WO2019150997A1 - 液中粒子の評価装置及びその運転方法 - Google Patents

液中粒子の評価装置及びその運転方法 Download PDF

Info

Publication number
WO2019150997A1
WO2019150997A1 PCT/JP2019/001557 JP2019001557W WO2019150997A1 WO 2019150997 A1 WO2019150997 A1 WO 2019150997A1 JP 2019001557 W JP2019001557 W JP 2019001557W WO 2019150997 A1 WO2019150997 A1 WO 2019150997A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive member
liquid
particles
flow path
hollow portion
Prior art date
Application number
PCT/JP2019/001557
Other languages
English (en)
French (fr)
Inventor
真治 岡谷
恭也 竹本
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201980011328.4A priority Critical patent/CN111656162B/zh
Priority to AU2019213881A priority patent/AU2019213881A1/en
Priority to BR112020015595-0A priority patent/BR112020015595A2/pt
Priority to JP2019508273A priority patent/JP7172988B2/ja
Priority to US16/966,078 priority patent/US11181465B2/en
Publication of WO2019150997A1 publication Critical patent/WO2019150997A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • G01N15/1436Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement the optical arrangement forming an integrated apparatus with the sample container, e.g. a flow cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1468Electro-optical investigation, e.g. flow cytometers with spatial resolution of the texture or inner structure of the particle
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble

Definitions

  • the present invention relates to an apparatus for evaluating particles in liquid and an operation method thereof.
  • Patent Documents 1 and 2 As a means of automatically observing particles in the liquid such as microorganisms in the test liquid, the part of the test liquid containing particles is specified while adjusting the distance between the two transparent glasses according to the size of the liquid particles.
  • the technique of fixing to the area is known (Patent Documents 1 and 2).
  • An object of the present invention is to provide an apparatus for evaluating particles in liquid and an operation method thereof.
  • a liquid particle evaluation apparatus includes, as one aspect thereof, a main body member having a first opening and a second opening facing each other, and a hollow part inside, A first flow path and a second flow path connected to the body member and communicating with the hollow portion; A first drive member and a second drive member which are provided opposite to each other in the hollow portion and are slidable in the hollow portion; Drive means for driving the first drive member and / or the second drive member in the opposite direction in the hollow portion; Liquid feeding means for introducing a liquid containing particles into the hollow portion via the first flow path; Imaging means for imaging particles in the hollow portion from the first opening or the second opening, When the first drive member and the second drive member are observed from the opposing direction, the first drive member and the second drive member have portions wider than the first flow path and the second flow path.
  • the width between the first drive member and the second drive member in the facing direction is 0.01 mm or more and 0.0.
  • the first drive member and / or the second drive member are driven so that the distance is less than 05 mm and 0.5 mm or more except during observation.
  • the particles in liquid contained in the test liquid at suitable intervals by driving the first drive member and the second drive member in the opposite direction (vertical drive).
  • the first drive member and the second drive member in the opposite direction (vertical drive).
  • FIG. 1 is a schematic diagram of a cross-section of a main body member of an in-liquid particle evaluation apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the liquid particle evaluation apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a schematic view when the first driving member is observed from the direction facing the second driving member.
  • FIG. 4 a is a schematic view of a cross section of the in-liquid particle evaluation apparatus according to the second embodiment of the present invention.
  • FIG. 4 b is a schematic cross-sectional view of the in-liquid particle evaluation apparatus according to the second embodiment of the present invention.
  • FIG. 5 a is a schematic view of a cross section of the liquid particle evaluation apparatus according to the third embodiment of the present invention.
  • FIG. 5 b is a schematic cross-sectional view of the in-liquid particle evaluation apparatus according to the third embodiment of the present invention.
  • An apparatus for evaluating in-liquid particles includes a main body member having a first opening and a second opening facing each other, and a hollow portion inside, A first flow path and a second flow path connected to the body member and communicating with the hollow portion; A first drive member and a second drive member which are provided opposite to each other in the hollow portion and are slidable in the hollow portion; Drive means for driving the first drive member and / or the second drive member in the opposite direction in the hollow portion; Liquid feeding means for introducing a liquid containing particles into the hollow portion via the first flow path; Imaging means for imaging particles in the hollow portion from the first opening or the second opening, When the first drive member and the second drive member are observed from the opposing direction, the first drive member and the second drive member have portions wider than the first flow path and the second flow path. Have.
  • the apparatus for evaluating particles in liquid it is preferable that the first opening and the second opening face each other and communicate with the hollow part
  • the apparatus for evaluating particles in a liquid is in communication with the first opening and the second opening, which are opposed to each other and communicated to form a hollow part, and the hollow part, respectively.
  • a main body member having a first flow path and a second flow path, a first drive member and a second drive member that fit or loosely fit in the hollow portion, and the first drive member and / or the second, respectively.
  • Drive means for driving the drive member in the opposite direction in the hollow part liquid feeding means for introducing a liquid containing particles into the hollow part via the first flow path, and liquid in the hollow part
  • Imaging means for imaging middle particles, and when the first drive member and the second drive member are observed from opposite directions, the first drive member and the second drive member are arranged in the first flow. It has a part wider than the path and the second flow path.
  • FIG. 1 is a schematic diagram of a cross-section of a main body member of an in-liquid particle evaluation apparatus according to a first embodiment of the present invention.
  • the main body member 1 has a first opening 2 and a second opening 3 facing each other at one end and the other end (vertical direction).
  • the first opening 2 and the second opening 3 have the same width, but may have different widths, for example, or may have different opening shapes. Absent.
  • the main body member has a first opening and a second opening facing each other, and a hollow portion inside.
  • the main body member may be tubular, may be substantially circular, or may be polygonal.
  • the 1st opening part may be provided in one end and the 2nd opening part may be provided in the other end.
  • the first opening 2 and the second opening 3 may communicate with each other and form a hollow portion 6.
  • the test liquid existing in the hollow portion 6 can be observed and evaluated through the first opening 2 or the second opening 3.
  • the hollow portion has a uniform width as a whole from the first opening 2 to the second opening 3, but the shape is not particularly limited.
  • the main body member 1 has a first flow path 4 and a second flow path 5 on the side surface (left-right direction).
  • the first flow path 4 and the second flow path 5 have the same width and the same length in the width (up and down direction in FIG. 1) direction and the longitudinal (left and right direction in the figure) direction, respectively. They may be different or may have different shapes.
  • the first flow path 4 and the second flow path 5 are provided at the same position in the length direction (up and down in FIG. 1) of the main body member 1 so as to face each other. May be provided at different positions.
  • the first flow path 4 and the second flow path 5 are each connected to the main body member 1 and communicated with the hollow portion 6.
  • the material for forming the main body member is not particularly limited as long as it is not corroded by the test liquid, and examples thereof include metals such as stainless steel and aluminum.
  • An apparatus for evaluating submerged particles according to an embodiment of the present invention includes a first drive member and a second drive member that are provided in the hollow portion so as to face each other and are slidable in the hollow portion. Need.
  • the apparatus for evaluating particles in liquid according to the present invention needs to include a driving unit that drives the first driving member and / or the second driving member in the opposite direction in the hollow portion.
  • FIG. 2 is a schematic cross-sectional view of the liquid particle evaluation apparatus according to the first embodiment of the present invention.
  • the first drive member and the second drive member may be fitted or loosely fitted in the hollow portion, respectively.
  • the first drive member 7 and the second drive member 8 are fitted in the hollow portions 6 of the main body member 1, respectively, and the length ( It is in a state where it can be driven in the opposite direction in the figure.
  • “fitting” means that the first driving member and the second driving member are fitted into the hollow portion so that the hollow portion is in a liquid-tight state.
  • the first drive member and / or the second drive member may exist in a state where the hollow portion is not liquid-tight, that is, may be “freely fitted”.
  • Both the first drive member and the second drive member may be driven in the hollow portion, or only one of them may be driven in the hollow portion.
  • the drive member on the non-driven side may be fixed by bonding or the like so as to close a part of the first opening, the second opening, or the hollow part.
  • part corresponded to the drive member of the side which does not drive may be integrally molded with the main body member. In these cases, it is not a strict interpretation, and if it is assumed that there is no fixed driving member or a portion corresponding to the driving member, the first opening and the second opening are in communication with each other and are hollow. It can be considered that the part is formed.
