換パラメータを導出する。
 これにより、アンローダ装置100は、トップフレーム座標系310で表現されるエレベータ110および掻取部112と、ハッチコーミング座標系320で表現される船庫5およびハッチコーミング7との相対位置関係を把握することが可能となる。
 また、アンローダ装置100は、トップフレーム108の側面に、下方側に向かって測距可能な測距センサ130~132を配置するだけの簡易な構成で、アンローダ装置100と船庫5との位置関係を容易に導出することができる。
 また、アンローダ装置100は、ハッチコーミング座標系320で表現するハッチコーミング7の位置および姿勢を、トップフレーム座標系310で推定することが可能となる。
 また、2つの測距センサでは、正方形のハッチコーミング7を除きアンローダ装置100の姿勢によっては向きの異なる2つのエッジ辺を計測できない場合がある。しかしながら、測距センサ130~132がエレベータ110の周方向に120度向きを変えて配置されている場合、エッジ辺の縦横比が1.73:1以内のハッチコーミング7である限り、アンローダ装置100の位置および姿勢にかかわらず、向きの異なる2つのエッジ辺を検出することができる。したがって、向きの異なる2つのエッジ辺を検出できる。
 次に、エレベータ110、掻取部112、船庫5およびハッチコーミング7の3次元モデルを配置する処理について説明する。
 図11A、図11B、図11Cは、3次元モデルの配置を説明する図である。図11A、図11B、図11Cに示すように、モデル配置部156は、まず、記憶部142に記憶されたエレベータ110および掻取部112の3次元モデル400をハッチコーミング座標系320上に配置する。エレベータ110および掻取部112の3次元モデル400は、トップフレーム座標系310で表現されている。そこで、モデル配置部156は、座標変換導出部154により導出された変換パラメータを用いて、エレベータ110および掻取部112の3次元モデル400を、ハッチコーミング座標系320に変換する。
 なお、モデル配置部156は、エレベータ110および掻取部112がトップフレーム108に対して移動する場合、アンローダ装置100の位置センサ116、旋回角度センサ118、傾斜角度センサ120および旋回角度センサ122の計測結果に基づき、エレベータ110の回転や掻取部112の長さなどを3次元モデル400に反映する。
 また、3次元モデル400は、積荷6の掻き取り中の計測値の蓄積結果からノイズや移動物体をフィルタしたモデルでも、過去の掻き取り終了時の計測値を蓄積したモデルでも、設計図のモデルでも、別途計測器を一時的に船庫内に持ち込んで計測して得たモデルでもよい。
 そして、モデル配置部156は、ハッチコーミング座標系320に変換されたエレベータ110および掻取部112の3次元モデル400を、ハッチコーミング座標系320上に配置する(図11A)。
 続いて、モデル配置部156は、記憶部142に記憶されたハッチコーミング7の3次元モデル410を、エレベータ110および掻取部112の3次元モデル400に重ねて配置する(図11B)。なお、ハッチコーミング7の3次元モデル410は、ハッチコーミング座標系320で表現されているため、座標変換を行わずにそのまま配置する。
 また、モデル配置部156は、記憶部142に記憶された船庫5の3次元モデル420を、エレベータ110および掻取部112の3次元モデル400、および、ハッチコーミング7の3次元モデル410に重ねて配置する(図11C)。
 これにより、モデル配置部156は、アンローダ装置100の一部であるエレベータ110および掻取部112と、船舶4の一部であるハッチコーミング7および船庫5との相対位置を、3次元モデルを用いて容易に把握させることが可能となる。
 特に、ハッチコーミング7に衝突する可能性のあるエレベータ110の3次元モデルと、ハッチコーミング7の3次元モデルとを配置することで、ハッチコーミング7に対するエレベータ110の位置を容易に把握させることが可能となる。
 また、船庫5に衝突する可能性のある掻取部112の3次元モデルと、船庫5の3次元モデルとを配置することで、船庫5に対する掻取部112の位置を容易に把握させることが可能となる。
 次に、状態監視部158による状態監視処理について説明する。状態監視部158は、モデル配置部156によってハッチコーミング座標系320上に配置されたハッチコーミング7の3次元モデル410、および、船庫5の3次元モデル420と、エレベータ110および掻取部112の3次元モデル400との各ボクセルの距離(距離情報)を総当りで導出する。
