WO2019150478A1 - 真空断熱材及び断熱箱 - Google Patents

真空断熱材及び断熱箱 Download PDF

Info

Publication number
WO2019150478A1
WO2019150478A1 PCT/JP2018/003182 JP2018003182W WO2019150478A1 WO 2019150478 A1 WO2019150478 A1 WO 2019150478A1 JP 2018003182 W JP2018003182 W JP 2018003182W WO 2019150478 A1 WO2019150478 A1 WO 2019150478A1
Authority
WO
WIPO (PCT)
Prior art keywords
core material
heat insulating
vacuum
outer packaging
heat
Prior art date
Application number
PCT/JP2018/003182
Other languages
English (en)
French (fr)
Inventor
貴祥 向山
一正 藤村
夕貴 大森
尚平 安孫子
浩明 高井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/003182 priority Critical patent/WO2019150478A1/ja
Priority to AU2018406922A priority patent/AU2018406922B2/en
Priority to JP2019568467A priority patent/JPWO2019150478A1/ja
Priority to CN201880087571.XA priority patent/CN111656076A/zh
Priority to TW107130818A priority patent/TW201934314A/zh
Publication of WO2019150478A1 publication Critical patent/WO2019150478A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum

Definitions

  • the present invention relates to a vacuum heat insulating material and a heat insulating box in which the inside of the outer packaging material is sealed under reduced pressure and shields heat in the heat insulating direction.
  • a vacuum heat insulating material used as a heat insulating material for a refrigerator or the like includes a container whose inside is evacuated and a heat insulating member placed in the container.
  • a heat insulating member is known in which an alkali-free long fiber glass wool is overlapped and then needle punching is performed on the overlapped glass wool (for example, see Patent Document 1).
  • the core material which is a heat insulating member described in Patent Document 1 is alkali-free long fiber glass wool subjected to needle punching.
  • the fiber length is 30 mm or more and 100 mm or less.
  • the fiber diameter is 6 ⁇ m or more and 25 ⁇ m or less.
  • the density at which the fibers of the core material gather is 100 kg / m 3 or more and 230 kg / m 3 or less.
  • the density after evacuation is 250 kg / m 3 or more and 450 kg / m 3 or less.
  • the heat insulating member that is vacuumed by being placed in a container is formed by superimposing non-alkali long fiber glass wool and performing needle punching processing. Thereby, the density of the glass wool before evacuation is increased, and the shrinkage of the volume due to evacuation is reduced.
  • a heat-insulating member is formed by solidifying a non-alkali long fiber glass wool while being pressed with a binder of an inorganic material such as water glass. Thereby, the shrinkage
  • the fiber length is 30 mm or more and 100 mm or less, and the density after evacuation is defined as 250 kg / m 3 or more and 450 kg / m 3 or less.
  • the heat transfer path component extending in the direction orthogonal to the heat insulation direction is short. Thereby, a heat transfer path close to a straight line is formed along the heat insulation direction. For this reason, the heat conductivity of a vacuum heat insulating material becomes high, and heat insulation performance deteriorates.
  • Patent Document 1 does not describe an orientation angle that is an angle with respect to a plane perpendicular to the heat insulation direction in the fiber extending direction.
  • the orientation angle is large, the probability of orienting the direction in which the fibers extend along the heat insulation direction increases, and the heat transfer path becomes shorter. For this reason, heat conductivity becomes high and heat insulation performance falls.
  • This invention is for solving the said subject, and it aims at providing the vacuum heat insulating material and heat insulation box which the heat transfer path over the heat insulation direction becomes long, heat conductivity is low, and heat insulation performance can be improved. .
  • the vacuum heat insulating material according to the present invention includes a core material made of a fiber assembly and an outer packaging material that covers the core material, and the inside of the outer packaging material is hermetically sealed under reduced pressure to block heat in the heat insulating direction.
  • the core material is manufactured by a continuous filament method, the average fiber length of the core material is 7 cm or more within a range that can be physically accommodated in the outer packaging material, and the fibers of the core material are The average value of the angle formed between the extending direction and the plane orthogonal to the heat insulation direction is 0 ° or more and 10 ° or less, and the density of the core material in the outer packaging material is such that the core material is inside the outer packaging material. It is 280 kg / m 3 or more as long as a vacuum space having voids between fibers can be physically configured.
  • the heat insulation box according to the present invention includes an outer box and an inner box disposed inside the outer box, and the vacuum heat insulating material is orthogonal to the heat insulation direction between the outer box and the inner box. It is arranged across the front and back surfaces.
  • the average fiber length of the core material is 7 cm or more within a range that can be physically stored in the outer packaging material.
  • the average value of the angle formed by the direction in which the fibers of the core material extend and the plane orthogonal to the heat insulation direction is 0 ° or more and 10 ° or less.
  • the density of the core material inside the outer packaging material is 280 kg / m 3 or more within a range in which the core material can physically configure a vacuum space having a gap between fibers inside the outer packaging material.
  • FIG. 3 is a schematic diagram showing a heat transfer path of core materials of Comparative Examples 1 to 4 according to Embodiment 1 of the present invention. It is a schematic diagram which shows the heat insulation box which concerns on Embodiment 2 of this invention.
  • Embodiment 1 FIG. ⁇ Outline of the present invention>
  • the average fiber length of the core material is 7 cm or more within a range that can be physically stored in the outer packaging material.
  • the average value of the angle formed by the direction in which the fibers of the core material extend and the plane C perpendicular to the heat insulation direction is 0 ° or more and 10 ° or less.
  • the density of the core material after evacuation in the outer packaging material is 280 kg / m 3 or more as long as the core material can physically configure a vacuum space having a space between fibers inside the outer packaging material.
  • the average fiber length of the core material, the orientation angle that is an angle with respect to the plane C perpendicular to the heat insulation direction in the direction in which the fibers of the core material extend, and the density of the core material after evacuation inside the outer packaging material are: ,
  • ⁇ Measurement method of average fiber length of core material The measurer loosened the core material so as not to break it. The measurer measured the fiber length of the core material to the 1 mm unit using a ruler. The measurer measured the length of a total of 100 fibers. The average value of the lengths of a total of 100 fibers was defined as the average fiber length.
  • the orientation angle ⁇ is an angle with respect to the plane C perpendicular to the heat insulating direction in the direction in which the fibers of the core material extend.
  • the measurer hardened the outside of the vacuum heat insulating material with an epoxy resin to maintain the original vacuum heat insulating material thickness. Then, the measurer opened the outer packaging material of the vacuum heat insulating material, poured an epoxy resin into the inside, and cured. After curing, the measurer cut the central portion of the vacuum heat insulating material with a surface extending in the width direction along the heat insulating direction, polished the cut surface, and produced a sample for measuring the average fiber angle.
  • the measurer performed secondary electron image photographing on the cut surface of the produced sample using a scanning electron microscope at a magnification of 500 times, and performed image analysis on the photographed secondary electron image.
  • FIG. 1 is a secondary electron image diagram of a scanning electron microscope showing a sample for measuring the average number of fibers according to Embodiment 1 of the present invention.
