WO2019150762A1 - Fe-Cr合金およびその製造方法、ならびに、抵抗発熱体 - Google Patents

Fe-Cr合金およびその製造方法、ならびに、抵抗発熱体 Download PDF

Info

Publication number
WO2019150762A1
WO2019150762A1 PCT/JP2018/044789 JP2018044789W WO2019150762A1 WO 2019150762 A1 WO2019150762 A1 WO 2019150762A1 JP 2018044789 W JP2018044789 W JP 2018044789W WO 2019150762 A1 WO2019150762 A1 WO 2019150762A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
alloy
mass
heating element
Prior art date
Application number
PCT/JP2018/044789
Other languages
English (en)
French (fr)
Inventor
映斗 水谷
多津彦 平谷
光幸 藤澤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2019519770A priority Critical patent/JP6562188B1/ja
Priority to KR1020207021961A priority patent/KR102364524B1/ko
Priority to EP18903055.4A priority patent/EP3748026A4/en
Priority to CN201880087914.2A priority patent/CN111655882B/zh
Priority to CN202110605936.7A priority patent/CN113322418B/zh
Priority to US16/965,013 priority patent/US11497085B2/en
Publication of WO2019150762A1 publication Critical patent/WO2019150762A1/ja
Priority to US17/449,128 priority patent/US20220015196A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • C23C10/08Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases only one element being diffused
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/44Siliconising
    • C23C10/46Siliconising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings

