WO2019151011A1 - 変性エラストマー組成物、架橋エラストマー組成物及びその成形体 - Google Patents

変性エラストマー組成物、架橋エラストマー組成物及びその成形体 Download PDF

Info

Publication number
WO2019151011A1
WO2019151011A1 PCT/JP2019/001631 JP2019001631W WO2019151011A1 WO 2019151011 A1 WO2019151011 A1 WO 2019151011A1 JP 2019001631 W JP2019001631 W JP 2019001631W WO 2019151011 A1 WO2019151011 A1 WO 2019151011A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
mass
parts
elastomer composition
ethylene
Prior art date
Application number
PCT/JP2019/001631
Other languages
English (en)
French (fr)
Inventor
麻奈美 加藤
誠司 松本
広田 保史
Original Assignee
Mcppイノベーション合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mcppイノベーション合同会社 filed Critical Mcppイノベーション合同会社
Priority to EP19747872.0A priority Critical patent/EP3747945B1/en
Priority to CN201980010644.XA priority patent/CN111655783B/zh
Publication of WO2019151011A1 publication Critical patent/WO2019151011A1/ja
Priority to US16/943,044 priority patent/US11292902B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a modified elastomer composition, a crosslinked elastomer composition, and a molded article thereof.
  • the first invention relates to a modified elastomer composition and a crosslinked elastomer composition excellent in compression set, durability, and extrusion molding appearance, and a molded article using the same.
  • the second invention relates to a novel low gloss modified elastomer composition and a crosslinked elastomer composition excellent in compression set, durability, blocking resistance and moldability, and a molded article using the same.
  • Thermoplastic elastomers are elastomers that are softened by heating and have fluidity, and rubber elasticity when cooled.
  • Thermoplastic elastomers have the same moldability as thermoplastic resins and rubber elasticity.
  • Thermoplastic elastomers can be recycled, and thus are widely used in applications such as automobile parts, building parts, medical parts, electric wire covering materials, and miscellaneous goods.
  • thermoplastic elastomer contains a thermoplastic resin such as polyolefin in order to ensure thermoplasticity. Therefore, the thermoplastic elastomer has insufficient compression set characteristics as compared with the thermosetting rubber and has limited applications.
  • Thermosetting rubbers such as EPDM have excellent compression set properties, but require a long crosslinking step and are inferior in durability.
  • Patent Documents 1 to 3 propose elastomer compositions by silane modification with improved compression set.
  • the material has a high gloss and is unsuitable for a sealing material, and there is also a problem that blocking easily occurs during pelletization or after pelletization.
  • Patent Document 4 also proposes an elastomer composition by silane modification.
  • the compression set 70 ° C. ⁇ 22 hours was just over 50% and was insufficient.
  • Patent Document 5 proposes a dynamically crosslinked thermoplastic elastomer composition using a crosslinking agent such as a phenol resin.
  • a crosslinking agent such as a phenol resin.
  • the first invention is a modified elastomer composition that exhibits compression set characteristics similar to those of conventional thermosetting rubbers, has the same durability and moldability as a thermoplastic elastomer composition, and has a good extruded appearance.
  • An object of the present invention is to provide a crosslinked elastomer composition and a molded article thereof.
  • the first inventor ethylene / ⁇ -olefin / non-conjugated diene copolymer rubber; ethylene / ⁇ -olefin copolymer rubber not containing non-conjugated diene units; polyethylene, polypropylene or propylene / ⁇ -olefin copolymer; A modified elastomer composition obtained by graft-modifying a composition containing an unsaturated silane compound, or a cross-linked elastomer composition obtained by further cross-linking reaction with this, is equivalent to a thermosetting rubber that was originally considered impossible.
  • the gist of the first invention resides in the following [1] to [10].
  • a modified elastomer composition comprising the following components (A) to (D) and grafted with the following component (E).
  • the content of the component (A) is 5 to 70 parts by mass in a total of 100 parts by mass of the component (A) and the component (B), and the content of the component (B) is the component 95 to 30 parts by mass in a total of 100 parts by mass of (A) and component (B), and the total content of component (C) is 100 parts by mass of component (A) and component (B). 1 to 200 parts by mass with respect to parts, and the content of the component (D) is 0.01 to 3 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (B)
  • the modified elastomer composition according to [1].
  • the amount of the component (E) used is 0.01 to 3 parts by mass with respect to a total of 100 parts by mass of the component (A) and the component (B).
  • [1] to [3] The modified elastomer composition according to any one of the above.
  • component (F) a crosslinking aid is contained in an amount of 0.001 to 2 parts by mass with respect to a total of 100 parts by mass of the component (A) and the component (B) [1] to [4]
  • the modified elastomer composition according to any one of the above.
  • component (G) the softener is contained in an amount of 0.5 to 200 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (B).
  • the modified elastomer composition according to any one of the above.
  • the second invention is a low-gloss modified elastomer composition that exhibits compression set characteristics similar to those of conventional thermosetting rubbers and has the same durability, blocking resistance and moldability as thermoplastic elastomer compositions,
  • An object is to provide an elastomer composition and a molded body thereof.
  • the second inventor graft-modified a composition comprising an ethylene / ⁇ -olefin / non-conjugated diene copolymer rubber, an ethylene / ⁇ -olefin copolymer rubber not containing a non-conjugated diene unit, and an unsaturated silane compound.
  • the modified elastomer composition obtained by the above, or the crosslinked elastomer composition obtained by further crosslinking reaction has the compression set characteristics equivalent to the thermosetting rubber, which was originally considered impossible, and the blocking resistance equivalent to the thermoplastic elastomer.
  • the present invention has been found to have the properties and moldability, and the second invention has been completed.
  • the gist of the second invention resides in the following [11] to [19].
  • a modified elastomer composition comprising the following components (A), (B ′) and (D) and grafted with the following component (E).
  • the content of the component (A) is 5 to 80 parts by mass in a total of 100 parts by mass of the component (A) and the component (B ′), and the content of the component (B ′) is The total amount of the component (A) and the component (B ′) is 95 to 20 parts by mass, and the content of the component (D) is the component (A), the component (B ′),
  • the amount of the component (E) used is 0.01 to 3 parts by mass with respect to a total of 100 parts by mass of the component (A) and the component (B ′) [11] or [12] The modified elastomer composition described in 1.
  • component (F) the crosslinking aid is contained in an amount of 0.001 to 2 parts by mass with respect to a total of 100 parts by mass of the component (A) and the component (B ′).
  • the modified elastomer composition in any one of.
  • component (G) 0.5 to 200 parts by mass of a softener is added to 100 parts by mass in total of the component (A) and the component (B ′).
  • component (G) 0.5 to 200 parts by mass of a softener is added to 100 parts by mass in total of the component (A) and the component (B ′).
  • the first invention it is possible to provide a modified elastomer composition and a crosslinked elastomer composition excellent in compression set characteristics and excellent in durability, extrusion moldability, and extrusion appearance, and a molded body using the same. it can.
  • a low-gloss modified elastomer composition and a crosslinked elastomer composition having excellent compression set characteristics and good durability, blocking resistance, and moldability, and a molded body using the same. Can be provided.
  • the modified elastomer composition and the crosslinked elastomer composition of the present invention, and a molded body using the same, are used in applications where good thermoelasticity is conventionally required, such as glass run channels and weather strips. By applying to automobile parts, it can be expected to obtain a product with better quality than before.
  • present invention refers to an invention including the first invention and the second invention, and is common to the first invention and the second invention.
  • Modified Elastomer Composition and Crosslinked Elastomer Composition of First Invention The modified elastomer composition and the crosslinked elastomer composition of the first invention will be described below.
  • the modified elastomer composition of the first invention is a modified elastomer composition comprising the following components (A) to (D) and grafted with the following component (E), preferably further comprising the following components (F) to ( G).
  • the content of component (A) is preferably 5 to 70 parts by mass in 100 parts by mass in total of component (A) and component (B).
  • the content of the component (B) is preferably 95 to 30 parts by mass in 100 parts by mass in total of the component (A) and the component (B).
  • the content of component (C) is preferably 1 to 200 parts by mass with respect to 100 parts by mass in total of component (A) and component (B).
  • the content of component (D) is preferably 0.01 to 3 parts by mass with respect to 100 parts by mass in total of component (A) and component (B).
  • Component (E) is preferably used in an amount of 0.01 to 3 parts by mass with respect to 100 parts by mass in total of component (A) and component (B).
  • the content of component (F) is preferably 0.001 to 2 parts by mass with respect to 100 parts by mass in total of component (A) and component (B).
  • the content of component (G) is preferably 0.5 to 200 parts by mass with respect to 100 parts by mass in total of component (A) and component (B).
  • Crosslinked elastomer composition of the first invention is obtained by crosslinking the modified elastomer composition of the first invention with the following component (H).
  • the degree of crosslinking of the components (A), (B ′) is significantly increased, and high rubber elasticity can be obtained. . Moreover, since there is no residual double bond, good durability can be obtained.
  • the component (A) ethylene / ⁇ -olefin / non-conjugated diene copolymer rubber is a copolymer containing ethylene, an ⁇ -olefin and a non-conjugated diene compound as a copolymer component.
  • the ethylene / ⁇ -olefin / non-conjugated diene copolymer rubber includes a mixture of an ethylene / ⁇ -olefin / non-conjugated diene copolymer rubber and a hydrocarbon rubber softener (hereinafter referred to as “oil-extended ethylene / ⁇ - There are oil-extended types that are sometimes referred to as “olefin / non-conjugated diene copolymer rubbers”.) And non-oil-extended types that do not contain a hydrocarbon rubber softener.
  • an oil-extended type copolymer rubber is intended, but non-oil-extended type rubbers can also be suitably used.
  • the ethylene / ⁇ -olefin / non-conjugated diene copolymer rubber of component (A) can be used in either an oil-extended type or a non-oil-extended type. Only one type of non-oil-extended type or oil-extended type may be used alone, or two or more types may be used in any combination and ratio. One or more oil-extended types and one or more non-oil-extended types may be used in any combination and ratio. In the case of the oil-extended type, the hydrocarbon rubber softener contained in the mixture is classified as a softener of component (G).
  • hydrocarbon-based rubber softener contained in the oil-extended type examples include those exemplified as the component (F) described later.
  • component (F) the hydrocarbon-based rubber softener contained in the oil-extended type
  • 100 parts by mass of oil-extended ethylene / ⁇ -olefin / non-conjugated diene copolymer rubber 100 parts by mass of oil-extended ethylene / ⁇ -olefin / non-conjugated diene copolymer rubber
  • the ratio (oil extended amount) of the hydrocarbon rubber softener is usually about 10 to 200 parts by mass.
  • the ⁇ -olefin in component (A) is preferably propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 4-methyl-1-pentene, 4,4-dimethyl-1-pentene, Examples thereof include ⁇ -olefins having 3 to 20 carbon atoms, more preferably 3 to 8 carbon atoms such as 1-hexene, 4-methyl-1-hexene, 1-heptene, 1-octene, 1-decene and 1-octadecene. However, it is not particularly limited to these.
  • propylene, 1-butene, 3-methyl-1-butene, and 1-pentene are preferable, and propylene and 1-butene are more preferable from the viewpoint of crosslinkability and bloomout suppression.
  • Only one type of ⁇ -olefin can be used alone, or two or more types can be used in any combination and ratio.
  • Non-conjugated diene compounds in component (A) include dicyclopentadiene, 1,4-hexadiene, cyclohexadiene, cyclooctadiene, dicyclooctadiene, 1,6-octadiene, 5-methyl-1,4- Hexadiene, 3,7-dimethyl-1,6-octadiene, 1,3-cyclopentadiene, 1,4-cyclohexadiene, 2-methyl-1,5-hexadiene, 6-methyl-1,5-heptadiene, 7- Ethylidene norbornene such as methyl-1,6-octadiene, tetrahydroindene, methyltetrahydroindene, 5-isopropylidene-2-norbornene, 5-vinyl-2-norbornene, vinylidene norbornene, 5-ethylidene-2-norbornene (ENB), Methy such as
  • dicyclopentadiene, ethylidene norbornene, and vinylidene norbornene are preferable from the viewpoint of crosslinkability and the like, and dicyclopentadiene, 5-ethylidene-2-norbornene, and vinylidene norbornene are more preferable.
  • dicyclopentadiene, 5-ethylidene-2-norbornene, and vinylidene norbornene are more preferable.
  • Only one kind of non-conjugated dienes can be used alone, or two or more kinds can be used in any combination and ratio.
  • ethylene / ⁇ -olefin / non-conjugated diene copolymer rubber examples include ethylene / propylene / 5-ethylidene-2-norbornene copolymer rubber, ethylene / propylene / dicyclopentadiene copolymer rubber, and ethylene / propylene.
  • Ethylene / propylene / non-conjugated diene copolymer rubber (EPDM) such as 1,4-hexadiene copolymer rubber, ethylene / propylene / 5-vinyl-2-norbornene copolymer rubber, ethylene / 1-butene / Examples thereof include 5-ethylidene-2-norbornene copolymer rubber, but are not particularly limited thereto.
  • ethylene / propylene / non-conjugated diene copolymer rubber EPDM
  • EPDM ethylene / propylene / non-conjugated diene copolymer rubber
  • ethylene / ⁇ -olefin / non-conjugated diene copolymer rubber only one type may be used alone, or two or more types may be used in any combination and ratio.
  • the ethylene unit content in the ethylene / ⁇ -olefin / non-conjugated diene copolymer rubber is not particularly limited, but is preferably 50 to 90% by mass, more preferably 55 to 85% by mass, and even more preferably 60%. ⁇ 80% by mass.
  • an elastomer composition excellent in mechanical strength and rubber elasticity tends to be obtained.
  • the content of the ⁇ -olefin unit in the ethylene / ⁇ -olefin / non-conjugated diene copolymer rubber is not particularly limited, but is preferably 10 to 50% by mass, more preferably 15 to 45% by mass, and still more preferably 20%. ⁇ 40% by weight.
  • an elastomer composition excellent in mechanical strength, moderate flexibility and rubber elasticity tends to be easily obtained.
  • the content of the non-conjugated diene unit in the ethylene / ⁇ -olefin / non-conjugated diene copolymer rubber is not particularly limited, but is preferably 0.5 to 30% by mass, more preferably 1 to 20% by mass, More preferably, it is 2 to 10% by mass.
  • the content of the non-conjugated diene unit is within the above preferred range, the crosslinkability and moldability can be easily adjusted, and an elastomer composition excellent in mechanical strength and rubber elasticity tends to be obtained.
  • each structural unit of component (B ') such as component (A) and component (B) described later, and component (C) can be determined by infrared spectroscopy.
  • the ethylene unit content is 55 to 75% by mass
  • the propylene unit content is 15 to 40% by mass
  • An ethylene / propylene / nonconjugated diene copolymer rubber copolymer containing 1 to 10% by mass of at least one nonconjugated diene unit selected from the group consisting of vinylidene norbornene is preferable.
  • the ethylene / ⁇ -olefin / non-conjugated diene copolymer rubber can be used alone, or two or more kinds in any combination and ratio.
  • the ethylene / ⁇ -olefin copolymer of component (B) is a copolymer having an ethylene unit content of 60 to 99% by mass and containing no non-conjugated diene units, that is, ethylene / ⁇ -olefin excluding component (A). It is a copolymer.
  • the type of the ethylene / ⁇ -olefin copolymer of component (B) is not particularly limited as long as it is such, and a known ethylene / ⁇ -olefin copolymer is appropriately used.
  • ethylene / ⁇ -olefin copolymer examples include, for example, an ethylene / propylene copolymer, an ethylene / 1-butene copolymer, an ethylene / 4-methyl-1-pentene copolymer, and an ethylene / 1-hexene.
  • a copolymer of ethylene such as a copolymer and an ethylene / 1-octene copolymer and one or more of ⁇ -olefins having 3 to 10 carbon atoms.
  • the type of the catalyst used for producing the ethylene / ⁇ -olefin copolymer is not particularly limited, and examples thereof include a Ziegler-Natta catalyst and a metallocene catalyst. Among these, an ethylene / ⁇ -olefin copolymer produced by a metallocene catalyst is preferable.
  • the ethylene / ⁇ -olefin copolymer of component (B) has a melting end peak temperature (hereinafter sometimes referred to as “melting end point”) measured by a differential scanning calorimeter (DSC) of 115 ° C. or higher. Those are preferred.
  • melting end point of the ethylene / ⁇ -olefin copolymer is 115 ° C. or higher, the shape can be retained by crystals even at a high temperature. From this viewpoint, the melting end point of the ethylene / ⁇ -olefin copolymer is preferably 115 ° C. or higher.
  • the melting end point of the ethylene / ⁇ -olefin copolymer is excessively high, there is a risk of poor appearance due to unmelted bumps during molding temperature rise or early crystallization (melt fracture) during molding cooling.
  • the melting end point of the ethylene / ⁇ -olefin copolymer is usually 145 ° C. or lower.
  • the melting end point of the ethylene / ⁇ -olefin copolymer is measured by the method described in the Examples section below.
  • the density of the ethylene / ⁇ -olefin copolymer of component (B) is preferably 0.850 to 0.910 g / cm 3 , more preferably 0. .860 to 0.900 g / cm 3 , more preferably 0.860 to 0.880 g / cm 3 . If the density is less than or equal to the above upper limit value, it tends to be flexible and excellent in sealing performance. When the density is not less than the above lower limit value, the shape can be maintained at room temperature and the hysteresis loss is small, so that there is a tendency to be excellent in compression (compression set).
  • the ethylene unit content of the component (B) ethylene / ⁇ -olefin copolymer is 60 to 99% by mass, preferably 60 to 85% by mass.
  • an elastomer composition excellent in mechanical strength and rubber elasticity tends to be obtained.
  • the melt flow rate (MFR) of the ethylene / ⁇ -olefin copolymer of component (B) is a melt flow rate (MFR) measured under conditions of a temperature of 190 ° C. and a load of 21.2 N in accordance with JIS K7210 (1999). ), Preferably 0.01 to 30 g / 10 min. If the MFR is too large, the compression set may increase and the sealing performance may be reduced. If the MFR is too small, the motor load during modification extrusion is large, the resin pressure rises, the productivity is deteriorated, and the surface after molding may be roughened. From these viewpoints, the MFR of the ethylene / ⁇ -olefin copolymer is more preferably 0.1 g / 10 min or more and 10 g / 10 min or less.
  • the ethylene / ⁇ -olefin copolymer used in the present invention can be obtained as a commercial product.
  • Engage (registered trademark) series manufactured by Dow Chemical Kernel (registered trademark) series manufactured by Nippon Polyethylene, Infuse (registered trademark) series manufactured by Dow Chemical, Tafmer (registered trademark) series manufactured by Mitsui Chemicals, Mitsui Corresponding products can be selected from the Evolue (trademark registered) series manufactured by Kagakusha.
  • an ethylene / ⁇ -olefin copolymer may be used alone or in any combination and ratio of two or more.
  • Component (C) Polyethylene and / or propylene-based resin>
  • Component (C) is polyethylene and / or a propylene resin having a propylene unit content of 40 to 100% by mass.
  • Component (C) contributes to moldability.
  • component (C) only one kind of polyethylene may be used, or two or more kinds of polyethylene having different physical properties may be used. Only one type of propylene-based resin may be used, or two or more types of propylene-based resins having different compositions and physical properties may be used. You may use together 1 type, or 2 or more types of polyethylene, and 1 type, or 2 or more types of propylene-type resin.