  • FIG. 1 shows a photograph taken with a scanning electron microscope. Each of the oval shapes shown in white on the photograph is a cross section of the fiber. A plane C perpendicular to the heat insulation direction is defined as horizontal 0 °. The measurer assumes that the fiber cross section is all elliptical, the long axis length a [ ⁇ m] is 0.01 ⁇ m unit, the short axis length b [ ⁇ m] is 0.01 ⁇ m unit, and the long axis and horizontal plane. Were measured up to 0.01 ° units.
  • the measurer substituted the measurement result into the following formula to calculate the orientation angle ⁇ [°].
  • the measurer calculates the orientation angle ⁇ for all the fibers on the screen in the cross section from the upper end to the lower end in the illustration of the heat insulation direction at an arbitrary position in the direction orthogonal to the heat insulation direction, and orthogonal to the heat insulation direction.
  • FIG. 2 is a cross-sectional view showing the vacuum heat insulating material 1 according to Embodiment 1 of the present invention.
  • the vacuum heat insulating material 1 is a deterioration over time by adsorbing a core material 2 made of a fiber assembly, a gas barrier outer packaging material 3 covering the core material 2, and moisture inside the outer packaging material 3. And a water adsorbent 4 that suppresses water.
  • the inside of the outer packaging material 3 is hermetically sealed with a welding seal portion 5 such as a heat seal in a state where the pressure is reduced to a vacuum degree of 1 Pa to 3 Pa.
  • the outer packaging material 3 has at least a gas barrier layer and a heat welding layer.
  • the outer packaging material 3 may be provided with a surface protective layer or the like as necessary.
  • the gas barrier layer of the outer packaging material 3 a metal film, a metal oxide, a plastic film deposited with diamond-like carbon, or a metal foil can be used.
  • the gas barrier layer is not particularly specified as long as it is used for the purpose of reducing gas permeation.
  • silica, alumina, or the like can be used as a material for metal oxide vapor deposition on the plastic film.
  • the material for metal oxide vapor deposition is not particularly specified.
  • the heat-welded layer of the outer packaging material 3 is a portion having the highest gas permeability in the film constituting the outer packaging material 3.
  • the property of the heat-welded layer greatly affects the temporal heat insulation performance of the vacuum heat insulating material 1.
  • the thickness of the heat-welded layer is the stability of the sealing quality in the reduced-pressure sealing process, the suppression of gas intrusion from the end face of the heat-welded part, and the heat from the surface by heat conduction when using a metal foil as the gas barrier layer In consideration of leakage, 25 ⁇ m to 60 ⁇ m is suitable.
  • As a material for the heat welding layer an unstretched polypropylene film, a high density polyethylene film, a linear low density polyethylene film, or the like can be used. However, the material for the heat welding layer is not particularly specified.
  • a surface protective layer can be further provided outside the gas barrier layer of the outer packaging material 3.
  • a polyethylene terephthalate film, a polypropylene film, a stretched product of nylon film, or the like can be used. Furthermore, when these surface protective layers are covered with a nylon film or the like, the bending resistance and the puncture resistance are improved.
  • the bag shape of the outer packaging material 3 a four-side seal bag, a gusset bag, a three-side seal bag, a pillow bag, a center tape seal bag, or the like can be used.
  • the bag shape of the outer packaging material 3 is not particularly specified.
  • the core material 2 is composed of a fiber assembly in which fibers such as glass wool having an elongated cylindrical shape and a long cylindrical shape are collected.
  • the core material 2 is manufactured by the continuous filament method. Thereby, the core material 2 is comprised from the cross-sectional perfect circle and the elongate columnar fiber.
  • the core material 2 is configured as a plate-like fiber assembly by laminating a plurality of fiber thin plates 2a in the heat insulating direction. In FIG. 2, the core material 2 has four laminated fiber sheets 2a.
  • the core material 2 may be composed of one or more plate-like bodies.
  • the core material 2 may be a lump of fibrous bodies that swells with a gap between the fibers.
  • the core material 2 may comprise a fiber assembly by joining the plurality of chunks.
  • the moisture adsorbent 4 is calcium oxide (CaO) or the like inserted in a bag with good air permeability.
  • the moisture adsorbent 4 is not limited to CaO alone.
  • the water adsorbent 4 may be zeolite or the like, and is not particularly limited as long as it has water adsorbability.
  • the core material 2 is inserted into the outer packaging material 3, and the vacuum heat insulating material 1 undergoes a drying process for removing moisture. Thereafter, the moisture adsorbent 4 is inserted into the outer packaging material 3. Then, the opening of the outer packaging material 3 is sealed by heat sealing or the like while the inside of the outer packaging material 3 is decompressed to a vacuum degree of 1 Pa to 3 Pa. Thereby, the vacuum heat insulating material 1 is obtained.
  • covers the core material 2 is just to implement as a drying process.
  • the drying process may be performed at 110 ° C. for 2 hours, for example.
  • the heating conditions in the drying process are not limited to this, and any conditions may be used as long as moisture can be removed from the core material 2 and the outer packaging material 3 covering the core material 2.
  • the moisture adsorbent 4 is not limited to being inserted after the drying process.
  • the moisture adsorbent 4 may be inserted before the drying step or before pressure-compressing the core material 2 and the outer packaging material 3 covering the core material 2 with a processing device.
  • Example 1 It was 7.9 cm when the average fiber length of the core material 2 was measured by said method. Moreover, when the average orientation angle
  • Example 2 It was 9.5 cm when the average fiber length of the core material 2 was measured by said method. Moreover, when the average orientation angle
  • the heat conductivity of the vacuum heat insulating material 1 of Comparative Example 1 is a bad value compared with the heat conductivity of the vacuum heat insulating material 1 of Examples 1 and 2, 1.16 mW / m ⁇ K to 1.24 mW / m ⁇ K. became. That is, the heat insulating performance of the vacuum heat insulating material 1 is inferior because the vacuum heat insulating material 1 of Comparative Example 1 has higher thermal conductivity than the vacuum heat insulating material 1 of Examples 1 and 2.
  • the thermal conductivity of the vacuum heat insulating material 1 of Comparative Example 2 was compared with the thermal conductivity of 1.16 mW / m ⁇ K to 1.24 mW / m ⁇ K of the vacuum heat insulating material 1 of Examples 1 and 2, and was a bad value. became. That is, the heat insulating performance of the vacuum heat insulating material 1 is inferior because the vacuum heat insulating material 1 of Comparative Example 2 has higher thermal conductivity than the vacuum heat insulating material 1 of Examples 1 and 2.
  • the thermal conductivity of the vacuum heat insulating material 1 of Comparative Example 3 is a bad value compared to the thermal conductivity of 1.16 mW / m ⁇ K to 1.24 mW / m ⁇ K of the vacuum heat insulating material 1 of Examples 1 and 2. became. That is, the heat insulating performance of the vacuum heat insulating material 1 is inferior because the vacuum heat insulating material 1 of Comparative Example 3 has higher thermal conductivity than the vacuum heat insulating material 1 of Examples 1 and 2.
  • the thermal conductivity of the vacuum heat insulating material 1 of Comparative Example 4 is a bad value compared to the thermal conductivity of 1.16 mW / m ⁇ K to 1.24 mW / m ⁇ K of the vacuum heat insulating material 1 of Examples 1 and 2. became. That is, the heat insulating performance of the vacuum heat insulating material 1 is inferior because the vacuum heat insulating material 1 of Comparative Example 4 has higher thermal conductivity than the vacuum heat insulating material 1 of Examples 1 and 2.
  • FIG. 3 is a diagram showing a relationship between the average fiber length and the thermal conductivity of the core material 2 according to Embodiment 1 of the present invention.
  • the thermal conductivity is 1.5 mW / m ⁇ K or more when the average fiber length of the core material 2 is less than 7 cm, whereas 1.3 mW / m when the average fiber length of the core material 2 is 7 cm or more. ⁇ K or less.