  • the first drive member and / or the second drive member may be driven not only inside the hollow portion but also from inside the hollow portion to outside the hollow portion.
  • the test liquid existing in a partial region of the hollow portion sandwiched between the first driving member or the second driving member is used as the first driving member or the second driving member.
  • An image is taken and evaluated through the drive member.
  • both of the drive members may have a transparent portion, or the drive member may be molded so as to be transparent.
  • the material forming the transparent portion in the driving member include glass, acrylic resin, and polycarbonate resin.
  • metals such as stainless steel or aluminum, are mentioned, for example.
  • the in-liquid particle evaluation apparatus needs to include a liquid feeding means (not shown) for introducing a liquid containing particles into the hollow portion via the first flow path. .
  • the liquid particle evaluation apparatus needs to include an imaging unit that images the liquid particles in the hollow portion.
  • a liquid containing a particle that is, a test liquid can be introduced into a partial region of the hollow portion sandwiched between the first driving member or the second driving member while passing through the first flow path by the liquid feeding means. .
  • the test liquid existing in a partial region of the hollow portion sandwiched between the first drive member or the second drive member is passed through the first drive member 7 or the second drive member 8 in FIG. Images can be taken and evaluated by the imaging means 9.
  • the liquid feeding means include a turbo (non-volumetric) type or a positive displacement pump.
  • the imaging means include a camera having an element typified by CCD or CMOS, but it is preferable to use element sensitivity such as color or monochrome, or UV or IR depending on the evaluation object.
  • the test liquid introduced into a partial region of the hollow portion via the first flow path is discharged out of the hollow portion via the second flow path.
  • the test solution may be continuously introduced into a partial region of the hollow portion, but the first flow channel and / or the second flow channel is provided with a closing means, and the liquid flow of the test solution inside the first flow channel Is stopped, the test solution in a partial region of the hollow portion can be imaged and evaluated in a state where the test solution is temporarily retained.
  • FIG. 3 is a schematic view when the first driving member 7 is observed from the direction facing the second driving member 8.
  • the first flow path 4 and the second flow path 5 both have a constant width L1, but the first drive member 7 has a wider portion (the maximum width is L2).
  • the second driving member 8 not shown in FIG. 3 is observed from the opposite direction to FIG. 3, a portion wider than the width L1 of the first flow path 4 and the second flow path 5 is formed. Will have.
  • the first drive member 7 or the second drive member 8 does not have a portion wider than the width L1 of the first flow path 4 and the second flow path 5, that is, the first drive member. 7 or when the maximum width L2 of the second drive member 8 is the same as or narrower than L1, when liquid particles having the same diameter as L1 are introduced and retained in the hollow portion,
  • the first driving member 7 and / or the second driving member 8 are crushed by driving in the opposite direction (vertical driving)
  • the crushed particles in the liquid are moved in the width direction of the first driving member 7 and the second driving member 8. Lose the escape.
  • the first driving member 7 and the second driving member 8 are stretched without a gap in the direction of the length L3 and further pressure is applied to the liquid particles, the first driving member 7 and the second driving member 8 are fixed. More likely.
  • L3 and L2 are comparable, and furthermore, the first drive member 7 and the second drive member when the first drive member 7 and the second drive member 8 are observed from the opposite directions to each other.
  • the shape of 8 is more preferably a substantially circular shape or a polygonal shape, more preferably a substantially circular shape, from the viewpoint of preventing the retained particles in the liquid from being caught.
  • the width between the first drive member and the second drive member in the facing direction is the average size of the particles in the liquid or the object field of the imaging means provided in the liquid particle evaluation device according to the embodiment of the present invention. It may be determined appropriately according to the depth, etc., but when observing particles in the liquid, if the particles in the liquid are activated sludge, it is set to 0.01 mm or more from the viewpoint of imaging resolution and position reproducibility of the driving member. It is preferable. Further, from the viewpoint of preventing the particles in the liquid from overlapping in the vertical direction and erroneously recognizing, the width between the first drive member and the second drive member in the facing direction when observing the particles in the liquid is 0. It is preferable to be less than 05 mm.
  • the width between the first drive member and the second drive member be 0.5 mm or more in order to prevent the hollow portion from being blocked except when observing particles in the liquid.
  • the width between the first drive member and the second drive member other than during observation of particles in the liquid is preferably 1 mm or less in order to avoid an increase in observation time due to drive time.
  • the possibility that the particles in the liquid fixed to the first driving member and the second driving member are released is increased.
  • the width between the first drive member and the second drive member in the facing direction is 0.01 mm or more and less than 0.05 mm at the time of observation.
  • the 1st drive member and / or the 2nd drive member are driven so that it may become 0.5 mm or more except at the time of observation.
  • the speed at which the first drive member and / or the second drive member is driven in the opposite direction is 5 mm / s in order to reduce the possibility of damage to the drive member and the like while making the evaluation time including imaging appropriate.
  • the following is preferable.
  • FIGSecond Embodiment> 4a and 4b are schematic first driving members of a cross-section of a main body member of a liquid particle evaluation apparatus according to a second embodiment of the present invention.
  • the liquid particle evaluation apparatus according to the second embodiment of the present invention includes, in addition to the constituent elements of the liquid particle evaluation apparatus according to the first embodiment of the present invention, a main body member and a first drive member. And a connecting member that holds the space between the main body member and the first driving member in a liquid-tight manner.
  • the first drive member 7 is loosely fitted in the hollow portion 6 of the main body member 1, and the second drive member 12 is fitted.
  • the first drive member 7 is in a state where it can be driven by a drive means (not shown) so as to oppose the length direction (vertical direction in the drawing) of the main body member 1.
  • the second drive member 12 is configured not to be driven, and is fixed by adhesion so as to close the second opening.
  • the second driving member that is not driven may be integrally formed with the main body member.
  • the liquid particle evaluation apparatus in order to hold the main body member and the first drive member so as to be in a liquid-tight state, includes: A connecting member 11 as shown in FIG.
  • the connecting member 11 is attached to each of the main body member 1 and the first drive member (7).
  • the shape of the connecting member may be appropriately determined depending on the material, the driving range of the first driving member, and the like.
  • the connecting member may be an elastic member, and examples of the material of the connecting member include a resin, rubber, or elastomer that can expand and contract while having a certain tear strength.
  • a method of attaching the connecting member 11 to each of the main body member and the first driving member for example, fixing by adhesion or the like can be mentioned.
  • FIG. 5a and 5b are schematic views of a cross-section of a main body member of an in-liquid particle evaluation apparatus according to a third embodiment of the present invention.
  • the connecting member in the liquid particle evaluation apparatus according to the second embodiment of the present invention has a bellows structure.
  • the connecting member 13 has a bellows structure. Since the connecting member D1 has the bellows structure, the connecting member 13 is not greatly shaken in the side surface direction (left and right) even when the first driving member 7 is driven in the opposite direction (up and down driving) as shown in FIG. 5b. It becomes possible to expand and contract, and the evaluation of particles in the liquid can be carried out more stably.
  • the present invention can be suitably used for evaluating the state of particles in liquid such as activated sludge in a water treatment tank.