Definitions

  • the present invention relates to an Fe—Cr alloy having excellent electrical resistivity and oxidation resistance.
  • resistance heating The method of heating an object by Joule heat generated when a current is passed through the resistance heating element is called resistance heating. This method is used in a wide range of fields such as an industrial electric furnace and an electric heating cooker because the conversion efficiency from electric energy to heat energy is good and the controller is simple.
  • the resistance heating element used in this resistance heating can be classified into a metal heating element represented by Ni—Cr alloy and Fe—Cr alloy and a non-metallic heating element represented by SiC.
  • the metal heating element is excellent in workability as compared with the non-metallic heating element, and can be processed into a foil material or a wire material. Therefore, the metal heating element can be applied to a thin member such as a window glass or a floor, or a member to which a bending load such as a glove is applied.
  • JIS C 2520 includes three types of Ni—Cr alloy (1 to 3 types of nickel chrome wire and band for electric heating) as an alloy wire for electric heating and an alloy band for electric heating, and Fe— Two types of Cr alloys (one or two types of iron-chromium wire and strip for electric heating) are specified.
  • the Ni—Cr alloy is a Ni-based alloy mainly containing Cr: 15 to 21% and Si: 0.75 to 3%
  • the Fe—Cr alloy includes Cr: 17 to 26%
  • Patent Document 1 discloses that “In mass%, C: 0.080% or less, Si: 1.5 to 5.0%, Mn: 5% or less, P: 0.050% or less, S: 0.003% or less, Ni: 10 to 15%, Cr: 15-22%, Mo: 3% or less, Cu: 3.5% or less, N: 0.2% or less, O: 0.01% or less, Ti: 0.05% or less, the balance being A volume resistivity defined by ⁇ (c) / ⁇ (A), having a chemical composition comprising Fe and inevitable impurities, an average temperature coefficient of volume resistivity at 20 to 600 ° C. of 0.00100 / ° C.
  • Patent Document 2 includes “In mass%, C: 0.080% or less, Si: 1.5 to 5.0%, Mn: 5% or less, P: 0.050% or less, S: 0.003% or less, Ni: 10 to 15%, Cr: 15-22%, Mo: 3% or less, Cu: 3.5% or less, N: 0.2% or less, O: 0.01% or less, Ti: 0.05% or less, Ni / The ratio of Si is in the range of 3 to 7, the balance has a chemical composition consisting of Fe and inevitable impurities, the average temperature coefficient of volume resistivity at 20 to 600 ° C. is 0.00100 / ° C.
  • ⁇ ( c) Cold resistivity dependence of volume resistivity, wherein the volume resistivity index of volume resistivity defined by c) / ⁇ (A) is in the range of 0.970 to 1.030.
  • the volume resistivity at 200 ° C. in the work material and ⁇ (A) indicate the volume resistivity at 200 ° C. of the annealed material, respectively. Is disclosed.
  • the electrical resistivity of a metal heating element is generally lower than that of a nonmetallic heating element. Therefore, in order to obtain a necessary calorific value, it is necessary to reduce the cross-sectional area of the metal heating element by processing it into a foil material or a wire, and to increase the length. However, from the viewpoint of reducing the amount of heating element used and improving the degree of freedom in shape, a metal heating element having a higher electrical resistivity is currently required. Further, in the metal heating element, excellent oxidation resistance can be obtained by forming a protective oxide film at a high temperature by Cr or Al in the alloy.
  • a heating element that is installed immediately before an exhaust gas purification device such as an automobile and used for the purpose of increasing the temperature of the exhaust gas to promote the reaction with the catalyst may have a maximum temperature exceeding 1000 ° C. High oxidation resistance is required.
  • the Ni-Cr alloy electric heating nickel chrome wire and band 2 and 3 types have the maximum use temperature of 1000 ° C and 800 ° C respectively, and the maximum use It cannot be used in applications where the temperature exceeds 1000 ° C.
  • the maximum use temperature is 1100 degreeC
  • zone are very expensive because Ni content is 77% or more.
  • the electrical resistivity is 101 to 112 ⁇ ⁇ cm (1.01 to 1.12 ⁇ ⁇ m) in volume resistivity, which is not sufficient.
  • the Fe—Cr alloy has a maximum operating temperature higher than that of the Ni—Cr alloy, and one type of iron-chromium wire and band for electric heating is 1250 ° C., and the second type is 1100 ° C.
  • Fe—Cr alloy has higher electric resistivity than Ni—Cr alloy, volume resistivity, and one type of iron-chromium wire and band for electric heating is 142 ⁇ ⁇ cm (1.42 ⁇ ⁇ m), two types. Is 123 ⁇ ⁇ cm (1.23 ⁇ ⁇ m).
  • one or two of such iron-chromic wires and strips for electric heating are used at a high temperature exceeding 1000 ° C.
  • the oxidation rate of the heating element is high and Al is consumed early. This phenomenon is particularly noticeable with thin foil materials and thin wire rods, and as a result, the service life is greatly shortened. Further, at a high temperature exceeding 1000 ° C., there is a problem that the protective oxide film is easily peeled off and the heating element is easily damaged or broken.
  • the alloys described in Patent Documents 1 and 2 are Fe—Cr alloys, but have an austenite structure because they contain 10 to 15% of Ni as an austenite stabilizing element, and Fe— There is an advantage that the strength at high temperature is higher than that of the Cr alloy.
  • the austenite structure has a higher coefficient of thermal expansion than the ferrite structure, a large thermal stress is generated with the volume expansion during heating. In particular, when heating and cooling are repeatedly performed under conditions where the maximum operating temperature exceeds 1000 ° C., there is a problem that deformation and fracture due to thermal stress are likely to occur, and on the contrary, the life is shortened.
  • the present invention has been developed to solve the above problems, and has high electrical resistivity and excellent oxidation resistance, particularly excellent resistance to oxidation at a high temperature exceeding 1000 ° C., and is used as a resistance heating element.
  • the object is to provide a suitable Fe-Cr alloy together with its advantageous production method.
  • Another object of the present invention is to provide a resistance heating element using the above-described Fe—Cr alloy.
  • the gist configuration of the present invention is as follows. 1. % By mass C: 0.020% or less, Si: more than 1.5% and 10.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.010% or less, Cr: 16.0 to 30.0%, Al: 2.0 to 6.5%, N: not more than 0.020% and Ni: not more than 0.50%, with the balance being composed of Fe and inevitable impurities, An Fe—Cr alloy satisfying the relationship of the following formula (1). 14.0 ⁇ % Si + 1.15 ⁇ % Al + 0.35 ⁇ % Cr (1)
  • % Si,% Al, and% Cr are the contents (mass%) of Si, Al, and Cr in the above component composition.
  • the component composition is further mass%, Ti: 0.01 to 0.50%, Zr: 0.01 to 0.20%, Hf: 0.01 to 0.20%, REM: 0.01-0.20%, Cu: 0.01 to 0.10%, Nb: 0.01 to 0.50%, V: 0.01 to 0.50%, Mo: 0.01 to 6.0%, W: 0.01-6.0%, B: 0.0001 to 0.0050%, Ca: 0.0002 to 0.0100% and Mg: 0.0002 to 0.0100% 2.
  • the Fe—Cr alloy as described in 1 above, which contains one or more selected from among the above.
  • a slab containing N: 0.020% or less and Ni: 0.50% or less, the balance of which is a component composition of Fe and unavoidable impurities is subjected to rolling to obtain a final plate thickness,
  • the plate material is subjected to a siliconizing process by a thermal CVD method so that the Si content is more than 1.5 mass% and 10.0 mass% or less, and satisfies the relationship of the following formula (1).
  • % Si,% Al, and% Cr are the contents (mass%) of Si, Al, and Cr in the component composition of the Fe—Cr alloy.
  • the component composition of the slab is further mass%, Ti: 0.01 to 0.50%, Zr: 0.01 to 0.20%, Hf: 0.01 to 0.20%, REM: 0.01-0.20%, Cu: 0.01 to 0.10%, Nb: 0.01 to 0.50%, V: 0.01 to 0.50%, Mo: 0.01 to 6.0%, W: 0.01-6.0%, B: 0.0001 to 0.0050%, Ca: 0.0002 to 0.0100% and Mg: 0.0002 to 0.0100% 5.
  • a resistance heating element comprising the Fe—Cr alloy according to any one of 1 to 3 above.
  • an Fe—Cr alloy having high electrical resistivity and excellent oxidation resistance, particularly oxidation resistance at a high temperature exceeding 1000 ° C. can be obtained.
  • the heating element of an exhaust gas temperature raising device installed immediately before an exhaust gas purification device such as an automobile, an electric furnace or an electric heating cooker. It can also be suitably used as a heating element, further as a catalyst carrier, a reflector for a stove, a chimney member and the like.
  • C 0.020% or less
  • the toughness of a hot-rolled steel sheet or a cold-rolled steel sheet is lowered, making it difficult to produce an Fe—Cr alloy.
  • C content shall be 0.020% or less.
  • it is 0.015% or less, More preferably, it is 0.010% or less.
  • C content shall be 0.002% or more.
  • Si more than 1.5% and 10.0% or less Si has a function of increasing the electrical resistivity of the Fe—Cr alloy.
  • the Si content needs to be more than 1.5%.
  • the Si content is more than 1.5% and not more than 10.0%.
  • it is 1.7% or more, More preferably, it is 2.0% or more.
  • it is 6.0% or less, More preferably, it is 5.0% or less, More preferably, it is 4.0% or less.
  • Mn 1.0% or less
  • Mn content shall be 1.0% or less.
  • Mn content is 0.5% or less, More preferably, it is 0.15% or less.
  • the Mn content is preferably 0.01% or more.
  • the P content is set to 0.040% or less. Preferably it is 0.030% or less.
  • P content shall be 0.005% or more.
  • S content 0.010% or less
  • S content shall be 0.010% or less.
  • it is 0.004% or less, More preferably, it is 0.002% or less.
  • S content shall be 0.0005% or more.
  • Cr 16.0-30.0% Cr is an indispensable element for ensuring oxidation resistance at high temperatures. Moreover, although it is less effective than Al and Si, it also has the function of increasing the electrical resistivity. Here, if the Cr content is less than 16.0%, sufficient oxidation resistance at high temperatures cannot be ensured. On the other hand, if the Cr content exceeds 30.0%, the toughness of the slab and hot-rolled steel sheet in the process of producing the Fe—Cr alloy decreases, making it difficult to produce the Fe—Cr alloy. Therefore, the Cr content is 16.0 to 30.0%. Preferably it is 17.0% or more, more preferably 18.0% or more. Moreover, it is preferably 26.0% or less, more preferably 22.0% or less.
  • Al 2.0 to 6.5%
  • Al is an element that generates an oxide film containing Al 2 O 3 as a main component (hereinafter also referred to as an Al 2 O 3 oxide film) at a high temperature to improve oxidation resistance.
  • Al also has the effect of increasing the electrical resistivity. These effects are obtained when the Al content is 2.0% or more.
  • the Al content is set to 2.0 to 6.5%. Preferably it is 4.0% or more. Moreover, Preferably it is 6.0% or less.
  • N 0.020% or less
  • the toughness is lowered and it becomes difficult to produce an Fe—Cr alloy.
  • N content shall be 0.020% or less.
  • it is 0.010% or less.
  • N content shall be 0.002% or more.
  • Ni is an element that stabilizes the austenite structure.
  • the Ni content exceeds 0.50%, an austenite structure is formed when Al begins to deplete due to the progress of oxidation at a high temperature and Cr begins to be oxidized.
  • the coefficient of thermal expansion of the Cr—Fe alloy changes, and as a result, problems such as breakage of the member are caused.
  • the Ni content is 0.50% or less.
  • it is 0.20% or less.
  • it does not specifically limit about a minimum, Since refinement cost will increase if it tries to reduce excessively, it is preferable to set it as 0.01% or more.
  • the Si content, the Al content, and the Cr content must satisfy the relationship of the following formula (1).
  • % Si,% Al, and% Cr are the contents (mass%) of Si, Al, and Cr in the component composition of the Fe—Cr alloy.
  • the inventors manufactured an Fe—Cr alloy in which the contents of Si, Al, and Cr were changed under various conditions, and the electrical resistivity was measured by volume resistivity. As shown in FIG. The volume resistivity of the Fe—Cr alloy was found to be approximately proportional to% Si + 1.15 ⁇ % Al + 0.35 ⁇ % Cr.
  • the value of% Si + 1.15 ⁇ % Al + 0.35 ⁇ % Cr is set to 14.0 or more. Preferably it is 14.5 or more, More preferably, it is 15.0 or more.
  • the upper limit is not particularly limited, but is preferably about 18.0. Note that FIG. 1 shows No. 2 in Tables 2 and 3 in Examples described later. 1-10 and no. This is a plot of 12 to 21 data.
  • Ti 0.01 to 0.50% Ti has an effect of improving toughness by being combined with C and N in steel, and an effect of improving oxidation resistance. Therefore, Ti can be contained in an amount of 0.01% or more as necessary. However, if the Ti content exceeds 0.50%, a large amount of Ti oxide is mixed in the Al 2 O 3 film, and the oxidation resistance at high temperatures is lowered. Therefore, when Ti is contained, its content is set to 0.01 to 0.50%. More preferably, it is 0.05% or more. Further, it is more preferably 0.20% or less.
  • Zr 0.01-0.20%
  • Zr has the effect of improving the adhesion of the Al 2 O 3 oxide film and improving the oxidation resistance by reducing the growth rate. For this reason, Zr is preferably added when particularly excellent oxidation resistance is required.
  • Zr fixes C and N and improves toughness. These effects are obtained when the Zr content is 0.01% or more. However, if the Zr content exceeds 0.20%, an intermetallic compound is formed with Fe and the like, and the toughness of the Fe—Cr alloy is lowered. Therefore, when Zr is contained, the content is made 0.01 to 0.20%. More preferably, it is 0.02% or more. Further, it is more preferably 0.10% or less.
  • Hf 0.01-0.20%
  • Hf has the effect of improving the adhesion of the Al 2 O 3 oxide film and improving the oxidation resistance by reducing the growth rate. Therefore, Hf is preferably added when particularly excellent oxidation resistance is required. This effect is obtained when the Hf content is 0.01% or more. However, if the Hf content exceeds 0.20%, an intermetallic compound is formed with Fe or the like, and the toughness is lowered. Therefore, when Hf is contained, the content is made 0.01 to 0.20%. More preferably, it is 0.02% or more. Further, it is more preferably 0.10% or less.