  • FIG. 4 is a diagram showing the relationship between the orientation angle ⁇ and the thermal conductivity according to Embodiment 1 of the present invention.
  • the thermal conductivity is 1.5 mW / m ⁇ K or more in the range where the orientation angle ⁇ exceeds 10 °, whereas it is 1.3 mW / m ⁇ K or less in the range where the orientation angle ⁇ is 10 ° or less. As a result, it was found that there is an inflection point in the vicinity of the orientation angle ⁇ of 10 °.
  • FIG. 5 is a diagram showing the relationship between the density and thermal conductivity of the core material 2 according to Embodiment 1 of the present invention.
  • the thermal conductivity is 1.5 mW / m ⁇ K or more when the density of the core material 2 is less than 280 kg / m 3 , whereas 1.3 mW when the density of the core material 2 is 280 kg / m 3 or more. / M ⁇ K or less.
  • the density of the core material 2 has an inflection point in the vicinity of 280 kg / m 3 .
  • FIG. 6 is a schematic diagram showing a heat transfer path of the core material 2 of Examples 1 and 2 according to Embodiment 1 of the present invention.
  • the smaller the orientation angle ⁇ the lower the probability that the fibers are oriented in the heat insulation direction of the vacuum heat insulating material 1, and the heat transfer path swings in a direction perpendicular to the heat insulation direction and becomes longer. For this reason, heat conductivity is low and heat insulation performance becomes high.
  • FIG. 7 is a schematic diagram showing a heat transfer path of the core materials of Comparative Examples 1 to 4 according to Embodiment 1 of the present invention. As shown in FIG. 7, when the orientation angle ⁇ increases, the probability that the fibers are oriented in the heat insulation direction increases, and the component orthogonal to the heat insulation direction is short and the heat transfer path is short. For this reason, heat conductivity is high and heat insulation performance becomes low.
  • the average fiber length of the core material 2 can be similarly explained by the percolation theory.
  • the three parameters of the average fiber length, the orientation angle ⁇ , and the density of the core material 2 have a correlation with the thermal conductivity. And the three parameters of the average fiber length of the core material 2, the orientation angle
  • the orientation angle ⁇ when the orientation angle ⁇ is set to 10 ° or less, it is difficult to form a support that forms a vacuum space having a thickness in the heat insulating direction unless the average fiber length of the core material 2 is long.
  • the orientation angle ⁇ when the orientation angle ⁇ is set to 10 ° or less, the heat insulation direction component of the fiber is shortened, and the fiber is layered many times when it becomes a support constituting a vacuum space having a thickness in the heat insulation direction. It becomes necessary to overlap, and the density of the core material 2 increases.
  • the average fiber length of the core material 2 is 7 cm or more within a range that can be physically stored in the outer packaging material 3.
  • the average value of the orientation angle ⁇ with respect to the plane C orthogonal to the heat insulating direction in the direction in which the fibers of the core material 2 extend is 0 ° or more and 10 ° or less.
  • the density of the core material 2 after evacuation in the outer packaging material 3 is 280 kg / m 3 or more within a range in which the core material 2 can physically configure a vacuum space having gaps between fibers inside the outer packaging material 3. It is.
  • the vacuum heat insulating material 1 includes the core material 2 made of a fiber assembly.
  • the vacuum heat insulating material 1 includes an outer packaging material 3 that covers the core material 2.
  • the core material 2 is manufactured by a continuous filament method.
  • the average fiber length of the core material 2 is 7 cm or more within a range that can be physically stored in the outer packaging material 3.
  • the average value of the orientation angle ⁇ which is the angle formed between the direction in which the fibers of the core material 2 extend and the plane C orthogonal to the heat insulation direction, is 0 ° or more and 10 ° or less.
  • the density of the core material 2 after evacuation in the outer packaging material 3 is 280 kg / m 3 or more within a range in which the core material 2 can physically configure a vacuum space having gaps between fibers inside the outer packaging material 3. It is.
  • the length of the core material 2 extending in the direction orthogonal to the heat insulation direction increases, and the heat transfer path component extending in the direction orthogonal to the heat insulation direction becomes longer. Therefore, the heat transfer path over the heat insulation direction becomes long, the thermal conductivity is low, and the heat insulation performance can be improved.
  • the average fiber length of the core material 2 is 8 cm or more and 9.5 cm or less.
  • the average fiber length of the core material 2 when the average fiber length of the core material 2 is 8 cm or more, the length of the core material 2 extending in the direction orthogonal to the heat insulation direction is further increased, and the heat extending in the direction orthogonal to the heat insulation direction is increased.
  • the component of the transmission path becomes longer.
  • the average fiber length of the core material 2 is 9.5 cm or less, the fibers of the core material 2 are not too long and are easy to manufacture and handle.
  • the average fiber length of the core material 2 is 8 cm or more and 9.5 cm or less, while being able to manufacture at low cost, the heat insulation performance is likely to be remarkably improved.
  • the core material 2 is configured in a plate shape by laminating a plurality of fiber thin plates 2a in the heat insulating direction.
  • the average value of the orientation angle ⁇ with respect to the plane C perpendicular to the heat insulation direction in the direction in which the fibers extend in one fiber thin plate 2a can be easily set to 0 ° or more and 10 ° or less. This is because the direction in which the fibers extend in one fiber thin plate 2a lies along the flat plate surface of the fiber thin plate 2a, and the fibers do not rise from the flat plate surface of the fiber thin plate 2a. Further, since the plurality of fiber thin plates 2a are laminated in the heat insulating direction, the density of the core material 2 after evacuation in the outer packaging material 3 is a vacuum space having gaps between fibers in the outer packaging material 3 of the core material. It is easy to configure at 280 kg / m 3 or more within a physically configurable range.
  • Embodiment 2 FIG. In the first embodiment, the vacuum heat insulating material 1 has been described. By mounting this vacuum heat insulating material 1, it is possible to provide a heat insulating box 6 for a refrigerator with low power consumption. Here, only the characteristic part will be described. About the part of other refrigerators, since there is no difference from the part used for the general refrigerator, description is abbreviate
  • FIG. 8 is a schematic diagram showing the heat insulation box 6 according to Embodiment 2 of the present invention.
  • the heat insulating box 6 of the refrigerator includes an inner box 7 made of ABS resin and an outer box 8 made of a steel plate.
  • the vacuum heat insulating material 1 is arranged with the front and back surfaces orthogonal to the heat insulating direction.
  • the vacuum heat insulating material 1 is disposed with one side attached to the inner box 7.
  • a foamed urethane heat insulating material 9 is filled with foam.
  • the heat insulating box 6 includes the outer box 8.
  • the heat insulating box 6 includes an inner box 7 disposed inside the outer box 8.
  • the vacuum heat insulating material 1 according to the first embodiment is disposed between the outer box 8 and the inner box 7 with front and back surfaces orthogonal to the heat insulating direction sandwiched therebetween.
  • the vacuum heat insulating material 1 of the first embodiment is disposed between the outer box 8 and the inner box 7 with the front and back surfaces orthogonal to the heat insulating direction sandwiched therebetween.
  • route extended in a orthogonal direction with respect to the heat insulation direction between the outer box 8 and the inner box 7 becomes long. Therefore, the heat transfer path over the heat insulation direction between the outer box 8 and the inner box 7 becomes longer, the heat conductivity is low, and the heat insulation performance can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)

