WO2019151196A1 - 熱収縮性ポリエステル系フィルムロール - Google Patents

熱収縮性ポリエステル系フィルムロール Download PDF

Info

Publication number
WO2019151196A1
WO2019151196A1 PCT/JP2019/002800 JP2019002800W WO2019151196A1 WO 2019151196 A1 WO2019151196 A1 WO 2019151196A1 JP 2019002800 W JP2019002800 W JP 2019002800W WO 2019151196 A1 WO2019151196 A1 WO 2019151196A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
heat
film roll
roll
shrinkable polyester
Prior art date
Application number
PCT/JP2019/002800
Other languages
English (en)
French (fr)
Inventor
雅幸 春田
多保田 規
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to US16/964,871 priority Critical patent/US11524858B2/en
Priority to CN201980010081.4A priority patent/CN111655450A/zh
Priority to EP19748240.9A priority patent/EP3747628B1/en
Priority to JP2019507874A priority patent/JP7288400B2/ja
Priority to KR1020207022255A priority patent/KR102561156B1/ko
Publication of WO2019151196A1 publication Critical patent/WO2019151196A1/ja
Priority to JP2022019644A priority patent/JP7306504B2/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H18/00Winding webs
    • B65H18/28Wound package of webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/08Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique transverse to the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/02Thermal shrinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • B29C61/0608Making preforms having internal stresses, e.g. plastic memory characterised by the configuration or structure of the preforms
    • B29C61/065Preforms held in a stressed condition by means of a removable support; Supports therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/18Form of handled article or web
    • B65H2701/184Wound packages
    • B65H2701/1842Wound packages of webs