  • polyethylene ethylene homopolymer
  • high density polyethylene low pressure method polyethylene
  • low density polyethylene high pressure method polyethylene
  • linear low density polyethylene two or more are preferably used.
  • high density polyethylene is particularly preferred.
  • the density of polyethylene is preferably 0.91 to 0.97 g / cm 3, more preferably 0.94 to 0.97 g / cm 3 .
  • the density is less than 0.91 g / cm 3 , the melting point of the composition may decrease and the heat resistant deformation temperature may decrease. It is usually difficult to manufacture those having a density exceeding 0.97 g / cm 3 .
  • the melt flow rate (MFR) of the component (C) polyethylene measured at 190 ° C. and a load of 21.2 N is usually 0.01 g / 10 min or more, and from the viewpoint of fluidity Preferably it is 0.05 g / 10min or more, More preferably, it is 0.1 g / 10min or more. On the other hand, it is usually 50 g / 10 min or less, and preferably 40 g / 10 min or less, more preferably 20 g / 10 min or less from the viewpoint of moldability.
  • the propylene resin is a propylene resin having a propylene unit content of 40 to 100% by mass with respect to all monomer units contained in the propylene resin, and preferably has an ethylene unit content. 0 to 50% by mass.
  • the type of the propylene-based resin of component (C) is not particularly limited, and any of a propylene homopolymer, a propylene random copolymer, a propylene block copolymer, and the like can be used. One of these may be used, or two or more may be used in combination.
  • component (C) is a propylene random copolymer or a propylene block copolymer
  • the monomers copolymerized with propylene include ethylene, 1-butene, 2-methylpropylene, 1-pentene, 3-methyl- Examples thereof include one or more ⁇ -olefins such as 1-butene, 1-hexene, 4-methyl-1-pentene, and 1-octene.
  • component (C) is a propylene block copolymer
  • a propylene block copolymer obtained by polymerization in multiple stages can be mentioned. More specifically, a propylene block copolymer obtained by polymerizing polypropylene in the first stage and polymerizing a propylene / ethylene copolymer in the second stage may be mentioned.
  • the content of propylene units in the polypropylene resin of component (C) is 40% by mass or more, preferably 50% by mass or more. When the content of the propylene unit is not less than the above lower limit value, the moldability and the molded appearance tend to be good.
  • the upper limit of the propylene unit content is not particularly limited, and is usually 100% by mass.
  • the melt flow rate (MFR) of the propylene-based resin of the component (C) measured at 230 ° C. and a load of 21.2 N is usually 0.01 g / 10 min or more and is fluid. From the viewpoint, it is preferably 0.05 g / 10 min or more, more preferably 0.1 g / 10 min or more, and further preferably 0.5 g / 10 min or more. On the other hand, it is usually 200 g / 10 min or less, and from the viewpoint of moldability, it is preferably 100 g / 10 min or less, more preferably 70 g / 10 min or less, and further preferably 50 g / 10 min or less.
  • component (C) commercially available products can be used.
  • commercially available polyethylene include Novatec (registered trademark) HD from Nippon Polyethylene, Hi-Zex (registered trademark) from Prime Polymer, Sumikasen (registered trademark) from Sumitomo Chemical Co., Ltd., and the like, which can be appropriately selected.
  • propylene resin of component (C) Commercially available propylene resins can be procured from the manufacturers listed below and can be selected as appropriate. Available commercial products include Prime Polymer's Prime Polypro (registered trademark), Sumitomo Chemical Sumitomo Noblen (registered trademark), Sun Allomer's polypropylene block copolymer, Nippon Polypro's Novatec (registered trademark) PP, LyondellBasel Moplen (R), Adflex, Hiflex, Hifax ExxonMobil PP from ExxonMobil, Formolene® from Formosa Plastics, Borealis PP from Borealis, SEETEC PP from LG Chemical, A.
  • R is an ethylenically unsaturated hydrocarbon group.
  • R ′ is independently a hydrocarbon group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and at least one of R ′ is an alkoxy group having 1 to 10 carbon atoms.
  • R is preferably an ethylenically unsaturated hydrocarbon group having 2 to 10 carbon atoms, more preferably an ethylenically unsaturated hydrocarbon group having 2 to 6 carbon atoms.
  • alkenyl groups such as vinyl group, propenyl group, butenyl group, and cyclohexenyl group.
  • R ′ is preferably a hydrocarbon group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, more preferably a hydrocarbon group having 1 to 4 carbon atoms or 1 to 4 carbon atoms. Of the alkoxy group. At least one of R ′ is preferably an alkoxy group having 1 to 6 carbon atoms, and more preferably an alkoxy group having 1 to 4 carbon atoms.
  • the hydrocarbon group having 1 to 10 carbon atoms of R ′ may be any of an aliphatic group, an alicyclic group, and an aromatic group, but is preferably an aliphatic group.
  • the alkoxy group having 1 to 10 carbon atoms of R ′ may be linear, branched or cyclic, but is preferably linear or branched.
  • R ′ is a hydrocarbon group, specifically, an alkyl group represented by a methyl group, an ethyl group, an isopropyl group, a t-butyl group, an n-butyl group, an i-butyl group, a cyclohexyl group, or the like, or phenyl An aryl group typified by a group and the like can be mentioned.
  • R ′ is an alkoxy group, specific examples include a methoxy group, an ethoxy group, an isopropoxy group, and a ⁇ -methoxyethoxy group.
  • the unsaturated silane compound is represented by the formula (1)
  • at least one of the three R ′ is an alkoxy group, but two R ′ are preferably alkoxy groups, and all R ′ are alkoxy. More preferably, it is a group.
  • vinyltrialkoxysilanes represented by vinyltrimethoxysilane, vinyltriethoxysilane, propenyltrimethoxysilane and the like are desirable. This is because the vinyl group makes it possible to modify the component (B) (component (B ′) in the second invention described later) into an ethylene / ⁇ -olefin copolymer, and the alkoxy group promotes the crosslinking reaction described later. is there.
  • the alkoxy group introduced by graft modification to the ethylene / ⁇ -olefin copolymer with an unsaturated silane compound reacts with water in the presence of a silanol condensation catalyst to hydrolyze to produce silanol groups.
  • ethylene / ⁇ -olefin copolymers are bonded to each other to cause a crosslinking reaction.
  • These unsaturated silane compounds may be used individually by 1 type, and may use 2 or more types together.
  • a peroxide of a component (E) the organic peroxide contained in a hydroperoxide, a dialkyl peroxide, a diacyl peroxide, a peroxyester, and a ketone peroxide group is mentioned. Specific examples include the following.
  • the hydroperoxide group includes cumene hydroperoxide, tertiary butyl hydroperoxide and the like.
  • Dialkyl peroxides include dicumyl peroxide, ditertiary butyl peroxide, 2,5-dimethyl-2,5-ditertiary butyl peroxyhexane, 2,5-dimethyl-2,5-ditertiary butyl peroxide.
  • Xin-3 di (2-tertiarybutylperoxyisopropyl) benzene and the like.
  • the diacyl peroxide group includes lauryl peroxide, benzoyl peroxide, and the like.
  • the peroxyester group includes tertiary peroxyacetate, tertiary butyl peroxybenzoate, tertiary butyl peroxyisopropyl carbonate, and the like.
  • the ketone peroxide group includes cyclohexanone peroxide and the like. These organic peroxides may be used alone or in combination of two or more.
  • a radical generator having a high thermal decomposition temperature is preferable.
  • ditertiary butyl peroxide, di (2-tertiary butyl peroxyisopropyl) benzene, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, and dicumyl peroxide are preferable.
  • Crosslinking aid examples include peroxides such as silicon hydride compounds such as metrohydrogen silicon, sulfur, p-quinonedioxime, p-dinitrosobenzene, and 1,3-diphenylguanidine.
  • Polyfunctional vinyl compounds such as divinylbenzene, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, trimethylolpropane
  • Polyfunctional (meth) acrylate compounds such as tri (meth) acrylate and allyl (meth) acrylate
  • bismaleimide structures such as N, N′-m-phenylene bismaleimide and N, N′-m-toluylene bismaleimide Compound
  • Trimethi Rupuropan trimethylolpropane trimethacrylate, tin chloride (SnCl 2), and the like.
  • polyfunctional vinyl compounds and polyfunctional (meth) acrylate compounds such as divinylbenzene, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, are preferable.
  • Phenolic resins can also be used as other crosslinking aids.
  • examples of the phenol resin include alkylphenol formaldehyde, bromated alkylphenolanol formaldehyde and the like.
  • cross-linking aids can be used alone or in combination of two or more in any ratio.
  • the modified elastomer composition of the present invention can contain a softener as the component (G) from the viewpoint of increasing flexibility and improving processability, fluidity, and oil resistance.
  • component (G) examples include a mineral oil rubber softener and a synthetic resin rubber softener. Among these, from the viewpoint of affinity with other components, etc., softening for mineral oil rubber Agents are preferred.
  • the mineral oil rubber softener is generally a mixture of aromatic hydrocarbons, naphthene hydrocarbons and paraffin hydrocarbons. Paraffinic hydrocarbons with 50% by mass or more of paraffinic hydrocarbons relative to all carbon atoms, paraffinic oils with naphthenic hydrocarbons of 30 to 45% by mass of carbon are naphthenic oils and aromatics. A hydrocarbon having a carbon content of 35% by mass or more is called an aromatic oil.
  • a liquid hydrocarbon rubber softening agent which is liquid at normal temperature (23 ⁇ 2 ° C.) is preferable, and liquid paraffinic oil which is liquid at normal temperature is more preferable.
  • the flexibility and elasticity of the modified elastomer composition of the present invention can be increased, and the processability and fluidity tend to be dramatically improved. .
  • the paraffinic oil is not particularly limited, but the kinematic viscosity at 40 ° C. is usually 10 cst (centistokes) or more, preferably 20 cSt or more, and usually 800 cSt or less, preferably 600 cSt or less.
  • the paraffinic oil those having a pour point of usually ⁇ 40 ° C. or higher, preferably ⁇ 30 ° C. or higher and 0 ° C. or lower are suitably used.
  • a flash point (COC) is usually 200 ° C. or higher, preferably 250 ° C. or higher, and usually 400 ° C. or lower, preferably 350 ° C. or lower.
  • Component (G) softener can be used alone, or two or more can be used in any combination and ratio.
  • component (A) When an oil-extended type is used as component (A), it is introduced into the elastomer composition as a mixture of an oil-extended type ethylene / ⁇ -olefin / non-conjugated diene copolymer rubber and a hydrocarbon-based softener.
  • the hydrocarbon rubber softener also corresponds to the softener of component (G).
  • a softening agent may be added separately as the component (G), or an additional softening agent may be used.
  • the softener is added separately, the hydrocarbon rubber softener contained in the oil-extended type component (A) and the softener added may be the same or different. .
  • the composition can be crosslinked between molecules.
  • the alkoxy group introduced by being graft-modified to the component (A) or the component (B) by the unsaturated silane compound of the component (D) is introduced in the presence of the silanol condensation catalyst of the component (H).
  • a silanol group is produced by reacting with water and hydrolyzing, and further silanol groups are dehydrated and condensed, whereby a cross-linking reaction proceeds, and the modified elastomers are bonded to each other, thereby being excellent in heat resistance. Is generated.
  • the component (H) silanol condensation catalyst is selected from the group consisting of metal organic acid salts, titanates, borates, organic amines, ammonium salts, phosphonium salts, inorganic acids and organic acids, and inorganic acid esters. The above compound etc. are mentioned.
  • metal organic acid salts include dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin diacetate, dibutyltin dioctoate, stannous acetate, stannous octoate, cobalt naphthenate, lead octylate, lead naphthenate, octylic acid
  • examples include zinc, zinc caprylate, iron 2-ethylhexanoate, iron octylate, and iron stearate.
  • titanates include tetrabutyl titanate, tetranonyl titanate, bis (acetylacetonitrile) di-isopropyl titanate, and the like.
  • Examples of the organic amine include ethylamine, dibutylamine, hexylamine, triethanolamine, dimethyl soyaamine, tetramethylguanidine, pyridine and the like.
  • Examples of the ammonium salt include ammonium carbonate and tetramethylammonium hydroxide.
  • Examples of the phosphonium salt include tetramethylphosphonium hydroxide.
  • Examples of the inorganic acid and the organic acid include sulfonic acids such as sulfuric acid, hydrochloric acid, acetic acid, stearic acid, maleic acid, toluenesulfonic acid, and alkylnaphthylsulfonic acid.
  • Examples of inorganic acid esters include phosphate esters.
  • metal organic acid salts, sulfonic acids, and phosphate esters are preferable, and tin metal carboxylates such as dioctyltin dilaurate, alkyl naphthyl sulfonic acid, and ethylhexyl phosphate are preferable.
  • the silanol condensation catalyst may be used alone or in combination of two or more.
  • the silanol condensation catalyst is preferably used as a master batch in which a polyolefin and a silanol condensation catalyst are blended.
  • polyolefins that can be used in the master batch include polyethylene, polypropylene, and ethylene / ⁇ -olefin copolymers.
  • polyethylene examples include (branched or linear) ethylene homopolymers such as low, medium and high density polyethylene; ethylene / propylene copolymers, ethylene / 1-butene copolymers, ethylene / 4-methyl- Ethylene / ⁇ -olefin copolymers such as 1-pentene copolymer, ethylene / 1-hexene copolymer, ethylene / 1-octene copolymer; ethylene / vinyl acetate copolymer, ethylene / (meth) acrylic acid Examples thereof include ethylene copolymers such as copolymers and ethylene / (meth) acrylic acid ester copolymers.
  • ethylene copolymers such as copolymers and ethylene / (meth) acrylic acid ester copolymers.
  • ethylene / propylene copolymer ethylene / 1-butene copolymer, ethylene / 4-methyl-1-pentene copolymer, ethylene / 1-hexene copolymer, ethylene / 1-octene copolymer, etc.
  • the ethylene / ⁇ -olefin copolymer is preferred.
  • high-pressure low-density polyethylene, high-density polyethylene, and ethylene / ⁇ -olefin copolymer having an excellent balance between heat resistance and strength are preferable.
  • the ethylene / ⁇ -olefin copolymer is more preferably an ethylene / 1-butene copolymer, an ethylene / 4-methyl-1-pentene copolymer, an ethylene / 1-hexene copolymer, or an ethylene / 1-octene copolymer.
  • An ethylene / ⁇ -olefin copolymer such as a copolymer.
  • the ethylene / ⁇ -olefin copolymer is more preferably a copolymer of 2 to 60% by mass of one or more ⁇ -olefins and 40 to 98% by mass of ethylene.
  • the silanol condensation catalyst is used as a master batch in which a polyolefin and a silanol condensation catalyst are blended
  • the content of the silanol condensation catalyst in the master batch is not particularly limited, but usually about 0.1 to 5.0% by mass. preferable.
  • the modified elastomer composition of the first invention preferably contains 5 to 70 parts by mass of component (A) and 95 to 30 parts by mass of component (B) so that the total amount is 100 parts by mass.
  • the content ratio of the component (A) is larger than the above upper limit and the content ratio of the component (B) is smaller than the lower limit, a good appearance tends not to be obtained.
  • the content ratio of the component (A) is less than the above lower limit and the content ratio of the component (B) is larger than the above upper limit, the gloss tends to be high or blocking.
  • the ratio of the component (A) in the total of 100 parts by mass of the component (A) and the component (B) is more preferably 5 to 70 parts by mass, still more preferably 5 to 50 parts by mass,
  • the proportion of component (B) is more preferably 95 to 30 parts by mass, still more preferably 95 to 50 parts by mass.
  • the content of component (C) with respect to 100 parts by mass in total of components (A) and (B) is preferably 1 to 200 parts by mass, more preferably 5 from the viewpoint of maintaining a smooth molded appearance and flexibility. -80 parts by mass, more preferably 10-50 parts by mass.
  • the content of the component (D) with respect to 100 parts by mass in total of the components (A) and (B) is preferably 0.01 to 5 parts by mass, more preferably from the viewpoint of sufficiently allowing the crosslinking reaction to proceed. 0.05 to 5 parts by mass, more preferably 0.1 to 3 parts by mass.
  • the content of component (E) is preferably 0.01 to 3 parts by mass with respect to a total of 100 parts by mass of component (A) and component (B), so that a sufficient crosslinking reaction is obtained and a smooth molded appearance is obtained. From the standpoint of maintaining, the amount is more preferably 0.05 to 2 parts by mass, still more preferably 0.1 to 1 part by mass.
  • the modified elastomer composition of the first invention includes the component (F)
  • the content of the component (F) is 0.001 to 2 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (B). From the viewpoint of economy and sufficient crosslinking reaction, the amount is preferably 0.003 to 1 part by mass.
  • the modified elastomer composition of the first invention includes the component (G)
  • component (A) is an oil-extended type with respect to a total of 100 parts by mass of the component (A) and the component (B)
  • the content of the hydrocarbon-based rubber softener in component (A)) is 0.5 to 200 parts by mass. If content of a component (G) is less than the said minimum, the improvement effect of a softness
  • the content of the component (G) with respect to the total of 100 parts by mass of the component (A) and the component (B) is preferably 1 to 100 parts by mass, and more preferably 5 to 80 parts by mass.
  • the amount added is not particularly limited, but the component of the first invention except for the component (H) is excluded.
  • the amount is preferably 0.001 to 0.5 parts by mass, and more preferably 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the modified elastomer composition. It is preferable that the addition amount of the silanol condensation catalyst is not less than the above lower limit value because the crosslinking reaction proceeds sufficiently and the heat resistance tends to be good. It is preferable for the amount of silanol condensation catalyst added to be less than or equal to the above upper limit value because it is difficult for premature crosslinking to occur in the extruder and the surface of the strand or the appearance of the product is less likely to occur.
  • the additive examples include a heat stabilizer, an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, a crystal nucleating agent, a rust inhibitor, a viscosity modifier, a foaming agent, a lubricant, and a pigment.
  • an antioxidant particularly a phenol-based antioxidant, a sulfur-based antioxidant, or a phosphorus-based antioxidant.
  • the antioxidant is preferably contained in an amount of 0.1 to 1% by mass in 100% by mass of the modified elastomer composition of the present invention.
  • Examples of other resins include polyolefin resins other than component (C), polyester resins, polycarbonate resins, polymethyl methacrylate resins, rosin and derivatives thereof, terpene resins and petroleum resins and derivatives thereof, alkyd resins, alkylphenol resins, and terpene phenols.
  • Resins such as polyamide / polyol copolymers; polyvinyl chloride elastomers and polybutadiene elastomers, Styrenic elastomers, these hydrogenated products, those modified with acid anhydrides to introduce polar functional groups, and those obtained by grafting, random and / or block copolymerization of other monomers It is done.
  • the modified elastomer composition of the first invention comprises components (A) to (C), an unsaturated silane compound of component (D) and a peroxide of component (E), and if necessary, a crosslinking aid, a softener, Other components and the like can be produced by mechanically mixing by a known method, for example, a Henschel mixer, a V blender, a tumbler blender or the like, and then mechanically melt-kneading by a known method.
  • melt-kneading a general melt-kneader such as a Banbury mixer, various kneaders, a single-screw or twin-screw extruder can be used.
  • a general melt-kneader such as a Banbury mixer, various kneaders, a single-screw or twin-screw extruder can be used.
  • the composition of the present invention is produced by kneading with a single-screw or twin-screw extruder or the like, it is usually melted while being heated to 120 to 240 ° C, preferably 120 to 220 ° C. Kneading can be performed.