Abstract

真空断熱材は、繊維集合体からなる芯材と、芯材を被覆する外包材と、を備え、外包材の内部が減圧密封され、断熱方向に対して熱を遮る真空断熱材であって、芯材は、連続フィラメント法によって製造され、芯材の平均繊維長は、外包材に物理的に収納できる範囲内で7cm以上であり、芯材の繊維が延びる向きと断熱方向に直交な面との成す角度の平均値は、0°以上10°以下であり、外包材の内部における芯材の密度は、芯材が外包材の内部に真空空間を物理的に構成できる範囲内で280kg/m以上である。

Description

真空断熱材及び断熱箱
 本発明は、外包材の内部が減圧密封され、断熱方向に対して熱を遮る真空断熱材及び断熱箱に関する。
 従来、冷蔵庫などの断熱材として用いる真空断熱材は、内部を真空にした容器と、容器内に入れられた断熱部材と、で構成される。断熱部材は、無アルカリ長繊維グラスウールを重ね合わせた後、重ね合わせたグラスウールにニードルパンチング加工を施すものが知られている(たとえば、特許文献1参照)。
 特許文献1に記載の断熱部材である芯材は、ニードルパンチング加工を施した無アルカリ長繊維グラスウールである。繊維長さは、30mm以上100mm以下である。繊維径は、6μm以上25μm以下である。芯材の繊維が集合した密度は、100kg/m以上230kg/m以下である。真空引き後の密度は、250kg/m以上450kg/m以下である。
 特許文献1によれば、上記のように構成したことにより、容器内に入れて真空引きされた断熱部材は、無アルカリ長繊維グラスウールを重ね合わせてニードルパンチング加工を施して形成している。これにより、真空引き前のグラスウールの密度が高められ、真空引きによる体積の収縮が小さくされている。
 また、特許文献1によれば、無アルカリ長繊維グラスウールを水ガラスなどの無機材料のバインダーによってプレス加工しながら固めて断熱部材が形成されている。これにより、真空引きした後のグラスウールの体積の収縮が抑えられている。
特開平7-96563号公報
 特許文献1の技術では、繊維長さが30mm以上100mm以下であり、真空引き後の密度が250kg/m以上450kg/m以下と規定されている。しかし、繊維長さが短く、真空引き後の密度が小さい場合には、断熱方向に対して直交方向に延びる熱伝達経路の成分が短くなる。それにより、断熱方向に沿って直線状に近い熱伝達経路ができてしまう。このため、真空断熱材の熱伝導率が高くなり、断熱性能が悪化する。
 また、特許文献1には、繊維が延びる方向の断熱方向に直交な面に対する角度である配向角に関しての記述がない。しかし、配向角が大きいと、断熱方向に沿って繊維が延びる方向を配向する確率が高くなり、熱伝達経路が短くなる。このため、熱伝導率が高くなり、断熱性能が低下する。
 本発明は、上記課題を解決するためのものであり、断熱方向にわたる熱伝達経路が長くなり、熱伝導率が低く、断熱性能が向上できる真空断熱材及び断熱箱を提供することを目的とする。
 本発明に係る真空断熱材は、繊維集合体からなる芯材と、前記芯材を被覆する外包材と、を備え、前記外包材の内部が減圧密封され、断熱方向に対して熱を遮る真空断熱材であって、前記芯材は、連続フィラメント法によって製造され、前記芯材の平均繊維長は、前記外包材に物理的に収納できる範囲内で7cm以上であり、前記芯材の繊維が延びる向きと断熱方向に直交な面との成す角度の平均値は、0°以上10°以下であり、前記外包材の内部における前記芯材の密度は、前記芯材が前記外包材の内部に繊維間に空隙を有した真空空間を物理的に構成できる範囲内で280kg/m以上であるものである。
 本発明に係る断熱箱は、外箱と、前記外箱の内部に配置された内箱と、を備え、上記の真空断熱材は、前記外箱と前記内箱との間に断熱方向に直交な表裏面を挟んで配置されるものである。
 本発明に係る真空断熱材及び断熱箱によれば、芯材の平均繊維長は、外包材に物理的に収納できる範囲内で7cm以上である。芯材の繊維が延びる向きと断熱方向に直交な面との成す角度の平均値は、0°以上10°以下である。外包材の内部における芯材の密度は、芯材が外包材の内部に繊維間に空隙を有した真空空間を物理的に構成できる範囲内で280kg/m以上である。これにより、断熱方向に対して直交方向に延びる熱伝達経路の成分が長くなる。したがって、断熱方向にわたる熱伝達経路が長くなり、熱伝導率が低く、断熱性能が向上できる。
本発明の実施の形態1に係る平均繊維本数の測定用試料を示す走査型電子顕微鏡の二次電子像図である。 本発明の実施の形態1に係る真空断熱材を示す断面図である。 本発明の実施の形態1に係る芯材の平均繊維長と熱伝導率との関係を示す図である。 本発明の実施の形態1に係る配向角と熱伝導率との関係を示す図である。 本発明の実施の形態1に係る芯材の密度と熱伝導率との関係を示す図である。 本発明の実施の形態1に係る実施例1、2の芯材の熱伝達経路を示す模式図である。 本発明の実施の形態1に係る比較例1~4の芯材の熱伝達経路を示す模式図である。 本発明の実施の形態2に係る断熱箱を示す模式図である。
 以下、図面に基づいて本発明の実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、断面図の図面においては、視認性に鑑みて適宜ハッチングを省略している。さらに、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
実施の形態1.
<本発明の概要>
 本発明に係る真空断熱材の芯材では、芯材の平均繊維長は、外包材に物理的に収納できる範囲内で7cm以上である。芯材の繊維が延びる向きと断熱方向に直交な面Cとの成す角度の平均値は、0°以上10°以下である。外包材の内部における真空排気後の芯材の密度は、芯材が外包材の内部に繊維間に空隙を有した真空空間を物理的に構成できる範囲内で280kg/m以上である。
 ここで、芯材の平均繊維長と、芯材の繊維が延びる向きにおける断熱方向に直交な面Cに対する角度である配向角と、外包材の内部における真空排気後の芯材の密度と、は、それぞれ次の方法で測定された測定値を意味する。
<芯材の平均繊維長の測定方法>