 また、状態監視部158は、測距センサ133~136により計測される計測点に基づいて、船庫5内の状況を導出する。具体的には、状態監視部158は、測距センサ133~136により計測される計測点までの距離と、測距センサ133~136の位置に基づいて、トップフレーム座標系310における計測点の3次元位置を導出する。
 また、状態監視部158は、トップフレーム座標系310における計測点の3次元位置を、変換パラメータを用いてハッチコーミング座標系320に変換する。そして、各計測点の位置と、船庫5の3次元モデル420とを用いて、各計測点が船庫5の壁面であるか、積荷6であるかを判定する。ここでは、各計測点の位置と、船庫5の3次元モデル420との位置が予め設定された範囲内の関係である計測点を、船庫5の壁面として判定し、それ以外を積荷6と判定する。
 そして、状態監視部158は、船庫5の3次元モデル420の内部空間のボクセルのうち、積荷6と判定された計測点が含まれるボクセルを積荷6のボクセルとするとともに、積荷6としたボクセルよりも鉛直下方のボクセルも積荷6のボクセルとする。モデル配置部156は、船庫5の3次元モデル420の内部空間のボクセルのうち、積荷6のボクセルと判定されたボクセルを、積荷6の3次元モデルとして再配置する。これにより、船庫5内の積荷6の状況が、把握可能となる。
 また、アンローダ装置100では、精度のよい相対位置にあるハッチコーミング7とアンローダ装置100との3次元モデルを用いる。そのため、アンローダ装置100では、測距センサ130~132によってハッチコーミング7のすべてのエッジ辺を検出できなくても、ハッチコーミング7のすべての側面との衝突・接近を検知・防止することができる。
 また、測距センサ133、135は、掻取部112の側面112cに設けられている。測距センサ134、136は、掻取部112の側面112dに設けられている。そして、掻取部112は、側面112d側から側面112c側に移動しながら積荷6を掻き取る。したがって、アンローダ装置100は、測距センサ133、135によって、掻取部112の進行方向側の積荷6の状況を把握することができる。また、アンローダ装置100は、測距センサ134、136によって、掻取部112の進行方向とは反対側の積荷6の状況を把握することができる。
 以上説明した座標変換導出部154、モデル配置部156および状態監視部158による各処理は、所定間隔毎に繰り返し行われる。通信装置144は、モデル配置部156によって配置された3次元モデルのデータ、および、状態監視部158により導出された距離情報を制御装置200に送信する。
 図12は、上方視点画像500を説明する図である。図13は、掻取部周辺画像510を説明する図である。制御装置200の監視制御部210は、アンローダ装置100から送信された3次元モデルのデータ、および、距離情報を通信装置240により受信する。監視制御部210は、受信したデータに基づいて上方視点画像500および掻取部周辺画像510を表示部230に表示する。
 図12に示すように、上方視点画像500には、ハッチコーミング7の3次元モデル410と、ハッチコーミング7とZ軸方向に同位置に存在するエレベータ110の3次元モデル400とが表示される。つまり、上方視点画像500には、ハッチコーミング7の3次元モデル410が存在する位置でのZ軸方向に垂直な断面(ハッチコーミング7の上面と平行、または、水平と平行な断面)が表示される。
 また、上方視点画像500には、掻取部112の3次元モデル400と、掻取部112とZ軸方向の同位置に存在する船庫5の3次元モデル420および積荷6の3次元モデル430が表示される。つまり、上方視点画像500には、掻取部112の3次元モデル400が存在する位置でのZ軸方向に垂直な断面が表示される。
 つまり、上方視点画像500は、ハッチコーミング7の3次元モデル410が存在する位置のXY断面と、掻取部112の3次元モデル400が存在する位置のXY断面が重ねて表示される。
 また、上方視点画像500は、船庫5の3次元モデル420の外方に、ハッチコーミング7とエレベータ110との距離(「ハッチ ○m」)、および、掻取部112と船庫5の壁面との距離(「船庫 ○m」)が表示される。ここで表示されるハッチコーミング7とエレベータ110との距離は、予め設定された第1閾値(ここでは、1.5m)以下である場合にのみ表示される。より具体的には、第1閾値以下であり、かつ、第1閾値よりも小さい第2閾値(ここでは、1.0m)以上である場合には、黄色の背景に、距離が表示される。また、第2閾値未満である場合には、赤色の背景に、距離が表示される。また、掻取部112と船庫5の壁面との距離は、予め設定された第3閾値(ここでは、1.5m)以下である場合にのみ表示される。より具体的には、第3閾値以下であり、かつ、第3閾値よりも小さい第4閾値(ここでは、1.0m)以上である場合には、黄色の背景に、距離が表示される。また、第4閾値未満である場合には、赤色の背景に、距離が表示される。