  • the silanol condensation catalyst described above is blended, molded by various molding methods such as extrusion molding, injection molding, press molding, etc., and then exposed to a water atmosphere to crosslink the silanol groups. Can be made into a crosslinked elastomer composition.
  • Various conditions can be adopted for the method of exposure in a water atmosphere, a method of leaving in air containing moisture, a method of blowing air containing water vapor, a method of immersing in a water bath, and spraying hot water in a mist form And the like.
  • the hydrolyzable alkoxy group derived from the unsaturated silane compound used for graft modification of components (A) and (B) reacts with water in the presence of a silanol condensation catalyst to hydrolyze the silanol group. Then, the silanol groups are further dehydrated and condensed, whereby the crosslinking reaction proceeds, and the modified elastomers are bonded together to form a crosslinked elastomer composition.
  • the progress rate of the cross-linking reaction is determined by the exposure conditions in a water atmosphere, but the exposure is usually in the temperature range of 0 to 130 ° C. and in the range of 5 minutes to 1 week. Particularly preferred conditions are a temperature range of 40 to 90 ° C. and a range of 30 minutes to 24 hours. When air containing moisture is used, the relative humidity is selected from the range of 1 to 100%.
  • the degree of crosslinking of the crosslinked elastomer composition thus obtained can be adjusted by changing the type and blending amount of the silanol condensation catalyst, the conditions (temperature, time) for crosslinking, and the like.
  • Modified Elastomer Composition and Crosslinked Elastomer Composition of Second Invention The modified elastomer composition and the crosslinked elastomer composition of the second invention will be described below.
  • the modified elastomer composition of the second invention is a modified elastomer composition comprising the following components (A), (B ′) and (D) and grafted with the component (E), preferably the following components ( F) to (G) are included.
  • the content of component (A) is preferably 5 to 80 parts by mass in 100 parts by mass in total of component (A) and component (B ′).
  • the content of the component (B ′) is preferably 95 to 20 parts by mass in a total of 100 parts by mass of the component (A) and the component (B ′).
  • the content of component (D) is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass in total of component (A) and component (B ′).
  • Component (E) is preferably used in an amount of 0.01 to 3 parts by mass with respect to 100 parts by mass in total of component (A) and component (B ′).
  • the content of the component (F) is preferably 0.001 to 2 parts by mass with respect to 100 parts by mass as the total of the component (A) and the component (B ′).
  • the content of the component (G) is preferably 0.5 to 200 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (B ′).
  • Crosslinked elastomer composition of the second invention is obtained by crosslinking the modified elastomer composition of the second invention with the following component (H).
  • the mechanism in which the modified elastomer composition and the crosslinked elastomer composition of the second invention have the effects of excellent compression set properties, good durability and blocking resistance, and low gloss is estimated as follows. Due to the effects of the components (D), (E), (H) and the component (F), the crosslinking degree of the components (A), (B ′) can be remarkably increased, and high rubber elasticity can be obtained. ) Is finely dispersed in the component (B ′), low gloss is obtained by irregular reflection, and an effect of suppressing blocking is exhibited. Furthermore, since there is no residual double bond, good durability can be obtained.
  • the component (A) ethylene / ⁇ -olefin / non-conjugated diene copolymer rubber used in the second invention is the same as the component (A) ethylene / ⁇ -olefin / non-conjugated diene copolymer rubber in the first invention.
  • the ethylene / ⁇ -olefin copolymer of the component (B ′) used in the second invention has a melting end peak temperature (melting end point) measured by a differential scanning calorimeter (DSC) of 90 ° C. or higher, A copolymer containing an ethylene unit and an ⁇ -olefin unit and not containing a non-conjugated diene unit, that is, an ethylene / ⁇ -olefin copolymer excluding component (A).
  • the type of the ethylene / ⁇ -olefin copolymer of component (B ′) is not particularly limited as long as it is such, and a known ethylene / ⁇ -olefin copolymer is appropriately used.
  • ethylene / ⁇ -olefin copolymer of component (B ′) examples include, for example, an ethylene / propylene copolymer, an ethylene / 1-butene copolymer, and an ethylene / 4-methyl-1-pentene copolymer. And copolymers of ethylene and one or more of ⁇ -olefins having 3 to 10 carbon atoms such as ethylene / 1-hexene copolymer and ethylene / 1-octene copolymer.
  • the type of the catalyst used when producing the component (B ′) ethylene / ⁇ -olefin copolymer is not particularly limited, and examples thereof include a Ziegler-Natta catalyst and a metallocene catalyst. Among these, an ethylene / ⁇ -olefin copolymer produced by a metallocene catalyst is preferable.
  • the ethylene / ⁇ -olefin copolymer of component (B ′) has a melting end point of 90 ° C. or higher, preferably 115 ° C. or higher.
  • the melting end point of the ethylene / ⁇ -olefin copolymer is excessively high, the appearance may be deteriorated due to unmelted bumps at the time of molding temperature rise or early crystallization (melt fracture) at the time of molding cooling. Therefore, the melting end point of the ethylene / ⁇ -olefin copolymer is usually 145 ° C. or lower.
  • the melting end point of the ethylene / ⁇ -olefin copolymer of the component (B ′) is measured by the method described in the Examples section below.
  • the density (measured according to JIS K6922-1, 2: 1997) of the ethylene / ⁇ -olefin copolymer of component (B ′) is preferably 0.850 to 0.910 g / cm 3 , more preferably 0.860 to 0.900 g / cm 3 , more preferably 0.860 to 0.880 g / cm 3 . If the density is less than or equal to the above upper limit value, it tends to be flexible and excellent in sealing performance. On the other hand, when the density is equal to or higher than the above lower limit value, the shape can be maintained at room temperature, and the hysteresis loss is also small, so that there is a tendency to be excellent in sag.
  • the ethylene unit content of the component (B ′) ethylene / ⁇ -olefin copolymer is preferably 50 to 99% by mass, more preferably 60 to 95% by mass.
  • an elastomer composition excellent in mechanical strength and rubber elasticity tends to be obtained.
  • the melt flow rate (MFR) of the ethylene / ⁇ -olefin copolymer of the component (B ′) is measured according to JIS K7210 (1999) at a temperature of 190 ° C. and a load of 21.2 N ( MFR), preferably 0.01 to 30 g / 10 min. If the MFR is too large, the compression set may increase and the sealing performance may be reduced. If the MFR is too small, the motor load during modification extrusion is large, the resin pressure rises, the productivity is deteriorated, and the surface after molding may be roughened. From these viewpoints, the MFR of the ethylene / ⁇ -olefin copolymer of the component (B ′) is more preferably 0.1 g / 10 min or more and 10 g / 10 min or less.
  • the ethylene / ⁇ -olefin copolymer of the component (B ′) ethylene / ⁇ -olefin copolymer is available as a commercial product.
  • Engage (registered trademark) series manufactured by Dow Chemical Kernel (registered trademark) series manufactured by Nippon Polyethylene, Infuse (registered trademark) series manufactured by Dow Chemical, Tafmer (registered trademark) series manufactured by Mitsui Chemicals, Mitsui Corresponding products can be selected from the Evolue (trademark registered) series manufactured by Kagakusha.
  • an ethylene / ⁇ -olefin copolymer may be used alone, or two or more kinds in any combination and ratio.
  • Crosslinking aid As the crosslinking aid of the component (F) used in the second invention, the same crosslinking aid as the component (F) of the first invention can be used, and the same is true for the effects and preferred embodiments. Therefore, the description of the component (F) of the first invention is applied as it is to the description of the component (F) of the second invention.
  • silanol condensation catalyst of the component (H) used in the second invention the same silanol condensation catalyst as the component (H) of the first invention can be used, and the effects and preferred aspects thereof are also the same. Therefore, the description of the component (H) of the first invention is applied to the description of the component (H) of the first invention.
  • the modified elastomer composition of the second invention preferably contains 5 to 80 parts by mass of the component (A) and 95 to 20 parts by mass of the component (B ′) so that the total amount is 100 parts by mass. . If the content ratio of the component (A) is larger than the above upper limit and the content ratio of the component (B ′) is smaller than the lower limit, a good appearance may not be obtained. When the content ratio of the component (A) is less than the above lower limit and the content ratio of the component (B ′) is more than the above upper limit, the gloss becomes high and there is a possibility that blocking becomes easy.
  • the ratio of the component (A) in the total of 100 parts by mass of the component (A) and the component (B ′) is more preferably 5 to 70 parts by mass, still more preferably 5 to 50 parts by mass.
  • the proportion of component (B ′) is more preferably 95 to 30 parts by mass, and still more preferably 95 to 50 parts by mass.
  • the content of the component (D) with respect to 100 parts by mass in total of the component (A) and the component (B ′) is preferably 0.01 to 5 parts by mass from the viewpoint of sufficiently allowing the crosslinking reaction to proceed. Is 0.05 to 5 parts by mass, more preferably 0.1 to 3 parts by mass.
  • the content of component (E) is preferably 0.01 to 3 parts by mass with respect to a total of 100 parts by mass of component (A) and component (B ′), so that a sufficient crosslinking reaction is obtained and a smooth molded appearance is obtained. From the viewpoint of maintaining the above, it is more preferably 0.05 to 2 parts by mass, still more preferably 0.1 to 1 part by mass.
  • the modified elastomer composition of the second invention contains the component (F)
  • the content of the component (F) is 0.001 to 2 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (B ′).
  • the amount is preferably 0.003 to 1 part by mass from the viewpoint of economy and sufficient crosslinking reaction.
  • the modified elastomer composition of the second invention includes the component (G), the component (G) with respect to a total of 100 parts by mass of the component (A) and the component (B ′) (when the oil-extended type is used as the component (A))
  • the content of the component (G) is preferably 1 to 100 parts by mass and more preferably 5 to 80 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (B ′).
  • the amount added is not particularly limited, but the component of the second invention except component (H) is excluded.
  • the amount is preferably 0.001 to 0.5 parts by mass, and more preferably 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the modified elastomer composition. It is preferable that the addition amount of the silanol condensation catalyst is not less than the above lower limit value because the crosslinking reaction proceeds sufficiently and the heat resistance tends to be good. It is preferable for the amount of silanol condensation catalyst added to be less than or equal to the above upper limit value because it is difficult for premature crosslinking to occur in the extruder and the surface of the strand or the appearance of the product is less likely to occur.
  • additives examples include those described above as additives that the modified elastomer composition of the first invention may contain.
  • an antioxidant particularly a phenolic antioxidant, a sulfurous antioxidant, or a phosphorus antioxidant as in the first invention.
  • the antioxidant is preferably contained in an amount of 0.1 to 1% by mass in 100% by mass of the modified elastomer composition of the second invention.
  • Examples of other resins include those described above as other resins that can be contained in the modified elastomer composition of the first invention.
  • the modified elastomer composition of the second invention comprises two copolymers of components (A) and (B ′), an unsaturated silane compound of component (D) and a peroxide of component (E), as necessary.
  • a crosslinking aid, a softening agent, other components and the like can be produced by melt-kneading by a known method.
  • the description in the section ⁇ Manufacturing / molding of the modified elastomer composition> in the first invention can be applied as it is.
  • modified elastomer composition and the crosslinked elastomer composition of the present invention are not particularly limited.
  • automotive parts such as glass run channels, weather strips, hoses, wiper blades, grommets, etc., packing, gaskets, cushions, anti-vibration rubber, tubes, etc.
  • industrial parts other sports, general goods, medical parts, food parts It can be suitably used as a part for home appliances and a wire covering material.
  • the raw materials used for the preparation of the elastomer composition and the evaluation method of the obtained elastomer composition are as follows.
  • Oil extended amount 40 parts by mass (A-3): Mitsui EPT (registered trademark) 3092PM (manufactured by Mitsui Chemicals) Metallocene catalyst non-oil exhibition EPDM Non-conjugated diene: 5-ethylidene-2-norbornene diene content: 5.4% by mass Ethylene unit content: 66% by mass Mooney viscosity: 61 ML (value after 1 minute of preheating and 4 minutes after rotation) 125 ° C.
  • A-3 Mitsui EPT (registered trademark) 3092PM (manufactured by Mitsui Chemicals) Metallocene catalyst non-oil exhibition EPDM
  • Non-conjugated diene 5-ethylidene-2-norbornene diene content: 5.4% by mass Ethylene unit content: 66% by mass
  • Mooney viscosity 61 ML (value after 1 minute of preheating and 4 minutes after rotation) 125 ° C.
  • Oil extended amount 100 parts by mass (A-5): JSR EP (registered trademark) EP57C (manufactured by JSR) V catalyst-based non-oil exhibition EPDM
  • Non-conjugated diene 5-ethylidene-2-norbornene
  • Ethylene unit content 66% by mass Diene content: 4.5% by mass
  • Mooney viscosity 58 ML (value after 1 minute of preheating and 4 minutes after rotation) 125 ° C.
  • Propylene homopolymer MFR 0.5 g / 10 min (230 ° C., 21.2 N load) (C-7) Novatec HD HY430, manufactured by Japan Polyethylene Corporation High density polyethylene MFR: 0.8g / 10min (190 ° C, 21.2N load) Density: 0.956 cm 3 / g
  • ⁇ Crosslinking aid> (F-1) Divinylbenzene (mixture of 55% by mass of divinylbenzene and 45% by mass of ethylvinylbenzene manufactured by Wako Pure Chemical Industries, Ltd.) (F-2) Triallyl cyanurate (manufactured by Wako Pure Chemical Industries, Ltd.)
  • the component (G-1) is supplied from the supply port in the middle of the extruder by the liquid pump, and the temperature from the upstream part to the downstream part is raised in the range of 120 to 200 ° C. with a total discharge rate of 25 kg / h. Melt-kneading was performed and pelletized to produce a modified elastomer composition.
  • the composition was injection molded under the conditions of an injection pressure of 50 MPa, a cylinder temperature of 220 ° C., and a mold temperature of 40 ° C. using an in-line screw type injection molding machine (manufactured by Toshiba Machine Co., Ltd., product number: IS130). A sheet having a thickness of 2 mm, a width of 120 mm, and a length of 80 mm was formed. Furthermore, it was exposed to a constant temperature and humidity machine for 24 hours under the conditions of 85 ° C. and 85% RH to obtain a sheet for evaluating surface hardness and compression set.
  • the molding temperature was 170 ° C. under the hopper: cylinder 180 ° C. to 200 ° C., die 200 ° C., and screw rotation speed 30 rpm to obtain a sheet for evaluation of extrusion molding appearance.
  • Table 1 shows the evaluation results of various physical properties and extrusion appearance of the obtained elastomer composition of Example I-1.
  • Examples I-2 to 9 and Comparative Examples I-1 to 3 Except for changing to the raw material composition shown in Table 1, the same treatment as in Example I-1 was carried out to obtain pellets of the modified elastomer compositions of Examples I-2 to 9 and Comparative Examples I-1 to 3, respectively. Similarly, each evaluation sheet was molded from the modified elastomer composition. Table 1 shows the evaluation results of various physical properties and the appearance of extrusion molding.
  • the components (A-1) and (A-2) are indicated not by the actual blending amounts but by the blending amounts of only EPDM in the components (A-1) and (A-2).
  • the oil in a component is shown in a component (G) separately.
  • component (E-3) not only the actual blending amount but also blending of only 2,5-dimethyl-2,5-di (t-butylperoxy) hexane in component (E-3) It is shown in an amount (40% of the actual blending amount).
  • component (F-1) not the actual blending amount, but the blending amount of only divinylbenzene in component (F-1) (actual blending amount 55%) is shown.
  • Comparative Examples I-1 and I-2 were examples in which one or both of component (A) and component (C) were not used, but the extrusion molding appearance deteriorated.
  • Comparative Example I-3 is an example in which component (D) was not used, but the crosslinking reaction did not proceed sufficiently, the surface hardness was low, and the compression set characteristics and extrusion appearance were greatly inferior.
  • the component (G-1) is supplied from the supply port in the middle of the extruder by the liquid pump, and the temperature from the upstream part to the downstream part is raised in the range of 120 to 200 ° C. with a total discharge rate of 25 kg / h.
  • the modified elastomer composition was manufactured by performing melt-kneading and cutting the strands into pellets.
  • H-1 4 parts by mass of LZ033 as silanol condensation catalyst MB (0.048 parts by mass as tin catalyst) is added to 100 parts by mass of the resulting modified elastomer composition, and a crosslinked elastomer composition containing catalyst MB I got a thing.
  • the composition was injection molded under the conditions of an injection pressure of 50 MPa, a cylinder temperature of 220 ° C., and a mold temperature of 40 ° C. using an in-line screw type injection molding machine (manufactured by Toshiba Machine Co., Ltd., product number: IS130). A sheet having a thickness of 2 mm, a width of 120 mm, and a length of 80 mm was formed. Further, the sheet was exposed to a constant temperature and humidity machine for 24 hours under conditions of 85 ° C. and 85% RH to obtain a sheet for surface hardness, compression set, and gloss evaluation.
  • Example II-2 to 14 and Comparative Examples II-1 to 5 The pellets of the modified elastomer compositions of Examples II-2 to 14 and Comparative Examples II-1 to 5 were processed in the same manner as in Example II-1, except that the raw material formulations shown in Tables 2 to 4 were changed. Similarly, each evaluation sheet was molded and evaluated in the same manner. The results are shown in Tables 2-4.
  • the components (A-1), (A-2), and (A-4) are not actual blending amounts, but components (A-1), (A- 2) Shown as the blending amount of EPDM alone in (A-4).
  • component (E-3) not only the actual blending amount but also blending of only 2,5-dimethyl-2,5-di (t-butylperoxy) hexane in component (E-3) It is shown in an amount (40% of the actual blending amount).
  • component (F-1) not the actual blending amount, but the blending amount of only divinylbenzene in component (F-1) (actual blending amount 55%) is shown.
  • the elastomer compositions of Comparative Examples II-1 to II-5 are insufficient in any of compression set, low gloss, and blocking resistance.
  • the elastomer composition of the second invention has good sealing properties, molded appearance, and blocking resistance.
  • the elastomer composition of the first invention is excellent in compression set and extrusion appearance, it is required for various uses such as automotive parts such as glass run channels and weather strips, civil engineering / building material parts such as construction gaskets, and sports equipment. It can be used widely and effectively in industrial parts, home appliance parts, medical parts, food parts, medical equipment parts, electric wires, miscellaneous goods, and the like.
  • the elastomer composition of the second invention is excellent in compression set, molded appearance, and anti-blocking properties, so various applications that require them, such as automotive parts such as glass run channels and weather strips, and civil engineering / building material parts such as building gaskets. It can be used widely and effectively in sports goods, industrial parts, home appliance parts, medical parts, food parts, medical equipment parts, electric wires, miscellaneous goods and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