 測定者は、芯材を折らないようにほぐした。測定者は、定規を用いて芯材の繊維の長さを1mm単位まで測定した。測定者は、合計100本の繊維の長さを測定した。合計100本の繊維の長さの平均値が平均繊維長と規定された。
<配向角φの測定方法>
 配向角φとは、芯材の繊維が延びる向きにおける断熱方向に直交な面Cに対する角度である。測定者は、真空断熱材の状態での厚みを保持するため、真空断熱材の外側をエポキシ樹脂で固め、元の真空断熱材の厚みを保持させた。その後、測定者は、真空断熱材の外包材を開封し、内部にエポキシ樹脂を流し込み、硬化させた。硬化後、測定者は、真空断熱材の中央部を断熱方向に沿った幅方向にわたる面で切断し、切断面を研磨し、平均繊維角度測定用の試料を作製した。測定者は、作製した試料の切断面について、走査型電子顕微鏡を用いて二次電子像撮影を倍率500倍で実施し、撮影した二次電子像について画像解析を行った。
 図1は、本発明の実施の形態1に係る平均繊維本数の測定用試料を示す走査型電子顕微鏡の二次電子像図である。図1に走査型電子顕微鏡での写真を示した。写真上で白く映っている楕円形状のもの1つ1つが繊維の断面である。断熱方向に対して直交な面Cが水平の0°と定義される。測定者は、繊維断面を全て楕円であると仮定し、その長軸の長さa[μm]を0.01μm単位、短軸の長さb[μm]を0.01μm単位及び長軸と水平面のなす角θ[°]を0.01°単位までそれぞれ測定した。測定者は、測定結果を下式に代入して配向角φ[°]を算出した。測定者は、配向角φの算出を断熱方向に直交な方向での任意の位置における、断熱方向の図示上端から図示下端までの断面において、画面上の繊維全てについて行い、断熱方向に対して直交な面Cに対する角度である配向角φの平均値を算出した。
Figure JPOXMLDOC01-appb-M000001
<真空断熱材の構成>
 図2は、本発明の実施の形態1に係る真空断熱材1を示す断面図である。図2に示すように、真空断熱材1は、繊維集合体からなる芯材2と、芯材2を被覆するガスバリア性の外包材3と、外包材3の内部の水分を吸着して経時劣化を抑制する水分吸着剤4と、を備える。外包材3の内部は、1Pa~3Paの真空度に減圧された状態で開口部をヒートシールなどの溶着シール部5によって密封されている。
 外包材3は、少なくともガスバリア層及び熱溶着層を有する。外包材3は、必要に応じて表面保護層などを設けてもよい。
 外包材3のガスバリア層としては、金属、金属酸化物、ダイヤモンドライクカーボンを蒸着したプラスチックフィルム、あるいは、金属箔などを用いることができる。なお、ガスバリア層は、ガス透過を低減する目的で用いるものであれば特に指定されるものではない。また、ガスバリア層において、プラスチックフィルム上への金属酸化物蒸着の材料は、シリカ又はアルミナなどを用いることができる。しかし、金属酸化物蒸着の材料は、特に指定されるものではない。
 外包材3の熱溶着層は、外包材3を構成するフィルムの中で最もガス透過度が大きい部分である。熱溶着層の性質は、真空断熱材1の経時断熱性能に大きく影響する。熱溶着層の厚さは、減圧封止工程における封止品質の安定性、熱溶着部端面からのガス侵入の抑制、及び、ガスバリア層として金属箔を使用した場合における熱伝導による表面からのヒートリークを考慮すると、25μm~60μmが適している。熱溶着層の材料としては、無延伸ポリプロピレンフィルム、高密度ポリエチレンフィルム、又は、直鎖状低密度ポリエチレンフィルムなどを用いることができる。しかし、熱溶着層の材料は、特に指定されるものではない。
 また、外包材3のガスバリア層の外側には、更に表面保護層を設けることもできる。表面保護層としては、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、又は、ナイロンフィルムの延伸加工品などが利用できる。さらに、これらの表面保護層は、外側をナイロンフィルムなどで覆われると、耐折り曲げ性及び耐突き刺し性などが向上する。
 また、外包材3の袋形状は、四方シール袋、ガゼット袋、三方シール袋、ピロー袋、又は、センターテープシール袋などを用いることができる。しかし、外包材3の袋形状は、特に指定されるものではない。
 芯材2は、断面真円で細長い円柱状のグラスウールなどの繊維をまとめた繊維集合体からなる。芯材2は、連続フィラメント法によって製造されている。これにより、芯材2は、断面真円で細長い円柱状の繊維から構成されている。芯材2は、複数の繊維薄板2aを断熱方向に積層して板状の繊維集合体に構成されている。図2では、芯材2は、4枚の繊維薄板2aを積層している。しかし、芯材2は、1以上の板状体によって構成されてもよい。また、芯材2は、繊維同士に隙間を有して膨らんだ繊維体の塊でもよい。さらに、芯材2は、上記の複数の塊を接合して繊維集合体を構成してもよい。
 水分吸着剤4は、通気性の良い袋に挿入された酸化カルシウム(CaO)などである。水分吸着剤4は、CaOのみに限定されない。水分吸着剤4は、ゼオライトなどを用いてもよく、水分吸着性を有するものであれば、特に限定されるものではない。
<真空断熱材1の製造方法>
 芯材2が外包材3内に挿入され、真空断熱材1が水分除去のための乾燥工程を経る。その後、水分吸着剤4が外包材3内に挿入される。そして、外包材3の内部が1Pa~3Paの真空度に減圧された状態で外包材3の開口部がヒートシールなどにより密封される。これにより、真空断熱材1が得られる。
 なお、乾燥工程は、芯材2と芯材2を被覆する外包材3との水分を除去できる工程を実施すればよい。乾燥工程は、たとえば110℃で2時間の加熱を行えばよい。しかし、乾燥工程の加熱条件は、これに限定されず、芯材2と芯材2を被覆する外包材3との水分を除去できる条件であればよい。
 また、水分吸着剤4は、乾燥工程を経た後に挿入されることに限定されない。水分吸着剤4は、乾燥工程の前、あるいは、加工装置によって芯材2と芯材2を被覆する外包材3とを加圧圧縮する前に挿入されてもよい。
<測定結果>
 以下では、上記方法で測定した実施例1、2及び比較例1~4の測定結果について説明する。表1には、実施例1、2及び比較例1~4の測定値が示されている。
<実施例1>