Definitions

  • the present invention relates to a film roll formed by winding a heat-shrinkable polyester film. More specifically, the present invention relates to a heat-shrinkable polyester film roll that has good wrinkles at the core of the film roll and has little loss during printing and processing.
  • heat-shrinkable labels are often discarded as trash, and there is a demand for thinning for environmental reasons.
  • the heat-shrinkable film is more difficult to handle than other general-purpose films, but according to the study by the present inventors, problems are particularly likely to occur particularly in a heat-shrinkable polyester film having a film thickness of 30 ⁇ m or less. Troubles occur when printing or processing on film rolls due to defects. In particular, when wrinkles occur in the core portion of the film roll, there is a problem that a trouble occurs at that position when printing or processing is performed, resulting in a loss.
  • Non-Patent Document 1 describes the tension and control of a slitter that winds up a film roll.
  • the paper tube and film properties are not described.
  • the winding hardness of the film roll width direction is uniform as conditions of a slit with few wrinkles and talmi of a film roll.
  • the purpose is to prevent wrinkles and sagging of the film roll due to air leakage.
  • wrinkles due to air leakage are greatly affected in the vicinity of the surface layer of the film roll, and are less affected by air leakage on the core side near the paper tube of the film roll, and wrinkles occur even when the winding hardness in the width direction is uniform.
  • Patent Document 2 a heat-shrinkable polyester film roll is described as a film roll with little variation in heat-shrinkability and solvent adhesiveness in the roll and good thickness unevenness. However, there is no mention of film roll wrinkles.
  • Patent Document 3 it describes about the heat-shrinkable polyester film roll with favorable processing, such as printing, after long-term storage. However, the winding hardness difference in the width direction is larger than Patent Document 1. Moreover, it does not describe about the core-side ridge.
  • An object of the present invention is to provide a heat-shrinkable polyester film roll that eliminates the problems of a film roll formed by winding the above-described conventional heat-shrinkable polyester film that has been thinned, and has less core wrinkles. is there.
  • the present invention has the following configuration.
  • the paper tube is a paper tube having an inner diameter of 3 inches, the gap difference between the paper tubes in the width direction after removing the film from the film roll is 0.5 mm or less, and the flat pressure resistance of the paper tube after removing the film 1.
  • the average value of the winding hardness in the width direction at the film roll surface layer is 500 or more and 850 or less.
  • the gap difference between the paper tubes in the width direction before winding the film is 0.3 mm or less.
  • the thickness unevenness of the whole width direction of the film of each sample sampled from the surface layer part of the film roll at intervals of 1000 m is 12% or less in all samples.
  • 2.
  • a film roll comprising the heat-shrinkable polyester film described in 1.
  • the heat-shrinkable polyester film roll of the present invention has few core wrinkles. Therefore, it can be used satisfactorily with less trouble in post-processing such as printing and solvent bonding.
  • the polyester used in the heat-shrinkable polyester film constituting the heat-shrinkable polyester film roll of the present invention is mainly composed of ethylene terephthalate. That is, ethylene terephthalate is contained in an amount of 50 mol% or more, preferably 60 mol% or more, based on 100 mol% of all the constituent components of the polyester.
  • Other dicarboxylic acid components other than terephthalic acid constituting the polyester of the present invention include aromatic dicarboxylic acids such as isophthalic acid, naphthalenedicarboxylic acid and orthophthalic acid, fats such as adipic acid, azelaic acid, sebacic acid and decanedicarboxylic acid.
  • An aromatic dicarboxylic acid and an alicyclic dicarboxylic acid can be exemplified.
  • an aliphatic dicarboxylic acid for example, adipic acid, sebacic acid, decanedicarboxylic acid, etc.
  • the content is preferably less than 3 mol%.
  • a heat-shrinkable polyester film obtained using a polyester containing 3 mol% or more of these aliphatic dicarboxylic acids has insufficient film stiffness at high-speed mounting.
  • a trivalent or higher polyvalent carboxylic acid for example, trimellitic acid, pyromellitic acid, and their anhydrides.
  • diol component other than ethylene glycol constituting the polyester used in the present invention examples include aliphatic diols such as 1-3 propanediol, 1-4 butanediol, neopentyl glycol, hexanediol, 1,4-cyclohexanedimethanol, and the like. And aromatic diols such as bisphenol A.
  • the polyester used in the heat-shrinkable polyester film of the present invention is a cyclic diol such as 1,4-cyclohexanedimethanol or a diol having 3 to 6 carbon atoms (for example, 1-3 propanediol, 1-4 butanediol). Polyester having a glass transition point (Tg) adjusted to 60 to 80 ° C. by containing at least one of azodiol, neopentyl glycol, hexanediol and the like.
  • Tg glass transition point
  • the polyester used in the heat-shrinkable polyester film of the present invention is one or more kinds of polyester that can be an amorphous component in 100 mol% of the polyhydric alcohol component or 100 mol% of the polyvalent carboxylic acid component in the total polyester resin.
  • the total of the monomer components is preferably 15 mol% or more, more preferably 17 mol% or more, and particularly preferably 20 mol% or more.
  • examples of the monomer that can be an amorphous component include neopentyl glycol, 1,4-cyclohexanedimethanol, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,2- Diethyl 1,3-propanediol, 2-n-butyl 2-ethyl 1,3-propanediol, 2,2-isopropyl 1,3-propanediol, 2,2-di-n-butyl 1,3-propanediol, Examples thereof include 1,4-butanediol and hexanediol. Among them, neopentyl glycol, 1,4-cyclohexanedimethanol and isophthalic acid are preferably used.
  • a diol having 8 or more carbon atoms for example, octanediol
  • a trihydric or higher polyhydric alcohol for example, trimethylolpropane, trimethylolethane, glycerin
  • Diglycerin and the like are preferably not contained.
  • the resin forming the heat-shrinkable polyester film of the present invention various additives as required, for example, waxes, antioxidants, antistatic agents, crystal nucleating agents, viscosity reducing agents, A heat stabilizer, a coloring pigment, a coloring inhibitor, an ultraviolet absorber, and the like can be added.
  • organic fine particles examples include acrylic resin particles, melamine resin particles, silicone resin particles, and crosslinked polystyrene particles.
  • the average particle size of the fine particles is in the range of 0.05 to 3.0 ⁇ m (when measured with a Coulter counter) and can be appropriately selected as necessary. Further, the addition amount of the fine particles is within a range of 300 to 1200 ppm with respect to the film, and both good slipperiness (friction) and transparency can be achieved.
  • the above particles into the resin forming the heat-shrinkable polyester film for example, it can be added at any stage for producing the polyester resin, but it can be added at the esterification stage or transesterification reaction. After completion, it is preferable to add as a slurry dispersed in ethylene glycol or the like at a stage before the start of the polycondensation reaction, and proceed with the polycondensation reaction.
  • a method of blending a slurry of particles dispersed in ethylene glycol or water using a vented kneading extruder and a polyester resin material, or a dried particle and a polyester resin material using a kneading extruder It is also preferable to carry out by a method of blending and the like.
  • the heat-shrinkable polyester film of the present invention can be subjected to corona treatment, coating treatment, flame treatment or the like in order to improve the adhesion of the film surface.
  • the heat-shrinkable polyester film of the present invention includes a multilayer multilayer polyester film having at least one polyester resin layer.
  • the polyester resin layer may be a polyester having the same composition or a polyester having a different composition.
  • stacked as another layer will not be specifically limited if it is a thermoplastic resin layer, However, From a price and a heat shrink property, it is preferable that it is a polystyrene-type resin layer.
  • the heat-shrinkable polyester film of the present invention is the main shrinkage of the film calculated by the following equation 1 from the length before and after shrinkage when treated for 10 seconds in 90 ° C. warm water under no load.
  • the heat shrinkage rate in the direction (that is, the hot water heat shrinkage rate of 90 ° C.) needs to be 40% or more.
  • Thermal shrinkage rate ⁇ (length before shrinkage ⁇ length after shrinkage) / length before shrinkage ⁇ ⁇ 100 (%)
  • the shrinkage amount in the main shrinkage direction at 90 ° C. is less than 40%, the shrinkage amount is small, and the label after heat shrinkage causes wrinkles and insufficient shrinkage, which is not preferable as a heat shrink film.
  • the length of the film wound around the heat-shrinkable polyester film roll or heat-shrinkable multilayer polyester film roll of the present invention is preferably 2000 m or more and 25000 m or less.
  • the longer the winding length, the lower the frequency of replacing the roll, and the work efficiency is improved.
  • it is 3000 m or more, More preferably, it is 4000 m or more.
  • the width of the heat-shrinkable polyester film roll of the present invention is preferably 400 mm or more and 2500 mm or less. There is no particular upper limit, and it is preferable that the width of the film roll is long because the loss in the printing process is small, but since the inventors have confirmed only up to 2500 mm, the width is set to 2500 mm. Moreover, the wider one is preferable because the wider film roll increases the efficiency in processing such as printing as described above. A preferable width is 500 mm or more, and more preferably 600 mm or more.
  • the thickness of the heat-shrinkable polyester film of the present invention is preferably 5 ⁇ m or more and 30 ⁇ m or less. Since the thickness confirmed in the present invention was up to 5 ⁇ m, the thickness was set to 5 ⁇ m or more. The thicker the film, the lower the feeling of the core, and the smaller the number of winding cores, the better. However, the reduction of the thickness is contrary to environmental measures.
  • the thickness nonuniformity in the width direction of the film in the surface layer part of the heat-shrinkable polyester film roll of the present invention is 12% or less in the formula represented by the following formula 2. If the thickness unevenness is bad, wrinkles are likely to occur, which is not preferable. Preferably it is 10% or less, More preferably, it is 7% or less. The smaller the thickness unevenness, the better.
  • the “surface part of the film roll” or the “surface part of the film roll” in the present invention refers to a part obtained by removing 1 m of the film from the film roll surface layer. ⁇ (Maximum thickness-minimum thickness) / average thickness ⁇ ⁇ 100 (%) Formula 2
  • the heat-shrinkable polyester film roll of the present invention preferably has a gap difference in the width direction of the paper tube of 0.5 mm or less after removing the film from the film roll.
  • the paper tube is deformed (distorted) due to distortion or natural shrinkage of the film.
  • the gap difference in the paper tube after removing the film from the film roll is preferably 0.4 mm or less, and more preferably 0.3 mm or less.