 このように、ハッチコーミング7とエレベータ110との距離、および、掻取部112と船庫5の壁面との距離を表示することで、衝突するおそれがあるか否か等を定量的に把握させることができる。
 また、第1閾値または第3閾値となる位置の距離を表示することにより、ハッチコーミング7とエレベータ110との距離や、掻取部112と船庫5の壁面との距離が接近していることを容易に把握させることができる。また、第1閾値以下でかつ第2閾値以上である場合と、第2閾値未満である場合とで異なる表示態様で距離を表示することにより、容易に距離感を把握させることができる。同様に、第3閾値以下でかつ第4閾値以上である場合と、第4閾値未満である場合とで異なる表示態様で距離を表示することにより、容易に距離感を把握させることができる。なお、ハッチコーミング7とエレベータ110との距離、および、掻取部112と船庫5の壁面との距離は、アンローダ装置100から送信される距離情報に基づいて導出される。
 これにより、上方視点画像500は、衝突の可能性があるハッチコーミング7とエレベータ110との位置関係、および、衝突の可能性がある掻取部112と船庫5の壁面との位置関係を容易に把握させることができる。したがって、作業者は、上方視点画像500を目視することで、ハッチコーミング7とエレベータ110の衝突や、掻取部112と船庫5の壁面の衝突を回避することができる。また、船庫5内や船舶4上に、アンローダ装置100の操作を指揮する指揮者を配置しなくてもよくなるため、積荷6の掻き取りに要する人員を削減することができる。さらに、衝突の可能性がある部分のみを抽出して表示しているため、作業者に対する情報量が多くなりすぎず、作業者に適切な判断をさせることができる。また、上方視点画像500は、掻取部112が存在する高さにおける積荷6の様子を容易に把握させることができる。
 図13に示すように、掻取部周辺画像510は、掻取部112の側面112c側から見た掻取部周辺画像512、掻取部112を前方側から見た掻取部周辺画像514、掻取部112の側面112d側から見た掻取部周辺画像516が並んで表示される。
 これら掻取部周辺画像512、514、516には、掻取部112の3次元モデル400と、積荷6の3次元モデル430と、船庫5の3次元モデル420(底面のみ)がそれぞれ表示される。
 ここで、掻取部112は、側面112d側から側面112c側に移動しながら積荷6を掻き取る。したがって、掻取部周辺画像512には、掻き取られていない積荷6の3次元モデル430が表示される。一方、掻取部周辺画像516には、掻取部112によって掻き取られた積荷6の3次元モデル430が表示される。また、掻取部周辺画像514には、側面112c側が掻き取られておらず、側面112d側が掻き取られた積荷6が表示される。これにより、積荷6の掻き取りの様子を容易に把握させることができる。例えば、作業者は、掻取部周辺画像514を見たり、掻取部周辺画像512および516を比較することで、掻取部112の進行方向および進行方向の反対側の方向との積荷6の高さの差や、進行方向における積荷6の高さを把握することができる。これにより、作業者は、掻取部112によって積荷6を適正に掻き取ることができる。また、作業者は、船庫5外においても、どの程度の深さで積荷6を掻き取れているかを定量的に把握することができる。また、船庫5内や船舶4上に、アンローダ装置100の操作を指揮する指揮者を配置しなくてもよくなるため、積荷6の掻き取りに要する人員を削減することができる。また、掻取部周辺画像510は、ハッチコーミング座標系320で表示されるので、常に船舶4に固定した視点で船庫5内の積荷6と掻取部112とを提示することができ、作業者の状況把握が容易になる。
 また、掻取部周辺画像514には、詳しくは後述する、掻取部112の切込み深さに対する差、および、掻取部112と船庫5の底面との間隔が表示される。なお、切込み深さは、側面112c側、および、側面112d側がそれぞれ表示される。これら、切込み深さおよび掻取部112と船庫5の底面との間隔は、アンローダ装置100から送信される距離情報に基づいて導出される。