 芯材2の平均繊維長を上記の方法で測定したところ、7.9cmであった。また、上記の方法で、繊維の断熱方向に直交な面Cに対する平均の配向角φを測定したところ、8.9°であった。
 実施例1の真空断熱材1について、300mm×300mm×16mmサイズで熱伝導率を測定したところ、熱伝導率は1.24mW/m・Kと良好な値となった。測定条件は、高温側37.7℃、低温側10℃、平均温度23.85℃で実施した。実施例1の真空断熱材1について、真空排気後の密度を測定したところ、298kg/mとなった。
<実施例2>
 芯材2の平均繊維長を上記の方法で測定したところ、9.5cmであった。また、上記の方法で、繊維の断熱方向に直交な面Cに対する平均の配向角φを測定したところ、7.2°であった。
 実施例2の真空断熱材1について、300mm×300mm×16mmサイズで実施例1と同条件で熱伝導率を測定したところ、熱伝導率は1.16mW/m・Kと良好な値となった。実施例2の真空断熱材1について、真空排気後の密度を測定したところ、300kg/mとなった。
<比較例1>
 芯材2の平均繊維長を上記の方法で測定したところ、5.2cmであった。また、上記の方法で、繊維の断熱方向に直交な面Cに対する平均の配向角φを測定したところ、10.2°であった。
 比較例1の真空断熱材1について、300mm×300mm×16mmサイズで実施例1と同条件で熱伝導率を測定したところ、熱伝導率は1.51mW/m・Kと高くなった。比較例1の真空断熱材1について、真空排気後の密度を測定したところ、282kg/mとなった。
 比較例1の真空断熱材1の熱伝導率は、実施例1、2の真空断熱材1の熱伝導率1.16mW/m・K~1.24mW/m・Kと比較し、悪い値となった。すなわち、比較例1の真空断熱材1は、実施例1、2の真空断熱材1より熱伝導率が高いため、真空断熱材1の断熱性能が劣る。
<比較例2>
 芯材2の平均繊維長を上記の方法で測定したところ、6.4cmであった。また、上記の方法で、繊維の断熱方向に直交な面Cに対する平均の配向角φを測定したところ、11.0°であった。
 比較例2の真空断熱材1について、300mm×300mm×16mmサイズで実施例1と同条件で熱伝導率を測定したところ、熱伝導率は1.54mW/m・Kと高くなった。比較例2の真空断熱材1について、真空排気後の密度を測定したところ、271kg/mとなった。
 比較例2の真空断熱材1の熱伝導率は、実施例1、2の真空断熱材1の熱伝導率1.16mW/m・K~1.24mW/m・Kと比較し、悪い値となった。すなわち、比較例2の真空断熱材1は、実施例1、2の真空断熱材1より熱伝導率が高いため、真空断熱材1の断熱性能が劣る。
<比較例3>
 芯材2の平均繊維長を上記の方法で測定したところ、2.0cmであった。また、上記の方法で、繊維の断熱方向に直交な面Cに対する平均の配向角φを測定したところ、13.6°であった。
 比較例3の真空断熱材1について、300mm×300mm×16mmサイズで実施例1と同条件で熱伝導率を測定したところ、熱伝導率は1.58mW/m・Kと高くなった。比較例3の真空断熱材1について、真空排気後の密度を測定したところ、241kg/mとなった。
 比較例3の真空断熱材1の熱伝導率は、実施例1、2の真空断熱材1の熱伝導率1.16mW/m・K~1.24mW/m・Kと比較し、悪い値となった。すなわち、比較例3の真空断熱材1は、実施例1、2の真空断熱材1より熱伝導率が高いため、真空断熱材1の断熱性能が劣る。
<比較例4>
 芯材2の平均繊維長を上記の方法で測定したところ、3.1cmであった。また、上記の方法で、繊維の断熱方向に直交な面Cに対する平均の配向角φを測定したところ、15.3°であった。
 比較例4の真空断熱材1について、300mm×300mm×16mmサイズで実施例1と同条件で熱伝導率を測定したところ、熱伝導率は1.55mW/m・Kと高くなった。比較例4の真空断熱材1について、真空排気後の密度を測定したところ、227kg/mとなった。
 比較例4の真空断熱材1の熱伝導率は、実施例1、2の真空断熱材1の熱伝導率1.16mW/m・K~1.24mW/m・Kと比較し、悪い値となった。すなわち、比較例4の真空断熱材1は、実施例1、2の真空断熱材1より熱伝導率が高いため、真空断熱材1の断熱性能が劣る。
Figure JPOXMLDOC01-appb-T000002
<比較結果>
以上の実施例1、2及び比較例1~4の結果をグラフにプロットした。
<芯材2の平均繊維長についての考察>
 図3は、本発明の実施の形態1に係る芯材2の平均繊維長と熱伝導率との関係を示す図である。芯材2の平均繊維長が7cm未満の範囲において熱伝導率は1.5mW/m・K以上であるのに対し、芯材2の平均繊維長が7cm以上の範囲においては1.3mW/m・K以下となる。これにより、芯材2の平均繊維長が7cmの付近に変曲点があることが分った。
<配向角φについての考察>
 図4は、本発明の実施の形態1に係る配向角φと熱伝導率との関係を示す図である。配向角φが10°を超える範囲において熱伝導率は1.5mW/m・K以上であるのに対し、配向角φが10°以下の範囲においては1.3mW/m・K以下となる。これにより、配向角φが10°の付近に変曲点があることが分った。
<芯材2の密度についての考察>
 図5は、本発明の実施の形態1に係る芯材2の密度と熱伝導率との関係を示す図である。芯材2の密度が280kg/m未満の範囲において熱伝導率は1.5mW/m・K以上であるのに対し、芯材2の密度が280kg/m以上の範囲においては1.3mW/m・K以下となる。これにより、芯材2の密度が280kg/mの付近に変曲点があることが分った。
<比較結果からの知見>
 配向角φと熱伝導率との関係において、変曲点を有することに関しては、変曲点から離れたところで相互の関係が緩やかに変化し、変曲点付近で相互の関係が急激に変化するパーコレーション理論によって説明できる。図6は、本発明の実施の形態1に係る実施例1、2の芯材2の熱伝達経路を示す模式図である。図6に示すように、配向角φが小さくなればなるほど、真空断熱材1の断熱方向に繊維が配向する確率が低くなり、熱伝達経路が断熱方向に直交な方向に振れて長くなる。このため、熱伝導率が低く、断熱性能が高くなる。