  • the gap difference in the width direction of the paper tube can be measured by the method described in Examples described later.
  • the core for winding the film includes a paper tube, a plastic core, a metal core, etc.
  • a paper tube having an inner diameter of 3 inches which is inexpensive and versatile is used.
  • the thickness of the paper tube is preferably about 7 to 30 mm.
  • the flat pressure resistance of the 3-inch core paper tube after removing the film from the film roll is 1700 N / 100 mm or more. If the pressure strength is lower than 1700 N / 100 mm, the paper tube is distorted by the internal stress applied after the film is wound, and wrinkles are generated in the roll core, which is not preferable. Preferably it is 1800 N / 100 mm or more, More preferably, it is 1900 N / 100 mm or more. The higher the pressure resistance, the better.
  • there are methods such as increasing the thickness of the paper tube or using a hard paper tube or a super hard paper tube designed to have high strength.
  • the film used when winding up is preferably 0.3 mm or less, more preferably 0.2 mm or less, and still more preferably 0.1 mm or less.
  • a means of reducing the gap difference between paper tubes use a paper tube that has high hardness and is not easily deformed by vibration during transportation, etc., or put it in a moisture-proof bag until moisture is absorbed and the paper tube will not be deformed.
  • One method is to store the paper tube in a room where the temperature and humidity are constant so that the tube does not absorb moisture and deform.
  • the average value of the winding hardness in the width direction of the heat-shrinkable polyester film roll surface layer of the present invention is preferably 500 or more and 850 or less. If it is less than 500, the winding state will be soft and the core will be in a good direction, but the film roll end face will be displaced, which is not preferable. When the winding hardness is higher than 850, the winding state is hard, and wrinkles are likely to occur due to uneven thickness, which is not preferable.
  • the average value of the winding hardness in the width direction of the film roll surface layer is preferably from 550 to 800, and more preferably from 600 to 750. Particularly preferably, it is more than 650 and 750 or less.
  • the winding hardness in this invention refers to the winding hardness measured by the method as described in the below-mentioned Example. A preferred winding method for setting the winding hardness within the predetermined range will be described later.
  • the static friction coefficient and the dynamic friction coefficient between the film surfaces of the wound outer surface and the wound inner surface of the heat-shrinkable polyester film of the present invention are both 0.1 or more and 0.8 or less. If it is lower than 0.1, the end face may be displaced due to slipping too much. On the other hand, when the ratio is larger than 0.8, the amount of air that is entrained increases when slitting, and loosening and wrinkles easily occur due to air loss during film roll. Preferably they are 0.13 or more and 0.77 or less, More preferably, they are 0.16 or more and 0.74 or less.
  • the heat-shrinkable polyester film roll of the present invention has one of the problems of reducing core wrinkles.
  • the winding core wrinkle is generated when slitting the film roll, and may be generated over several hundreds m from the winding core portion when it is long, which causes a great loss when the film roll is processed such as printing. There is a case. It is preferable that wrinkles are not generated at the position of the winding length of 30 m or more from the paper tube of the heat-shrinkable polyester film roll of the present invention. If there is a wrinkle at a position longer than the winding length of 30 m from the paper tube, the wrinkle is included in a processed product such as a printed product, resulting in a loss of the processed product.
  • the winding length having wrinkles from the paper tube is preferably 0 m without wrinkles at all.
  • it is often not used from a paper tube to a winding length of about 30 m in a pass line of a printing machine, so the length is set to 30 m.
  • the heat-shrinkable polyester film of the present invention is obtained by melting and extruding the above-described polyester raw material with an extruder to form an unstretched film, and stretching and heat-treating the unstretched film by a predetermined method shown below. Can be obtained. When laminating, a plurality of extruders, feed blocks, and multi-manifolds may be used.
  • the polyester can be obtained by polycondensing the above-described preferred dicarboxylic acid component and diol component by a known method. Usually, two or more kinds of chip-like polyester are mixed and used as a raw material for the film.
  • the raw material chips are dried using a dryer such as a hopper dryer or paddle dryer, or a vacuum dryer, and the raw material is evenly distributed using a stirrer in the hopper on the extruder.
  • the mixed raw materials are extruded into a film at a temperature of 200 to 280 ° C.
  • the undried polyester raw material uniformly mixed in the same manner as described above is extruded into a film in the same manner while removing moisture in a vent type extruder.
  • any existing method such as a T-die method or a tubular method may be adopted. However, the T-die method is preferable in order to improve thickness unevenness.
  • the temperature at the time of extrusion should not exceed 280 ° C. If the melting temperature is too high, the intrinsic viscosity at the time of labeling is lowered and cracks are likely to occur, which is not preferable.
  • Shear rate at the die outlet was obtained from the following formula 3.
  • Shear rate ⁇ 6Q / (W ⁇ H 2 ) ⁇ : Shear rate (sec -1 )
  • Q Discharge rate of raw material from the extruder (cm 3 / sec)
  • W Width of die outlet opening (cm)
  • H Lip gap of the die (cm)
  • a higher shear rate is preferable because uneven thickness (especially the maximum recess) in the width direction of the film can be reduced. This is because the higher the shear rate, the more stable the pressure during resin discharge at the T-die outlet. Preferred shear rate was 100 sec -1 or more, more preferably 150 sec -1 or more, and particularly preferably 170Sec -1 or more.
  • a higher draft ratio is preferable because the thickness unevenness in the longitudinal direction is good, but if the draft ratio is high, it is not preferable that it is too high because resin residue or the like adheres to the resin discharge portion of the die and productivity deteriorates.
  • the “unstretched film” includes a film on which a tension necessary for film feeding is applied.
  • a method of rapidly cooling the molten resin a method of obtaining a substantially unoriented resin sheet by casting the molten resin from a die onto a rotating drum and rapidly solidifying it can be suitably employed.
  • the unstretched film obtained above is preheated at 80 to 120 ° C., preferably 90 to 110 ° C. if necessary with a transverse stretching machine (so-called tenter), and then transverse direction (direction perpendicular to the extrusion direction). To 3.5 times or more, preferably 4 times or more and 7 times or less.
  • the stretching temperature is from 65 ° C to 80 ° C, preferably from 70 ° C to 75 ° C.
  • the transverse stretching is a multi-stage stretching in a range of 2 to 5 stages.
  • multi-stage stretching it is preferable because the stretching stress can be changed by changing each stretching temperature, and thickness unevenness in the width direction can be reduced.
  • it is more than three-stage stretching.
  • An example of a stretching pattern of a transverse stretching machine (three-stage stretching) is shown in FIG.
  • FIG. 1 in multi-stage stretching, it is preferable to provide a pattern that maintains a constant length after the end of stretching in each stage.
  • the heat treatment is performed to relieve the tension state of the stretched film, and is effective in adjusting the heat shrinkage rate at the temperature during the heat treatment and reducing the natural shrinkage rate. Thereby, the heat-shrinkable polyester film used as the label of the present invention is obtained.
  • the resulting heat-shrinkable polyester film is wound up as a wide roll as an intermediate product, and then slitted into a specified width and length using a slitter and wound into a 3-inch paper tube for winding, and heat-shrinkable polyester A system film roll is obtained.
  • variety of this film roll are as above-mentioned.
  • the slit is started at an initial tension of 70 to 140 N / m, preferably 80 to 130 N / m, and an initial surface pressure of 200 to 400 N / m, preferably 250 to 350 N / m.
  • the initial tension is higher than 140 N / m, the thickness unevenness portion is slightly stretched by the tension when slitting, which causes wrinkles (core creases) and slack, which is not preferable.
  • the initial tension is higher than 140 N / m, the influence of slight bending or distortion of the paper tube becomes large, which causes a core flaw.
  • the tension is constantly reduced to correlate with the winding length so that the tension when the winding length is 800 m before the end of the slit is 50 to 80%, preferably 60 to 70% of the initial tension. It is desirable to wind up with tension.
  • the surface pressure is preferably as low as initial surface pressure ⁇ 5% or less as much as possible over the entire length of the winding length, more preferably not more than initial surface pressure ⁇ 3%.
  • the winding hardness of the film roll surface layer part slit as mentioned above is 500-850.
  • the suitable range in the average value of the winding hardness in the width direction of the film roll surface layer is as described above.
  • the end surface deviation of the film roll in this invention refers to the end surface deviation measured by the method as described in the below-mentioned Example.
  • the end face deviation of the film roll is preferably 2 mm or less. When the end face deviation is large, pitch deviation in printing is likely to occur particularly in multicolor printing and the like, and the product value may be impaired due to the loss of design in a processed product such as a label.
  • the degree of thickness unevenness in the film width direction is the total length of the winding length. Although it is almost constant over the course of the film, slight fluctuations occur with respect to the entire winding length due to minute fluctuations in each process during film formation.
  • the thickness unevenness in the film width direction is preferably controlled over the entire winding length. Whether or not the thickness unevenness is controlled over the entire length of the winding length can be confirmed, for example, by collecting a sample of the film of the film roll from the surface layer at every constant winding length and measuring the thickness unevenness of each sample. it can.
  • the thickness unevenness can be measured by taking a sample of the surface layer portion of the film roll and measuring it as a representative value in the film roll.
  • a sample is taken from a portion obtained by removing 1 m of the film from the film roll surface layer and measured to obtain a representative value.
  • the preferred range of thickness unevenness in the film width direction in the film roll surface layer is as described above.
  • a preferable aspect of the present invention is that samples are collected from the film roll surface layer every 1000 m of winding length and measured, and thickness unevenness is within a predetermined range for all samples.
  • the preferred range of thickness unevenness in the film width direction over the entire length of the film roll is as described above.