 以上、説明した上方視点画像500および掻取部周辺画像510は、アンローダ装置100から3次元モデルのデータ、および、距離情報が送信される度に更新して表示される。
 次に、アンローダ装置100の経路生成部160、自動運転指令部162および自動運転終了判定部164の処理について説明する。
 図14A、図14Bは、自動経路を説明する図である。ここで、アンローダ装置100により積荷6を掻き取る際、大まかに3つの工程がある。船庫5内の積荷6が一度も掻き取られていない場合、積荷6は、船庫5内において山型に積まれている。そこで、第1の工程として、船庫5内の積荷6を平らにする工程である。第1の工程は、作業者が操作部220を介してアンローダ装置100を操作することにより行われる。より具体的には、操作部220の操作に応じた信号がアンローダ装置100に送信されると、駆動制御部150が、各種アクチュエータを作動させることによりアンローダ装置100を、操作部220の操作に応じて駆動させる。
 その後、船庫5内に積まれた積荷6の表面がほぼ平らになると、第2の工程として、掻取部112を、船庫5の壁面に沿って複数周移動させた後、中央を1回移動させる。この第2の工程は、掻取部112を移動させる経路が単純であり、かつ、積荷6の掻き取り量も安定しているため、自動化が可能である。
 その後、船庫5内の積荷6が少なくなると、第3の工程として、残りの積荷6を掻取部112によって掻き取る。この第3の工程では、船庫5内に残っている積荷6の位置まで掻取部112を移動させる必要がある。また、第3の工程では、船庫5の底面の近くで掻取部112を可動させる必要がある。そのため、第3の工程は、作業者が操作部220を介してアンローダ装置100を操作することにより行われる。ここでも、操作部220の操作に応じた信号がアンローダ装置100に送信されると、駆動制御部150が、各種アクチュエータを作動させることによりアンローダ装置100を、操作部220の操作に応じて駆動させる。
 このように、アンローダ装置100により積荷6を掻き取る際の3つの工程のうち、第2の工程は、アンローダ装置100の自動化が可能である。
 そこで、経路生成部160は、自動経路として、図14Aにおいて掻取部112を実線で示す、予め決められた位置から、掻取部112を船庫5の側壁に沿って並進させる。そして、エレベータ110の中心軸を基準として、掻取部112が旋回できるところまで移動させる。その後、掻取部112を、船庫5の側壁に沿って90度旋回させる。また、掻取部112を船庫5の側壁に沿って並進させる。これを繰り返し行わせることで、掻取部112を船庫5の側壁に沿って360度移動させる。そして、切込み深さを変えて、さらにもう数周移動させる。
 そして、最後に、図14Bに示すように、掻取部112を船庫5の中央の位置で90度旋回させた後、船庫5の中央に沿って移動させる。これにより、中央に残った積荷6を掻取部112で掻き取らせる。
 ところで、制御装置200は、複数のアンローダ装置100を並行して制御することが可能である。そして、制御装置200の操作部220を操作する作業者は、1つのアンローダ装置100を遠隔操作の対象として選択し、選択したアンローダ装置100について上記した3つの工程のうち、第1の工程および第3の工程を行う。また、第2の工程を行うことが可能なアンローダ装置100を、自動運転の対象のアンローダ装置100として選択し、自動運転の対象のアンローダ装置100について自動運転させる。
 第1の工程および第3の工程を行う遠隔操作の対象となるアンローダ装置100がある場合、作業者は、操作部220を操作して遠隔操作の対象となるアンローダ装置100を選択する。遠隔操作切替部212は、操作部220の操作に応じて、遠隔操作の対象となるアンローダ装置100を決定する。そして、遠隔操作切替部212は、遠隔操作の対象となるアンローダ装置100に対して、通信装置240を介して双方向通信を確立する。ただし、監視制御部210は、遠隔操作の対象となっていないアンローダ装置100からの3次元モデルのデータ、および、距離情報も受信し続ける。
 表示切替部214は、遠隔操作の対象となっているアンローダ装置100から受信した3次元モデルのデータ、および、距離情報に基づく画像(上方視点画像500、掻取部周辺画像510)を表示部230に表示させる。これにより、遠隔操作の対象となっているアンローダ装置100の状況を容易に把握させることができる。