  • the total content is preferably 0.20% or less from the viewpoint of securing toughness.
  • REM 0.01-0.20%
  • Sc, Y, and lanthanoid elements elements having atomic numbers of 57 to 71 such as La, Ce, Pr, Nd, and Sm.
  • REM improves the adhesion of the Al 2 O 3 oxide film, in an environment such as oxidation repeatedly occurs, the effect of improving the peeling resistance of the Al 2 O 3 oxide film. Therefore, REM is preferably added when particularly excellent oxidation resistance is required. This effect is obtained when the REM content (the total content of Sc, Y and lanthanoid elements described above) is 0.01% or more. On the other hand, when the REM content exceeds 0.20%, the hot workability is lowered and it becomes difficult to manufacture a hot-rolled steel sheet.
  • the content when REM is contained, the content is set to 0.01 to 0.20%. More preferably, it is 0.03% or more. Further, it is more preferably 0.10% or less.
  • a metal such as Misch metal
  • Misch metal a metal that has not been separated and purified can be used for cost reduction.
  • Cu 0.01 to 0.10% Since Cu precipitates in the steel and has the effect of improving the high temperature strength, it can be contained in an amount of 0.01% or more as necessary. However, if the Cu content exceeds 0.10%, the toughness of the steel is reduced. Therefore, when Cu is contained, the content is made 0.01 to 0.10%. More preferably, it is 0.05% or less, More preferably, it is 0.03% or less.
  • Nb 0.01 to 0.50%
  • Nb has an effect of improving toughness by combining with C and N in steel, and an effect of improving oxidation resistance. Therefore, Nb can be contained in an amount of 0.01% or more as necessary.
  • the Nb content exceeds 0.50%, a large amount of Nb oxide is mixed in the Al 2 O 3 film, and the oxidation resistance at high temperature is lowered. Therefore, when Nb is contained, the content is set to 0.01 to 0.50%. More preferably, it is 0.05% or more. Further, it is more preferably 0.20% or less.
  • V 0.01 to 0.50%
  • V has an effect of improving toughness by combining with C and N in steel and an effect of improving oxidation resistance, and therefore can be contained in an amount of 0.01% or more as necessary.
  • V content exceeds 0.50%, a large amount of V oxide is mixed in the Al 2 O 3 film, and the oxidation resistance at high temperatures is lowered. Therefore, when V is contained, its content is made 0.01 to 0.50%. More preferably, it is 0.05% or more. Further, it is more preferably 0.20% or less.
  • Mo 0.01 to 6.0% Mo increases the strength at a high temperature and contributes to the extension of the life when the Fe—Cr alloy is used as a heating element. This effect is obtained when the Mo content is 0.01% or more. On the other hand, if the Mo content exceeds 6.0%, it becomes difficult to produce an Fe—Cr alloy due to a decrease in workability. Therefore, when Mo is contained, its content is set to 0.01 to 6.0%. More preferably, it is 1.0% or more. Further, it is more preferably 5.0% or less.
  • W 0.01-6.0% W increases the strength at a high temperature and contributes to the extension of the life when the Fe—Cr alloy is used as a heating element. This effect is obtained when the W content is 0.01% or more. On the other hand, if the W content exceeds 6.0%, it becomes difficult to produce an Fe—Cr alloy due to a decrease in workability. Therefore, when W is contained, its content is set to 0.01 to 6.0%. More preferably, it is 1.0% or more. Further, it is more preferably 5.0% or less.
  • the total content is preferably 6.0% or less in order to prevent deterioration of workability.
  • B 0.0001 to 0.0050%
  • B has the effect of strengthening the grain boundaries of steel and preventing cracking during hot rolling. This effect is obtained when the B content is 0.0001% or more. On the other hand, if the B content exceeds 0.0050%, the oxidation resistance may be lowered. Therefore, when B is contained, the content is made 0.0001 to 0.0050%. More preferably, it is 0.0010% or more. Further, it is more preferably 0.0040% or less.
  • Ca 0.0002 to 0.0100%
  • Mg 0.0002 to 0.0100%
  • An appropriate amount of Ca or Mg has an effect of improving the oxidation resistance by improving the adhesion of the Al 2 O 3 oxide film to the steel and reducing the growth rate. This effect is obtained when the Ca content is 0.0002% or more and the Mg content is 0.0002% or more. More preferably, the Ca content is 0.0005% or more, and the Mg content is 0.0015% or more. More preferably, the Ca content is 0.0010% or more. However, if these elements are added excessively, the toughness and oxidation resistance may be lowered. Therefore, when Ca and Mg are contained, both the Ca content and the Mg content are set to 0.0100% or less. More preferably, it is 0.0050% or less.
  • the component composition of the Fe—Cr alloy of the present invention is mass%, C: 0.020% or less, Si: more than 1.5% and 10.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.010% or less, Cr: 16.0 -30.0%, Al: 2.0-6.5%, N: 0.020% or less and Ni: 0.50% or less, If necessary, Ti: 0.01 to 0.50%, Zr: 0.01 to 0.20%, Hf: 0.01 to 0.20%, REM: 0.01 to 0.20%, Cu : 0.01 to 0.10%, Nb: 0.01 to 0.50%, V: 0.01 to 0.50%, Mo: 0.01 to 6.0%, W: 0.01 to 6 0.0%, B: 0.0001 to 0.0050%, Ca: 0.0002 to 0.0100%, and Mg: 0.0002 to 0.0100%. , The balance is composed of Fe and inevitable impurities, and satisfies
  • the thickness of the Fe—Cr alloy of the present invention is not particularly limited, but when used for a heating element such as an exhaust gas temperature raising device mounted immediately before an electric heating cooker or an exhaust gas purification device, the cross-sectional area is reduced.
  • the thickness is preferably 200 ⁇ m or less.
  • a molten steel having a component composition with the balance being Fe and inevitable impurities It is melted by a known method such as a converter, electric furnace, vacuum melting furnace or the like, and is made into a slab by a continuous casting method or an ingot-bundling method.
  • the component composition of the slab (and a plate material to be a siliconized material to be described later) will be described.
  • Si 0.01 to 1.5%
  • the Si content of the slab (and the plate material used as the siliconized material) is 1.5% or less. That is, when the Si content of the slab exceeds 1.5%, the toughness decreases, and particularly when a plate material (foil material) having a thickness of 200 ⁇ m or less is produced, fracture occurs during hot rolling or cold rolling. This makes it difficult to manufacture. Therefore, the Si content of the slab is set to 1.5% or less. Preferably it is 1.0% or less, More preferably, it is 0.5% or less. On the other hand, when the Si content of the slab is less than 0.01%, the oxidation resistance decreases. Therefore, the Si content is 0.01% or more. Preferably it is 0.05% or more.
  • the component composition of elements other than Si in the slab may be the same as the component composition of the Fe—Cr alloy described above.
  • Fe is basically replaced with Si, but elements other than Fe, for example, Al and Cr also generate chloride and are replaced with Si, and at the time of slab. It may be less than the content of.
  • Al and Cr play a particularly important role in improving oxidation resistance, it is necessary to take care that the Cr content and the Al content after the siliconization treatment do not fall below the above-described component composition of the Fe—Cr alloy. is there.
  • the Cr content of the slab (and the plate material used as the siliconized material) is 18.0 to 30.0% and the Al content is 3.0 to 6.5%. More preferably, the Cr content is 19.0% or more. More preferably, the Cr content is 22.0% or less. More preferably, the Al content is 4.5% or more. More preferably, the Al content is 6.0% or less.
  • this slab is rolled to obtain a plate material having a final thickness.
  • the rolling method is not particularly limited, and may be a conventional method.
  • a slab is hot-rolled to form a hot-rolled steel sheet, and the hot-rolled steel sheet is cold-rolled and annealed to obtain a final plate thickness (silica-treated material), or Examples include a method of performing hot rolling to obtain a hot rolled steel sheet, subjecting the hot rolled steel sheet to hot rolled sheet annealing, and then cold rolling to obtain a plate material (silica-treated material) having a final thickness. .
  • the slab is heated at 1100 to 1250 ° C. for 1 to 24 hours, and then hot-rolled to obtain a hot rolled steel sheet having a thickness of about 2.0 to 6.0 mm, and then pickled or mechanically polished as necessary.
  • the above-mentioned hot-rolled steel sheet is cold-rolled and annealed to obtain a cold-rolled sheet having a final thickness.
  • the plate material here includes a so-called foil material (for example, plate thickness: 20 to 200 ⁇ m).
  • the plate material having the final thickness obtained in this way is subjected to a siliconization treatment by a thermal CVD method.
  • the siliconization treatment by the thermal CVD method is a method of increasing the Si content by spraying SiCl 4 gas at a high temperature on the plate material having the final plate thickness.
  • it may be used as a manufacturing technique of silicon steel (electromagnetic steel sheet). Specifically, a plate material that becomes a siliconized material is heated to a temperature range of 700 ° C. or higher and 1400 ° C. or lower in a heat treatment furnace in a non-oxidizing atmosphere. Next, SiCl 4 gas is introduced into the furnace.
  • the silicon material is subjected to a siliconizing process by a thermal CVD method on a sheet material that is a siliconized material having an Si content of 0.01 to 1.5% and an Al content of 2.0 to 6.5%.
  • a thermal CVD method on a sheet material that is a siliconized material having an Si content of 0.01 to 1.5% and an Al content of 2.0 to 6.5%.
  • the Si content in the Fe—Cr alloy obtained after the siliconization treatment is the treatment temperature and treatment time of the siliconization treatment (adjusted in the range of 20 to 600 seconds), and / or Alternatively, it can be controlled by adjusting the SiCl 4 gas concentration (adjusted in the range of 5 to 40% by volume, the balance being Ar gas).
  • Thickness of a slab melted in a 50 kg small vacuum melting furnace and having the composition shown in Table 1 is heated to 1200 ° C and hot-rolled in a temperature range of 900 to 1200 ° C. : 3.0 mm hot rolled steel sheet.
  • steel symbol J in Table 1 cracks occurred during hot rolling, and a cold-rolled steel sheet could not be prepared, so that the siliconization treatment could not be performed and the subsequent evaluation could not be performed.
  • the obtained hot-rolled steel sheet was annealed in the air at 900 ° C. for 1 minute, and after removing the surface scale by pickling, the sheet thickness was cold-rolled to 1.0 mm, A rolled steel sheet was used.
  • the obtained plate material was subjected to a siliconization treatment.
  • This siliconization treatment was carried out in a small batch type heating furnace. Specifically, a steel piece having a width of 50 mm and a length of 150 mm is collected and heated to 950 ° C. to 1100 ° C. in an Ar atmosphere, and then the SiCl 4 gas concentration is 15% by volume and the balance is Ar gas. These gases were mixed and introduced into a heating furnace. The processing time was 25 to 450 seconds. Thereafter, a heat treatment was further performed in a vacuum at 1150 ° C. for 30 minutes, followed by furnace cooling to produce an Fe—Cr alloy.
  • the component composition of the Fe—Cr alloy thus obtained was measured by collecting chips from a part of the Fe—Cr alloy and performing wet analysis. The measurement results are also shown in Table 2. The balance is Fe and inevitable impurities. Further, using this Fe—Cr alloy, (1) workability, (2) electrical resistivity, and (3) oxidation resistance were evaluated in the following manner. The evaluation results are shown in Table 3.
  • (1) Workability Workability was evaluated by subjecting the obtained Fe—Cr alloy to corrugation processing generally performed with a metal heating element used in an exhaust gas purification apparatus such as an automobile. That is, the above-described Fe—Cr alloy was corrugated by passing between two gear-shaped rolls having a maximum bending radius of 0.5 mm, a wave pitch of 2.0 mm, and a wave height of 2.0 mm. . And the case where it was able to process without a fracture
  • the electric resistivity was measured with reference to a four-probe method defined in JIS K 7194.
  • the apparatus used was MCP-T600 manufactured by Mitsubishi Chemical Corporation. That is, five 50 mm ⁇ 80 mm test pieces were cut out from the above Fe—Cr alloy, the resistance was measured at one central portion of each test piece, and the volume resistivity was calculated. These average values were used as the volume resistivity of the Fe—Cr alloy and evaluated according to the following criteria.
  • volume resistivity is more than 150 ⁇ ⁇ cm ⁇ (Passed, excellent): Volume resistivity is more than 142 ⁇ ⁇ cm and 150 ⁇ ⁇ cm or less ⁇ (Fail, bad): Volume resistivity is 142 ⁇ ⁇ cm Less than
  • the oxidation resistance was evaluated by an oxidation test held in a high-temperature atmosphere. That is, two test pieces having a width: 20 mm ⁇ length: 30 mm were sampled from the above Fe—Cr alloy and subjected to a treatment of oxidizing at 1100 ° C. for 400 hours in an air atmosphere to increase the oxidation amount before and after the treatment (oxidation treatment). A value obtained by dividing the mass change amount of the test piece before and after by the surface area of the test piece before the oxidation treatment) was measured. Then, the average value of the oxidation increase of each test piece was evaluated as the oxidation increase of the Fe—Cr alloy according to the following criteria.
  • oxidation weight gain is 10.0 g / m 2 or less ⁇ (acceptance, excellent): oxidation weight gain is 10.0 g / m 2 Ultra 15.0 g / m 2 or less ⁇ (fail, failure): Oxidation gain exceeds 15.0 g / m 2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Steel (AREA)
  • Resistance Heating (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本発明は、電気抵抗率が高く、1000℃超の高温での耐酸化性に優れる、抵抗発熱体として用いて好適なFe-Cr合金を、その有利な製造方法とともに提供することを目的とする。 本発明のFe-Cr合金は、Si含有量およびAl含有量を同時に高めた成分組成とし、かつ、該成分組成のSi含有量、Al含有量およびCr含有量について、次式(1)の関係を満足させる。また、当該Fe-Cr合金は、Si含有量が1.5質量%以下の板材に、熱CVD法により浸珪処理を行うことにより、Si含有率を1.5質量%超10.0質量%以下とすることにより製造される。 14.0≦%Si+1.15×%Al+0.35×%Cr・・・・・・(1)