  • the evaluation method used in the present invention is as follows. In addition, when there was no description in particular, 1 m of films were removed from the film roll surface layer, and the film or film roll of the surface layer part after this removal was evaluated.
  • Thermal shrinkage rate ((length before shrinkage ⁇ length after shrinkage) / length before shrinkage) ⁇ 100 (%)
  • TPA terephthalic acid
  • EG ethylene glycol
  • NPG neopentyl glycol
  • antimony trioxide 23.2 parts by mass of antimony trioxide as a polycondensation catalyst.
  • sodium acetate alkali metal compound
  • 46.1 parts by weight of trimethyl phosphate (phosphorus compound) were charged, the pressure was adjusted to 0.25 MPa, and the mixture was stirred at 220 to 240 ° C. for 120 minutes for esterification Reaction was performed.
  • the reaction vessel was restored to normal pressure, 3.0 parts by mass of cobalt acetate tetrahydrate and 124.1 parts by mass of magnesium acetate / 4 hydrate were added, and the mixture was stirred at 240 ° C. for 10 minutes, then over 75 minutes.
  • the pressure was reduced to 1.33 hPa and the temperature was raised to 280 ° C. Stirring was continued (about 70 minutes) at 280 ° C. until the melt viscosity reached 4500 poise, and then discharged into water in the form of a strand.
  • Chip B was obtained by cutting the discharged material with a strand cutter.
  • the intrinsic viscosity of chip B was 0.73 dl / g.
  • Chips A and C having the compositions shown in Table 1 were obtained in the same manner as in Synthesis Example 1.
  • NPG is an abbreviation for neopentyl glycol
  • BD is butanediol
  • CHDM is abbreviation for cyclohexanedimethanol.
  • SiO 2 Siliconicia 266 manufactured by Fuji Silysia
  • Intrinsic viscosities were 0.73 dl / g for chips A, C, and E, and 0.92 dl / g for chip D.
  • Example 1 Method for producing heat-shrinkable film>
  • Chip A, chip B, chip C, and chip D described above are separately pre-dried and mixed at 15% by weight of chip A, 5% by weight of chip B, 70% by weight of chip C, and 10% by weight of chip D as shown in Table 2. And put into the extruder. At this time, three kinds of raw materials were charged into the extruder while stirring with an agitator immediately above the extruder. This mixed resin is melted at 260 ° C., extruded from a T die under conditions of a shear rate of 440 sec ⁇ 1 and a speed of 50 m / min, and brought into contact with a rotating metal roll cooled to a surface temperature of 25 ° C. An unstretched film having a thickness of 110 ⁇ m was obtained. The Tg of the unstretched film at this time was 69 ° C.
  • the unstretched film was led to a tenter (transverse stretching machine).
  • the temperature of the preheating step was heated to 89 ° C. Thereafter, the film was stretched 1.5 times at a stretching temperature of 80 ° C. in the first stretching step.
  • the film stretched by one step was held at 75 ° C. and then stretched by 1.5 times (total 2.25 times) at 75 ° C. in the second step of stretching.
  • the two-stage stretched film was gripped at 70 ° C., and then stretched by 2.44 times (total 5.5 times) at 70 ° C. in the third-stage stretching process.
  • the film stretched 5.5 times in three steps was heat-treated in a tension state at 80 ° C. for 10 seconds. Then, it cooled, both edge parts were cut and removed, and the stretched film of thickness 20 micrometers was continuously manufactured over predetermined length by winding in roll shape with a width of 4600 mm.
  • the above-obtained laterally stretched film was slit with a slitter so as to have a width of 2500 mm, 1500 mm, and 600 mm and a winding length of 20000 m.
  • the slit was started with an initial tension of 120 N / m and an initial surface pressure of 270 N / m.
  • the tension was decreased at a rate of 0.239% / m from 500 m to 19200 m, and the tension from 75 to 20000 m was adjusted to 75 N / m. Further, slitting was performed so that the surface pressure was constant at 270 N / m.
  • the film roll having a width of 2500 mm, 1500 mm, 600 mm, and a winding length of 20000 m was obtained by slitting in this manner. And the characteristic of the obtained film and film roll was evaluated by the above-mentioned method. The evaluation results are shown in Table 3. A film having the target characteristics was obtained, and the core roll and end face deviation of the film roll were good results.
  • Example 2 A film roll was obtained in the same manner as in Example 1 except that the above chip C was changed to chip E. Moreover, Tg at this time was 69 degreeC. And the characteristic of the obtained film and film roll was evaluated by the above-mentioned method. The evaluation results are shown in Table 3. The obtained film and film roll had good results as in Example 1.
  • Example 3 As slit conditions, the slit was started with an initial tension of 120 N / m and an initial surface pressure of 270 N / m. The tension was reduced at a rate of 0.239% / m from 500 m to 24200 m, and the tension from 24200 m to 25000 m was 75 N / m. Further, slitting was performed so that the surface pressure was constant at 270 N / m.
  • the film roll having a width of 2500 mm, 1500 mm, 600 mm, and a winding length of 20000 m was obtained by slitting in this manner. Except for the roll length of the film roll and the roll length for reducing the tension, the same method as in Example 1 was used. A film roll was obtained. And the characteristic of the obtained film and film roll was evaluated by the above-mentioned method. The evaluation results are shown in Table 3. The obtained film and film roll had good results as in Example 1.
  • Example 4 An unstretched film having a thickness of 50 ⁇ m was obtained by extruding from a T die under conditions of a shear rate of 198 sec ⁇ 1 and a speed of 50 m / min, and contacting with a rotating metal roll cooled to a surface temperature of 25 ° C.
  • the first stage stretching temperature was 75 ° C.
  • the stretching temperature in the second and third stages was changed to 70 ° C., and the slit was started with an initial tension of 120 N / m and an initial surface pressure of 280 N / m as slit conditions.
  • the winding length is 500 m to 19200 m, the tension is decreased at a rate of 0.239% / m, and the tension is reduced from 19200 m to 20000 m at a tension of 60 N / m.
  • Film and film roll were obtained. And the characteristic of the obtained film and film roll was evaluated by the above-mentioned method. The evaluation results are shown in Table 3. The obtained film and film roll had good results as in Example 1.
  • Example 5 An unstretched film having a thickness of 138 ⁇ m was obtained by extruding from a T die under conditions of a shear rate of 550 sec ⁇ 1 and a speed of 50 m / min, and contacting with a rotating metal roll cooled to a surface temperature of 25 ° C.
  • the slit was started with an initial tension of 120 N / m and an initial surface pressure of 270 N / m.
  • the tension was reduced at a rate of 0.239% / m from 500 m to 3200 m, and the tension from 3200 m to 4000 m was 75 N / m. Further, slitting was performed so that the surface pressure was constant at 270 N / m.
  • Example 3 a film roll having a width of 2500 mm, 1500 mm, 600 mm, and a winding length of 4000 m was obtained. Otherwise, a film and a film roll having a thickness of 25 ⁇ m were obtained in the same manner as in Example 1. And the characteristic of the obtained film and film roll was evaluated by the above-mentioned method. The evaluation results are shown in Table 3. The obtained film and film roll had good results as in Example 1.
  • Chip A, chip B, chip C, and chip D described above are separately pre-dried and mixed at 15% by weight of chip A, 5% by weight of chip B, 70% by weight of chip C, and 10% by weight of chip D as shown in Table 2. And put into the extruder. At this time, three kinds of raw materials were charged into the extruder while stirring with an agitator immediately above the extruder. This mixed resin is melted at 260 ° C., extruded from a T die under conditions of a shear rate of 440 sec ⁇ 1 and a speed of 50 m / min, and brought into contact with a rotating metal roll cooled to a surface temperature of 25 ° C. An unstretched film having a thickness of 110 ⁇ m was obtained. The Tg of the unstretched film at this time was 69 ° C.
  • the unstretched film was led to a tenter (transverse stretching machine).
  • the temperature of the preheating step was heated to 90 ° C. Thereafter, the film was stretched at 75 ° C. by 5.5 times.
  • the film stretched 5.5 times transversely was heat-treated at 80 ° C. for 10 seconds in a tension state. Then, it cooled, both edge parts were cut and removed, and the stretched film of thickness 20 micrometers was continuously manufactured over predetermined length by winding in roll shape with a width of 4600 mm.
  • the above-obtained laterally stretched film was slit with a slitter so as to have a width of 2500 mm, 1500 mm, and 600 mm and a winding length of 20000 m.
  • the slit was started with an initial tension of 120 N / m and an initial surface pressure of 270 N / m.
  • the tension was decreased at a rate of 0.239% / m from 500 m to 19200 m, and the tension from 75 to 20000 m was adjusted to 75 N / m. Further, slitting was performed so that the surface pressure was constant at 270 N / m.
  • the film roll having a width of 2500 mm, 1500 mm, 600 mm, and a winding length of 20000 m was obtained by slitting in this manner. And the characteristic of the obtained film and film roll was evaluated by the above-mentioned method. The evaluation results are shown in Table 3.
  • Film rolls with a slit width of 2500 mm and 1500 mm had poor thickness unevenness and poor core wrinkles.
  • a film roll having a slit width of 600 mm yielded a film having target characteristics, and the film roll had a favorable roll core and end face deviation.
  • Comparative Example 1 A film and a film roll were obtained in the same manner as in Example 1 except that the flat pressure resistance of the paper tube before the slit was 1500 N / 100 mm. And the characteristic of the obtained film and film roll was evaluated by the above-mentioned method. The evaluation results are shown in Table 3. The obtained film and film roll had a large gap difference in the width direction of the paper tube after the film was removed, and the film core and the roll end face were poor.
  • Comparative Example 2 A film and a film roll were obtained in the same manner as in Example 1 except that the gap difference in the width direction of the paper tube before the slit was large. And the characteristic of the obtained film and film roll was evaluated by the above-mentioned method. The evaluation results are shown in Table 3. The obtained film and the film roll had a large gap difference in the width direction of the paper tube after the film was removed, and the film roll had a poor roll core and end face misalignment.
  • Comparative Example 3 The slit was started with an initial tension of 120 N / m and an initial surface pressure of 180 N / m. The tension was reduced at a rate of 0.239% / m from 500 m to 19200 m, and the tension from 19200 m to 20000 m was 60 N / m. The slit was made so that the surface pressure was constant at 180 N / m.
  • the film roll having a width of 2500 mm, 1500 mm, 600 mm, and a winding length of 20000 m was obtained by slitting in this manner. Except for the roll length of the film roll and the roll length for reducing the tension, the same method as in Example 1 was used. A film roll was obtained. And the characteristic of the obtained film and film roll was evaluated by the above-mentioned method. The evaluation results are shown in Table 3. The obtained film and film roll had low surface layer winding hardness and poor end face displacement.
  • the heat-shrinkable polyester film roll of the present invention can be suitably used in processing such as printing because it has good core wrinkles and end face misalignment as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Laminated Bodies (AREA)
  • Winding Of Webs (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Wrappers (AREA)