下記成分(A)~(D)を含み、成分(E)によりグラフトされてなる変性エラストマー組成物。成分(A)と成分(B)との合計100質量部中に成分(A)が5~70質量部、成分(B)が95~30質量部、成分(A)と成分(B)との合計100質量部に対して成分(C)が1~200質量部、成分(D)が0.01~3質量部であることが好ましい。 成分(A):エチレン・α-オレフィン・非共役ジエン共重合体ゴム 成分(B):エチレン単位含有量60~99質量%、非共役ジエン単位非含有のエチレン・α-オレフィン共重合体ゴム 成分(C):ポリエチレン、及び/又は、プロピレン単位含有量40~100質量%のプロピレン系樹脂 成分(D):不飽和シラン化合物 成分(E):過酸化物

Description

変性エラストマー組成物、架橋エラストマー組成物及びその成形体
 本発明は、変性エラストマー組成物、架橋エラストマー組成物及びその成形体に関する。
 第1発明は、圧縮永久歪、耐久性、押出成形外観に優れる変性エラストマー組成物及び架橋エラストマー組成物と、これを用いた成形体に関する。
 第2発明は圧縮永久歪、耐久性、耐ブロッキング性、成形性に優れる新規な低光沢変性エラストマー組成物及び架橋エラストマー組成物と、これを用いた成形体に関する。
 熱可塑性エラストマーは、加熱により軟化して流動性を有し、冷却するとゴム弾性を有するエラストマーである。熱可塑性エラストマーは、熱可塑性樹脂と同様の成形加工性を有すると共に、ゴム弾性を有する。熱可塑性エラストマーは、リサイクルが可能であることから、自動車部品、建築部品、医療用部品、電線被覆材、雑貨等の用途に幅広く用いられている。
 シール性が求められる用途に使われる場合には良好なゴム弾性、ないしは圧縮永久歪特性、良好な成形性や押出成形外観を有することが重要である。
 熱可塑性エラストマーは熱可塑性を確保するためにポリオレフィンのような熱可塑性樹脂を配合しているため、熱硬化性ゴムと比較すると圧縮永久歪特性が不十分で、用途に制限があった。EPDM等の熱硬化性ゴムは優れた圧縮永久歪特性を有するが、長い架橋工程が必要であり、耐久性に劣る。
 特許文献1~3には圧縮永久歪を改善したシラン変性によるエラストマー組成物が提案されている。特許文献1~3では、圧縮永久歪の改善のために多量の不飽和シラン化合物を添加する必要があり、経済性、生産性に問題があった。しかも、材料光沢が高くシール材には不向きであり、かつペレット化時、またはペレット化後にブロッキングしやすいという問題もあった。
 特許文献4にもシラン変性によるエラストマー組成物が提案されている。特許文献4では、圧縮永久歪(70℃×22時間)で50%強に留まり不十分であった。
 特許文献5にはフェノール樹脂等の架橋剤を用いた動的架橋型熱可塑性エラストマー組成物が提案されている。特許文献5では、前述の通り成分中に非架橋の熱可塑性樹脂を含有するため、圧縮永久歪は不十分であった。
国際公開第2016/140251号 国際公開第2016/140252号 国際公開第2016/140253号 特許第5346285号公報 特表第2005-516098号公報
 第1発明は、従来の熱硬化性ゴムと同様の圧縮永久歪特性を示し、かつ熱可塑性エラストマー組成物と同様の耐久性、成形性を有し、良好な押出成形外観となる変性エラストマー組成物、架橋エラストマー組成物及びその成形体を提供することを目的とする。
 第1発明者は、エチレン・α-オレフィン・非共役ジエン共重合体ゴム;非共役ジエン単位を含まないエチレン・α-オレフィン共重合体ゴム;ポリエチレン、ポリプロピレンまたはプロピレン・α-オレフィン共重合体;不飽和シラン化合物を含む組成物をグラフト変性させて得られる変性エラストマー組成物、或いは更にこれを架橋反応させてなる架橋エラストマー組成物が、本来不可能と考えられていた熱硬化性ゴム同等の圧縮永久歪特性と、熱可塑性エラストマー同様の簡便な押出成形性を両立させて、圧縮永久歪に優れ良好な押出成形外観を有する成形体を得ることができることを見出し、第1発明を完成するに至った。
 第1発明の要旨は、以下の[1]~[10]に存する。
[1] 下記成分(A)~(D)を含み、且つ下記成分(E)によりグラフトされてなる変性エラストマー組成物。
 成分(A):エチレン・α-オレフィン・非共役ジエン共重合体ゴム
 成分(B):エチレン単位含有量60~99質量%で、非共役ジエン単位を含まないエチレン・α-オレフィン共重合体ゴム
 成分(C):ポリエチレン、及び/又は、プロピレン単位含有量が40~100質量%であるプロピレン系樹脂
 成分(D):不飽和シラン化合物
 成分(E):過酸化物
[2] 前記成分(A)の含有量が前記成分(A)と前記成分(B)との合計100質量部中に5~70質量部であり、前記成分(B)の含有量が前記成分(A)と前記成分(B)との合計100質量部中に95~30質量部であり、前記成分(C)の含有量が前記成分(A)と前記成分(B)との合計100質量部に対して1~200質量部であり、前記成分(D)の含有量が前記成分(A)と前記成分(B)との合計100質量部に対して0.01~3質量部である、[1]に記載の変性エラストマー組成物。
[3] 前記成分(B)の密度が0.880g/cm以下である、[1]又は[2]に記載の変性エラストマー組成物。
[4] 前記成分(E)の使用量が、前記成分(A)と前記成分(B)との合計100質量部に対して0.01~3質量部である、[1]~[3]のいずれかに記載の変性エラストマー組成物。
[5] さらに成分(F):架橋助剤を、前記成分(A)と前記成分(B)との合計100質量部に対して0.001~2質量部含む、[1]~[4]のいずれかに記載の変性エラストマー組成物。
[6] 前記成分(D)が下記式(1)で表される化合物である、[1]~[5]のいずれかに記載の変性エラストマー組成物。
   RSi(R’)  …(1)
(ただし、Rはエチレン性不飽和炭化水素基であり、R’は互いに独立して炭素数1~10の炭化水素基又は炭素数1~10のアルコキシ基であり、R’のうちの少なくとも1つは炭素数1~10のアルコキシ基である。)
[7] さらに成分(G):軟化剤を、前記成分(A)と前記成分(B)との合計100質量部に対して0.5~200質量部含む、[1]~[6]のいずれかに記載の変性エラストマー組成物。
[8] 前記成分(C)が、ポリエチレン、及び/又は、エチレン単位含有量が0~50質量%のプロピレン系樹脂である、[1]~[7]のいずれかに記載の変性エラストマー組成物。
[9] [1]~[8]のいずれかに記載の変性エラストマー組成物を成分(H):シラノール縮合触媒により架橋反応させてなる架橋エラストマー組成物。
[10] [1]~[8]のいずれかに記載の変性エラストマー組成物又は[9]に記載の架橋エラストマー組成物で成形された成形体。
 第2発明は、従来の熱硬化性ゴムと同様の圧縮永久歪特性を示し、かつ熱可塑性エラストマー組成物と同様の耐久性、耐ブロッキング性、成形性をもつ低光沢の変性エラストマー組成物、架橋エラストマー組成物及びその成形体を提供することを目的とする。
 第2発明者は、エチレン・α-オレフィン・非共役ジエン共重合体ゴム、非共役ジエン単位を含まないエチレン・α-オレフィン共重合体ゴム、及び不飽和シラン化合物を含む組成物をグラフト変性させて得られる変性エラストマー組成物、或いは更にこれを架橋反応させてなる架橋エラストマー組成物が、本来不可能と考えられていた熱硬化性ゴム同等の圧縮永久歪特性と、熱可塑性エラストマー同等の耐ブロッキング性、成形性を有するものとすることができることを見出し、第2発明を完成するに至った。
 第2発明の要旨は、以下の[11]~[19]に存する。
[11] 下記成分(A),(B’)及び(D)を含み、且つ下記成分(E)によりグラフトされてなる変性エラストマー組成物。
成分(A):エチレン・α-オレフィン・非共役ジエン共重合体ゴム
成分(B’):示差走査熱量計(DSC)で測定される融解の終了ピーク温度が90℃以上であり、非共役ジエン単位を含まないエチレン・α-オレフィン共重合体ゴム
成分(D):不飽和シラン化合物
成分(E):過酸化物
[12] 前記成分(A)の含有量が前記成分(A)と前記成分(B’)との合計100質量部中に5~80質量部であり、前記成分(B’)の含有量が前記成分(A)と前記成分(B’)との合計100質量部中に95~20質量部であり、前記成分(D)の含有量が前記成分(A)と前記成分(B’)との合計100質量部に対して0.01~5質量部である、[11]に記載の変性エラストマー組成物。
[13] 前記成分(E)の使用量が前記成分(A)と前記成分(B’)との合計100質量部に対して0.01~3質量部である、[11]又は[12]に記載の変性エラストマー組成物。
[14] 前記成分(B’)の密度が0.880g/cm以下である、[11]~[13]のいずれかに記載の変性エラストマー組成物。
[15] さらに成分(F):架橋助剤を、前記成分(A)と前記成分(B’)との合計100質量部に対して0.001~2質量部含む、[11]~[14]のいずれかに記載の変性エラストマー組成物。
[16] 前記成分(D)が下記式(1)で表される化合物である、[11]~[15]のいずれかに記載の変性エラストマー組成物。
   RSi(R’)  …(1)
(ただし、Rはエチレン性不飽和炭化水素基であり、R’は互いに独立して炭素数1~10の炭化水素基又は炭素数1~10のアルコキシ基であり、R’のうちの少なくとも1つは炭素数1~10のアルコキシ基である。)
[17] さらに成分(G):軟化剤を、前記成分(A)と前記成分(B’)との合計100質量部に対して0.5~200質量部含む、[11]~[16]のいずれかに記載の変性エラストマー組成物。
[18] [11]~[17]のいずれかに記載の変性エラストマー組成物を成分(H):シラノール縮合触媒により架橋反応させてなる架橋エラストマー組成物。
[19] [11]~[17]のいずれかに記載の変性エラストマー組成物又は[18]に記載の架橋エラストマー組成物で成形された成形体。
 第1発明によれば、圧縮永久歪特性に優れ、且つ耐久性、押出成形性、押出成形外観が良好な変性エラストマー組成物及び架橋エラストマー組成物、並びにこれを用いた成形体を提供することができる。
 第2発明によれば、圧縮永久歪特性に優れ、且つ耐久性、耐ブロッキング性、成形性が良好である、低光沢の変性エラストマー組成物及び架橋エラストマー組成物、並びにこれを用いた成形体を提供することができる。
 本発明の変性エラストマー組成物及び架橋エラストマー組成物、並びにこれを用いた成形体は、従来熱硬化性ゴムが使用されている良好なゴム弾性が要求される用途、中でもグラスランチャンネルやウェザーストリップなどの自動車部材へ適用することで、従来よりも良好な品質な製品を得ることが期待できる。
 以下に本発明の実施の形態を詳細に説明するが、本発明は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。
 本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いることとする。
 本明細書において、単に「本発明」とする場合は、第1発明と第2発明とを含む発明をさし、第1発明と第2発明に共通するものである。
〔第1発明の変性エラストマー組成物及び架橋エラストマー組成物〕
 以下に第1発明の変性エラストマー組成物及び架橋エラストマー組成物について説明する。
[第1発明の変性エラストマー組成物]
 第1発明の変性エラストマー組成物は、下記成分(A)~(D)を含み、且つ下記成分(E)によりグラフトされてなる変性エラストマー組成物であり、好ましくは更に下記成分(F)~(G)を含む。
成分(A):エチレン・α-オレフィン・非共役ジエン共重合体ゴム
成分(B):エチレン単位含有量60~99質量%で、非共役ジエン単位を含まないエチレン・α-オレフィン共重合体ゴム
成分(C):ポリエチレン、及び/又は、プロピレン単位含有量が40~100質量%であるプロピレン系樹脂
成分(D):不飽和シラン化合物
成分(E):過酸化物
成分(F):架橋助剤
成分(G):軟化剤
 成分(A)の含有量は、成分(A)と成分(B)との合計100質量部中に5~70質量部であることが好ましい。
 成分(B)の含有量は、成分(A)と成分(B)との合計100質量部中に95~30質量部であることが好ましい。
 成分(C)の含有量は、成分(A)と成分(B)との合計100質量部に対して1~200質量部であることが好ましい。
 成分(D)の含有量は、成分(A)と成分(B)との合計100質量部に対して0.01~3質量部であることが好ましい。
 成分(E)は、好ましくは、成分(A)と成分(B)との合計100質量部に対して0.01~3質量部使用される。
 成分(F)の含有量は、成分(A)と成分(B)の合計100質量部に対して0.001~2質量部であることが好ましい。
 成分(G)の含有量は、成分(A)と成分(B)の合計100質量部に対して0.5~200質量部であることが好ましい。
[第1発明の架橋エラストマー組成物]
 第1発明の架橋エラストマー組成物は、第1発明の変性エラストマー組成物を下記成分(H)により架橋反応させてなる。
成分(H):シラノール縮合触媒
<メカニズム>
 第1発明の変性エラストマー組成物並びに架橋エラストマー組成物が、圧縮永久歪特性に優れ、耐久性が良好であるという効果を奏するメカニズムは以下の通り推定される。
 成分(D),(E),(H)さらに成分(E),(F)の効果により、成分(A),(B’)の架橋度が格段に上がり、高いゴム弾性を得ることができる。また残存二重結合が存在しないことから良好な耐久性を得ることができる。
<成分(A):エチレン・α-オレフィン・非共役ジエン共重合体ゴム>
 成分(A)のエチレン・α-オレフィン・非共役ジエン共重合体ゴムは、共重合成分としてエチレンとα-オレフィンと非共役ジエン化合物とを含有する共重合体である。エチレン・α-オレフィン・非共役ジエン共重合体ゴムには、エチレン・α-オレフィン・非共役ジエン共重合体ゴムと炭化水素系ゴム用軟化剤との混合物(以下、「油展エチレン・α-オレフィン・非共役ジエン共重合体ゴム」と称することもある。)である油展タイプのものと、炭化水素系ゴム用軟化剤を含まない非油展タイプのものがある。
 本実施形態では油展タイプの共重合体ゴムを意図しているが、非油展タイプのものも好適に用いることができる。
 本発明において、成分(A)のエチレン・α-オレフィン・非共役ジエン共重合体ゴムは、油展タイプと非油展タイプのいずれでも使用可能である。非油展タイプのもの又は油展タイプのものの1種類のみを単独で用いてもよく、2種類以上を任意の組み合わせ及び比率で用いてもよい。油展タイプの1種又は2種以上と非油展タイプの1種又は2種以上とを任意の組み合わせ及び比率で用いてもよい。
 油展タイプの場合、混合物中に含まれる炭化水素系ゴム用軟化剤は、成分(G)の軟化剤として分類される。
 油展タイプのものに含まれる炭化水素系ゴム用軟化剤としては、後述の成分(F)として例示したものが挙げられる。油展タイプのエチレン・α-オレフィン・非共役ジエン共重合体ゴムと炭化水素系ゴム用軟化剤の混合物において、油展タイプのエチレン・α-オレフィン・非共役ジエン共重合体ゴム100質量部に対する炭化水素系ゴム用軟化剤の割合(油展量)は通常10~200質量部程度である。
 成分(A)中のα-オレフィンとしては、好ましくはプロピレン、1-ブテン、3-メチル-1-ブテン、1-ペンテン、4-メチル-1-ペンテン、4,4-ジメチル-1-ペンテン、1-ヘキセン、4-メチル-1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-オクタデセン等の炭素数3~20、より好ましくは炭素数3~8のα-オレフィンが挙げられるが、これらに特に限定されない。これらの中でも、架橋性やブルームアウト抑制等の観点から、プロピレン、1-ブテン、3-メチル-1-ブテン、1-ペンテンが好ましく、より好ましくはプロピレン、1-ブテンである。α-オレフィンは、1種類のみを単独で、又は2種類以上を任意の組み合わせ及び比率で用いることができる。
 成分(A)中の非共役ジエン化合物としては、ジシクロペンタジエン、1,4-ヘキサジエン、シクロへキサジエン、シクロオクタジエン、ジシクロオクタジエン、1,6-オクタジエン、5-メチル-1,4-ヘキサジエン、3,7-ジメチル-1,6-オクタジエン、1,3-シクロペンタジエン、1,4-シクロヘキサジエン、2-メチル-1,5-ヘキサジエン、6-メチル-1,5-ヘプタジエン、7-メチル-1,6-オクタジエン、テトラヒドロインデン、メチルテトラヒドロインデン、5-イソプロピリデン-2-ノルボルネン、5-ビニル-2-ノルボルネン、ビニリデンノルボルネン、5-エチリデン-2-ノルボルネン(ENB)等のエチリデンノルボルネン、5-メチレン-2-ノルボルネン(MNB)等のメチレンノルボルネン等が挙げられるが、これらに特に限定されない。これらの中でも、架橋性等の観点から、ジシクロペンタジエン、エチリデンノルボルネン、ビニリデンノルボルネンが好ましく、より好ましくはジシクロペンタジエン、5-エチリデン-2-ノルボルネン、ビニリデンノルボルネンである。非共役ジエンは、1種類のみを単独で、又は2種類以上を任意の組み合わせ及び比率で用いることができる。
 エチレン・α-オレフィン・非共役ジエン共重合体ゴムの具体例としては、エチレン・プロピレン・5-エチリデン-2-ノルボルネン共重合体ゴム、エチレン・プロピレン・ジシクロペンタジエン共重合体ゴム、エチレン・プロピレン・1,4-ヘキサジエン共重合体ゴム、エチレン・プロピレン・5-ビニル-2-ノルボルネン共重合体ゴム等のエチレン・プロピレン・非共役ジエン共重合体ゴム(EPDM)や、エチレン・1-ブテン・5-エチリデン-2-ノルボルネン共重合体ゴムなどが挙げられるが、これらに特に限定されない。これらの中でも、架橋性やブルームアウト抑制等の観点から、エチレン・プロピレン・非共役ジエン共重合体ゴム(EPDM)が好ましい。エチレン・α-オレフィン・非共役ジエン共重合体ゴムは、1種類のみを単独で、又は2種類以上を任意の組み合わせ及び比率で用いることができる。
 エチレン・α-オレフィン・非共役ジエン共重合体ゴム中のエチレン単位の含有量は、特に限定されないが、50~90質量%が好ましく、より好ましくは55~85質量%であり、さらに好ましくは60~80質量%である。エチレン単位の含有量が上記好ましい範囲内であると、機械的強度やゴム弾性に優れるエラストマー組成物が得られ易い傾向にある。
 エチレン・α-オレフィン・非共役ジエン共重合体ゴム中のα-オレフィン単位の含有量は、特に限定されないが、10~50質量%が好ましく、より好ましくは15~45質量%、さらに好ましくは20~40質量%である。α-オレフィン単位の含有量が上記好ましい範囲内であると、機械的強度、適度な柔軟性、ゴム弾性に優れるエラストマー組成物が得られ易い傾向にある。
 エチレン・α-オレフィン・非共役ジエン共重合体ゴム中の非共役ジエン単位の含有量は、特に限定されないが、0.5~30質量%が好ましく、より好ましくは1~20質量%であり、さらに好ましくは2~10質量%である。非共役ジエン単位の含有量が上記好ましい範囲内であると、架橋性や成形性の調整が容易となり、機械的強度やゴム弾性に優れるエラストマー組成物が得られ易い傾向にある。
 成分(A)及び後述の成分(B)等の成分(B’)、成分(C)の各構成単位の含有量は、赤外分光法により求めることができる。