 図7は、本発明の実施の形態1に係る比較例1~4の芯材の熱伝達経路を示す模式図である。図7に示すように、配向角φが大きくなると、断熱方向に繊維が配向する確率が高くなり、断熱方向に直交な成分が短く熱伝達経路が短くなる。このため、熱伝導率が高く、断熱性能が低くなる。
 実験結果より、配向角φが10°付近であると、断熱方向への熱伝達経路が急に変化する点であることを示唆している。以上の理由から、配向角φと熱伝導率との関係において変曲点を有すると考えられる。
 また、芯材2の平均繊維長についても、同様にパーコレーション理論によって説明できる。
 上記の考察のように、芯材2の平均繊維長、配向角φ及び芯材2の密度の3つのパラメータは、それぞれ熱伝導率と相関関係がある。そして、芯材2の平均繊維長、配向角φ及び芯材2の密度の3つのパラメータは、相互に強い相関関係も有する。
 すなわち、配向角φが10°以下に設定されると、芯材2の平均繊維長が長くなければ断熱方向に厚みを有する真空空間を構成する支持体に成り難くなる。また、同様に、配向角φが10°以下に設定されると、繊維の断熱方向成分が短くなり、断熱方向に厚みを有する真空空間を構成する支持体に成るときに、繊維を幾重にも重ねる必要が生じ、芯材2の密度が高まる。
 そのため、本発明に係る真空断熱材1の芯材2では、芯材2の平均繊維長は、外包材3に物理的に収納できる範囲内で7cm以上である。芯材2の繊維が延びる向きにおける断熱方向に直交な面Cに対する配向角φの平均値は、0°以上10°以下である。外包材3の内部における真空排気後の芯材2の密度は、芯材2が外包材3の内部に繊維間に空隙を有した真空空間を物理的に構成できる範囲内で280kg/m以上である。このように、これら3つの数値限定が強い相関関係に基づき相乗効果を発揮する。
 なお、一般的に、繊維長が短い場合には、断熱方向に平行に近い断熱方向に沿った直線的な熱伝達経路ができてしまう。このため、熱伝導率が高くなり、断熱性能が悪化する。しかしながら、表1に示すように、芯材2の平均繊維長が8cm~9.5cmの範囲であれば、配向角φを10°以下とすることによって、断熱性能の悪化が防止できる。
<実施の形態1の効果>
 実施の形態1によれば、真空断熱材1は、繊維集合体からなる芯材2を備える。真空断熱材1は、芯材2を被覆する外包材3を備える。真空断熱材1は、外包材3の内部が減圧密封され、断熱方向に対して熱を遮る。芯材2は、連続フィラメント法によって製造される。芯材2の平均繊維長は、外包材3に物理的に収納できる範囲内で7cm以上である。芯材2の繊維が延びる向きと断熱方向に直交な面Cとの成す角度である配向角φの平均値は、0°以上10°以下である。外包材3の内部における真空排気後の芯材2の密度は、芯材2が外包材3の内部に繊維間に空隙を有した真空空間を物理的に構成できる範囲内で280kg/m以上である。
 この構成によれば、芯材2が断熱方向に対して直交方向に延びる長さが増し、断熱方向に対して直交方向に延びる熱伝達経路の成分が長くなる。したがって、断熱方向にわたる熱伝達経路が長くなり、熱伝導率が低く、断熱性能が向上できる。
 実施の形態1によれば、芯材2の平均繊維長は、8cm以上9.5cm以下である。
 この構成によれば、芯材2の平均繊維長が8cm以上であることにより、芯材2が断熱方向に対して直交方向に延びる長さがより増し、断熱方向に対して直交方向に延びる熱伝達経路の成分がより長くなる。また、芯材2の平均繊維長は、9.5cm以下であることにより、芯材2の繊維が長くなり過ぎず製造し易く、取り扱い易い。そして、芯材2の平均繊維長が8cm以上9.5cm以下であることにより、低コストで製造できつつ、断熱性能が顕著に向上し易い。
 実施の形態1によれば、芯材2は、複数の繊維薄板2aを断熱方向に積層して板状に構成される。
 この構成によれば、1枚の繊維薄板2aにて繊維が延びる向きにおける断熱方向に直交な面Cに対する配向角φの平均値が0°以上10°以下に構成し易い。これは、1枚の繊維薄板2aにて繊維が延びる向きが繊維薄板2aの平板面に沿って寝て、繊維が繊維薄板2aの平板面から立ち上がらないからである。また、複数の繊維薄板2aを断熱方向に積層するので、外包材3の内部における真空排気後の芯材2の密度が芯材の外包材3の内部に繊維間に空隙を有した真空空間を物理的に構成できる範囲内で280kg/m以上に構成し易い。
実施の形態2.
 上記実施の形態1では、真空断熱材1について説明した。この真空断熱材1を搭載することにより、消費電力の小さな冷蔵庫の断熱箱6を提供することができる。ここでは、その特徴部分のみを説明する。その他の冷蔵庫の部分については、一般的な冷蔵庫に用いられている部分と違いがないため、説明を省略する。真空断熱材1についても、上記実施の形態1と同様な構成であるので、説明を省略する。
 図8は、本発明の実施の形態2に係る断熱箱6を示す模式図である。図8に示すように、冷蔵庫の断熱箱6は、ABS樹脂からなる内箱7と、鋼板からなる外箱8と、で構成される。外箱8と内箱7との間の空間には、断熱方向に直交な表裏面を挟んで真空断熱材1を配置している。真空断熱材1は、内箱7に片面を貼り付けて配置されている。外箱8と内箱7との間の空間における真空断熱材1以外の空間には、発泡ウレタン断熱材9が発泡充填されている。
<実施の形態2の効果>
 実施の形態2によれば、断熱箱6は、外箱8を備える。断熱箱6は、外箱8の内部に配置された内箱7を備える。上記実施の形態1の真空断熱材1は、外箱8と内箱7との間に断熱方向に直交な表裏面を挟んで配置される。
 この構成によれば、実施の形態1の真空断熱材1が外箱8と内箱7との間に断熱方向に直交な表裏面を挟んで配置される。これにより、外箱8と内箱7との間の断熱方向に対して直交方向に延びる熱伝達経路の成分が長くなる。したがって、外箱8と内箱7との間の断熱方向にわたる熱伝達経路が長くなり、熱伝導率が低く、断熱性能が向上できる。
 1 真空断熱材、2 芯材、2a 繊維薄板、3 外包材、4 水分吸着剤、5 溶着シール部、6 断熱箱、7 内箱、8 外箱、9 発泡ウレタン断熱材。