Abstract

【課題】良好な巻き特性、特に巻芯皴や端面ズレに対して良好な熱収縮性ポリエステル系フィルムロールを提供すること。 【解決手段】90℃温湯中で10秒間処理後のフィルム主収縮方向の収縮率が40%以上である熱収縮性ポリエステル系フィルムが紙管に巻き取られてなるフィルムロールで、該熱収縮性ポリエステルフィルム及び該フィルムロールにおいて、下記要件(1)~(6)を満たすことを特徴とする熱収縮性ポリエステル系フィルムロール。 (1)フィルム巻長が2000m以上20000m以下 (2)フィルム幅が400mm以上2500mm以下 (3)フィルム厚みが5μm以上30μm以下 (4)フィルムロール表層部でのフィルム幅方向における厚みムラが12%以下 (5)前記紙管は内径3インチの紙管であり、フィルムロールからフィルムを除去した後の幅方向の紙管の隙間差が0.5mm以下、フィルムを除去した後の紙管の扁平耐圧強度が1700N/100mm以上 (6)フィルムロール表層部での幅方向の巻硬度の平均値が500以上850以下

Description

熱収縮性ポリエステル系フィルムロール
 本発明は、熱収縮性ポリエステル系フィルムを巻き取ってなるフィルムロールに関する。さらに詳しくは、フィルムロールの巻き芯部の皴が良好で、印刷や加工する際のロスが少ない熱収縮性ポリエステル系フィルムロールに関する。
 近年、ガラス瓶やPETボトル等の保護と商品の表示を兼ねたラベル包装、キャップシール、集積包装等の用途に、ポリ塩化ビニル系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂等からなる延伸フィルム(所謂、熱収縮性フィルム)が広範に使用されるようになってきている。そのような熱収縮性フィルムの内、ポリ塩化ビニル系フィルムは、耐熱性が低い上に、焼却時に塩化水素ガスを発生したり、ダイオキシンの原因となる等の問題がある。また、ポリスチレン系フィルムは、耐溶剤性に劣り、印刷の際に特殊な組成のインキを使用しなければならない上、高温で焼却する必要があり、焼却時に異臭を伴って多量の黒煙が発生するという問題がある。それゆえ、耐熱性が高く、焼却が容易であり、耐溶剤性に優れたポリエステル系の熱収縮性フィルムが、収縮ラベルとして広汎に利用されるようになってきており、PET容器の流通量の増大に伴って、使用量が増加している傾向にある。
 ところが、熱収縮性ラベルは最終的にゴミとして廃棄される事が多く、環境対応から薄肉化が求められている。厚みが薄くなる事によって、腰感が下がり取り扱いがより困難となるのでフィルムをスリットした後のフィルムロールに不具合が露呈する。熱収縮性フィルムは他の汎用フィルムよりもハンドリングが困難であるが、本発明者らの検討によれば、特にフィルム厚みが30μm以下の熱収縮性ポリエステル系フィルムにおいて特に不具合が発生しやすい。不具合によりフィルムロールに印刷や加工を行う際にトラブルが生じる。特にフィルムロールの巻芯部に皴が生じると、印刷や加工を行う際にその位置でトラブルが生じ、ロスとなる課題が有る。
特開2003-266525号公報 特許3678220号公報 特開2014-73688号公報
スリッター・リワインダーの技術読本,株式会社加工技術研究会、1998年発行
 皴が少ないフィルムロールにする為のスリット条件に対する技術文献は、これまで多く出されている。上記非特許文献1にはフィルムロールを巻き取るスリッターの張力、制御等が記載されている。しかし紙管やフィルム物性については記載されていない。
 上記特許文献1では、フィルムロールの皴やタルミが少ないスリットの条件として、フィルムロール幅方向の巻硬度が均一な事が望まれている。エアー抜けによるフィルムロールのしわやたるみを防ぐのが目的である。しかしエアー抜けによるしわは、フィルムロールの表層付近での影響が大きく、フィルムロールの紙管に近い位置である巻芯側ではエアー抜けによる影響が小さく、幅方向の巻硬度が均一でも皴が入る可能性が有る。上記特許文献2では、熱収縮性ポリエステルフィルムロールにおいて、ロール内での熱収縮性や溶剤接着性の変動が少なく、厚みムラが良好なフィルムロールについて述べられている。しかしフィルムロールの皴については述べられていない。
 上記特許文献3では、長期保管後も印刷等の加工が良好な熱収縮性ポリエステルフィルムロールについて記されている。しかし、幅方向の巻硬度差が特許文献1より大きい。また巻芯側の皴について記載されていない。
 本発明の目的は、薄肉化した上記従来の熱収縮性ポリエステル系フィルムが巻き取られてなるフィルムロールが有する問題点を解消し、巻芯皴が少ない熱収縮性ポリエステルフィルムロールを提供することにある。
 本発明者らは上記課題を解決するため、鋭意検討した結果、本発明を完成するに至った。即ち本発明は以下の構成よりなる。
1.90℃温湯中で10秒間処理後のフィルム主収縮方向の収縮率が40%以上である熱収縮性ポリエステル系フィルムが紙管に巻き取られてなるフィルムロールで、該熱収縮性ポリエステルフィルム及び該フィルムロールにおいて、下記要件(1)~(6)を満たすことを特徴とする熱収縮性ポリエステル系フィルムロール。
(1)フィルム巻長が2000m以上20000m以下
(2)フィルム幅が400mm以上2500mm以下
(3)フィルム厚みが5μm以上30μm以下
(4)フィルムロール表層部でのフィルム幅方向における厚みムラが12%以下
(5)前記紙管は内径3インチの紙管であり、フィルムロールからフィルムを除去した後の幅方向の紙管の隙間差が0.5mm以下、フィルムを除去した後の紙管の扁平耐圧強度が1700N/100mm以上
(6)フィルムロール表層部での幅方向の巻硬度の平均値が500以上850以下
2.フィルムを巻き取る前の幅方向の紙管の隙間差が0.3mm以下であることを特徴とする1.に記載の熱収縮性ポリエステル系フィルムロール。
3.フィルムロールの表層部から巻長1000m間隔でサンプリングした各試料のフィルムの幅方向全体の厚みムラが全ての試料で12%以下である1.~2.のいずれかに記載の熱収縮性ポリエステル系フィルムロール。
4.フィルムの巻外と巻内の静摩擦係数と動摩擦係数がいずれも0.1以上0.8以下である1.~3.に記載の熱収縮性ポリエステル系フィルムからなるフィルムロール。
 本発明の熱収縮性ポリエステル系フィルムロールは巻芯皴が少ない。その為、印刷や溶剤接着等の後加工でトラブルが少なく良好に使用する事ができる。
本発明の熱収縮性ポリエステル系フィルムを製造するための、横延伸機における延伸パターンの一例を示す上面図である。
 本発明の熱収縮性ポリエステル系フィルムロールを構成する熱収縮性ポリエステル系フィルムにおいて使用するポリエステルは、エチレンテレフタレートを主たる構成成分とするものである。すなわち、ポリエステルの全構成成分100モル%に対してエチレンテレフタレートを50モル%以上、好ましくは60モル%以上含有するものである。本発明のポリエステルを構成するテレフタル酸以外の他のジカルボン酸成分としては、イソフタル酸、ナフタレンジカルボン酸、オルトフタル酸等の芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸、および脂環式ジカルボン酸等を挙げることができる。
 脂肪族ジカルボン酸(たとえば、アジピン酸、セバシン酸、デカンジカルボン酸等)を含有させる場合、含有率は3モル%未満であることが好ましい。これらの脂肪族ジカルボン酸を3モル%以上含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、高速装着時のフィルム腰が不十分である。
 また、3価以上の多価カルボン酸(たとえば、トリメリット酸、ピロメリット酸およびこれらの無水物等)を含有させないことが好ましい。これらの多価カルボン酸を含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収縮率を達成しにくくなる。
 本発明で使用するポリエステルを構成するエチレングリコール以外のジオール成分としては、1-3プロパンジオール、1-4ブタンジオール、ネオペンチルグリコール、ヘキサンジオール等の脂肪族ジオール、1,4-シクロヘキサンジメタノール等の脂環式ジオール、ビスフェノールA等の芳香族系ジオール等を挙げることができる。
 本発明の熱収縮性ポリエステル系フィルムに用いるポリエステルは、1,4-シクロヘキサンジメタノール等の環状ジオールや、炭素数3~6個を有するジオール(たとえば、1-3プロパンジオール、1-4ブタンジオール、ネオペンチルグリコール、ヘキサンジオール等)のうちの1種以上を含有させて、ガラス転移点(Tg)を60~80℃に調整したポリエステルが好ましい。
 また、本発明の熱収縮性ポリエステル系フィルムに用いるポリエステルは、全ポリステル樹脂中における多価アルコール成分100モル%中あるいは多価カルボン酸成分100モル%中の非晶質成分となりうる1種以上のモノマー成分の合計が15モル%以上であることが好ましく、17モル%以上であることがより好ましく、特に20モル%以上であることが好ましい。ここで、非晶質成分となりうるモノマーとしては、たとえば、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、イソフタル酸、1,4-シクロヘキサンジカルボン酸、2,6-ナフタレンジカルボン酸、2,2-ジエチル1,3-プロパンジオール、2-n-ブチル2-エチル1,3-プロパンジオール、2,2-イソプロピル1,3-プロパンジオール、2,2-ジn-ブチル1,3-プロパンジオール、1,4-ブタンジオール、ヘキサンジオールを挙げることができるが、その中でも、ネオペンチルグリコール、1,4-シクロヘキサンジメタノールやイソフタル酸を用いるのが好ましい。
 本発明の熱収縮性ポリエステル系フィルムに用いるポリエステル中には、炭素数8個以上のジオール(たとえばオクタンジオール等)、または3価以上の多価アルコール(たとえば、トリメチロールプロパン、トリメチロールエタン、グリセリン、ジグリセリン等)を、含有させないことが好ましい。これらのジオール、または多価アルコールを含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収縮率を達成しにくくなる。
 また、本発明の熱収縮性ポリエステル系フィルムを形成する樹脂の中には、必要に応じて各種の添加剤、たとえば、ワックス類、酸化防止剤、帯電防止剤、結晶核剤、減粘剤、熱安定剤、着色用顔料、着色防止剤、紫外線吸収剤等を添加することができる。本発明の熱収縮性ポリエステル系フィルムを形成する樹脂の中には、滑剤として微粒子を添加することによりポリエチレンテレフタレート系樹脂フィルムの作業性(滑り性)を良好なものとするのが好ましい。微粒子としては任意のものを選択することができるが、たとえば、無機系微粒子としては、シリカ、アルミナ、二酸化チタン、炭酸カルシウム、カオリン、硫酸バリウム等を挙げることができる。また、有機系微粒子としては、たとえば、アクリル系樹脂粒子、メラミン樹脂粒子、シリコーン樹脂粒子、架橋ポリスチレン粒子等を挙げることができる。微粒子の平均粒径は、0.05~3.0μmの範囲内(コールターカウンタにて測定した場合)で、必要に応じて適宜選択することができる。また微粒子の添加量はフィルムに対して300~1200ppmの範囲内で、良好な滑り性(摩擦)と透明性を両立することができる。
 熱収縮性ポリエステル系フィルムを形成する樹脂の中に上記粒子を配合する方法としては、たとえば、ポリエステル系樹脂を製造する任意の段階において添加することができるが、エステル化の段階、もしくはエステル交換反応終了後、重縮合反応開始前の段階でエチレングリコール等に分散させたスラリーとして添加し、重縮合反応を進めるのが好ましい。また、ベント付き混練押出し機を用いてエチレングリコールまたは水等に分散させた粒子のスラリーとポリエステル系樹脂原料とをブレンドする方法、または混練押出し機を用いて、乾燥させた粒子とポリエステル系樹脂原料とをブレンドする方法等によって行うのも好ましい。
 さらに、本発明の熱収縮性ポリエステル系フィルムには、フィルム表面の接着性を良好にするためにコロナ処理、コーティング処理や火炎処理等を施したりすることも可能である。
 なお、本発明の熱収縮性ポリエステル系フィルムには、ポリエステル樹脂層を少なくとも1層有する積層型の多層ポリエステルフィルムも含まれる。ポリエステル樹脂層が2層以上積層されるときは、そのポリエステル樹脂層は同じ組成のポリエステルであっても、異なる組成のポリエステルであってもよい。また、他の層として積層可能な層は、熱可塑性樹脂層であれば、特に限定されないが、価格や熱収縮特性から、ポリスチレン系樹脂層であることが好ましい。
 また、本発明の熱収縮性ポリエステル系フィルムは、90℃の温水中で無荷重状態で10秒間に亘って処理したときに、収縮前後の長さから、下式1により算出したフィルムの主収縮方向の熱収縮率(すなわち、90℃の湯温熱収縮率)が、40%以上であることが必要である。
 熱収縮率={(収縮前の長さ-収縮後の長さ)/収縮前の長さ}×100(%) ・・式1
 90℃における主収縮方向の湯温熱収縮率が40%を下回ると、収縮量が小さいために、熱収縮した後のラベルに皴や収縮不足が生じてしまうので、熱収縮フィルムとしては好ましくない。
 また、本発明の熱収縮性ポリエステル系フィルムロール、または、熱収縮性多層ポリエステル系フィルムロールに巻き取られてなるフィルムの長さは、2000m以上25000m以下が好ましい。印刷等の加工において、巻長が長い方がロールを交換する頻度が低減し作業効率は良くなる。好ましくは3000m以上であり、更に好ましくは4000m以上である。上限は特に無く巻長が長い方が好ましいが、発明者らは25000m巻長までしか確認できていない為、巻長25000mを上限とした。