 また、第2の工程を行う自動運転の対象となるアンローダ装置100がある場合、作業者は、操作部220を操作して自動化の対象となるアンローダ装置100を選択する。遠隔操作切替部212は、操作部220の操作に応じて、自動運転の対象となるアンローダ装置100を決定する。そして、遠隔操作切替部212は、自動運転の対象となるアンローダ装置100に自動化指示命令を送信する。アンローダ装置100では、自動化指示命令を受信すると、自動運転指令部162は、経路生成部160に自動経路を生成させる。そして、駆動制御部150は、自動経路に基づいて、アンローダ装置100を駆動させる。
 自動運転終了判定部164は、自動運転終了条件を満たした場合、または、エラーが発生した場合、アンローダ装置100の駆動を停止(制限)させる。自動運転終了条件としては、掻取部112の位置が、自動経路によって決定された位置よりも低くなったことや、積荷6の掻取量が予め設定された量を超えた場合である。
 表示切替部214は、自動運転中のアンローダ装置100から受信した3次元モデルのデータ、および、距離情報に基づいて、自動運転に必要最低限な情報だけを、表示部230に表示する。
 また、状況判定部216は、自動運転中のアンローダ装置100について、掻取部112の高さの変化や掻き取り量の平均などから、掻取部112の目標の高さや目標の掻き取り積算量に至るまでの時間をアンローダ装置100毎に予測する。そして、状況判定部216は、第2の工程の終了時間が近いアンローダ装置100がある場合、遠隔操縦のタイミングが重なることになるため、所定の警告を発する。
 また、状態監視部158は、アンローダ装置100から送信された3次元モデルのデータ、および、距離情報に基づき、ハッチコーミング7および船庫5の壁面と、エレベータ110および掻取部112との距離が最も小さい最小距離およびその方向を導出する。そして、衝突防止部166は、導出された最小距離が所定の閾値以下である場合、アンローダ装置100の動作を制限(停止)させる(衝突防止機能)。なお、衝突防止部166は、導出された最小距離が所定の閾値以下である場合、エレベータ110および掻取部112の導出した方向への動作を制限してもよい。これにより、より安全にアンローダ装置100の自動運転を可能にすることができる。
 例えば、作業者は、1つのアンローダ装置100について第1の工程を行っている間、残りの3つのアンローダ装置100に第2の工程を行わせる。そして、作業者は、第1の工程が終了したアンローダ装置100に対して、操作部220を介して自動化指示命令を送信する。また、作業者は、第2の工程が終了したアンローダ装置100に対して、第3の工程を行う。
 このように、アンローダシステム1では、複数の工程の一部を自動化することにより、複数のアンローダ装置100を1つの制御装置200で制御することができる。これにより、アンローダシステム1は、人員を削減することができる。なお、状態監視部158は、ハッチコーミング7とエレベータ110との距離、および、掻取部112と船庫5の壁面との距離が、衝突するとされる距離未満となった場合に、駆動制御部150に自動化を停止させるようにしてもよい。
 以上、添付図面を参照しながら実施形態について説明したが、本開示はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に技術的範囲に属するものと了解される。
 例えば、上記実施形態において、複数のアンローダ装置100を1つの制御装置200で制御するようにした。しかしながら、1つのアンローダ装置100に対して1つの制御装置200を設けるようにしてもよい。この場合、アンローダ制御部140および監視制御部210を統合して1つにしてもよい。また、通信装置144および通信装置240を設けなくてもよい。
 また、上記実施形態において、アンローダ制御部140が駆動制御部150、エッジ検出部152、座標変換導出部154、モデル配置部156、状態監視部158、経路生成部160、自動運転指令部162、自動運転終了判定部164、衝突防止部166として機能するようにした。しかしながら、監視制御部210が駆動制御部150、座標変換導出部154、モデル配置部156、状態監視部158、経路生成部160、自動運転指令部162、自動運転終了判定部164、衝突防止部166の一部または全部として機能するようにしてもよい。
 また、上記実施形態において、測距センサ130~132がトップフレーム108に配置されるようにした。しかしながら、測距センサ130~132は、エレベータ110に配置されるようにしてもよい。また、上記実施形態において、測距センサ133~136は掻取部112に配置されるようにした。しかしながら,測距センサ133~136はエレベータ110における掻取部112に近い半分側に設置してもよい。