Description

Fe-Cr合金およびその製造方法、ならびに、抵抗発熱体
 本発明は、電気抵抗率および耐酸化性に優れたFe-Cr合金に関する。
 抵抗発熱体に電流を流した際に発生するジュール熱によって物体を加熱する方法を、抵抗加熱という。この方法は、電気エネルギーから熱エネルギーへの変換効率が良好であり、また制御装置も簡便で済むため、工業用電気炉や電熱調理器などの幅広い分野で利用されている。
 この抵抗加熱において用いられる抵抗発熱体は、Ni-Cr合金やFe-Cr合金に代表される金属発熱体と、SiCに代表される非金属発熱体に分類することができる。このうち、金属発熱体は、非金属発熱体に比べて加工性に優れるので、箔材や線材に加工することができる。そのため、金属発熱体は、窓ガラスや床などの薄い部材や、手袋などの曲げ負荷がかかる部材にも適用可能である。
 かような金属発熱体として、例えば、JIS C 2520には、電熱用合金線および電熱用合金帯としてNi-Cr合金3種(電熱用ニッケルクロム線および帯の1~3種)と、Fe-Cr合金2種(電熱用鉄クロム線および帯の1~2種)とが規定されている。ここで、Ni-Cr合金は、Cr:15~21%、Si:0.75~3%を主な添加元素とするNi基合金であり、Fe-Cr合金は、Cr:17~26%、Al:2~6%、Si:1.5%以下を主な添加元素とするFe基合金である(なお、各元素の「%」は質量%であり、以下同様である)。
 また、特許文献1には、
「質量%で、C:0.080%以下、Si:1.5~5.0%、Mn:5%以下、P:0.050%以下、S:0.003%以下、Ni:10~15%、Cr:15~22%、Mo:3%以下、Cu:3.5%以下、N:0.2%以下、O:0.01%以下、Ti:0.05%以下、残部がFeおよび不可避的不純物からなる化学組成を有し、20~600℃での体積抵抗率の平均温度係数が0.00100/℃以下、β(c)/β(A)で定義される体積抵抗率の冷間加工率依存性指数が0.970以上1.030以下の範囲であることを特徴とする、体積抵抗率の冷間加工率依存性が小さいステンレス箔又はステンレス線材。ここでβ(c)は箔の圧延率または線の減面率が50%の加工材における200℃での体積抵抗率、β(A)は焼鈍材の200℃での体積抵抗率をそれぞれ示す。」
が開示されている。
 さらに、特許文献2には、
「質量%で、C:0.080%以下、Si:1.5~5.0%、Mn:5%以下、P:0.050%以下、S:0.003%以下、Ni:10~15%、Cr:15~22%、Mo:3%以下、Cu:3.5%以下、N:0.2%以下、O:0.01%以下、Ti:0.05%以下、Ni/Siの比率が3~7の範囲であり、残部がFeおよび不可避的不純物からなる化学組成を有し、20~600℃での体積抵抗率の平均温度係数が0.00100/℃以下、β(c)/β(A)で定義される体積抵抗率の冷間加工率依存性指数が0.970以上1.030以下の範囲であることを特徴とする、体積抵抗率の冷間加工率依存性が小さい抵抗発熱体用ステンレス箔又はステンレス線材。ここでβ(c)は箔の圧延率または線の減面率が50%の加工材における200℃での体積抵抗率、β(A)は焼鈍材の200℃での体積抵抗率をそれぞれ示す。」
が開示されている。
特開2013-159837号公報 特開2016-094662号公報
 ところで、金属発熱体の電気抵抗率は、一般的に非金属発熱体よりも低い。よって、必要な発熱量を得るためには、箔材や線材に加工することで金属発熱体の断面積を小さくし、長さを稼ぐ必要がある。しかし、発熱体の使用量削減や形状の自由度を向上させる観点から、より電気抵抗率の高い金属発熱体が求められているのが現状である。
 また、金属発熱体では、合金中のCrやAlが高温で保護性の酸化皮膜を形成することによって優れた耐酸化性が得られる。しかし、長期間の使用により合金中のCrやAlが消費されこれら元素の濃度が低下すると、保護性の酸化皮膜が維持できなくなり、異常酸化や発熱体の破損などを招く。
 特に、自動車などの排ガス浄化装置の直前に設置され、排ガスを昇温して触媒との反応を促進する用途に使用される発熱体は、最高到達温度が1000℃を超える場合もあり、いっそう優れた耐酸化性が求められる。
 ここで、JIS C 2520に規定されている合金のうち、Ni-Cr合金の電熱用ニッケルクロム線および帯の2種と3種は、最高使用温度がそれぞれ1000℃と800℃であり、最高使用温度が1000℃を超えるような用途では使用できない。また、電熱用ニッケルクロム線および帯の1種は、最高使用温度が1100℃であるものの、Ni含有量が77%以上であるため大変高価である。さらに、電気抵抗率も、体積抵抗率で101~112μΩ・cm(1.01~1.12μΩ・m)であり、十分とは言えない。
 一方、Fe-Cr合金は、Ni-Cr合金と比べて最高使用温度が高く、電熱用鉄クロム線および帯の1種は1250℃、2種は1100℃である。また、Fe-Cr合金は、Ni-Cr合金と比べて電気抵抗率も高く、体積抵抗率で、電熱用鉄クロム線および帯の1種が142μΩ・cm(1.42μΩ・m)、2種が123μΩ・cm(1.23μΩ・m)である。
 しかし、かような電熱用鉄クロム線および帯の1種および2種も1000℃を超える高温で長時間使用すると、発熱体の酸化速度が速くAlが早期に消費される。この現象は、板厚の薄い箔材や径の細い線材で特に顕著であり、結果的に、寿命の大幅な短時間化を招く。また、1000℃を超える高温では、保護性の酸化皮膜の剥離が生じ易く、発熱体の破損や断裂を招きやすいという問題もある。
 また、特許文献1および2に記載の合金は、Fe-Cr合金であるが、オーステナイト安定化元素であるNiを10~15%含有するためオーステナイト組織を有しており、フェライト組織を有するFe-Cr合金よりも高温での強度が高いという利点がある。しかし、オーステナイト組織はフェライト組織よりも熱膨張率が高いため、加熱時の体積膨張に伴い大きな熱応力が発生する。特に、最高使用温度が1000℃を超えるような条件で加熱と冷却とが繰り返し行われると、熱応力による変形や破断が生じやすく、かえって寿命の短時間化を招くという問題がある。
 本発明は、上記の問題を解決するために開発されたものであって、電気抵抗率が高く、耐酸化性、特に1000℃超の高温での耐酸化性に優れる、抵抗発熱体として用いて好適なFe-Cr合金を、その有利な製造方法とともに提供することを目的とする。
 また、本発明は、上記のFe-Cr合金を用いた抵抗発熱体を提供することを目的とする。
 さて、発明者らは、上記の課題を解決すべく、種々検討を重ねた。その結果、次の知見を得た。
(1)Fe-Cr合金において優れた電気抵抗率と高温での耐酸化性とを両立するには、Si含有量およびAl含有量を同時に高めることが有効である。特に、Al含有量が2.0%を超えると、高温環境下では表面にAlの保護皮膜が生成して、耐酸化性が大幅に向上する。このように、Si含有量およびAl含有量を同時に高めつつ、さらにCrを一定量以上含有させてこれらの合計量を所定量以上とすることにより、電気抵抗率と、高温での耐酸化性の両方を向上させることができる。
(2)しかし、AlおよびSiは靭性を低下させる元素であり、本発明者らが、Crを20%程度含有させたFe-Cr合金を用いて、Si含有量およびAl含有量を変化させた材料を製造したところ、Si含有量およびAl含有量が多くなるに伴って、熱間圧延時や冷間圧延時に割れが発生し易くなり、特に板厚の薄い板材への加工が困難になるという問題が生じた。
(3)この点を解決すべく、発明者らはさらに検討を重ねた。その結果、特に板厚の薄いFe-Cr合金板材のSi含有量およびAl含有量を同時に高めるには、Al含有量を高くする一方、Si含有量を低くしたスラブに圧延加工を施して最終板厚の板材とし、その上で、この板材に、熱CVD法による浸珪処理を施して、最終製品でのSi含有量を高めることが有効なことを見出した。これにより、Si含有量およびAl含有量を同時に高めた、板厚の薄いFe-Cr合金が得られる。
 本発明は、上記の知見に基づき、さらに検討を加えた末に完成されたものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
 C:0.020%以下、
 Si:1.5%超10.0%以下、
 Mn:1.0%以下、
 P:0.040%以下、
 S:0.010%以下、
 Cr:16.0~30.0%、
 Al:2.0~6.5%、
 N:0.020%以下および
 Ni:0.50%以下
を含有し、残部がFeおよび不可避的不純物からなる成分組成を有するとともに、
 次式(1)の関係を満足する、Fe-Cr合金。
   14.0≦%Si+1.15×%Al+0.35×%Cr・・・・・・(1)
 ここで、%Si、%Alおよび%Crは、上記成分組成におけるSi、AlおよびCrの含有量(質量%)である。
2.前記成分組成が、さらに質量%で、
 Ti:0.01~0.50%、
 Zr:0.01~0.20%、
 Hf:0.01~0.20%、
 REM:0.01~0.20%、
 Cu:0.01~0.10%、
 Nb:0.01~0.50%、
 V:0.01~0.50%、
 Mo:0.01~6.0%、
 W:0.01~6.0%、
 B:0.0001~0.0050%、
 Ca:0.0002~0.0100%および
 Mg:0.0002~0.0100%
のうちから選んだ1種または2種以上を含有する、前記1に記載のFe-Cr合金。
3.板厚が200μm以下である、前記1または2に記載のFe-Cr合金。
4.質量%で、
 C:0.020%以下、
 Si:0.01~1.5%、
 Mn:1.0%以下、
 P:0.040%以下、
 S:0.010%以下、
 Cr:16.0~30.0%、
 Al:2.0~6.5%、
 N:0.020%以下および
 Ni:0.50%以下
を含有し、残部がFeおよび不可避的不純物である成分組成を有するスラブに、圧延加工を施して最終板厚となる板材とし、
 該板材に、熱CVD法による浸珪処理を行うことにより、Si含有量が1.5質量%超10.0質量%以下であり、かつ、次式(1)の関係を満足するFe-Cr合金を得る、Fe-Cr合金の製造方法。
  14.0≦%Si+1.15×%Al+0.35×%Cr・・・・・・(1)
 ここで、%Si、%Alおよび%Crは、上記Fe-Cr合金の成分組成におけるSi、AlおよびCrの含有量(質量%)である。
5.前記スラブの成分組成が、さらに質量%で、
 Ti:0.01~0.50%、
 Zr:0.01~0.20%、
 Hf:0.01~0.20%、
 REM:0.01~0.20%、
 Cu:0.01~0.10%、
 Nb:0.01~0.50%、
 V:0.01~0.50%、
 Mo:0.01~6.0%、
 W:0.01~6.0%、
 B:0.0001~0.0050%、
 Ca:0.0002~0.0100%および
 Mg:0.0002~0.0100%
のうちから選んだ1種または2種以上を含有する、前記4に記載のFe-Cr合金の製造方法。
6.前記板材の最終板厚が200μm以下である、前記4または5に記載のFe-Cr合金の製造方法。
7.前記1~3のいずれかに記載のFe-Cr合金からなる、抵抗発熱体。
 本発明によれば、電気抵抗率が高く、耐酸化性、特に1000℃超の高温での耐酸化性に優れるFe-Cr合金を得ることができる。
 また、本発明のFe-Cr合金は、特に高温での耐酸化性に優れるので、自動車などの排ガス浄化装置の直前に設置される排ガス昇温装置の発熱体や、電気炉や電熱調理器の発熱体、さらには、触媒担体、ストーブの反射板、煙突部材などとしても好適に用いることができる。
%Si+1.15×%Al+0.35×%Crと電気抵抗率(体積抵抗率)との関係を示す図である。
 以下、本発明を具体的に説明する。