Abstract

本発明は、互いに対向する第1開口部及び第2開口部、並びに内部に中空部を有する、本体部材と、前記本体部材に接続され、前記中空部に連通する、第1流路及び第2流路と、前記中空部内に互いに対向して設けられ、かつ、前記中空部内で摺動可能である、第1駆動部材及び第2駆動部材と、前記第1駆動部材及び/又は前記第2駆動部材を前記中空部内で対向方向に駆動させる、駆動手段と、前記第1流路を経由して、前記中空部に粒子を含有する液体を導入する、送液手段と、前記第1開口部又は前記第2開口部より前記中空部内の粒子を撮像する、撮像手段と、を備え、前記第1駆動部材及び前記第2駆動部材を対向方向から観察した場合において、前記第1駆動部材及び前記第2駆動部材が、前記第1流路及び前記第2流路よりも幅広な部位を有する液中粒子の評価装置を提供する。

Description

液中粒子の評価装置及びその運転方法
 本発明は、液中粒子の評価装置及びその運転方法に関する。
 被検液中の微生物等の液中粒子を自動観察する手段として、液中粒子の大きさに応じて二枚の透明ガラスの間隔を調整しながら、粒子を含む被検液の一部を特定の領域に固定する技術が知られている(特許文献1及び2)。
日本国特公平3-53907号公報 日本国特表2004-503223号公報
 しかしながら、透明ガラス等の部材を上下に駆動させる従来の技術(特許文献1及び2)では、観察対象である液中粒子が押し潰される等して駆動部材に固着してしまい、それら固着物が自動観察の障害となるばかりでなく、それらを除去するために多大な負担を費やさねばならないことが問題視されていた。
 そこで本発明は、駆動部材を対向方向に駆動(上下駆動)させることにより好適な間隔において被検液に含まれる液中粒子を観察しながら、当該液中粒子の駆動部材等への固着を大幅に抑制することが可能な、液中粒子の評価装置及びその運転方法を提供することを目的とする。
 上記目的を達成するため、本発明の液中粒子の評価装置は、その一つの態様として、互いに対向する第1開口部及び第2開口部、並びに内部に中空部を有する、本体部材と、
前記本体部材に接続され、前記中空部に連通する、第1流路及び第2流路と、
前記中空部内に互いに対向して設けられ、かつ、前記中空部内で摺動可能である、第1駆動部材及び第2駆動部材と、
前記第1駆動部材及び/又は前記第2駆動部材を前記中空部内で対向方向に駆動させる、駆動手段と、
前記第1流路を経由して、前記中空部に粒子を含有する液体を導入する、送液手段と、
前記第1開口部又は前記第2開口部より前記中空部内の粒子を撮像する、撮像手段と、を備え、
前記第1駆動部材及び前記第2駆動部材を対向方向から観察した場合において、前記第1駆動部材及び前記第2駆動部材が、前記第1流路及び前記第2流路よりも幅広な部位を有する。
 また、前記液中粒子の評価装置の運転方法は、その一つの態様として、対向方向における前記第1駆動部材と前記第2駆動部材との間の幅が、観察時において0.01mm以上0.05mm未満、かつ、観察時以外において0.5mm以上となるように前記第1駆動部材及び/又は前記第2駆動部材を駆動させる。
 本発明の液中粒子の評価装置及びその運転方法によれば、第1駆動部材及び第2駆動部材を対向方向への駆動(上下駆動)により好適な間隔において被検液に含まれる液中粒子を観察できることに加えて、観察対象である液中粒子の駆動部材等への固着を顕著に抑制できることから、観察結果の正確性をより高め、かつ、装置メンテナンスの負担を大幅に抑制することが可能となる。
図1は、本発明の第1の実施形態に係る液中粒子の評価装置の本体部材の断面の概略図である。 図2は、本発明の第1の実施形態に係る液中粒子の評価装置の断面の概略図である。 図3は、第1駆動部材を第2駆動部材との対向方向から観察した場合の概略図である。 図4aは、本発明の第2の実施形態に係る液中粒子の評価装置の断面の概略図である。 図4bは、本発明の第2の実施形態に係る液中粒子の評価装置の断面の概略図である。 図5aは、本発明の第3の実施形態に係る液中粒子の評価装置の断面の概略図である。 図5bは、本発明の第3の実施形態に係る液中粒子の評価装置の断面の概略図である。
 本発明の好ましい実施の形態について、以下のとおり図面を参照しながら説明する。
 <第1の実施形態>
 本発明の実施形態にかかる液中粒子の評価装置は、互いに対向する第1開口部及び第2開口部、並びに内部に中空部を有する、本体部材と、
前記本体部材に接続され、前記中空部に連通する、第1流路及び第2流路と、
前記中空部内に互いに対向して設けられ、かつ、前記中空部内で摺動可能である、第1駆動部材及び第2駆動部材と、
前記第1駆動部材及び/又は前記第2駆動部材を前記中空部内で対向方向に駆動させる、駆動手段と、
前記第1流路を経由して、前記中空部に粒子を含有する液体を導入する、送液手段と、
前記第1開口部又は前記第2開口部より前記中空部内の粒子を撮像する、撮像手段と、を備え、
前記第1駆動部材及び前記第2駆動部材を対向方向から観察した場合において、前記第1駆動部材及び前記第2駆動部材が、前記第1流路及び前記第2流路よりも幅広な部位を有する。
 本発明の実施形態にかかる液中粒子の評価装置において、第1開口部及び第2開口部は互いに対向し、中空部に連通することが好ましい。
 本発明の実施形態にかかる液中粒子の評価装置は、互いに対向し、かつ、連通して中空部を形成する、第1開口部及び第2開口部、並びに、上記中空部にそれぞれ連通する、第1流路及び第2流路を有する、本体部材と、上記中空部にそれぞれ嵌合又は遊嵌する、第1駆動部材及び第2駆動部材と、上記第1駆動部材及び/又は上記第2駆動部材を上記中空部内で対向方向に駆動させる、駆動手段と、上記第1流路を経由して、上記中空部に粒子を含有する液体を導入する、送液手段と、上記中空部内の液中粒子を撮像する、撮像手段と、を備え、上記第1駆動部材及び上記第2駆動部材を対向方向から観察した場合において、上記第1駆動部材及び上記第2駆動部材が、上記第1流路及び上記第2流路よりも幅広な部位を有する。
 本発明の実施形態にかかる液中粒子の評価装置は、互いに対向し、かつ、連通して中空部を形成する、第1開口部及び第2開口部、並びに、上記中空部にそれぞれ連通する、第1流路及び第2流路を有する、本体部材を備えてもよい。
 図1は、本発明の第1の実施形態に係る液中粒子の評価装置の本体部材の断面の概略図である。図1の断面図においては、本体部材1はその一端及び他端(上下方向)において、互いに対向する第1開口部2及び第2開口部3を有する。
 図1の本体部材1においては、第1開口部2と第2開口部3とは等幅であるが、例えば互いの幅が異なっていても構わないし、互いの開口形状が異なっていても構わない。