 また、上記実施形態において、3次元モデルの一部(断面)を上方視点画像500として表示するようにしたが、測距センサ130~132によって計測された計測結果(計測点)をそのまま画像として表示してもよく、また、エッジ検出部152により検出されたエッジの直線を画像として表示するようにしてもよい。つまり、測距センサ130~132によって計測された計測結果に基づいて、エレベータ110および掻取部112、船庫5およびハッチコーミング7の少なくとも一部を示す上方視点画像500を表示すればよい。
 また、上記実施形態において、3次元モデルの一部(断面)を掻取部周辺画像510として表示するようにしたが、測距センサ133~136によって計測された計測結果(計測点)をそのまま画像として表示してもよい。つまり、測距センサ133~136によって計測された計測結果に基づいて、エレベータ110および掻取部112、船庫5の少なくとも一部を示す掻取部周辺画像510を表示すればよい。
 また、上記実施形態において、荷揚げ装置の一例としてアンローダ装置100を例に挙げて説明した。しかしながら、荷揚げ装置は、連続アンローダ(バケット式、ベルト式、垂直スクリューコンベア式など)、ニューマチックアンローダ等であってもよい。
 また、上記実施形態において、エレベータ110の周方向に120度離れて、円筒に接する平面方向から一定角度範囲内に向けて計測するように3つの測距センサ130~132が設けられるようにした。しかしながら、測距センサの数は、3つ以上であればよい。また、測距センサは、円筒に接する平面の方向に計測するように設置する必要はなく、平面から傾けて設置してもよい。少なくとも1つは他の測距センタと周方向(を含む平面上で)に45度以上異なる方向に向けて設けられるとよい。また、測距センサは、計測範囲が異なるように設けられるとよい。
 また、上記実施形態において、エレベータ110などで例示される垂直搬送機構部は、掻取部112から主に上方に荷物を搬送する機構を示し、厳密に垂直であることを示すものではない。
 本開示は、荷揚げ装置に利用することができる。
100:アンローダ装置(荷揚げ装置) 110:エレベータ(垂直搬送機構部) 112:掻取部 130、131、132:測距センサ 152:エッジ検出部 154:座標変換導出部 156:モデル配置部 230:表示部

Claims (11)

  1.  船庫内の積荷を掻き取る掻取部を下端に保持する垂直運搬機構部と、
     前記垂直運搬機構部に配置され、下方側に向かって測距可能な測距センサと、
    を備える荷揚げ装置。
  2.  前記測距センサは、
     計測範囲が異なるように、または、計測方向が他の測距センサの計測方向と平行とならない1つの測距センサを含むように3つ以上設けられる請求項1に記載の荷揚げ装置。
  3.  前記測距センサによって計測された計測結果に基づいて、前記船庫と、前記垂直運搬機構部および前記掻取部との少なくとも一部を示す画像を表示する表示部を備える請求項1または2に記載の荷揚げ装置。
  4.  前記表示部は、前記掻取部が存在する断面と、前記船庫の上部に設けられたハッチコーミングが存在する断面とを画像として表示する請求項3に記載の荷揚げ装置。
  5.  前記断面は、前記ハッチコーミングの上面と平行、または、水平と平行な断面である請求項4に記載の荷揚げ装置。
  6.  前記表示部は、前記測距センサによって計測された計測結果に基づいて、前記垂直運搬機構部と前記ハッチコーミングとの距離を表示する請求項4または5に記載の荷揚げ装置。
  7.  前記表示部は、前記垂直運搬機構部と前記ハッチコーミングとの距離が予め設定された第1閾値以下である場合のみ、前記垂直運搬機構部と前記ハッチコーミングとの距離を表示する請求項6に記載の荷揚げ装置。
  8.  前記表示部は、前記垂直運搬機構部と前記ハッチコーミングとの距離が前記第1閾値以下であり、かつ、前記第1閾値よりも小さい第2閾値以上である場合と、前記第2閾値未満である場合とで、前記垂直運搬機構部と前記ハッチコーミングとの距離を異なる態様で表示する請求項7に記載の荷揚げ装置。
  9.  前記表示部は、前記測距センサによって計測された計測結果に基づいて、前記掻取部と前記船庫との距離を表示する請求項3から8のいずれか1項に記載の荷揚げ装置。
  10.  前記表示部は、前記掻取部と前記船庫との距離が予め設定された第3閾値以下である場合のみ、前記掻取部と前記船庫との距離を表示する請求項9に記載の荷揚げ装置。