 まず、本発明のFe-Cr合金の成分組成について説明する。なお、成分組成における単位はいずれも「質量%」であるが、以下、特に断らない限り、単に「%」で示す。
C:0.020%以下
 C含有量が0.020%を超えると、熱延鋼板や冷延鋼板の靭性が低下してFe-Cr合金の製造が困難になる。このため、C含有量は0.020%以下とする。好ましくは0.015%以下、より好ましくは0.010%以下である。なお、下限については特に限定されるものではないが、過度のC含有量の低減は精錬コストの増加を招くため、C含有量は0.002%以上とすることが好ましい。
Si:1.5%超10.0%以下
 Siは、Fe-Cr合金の電気抵抗率を高める働きがある。電気抵抗率の向上の効果を十分に得るためには、Si含有量を1.5%超とする必要がある。一方、Si含有量が10.0%を超えると、脆化が著しくなって発熱体の形状に加工することが困難となる。従って、Si含有量は1.5%超10.0%以下とする。好ましくは1.7%以上、より好ましくは2.0%以上である。また、好ましくは6.0%以下、より好ましくは5.0%以下、さらに好ましくは4.0%以下である。
Mn:1.0%以下
 Mn含有量が1.0%を超えると、鋼の耐酸化性が低下する。このため、Mn含有量は1.0%以下とする。好ましくは0.5%以下、より好ましくは0.15%以下である。ただし、Mn含有量を0.01%未満にしようとすると精錬が困難になるので、Mn含有量は0.01%以上が好ましい。
P:0.040%以下
 P含有量が0.040%を超えると、鋼の靭性および延性が低下してFe-Cr合金の製造が困難になる。このため、P含有量は0.040%以下とする。好ましくは0.030%以下である。なお、下限については特に限定されるものではないが、過度の脱Pはコストの増加を招くので、P含有量は0.005%以上とすることが好ましい。
S:0.010%以下
 S含有量が0.010%を超えると、熱間加工性が低下して熱延鋼板の製造が困難になる。このため、S含有量は0.010%以下とする。好ましくは0.004%以下、より好ましくは0.002%以下である。なお、下限については特に限定されるものではないが、過度の脱Sはコストの増加を招くので、S含有量は0.0005%以上とすることが好ましい。
Cr:16.0~30.0%
 Crは、高温での耐酸化性を確保する上で必要不可欠な元素である。また、AlおよびSiより効果は小さいものの、電気抵抗率を高める働きも有する。ここで、Cr含有量が16.0%未満では、高温での耐酸化性を十分に確保できない。一方、Cr含有量が30.0%を超えると、Fe-Cr合金の製造過程におけるスラブや熱延鋼板の靭性が低下して、Fe-Cr合金の製造が困難となる。このため、Cr含有量は16.0~30.0%とする。好ましくは17.0%以上、より好ましくは18.0%以上である。また、好ましくは26.0%以下、より好ましくは22.0%以下である。
Al:2.0~6.5%
 Alは、高温でAlを主成分とする酸化皮膜(以下、Al酸化皮膜とも称する)を生成して、耐酸化性を向上させる元素である。また、Alは、電気抵抗率を高める効果も有する。これらの効果は、Al含有量が2.0%以上で得られる。一方、Al含有量が6.5%を超えると、鋼の靭性の低下により、Fe-Cr合金の製造が困難となる。このため、Al含有量は2.0~6.5%とする。好ましくは4.0%以上である。また、好ましくは6.0%以下である。
N:0.020%以下
 N含有量が0.020%を超えると、靱性が低下してFe-Cr合金の製造が困難になる。このため、N含有量は0.020%以下とする。好ましくは0.010%以下である。なお、下限については特に限定されるものではないが、過度の脱Nはコストの増加を招くので、N含有量は0.002%以上とすることが好ましい。
Ni:0.50%以下
 Niは、オーステナイト組織を安定化させる元素である。ここで、Ni含有量が0.50%を超えると、高温で酸化が進行することによりAlが枯渇してCrが酸化され始めた際に、オーステナイト組織が生成する。これにより、Cr-Fe合金の熱膨張係数が変化して、結果的に、部材の破断などの不具合を招く。このため、Ni含有量は0.50%以下とする。好ましくは0.20%以下である。なお、下限については特に限定されるものではないが、過剰に低減しようとすると精錬コストが増加するため、0.01%以上とすることが好ましい。
 以上、基本成分について説明したが、本発明のFe-Cr合金では、Si含有量、Al含有量およびCr含有量が、次式(1)の関係を満足する必要がある。
  14.0≦%Si+1.15×%Al+0.35×%Cr・・・・・・(1)
 ここで、%Si、%Alおよび%Crは、上記Fe-Cr合金の成分組成におけるSi、AlおよびCrの含有量(質量%)である。
 すなわち、Fe-Cr合金の電気抵抗率の向上のためには、Si含有量およびAl含有量を同時に増加させることが有効である。また、SiおよびAlには劣るものの、CrにもFe-Cr合金の電気抵抗率を向上させる効果がある。このように、Fe-Cr合金の電気抵抗率は、Si含有量、Al含有量およびCr含有量の合計量によって変化する。
 ここで、発明者らが、種々の条件で、Si、AlおよびCr含有量を変化させたFe-Cr合金を製造し、その電気抵抗率を体積抵抗率で測定したところ、図1に示すとおり、Fe-Cr合金の体積抵抗率は、%Si+1.15×%Al+0.35×%Crとほぼ比例関係になることがわかった。
 また、同図より、%Si+1.15×%Al+0.35×%Crの値を14.0以上とすれば、JIS C 2520に規定の電熱用鉄クロム線および帯の1種より優れた体積抵抗率(142μΩ・cm超)が得られることがわかる。
 このため、%Si+1.15×%Al+0.35×%Crの値は14.0以上とする。好ましくは14.5以上、より好ましくは15.0以上である。なお、上限については特に限定されるものではないが、18.0程度とすることが好適である。
 なお、図1は、後述する実施例における表2および表3のNo.1~10およびNo.12~21のデータをプロットしたものである。
 また、上記の基本成分に加えて、以下の元素をさらに含有させることができる。
Ti:0.01~0.50%
 Tiは、鋼中のCやNと結合して靭性を向上させる効果や、耐酸化性を向上させる効果があるため、必要に応じて、0.01%以上含有させることができる。しかし、Ti含有量が0.50%を超えると、Ti酸化物がAl皮膜中に多量に混入し、高温での耐酸化性が低下する。よって、Tiを含有させる場合、その含有量は0.01~0.50%とする。より好ましくは0.05%以上である。また、より好ましくは0.20%以下である。
Zr:0.01~0.20%
 Zrは、Al酸化皮膜の密着性を改善するとともに、その成長速度を低減して耐酸化性を向上させる効果がある。このため、Zrは、特に優れた耐酸化性が必要な場合に添加することが好ましい。また、Zrは、CおよびNを固定して靭性を向上させる。これらの効果は、Zr含有量が0.01%以上で得られる。しかし、Zr含有量が0.20%を超えると、Feなどと金属間化合物を形成し、Fe-Cr合金の靭性を低下させる。よって、Zrを含有させる場合、その含有量は0.01~0.20%とする。より好ましくは0.02%以上である。また、より好ましくは0.10%以下である。
Hf:0.01~0.20%
 Hfは、Al酸化皮膜の密着性を改善するとともに、その成長速度を低減して耐酸化性を向上させる効果がある。このため、Hfは、特に優れた耐酸化性が必要な場合に添加することが好ましい。この効果は、Hf含有量が0.01%以上で得られる。しかし、Hf含有量が0.20%を超えると、Feなどと金属間化合物を形成し、靭性を低下させる。よって、Hfを含有させる場合、その含有量は0.01~0.20%とする。より好ましくは0.02%以上である。また、より好ましくは0.10%以下である。
 なお、ZrとHfを同時に含有させる場合、靭性確保の観点から、その合計の含有量を0.20%以下とすることが好ましい。
REM:0.01~0.20%
 REMとは、Sc、Yおよびランタノイド系元素(La、Ce、Pr、Nd、Smなど原子番号57~71までの元素)をいう。REMは、Al酸化皮膜の密着性を改善し、酸化が繰り返し起こるような環境下において、Al酸化皮膜の耐剥離性を向上させる効果がある。このため、REMは、特に優れた耐酸化性が必要な場合に添加することが好ましい。この効果は、REM含有量(上記したSc、Yおよびランタノイド系元素の合計含有量)が0.01%以上で得られる。一方、REM含有量が0.20%を超えると、熱間加工性が低下して熱延鋼板の製造が困難になる。よって、REMを含有させる場合、その含有量は0.01~0.20%とする。より好ましくは0.03%以上である。また、より好ましくは0.10%以下である。
 なお、REMの添加には、コスト低減のため、これらが分離精製されていない金属(ミッシュメタル等)を用いることもできる。
Cu:0.01~0.10%
 Cuは、鋼中に析出して高温強度を向上させる効果があるため、必要に応じて、0.01%以上含有させることができる。しかし、Cu含有量が0.10%を超えると、鋼の靭性の低下を招く。よって、Cuを含有させる場合、その含有量は0.01~0.10%とする。より好ましくは0.05%以下、さらに好ましくは0.03%以下である。
Nb:0.01~0.50%
 Nbは、鋼中のCやNと結合して靭性を向上させる効果や、耐酸化性を向上させる効果があるため、必要に応じて、0.01%以上含有させることができる。しかし、Nb含有量が0.50%を超えると、Nb酸化物がAl皮膜中に多量に混入し、高温での耐酸化性がかえって低下する。よって、Nbを含有させる場合、その含有量は0.01~0.50%とする。より好ましくは0.05%以上である。また、より好ましくは0.20%以下である。
V:0.01~0.50%
 Vは、鋼中のCやNと結合して靭性を向上させる効果や、耐酸化性を向上させる効果があるため、必要に応じて、0.01%以上含有させることができる。しかし、V含有量が0.50%を超えると、V酸化物がAl皮膜中に多量に混入し、高温での耐酸化性がかえって低下する。よって、Vを含有させる場合、その含有量は0.01~0.50%とする。より好ましくは0.05%以上である。また、より好ましくは0.20%以下である。
Mo:0.01~6.0%
 Moは、高温での強度を増加させ、Fe-Cr合金を発熱体として使用するときの寿命の延長に寄与する。この効果は、Mo含有量が0.01%以上で得られる。一方、Mo含有量が6.0%を超えると、加工性の低下によりFe-Cr合金の製造が困難になる。よって、Moを含有させる場合、その含有量は0.01~6.0%とする。より好ましくは1.0%以上である。また、より好ましくは5.0%以下である。
W:0.01~6.0%
 Wは、高温での強度を増加させ、Fe-Cr合金を発熱体として使用するときの寿命の延長に寄与する。この効果は、W含有量が0.01%以上で得られる。一方、W含有量が6.0%を超えると、加工性の低下によりFe-Cr合金の製造が困難になる。よって、Wを含有させる場合、その含有量は0.01~6.0%とする。より好ましくは1.0%以上である。また、より好ましくは5.0%以下である。
 なお、MoとWを同時に含有させる場合、加工性の低下を防ぐためにその合計の含有量を6.0%以下とすることのが好ましい。
B:0.0001~0.0050%
 Bは、鋼の粒界を強化し、熱間圧延中の割れを防ぐ効果がある。この効果は、B含有量が0.0001%以上で得られる。一方、B含有量が0.0050%を超えると、耐酸化性の低下を招くおそれがある。よって、Bを含有させる場合、その含有量は0.0001~0.0050%とする。より好ましくは0.0010%以上である。また、より好ましくは0.0040%以下である。