 成分(A)としては、特に、エチレン単位の含有量が55~75質量%であり、プロピレン単位の含有量が15~40質量%であり、ジシクロペンタジエン、5-エチリデン-2-ノルボルネン、及びビニリデンノルボルネンよりなる群から選択される少なくとも1種の非共役ジエン単位の含有量が1~10質量%のエチレン・プロピレン・非共役ジエン共重合体ゴム共重合体が好ましい。
 成分(A)のエチレン・α-オレフィン・非共役ジエン共重合体ゴムは、1種類のみを単独で、又は2種類以上を任意の組み合わせ及び比率で用いることができる。
<成分(B):エチレン・α-オレフィン共重合体>
 成分(B)のエチレン・α-オレフィン共重合体は、エチレン単位含有量が60~99質量%で、非共役ジエン単位を含まない共重合体、すなわち成分(A)を除くエチレン・α-オレフィン共重合体である。成分(B)のエチレン・α-オレフィン共重合体はこのようなものであればその種類は特に限定されず、公知のエチレン・α-オレフィン共重合体が適宜用いられる。
 エチレン・α-オレフィン共重合体の具体例としては、例えば、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体、エチレン・4-メチル-1-ペンテン共重合体、エチレン・1-ヘキセン共重合体、エチレン・1-オクテン共重合体等のエチレンと、炭素数3~10のα-オレフィンの1種又は2種以上との共重合体が挙げられる。
 エチレン・α-オレフィン共重合体を製造する際に用いられる触媒の種類は特に制限されないが、例えば、チーグラー・ナッタ触媒、メタロセン触媒が挙げられる。これらの中でも、メタロセン触媒により製造されたエチレン・α-オレフィン共重合体が好ましい。
 成分(B)のエチレン・α-オレフィン共重合体は、示差走査熱量計(DSC)で測定される融解の終了ピーク温度(以下「融解終了点」と称す場合がある。)が115℃以上のものが好ましい。エチレン・α-オレフィン共重合体の融解終了点が115℃以上であると高温でも結晶により形状を保持可能である。この観点からエチレン・α-オレフィン共重合体の融解終了点は115℃以上であることが好ましい。エチレン・α-オレフィン共重合体の融解終了点が過度に高いと、成形昇温時の未溶融のブツや成形冷却時の早期結晶化(メルトフラクチャー)により外観不良となる恐れがあることから、エチレン・α-オレフィン共重合体の融解終了点は通常145℃以下である。エチレン・α-オレフィン共重合体の融解終了点は、後述の実施例の項に記載の方法で測定される。
 成分(B)のエチレン・α-オレフィン共重合体の密度(JIS K6922-1,2:1997にて測定)は、0.850~0.910g/cmであることが好ましく、より好ましくは0.860~0.900g/cm、更に好ましくは0.860~0.880g/cmである。密度が上記上限値以下であると柔軟で密封性能に優れる傾向がある。密度が上記下限値以上では、室温で形状を維持でき、ヒステリシスロスも少ないことからヘタリ(圧縮永久歪)に優れる傾向がある。
 成分(B)のエチレン・α-オレフィン共重合体のエチレン単位の含有量は、60~99質量%、好ましくは60~85質量%である。エチレン単位の含有量が上記範囲内であると、機械的強度やゴム弾性に優れるエラストマー組成物が得られ易い傾向にある。
 成分(B)のエチレン・α-オレフィン共重合体のメルトフローレート(MFR)は、JIS K7210(1999)に準拠して温度190℃、荷重21.2Nの条件で測定されるメルトフローレート(MFR)で、好ましくは0.01~30g/10分である。MFRが大き過ぎると、圧縮永久歪が大きくなり密封性が低下するおそれがある。MFRが小さ過ぎると、変性押出時のモーター負荷が大きく、樹脂圧力が上昇し、生産性が悪化するほか、成形後の表面も荒れるおそれがある。これらの観点から、エチレン・α-オレフィン共重合体のMFRは、より好ましくは0.1g/10分以上、10g/10分以下である。
 本発明で用いるエチレン・α-オレフィン共重合体は市販品として入手することができる。例えば、ダウ・ケミカル社製エンゲージ(登録商標)シリーズ、日本ポリエチレン社製カーネル(登録商標)シリーズ、ダウ・ケミカル社製インフューズ(商標登録)シリーズ、三井化学社製タフマー(登録商標)シリーズ、三井化学社製エボリュー(商標登録)シリーズ等から該当品を選択して用いることができる。
 成分(B)のエチレン・α-オレフィン共重合体は、1種類のみを単独で、又は2種類以上を任意の組み合わせ及び比率で用いることができる。
<成分(C):ポリエチレン、及び/又は、プロピレン系樹脂>
 成分(C)は、ポリエチレン、及び/又は、プロピレン単位含有量が40~100質量%のプロピレン系樹脂である。成分(C)は成形性に寄与する。
 成分(C)としては、ポリエチレンの1種のみを用いてもよく、物性の異なるポリエチレンの2種以上を用いてもよい。プロピレン系樹脂の1種のみを用いてもよく、組成や物性の異なるプロピレン系樹脂の2種以上を用いてもよい。ポリエチレンの1種又は2種以上とプロピレン系樹脂の1種又は2種以上を併用してもよい。
 成分(C)のうち、ポリエチレン(エチレン単独重合体)としては、高密度ポリエチレン(低圧法ポリエチレン)、低密度ポリエチレン(高圧法ポリエチレン)、線状低密度ポリエチレンなどの中から選ばれた1種又は2種以上が好ましく用いられる。特に好ましいのは高密度ポリエチレンである。
 ポリエチレンの密度(JIS K6922-1,2)は0.91~0.97g/cmが好ましく、更に好ましくは0.94~0.97g/cmである。密度が0.91g/cmを下回る場合は、組成物の融点が下がり耐熱変形温度が低下する可能性がある。密度が0.97g/cmを超えるものの製造は通常困難である。
 JIS K 7210(1999)により、190℃、荷重21.2Nで測定される成分(C)のポリエチレンのメルトフローレート(MFR)は、通常0.01g/10分以上であり、流動性の観点から好ましくは0.05g/10分以上、より好ましくは0.1g/10分以上である。一方、通常50g/10分以下であり、成形性の観点から、好ましくは40g/10分以下、より好ましくは20g/10分以下である。
 成分(C)のうち、プロピレン系樹脂は、プロピレン系樹脂に含まれる全単量体単位に対するプロピレン単位の含有量が40~100質量%のプロピレン系樹脂であり、好ましくはエチレン単位の含有量が0~50質量%のものである。
 成分(C)のプロピレン系樹脂としては、その種類は特に制限ざれず、プロピレン単独重合体、プロピレンランダム共重合体、プロピレンブロック共重合体等のいずれも使用することができる。これらの1種を用いても2種以上を組み合わせて用いてもよい。
 成分(C)がプロピレンランダム共重合体又はプロピレンブロック共重合体である場合、プロピレンと共重合する単量体としては、エチレン、1-ブテン、2-メチルプロピレン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン等のα-オレフィンの1種又は2種以上が挙げられる。成分(C)がプロピレンブロック共重合体である場合、多段階で重合して得られるプロピレンブロック共重合体が挙げられる。より具体的には、第一段階でポリプロピレンを重合し、第二段階でプロピレン・エチレン共重合体を重合して得られるプロピレンブロック共重合体等が挙げられる。
 成分(C)のポリプロピレン系樹脂におけるプロピレン単位の含有量は、40質量%以上であり、好ましくは50質量%以上である。プロピレン単位の含有量が上記下限値以上であることにより、成形性、成形外観が良好となる傾向にある。プロピレン単位の含有量の上限については特に制限されず、通常100質量%である。
 JIS K 7210(1999)により、230℃、荷重21.2Nで測定される成分(C)のプロピレン系樹脂のメルトフローレート(MFR)は、通常0.01g/10分以上であり、流動性の観点から好ましくは0.05g/10分以上、より好ましくは0.1g/10分以上、さらに好ましくは0.5g/10分以上である。一方、通常200g/10分以下であり、成形性の観点から、好ましくは100g/10分以下、より好ましくは70g/10分以下、更に好ましくは50g/10分以下である。
 成分(C)のポリエチレンは市販の該当品を用いることが可能である。市販のポリエチレンとしては、例えば、日本ポリエチレン社のノバテック(登録商標)HD、プライムポリマー社のハイゼックス(登録商標)、住友化学社のスミカセン(登録商標)等が挙げられ、適宜選択することができる。
 成分(C)のプロピレン系樹脂も市販の該当品を用いることが可能である。市販のプロピレン系樹脂としては下記に挙げる製造者等から調達可能であり、適宜選択することができる。入手可能な市販品としては、プライムポリマー社のPrim Polypro(登録商標)、住友化学社の住友ノーブレン(登録商標)、サンアロマー社のポリプロピレンブロックコポリマー、日本ポリプロ社のノバテック(登録商標)PP、LyondellBasell社のMoplen(登録商標)、Adflex、Hiflex、Hifax
、ExxonMobil社のExxonMobil PP、Formosa Plastics社のFormolene(登録商標)、Borealis社のBorealis PP、LG Chemical社のSEETEC PP、A.Schulman社のASI POLYPROPYLENE、INEOS Olefins&Polymers社のINEOS PP、Braskem社のBraskem PP、SAMSUNG TOTAL PETROCHEMICALS社のSumsung Total、Sabic社のSabic(登録商標)PP、TOTAL PETROCHEMICALS社のTOTAL PETROCHEMICALS Polypropylene、SK社のYUPLENE(登録商標)、三菱ケミカル社のTefabloc等がある。
<成分(D):不飽和シラン化合物>
 本発明で用いる成分(D)の不飽和シラン化合物は限定されないが、下記式(1)で表される不飽和シラン化合物が好適に用いられる。
  RSi(R’)  ・・・(1)
 式(1)において、Rはエチレン性不飽和炭化水素基である。R’は互いに独立して炭素数1~10の炭化水素基又は炭素数1~10のアルコキシ基であり、R’のうちの少なくとも1つは炭素数1~10のアルコキシ基である。
 式(1)において、Rは好ましくは炭素数2~10のエチレン性不飽和炭化水素基であり、より好ましくは炭素数2~6のエチレン性不飽和炭化水素基である。具体的には、ビニル基、プロペニル基、ブテニル基、シクロヘキセニル基等のアルケニル基が挙げられる。
 式(1)において、R’は好ましくは炭素数1~6の炭化水素基又は炭素数1~6のアルコキシ基であり、より好ましくは炭素数1~4の炭化水素基又は炭素数1~4のアルコキシ基である。R’のうちの少なくとも1つは、好ましくは炭素数1~6のアルコキシ基であり、より好ましくは炭素数1~4のアルコキシ基である。R’の炭素数1~10の炭化水素基は脂肪族基、脂環族基、芳香族基のいずれであってもよいが、脂肪族基であることが望ましい。R’の炭素数1~10のアルコキシ基は、直鎖状、分岐状、環状のいずれでもよいが、直鎖状又は分岐状であることが好ましい。R’が炭化水素基の場合、具体的には、メチル基、エチル基、イソプロピル基、t-ブチル基、n-ブチル基、i-ブチル基、シクロヘキシル基等に代表されるアルキル基、又はフェニル基等に代表されるアリール基等が挙げられる。R’がアルコキシ基の場合、具体的には、メトキシ基、エトキシ基、イソプロポキシ基、β-メトキシエトキシ基が挙げられる。
 不飽和シラン化合物が式(1)で表される場合、3つのR’のうち少なくとも1つはアルコキシ基であるが、2つのR’がアルコキシ基であることが好ましく、全てのR’がアルコキシ基であることがより好ましい。
 不飽和シラン化合物としては、式(1)で表されるものの中でもビニルトリメトキシシラン、ビニルトリエトキシシラン、プロペニルトリメトキシシラン等に代表されるビニルトリアルコキシシランが望ましい。これはビニル基によって成分(B)(後述の第2発明では成分(B’))のエチレン・α-オレフィン共重合体への変性を可能とし、アルコキシ基によって後述の架橋反応が進行するからである。不飽和シラン化合物によりエチレン・α-オレフィン共重合体にグラフト変性されて導入されたアルコキシ基が、シラノール縮合触媒の存在下、水と反応して加水分解してシラノール基を生成させ、シラノール基同士が脱水縮合することにより、エチレン・α-オレフィン共重合体同士が結合して架橋反応が起こる。これらの不飽和シラン化合物は、1種類を単独で用いてもよく、2種以上を併用してもよい。
<成分(E):過酸化物>
 成分(E)の過酸化物としては、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル及びケトンパーオキサイド群に含まれる有機過酸化物が挙げられる。具体的には、以下のようなものが挙げられる。
 ハイドロパーオキサイド群にはキュメンハイドロパーオキサイド、ターシャリーブチルハイドロパーオキサイド等が含まれる。
 ジアルキルパーオキサイド群にはジクミルパーオキサイド、ジターシャリーブチルパーオキサイド、2,5-ジメチル-2,5-ジターシャリーブチルパーオキシヘキサン、2,5-ジメチル-2,5-ジターシャリーブチルパーオキシヘキシン-3、ジ(2-ターシャリーブチルパーオキシイソプロピル)ベンゼン等が含まれる。
 ジアシルパーオキサイド群にはラウリルパーオキサイド、ベンゾイルパーオキサイド等が含まれる。
 パーオキシエステル群にはターシャリーパーオキシアセテート、ターシャリーブチルパーオキシベンゾエイト、ターシャリーブチルパーオキシイソプロピルカーボネート等が含まれる。
 ケトンパーオキサイド群にはシクロヘキサノンパーオキサイド等が含まれる。
 これらの有機過酸化物は1種類を単独で用いてもよく、2種以上を併用してもよい。
 後述の成分(F)の架橋助剤と併用する場合、熱分解温度が高いラジカル発生剤が好ましい。この観点からジターシャリーブチルパーオキサイド、ジ(2-ターシャリーブチルパーオキシイソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジクミルパーオキサイドが好ましい。
<成分(F):架橋助剤>
 成分(F)の架橋助剤としては例えば、メトロハイドロジェンシリコン等の水素化ケイ素化合物、硫黄、p-キノンジオキシム、p-ジニトロソベンゼン、1,3-ジフェニルグアニジン等の過酸化物用助剤;ジビニルベンゼン、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルフタレート等の多官能ビニル化合物;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、アリル(メタ)アクリレート等の多官能(メタ)アクリレート化合物;N,N’-m-フェニレンビスマレイミド、N,N’-m-トルイレンビスマレイミド等のビスマレイミド構造を有する化合物;トリメチロールプロパン、トリメチロールプロパントリメタクリレート、塩化錫(SnCl)等が挙げられる。これらの中では、ジビニルベンゼン、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルフタレート等の多官能ビニル化合物や多官能(メタ)アクリレート化合物が好ましい。
 その他の架橋助剤としてフェノール樹脂を用いることもできる。フェノール樹脂としては、アルキルフェノールホルムアルデヒド、臭化アルキルフェノールノールホルムアルデヒド等が挙げられる。
 これらの架橋助剤は、1種類のみを単独で、又は2種類以上を任意の組み合わせ及び比率で用いることができる。
<成分(G):軟化剤>
 本発明の変性エラストマー組成物は、柔軟性を増加させるとともに、加工性や流動性、耐油性を向上させる観点から、成分(G)として軟化剤を含有することができる。
 成分(G)としては、例えば鉱物油系ゴム用軟化剤、合成樹脂系ゴム用軟化剤等が挙げられ、これらの中でも、他の成分との親和性等の観点から、鉱物油系ゴム用軟化剤が好ましい。
 鉱物油系ゴム用軟化剤は、一般的に、芳香族炭化水素、ナフテン系炭化水素及びパラフィン系炭化水素の混合物である。全炭素原子に対し、パラフィン系炭化水素の炭素の割合が50質量%以上のものはパラフィン系オイル、ナフテン系炭化水素の炭素の割合が30~45質量%のものはナフテン系オイル、芳香族系炭化水素の炭素の割合が35質量%以上のものは芳香族系オイルと呼ばれている。これらの中でも、軟化剤としては、常温(23±2℃)で液体である液状炭化水素系ゴム用軟化剤が好ましく、常温で液体である液状パラフィン系オイルがより好ましい。
 軟化剤として液状炭化水素系ゴム用軟化剤を用いることで、本発明の変性エラストマー組成物の柔軟性や弾性を増加させることができ、また加工性や流動性が飛躍的に向上する傾向にある。
 パラフィン系オイルとしては、特に限定されないが、40℃の動粘度が通常10cst(センチストークス)以上、好ましくは20cSt以上であり、通常800cSt以下、好ましくは600cSt以下のものである。パラフィン系オイルとしては、流動点が通常-40℃以上、好ましくは-30℃以上で、0℃以下のものが好適に用いられる。パラフィン系オイルとしては、引火点(COC)は、通常200℃以上、好ましくは250℃以上であり、通常400℃以下、好ましくは350℃以下のものが好適に用いられる。
 成分(G)の軟化剤は、1種類のみを単独で、又は2種類以上を任意の組み合わせ及び比率で用いることができる。
 成分(A)として油展タイプのものを用いた場合、油展タイプのエチレン・α-オレフィン・非共役ジエン共重合体ゴムと炭化水素系ゴム用軟化剤の混合物としてエラストマー組成物に導入される炭化水素系ゴム用軟化剤も、成分(G)の軟化剤に該当する。この場合、成分(G)として別途軟化剤を添加してもよく、別添の軟化剤を用いてもよい。軟化剤を別添する場合、油展タイプの成分(A)に含まれる炭化水素系ゴム用軟化剤と別添する軟化剤とは同一のものであってもよく、異なるものであってもよい。
<成分(H):シラノール縮合触媒>
 本発明の変性エラストマー組成物に成分(H)シラノール縮合触媒を配合することにより、組成物を分子間で架橋反応させることができる。この場合、前述の通り、成分(D)の不飽和シラン化合物により、成分(A)や成分(B)にグラフト変性されて導入されたアルコキシ基が、成分(H)のシラノール縮合触媒の存在下、水と反応して加水分解することによりシラノール基が生成し、更にシラノール基同士が脱水縮合することにより、架橋反応が進行し、変性エラストマー同士が結合して耐熱性に優れた架橋エラストマー組成物を生成させる。
 成分(H)のシラノール縮合触媒としては、金属有機酸塩、チタネート、ホウ酸塩、有機アミン、アンモニウム塩、ホスホニウム塩、無機酸及び有機酸、並びに無機酸エステルからなる群から選択される1種以上の化合物等が挙げられる。
 金属有機酸塩としては例えば、ジブチル錫ジラウレート、ジオクチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジオクトエート、酢酸第一錫、オクタン酸第一錫、ナフテン酸コバルト、オクチル酸鉛、ナフテン酸鉛、オクチル酸亜鉛、カプリル酸亜鉛、2-エチルヘキサン酸鉄、オクチル酸鉄、ステアリン酸鉄等が挙げられる。