  11.  前記表示部は、前記掻取部と前記船庫との距離が前記第3閾値以下であり、かつ、前記第3閾値よりも小さい第4閾値以上である場合と、前記第4閾値未満である場合とで、前記掻取部と前記船庫との距離を異なる態様で表示する請求項10に記載の荷揚げ装置。
PCT/JP2019/003230 2018-02-02 2019-01-30 荷揚げ装置 WO2019151346A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980005676.0A CN111433143B (zh) 2018-02-02 2019-01-30 卸载装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-017502 2018-02-02
JP2018017502A JP7051468B2 (ja) 2018-02-02 2018-02-02 荷揚げ装置

Publications (1)

Publication Number Publication Date
WO2019151346A1 true WO2019151346A1 (ja) 2019-08-08

Family

ID=67480020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003230 WO2019151346A1 (ja) 2018-02-02 2019-01-30 荷揚げ装置

Country Status (4)

Country Link
JP (1) JP7051468B2 (ja)
CN (1) CN111433143B (ja)
TW (1) TWI719402B (ja)
WO (1) WO2019151346A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI797567B (zh) * 2020-03-18 2023-04-01 日商住友重機械搬運系統工程股份有限公司 卸載機

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7428509B2 (ja) * 2019-12-03 2024-02-06 Ihi運搬機械株式会社 荷役機械の船舶用重機自動移送装置
JP7449163B2 (ja) * 2020-05-11 2024-03-13 株式会社Ihi 荷揚げ装置
JP7412274B2 (ja) * 2020-05-26 2024-01-12 株式会社Ihi 荷揚げ装置
CN113443462B (zh) * 2021-06-25 2022-04-01 国能黄骅港务有限责任公司 一种装船作业系统、控制方法、装置以及计算机设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301641A (ja) * 1992-04-28 1993-11-16 Mitsubishi Heavy Ind Ltd クレーン制御装置
JPH08258987A (ja) * 1995-03-20 1996-10-08 Nippon Steel Corp ハッチ端検出方法
JPH08290833A (ja) * 1995-04-24 1996-11-05 Kawasaki Steel Corp 連続式アンローダの掘削深さ制御方法
JPH09297023A (ja) * 1996-05-02 1997-11-18 Mitsubishi Heavy Ind Ltd アンローダの掘削部と船体との相対位置計測装置
JPH107384A (ja) * 1996-06-21 1998-01-13 Toda Constr Co Ltd クレーン用警告装置
JPH11208895A (ja) * 1998-01-30 1999-08-03 Kawasaki Heavy Ind Ltd 連続アンローダの相対位置計測装置
JP2007084336A (ja) * 2005-08-26 2007-04-05 Topcon Corp クレーン接近警報システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268204A (en) * 1979-03-29 1981-05-19 Dravo Corporation Continuous ship unloader
JP2887198B2 (ja) * 1995-06-26 1999-04-26 川崎重工業株式会社 相対位置計測装置
KR100477430B1 (ko) * 2001-12-31 2005-03-23 두산중공업 주식회사 로우 헤드 버켓 엘리베이터 형식의 연속식 하역기