 本体部材は、互いに対向する第1開口部及び第2開口部、並びに内部に中空部を有する。
 本体部材は、管状であってもよく、略円管状であっても、多角管状であってもよい。また、一端に第1開口部が設けられ、他端に第2開口部が設けられていてもよい。
 第1開口部2及び第2開口部3は連通していてもよく、中空部6を形成している。本発明の実施形態にかかる液中粒子の評価装置では、中空部6に存在する被検液を、第1開口部2又は第2開口部3を通じて観察し、評価することができる。
 図1の本体部材1においては、中空部は、第1開口部2から第2開口部3に至るまで、全体として等幅であるが、その形状は特に限定されず、例えば幅等の変化(膨らみやくびれ等)があっても構わないし、湾曲をしていても構わない。
 また図1の断面図においては、本体部材1はその側面(左右方向)において、第1流路4及び第2流路5を有する。
 図1においては、第1流路4及び第2流路5は幅(図1の上下)方向及び長手(図の左右)方向においてそれぞれ等幅及び等しい長さであるが、例えば互いの幅が異なっていても構わないし、互いの形状が異なっていても構わない。また、図1においては、第1流路4及び第2流路5は、本体部材1の長さ(図1の上下)方向において同位置に、互いに対向するように設けられているが、それらが異なる位置に設けられていても構わない。
 第1流路4及び第2流路5は、それぞれ本体部材1に接続され、中空部6に連通している。
 本体部材を形成する素材は、被検液により腐食するもの等でなければ特に限定されないが、例えば、ステンレス又はアルミ等の金属が挙げられる。
 本発明の実施形態にかかる液中粒子の評価装置は、上記中空部内に互いに対向して設けられ、かつ、上記中空部内で摺動可能である、第1駆動部材及び第2駆動部材を備えることを必要とする。また本発明の液中粒子の評価装置は、第1駆動部材及び/又は上記第2駆動部材を中空部内で対向方向に駆動させる、駆動手段を備えることを必要とする。
 図2は、本発明の第1の実施形態に係る液中粒子の評価装置の断面の概略図である。第1駆動部材及び第2駆動部材は、上記中空部内にそれぞれ嵌合又は遊嵌していてもよい。図2の断面図においては、本体部材1の中空部6にはそれぞれ、第1駆動部材7及び第2駆動部材8が嵌合され、駆動手段(図示しない)によって、本体部材1の長さ(図の上下)方向に対向して駆動可能な状態になっている。
 ここで「嵌合」とは、第1駆動部材及び第2駆動部材が、中空部が液密な状態となるように中空部にそれぞれ嵌め込まれることをいう。
 なお第1駆動部材及び/又は第2駆動部材は、中空部が液密にはならない状態で存在、すなわち、「遊嵌」していても構わない。
 第1駆動部材及び第2駆動部材は、その双方が中空部内で駆動をしても構わないし、いずれか一方のみが中空部内で駆動をしても構わない。
 後者の場合においては、駆動をしない側の駆動部材は第1開口部若しくは第2開口部、又は、中空部の一部を閉塞する形で接着等により固定されていても構わない。また、駆動をしない側の駆動部材に相当する部位が、本体部材と共に一体成型をされていても構わない。なおこれらの場合においては、厳密な解釈ではなく、固定された駆動部材又は駆動部材に相当する部位が存在しないと仮定したならば第1開口部及び第2開口部は互いに連通しており、中空部が形成されているものとみなすことができる。
 また第1駆動部材及び/又は第2駆動部材は、中空部内のみならず、中空部内から中空部外に亘って駆動をしても構わない。
 本発明の実施形態にかかる液中粒子の評価装置においては、第1駆動部材又は第2駆動部材で挟まれた中空部の一部領域に存在する被検液を、第1駆動部材又は第2駆動部材越しに撮像し、評価することになる。このため、第1駆動部材又は第2駆動部材の少なくとも一部は、透明又は半透明であることが好ましい。一方で、双方の駆動部材がいずれも透明な部位を有しても構わないし、駆動部材の全体が透明になるように成型がされていても構わない。
 駆動部材における透明な部位を形成する素材としては、例えば、ガラス、アクリル樹脂又はポリカーボネート樹脂が挙げられる。また、駆動部材における透明な部位以外の部位を形成する素材としては、例えば、ステンレス又はアルミ等の金属が挙げられる。
 本発明の実施形態にかかる液中粒子の評価装置は、第1流路を経由して、中空部に粒子を含有する液体を導入する、送液手段(図示しない)を備えることを必要とする。また本発明の実施形態にかかる液中粒子の評価装置は、中空部内の液中粒子を撮像する、撮像手段を備えることを必要とする。
 送液手段によって、第1流路を経由させながら、第1駆動部材又は第2駆動部材で挟まれた中空部の一部領域に、粒子を含有する液体すなわち被検液を導入することができる。そして撮像手段によって、第1駆動部材又は第2駆動部材で挟まれた中空部の一部領域に存在する被検液を、例えば図2においては第1駆動部材7又は第2駆動部材8越しに撮像手段9で撮像し、評価することができる。
 送液手段としては、例えば、ターボ(非容積)型又は容積型ポンプが挙げられる。
 撮像手段としては、例えば、CCD又はCMOSに代表される素子を持つカメラが挙げられるが、評価対象によってカラー若しくはモノクロ又はUV若しくはIR等の素子感度を使い分けることが好ましい。
 第1流路を経由して中空部の一部領域に導入された被検液は、第2流路を経由して中空部外へ排出される。なお、被検液は中空部の一部領域に連続的に導入されても構わないが、第1流路及び/又は第2流路に閉止手段を設けてその内部の被検液の液流を停止することで、中空部の一部領域内の被検液を一時的に滞留させた状態で撮像し、評価することができる。
 本発明の実施形態にかかる液中粒子の評価装置は、第1駆動部材及び第2駆動部材を対向方向から観察した場合において、第1駆動部材及び第2駆動部材が、第1流路及び第2流路よりも幅広な部位を有することを必要とする。
 図3は、第1駆動部材7を第2駆動部材8との対向方向から観察した場合の概略図である。第1流路4及び第2流路5は、いずれもその幅がL1で一定であるところ、第1駆動部材7は、それよりも幅広な部位(最大幅はL2)を有している。図3には図示されない第2駆動部材8についても、これを図3とは正反対の方向から観察した場合においては、第1流路4及び第2流路5の幅L1よりも幅広な部位を有することになる。