 チタネートとしては例えば、チタン酸テトラブチルエステル、チタン酸テトラノニルエステル、ビス(アセチルアセトニトリル)ジ-イソプロピルチタネート等が挙げられる。
 有機アミンとしては例えば、エチルアミン、ジブチルアミン、ヘキシルアミン、トリエタノールアミン、ジメチルソーヤアミン、テトラメチルグアニジン、ピリジン等が挙げられる。
 アンモニウム塩としては例えば、炭酸アンモニウム、テトラメチルアンモニウムハイドロオキサイド等が挙げられる。ホスホニウム塩としては例えば、テトラメチルホスホニウムハイドロオキサイド等が挙げられる。
 無機酸及び有機酸としては例えば、硫酸、塩酸、酢酸、ステアリン酸、マレイン酸、トルエンスルホン酸、アルキルナフチルスルホン酸などのスルホン酸等が挙げられる。
 無機酸エステルとしては例えば、リン酸エステル等が挙げられる。
 これらの中で、好ましくは金属有機酸塩、スルホン酸、リン酸エステルが挙げられ、更に好ましくは錫の金属カルボン酸塩、例えばジオクチル錫ジラウレート、アルキルナフチルスルホン酸、エチルヘキシルリン酸エステルが挙げられる。
 シラノール縮合触媒は1種のみを用いても2種以上を組み合わせて用いてもよい。
 シラノール縮合触媒は、ポリオレフィンとシラノール縮合触媒とを配合したマスターバッチとして用いることが好ましい。このマスターバッチに用いることのできるポリオレフィンとしては、ポリエチレン、ポリプロピレン、およびエチレン・α-オレフィン共重合体等が挙げられる。
 ポリエチレンとしては、例えば、低・中・高密度ポリエチレン等の(分岐状又は直鎖状)エチレン単独重合体;エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体、エチレン・4-メチル-1-ペンテン共重合体、エチレン・1-ヘキセン共重合体、エチレン・1-オクテン共重合体等のエチレン・α-オレフィン共重合体;エチレン・酢酸ビニル共重合体、エチレン・(メタ)アクリル酸共重合体、エチレン・(メタ)アクリル酸エステル共重合体等のエチレン系共重合樹脂等が挙げられる。これらの中でもエチレン・プロピレン共重合体、エチレン・1-ブテン共重合体、エチレン・4-メチル-1-ペンテン共重合体、エチレン・1-ヘキセン共重合体、エチレン・1-オクテン共重合体等のエチレン・α-オレフィン共重合体が好ましい。
 これらの中でも本発明においては、耐熱性と強度のバランスに優れた高圧法低密度ポリエチレン、高密度ポリエチレン、エチレン・α-オレフィン共重合体が好ましい。エチレン・α-オレフィン共重合体としては、より好ましくはエチレン・1-ブテン共重合体、エチレン・4-メチル-1-ペンテン共重合体、エチレン・1-ヘキセン共重合体、エチレン・1-オクテン共重合体等のエチレン・α-オレフィン共重合体である。このエチレン・α-オレフィン共重合体は、1種又は2種以上のα-オレフィン2~60質量%と、エチレン40~98質量%とを共重合させたものであることがより好ましい。
 シラノール縮合触媒のマスターバッチには、これらのポリオレフィンの1種のみを用いてもよく、2種以上をブレンドして用いてもよい。
 シラノール縮合触媒を、ポリオレフィンとシラノール縮合触媒とを配合したマスターバッチとして用いる場合、マスターバッチ中のシラノール縮合触媒の含有量には特に制限は無いが、通常0.1~5.0質量%程度が好ましい。
 シラノール縮合触媒含有マスターバッチとしては市販品を用いることができる。例えば、三菱ケミカル(株)製「LZ082」「LZ033」を用いることができる。
<配合割合>
 第1発明の変性エラストマー組成物は、成分(A)を5~70質量部、成分(B)を95~30質量部の割合でこれらを合計で100質量部となるように含むことが好ましい。成分(A)の含有割合が上記上限よりも多く、成分(B)の含有割合が上記下限よりも少ないと良好な外観が得られない傾向にある。成分(A)の含有割合が上記下限よりも少なく、成分(B)の含有割合が上記上限よりも多いと光沢が高くなったり、ブロッキングしたりする傾向にある。このような観点から、成分(A)と成分(B)との合計100質量部中の成分(A)の割合はより好ましくは5~70質量部、更に好ましくは5~50質量部であり、成分(B)の割合はより好ましくは95~30質量部、更に好ましくは95~50質量部である。
 成分(A)と成分(B)の合計100質量部に対する成分(C)の含有量は、平滑な成形外観と柔軟性を保つ観点から1~200質量部であることが好ましく、より好ましくは5~80質量部であり、更に好ましくは10~50質量部である。
 成分(A)と成分(B)の合計100質量部に対する成分(D)の含有量は、架橋反応を十分に進行させる観点から、0.01~5質量部であることが好ましく、より好ましくは0.05~5質量部、更に好ましくは0.1~3質量部である。
 成分(E)の含有量は、成分(A)と成分(B)の合計100質量部に対し、好ましくは0.01~3質量部であり、十分な架橋反応を得ると共に平滑な成形外観を保つ観点からより好ましくは0.05~2質量部、更に好ましくは0.1~1質量部である。
 第1発明の変性エラストマー組成物が成分(F)を含む場合、成分(F)の含有量は、成分(A)と成分(B)の合計100質量部に対し、0.001~2質量部であり、経済性と十分な架橋反応を得る観点から好ましくは0.003~1質量部である。
 第1発明の変性エラストマー組成物が成分(G)を含む場合、成分(A)と成分(B)の合計100質量部に対する成分(G)(成分(A)として油展タイプを用いた場合は、成分(A)中の炭化水素系ゴム用軟化剤を含む。)の含有量は0.5~200質量部である。成分(G)の含有量が上記下限未満では、成分(G)による柔軟性や流動性、耐油性の向上効果を十分に得ることができない。成分(G)の含有量が上記上限を超えると表面からブリードアウトする恐れがある。この観点から、成分(A)と成分(B)の合計100質量部に対する成分(G)の含有量は、1~100質量部が好ましく、5~80質量部がより好ましい。
 第1発明の変性エラストマー組成物に成分(H)のシラノール縮合触媒を添加して架橋反応させる場合、その添加量としては特に限定されるものではないが、成分(H)をのぞく第1発明の変性エラストマー組成物100質量部に対し、好ましくは0.001~0.5質量部であり、更に好ましくは0.001~0.1質量部である。シラノール縮合触媒の添加量が上記下限値以上であると架橋反応が十分に進行し、耐熱性が良好となる傾向にあるために好ましい。シラノール縮合触媒の添加量が上記上限値以下であると押出機内で早期架橋が起こりにくく、ストランド表面や製品外観の荒れが発生しにくくなる傾向があるために好ましい。
<その他の成分>
 本発明の変性エラストマー組成物には、上記成分の他に、その他の成分として各種の添加剤や充填剤、成分(A)~(C)以外の樹脂やエラストマー等を本発明の効果を損なわない範囲で含有させることができる。
 添加剤としては、例えば、熱安定剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、結晶核剤、防錆剤、粘度調整剤、発泡剤、滑剤及び顔料等が挙げられる。これらのうち、酸化防止剤、特にフェノール系酸化防止剤、硫黄系酸化防止剤又はリン系の酸化防止剤を含有させるのが好ましい。
 酸化防止剤は、本発明の変性エラストマー組成物100質量%中に0.1~1質量%含有させるのが好ましい。
 その他の樹脂としては、例えば、成分(C)以外のポリオレフィン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリメチルメタクリレート樹脂、ロジンとその誘導体、テルペン樹脂や石油樹脂とその誘導体、アルキッド樹脂、アルキルフェノール樹脂、テルペンフェノール樹脂、クマロンインデン樹脂、合成テルペン樹脂、アルキレン樹脂、成分(A)~(B)以外のオレフィン系エラストマー、ポリアミド・ポリオール共重合体等のポリアミド系エラストマー;ポリ塩化ビニル系エラストマー及びポリブタジエン系エラストマー、スチレン系エラストマー、これらの水添物や、酸無水物等により変性して極性官能基を導入させたもの、更に他の単量体をグラフト、ランダム及び/又はブロック共重合させたもの等が挙げられる。
<変性エラストマー組成物の製造・成形>
 第1発明の変性エラストマー組成物は、成分(A)~(C)と、成分(D)の不飽和シラン化合物及び成分(E)の過酸化物、必要に応じて架橋助剤、軟化剤、その他の成分等を、公知の方法、例えば、ヘンシェルミキサー、Vブレンダー、タンブラーブレンダー等で機械的に混合した後、公知の方法で機械的に溶融混練することにより製造することができる。この溶融混練には、バンバリーミキサー、各種ニーダー、単軸又は二軸押出機等の一般的な溶融混練機を用いることができる。後掲の実施例に示すように、本発明の組成物を単軸又は二軸押出機等で混練して製造する場合、通常120~240℃、好ましくは120~220℃に加熱した状態で溶融混練を行うことができる。
 本発明の変性エラストマー組成物において、前述のシラノール縮合触媒を配合し、押出成形、射出成形、プレス成形等の各種成形方法により成形した後、水雰囲気中に曝すことにより、シラノール基間の架橋反応を進行させ、架橋されたエラストマー組成物とすることができる。水雰囲気中に曝す方法は、各種の条件を採用することができ、水分を含む空気中に放置する方法、水蒸気を含む空気を送風する方法、水浴中に浸漬する方法、温水を霧状に散水する方法等が挙げられる。
 この場合、成分(A)、(B)のグラフト変性に用いた不飽和シラン化合物由来の加水分解可能なアルコキシ基がシラノール縮合触媒の存在下、水と反応して加水分解することによりシラノール基が生成し、更にシラノール基同士が脱水縮合することにより、架橋反応が進行し、変性エラストマー同士が結合して架橋したエラストマー組成物を生成する。
 架橋反応の進行速度は水雰囲気中に曝す条件によって決まるが、通常0~130℃の温度範囲、かつ5分~1週間の範囲で曝せばよい。特に好ましい条件は、40~90℃の温度範囲、30分~24時間の範囲である。水分を含む空気を使用する場合、相対湿度は1~100%の範囲から選択される。
 このようにして得られる架橋エラストマー組成物の架橋度はシラノール縮合触媒の種類と配合量、架橋させる際の条件(温度、時間)等を変えることにより、調整することができる。
〔第2発明の変性エラストマー組成物及び架橋エラストマー組成物〕
 以下に、第2発明の変性エラストマー組成物及び架橋エラストマー組成物について説明する。
[第2発明の変性エラストマー組成物]
 第2発明の変性エラストマー組成物は、下記成分(A),(B’)及び(D)を含み、且つ成分(E)によりグラフトされてなる変性エラストマー組成物であり、好ましくは更に下記成分(F)~(G)を含む。
成分(A):エチレン・α-オレフィン・非共役ジエン共重合体ゴム
成分(B’):示差走査熱量計(DSC)で測定される融解の終了ピーク温度が90℃以上であり、非共役ジエン単位を含まないエチレン・α-オレフィン共重合体ゴム
成分(D):不飽和シラン化合物
成分(E):過酸化物
成分(F):架橋助剤
成分(G):軟化剤
 成分(A)の含有量は、成分(A)と成分(B’)との合計100質量部中に5~80質量部であることが好ましい。
 成分(B’)の含有量は、成分(A)と成分(B’)との合計100質量部中に95~20質量部であることが好ましい。
 成分(D)の含有量は、成分(A)と成分(B’)との合計100質量部に対して0.01~5質量部であることが好ましい。
 成分(E)は、好ましくは成分(A)と成分(B’)との合計100質量部に対して0.01~3質量部使用される。
 成分(F)の含有量は、成分(A)と成分(B’)の合計100質量部に対して0.001~2質量部であることが好ましい。
 成分(G)の含有量は、成分(A)と成分(B’)の合計100質量部に対して0.5~200質量部であることが好ましい。
[第2発明の架橋エラストマー組成物]
 第2発明の架橋エラストマー組成物は、第2発明の変性エラストマー組成物を下記成分(H)により架橋反応させてなる。
成分(H):シラノール縮合触媒
<メカニズム>
 第2発明の変性エラストマー組成物及び架橋エラストマー組成物が、圧縮永久歪特性に優れ、耐久性、耐ブロッキング性が良好で、低光沢であるという効果を奏するメカニズムは、以下の通り推定される。
 成分(D),(E),(H)さらに成分(F)の効果により、成分(A),(B’)の架橋度が格段に上がり高いゴム弾性を得ることができ、かつ成分(A)が成分(B’)の中に微分散されることにより乱反射で低い光沢を得、またブロッキングを抑える効果が発現される。更に、残存二重結合が存在しないことから良好な耐久性を得ることができる。
<成分(A):エチレン・α-オレフィン・非共役ジエン共重合体ゴム>
 第2発明で用いる成分(A)のエチレン・α-オレフィン・非共役ジエン共重合体ゴムとしては、第1発明の成分(A)のエチレン・α-オレフィン・非共役ジエン共重合体ゴムと同様のものを用いることができ、その作用効果や好ましい態様についても同様である。従って、第2発明の成分(A)の説明は第1発明の成分(A)の説明がそのまま適用される。
<成分(B’):エチレン・α-オレフィン共重合体>
 第2発明で用いる成分(B’)のエチレン・α-オレフィン共重合体は、示差走査熱量計(DSC)で測定される融解の終了ピーク温度(融解終了点)が90℃以上であって、エチレン単位とα-オレフィン単位を含み、非共役ジエン単位を含まない共重合体、すなわち成分(A)を除くエチレン・α-オレフィン共重合体である。成分(B’)のエチレン・α-オレフィン共重合体はこのようなものであればその種類は特に限定されず、公知のエチレン・α-オレフィン共重合体が適宜用いられる。
 成分(B’)のエチレン・α-オレフィン共重合体の具体例としては、例えば、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体、エチレン・4-メチル-1-ペンテン共重合体、エチレン・1-ヘキセン共重合体、エチレン・1-オクテン共重合体等のエチレンと、炭素数3~10のα-オレフィンの1種又は2種以上との共重合体が挙げられる。
 成分(B’)のエチレン・α-オレフィン共重合体を製造する際に用いられる触媒の種類は特に制限されないが、例えば、チーグラー・ナッタ触媒、メタロセン触媒が挙げられる。これらの中でも、メタロセン触媒により製造されたエチレン・α-オレフィン共重合体であることが好ましい。
 成分(B’)のエチレン・α-オレフィン共重合体は、融解終了点が90℃以上であるが、好ましくは115℃以上である。エチレン・α-オレフィン共重合体の融解終了点が高くなるほど高温でも結晶により形状を保持可能である。ただし、エチレン・α-オレフィン共重合体の融解終了点が過度に高いと、成形昇温時の未溶融のブツや成形冷却時の早期結晶化(メルトフラクチャー)により外観不良となる恐れがあることから、エチレン・α-オレフィン共重合体の融解終了点は通常145℃以下である。成分(B’)のエチレン・α-オレフィン共重合体の融解終了点は、後述の実施例の項に記載の方法で測定される。
 成分(B’)のエチレン・α-オレフィン共重合体の密度(JIS K6922-1,2:1997にて測定)は、0.850~0.910g/cmであることが好ましく、より好ましくは0.860~0.900g/cm、更に好ましくは0.860~0.880g/cmである。密度が上記上限値以下であると柔軟で密封性能に優れる傾向がある。また、密度が上記下限値以上では、室温で形状を維持でき、ヒステリシスロスも少ないことからヘタリに優れる傾向がある。
 成分(B’)のエチレン・α-オレフィン共重合体のエチレン単位の含有量は、好ましくは50~99質量%、より好ましくは60~95質量%である。エチレン単位の含有量が上記範囲内であると、機械的強度やゴム弾性に優れるエラストマー組成物が得られ易い傾向にある。
 成分(B’)のエチレン・α-オレフィン共重合体のメルトフローレート(MFR)は、JIS K7210(1999)に準拠して温度190℃、荷重21.2Nの条件で測定されるメルトフローレート(MFR)で、好ましくは0.01~30g/10分である。MFRが大き過ぎると、圧縮永久歪が大きくなり密封性が低下するおそれがある。MFRが小さ過ぎると、変性押出時のモーター負荷が大きく、樹脂圧力が上昇し、生産性が悪化するほか、成形後の表面も荒れるおそれがある。これらの観点から、成分(B’)のエチレン・α-オレフィン共重合体のMFRは、より好ましくは0.1g/10分以上、10g/10分以下である。
 成分(B’)のエチレン・α-オレフィン共重合体のエチレン・α-オレフィン共重合体は市販品として入手することができる。例えば、ダウ・ケミカル社製エンゲージ(登録商標)シリーズ、日本ポリエチレン社製カーネル(登録商標)シリーズ、ダウ・ケミカル社製インフューズ(商標登録)シリーズ、三井化学社製タフマー(登録商標)シリーズ、三井化学社製エボリュー(商標登録)シリーズ等から該当品を選択して用いることができる。
 成分(B’)のエチレン・α-オレフィン共重合体は、1種類のみを単独で、又は2種類以上を任意の組み合わせ及び比率で用いることができる。
<成分(D):不飽和シラン化合物>
 第2発明で用いる成分(D)の不飽和シラン化合物としては、第1発明の成分(D)の不飽和シラン化合物と同様のものを用いることができ、その作用効果や好ましい態様についても同様である。従って、第2発明の成分(D)の説明は第1発明の成分(D)の説明がそのまま適用される。
<成分(E):過酸化物>
 第2発明で用いる成分(E)の過酸化物としては、第1発明の成分(E)の過酸化物と同様のものを用いることができ、その作用効果や好ましい態様についても同様である。従って、第2発明の成分(E)の説明は第1発明の成分(E)の説明がそのまま適用される。
<成分(F):架橋助剤>
 第2発明で用いる成分(F)の架橋助剤としては、第1発明の成分(F)の架橋助剤と同様のものを用いることができ、その作用効果や好ましい態様についても同様である。従って、第2発明の成分(F)の説明は第1発明の成分(F)の説明がそのまま適用される。
<成分(G):軟化剤>
 第2発明で用いる成分(G)の軟化剤としては、第1発明の成分(G)の軟化剤と同様のものを用いることができ、その作用効果や好ましい態様についても同様である。従って、第2発明の成分(G)の説明は第1発明の成分(G)の説明がそのまま適用される。
<成分(H):シラノール縮合触媒>
 第2発明で用いる成分(H)のシラノール縮合触媒としては、第1発明の成分(H)のシラノール縮合触媒と同様のものを用いることができ、その作用効果や好ましい態様についても同様である。従って、第2発明の成分(H)の説明は第1発明の成分(H)の説明がそのまま適用される。
<配合割合>
 第2発明の変性エラストマー組成物は、成分(A)を5~80質量部、成分(B’)を95~20質量部の割合でこれらを合計で100質量部となるように含むことが好ましい。成分(A)の含有割合が上記上限よりも多く、成分(B’)の含有割合が上記下限よりも少ないと良好な外観が得られない恐れがある。成分(A)の含有割合が上記下限よりも少なく、成分(B’)の含有割合が上記上限よりも多いと光沢が高くなり、ブロッキングしやすくなる恐れがある。このような観点から、成分(A)と成分(B’)との合計100質量部中の成分(A)の割合はより好ましくは5~70質量部、更に好ましくは5~50質量部であり、成分(B’)の割合はより好ましくは95~30質量部、更に好ましくは95~50質量部である。