CN101112962A (zh) * 2006-07-27 2008-01-30 包起帆 一种散货自动化装船系统及其装船方法
CN101723187B (zh) * 2008-10-23 2012-07-25 宝山钢铁股份有限公司 一种港口货轮卸船机的自动防撞系统及方法
JP5944148B2 (ja) * 2011-12-01 2016-07-05 住友重機械搬送システム株式会社 連続式アンローダ
CN103030069B (zh) * 2012-12-28 2014-10-01 上海红箭自动化设备有限公司 船坞起重设备自动防撞系统
JP6122340B2 (ja) * 2013-05-17 2017-04-26 Ihi運搬機械株式会社 衝突防止装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301641A (ja) * 1992-04-28 1993-11-16 Mitsubishi Heavy Ind Ltd クレーン制御装置
JPH08258987A (ja) * 1995-03-20 1996-10-08 Nippon Steel Corp ハッチ端検出方法
JPH08290833A (ja) * 1995-04-24 1996-11-05 Kawasaki Steel Corp 連続式アンローダの掘削深さ制御方法
JPH09297023A (ja) * 1996-05-02 1997-11-18 Mitsubishi Heavy Ind Ltd アンローダの掘削部と船体との相対位置計測装置
JPH107384A (ja) * 1996-06-21 1998-01-13 Toda Constr Co Ltd クレーン用警告装置
JPH11208895A (ja) * 1998-01-30 1999-08-03 Kawasaki Heavy Ind Ltd 連続アンローダの相対位置計測装置
JP2007084336A (ja) * 2005-08-26 2007-04-05 Topcon Corp クレーン接近警報システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI797567B (zh) * 2020-03-18 2023-04-01 日商住友重機械搬運系統工程股份有限公司 卸載機

Also Published As

Publication number Publication date
JP7051468B2 (ja) 2022-04-11
TW201934461A (zh) 2019-09-01
TWI719402B (zh) 2021-02-21
JP2019131393A (ja) 2019-08-08
CN111433143B (zh) 2022-01-11
CN111433143A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
WO2019151346A1 (ja) 荷揚げ装置
JP7129314B2 (ja) 荷揚げ装置
WO2019151347A1 (ja) 荷揚げ装置
EP3003953B1 (en) Cargo handling by a spreader
WO2019151460A1 (ja) 荷揚げ装置
JP7272848B2 (ja) 荷揚げ装置
JP7412274B2 (ja) 荷揚げ装置
CN110198909B (zh) 集装箱的对位装置
JP7237702B2 (ja) 荷揚げ装置
JP6729865B2 (ja) コンテナヤードおよびその制御方法
JP7280095B2 (ja) 荷揚げ装置
JP7237703B2 (ja) 荷揚げ装置
JP7285121B2 (ja) 荷揚げ装置
TWI748399B (zh) 形狀導出裝置及卸貨裝置
JP7285122B2 (ja) 形状導出装置
KR101494323B1 (ko) 연속식 하역기의 충돌방지방법 및 그 장치
JP2704918B2 (ja) 船舶用荷役機械の制御装置
JP7449163B2 (ja) 荷揚げ装置
JP2022135158A (ja) 荷揚げ装置および荷揚げ装置のための制御装置
JP2021134058A (ja) 荷揚げ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19746948

Country of ref document: EP

Kind code of ref document: A1