 図3に示されるように第1駆動部材7又は第2駆動部材8が第1流路4及び第2流路5の幅L1よりも幅広な部位を有さない場合、すなわち、第1駆動部材7又は第2駆動部材8の最大幅L2が、L1と同一又はL1よりも幅狭である場合には、L1と同程度の径を有する液中粒子が中空部に導入され滞留した場合において、第1駆動部材7及び/又は第2駆動部材8の対向方向への駆動(上下駆動)により押し潰されると、潰れた液中粒子は第1駆動部材7及び第2駆動部材8の幅方向への逃げ場を失う。そして、第1駆動部材7及び第2駆動部材8の長さL3の方向へ隙間無く延伸されて、液中粒子にさらに圧力がかかれば、第1駆動部材7及び第2駆動部材8に固着する可能性がより高くなる。
 一方で、図3に示されるように、第1駆動部材7又は第2駆動部材8が第1流路4及び第2流路5の幅L1よりも幅広な部位を有する場合には、L1と同程度の径を有する液中粒子が中空部に導入され滞留した場合においても、第1駆動部材7及び/又は第2駆動部材8の対向方向への駆動(上下駆動)により押し潰された液中粒子は第1駆動部材7及び第2駆動部材8の長さ方向のみならず幅方向にも延伸が可能であり、二つの駆動部材間において隙間無く延伸される可能性が顕著に低減されることになる。このため、液中粒子が第1駆動部材7及び第2駆動部材8に固着する可能性を、大幅に低減することが可能となる。
 第1駆動部材7及び第2駆動部材8の長さL3については、これが過度に短ければ液中粒子が中空部6に滞留する可能性、あるいは中空部6の洗浄が不十分となる可能性等が高まる。一方で、これが過度に長ければ、中空部6に導入された液中粒子の詰り等の可能性が高まることになる。このため、L3とL2とは同程度であることが好ましく、さらには、第1駆動部材7及び第2駆動部材8を互いの対向方向から観察した場合における第1駆動部材7及び第2駆動部材8の形状は、滞留した液中粒子の引っかかりの防止等の観点から、略円形又は多角形であることがより好ましく、略円形であることがさらに好ましい。
 対向方向における第1駆動部材と第2駆動部材との間の幅は、液中粒子の平均的なサイズや、本発明の実施形態にかかる液中粒子の評価装置が備える撮像手段の被写界深度等に応じて適宜決定すればよいが、液中粒子の観察時においては、液中粒子が活性汚泥であれば、撮像分解能と駆動部材の位置再現性の観点から、0.01mm以上とすることが好ましい。また、液中粒子が上下方向に重複し、誤認識するのを防止する観点から、液中粒子の観察時の対向方向における第1駆動部材と第2駆動部材との間の幅は、0.05mm未満とすることが好ましい。
 一方で、液中粒子の観察時以外においては、中空部の閉塞等を抑止するため、第1駆動部材と第2駆動部材との間の幅は、0.5mm以上とすることが好ましい。また、液中粒子の観察時以外における第1駆動部材と第2駆動部材との間の幅は、駆動時間による観察時間増加を避けるため1mm以下とすることが好ましい。なお、液中粒子の観察時以外においては、第1駆動部材及び第2駆動部材に固着した液中粒子等が遊離する可能性も高まることから、被検液の動入と、第1駆動部材及び第2駆動部材の対向方向への駆動(上下駆動)を、間欠的に繰り返すことが好ましい。
 本発明の実施形態にかかる液中粒子の評価装置の運転方法は、対向方向における前記第1駆動部材と前記第2駆動部材との間の幅が、観察時において0.01mm以上0.05mm未満、かつ、観察時以外において0.5mm以上となるように前記第1駆動部材及び/又は前記第2駆動部材を駆動させる。
 第1駆動部材及び/又は第2駆動部材が対向方向に駆動する速度については、撮像を含めた評価時間を適度なものとしつつ、駆動部材等の破損の可能性を低減するため、5mm/s以下とすることが好ましい。また、作業効率の観点から0.5mm/s以上とすることが好ましい。
 <第2の実施形態>
 図4a及び図4bは、本発明の第2の実施形態に係る液中粒子の評価装置の本体部材の断面の概略図第1駆動部材である。本発明の第2の実施形態に係る液中粒子の評価装置は、本発明の第1の実施形態に係る液中粒子の評価装置の構成要素に加えて、本体部材、及び、第1駆動部材に取り付けられ、本体部材と第1駆動部材との間を液密に保持する、連結部材を備える。
 図4a及び図4bの断面図においては、本体部材1の中空部6には、第1駆動部材7が遊嵌され、かつ、第2駆動部材12が嵌合されている。ここで第1駆動部材7は、駆動手段(図示しない)によって、本体部材1の長さ方向(図の上下方向)に対向して駆動可能な状態になっている。一方で、第2駆動部材12は駆動をしない構成となっており、第2開口部を閉塞する形で接着により固定されている。なお前述したように、駆動をしない第2駆動部材は、本体部材と共に一体成型されていても構わない。
 図4a及び図4bの断面図においては、本体部材1の中空部6に遊嵌された第1駆動部材7は、中空部6内のみならず、中空部6内から中空部6外に亘って駆動をする構成となっている。このような構成において、本体部材と第1駆動部材との間が液密な状態となるように保持すべく、本発明の第2の実施形態に係る液中粒子の評価装置は、図4a及び図4bに示すような連結部材11を備える。連結部材11は、本体部材1及び第1駆動部材(7)のそれぞれに取り付けられている。
 連結部材の形状は、その素材や第1駆動部材の駆動範囲等によって、適宜決定すればよい。連結部材は、弾性部材であってもよく、連結部材の素材としては、例えば、一定の破れ強度を有しながら伸縮が可能な、樹脂、ゴム又はエラストマーが挙げられる。
 連結部材11を、本体部材及び第1駆動部材のそれぞれに取り付ける方法としては、例えば、接着等による固定が挙げられる。
 <第3の実施形態>
 図5a及び図5bは、本発明の第3の実施形態に係る液中粒子の評価装置の本体部材の断面の概略図である。本発明の第3の実施形態に係る液中粒子の評価装置は、本発明の第2の実施形態に係る液中粒子の評価装置における連結部材が、蛇腹構造を有する。
 図5aの断面図においては、連結部材13は、蛇腹構造を有している。連結部材D1が蛇腹構造を有することで、図5bのように第1駆動部材7が対向方向への駆動(上下駆動)をしたとしても、連結部材13が側面方向(左右)に大きくぶれることなく伸縮することが可能となり、液中粒子の評価をより安定的に実施することが可能となる。
 本発明は、水処理槽の活性汚泥等の液中粒子の状態評価に、好適に利用することができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2018年2月1日出願の日本特許出願(特願2018-16114)に基づくものであり、その内容はここに参照として取り込まれる。
1   本体部材
2   第1開口部
3   第2開口部
4   第1流路
5   第2流路
6   中空部
7   第1駆動部材
8   第2駆動部材
9   撮像手段
11  連結部材
12  第2駆動部材(固定されている状態)
13  蛇腹構造を有する連結部材