Ca:0.0002~0.0100%、Mg:0.0002~0.0100%
 適量のCaあるいはMgは、Al酸化皮膜の鋼に対する密着性向上と成長速度低減により耐酸化性を向上させる効果がある。この効果は、Ca含有量が0.0002%以上、Mg含有量が0.0002%以上で得られる。より好ましくは、Ca含有量は0.0005%以上、Mg含有量は0.0015%以上である。さらに好ましくは、Ca含有量は0.0010%以上である。しかし、これら元素を過剰に添加すると、靭性の低下や耐酸化性の低下を招くおそれがある。よって、CaおよびMgを含有させる場合、Ca含有量およびMg含有量はいずれも0.0100%以下とする。より好ましくは0.0050%以下である。
 上記以外の成分は、Feおよび不可避的不純物である。
 すなわち、本発明のFe-Cr合金の成分組成は、質量%で、
 C:0.020%以下、Si:1.5%超10.0%以下、Mn:1.0%以下、P:0.040%以下、S:0.010%以下、Cr:16.0~30.0%、Al:2.0~6.5%、N:0.020%以下およびNi:0.50%以下を含有し、
 必要に応じて、Ti:0.01~0.50%、Zr:0.01~0.20%、Hf:0.01~0.20%、REM:0.01~0.20%、Cu:0.01~0.10%、Nb:0.01~0.50%、V:0.01~0.50%、Mo:0.01~6.0%、W:0.01~6.0%、B:0.0001~0.0050%、Ca:0.0002~0.0100%およびMg:0.0002~0.0100%のうちから選んだ1種または2種以上を含有し、
 残部がFeおよび不可避的不純物からなり、上掲式(1)の関係を満足するものである。
 また、本発明のFe-Cr合金の板厚は特に限定されるものではないが、電熱調理器や排ガス浄化装置の直前に搭載される排ガス昇温装置などの発熱体に用いる場合、断面積を小さくし、かつ表面積を大きくすべく、200μm以下とすることが好ましい。また、下限については、強度を確保するために20μmとすることが好ましい。
 次に、本発明のFe-Cr合金の好適製造方法について説明する。
 すなわち、質量%で、
 C:0.020%以下、Si:0.01~1.5%、Mn:1.0%以下、P:0.040%以下、S:0.010%以下、Cr:16.0~30.0%、Al:2.0~6.5%、N:0.020%以下およびNi:0.50%以下を含有し、
 必要に応じて、Ti:0.01~0.50%、Zr:0.01~0.20%、Hf:0.01~0.20%、REM:0.01~0.20%、Cu:0.01~0.10%、Nb:0.01~0.50%、V:0.01~0.50%、Mo:0.01~6.0%、W:0.01~6.0%、B:0.0001~0.0050%、Ca:0.0002~0.0100%およびMg:0.0002~0.0100%のうちから選んだ1種または2種以上を含有し、
 残部がFeおよび不可避的不純物である成分組成を有する溶鋼を、
 転炉、電気炉、真空溶解炉等の公知の方法で溶製し、連続鋳造法あるいは造塊-分塊法によりスラブとする。
 ここで、スラブ(および後述する浸珪処理素材となる板材)の成分組成について説明する。
Si:0.01~1.5%
 スラブ(および浸珪処理素材となる板材)のSi含有量は1.5%以下とする。すなわち、スラブのSi含有量が1.5%を超えると、靭性が低下し、特に板厚:200μm以下の板材(箔材)を製造する際には、熱間圧延時や冷間圧延時に破断が生じて製造が困難になる。従って、スラブのSi含有量は1.5%以下とする。好ましくは1.0%以下、より好ましくは0.5%以下である。一方、スラブのSi含有量が0.01%未満になると、耐酸化性が低下する。従って、Si含有量は0.01%以上とする。好ましくは0.05%以上である。
 なお、スラブにおけるSi以外の元素の成分組成は、前述したFe-Cr合金の成分組成と同じにすればよい。
 ただし、後述する熱CVD法による浸珪処理では、基本的にFeがSiに置換されるが、Fe以外の元素、例えば、AlやCrも塩化物を生成してSiと置換され、スラブ時点での含有量よりも減少する場合がある。特に、AlやCrは耐酸化性の向上に特に重要な役割を果たすので、浸珪処理後のCr含有量およびAl含有量が前述したFe-Cr合金の成分組成を下回らないよう注意する必要がある。このような観点から、スラブ(および浸珪処理素材となる板材)のCr含有量は18.0~30.0%、Al含有量は3.0~6.5%とすることがそれぞれ好ましい。より好ましくは、Cr含有量は19.0%以上である。また、より好ましくは、Cr含有量は22.0%以下である。より好ましくは、、Al含有量は4.5%以上である。また、より好ましくは、Al含有量は6.0%以下である。
 ついで、このスラブに圧延加工を施して、最終板厚となる板材とする。圧延加工方法は特に限定されず、常法に従えばよい。例えば、スラブに熱間圧延を施して熱延鋼板とし、該熱延鋼板に、冷間圧延と焼鈍とを施して最終板厚となる板材(浸珪処理素材)を得たり、または、スラブに熱間圧延を施して熱延鋼板とし、該熱延鋼板に熱延板焼鈍を施したのち、冷間圧延して最終板厚となる板材(浸珪処理素材)を得たりする方法が挙げられる。
 また、熱間圧延、熱延板焼鈍、冷間圧延および焼鈍の条件については特に限定されず、常法に従えばよい。例えば、スラブを1100~1250℃で1~24時間加熱したのち、熱間圧延によって板厚:2.0~6.0mm程度の熱延鋼板とし、その後、必要に応じて、酸洗や機械研磨によって脱スケールを施し、上記の熱延鋼板に、冷間圧延および焼鈍を施して、最終板厚となる冷延板とする。
 なお、所望の最終板厚の板材とするために、冷間圧延および焼鈍(冷延板焼鈍)は繰り返し行ってもよいが、製造効率の観点から、冷間圧延および焼鈍の回数は少ない方が好ましい。なお、ここでいう板材には、いわゆる箔材(例えば板厚:20~200μm)も含むものとする。
 かくして得られた最終板厚となる板材に、熱CVD法による浸珪処理を施す。
 ここで、熱CVD法による浸珪処理は、最終板厚とした板材に対して、高温でSiClガスを吹き付けてSi含有量を上昇させる方法であり、例えば、特公平6-45881号公報に記載されるように、珪素鋼(電磁鋼板)の製造技術として利用される場合がある。
 具体的には、非酸化性雰囲気下の熱処理炉で浸珪処理素材となる板材を、700℃以上1400℃以下の温度域に加熱する。ついで、SiClガスを炉内に導入する。その結果、浸珪処理素材となる板材の表面では、
        SiCl+5Fe → FeSi+2FeCl
の反応によりFeSiが生成し、Si濃化相が形成される。
 この反応で素材のFeがSiと置換されて、板材のSi含有量が高まるのである。
 なお、この処理の後、表層部に濃化しているSiを拡散させて均質化するため、900℃以上1300℃以下の温度域で1分以上保持する熱処理を行ってもよい。
 このようにして、Si含有量が0.01~1.5%、Al含有量が2.0~6.5%の浸珪処理素材となる板材に、熱CVD法による浸珪処理を施すことにより、Si含有量およびAl含有量の両方が高いFe-Cr合金を、安定的に製造することが可能となる。
 なお、浸珪処理後に得られるFe-Cr合金におけるSi含有量(浸珪処理におけるSiの増加量)は、浸珪処理の処理温度や処理時間(20~600秒の範囲で調整)、および/またはSiClガス濃度(5~40体積%の範囲で調整、残部はArガス)を調整することによって制御することができる。
 50kg小型真空溶解炉によって溶製した表1に示す成分組成となるスラブ(残部はFeおよび不可避的不純物)を、1200℃に加熱後、900~1200℃の温度域で熱間圧延して板厚:3.0mmの熱延鋼板とした。なお、表1中の鋼記号Jでは、熱間圧延時に割れが発生して冷延鋼板が作成できなかったため、浸珪処理を行えず、以降の評価もできなかった。ついで、得られた熱延鋼板を、大気中、900℃、1分間の条件で熱延板焼鈍し、酸洗で表面スケールを除去した後、板厚:1.0mmまで冷間圧延し、冷延鋼板とした。なお、表1中の鋼記号Kでは、冷間圧延時に割れが発生して箔材が作成できなかったため、浸珪処理を行えず、以降の評価もできなかった。この冷延鋼板を大気中、900℃、1分間の条件で冷延板焼鈍し、酸洗で表面スケールを除去した後、さらに冷間圧延を行って、板厚:40~110μmの板材(箔材)を得た。
 ついで、得られた板材に対し、浸珪処理を行った。この浸珪処理は、小型バッチ式加熱炉にて実施した。具体的には、幅:50mm、長さ:150mmの鋼片を採取し、Ar雰囲気中で950℃~1100℃に加熱した後、SiClガス濃度が15体積%、残部がArガスなるようにこれらのガスを混合して、加熱炉内に導入した。処理時間は、25秒~450秒とした。
 その後、さらに、真空中、1150℃で30分保持した後に炉冷する熱処理を施し、Fe-Cr合金を作製した。
 かくして得られたFe-Cr合金の成分組成を、Fe-Cr合金の一部から切粉を採取して、湿式分析を行うことにより測定した。測定結果を表2に併記する。なお、残部はFeおよび不可避的不純物である。
 また、このFe-Cr合金を用いて、以下の要領で、(1)加工性、(2)電気抵抗率、および、(3)耐酸化性の評価を行った。評価結果を表3に示す。
(1)加工性
 加工性は、得られたFe-Cr合金に、自動車などの排ガス浄化装置に使用される金属用発熱体で一般的に行われる波付加工を施して評価した。すなわち、最大曲げ半径:0.5mm、波ピッチ:2.0mm、波高さ:2.0mmの歯車状ロール2本の間を通過させることにより、上記のFe-Cr合金に波付け加工を施した。そして、破断やクラックが発生することなく加工できた場合を○(良好)、破断やクラックが発生した場合を×(不良)として評価した。
(2)電気抵抗率
 電気抵抗率は、JIS K 7194に規定する4探針法を参考に測定した。装置は三菱化学株式会社製:MCP-T600を使用した。すなわち、上記のFe-Cr合金から50mm×80mmの試験片を各5個切り出し、各試験片の中心部1点で抵抗を測定し、体積抵抗率を算出した。そして、これらの平均値を、当該Fe-Cr合金の体積抵抗率とし、以下の基準で評価した。
 ◎(合格、特に優れる):体積抵抗率が150μΩ・cm超
 ○(合格、優れる):体積抵抗率が142μΩ・cm超150μΩ・cm以下
 ×(不合格、不良):体積抵抗率が142μΩ・cm以下
(3)耐酸化性
 耐酸化性は、高温の大気中で保持する酸化試験により評価した。すなわち、上記のFe-Cr合金から幅:20mm×長さ:30mmの試験片を2枚採取し、大気雰囲気中、1100℃で400時間酸化させる処理を行い、処理前後での酸化増量(酸化処理前後での試験片の質量変化量を、酸化処理前の試験片の表面積で除した値)を測定した。そして、各試験片の酸化増量の平均値を、当該Fe-Cr合金の酸化増量として、以下の基準で評価した。
 ◎(合格、特に優れる):酸化増量が10.0g/m以下
 ○(合格、優れる):酸化増量が10.0g/m超15.0g/m以下
 ×(不合格、不良):酸化増量が15.0g/m
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3より、発明例ではいずれも、高い加工性と電気抵抗率、さらには優れた耐酸化性が得られていることがわかる。
 一方、比較例ではいずれも、熱間圧延時もしくは冷間圧延時に割れが発生して試験片が作成できないか、または、加工性、電気抵抗率および耐酸化性のうちの少なくとも1つが十分とは言えなかった。
 なお、No.11については、Si含有量が過剰であるために材料が非常に脆く、(2)電気抵抗率および(3)耐酸化性の評価で使用する所定の形状の試験片を切出すことできなかった。このため、No.11については、(2)電気抵抗率および(3)耐酸化性の評価は行わなかった。
 