 また、本発明の熱収縮性ポリエステル系フィルムロールの幅は、400mm以上2500mm以下が好ましい。上限は特に無くフィルムロールの幅が長いと、印刷工程におけるロスが少なくて好ましいが、発明者らは2500mmまでしか確認できていない為、幅2500mmを上限とした。またフィルムロールの幅は広い方が上記したように印刷等の加工における効率が上がるので、広い方が好ましい。好ましい幅は500mm以上であり、更に好ましくは600mm以上である。
 また、本発明の熱収縮性ポリエステル系フィルムの厚みは、5μm以上30μm以下が好ましい。本発明で確認したのが厚み5μmまでだったので5μm以上とした。またフィルム厚みは厚い方が腰感があり、より巻芯皴が少なく好ましい傾向であるが、厚みを薄くすることによる環境対応には逆行することになる。
 また、本発明の熱収縮性ポリエステル系フィルムロールの表層部でのフィルムの幅方向における厚みムラは、下式2で表される式で12%以下である。厚みムラが悪いと皺が生じ易くなるので好ましくない。好ましくは10%以下で、更に好ましいのは7%以下である。厚みムラの値は、小さければ小さいほど好ましい。
 なお、本発明における「フィルムロールの表層部」あるいは「フィルムロールの表層部分」とは、フィルムロール表層よりフィルムを1m除去した部分をさす。
   {(厚みの最大値―厚みの最小値)÷平均厚み}×100(%) ・・式2
 また、本発明の熱収縮性ポリエステル系フィルムロールは、フィルムロールからフィルムを除去した後の紙管の幅方向の隙間差が0.5mm以下である事が好ましい。紙管でフィルムを巻取った後に保管していると、フィルムの歪みや自然収縮等により紙管は変形(歪み)が生じる。その際、幅方向における紙管の歪み差(幅方向の隙間差)が大きいと、フィルムロールの巻芯側に皴が生じてくるので好ましくない。従って、フィルムロールからフィルムを除去した後の紙管に隙間差は、好ましくは0.4mm以下であり、更に好ましくは0.3mm以下である。紙管の幅方向の隙間差は、後述の実施例に記載の方法で測定することができる。
 またフィルムを巻き取るコアには紙管、プラスチック製コア、金属製のコア等があるが、本発明においては価格が安く汎用性がある内径が3インチの紙管を用いた。なお、紙管の厚さは7~30mm程度であることが好ましい。
 また、本発明の熱収縮性ポリエステル系フィルムロールは、フィルムロールからフィルムを除去した後の3インチコアの紙管の扁平耐圧強度は、1700N/100mm以上であることが好ましい。耐圧強度が1700N/100mmより低いと、フィルムを巻き取った後にかかる内部応力で紙管が歪み、ロール巻芯部にシワが生じるので好ましくない。好ましくは1800N/100mm以上であり、更に好ましくは1900N/100mm以上である。耐圧強度は高いほど好ましい。高い紙管の扁平耐圧強度を得る手段としては、紙管の厚さを厚くする、高強度に設計された硬質紙管や超硬質紙管を使用する等の方法が挙げられる。
 また、本発明の熱収縮性ポリエステル系フィルムロールにおいて、前述のようにフィルムロールからフィルムを除去した後の紙管の隙間差を0.5mm以下とするためには、巻き取る際に使用するフィルムを巻き取る前の紙管の幅方向の隙間差は、0.3mm以下とすることが好ましく、より好ましくは0.2mm以下であり、更に好ましくは0.1mm以下である。紙管の隙間差を小さくする手段としては、硬度が高く輸送等の運送時の振動で変形し難い紙管を用いる、吸湿して紙管が変形しないように使用するまで防湿袋に入れて紙管を保管する、吸湿して変形しないように温度や湿度が一定の部屋で紙管を保管する方法が挙げられる。
 また、本発明の熱収縮性ポリエステル系フィルムロール表層の幅方向の巻硬度の平均値は500以上850以下が好ましい。500未満であると巻状態が柔巻となり巻芯皴は良い方向になるが、フィルムロール端面にズレが生じてしまい好ましくない。巻硬度が850より高いと、巻状態が硬巻となり、厚みムラによって皴が生じやすくなるので好ましくない。フィルムロール表層の幅方向の巻硬度の平均値は好ましくは550以上800以下であり、更に好ましくは600以上750以下である。特に好ましくは、650を超えて750以下である。なお、本発明における巻硬度は、後述の実施例に記載の方法で測定した巻硬度をさす。巻硬度を上記の所定範囲内とするための好ましい巻取り方法については、後述する。
 また、本発明の熱収縮性ポリエステル系フィルムの巻外面と巻内面のフィルム面同士の静摩擦係数と動摩擦係数はいずれも0.1以上0.8以下であることが好ましい。0.1より低いと滑りすぎて端面のズレが生じる可能性がある。また0.8より大きいと、スリット時にエアーの巻き込み量が多くなり、フィルムロール時のエアー抜けにより弛みや皴が入り易くなり好ましくない。好ましくは0.13以上0.77以下であり、更に好ましくは0.16以上0.74以下である。
 本発明の熱収縮性ポリエステル系フィルムロールは、巻芯皺を低減することを課題の1つとするものである。巻芯皺は、フィルムロールをスリットする際に発生し、長いものでは巻芯部より数百mに亘って発生する場合があり、フィルムロールを印刷等の加工をする際に多大なロスとなる場合がある。本発明の熱収縮性ポリエステル系フィルムロールの紙管から30m以上の巻長の位置には皴が生じていないことが好ましい。紙管から巻長30mより長い位置に皴が有ると、皴が印刷品等の加工品に含まれ加工品のロスとなるので好ましくない。また紙管から皴がある巻長は、全く皴が無い0mが好ましい。しかし印刷等の加工において、印刷機のパスライン等で紙管から巻長30mくらいまで使用しない事が多いので、30mとした。
 以下、本発明の熱収縮性ポリエステル系フィルムロールの好ましい製造方法について説明する。
 本発明の熱収縮性ポリエステル系フィルムは、上記したポリエステル原料を押出機により溶融押し出しして未延伸フィルムを形成し、その未延伸フィルムを以下に示す所定の方法により、延伸して熱処理することによって得ることができる。積層する場合は、複数の押し出し機やフィードブロック、マルチマニホールドを用いればよい。なお、ポリエステルは、前記した好適なジカルボン酸成分とジオール成分とを公知の方法で重縮合させることで得ることができる。また、通常は、チップ状のポリエステルを2種以上混合してフィルムの原料として使用する。
 2種以上の原料を混合すると押出し機に投入されるさいに、原料供給でバラツキ(所謂原料偏析)が生じ、それによりフィルム組成のバラツキが発生して幅方向への厚みムラの原因となる。それを防止して本発明における所定範囲内の厚みムラとするために、押出し機の直上の配管やホッパーに攪拌機を設置して原料を均一に混合した後に溶融押出しをすることが好ましい。
 具体的なフィルムおよびラベルの製造方法としては、原料チップをホッパドライヤー、パドルドライヤー等の乾燥機、または真空乾燥機を用いて乾燥し、押出し機上のホッパー内で攪拌機を用いて原料を均一に混合し、混合した原料を200~280℃の温度でフィルム状に押し出す。あるいは、上記と同様に均一に混合した未乾燥のポリエステル原料をベント式押し出し機内で水分を除去しながら同様にフィルム状に押し出す。押出しに際してはTダイ法、チューブラ法等、既存のどの方法を採用しても構わないが、厚みムラを良好にするにはTダイ法が好ましい。なお、押し出し時の温度は280℃を超えないようにする。溶融温度が高すぎると、ラベルとした際の極限粘度が低下し、クラックが生じやすくなるため好ましくない。
 また、ダイス出口でのせん断速度は、以下の式3より求めた。
   せん断速度
       γ=6Q/(W×H)          ・・式3
         γ;せん断速度(sec-1
         Q;原料の押出し機からの吐出量(cm3/sec)
         W;ダイス出口の開口部の幅(cm)
         H;ダイスのLipギャップ(cm)
 せん断速度は高い方がフィルムの幅方向の厚みムラ(特に最大凹部)が低減できるので好ましい。せん断速度が高い方が、Tダイ出口での樹脂吐出時の圧力が安定するためである。好ましいせん断速度は100sec-1以上であり、更に好ましくは150sec-1以上、特に好ましくは170sec-1以上である。ドラフト比は高い方が長手方向の厚みムラが良好となり好ましいが、ドラフト比が高いとダイスの樹脂吐出部に樹脂カス等が付着し、生産性が悪くなるので高すぎるのは好ましくない。
 押出し後は、急冷して未延伸フィルムを得る。なお、この「未延伸フィルム」には、フィルム送りのために必要な張力が作用したフィルムも含まれるものとする。なお、溶融樹脂を急冷する方法としては、溶融樹脂を口金から回転ドラム上にキャストして急冷固化することにより、実質的に未配向の樹脂シートを得る方法を好適に採用することができる。
 その後、上記で得られた未延伸フィルムを、横延伸機(所謂テンター)で必要により80~120℃、好ましくは90~110℃で予熱した後、横方向(押し出し方向に対して直交する方向)に3.5倍以上、好ましくは4倍以上7倍以下に延伸する。延伸温度は、65℃以上80℃以下、好ましくは70℃以上75℃以下である。
 また横延伸は2段延伸以上5段延伸以下で多段延伸をすることが好ましい。多段延伸によりにより、各々の延伸温度を変更することにより延伸応力を変化させることが可能となり幅方向の厚みムラを低下できるので好ましい。好ましくは3段延伸以上である。横延伸機の延伸パターンの例(3段延伸)を図1に示す。図1のように、多段延伸においては各段階での延伸終了後に定長を維持するようなパターンを設けることが好ましい。また、各段階の延伸において2℃以上の温度差をつけて1段目の延伸から最終段目の延伸にかけて温度を低下させる温度パターンとすることが好ましい。
 また、横延伸後は、延伸温度より1℃~30℃高い温度で、熱処理することが好ましい。熱処理は、延伸後のフィルムの緊張状態を緩和するために行われ、熱処理時の温度で熱収縮率の調整を行い、また自然収縮率を減少させるのにも効果がある。これにより、本発明のラベルとなる熱収縮性ポリエステル系フィルムが得られる。
 得られた熱収縮性ポリエステルフィルムを中間製品である広幅ロールとして巻取り、次いでスリッターを用いて指定の幅、巻長にスリットして巻取り用の3インチ紙管に巻取り、熱収縮性ポリエステル系フィルムロールが得られる。なお、該フィルムロールの好ましい巻長及び幅については、前述の通りである。
 加えて、以下のスリット条件を採用することによりスリットの際に発生する巻芯皴を低減することが好ましい。巻芯シワを低減するとともに、下記のように端面ズレを抑制することができる。
 具体的なスリットの条件としては、初期張力を70~140N/m、好ましくは80~130N/m、初期面圧を200~400N/m、好ましくは250~350N/mでスリットを開始する。初期張力が140N/mより高いと厚みムラ部がスリット時に張力により若干伸ばされて皺(巻芯皴)や弛みの原因となるので好ましくない。更に初期張力が140N/mより高いと、紙管の僅かな湾曲や歪みの影響が大きくなり巻芯皴の原因となる。また初期張力が70N/m以下であると、フィルムをスリットで巻き取るさいに張力が不足し、フィルムロールの端面が不揃いとなり(所謂端面ズレ)が生じて好ましくない。巻長がスリット終了前800m時の張力が初期張力の50~80%、好ましくは60~70%となるように巻長と相関するように一定して張力を低下させ、その後は巻き終わりまで定張力で巻き取ることが望ましい。また面圧は巻長全長に亘り、できるだけ初期面圧±5%以下であると好ましく、更に好ましくは初期面圧±3%以下である。
 また上記のようにスリットしたフィルムロール表層部の巻硬度は500以上850以下であることが好ましい。フィルムロール表層部の幅方向の巻硬度の平均値における好適な範囲は前述の通りである。
 なお、本発明におけるフィルムロールの端面ズレとは、後述の実施例に記載の方法で測定した端面ズレをさす。フィルムロールの端面ズレは、2mm以下であることが好ましい。端面ズレが大きい場合には、特に多色印刷等において印刷でのピッチズレが発生しやすくなり、ラベル等の加工品において意匠性を損ない商品価値をも損なう場合がある。
 一般に工業的に生産されるフィルムロールにおいては、連続して製膜したフィルムが連続的に巻き取られており、製膜条件が一定であれば、フィルム幅方向の厚みムラの程度は巻長全長に亘ってほぼ一定となるが、製膜時の各工程の微小な変動により、巻長全長に対して若干の変動が起きる。フィルム幅方向の厚みムラは、巻長全長に亘り制御されていることが好ましい。巻長全長に亘り厚みムラが制御されているかどうかは、例えばフィルムロールのフィルムを表層より一定間隔の巻長毎に試料を採取して、各試料の厚みムラを測定することにより確認することができる。本発明のフィルムロールにおいては、厚みムラはフィルムロールの表層部分の試料を採取して測定して、該フィルムロールにおける代表値とすることが可能である。本発明においては後述の実施例に記載されているように、フィルムロール表層よりフィルムを1m除去した部分より試料を採取して測定して代表値とするものである。フィルムロール表層部におけるフィルム幅方向の厚みムラの好適な範囲は前述の通りである。
 本発明の好ましい様態は、フィルムロール表層部より巻長1000m毎に試料を採取して測定し、全ての試料について厚みムラが所定範囲となることである。フィルムロール全長におけるフィルム幅方向の厚みムラの好適な範囲は前述の通りである。
 次に実施例及び比較例を用いて、本発明を具体的に説明するが、本発明は、かかる実施例の態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変更することが可能である。