Claims (6)

  1.  互いに対向する第1開口部及び第2開口部、並びに内部に中空部を有する、本体部材と、
     前記本体部材に接続され、前記中空部に連通する、第1流路及び第2流路と、
     前記中空部内に互いに対向して設けられ、かつ、前記中空部内で摺動可能である、第1駆動部材及び第2駆動部材と、
     前記第1駆動部材及び/又は前記第2駆動部材を前記中空部内で対向方向に駆動させる、駆動手段と、
     前記第1流路を経由して、前記中空部に粒子を含有する液体を導入する、送液手段と、
     前記第1開口部又は前記第2開口部より前記中空部内の粒子を撮像する、撮像手段と、を備え、
     前記第1駆動部材及び前記第2駆動部材を対向方向から観察した場合において、前記第1駆動部材及び前記第2駆動部材が、前記第1流路及び前記第2流路よりも幅広な部位を有する、
    液中粒子の評価装置。
  2.  前記本体部材、及び、前記第1駆動部材に取り付けられ、前記本体部材と前記第1駆動部材との間を液密に保持する、連結部材を備える、請求項1記載の液中粒子の評価装置。
  3.  前記連結部材が、蛇腹構造を有する、請求項2記載の液中粒子の評価装置。
  4.  前記第1駆動部材及び/又は前記第2駆動部材を対向方向から観察した場合における前記第1駆動部材及び/又は前記第2駆動部材の形状が、略円形又は多角形である、請求項1~3のいずれか一項に記載の液中粒子の評価装置。
  5.  対向方向における前記第1駆動部材と前記第2駆動部材との間の幅が、観察時において0.01mm以上0.05mm未満、かつ、観察時以外において0.5mm以上となるように前記第1駆動部材及び/又は前記第2駆動部材を駆動させる、請求項1~4のいずれか一項に記載の液中粒子の評価装置の運転方法。
  6.  前記第1駆動部材及び/又は前記第2駆動部材が対向方向に駆動する速度が、5mm/s以下である、請求項5記載の液中粒子の評価装置の運転方法。
PCT/JP2019/001557 2018-02-01 2019-01-18 液中粒子の評価装置及びその運転方法 WO2019150997A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980011328.4A CN111656162B (zh) 2018-02-01 2019-01-18 液中粒子的评价装置及其运转方法
AU2019213881A AU2019213881A1 (en) 2018-02-01 2019-01-18 Device for evaluating particles in liquid and method for operating same
BR112020015595-0A BR112020015595A2 (pt) 2018-02-01 2019-01-18 Dispositivo para avaliar partículas em líquido e método para operar o dispositivo para avaliar partículas em um líquido
JP2019508273A JP7172988B2 (ja) 2018-02-01 2019-01-18 液中粒子の評価装置及びその運転方法
US16/966,078 US11181465B2 (en) 2018-02-01 2019-01-18 Device for evaluating particles in liquid and method for operating same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018016114 2018-02-01
JP2018-016114 2018-02-01

Publications (1)

Publication Number Publication Date
WO2019150997A1 true WO2019150997A1 (ja) 2019-08-08

Family

ID=67478202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001557 WO2019150997A1 (ja) 2018-02-01 2019-01-18 液中粒子の評価装置及びその運転方法

Country Status (7)