Claims (7)

  1.  質量%で、
     C:0.020%以下、
     Si:1.5%超10.0%以下、
     Mn:1.0%以下、
     P:0.040%以下、
     S:0.010%以下、
     Cr:16.0~30.0%、
     Al:2.0~6.5%、
     N:0.020%以下および
     Ni:0.50%以下
    を含有し、残部がFeおよび不可避的不純物からなる成分組成を有するとともに、
     次式(1)の関係を満足する、Fe-Cr合金。
      14.0≦%Si+1.15×%Al+0.35×%Cr・・・・・・(1)
     ここで、%Si、%Alおよび%Crは、上記成分組成におけるSi、AlおよびCrの含有量(質量%)である。
  2.  前記成分組成が、さらに質量%で、
     Ti:0.01~0.50%、
     Zr:0.01~0.20%、
     Hf:0.01~0.20%、
     REM:0.01~0.20%、
     Cu:0.01~0.10%、
     Nb:0.01~0.50%、
     V:0.01~0.50%、
     Mo:0.01~6.0%、
     W:0.01~6.0%、
     B:0.0001~0.0050%、
     Ca:0.0002~0.0100%および
     Mg:0.0002~0.0100%
    のうちから選んだ1種または2種以上を含有する、請求項1に記載のFe-Cr合金。
  3.  板厚が200μm以下である、請求項1または2に記載のFe-Cr合金。
  4.  質量%で、
     C:0.020%以下、
     Si:0.01~1.5%、
     Mn:1.0%以下、
     P:0.040%以下、
     S:0.010%以下、
     Cr:16.0~30.0%、
     Al:2.0~6.5%、
     N:0.020%以下および
     Ni:0.50%以下
    を含有し、残部がFeおよび不可避的不純物である成分組成を有するスラブに、圧延加工を施して最終板厚となる板材とし、
     該板材に、熱CVD法による浸珪処理を行うことにより、Si含有量が1.5質量%超10.0質量%以下であり、かつ、次式(1)の関係を満足するFe-Cr合金を得る、Fe-Cr合金の製造方法。
      14.0≦%Si+1.15×%Al+0.35×%Cr・・・・・・(1)
     ここで、%Si、%Alおよび%Crは、上記Fe-Cr合金の成分組成におけるSi、AlおよびCrの含有量(質量%)である。
  5.  前記スラブの成分組成が、さらに質量%で、
     Ti:0.01~0.50%、
     Zr:0.01~0.20%、
     Hf:0.01~0.20%、
     REM:0.01~0.20%、
     Cu:0.01~0.10%、
     Nb:0.01~0.50%、
     V:0.01~0.50%、
     Mo:0.01~6.0%、
     W:0.01~6.0%、
     B:0.0001~0.0050%、
     Ca:0.0002~0.0100%および
     Mg:0.0002~0.0100%
    のうちから選んだ1種または2種以上を含有する、請求項4に記載のFe-Cr合金の製造方法。
  6.  前記板材の最終板厚が200μm以下である、請求項4または5に記載のFe-Cr合金の製造方法。
  7.  請求項1~3のいずれかに記載のFe-Cr合金からなる、抵抗発熱体。
     
PCT/JP2018/044789 2018-01-30 2018-12-05 Fe-Cr合金およびその製造方法、ならびに、抵抗発熱体 WO2019150762A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019519770A JP6562188B1 (ja) 2018-01-30 2018-12-05 Fe−Cr合金の製造方法
KR1020207021961A KR102364524B1 (ko) 2018-01-30 2018-12-05 Fe-Cr 합금 및 그 제조 방법, 그리고 저항 발열체
EP18903055.4A EP3748026A4 (en) 2018-01-30 2018-12-05 FE-CR ALLOY, METHOD OF MANUFACTURING IT, AND RESISTANT HEATING ELEMENT
CN201880087914.2A CN111655882B (zh) 2018-01-30 2018-12-05 Fe-Cr合金及其制造方法、以及电阻发热体
CN202110605936.7A CN113322418B (zh) 2018-01-30 2018-12-05 Fe-Cr合金及其制造方法、以及电阻发热体
US16/965,013 US11497085B2 (en) 2018-01-30 2018-12-05 Fe—Cr alloy, method for producing same, and resistance heating element
US17/449,128 US20220015196A1 (en) 2018-01-30 2021-09-28 METHOD FOR PRODUCING Fe-Cr ALLOY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-014002 2018-01-30
JP2018014002 2018-01-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/965,013 A-371-Of-International US11497085B2 (en) 2018-01-30 2018-12-05 Fe—Cr alloy, method for producing same, and resistance heating element
US17/449,128 Division US20220015196A1 (en) 2018-01-30 2021-09-28 METHOD FOR PRODUCING Fe-Cr ALLOY