 成分(A)と成分(B’)の合計100質量部に対する成分(D)の含有量は、架橋反応を十分に進行させる観点から、0.01~5質量部であることが好ましく、より好ましくは0.05~5質量部、更に好ましくは0.1~3質量部である。
 成分(E)の含有量は、成分(A)と成分(B’)の合計100質量部に対し、好ましくは0.01~3質量部であり、十分な架橋反応を得ると共に平滑な成形外観を保つ観点からより好ましくは0.05~2質量部、更に好ましくは0.1~1質量部である。
 第2発明の変性エラストマー組成物が成分(F)を含む場合、成分(F)の含有量は、成分(A)と成分(B’)の合計100質量部に対し、0.001~2質量部であり、経済性と十分な架橋反応を得る観点から好ましくは0.003~1質量部である。
 第2発明の変性エラストマー組成物が成分(G)を含む場合、成分(A)と成分(B’)の合計100質量部に対する成分(G)(成分(A)として油展タイプを用いた場合は、成分(A)中の炭化水素系ゴム用軟化剤を含む。)の含有量は0.5~200質量部である。成分(G)の含有量が上記下限未満では、成分(G)による柔軟性や流動性、耐油性の向上効果を十分に得ることができない。成分(G)の含有量が上記上限を超えると表面からブリードアウトする恐れがある。この観点から、成分(A)と成分(B’)の合計100質量部に対する成分(G)の含有量は、1~100質量部が好ましく、5~80質量部がより好ましい。
 第2発明の変性エラストマー組成物に成分(H)のシラノール縮合触媒を添加して架橋反応させる場合、その添加量としては特に限定されるものではないが、成分(H)をのぞく第2発明の変性エラストマー組成物100質量部に対し、好ましくは0.001~0.5質量部であり、更に好ましくは0.001~0.1質量部である。シラノール縮合触媒の添加量が上記下限値以上であると架橋反応が十分に進行し、耐熱性が良好となる傾向にあるために好ましい。シラノール縮合触媒の添加量が上記上限値以下であると押出機内で早期架橋が起こりにくく、ストランド表面や製品外観の荒れが発生しにくくなる傾向があるために好ましい。
<その他の成分>
 第2発明の変性エラストマー組成物には、上記成分の他に、その他の成分として各種の添加剤や充填剤、成分(A)~(B’)以外の樹脂やエラストマー等を本発明の効果を損なわない範囲で含有させることができる。
 添加剤としては、第1発明の変性エラストマー組成物が含有し得る添加剤として前述したものが挙げられる。
 第2発明においても、第1発明と同様に酸化防止剤、特にフェノール系酸化防止剤、硫黄系酸化防止剤又はリン系の酸化防止剤を含有させるのが好ましい。
 酸化防止剤は、第2発明の変性エラストマー組成物100質量%中に0.1~1質量%含有させるのが好ましい。
 その他の樹脂としても、第1発明の変性エラストマー組成物が含有し得るその他の樹脂として前述したものが挙げられる。
<変性エラストマー組成物の製造・成形>
 第2発明の変性エラストマー組成物は、成分(A)及び(B’)の2種の共重合体と、成分(D)の不飽和シラン化合物及び成分(E)の過酸化物、必要に応じて架橋助剤、軟化剤、その他の成分等を、公知の方法で溶融混練することにより製造することができる。その溶融混練、シラノール縮合触媒を用いる場合の成形方法等について、第1発明における<変性エラストマー組成物の製造・成形>の項における説明をそのまま適用することができる。
〔用途〕
 本発明の変性エラストマー組成物及び架橋エラストマー組成物の用途は特に限定されない。例えば、グラスランチャンネル、ウェザーストリップ、ホース、ワイパーブレード、グロメット等の自動車部品やパッキン、ガスケット、クッション、防振ゴム、チューブ等の建築、工業部品、その他スポーツ、雑貨用品、医療用部品、食品用部品、家電用部品、電線被覆材として好適に用いることができる。
 以下、実施例を用いて本発明の具体的態様を更に詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例によって限定されるものではない。
 以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における上限又は下限の好ましい値としての意味をもつものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。
 以下の実施例及び比較例において、エラストマー組成物の調製に用いた原料及び得られたエラストマー組成物の評価方法は次の通りである。
[原材料]
 以下の実施例・比較例で使用した原材料は以下の通りである。
<油展又は非油展タイプのエチレン・α-オレフィン・非共役ジエン共重合体ゴム>
(A-1):JSR EP(登録商標)EP501EC(JSR社製)
 V触媒系油展EPDM
 非共役ジエン:5-エチリデン-2-ノルボルネン
 ジエン含有量:5.5質量%
 エチレン単位含有量:66質量%
 ムーニー粘度:54ML(予備加熱1分、および回転後4分後の値)125℃
 油展量:40質量部
(A-2):三井EPT(登録商標)3072EPM(三井化学社製)
 メタロセン触媒系油展EPDM
 非共役ジエン:5-エチリデン-2-ノルボルネン
 ジエン含有量:5.4質量%
 エチレン単位含有量:64質量%
 ムーニー粘度:51ML(予備加熱1分、および回転後4分後の値)125℃
 油展量:40質量部
(A-3):三井EPT(登録商標)3092PM(三井化学社製)
 メタロセン触媒系非油展EPDM
 非共役ジエン:5-エチリデン-2-ノルボルネン
 ジエン含有量:5.4質量%
 エチレン単位含有量:66質量%
 ムーニー粘度:61ML(予備加熱1分、および回転後4分後の値)125℃
(A-4):JSR EP(登録商標)EP505EC(JSR社製)
 V触媒系油展EPDM
 非共役ジエン:5-エチリデン-2-ノルボルネン
 エチレン単位含有量:67質量%
 ジエン含有量:4.5質量%
 ムーニー粘度:64ML(予備加熱1分、および回転後4分後の値)125℃
 油展量:100質量部
(A-5):JSR EP(登録商標)EP57C(JSR社製)
 V触媒系非油展EPDM
 非共役ジエン:5-エチリデン-2-ノルボルネン
 エチレン単位含有量:66質量%
 ジエン含有量:4.5質量%
 ムーニー粘度:58ML(予備加熱1分、および回転後4分後の値)125℃
<エチレン・α-オレフィン共重合体>
(B-1):エンゲージ(登録商標) XLT8677(ダウ・ケミカル社製)
 エチレン・α-オレフィン共重合体
 α-オレフィン:1-オクテン
 MFR:0.5g/10分(190℃、21.2N荷重)
 密度:0.87g/cm
 融解終了点:123℃
(B-2):タフマー(登録商標) A0550S(三井化学社製)
 エチレン・α-オレフィン共重合体
 α-オレフィン:ブテン
 MFR:0.5g/10分(190℃、21.2N荷重)
 密度:0.86g/cm
 融解終了点:58℃
(なお、成分(B-1),(B-2)のエチレン・α-オレフィン共重合体の融解終了点の測定方法は後述の通りである。)
<ポリエチレン又はプロピレン系樹脂>
(C-1)LyondellBasell社製Adflex Q300F
 プロピレン・α-オレフィン共重合体
 MFR:0.7g/10分(230℃、21.2N荷重)
 プロピレン単位含有量:65質量%
 α-オレフィン:エチレン
(C-2)LyondellBasell社製Adflex Q200F
 プロピレン・α-オレフィン共重合体
 MFR:0.8g/10分(230℃、21.2N荷重)
 プロピレン単位含有量:84質量%
 α-オレフィン:エチレン
(C-3)LyondellBasell社製Hifax X1956A
 プロピレン・α-オレフィン共重合体
 MFR:1.0g/10分(230℃、21.2N荷重)
 プロピレン単位含有量:90質量%
 α-オレフィン:エチレン
(C-4)LyondellBasell社製Hiflex CA7600A
 プロピレン・α-オレフィン共重合体
 MFR:2.0g/10分(230℃、21.2N荷重)
 プロピレン単位含有量:42質量%
 α-オレフィン:エチレン
(C-5)三菱ケミカル株式会社製Tefabloc 5013
 プロピレン・α-オレフィン共重合体
 MFR:0.7g/10分(230℃、21.2N荷重)
 プロピレン単位含有量:79質量%
 α-オレフィン:エチレン
(C-6)日本ポリプロ株式会社製ノバテックPP EA9
 プロピレン単独重合体
 MFR:0.5g/10分(230℃、21.2N荷重)
(C-7)日本ポリエチレン株式会社製ノバテックHD HY430
 高密度ポリエチレン
 MFR:0.8g/10分(190℃、21.2N荷重)
 密度:0.956cm/g
<不飽和シラン化合物>
(D-1)ビニルトリメトキシシラン:KBM-1003(信越化学社製)
<有機過酸化物>
(E-1)ジ(2-ターシャリーブチルパーオキシイソプロピル)ベンゼン:パーブチルP(日油社製)
(E-2)ジターシャリーブチルパーオキサイド:パーブチルD(日油社製)
(E-3)2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン:カヤヘキサAD40C(化薬アクゾ株式会社製、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン40質量%と有機フィラー60質量%との混合物)
<架橋助剤>
(F-1)ジビニルベンゼン(和光純薬工業株式会社製 ジビニルベンゼン55質量%とエチルビニルベンゼン45質量%との混合物)
(F-2)トリアリルシアヌレート(和光純薬工業株式会社製)
<軟化剤>
(G-1)パラフィン系ゴム用軟化剤:ダイアナ(登録商標) プロセスオイルPW90(出光興産株式会社製、パラフィン系オイル)
 40℃の動粘度:95.54cSt(センチストークス)
 流動点:-15℃
 引火点:272℃
<触媒マスターバッチ(MB)>
(H-1)シラノール縮合触媒MB:LZ033(三菱ケミカル株式会社製、1.2%錫触媒(ジオクチル錫ジラウレート)含有線状低密度ポリエチレン、低密度ポリエチレンのMFR:2g/10分(190℃、21.2N荷重)、低密度ポリエチレンの密度:0.92g/cm
[エチレン・α-オレフィン共重合体の融解終了点の測定]
 (株)日立ハイテクサイエンス社製の示差走査熱量計、商品名「DSC6220」を用いて、JIS K7121に準じて、試料約5mgを加熱速度100℃/分で20℃から200℃まで昇温し、200℃で3分間保持した後、冷却速度10℃/分で-10℃まで降温し、その後、加熱速度10℃/分で200℃まで昇温した時に測定されたサーモグラムから補外ピーク終了点(℃)を算出し、融解終了点とした。
[評価方法]
 実施例及び比較例におけるエラストマー組成物の各種評価方法を以下に示す。
(1)表面硬度
 得られた成形シートについて、JIS K6253(Duro-A)に準拠し、デュロA硬度(15秒後)を測定した。
(2)圧縮永久歪
 得られた成形シートについて、JIS K6262の規格に準拠し、70℃、22時間、25%圧縮条件で測定した。
(3)押出成形外観
 押出成形外観評価用のシート(表面積:250cm)の表面状態を目視にて確認を行い、表面平滑性について下記基準で評価を行った。
優 : 押出成形外観が非常に優れる。
良 : 押出成形外観が優れる。
可 : 押出成形外観が若干劣るが、許容範囲内である。
不可: 押出成形外観が非常に劣る。
(4)光沢
 得られた成形シートについて、JIS Z8741に準拠し、光沢を測定した。
(5)ブロッキング性
 変性エラストマー組成物混練時のストランドカットの際に、得られた組成物全体がブロッキングして塊となり、ストランドカッティング自体ができなかったものを×、得られた組成物が部分的にブロッキングしたものを△、ブロッキングがなかったものを○とした。
〔第1発明の実施例と比較例〕
[実施例I-1]
 表1に示す原料配合で、(G-1)以外の各原料を配合し、ヘンシェルミキサーにて1分間混合した。次いで、同方向二軸押出機(日本製鋼所社製、商品番号:TEX30、L/D=46、シリンダーブロック数:12)の上流の供給口に、得られた混合物を質量式フィーダーにて投入した。液添ポンプにて成分(G-1)を押出機の途中の供給口から供給し、合計25kg/hの吐出量にて、上流部から下流部を120~200℃の範囲で昇温させて溶融混練を行い、ペレット化して変性エラストマー組成物を製造した。
 得られた変性エラストマー組成物100質量部に対して、(H-1):シラノール縮合触媒MBとしてLZ033を4質量部(錫触媒として0.048質量部)加えて触媒MBを含有する変性エラストマー組成物を得た。これをインラインスクリュータイプの射出成形機(東芝機械社製、商品番号:IS130)を用い、射出圧力50MPa、シリンダー温度220℃、金型温度40℃の条件下にて、組成物を射出成形して厚さ2mm×幅120mm×長さ80mmのシートを成形した。さらに85℃、85%RHの条件で恒温恒湿機に24時間曝して、表面硬度及び圧縮永久歪評価用のシートとした。
 別に、変性エラストマー組成物100質量部に対して、(H-1):シラノール縮合触媒MBとしてLZ033を4質量部(錫触媒として0.048質量部)加えた触媒MBを含有する変性エラストマー組成物を、三菱重工製の直径40mm単軸押出機(L/D=22、圧縮比=2.77、フルフライトスクリュー)、幅25mm、厚み1mmのシート形状のダイスを使用して変性エラストマー組成物を得たのち、成形温度がホッパー下:170℃、シリンダー180℃~200℃、ダイス200℃、スクリュー回転数が30rpmの条件で成形を行い押出成形外観評価用のシートを得た。
 得られた実施例I-1のエラストマー組成物の各種物性および押出成形外観の評価結果を表1に示す。
[実施例I-2~9及び比較例I-1~3]
 表1に示す原料配合に変更する以外は、実施例I-1と同様に処理して、実施例I-2~9及び比較例I-1~3の変性エラストマー組成物のペレットをそれぞれ得、同様に変性エラストマー組成物から各評価用シートを成形した。それぞれの各種物性および押出成形外観の評価結果を表1に示す。
 表1中、成分(A-1),(A-2)については、実際の配合量ではなく、成分(A-1),(A-2)中のEPDMのみの配合量で示し、これらの成分中のオイルは別途成分(G)中に示す。
 同様に、成分(E-3)についても、実際の配合量ではなく、成分(E-3)のうちの2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサンのみの配合量(実配合量の40%)で示す。成分(F-1)についても、実際の配合量ではなく、成分(F-1)のうちのジビニルベンゼンのみの配合量(実配合量55%)で示す。
Figure JPOXMLDOC01-appb-T000001
[評価結果]
 表1に示すとおり、第1発明のエラストマー組成物に該当する実施例I-1~9は、いずれも良好な圧縮永久歪特性、押出成形外観を有している。
 これらの結果から、第1発明のエラストマー組成物は良好なシール特性、押出成形外観を有することが判明した。
 比較例I-1~2はそれぞれ成分(A)、成分(C)の一方又は双方を使用しなかった例であるが、押出成形外観が悪化した。
 比較例I-3は成分(D)を使用しなかった例であるが、架橋反応が十分に進まず表面硬度が低く、圧縮永久歪特性、押出成形外観が大きく劣る。
 上記の通り比較例I-1~3のエラストマー組成物は、圧縮永久歪、押出成形外観のいずれかが不十分である。
〔第2発明の実施例と比較例〕
[実施例II-1]
 表2の通りに示す原料配合で、(G-1)以外の各原料を配合し、ヘンシェルミキサーにて1分間混合した。次いで、同方向二軸押出機(日本製鋼所社製、商品番号:TEX30、L/D=46、シリンダーブロック数:12)の上流の供給口に、得られた混合物を質量式フィーダーにて投入した。液添ポンプにて成分(G-1)を押出機の途中の供給口から供給し、合計25kg/hの吐出量にて、上流部から下流部を120~200℃の範囲で昇温させて溶融混練を行い、ストランドをカットすることでペレット化して変性エラストマー組成物を製造した。
 得られた変性エラストマー組成物100質量部に対して、(H-1):シラノール縮合触媒MBとしてLZ033を4質量部(錫触媒として0.048質量部)加えて触媒MBを含有する架橋エラストマー組成物を得た。これをインラインスクリュータイプの射出成形機(東芝機械社製、商品番号:IS130)を用い、射出圧力50MPa、シリンダー温度220℃、金型温度40℃の条件下にて、組成物を射出成形して厚さ2mm×幅120mm×長さ80mmのシートを成形した。さらに85℃、85%RHの条件で恒温恒湿機に24時間曝して、表面硬度、圧縮永久歪、及び光沢評価用のシートとした。
 得られた実施例II-1のエラストマー組成物の評価結果を表2に示す。
[実施例II-2~14及び比較例II-1~5]
 表2~4に示す原料配合に変更する以外は、実施例II-1と同様に処理して、実施例II-2~14及び比較例II-1~5の変性エラストマー組成物のペレットをそれぞれ得、同様に各評価用シートを成形し、同様に評価を行った。
 結果を表2~4に示す。
 表2~4中、成分(A-1),(A-2),(A-4)については、実際の配合量ではなく、油展オイルを除いた成分(A-1),(A-2),(A-4)中のEPDMのみの配合量で示す。
 同様に、成分(E-3)についても、実際の配合量ではなく、成分(E-3)のうちの2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサンのみの配合量(実配合量の40%)で示す。成分(F-1)についても、実際の配合量ではなく、成分(F-1)のうちのジビニルベンゼンのみの配合量(実配合量55%)で示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
[評価結果]
 表2~3に示すとおり、第2発明のエラストマー組成物に該当する実施例II-1~14は、いずれも圧縮永久歪、耐ブロッキング性に優れ、低光沢である。
 比較例II-1~5のエラストマー組成物は、圧縮永久歪、低光沢、耐ブロッキング性のいずれかが不十分である。
 これらの結果から、第2発明のエラストマー組成物は良好なシール特性、成形外観、耐ブロッキング性を有することが判明した。
 第1発明のエラストマー組成物は、圧縮永久歪、押出成形外観に優れるため、これらが要求される各種用途、例えばグラスランチャンネル、ウェザーストリップなどの自動車部品、建築ガスケットなどの土木・建材部品、スポーツ用品、工業用部品、家電部品、医療用部品、食品用部品、医療用機器部品、電線、雑貨等において、広く且つ有効に利用可能である。
 第2発明のエラストマー組成物は、圧縮永久歪、成形外観、耐ブロッキング性に優れるため、これらが要求される各種用途、例えばグラスランチャンネル、ウェザーストリップなどの自動車部品、建築ガスケットなどの土木・建材部品、スポーツ用品、工業用部品、家電部品、医療用部品、食品用部品、医療用機器部品、電線、雑貨等において、広く且つ有効に利用可能である。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2018年1月31日付で出願された日本特許出願2018-015414及び日本特許出願2018-015416に基づいており、その全体が引用により援用される。