 本発明において用いた評価方法は下記の通りである。なお、特に記載の無い場合はフィルムロール表層からフィルムを1m除去し、該除去後の表層部分のフィルム又はフィルムロールを評価した。
[主収縮方向の熱収縮率]
 フィルムを10cm×10cmの正方形に裁断し、温水温度90℃±0.5℃の温水中において、無荷重状態で10秒間処理して熱収縮させた後、フィルムの横方向(主収縮方向)の寸法を測定し、下記(1)式に従い熱収縮率を求めた。
熱収縮率=((収縮前の長さ-収縮後の長さ)/収縮前の長さ)×100(%) 式(1)
[幅方向全体の厚みムラ]
 ロールをスリッターに設置した。その後、ロール表層から1m除去した後にフィルムロールを幅方向に全幅、長手方向に40mmにサンプリングし、ミクロン計測器社製の連続接触式厚み計を用いて、5m/分で連続的に幅方向の厚みを測定した。測定時の最大厚みをTmax.、最小厚みをTmin.、平均厚みをTave.とし、下式(2)から、フィルム幅方向の厚みムラを算出した。
 厚みムラ={(Tmax.-Tmin.)/Tave.}×100 (%)  式(2)
[巻芯皴の評価]
 フィルムロールから表示長-300mの巻長位置まで巻返しを行った。その後、速度30m/分でスリットしながら紙管位置までスリットを行い、目視で皴の確認を行った。紙管から巻長30mから300m位置での皴発生有無で評価を行った。
  皴無し :  ○
  皴が1箇所以上有り  :  ×
[幅方向の紙管の歪み]
 紙管を水平台の上に置き、幅方向に両端部から10mmの位置、中央位置、中央位置と端部から10mm位置の中間の計5点の差を測定した。それぞれの位置の値は 紙管を水平台の上で1周させながらシックネスゲージを用いて隙間を測定した。紙管一周の最大隙間をその位置での隙間とした。そして幅方向5点(紙管の中央位置の3点、及び中央部と両端の中間の位置の2点で合計5点)の位置の隙間を求め、最大隙間と最小隙間の差を紙管の歪みとした。
[フィルム除去後の紙管の歪み]
 フィルムロールからフィルムの巻返しを行い、フィルムを除去した。除去した後に残された紙管を上述した方法で測定した。
[紙管の扁平耐圧強度]
 紙管を幅方向へ100mm長にカットした。カットした紙管を島津製作所製の耐圧試験機(AGS-G)を用いて、20mm/分の速度で圧縮して測定を行った。
[摩擦係数]
 JIS K-7125に準拠し、引張試験機(ORIENTEC社製テンシロン)を用
い、23℃・65%RH環境下で、フィルムの表面と裏面とを接合させた場合の静摩擦係数と動摩擦係数を求めた。なお、上側のフィルムを巻き付けたスレッド(錘)の重量は、1.5kgであり、スレッドの底面積の大きさは、縦63mm×横63mmであった。また、摩擦測定の際の引張速度は、200mm/min.であった。
[巻き硬度の評価]
 スイス プロセオ社の硬さ試験機パロテスター2を使用して、ロール幅方向に端部から100mm間隔で測定を行った。ロール幅方向に測定した値の平均値を、測定値として用いた。
[フィルムロールの端面ズレ]
 金型定規を用いて端面の凹凸の最大値と最小差から求めた。以下の評価方法で判断した。
  2mm以下 :  ○
  2mmより高い  :  ×
 [ポリエステル原料の調製]
 合成例1(ポリエステルの合成)
 エステル化反応缶に、57036質量部のテレフタル酸(TPA)、33244質量部のエチレングリコール(EG)、15733質量部のネオペンチルグリコール(NPG)、重縮合触媒として23.2質量部の三酸化アンチモン、5.0質量部の酢酸ナトリウム(アルカリ金属化合物)および46.1質量部のトリメチルホスフェート(リン化合物)を仕込み、0.25MPaに調圧し、220~240℃で120分間撹拌することによりエステル化反応を行った。反応缶を常圧に復圧し、3.0質量部の酢酸コバルト・4水塩、および124.1質量部の酢酸マグネシウム/4水塩を加え、240℃で10分間撹拌した後、75分かけて1.33hPaまで減圧すると共に、280℃まで昇温した。280℃で溶融粘度が4500ポイズになるまで撹拌を継続(約70分間)した後、ストランド状で水中に吐出した。吐出物をストランドカッターで切断することにより、チップBを得た。チップBの極限粘度は0.73dl/gであった。
 合成例2
 合成例1と同様な方法により、表1に示した組成のチップA、Cを得た。表中、NPGはネオペンチルグリコール、BDはブタンジオール、CHDMはシクロヘキサンジメタノールの略記である。なお、チップAには、滑剤としてSiO2(富士シリシア社製サイリシア266)をポリエステルに対して4,500ppmの割合で添加した。極限粘度は、チップA、C、Eが0.73dl/g、チップDが0.92dl/gであった。
Figure JPOXMLDOC01-appb-T000001
 実施例1
 <熱収縮性フィルムの製造方法>
 上記したチップA、チップB、チップC、およびチップDを別個に予備乾燥し、表2に示したように、チップA15質量%、チップB5質量%チップC70質量%およびチップD10質量%で混合して押出機に投入した。この時 押出し機の直上で攪拌機を用いて攪拌しながら3種類の原料を押出し機へ投入した。この混合樹脂を260℃で溶融させてTダイからせん断速度440sec-1、速度50m/分の条件で押し出し、表面温度25℃に冷却された回転する金属ロールに接触させて急冷することにより、厚さ110μmの未延伸フィルムを得た。このときの未延伸フィルムのTgは69℃であった。
 上記未延伸フィルムをテンター(横延伸機)へ導いた。予熱工程の温度を89℃に加熱した。その後に、1段目の延伸工程において延伸温度80℃で1.5倍延伸した。1段延伸されたフィルムを75℃で把持し次いで2段目の延伸工程で75℃で1.5倍(トータルで2.25倍)で延伸した。2段延伸されたフィルムを70℃で把持し次いで3段目の延伸工程で70℃で2.44倍(トータルで5.5倍)で延伸した。3段で5.5倍横延伸したフィルムを80℃で10秒間、緊張状態で熱処理した。その後、冷却し、両縁部を裁断除去して幅4600mmでロール状に巻き取ることによって、厚さ20μmの延伸フィルムを所定の長さにわたって連続的に製造した。
 上記得られた横延伸フィルムをスリッターで、幅2500mm、1500mm、600mmのサイズに巻長20000mになるようにスリットした。
 具体的なスリットの条件としては、初期張力を120N/m、初期面圧を270N/mでスリットを開始した。巻長が500mから19200mまで、0.239%/mの比率で張力を減少させ、19200mから20000mは張力75N/mとなるようにした。また面圧は270N/mで一定となるようにスリットを行った。このようにスリットして幅2500mm、1500mm、600mm、巻長20000mのフィルムロールを得た。そして得られたフィルムとフィルムロールの特性を上記した方法によって評価した。評価結果を表3に示す。目標の特性となるフィルムが得られ、フィルムロールの巻芯皴や端面ズレが良好な結果であった。
 実施例2
 上記したチップCをチップEに変更した以外は実施例1と同様の方法でフィルムロールを得た。また、この時のTgは69℃であった。
そして得られたフィルムとフィルムロールの特性を上記した方法によって評価した。評価結果を表3に示す。得られたフィルムとフィルムロールは実施例1同様に良好な結果であった。
 実施例3
 スリットの条件としては、初期張力を120N/m、初期面圧を270N/mでスリットを開始した。巻長が500mから24200mまで、0.239%/mの比率で張力を減少させ、24200mから25000mは張力75N/mとなるようにした。また面圧は270N/mで一定となるようにスリットを行った。このようにスリットして幅2500mm、1500mm、600mm、巻長20000mのフィルムロールを得た。フィルムロールの巻長や、張力を減少させる巻長以外は実施例1と同様の方法で行った。フィルムロールを得た。
 そして得られたフィルムとフィルムロールの特性を上記した方法によって評価した。評価結果を表3に示す。得られたフィルムとフィルムロールは実施例1同様に良好な結果であった。
 実施例4
 Tダイからせん断速度198sec-1、速度50m/分の条件で押し出し、表面温度25℃に冷却された回転する金属ロールに接触させて急冷することにより、厚さ50μmの未延伸フィルムを得た。そして1段目の延伸温度を75℃。2段目と3段目の延伸温度を70℃に変更し、スリットの条件として初期張力を120N/m、初期面圧を280N/mでスリットを開始した。巻長が500mから19200mまで、0.239%/mの比率で張力を減少させ、19200mから20000mは張力60N/mとなるようにした以外は実施例1と同様の方法で行い、厚さ9μmのフィルムとフィルムロールを得た。
そして得られたフィルムとフィルムロールの特性を上記した方法によって評価した。評価結果を表3に示す。得られたフィルムとフィルムロールは実施例1同様に良好な結果であった。
 実施例5
 Tダイからせん断速度550sec-1、速度50m/分の条件で押し出し、表面温度25℃に冷却された回転する金属ロールに接触させて急冷することにより、厚さ138μmの未延伸フィルムを得た。スリットの条件としては、初期張力を120N/m、初期面圧を270N/mでスリットを開始した。巻長が500mから3200mまで、0.239%/mの比率で張力を減少させ、3200mから4000mは張力75N/mとなるようにした。また面圧は270N/mで一定となるようにスリットを行った。このようにスリットして幅2500mm、1500mm、600mm、巻長4000mのフィルムロールを得た。それ以外は実施例1と同様の方法で厚さ25μmのフィルムとフィルムロールを得た。そして得られたフィルムとフィルムロールの特性を上記した方法によって評価した。評価結果を表3に示す。得られたフィルムとフィルムロールは実施例1同様に良好な結果であった。
 参考例1
 上記したチップA、チップB、チップC、およびチップDを別個に予備乾燥し、表2に示したように、チップA15質量%、チップB5質量%チップC70質量%およびチップD10質量%で混合して押出機に投入した。この時、押出し機の直上で攪拌機を用いて攪拌しながら3種類の原料を押出し機へ投入した。この混合樹脂を260℃で溶融させてTダイからせん断速度440sec-1、速度50m/分の条件で押し出し、表面温度25℃に冷却された回転する金属ロールに接触させて急冷することにより、厚さ110μmの未延伸フィルムを得た。このときの未延伸フィルムのTgは69℃であった。
 上記未延伸フィルムをテンター(横延伸機)へ導いた。予熱工程の温度を90℃に加熱した。その後に、75℃で5.5倍)で延伸した。5.5倍横延伸したフィルムを80℃で10秒間、緊張状態で熱処理した。その後、冷却し、両縁部を裁断除去して幅4600mmでロール状に巻き取ることによって、厚さ20μmの延伸フィルムを所定の長さにわたって連続的に製造した。
 上記得られた横延伸フィルムをスリッターで、幅2500mm、1500mm、600mmのサイズに巻長20000mになるようにスリットした。
 具体的なスリットの条件としては、初期張力を120N/m、初期面圧を270N/mでスリットを開始した。巻長が500mから19200mまで、0.239%/mの比率で張力を減少させ、19200mから20000mは張力75N/mとなるようにした。また面圧は270N/mで一定となるようにスリットを行った。このようにスリットして幅2500mm、1500mm、600mm、巻長20000mのフィルムロールを得た。そして得られたフィルムとフィルムロールの特性を上記した方法によって評価した。評価結果を表3に示す。
 スリット幅2500mm、1500mmのフィルムロールは厚みムラが悪く、巻芯皴は悪かった。一方、スリット幅600mmのフィルムロールは目標の特性となるフィルムが得られ、フィルムロールの巻芯皴や端面ズレが良好な結果であった。
 比較例1
 スリット前の紙管の偏平耐圧強度が1500N/100mmになった以外は実施例1と同様の方法でフィルムとフィルムロールを得た。
そして得られたフィルムとフィルムロールの特性を上記した方法によって評価した。評価結果を表3に示す。得られたフィルムとフィルムロールは、フィルム除去後の紙管の幅方向の隙間差が大きく、フィルムロールの巻芯皴と端面ズレが悪い結果であった。
 比較例2
スリット前の紙管の幅方向の隙間差が大きい以外は実施例1と同様の方法でフィルムとフィルムロールを得た。
そして得られたフィルムとフィルムロールの特性を上記した方法によって評価した。評価結果を表3に示す。得られたフィルムとフィルムロールは フィルム除去後の紙管の幅方向の隙間差も大きく、フィルムロールの巻芯皴と端面ズレが悪い結果であった。
 比較例3
スリットの条件としては、初期張力を120N/m、初期面圧を180N/mでスリットを開始した。巻長が500mから19200mまで、0.239%/mの比率で張力を減少させ、19200mから20000mは張力60N/mとなるようにした。また面圧は180N/mで一定となるようにスリットを行った。このようにスリットして幅2500mm、1500mm、600mm、巻長20000mのフィルムロールを得た。フィルムロールの巻長や、張力を減少させる巻長以外は実施例1と同様の方法で行った。フィルムロールを得た。
そして得られたフィルムとフィルムロールの特性を上記した方法によって評価した。評価結果を表3に示す。得られたフィルムとフィルムロールは 表層の巻硬度が低く、端面ズレが悪い結果であった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明の熱収縮性ポリエステルフィルムロールは、上記の如く巻芯皴や端面ズレが良好なので、印刷等の加工において好適に用いることができる。