Publications (1)

Publication Number Publication Date
WO2019150762A1 true WO2019150762A1 (ja) 2019-08-08

Family

ID=67478177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044789 WO2019150762A1 (ja) 2018-01-30 2018-12-05 Fe-Cr合金およびその製造方法、ならびに、抵抗発熱体

Country Status (6)

Country Link
US (2) US11497085B2 (ja)
EP (1) EP3748026A4 (ja)
JP (2) JP6562188B1 (ja)
KR (1) KR102364524B1 (ja)
CN (2) CN113322418B (ja)
WO (1) WO2019150762A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102280643B1 (ko) 2019-10-22 2021-07-22 주식회사 포스코 고온 산화 저항성 및 고온 강도가 우수한 크롬 강판 및 그 제조 방법
KR20230054322A (ko) * 2020-05-26 2023-04-24 엘지전자 주식회사 자기 발열체 입자 제조 방법, 도전성 페이스트 및 이를 이용한 전도막 생성방법
CN113800250B (zh) * 2021-09-22 2023-01-17 深圳市顺海科技有限公司 低电阻高功率合金电阻及其智能生产线
CN114774802B (zh) * 2022-04-07 2022-11-25 中南大学 一种提升FeCrAl基电阻合金力学和电阻性能的方法及FeCrAl基电阻合金
CN118086786B (zh) * 2024-04-26 2024-06-21 山东瑞泰新材料科技有限公司 一种无缝钢管穿孔顶头及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193247A (ja) * 1983-04-19 1984-11-01 Nippon Kinzoku Kogyo Kk 高い体積抵抗率を有するFe−Cr−Al−Si系合金
JPH04235255A (ja) * 1991-01-07 1992-08-24 Kawasaki Steel Corp 耐酸化性に優れ、γAl2O3の密着性を低下させる酸化物ウイスカ生成を抑制するFe−Cr−Al合金
JPH04308004A (ja) * 1990-11-29 1992-10-30 Ngk Insulators Ltd 金属焼結体及びその製造方法
JPH05331552A (ja) * 1992-06-01 1993-12-14 Sumitomo Metal Ind Ltd フェライト系ステンレス鋼板の製造法
JPH06170498A (ja) * 1992-12-03 1994-06-21 Kawasaki Steel Corp 耐酸化性に優れたFe−Cr−Al系合金薄帯の製造方法
JPH06220587A (ja) * 1993-01-21 1994-08-09 Kawasaki Steel Corp 耐酸化性に優れ、電気抵抗減少率の小さいFe−Cr−Al系合金
JPH1072645A (ja) * 1996-05-29 1998-03-17 Sumitomo Metal Ind Ltd オゾン含有水用ステンレス鋼材およびその製造方法
JPH1161348A (ja) * 1997-08-15 1999-03-05 Kawasaki Steel Corp Fe−Cr−Al−W系急冷合金箔
JP2013159837A (ja) 2012-02-07 2013-08-19 Nisshin Steel Co Ltd 抵抗発熱体用ステンレス箔ならびにステンレス線材
JP2016094662A (ja) 2015-11-04 2016-05-26 日新製鋼株式会社 抵抗発熱体用ステンレス箔又はステンレス線材

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2082631A (en) * 1980-02-28 1982-03-10 Firth Brown Ltd Ferritic iron-aluminium-chromium alloys
JPS62227078A (ja) * 1986-03-28 1987-10-06 Nippon Kokan Kk <Nkk> 連続ラインにおける高珪素鋼帯の製造方法
CS276019B6 (cs) * 1989-08-30 1992-03-18 Spojene Ocelarny Np Vysokolegovaná Žáruvzdorná ocel
EP0472866A3 (en) * 1990-07-23 1994-09-07 Nat Semiconductor Corp Ferroelectric device packaging techniques
US5160390A (en) * 1990-09-12 1992-11-03 Kawasaki Steel Corporation Rapidly solidified fe-cr-al alloy foil having excellent anti-oxidation properties
DE69732386T2 (de) * 1996-05-29 2005-12-22 Sumitomo Metal Industries, Ltd. Rostfreier Stahl für Wasser mit zugesetztem Ozon und sein Herstellungsverfahrene
US6162306A (en) * 1997-11-04 2000-12-19 Kawasaki Steel Corporation Electromagnetic steel sheet having excellent high-frequency magnetic properities and method
JP2000273588A (ja) * 1999-03-23 2000-10-03 Sumitomo Electric Ind Ltd 高温引張り強さ、高温耐酸化性に優れるステンレス鋼、鋼線及び繊維
CA2354665C (en) * 2000-08-09 2006-10-31 Nippon Steel Corporation Soluble lubricating surface-treated stainless steel sheet with excellent shapability for fuel tank and method for manufacturing fuel tank
EP1219719B1 (en) * 2000-12-25 2004-09-29 Nisshin Steel Co., Ltd. A ferritic stainless steel sheet good of workability and a manufacturing method thereof
CA2507970C (en) 2002-12-24 2011-05-10 Jfe Steel Corporation Fe-cr-si based non-oriented electrical steel sheet and method for producing the same
JP5504778B2 (ja) * 2009-09-16 2014-05-28 Jfeスチール株式会社 拡散接合しにくいステンレス箔およびその製造方法
US8357328B2 (en) 2009-12-14 2013-01-22 General Electric Company Methods for processing nanostructured ferritic alloys, and articles produced thereby
CN102199721B (zh) * 2010-03-25 2013-03-13 宝山钢铁股份有限公司 高硅无取向冷轧薄板的制造方法
JP5760525B2 (ja) * 2010-03-30 2015-08-12 Jfeスチール株式会社 ステンレス箔およびその箔を用いた排ガス浄化装置用触媒担体
JP5126437B1 (ja) 2011-04-01 2013-01-23 Jfeスチール株式会社 ステンレス箔およびその箔を用いた排ガス浄化装置用触媒担体
JP5974671B2 (ja) * 2011-11-09 2016-08-23 Jfeスチール株式会社 極薄電磁鋼板
CN104662188B (zh) * 2012-09-25 2017-09-15 杰富意钢铁株式会社 铁素体系不锈钢
WO2014097562A1 (ja) 2012-12-17 2014-06-26 Jfeスチール株式会社 ステンレス鋼板およびステンレス箔
JP6576675B2 (ja) * 2015-04-24 2019-09-18 日鉄ステンレス株式会社 自動車排気系部品締結部品と自動車排気系部品との組み合わせ構造

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193247A (ja) * 1983-04-19 1984-11-01 Nippon Kinzoku Kogyo Kk 高い体積抵抗率を有するFe−Cr−Al−Si系合金
JPH04308004A (ja) * 1990-11-29 1992-10-30 Ngk Insulators Ltd 金属焼結体及びその製造方法
JPH04235255A (ja) * 1991-01-07 1992-08-24 Kawasaki Steel Corp 耐酸化性に優れ、γAl2O3の密着性を低下させる酸化物ウイスカ生成を抑制するFe−Cr−Al合金
JPH05331552A (ja) * 1992-06-01 1993-12-14 Sumitomo Metal Ind Ltd フェライト系ステンレス鋼板の製造法
JPH06170498A (ja) * 1992-12-03 1994-06-21 Kawasaki Steel Corp 耐酸化性に優れたFe−Cr−Al系合金薄帯の製造方法
JPH06220587A (ja) * 1993-01-21 1994-08-09 Kawasaki Steel Corp 耐酸化性に優れ、電気抵抗減少率の小さいFe−Cr−Al系合金
JPH1072645A (ja) * 1996-05-29 1998-03-17 Sumitomo Metal Ind Ltd オゾン含有水用ステンレス鋼材およびその製造方法
JPH1161348A (ja) * 1997-08-15 1999-03-05 Kawasaki Steel Corp Fe−Cr−Al−W系急冷合金箔
JP2013159837A (ja) 2012-02-07 2013-08-19 Nisshin Steel Co Ltd 抵抗発熱体用ステンレス箔ならびにステンレス線材
JP2016094662A (ja) 2015-11-04 2016-05-26 日新製鋼株式会社 抵抗発熱体用ステンレス箔又はステンレス線材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3748026A4

Also Published As

Publication number Publication date
CN113322418A (zh) 2021-08-31
JP6601582B2 (ja) 2019-11-06
US20210059019A1 (en) 2021-02-25
EP3748026A4 (en) 2021-01-20
JP6562188B1 (ja) 2019-08-21
CN111655882B (zh) 2021-08-10
JP2019151934A (ja) 2019-09-12
KR102364524B1 (ko) 2022-02-17
CN111655882A (zh) 2020-09-11
EP3748026A1 (en) 2020-12-09
JPWO2019150762A1 (ja) 2020-02-06
US20220015196A1 (en) 2022-01-13
KR20200100828A (ko) 2020-08-26
CN113322418B (zh) 2023-03-17
US11497085B2 (en) 2022-11-08

Similar Documents

Publication Publication Date Title
JP6601582B2 (ja) Fe−Cr合金および抵抗発熱体
JP5062985B2 (ja) 加工性に優れた高Al含有鋼板及びその製造方法
KR102598376B1 (ko) 페라이트계 스테인리스 강판 및 그 제조 방법, 그리고, Al 계 도금 스테인리스 강판
JP6206381B2 (ja) ステンレス箔
JP5561447B1 (ja) ステンレス鋼板およびステンレス箔
CN109196131B (zh) 铁素体系不锈钢板
WO2018074405A1 (ja) ステンレス鋼板およびステンレス箔
JP6791458B1 (ja) フェライト系ステンレス鋼板およびその製造方法、ならびに、Al蒸着層付きステンレス鋼板
JP6954508B1 (ja) Alコーティング層付きステンレス鋼板
JP6237973B1 (ja) フェライト系ステンレス鋼板
WO2022004100A1 (ja) Alコーティング層付きステンレス鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019519770

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903055

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207021961

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018903055

Country of ref document: EP

Effective date: 20200831