Country Link
US (1) US11181465B2 (ja)
JP (1) JP7172988B2 (ja)
CN (1) CN111656162B (ja)
AU (1) AU2019213881A1 (ja)
BR (1) BR112020015595A2 (ja)
TW (1) TW201938786A (ja)
WO (1) WO2019150997A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57500995A (ja) * 1980-05-02 1982-06-03
JP2002323438A (ja) * 2001-01-03 2002-11-08 Becton Dickinson & Co 液体中の粒子体積の測定方法
JP2004503223A (ja) * 2000-07-10 2004-02-05 インノバティス・アーゲー 培地中の細胞の試験方法
US20100315501A1 (en) * 2009-06-16 2010-12-16 Ludwig Lester F Electronic imaging flow-microscope for environmental remote sensing, bioreactor process monitoring, and optical microscopic tomography
JP2015503736A (ja) * 2011-12-29 2015-02-02 ダンマークス テクニスク ユニバーシテット 電磁放射を用いて微小物体を分類するためのシステム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60244279A (ja) 1984-05-21 1985-12-04 Mitsubishi Electric Corp 微生物類の自動観察装置
EP0252927B1 (en) * 1985-12-31 1991-07-24 Jr Johanson, Inc. Determining flow properties of particulate materials
US7393690B2 (en) * 2003-05-06 2008-07-01 Thrombodyne, Inc. Systems and methods for measuring fluid properties
EP1975590A4 (en) 2005-12-28 2012-04-18 Takashi Suzuki DATA PROCESSING SYSTEM AND METHOD AND EVALUATION DEVICE FOR ACCEPTANCE / REJECTION
US8272776B2 (en) * 2007-01-31 2012-09-25 Ge Healthcare Bio-Sciences Ab Method and apparatus for forming an homogeneous mixture of chromatography media in a vessel
DE102008035770A1 (de) 2008-07-31 2010-02-18 Eads Deutschland Gmbh Optischer Partikeldetektor sowie Detektionsverfahren
GB2477287B (en) * 2010-01-27 2012-02-15 Izon Science Ltd Control of particle flow in an aperture
MY165167A (en) 2010-03-05 2018-02-28 Xtralis Technologies Ltd Improved dust discrimination for sensing systems
TW201219776A (en) 2010-06-17 2012-05-16 Geneasys Pty Ltd Microfluidic device with conductivity sensor
JP2014020832A (ja) * 2012-07-13 2014-02-03 Hitachi High-Technologies Corp 生体物質分析用フローセルと生体物質分析装置
BR112015021902B1 (pt) * 2013-03-15 2021-06-15 Iris International, Inc Líquido para alinhamento de partícula e organela intracelular
JP6258145B2 (ja) * 2014-07-18 2018-01-10 株式会社東芝 微粒子検査システム及びその駆動方法
CN106662521B (zh) * 2014-08-28 2018-06-12 希森美康株式会社 粒子拍摄装置及粒子拍摄方法
US9804116B2 (en) * 2014-12-26 2017-10-31 Kabushiki Kaisha Toshiba Method and device for detecting sample
EP3247998B1 (en) * 2015-01-21 2021-09-22 SBT Instruments A/S Microfluidic particle analysis device
JP6796917B2 (ja) * 2015-09-18 2020-12-09 シスメックス株式会社 粒子撮像装置および粒子撮像方法
CN107063943A (zh) * 2017-03-29 2017-08-18 河南省水产科学研究院 液体中颗粒物自动计数、图像采集及形态测量装置
US10607808B2 (en) * 2017-09-13 2020-03-31 Taiwan Electron Microscope Instrument Corporation Examination container and electron microscope

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57500995A (ja) * 1980-05-02 1982-06-03
JP2004503223A (ja) * 2000-07-10 2004-02-05 インノバティス・アーゲー 培地中の細胞の試験方法
JP2002323438A (ja) * 2001-01-03 2002-11-08 Becton Dickinson & Co 液体中の粒子体積の測定方法
US20100315501A1 (en) * 2009-06-16 2010-12-16 Ludwig Lester F Electronic imaging flow-microscope for environmental remote sensing, bioreactor process monitoring, and optical microscopic tomography
JP2015503736A (ja) * 2011-12-29 2015-02-02 ダンマークス テクニスク ユニバーシテット 電磁放射を用いて微小物体を分類するためのシステム

Also Published As

Publication number Publication date
US11181465B2 (en) 2021-11-23
AU2019213881A1 (en) 2020-08-20
US20200363314A1 (en) 2020-11-19
CN111656162B (zh) 2023-09-01
JP7172988B2 (ja) 2022-11-16
JPWO2019150997A1 (ja) 2020-11-26
TW201938786A (zh) 2019-10-01
CN111656162A (zh) 2020-09-11
BR112020015595A2 (pt) 2021-01-05

Similar Documents

Publication Publication Date Title
EP3618415A1 (en) Cleaning device and image capturing unit equipped with cleaning device
WO2016059920A1 (ja) 挿入機器の洗浄具
US20120316394A1 (en) Rigid-endoscope oversheath
CN105120731B (zh) 清洗辅助器具
EP2003438A2 (en) Apparatus for focusing a particle in sheath flow and method of manufacturing the same
EP2105147A1 (en) Endoscope cleaner and cleaning method
WO2019150997A1 (ja) 液中粒子の評価装置及びその運転方法
CN108714589A (zh) 一种多级变压脉冲清洗系统的清洗方法
US9636006B2 (en) Endoscope cleaning/disinfecting apparatus
CN208397314U (zh) 吸液手柄控制阀门
USD916716S1 (en) Water flow and water flow control device having display screen with transitional graphical user interface
CN106793934B (zh) 内窥镜清洗消毒机
CN108772387A (zh) 一种多级变压脉冲清洗装置
JPH04329510A (ja) 内視鏡
CN109044411B (zh) 基于毛细力驱动的泪液检测接触镜
CA2509371A1 (en) Intake assembly for self-propelled pool cleaner
CN102871603A (zh) 排液装置
CN208879258U (zh) 一种多级变压脉冲清洗系统
CN209361956U (zh) 一种过滤漏斗
CN205435511U (zh) 配液装置
JPS5912881Y2 (ja) 内視鏡頭部
CN108771622A (zh) 一种自闭式针形滴嘴及眼药水瓶
JP6116471B2 (ja) 流体供給具
JP2019068950A (ja) 圧力測定用容器および血液浄化装置
CN210906214U (zh) 一种生物检测用管

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019508273

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19748236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019213881

Country of ref document: AU

Date of ref document: 20190118

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020015595

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020015595

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200730

122 Ep: pct application non-entry in european phase

Ref document number: 19748236

Country of ref document: EP

Kind code of ref document: A1