Claims (4)

  1.  90℃温湯中で10秒間処理後のフィルム主収縮方向の収縮率が40%以上である熱収縮性ポリエステル系フィルムが紙管に巻き取られてなるフィルムロールで、該熱収縮性ポリエステルフィルム及び該フィルムロールにおいて、下記要件(1)~(6)を満たすことを特徴とする熱収縮性ポリエステル系フィルムロール。
    (1)フィルム巻長が2000m以上20000m以下
    (2)フィルム幅が400mm以上2500mm以下
    (3)フィルム厚みが5μm以上30μm以下
    (4)フィルムロール表層部でのフィルム幅方向における厚みムラが12%以下
    (5)前記紙管は内径3インチの紙管であり、フィルムロールからフィルムを除去した後の幅方向の紙管の隙間差が0.5mm以下、フィルムを除去した後の紙管の扁平耐圧強度が1700N/100mm以上
    (6)フィルムロール表層部での幅方向の巻硬度の平均値が500以上850以下
  2.  フィルムを巻き取る前の幅方向の紙管の隙間差が0.3mm以下であることを特徴とする請求項1に記載の熱収縮性ポリエステル系フィルムロール。
  3.  フィルムロールの表層部から巻長1000m間隔でサンプリングした各試料のフィルムの幅方向全体の厚みムラが全ての試料で12%以下である請求項1~2のいずれかに記載の熱収縮性ポリエステル系フィルムロール。
  4.  フィルムの巻外と巻内の静摩擦係数と動摩擦係数がいずれも0.1以上0.8以下である請求項1~3に記載の熱収縮性ポリエステル系フィルムからなるフィルムロール。
PCT/JP2019/002800 2018-01-31 2019-01-28 熱収縮性ポリエステル系フィルムロール WO2019151196A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/964,871 US11524858B2 (en) 2018-01-31 2019-01-28 Heat-shrinkable polyester film roll
CN201980010081.4A CN111655450A (zh) 2018-01-31 2019-01-28 热收缩性聚酯系薄膜卷
EP19748240.9A EP3747628B1 (en) 2018-01-31 2019-01-28 Heat-shrinkable polyester-based film roll
JP2019507874A JP7288400B2 (ja) 2018-01-31 2019-01-28 熱収縮性ポリエステル系フィルムロール
KR1020207022255A KR102561156B1 (ko) 2018-01-31 2019-01-28 열수축성 폴리에스테르계 필름 롤
JP2022019644A JP7306504B2 (ja) 2018-01-31 2022-02-10 熱収縮性ポリエステル系フィルムロール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018014530 2018-01-31
JP2018-014530 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019151196A1 true WO2019151196A1 (ja) 2019-08-08

Family

ID=67478160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002800 WO2019151196A1 (ja) 2018-01-31 2019-01-28 熱収縮性ポリエステル系フィルムロール

Country Status (7)

Country Link
US (1) US11524858B2 (ja)
EP (1) EP3747628B1 (ja)
JP (2) JP7288400B2 (ja)
KR (1) KR102561156B1 (ja)
CN (1) CN111655450A (ja)
TW (1) TWI801491B (ja)
WO (1) WO2019151196A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021065596A1 (ja) * 2019-10-02 2021-04-08
JP2022051939A (ja) * 2018-01-31 2022-04-01 東洋紡株式会社 熱収縮性ポリエステル系フィルムロール

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065108A1 (ja) * 2017-09-27 2019-04-04 東洋紡株式会社 熱収縮性ポリエステル系フィルムロール
US20210339973A1 (en) * 2018-10-30 2021-11-04 Toyobo Co., Ltd. Biaxially oriented polyester film roll

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003266525A (ja) 2002-03-20 2003-09-24 Toray Ind Inc シート状物巻取ロールおよびその製造方法
JP2004203545A (ja) * 2002-12-25 2004-07-22 Du Pont Toray Co Ltd ポリイミドフィルムロールおよびその製造方法
JP3678220B2 (ja) 2001-08-03 2005-08-03 東洋紡績株式会社 熱収縮性ポリエステル系フィルムロール
JP2007262365A (ja) * 2006-03-30 2007-10-11 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムロール及び熱収縮性ラベル
JP2008195061A (ja) * 2007-01-17 2008-08-28 Mitsubishi Plastics Ind Ltd ポリエステル系熱収縮性フィルムロール
JP2017024382A (ja) * 2015-07-28 2017-02-02 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812197A (ja) * 1994-06-30 1996-01-16 Achilles Corp 紙管巻芯およびその製造方法
JP3158871B2 (ja) * 1994-07-01 2001-04-23 東レ株式会社 ポリエステルフィルムの巻き取り方法
JP3678221B2 (ja) * 2001-08-03 2005-08-03 東洋紡績株式会社 熱収縮性ポリエステル系フィルムロール及びラベルの製造方法
CN100400269C (zh) * 2002-02-14 2008-07-09 东洋纺织株式会社 热收缩性聚酯系薄膜
JP4411556B2 (ja) * 2006-06-14 2010-02-10 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法
JP4882919B2 (ja) * 2006-08-30 2012-02-22 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP5286829B2 (ja) * 2007-12-13 2013-09-11 東洋紡株式会社 ラベル
US8728594B2 (en) 2008-02-27 2014-05-20 Toyo Boseki Kabushiki Kaisha Heat-shrinkable white polyester film, process for producing heat-shrinkable white polyester film, label, and package
EP3747628B1 (en) * 2018-01-31 2024-06-19 Toyobo Co., Ltd. Heat-shrinkable polyester-based film roll

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3678220B2 (ja) 2001-08-03 2005-08-03 東洋紡績株式会社 熱収縮性ポリエステル系フィルムロール
JP2003266525A (ja) 2002-03-20 2003-09-24 Toray Ind Inc シート状物巻取ロールおよびその製造方法
JP2004203545A (ja) * 2002-12-25 2004-07-22 Du Pont Toray Co Ltd ポリイミドフィルムロールおよびその製造方法
JP2007262365A (ja) * 2006-03-30 2007-10-11 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムロール及び熱収縮性ラベル
JP2008195061A (ja) * 2007-01-17 2008-08-28 Mitsubishi Plastics Ind Ltd ポリエステル系熱収縮性フィルムロール
JP2014073688A (ja) 2007-01-17 2014-04-24 Mitsubishi Plastics Inc ポリエステル系熱収縮性フィルムロール
JP2017024382A (ja) * 2015-07-28 2017-02-02 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022051939A (ja) * 2018-01-31 2022-04-01 東洋紡株式会社 熱収縮性ポリエステル系フィルムロール
JP7306504B2 (ja) 2018-01-31 2023-07-11 東洋紡株式会社 熱収縮性ポリエステル系フィルムロール
JPWO2021065596A1 (ja) * 2019-10-02 2021-04-08
CN114466736A (zh) * 2019-10-02 2022-05-10 东洋纺株式会社 热收缩性聚酯系薄膜卷
JP7347524B2 (ja) 2019-10-02 2023-09-20 東洋紡株式会社 熱収縮性ポリエステル系フィルムロール
EP4039446A4 (en) * 2019-10-02 2023-12-06 Toyobo Co., Ltd. ROLL OF HEAT-SHRINK POLYESTER FILM

Also Published As

Publication number Publication date
KR20200111712A (ko) 2020-09-29
TW202003204A (zh) 2020-01-16
US20210061605A1 (en) 2021-03-04
KR102561156B1 (ko) 2023-07-27
US11524858B2 (en) 2022-12-13
JP7306504B2 (ja) 2023-07-11
TWI801491B (zh) 2023-05-11
CN111655450A (zh) 2020-09-11
JP7288400B2 (ja) 2023-06-07
JP2022051939A (ja) 2022-04-01
JPWO2019151196A1 (ja) 2020-12-03
EP3747628A4 (en) 2021-11-03
EP3747628A1 (en) 2020-12-09
EP3747628B1 (en) 2024-06-19

Similar Documents

Publication Publication Date Title
JP7306504B2 (ja) 熱収縮性ポリエステル系フィルムロール
JP7180813B2 (ja) 熱収縮性ポリエステル系フィルムロール
JP4877056B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法
JP7485183B2 (ja) 熱収縮性ポリエステル系フィルムロール
JP2023155502A (ja) 熱収縮性ポリエステル系フィルムロール
JP7505617B2 (ja) 熱収縮性ポリエステル系フィルムロール
JP6206165B2 (ja) 転写箔用フィルム
JP4604483B2 (ja) 離型用二軸延伸ポリエステルフィルム
JP2005290332A (ja) フィルムロール
CN114683646A (zh) 聚酯离型膜
JP2010024397A (ja) ポリエステルフィルムロール
JPH02307789A (ja) 感熱孔版印刷原紙用ポリエステルフィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019507874

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19748240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207022255

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019748240

Country of ref document: EP

Effective date: 20200831