Claims (19)

  1.  下記成分(A)~(D)を含み、且つ下記成分(E)によりグラフトされてなる変性エラストマー組成物。
     成分(A):エチレン・α-オレフィン・非共役ジエン共重合体ゴム
     成分(B):エチレン単位含有量60~99質量%で、非共役ジエン単位を含まないエチレン・α-オレフィン共重合体ゴム
     成分(C):ポリエチレン、及び/又は、プロピレン単位含有量が40~100質量%であるプロピレン系樹脂
     成分(D):不飽和シラン化合物
     成分(E):過酸化物
  2.  前記成分(A)の含有量が前記成分(A)と前記成分(B)との合計100質量部中に5~70質量部であり、前記成分(B)の含有量が前記成分(A)と前記成分(B)との合計100質量部中に95~30質量部であり、前記成分(C)の含有量が前記成分(A)と前記成分(B)との合計100質量部に対して1~200質量部であり、前記成分(D)の含有量が前記成分(A)と前記成分(B)との合計100質量部に対して0.01~3質量部である、請求項1に記載の変性エラストマー組成物。
  3.  前記成分(B)の密度が0.880g/cm以下である、請求項1又は2に記載の変性エラストマー組成物。
  4.  前記成分(E)の使用量が、前記成分(A)と前記成分(B)との合計100質量部に対して0.01~3質量部である、請求項1~3のいずれかに記載の変性エラストマー組成物。
  5.  さらに成分(F):架橋助剤を、前記成分(A)と前記成分(B)との合計100質量部に対して0.001~2質量部含む、請求項1~4のいずれかに記載の変性エラストマー組成物。
  6.  前記成分(D)が下記式(1)で表される化合物である、請求項1~5のいずれかに記載の変性エラストマー組成物。
       RSi(R’)  …(1)
    (ただし、Rはエチレン性不飽和炭化水素基であり、R’は互いに独立して炭素数1~10の炭化水素基又は炭素数1~10のアルコキシ基であり、R’のうちの少なくとも1つは炭素数1~10のアルコキシ基である。)
  7.  さらに成分(G):軟化剤を、前記成分(A)と前記成分(B)との合計100質量部に対して0.5~200質量部含む、請求項1~6のいずれかに記載の変性エラストマー組成物。
  8.  前記成分(C)が、ポリエチレン、及び/又は、エチレン単位含有量が0~50質量%のプロピレン系樹脂である、請求項1~7のいずれかに記載の変性エラストマー組成物。
  9.  請求項1~8のいずれかに記載の変性エラストマー組成物を成分(H):シラノール縮合触媒により架橋反応させてなる架橋エラストマー組成物。
  10.  請求項1~8のいずれかに記載の変性エラストマー組成物又は請求項9に記載の架橋エラストマー組成物で成形された成形体。
  11.  下記成分(A),(B’)及び(D)を含み、且つ下記成分(E)によりグラフトされてなる変性エラストマー組成物。
     成分(A):エチレン・α-オレフィン・非共役ジエン共重合体ゴム
     成分(B’):示差走査熱量計(DSC)で測定される融解の終了ピーク温度が90℃以上であり、非共役ジエン単位を含まないエチレン・α-オレフィン共重合体ゴム
     成分(D):不飽和シラン化合物
     成分(E):過酸化物
  12.  前記成分(A)の含有量が前記成分(A)と前記成分(B’)との合計100質量部中に5~80質量部であり、前記成分(B’)の含有量が前記成分(A)と前記成分(B’)との合計100質量部中に95~20質量部であり、前記成分(D)の含有量が前記成分(A)と前記成分(B’)との合計100質量部に対して0.01~5質量部である、請求項11に記載の変性エラストマー組成物。
  13.  前記成分(E)の使用量が前記成分(A)と前記成分(B’)との合計100質量部に対して0.01~3質量部である、請求項11又は12に記載の変性エラストマー組成物。
  14.  前記成分(B’)の密度が0.880g/cm以下である、請求項11~13のいずれかに記載の変性エラストマー組成物。
  15.  さらに成分(F):架橋助剤を、前記成分(A)と前記成分(B’)との合計100質量部に対して0.001~2質量部含む、請求項11~14のいずれかに記載の変性エラストマー組成物。
  16.  前記成分(D)が下記式(1)で表される化合物である、請求項11~15のいずれかに記載の変性エラストマー組成物。
       RSi(R’)  …(1)
    (ただし、Rはエチレン性不飽和炭化水素基であり、R’は互いに独立して炭素数1~10の炭化水素基又は炭素数1~10のアルコキシ基であり、R’のうちの少なくとも1つは炭素数1~10のアルコキシ基である。)
  17.  さらに成分(G):軟化剤を、前記成分(A)と前記成分(B’)との合計100質量部に対して0.5~200質量部含む、請求項11~16のいずれかに記載の変性エラストマー組成物。
  18.  請求項11~17のいずれかに記載の変性エラストマー組成物を成分(H):シラノール縮合触媒により架橋反応させてなる架橋エラストマー組成物。
  19.  請求項11~17のいずれかに記載の変性エラストマー組成物又は請求項18に記載の架橋エラストマー組成物で成形された成形体。
PCT/JP2019/001631 2018-01-31 2019-01-21 変性エラストマー組成物、架橋エラストマー組成物及びその成形体 WO2019151011A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19747872.0A EP3747945B1 (en) 2018-01-31 2019-01-21 Modified elastomer composition, crosslinked elastomer composition, and molded article thereof
CN201980010644.XA CN111655783B (zh) 2018-01-31 2019-01-21 改性弹性体组合物、交联弹性体组合物和它们的成形体
US16/943,044 US11292902B2 (en) 2018-01-31 2020-07-30 Modified elastomer composition, crosslinked elastomer composition, and molded article thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-015414 2018-01-31
JP2018015414 2018-01-31
JP2018015416 2018-01-31
JP2018-015416 2018-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/943,044 Continuation US11292902B2 (en) 2018-01-31 2020-07-30 Modified elastomer composition, crosslinked elastomer composition, and molded article thereof

Publications (1)

Publication Number Publication Date
WO2019151011A1 true WO2019151011A1 (ja) 2019-08-08

Family

ID=67479246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001631 WO2019151011A1 (ja) 2018-01-31 2019-01-21 変性エラストマー組成物、架橋エラストマー組成物及びその成形体

Country Status (4)

Country Link
US (1) US11292902B2 (ja)
EP (1) EP3747945B1 (ja)
CN (1) CN111655783B (ja)
WO (1) WO2019151011A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147655A (ja) * 2019-03-12 2020-09-17 Mcppイノベーション合同会社 変性エラストマー組成物、架橋エラストマー組成物及びその成形体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3872126A4 (en) * 2018-10-23 2022-07-27 Sumitomo Chemical Company, Limited PROPYLENE RESIN COMPOSITION, AND MOLDED BODY MADE THEREOF
CN116219641A (zh) * 2023-03-22 2023-06-06 中国重汽集团济南动力有限公司 一种高耐疲劳空气纤维垫及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346285B2 (ja) 1975-06-13 1978-12-13
JPH0820703A (ja) * 1994-07-05 1996-01-23 Sumitomo Bakelite Co Ltd 柔軟性シラングラフトマー及び絶縁電線の製造方法
JPH0820691A (ja) * 1994-07-05 1996-01-23 Sumitomo Bakelite Co Ltd 柔軟性シラングラフトマー及び絶縁電線の製造方法
JPH0892437A (ja) * 1990-12-28 1996-04-09 Nippon Petrochem Co Ltd 表皮材
JP2008266615A (ja) * 2007-03-23 2008-11-06 Sumitomo Chemical Co Ltd 複合成形体および複合成形体の製造方法
JP2014062239A (ja) * 2012-08-28 2014-04-10 Japan Polyethylene Corp 太陽電池封止材用樹脂組成物、並びにそれを用いた太陽電池封止材及び太陽電池モジュール
WO2016140253A1 (ja) * 2015-03-03 2016-09-09 古河電気工業株式会社 シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品
JP2018015414A (ja) 2016-07-29 2018-02-01 山佐株式会社 遊技機
JP2018015416A (ja) 2016-07-29 2018-02-01 山佐株式会社 遊技機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287372A (ja) * 1993-04-02 1994-10-11 Sumitomo Chem Co Ltd 熱可塑性エラストマー組成物
US20030144415A1 (en) 2002-01-29 2003-07-31 Dsm N.V. Process for the preparation of a thermoplastic elastomer comprising a partially vulcanized rubber concentrate
JPWO2005066263A1 (ja) * 2003-12-26 2008-04-17 Jsr株式会社 熱可塑性エラストマー組成物およびその成形品
US8338543B2 (en) 2006-06-23 2012-12-25 Basell Poliolefine Italia S.R.L. Polyolefin thermoplastic vulcanizate elastomers
US8829106B2 (en) * 2009-11-20 2014-09-09 Dow Global Technologies Llc Thermoplastic elastomer for cold and wet applications
FR2953525B1 (fr) * 2009-12-03 2013-01-25 Arkema France Composition utile comme melange-maitre de reticulation comprenant une polyolefine fonctionnelle
EP2899077B1 (en) * 2012-09-19 2016-12-21 Mitsubishi Chemical Corporation Airbag housing cover
JP6706870B2 (ja) 2015-03-03 2020-06-10 古河電気工業株式会社 シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品
WO2016140252A1 (ja) * 2015-03-03 2016-09-09 古河電気工業株式会社 シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品
KR101895741B1 (ko) * 2015-03-30 2018-09-05 미쓰이 가가쿠 가부시키가이샤 열가소성 엘라스토머 조성물 및 그의 제조 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346285B2 (ja) 1975-06-13 1978-12-13
JPH0892437A (ja) * 1990-12-28 1996-04-09 Nippon Petrochem Co Ltd 表皮材
JPH0820703A (ja) * 1994-07-05 1996-01-23 Sumitomo Bakelite Co Ltd 柔軟性シラングラフトマー及び絶縁電線の製造方法
JPH0820691A (ja) * 1994-07-05 1996-01-23 Sumitomo Bakelite Co Ltd 柔軟性シラングラフトマー及び絶縁電線の製造方法
JP2008266615A (ja) * 2007-03-23 2008-11-06 Sumitomo Chemical Co Ltd 複合成形体および複合成形体の製造方法
JP2014062239A (ja) * 2012-08-28 2014-04-10 Japan Polyethylene Corp 太陽電池封止材用樹脂組成物、並びにそれを用いた太陽電池封止材及び太陽電池モジュール
WO2016140253A1 (ja) * 2015-03-03 2016-09-09 古河電気工業株式会社 シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品
JP2018015414A (ja) 2016-07-29 2018-02-01 山佐株式会社 遊技機
JP2018015416A (ja) 2016-07-29 2018-02-01 山佐株式会社 遊技機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147655A (ja) * 2019-03-12 2020-09-17 Mcppイノベーション合同会社 変性エラストマー組成物、架橋エラストマー組成物及びその成形体

Also Published As

Publication number Publication date
US20200354556A1 (en) 2020-11-12
CN111655783A (zh) 2020-09-11
EP3747945A4 (en) 2021-03-31
EP3747945B1 (en) 2023-08-30
EP3747945A1 (en) 2020-12-09
US11292902B2 (en) 2022-04-05
CN111655783B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
US11292902B2 (en) Modified elastomer composition, crosslinked elastomer composition, and molded article thereof
JP7499006B2 (ja) エラストマー組成物、水架橋性エラストマー組成物、及びその製造方法
JP2018135415A (ja) 熱可塑性エラストマー組成物の製造方法
JP6000714B2 (ja) オレフィン系熱可塑性エラストマー組成物の製造方法
US8877867B2 (en) Process for forming thermoplastic vulcanizates and extruded articles therefrom
JP2020117649A (ja) 熱可塑性樹脂組成物、それを用いた成形体、及び用途
JP2018154815A (ja) 変性ポリオレフィン組成物及び架橋ポリオレフィン組成物
JP2019157032A (ja) 動的架橋型熱可塑性エラストマー組成物およびその成形体
JP7147581B2 (ja) 変性エラストマー組成物、架橋エラストマー組成物及びその成形体
JP7225821B2 (ja) 変性エラストマー組成物、架橋エラストマー組成物及びその成形体
JP2020164779A (ja) 変性エラストマー組成物、架橋エラストマー組成物及びその成形体並びに自動車用シール部材
JP2020147655A (ja) 変性エラストマー組成物、架橋エラストマー組成物及びその成形体
JP2020139024A (ja) 変性エラストマー組成物、架橋エラストマー組成物及びその成形体
JP2019044110A (ja) 非発泡成形用動的架橋型熱可塑性エラストマー組成物
JP2018083867A (ja) シラン変性ポリオレフィン、シラン架橋ポリオレフィン、及びシラン変性ポリオレフィン組成物、並びに、これらを用いた成形体、架橋成形体及び三次元網状繊維集合体
JP7069760B2 (ja) 変性エラストマー組成物、架橋エラストマー組成物及びその成形体
JP7291186B2 (ja) エラストマー組成物、水架橋性エラストマー組成物、及びその製造方法
JP2021147416A (ja) 変性エラストマー組成物、架橋エラストマー組成物及びその射出成形体
JP2019044111A (ja) 動的架橋型熱可塑性エラストマー組成物及びその成形体
JP2019044112A (ja) 複合成形体用動的架橋型熱可塑性エラストマー組成物及び複合成形体
JP2024098276A (ja) 変性エラストマー組成物、架橋エラストマー組成物及び成形体
WO2022064869A1 (ja) 熱可塑性エラストマー組成物及び複合成形体
JP2022119694A (ja) 変性エラストマー組成物、架橋エラストマー組成物及びその押出成形体
WO2023276571A1 (ja) 熱可塑性エラストマー組成物およびその成形体
JP6838439B2 (ja) 熱可塑性エラストマー組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019747872

Country of ref document: EP

Effective date: 20200831