Claims (4)

  1.  繊維集合体からなる芯材と、
     前記芯材を被覆する外包材と、
    を備え、
     前記外包材の内部が減圧密封され、断熱方向に対して熱を遮る真空断熱材であって、
     前記芯材は、連続フィラメント法によって製造され、
     前記芯材の平均繊維長は、前記外包材に物理的に収納できる範囲内で7cm以上であり、
     前記芯材の繊維が延びる向きと断熱方向に直交な面との成す角度の平均値は、0°以上10°以下であり、
     前記外包材の内部における前記芯材の密度は、前記芯材が前記外包材の内部に繊維間に空隙を有した真空空間を物理的に構成できる範囲内で280kg/m以上である真空断熱材。
  2.  前記芯材の平均繊維長は、8cm以上9.5cm以下である請求項1に記載の真空断熱材。
  3.  前記芯材は、複数の繊維薄板を断熱方向に積層して板状に構成される請求項1又は2に記載の真空断熱材。
  4.  外箱と、前記外箱の内部に配置された内箱と、を備え、
     請求項1~3のいずれか1項に記載の真空断熱材は、前記外箱と前記内箱との間に断熱方向に直交な表裏面を挟んで配置される断熱箱。
PCT/JP2018/003182 2018-01-31 2018-01-31 真空断熱材及び断熱箱 WO2019150478A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2018/003182 WO2019150478A1 (ja) 2018-01-31 2018-01-31 真空断熱材及び断熱箱
AU2018406922A AU2018406922B2 (en) 2018-01-31 2018-01-31 Vacuum heat insulator and heat insulating box
JP2019568467A JPWO2019150478A1 (ja) 2018-01-31 2018-01-31 真空断熱材及び断熱箱
CN201880087571.XA CN111656076A (zh) 2018-01-31 2018-01-31 真空隔热件以及隔热箱
TW107130818A TW201934314A (zh) 2018-01-31 2018-09-03 真空隔熱材及隔熱箱

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003182 WO2019150478A1 (ja) 2018-01-31 2018-01-31 真空断熱材及び断熱箱

Publications (1)

Publication Number Publication Date
WO2019150478A1 true WO2019150478A1 (ja) 2019-08-08

Family

ID=67480018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003182 WO2019150478A1 (ja) 2018-01-31 2018-01-31 真空断熱材及び断熱箱

Country Status (5)

Country Link
JP (1) JPWO2019150478A1 (ja)
CN (1) CN111656076A (ja)
AU (1) AU2018406922B2 (ja)
TW (1) TW201934314A (ja)
WO (1) WO2019150478A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137689A (ja) * 2014-01-21 2015-07-30 日本グラスファイバー工業株式会社 真空断熱材及びその製造方法
JP2016035320A (ja) * 2013-11-26 2016-03-17 三星電子株式会社Samsung Electronics Co.,Ltd. 真空断熱材、断熱箱体及び冷蔵庫

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI22060A (sl) * 2005-05-12 2006-12-31 Blues D.O.O. Toplotnoizolacijsko polnilo za vakuumsko-izolacijski panel
JP4726970B2 (ja) * 2009-04-07 2011-07-20 シャープ株式会社 真空断熱材とそれを備える機器
CN103090157B (zh) * 2013-02-05 2015-08-19 山东华德隆建材科技有限公司 一种真空绝热板及其制备方法
JP6192554B2 (ja) * 2014-02-03 2017-09-06 三菱電機株式会社 真空断熱材の製造方法
EP3150897B8 (en) * 2014-05-30 2018-10-31 AGC Inc. Vacuum heat-insulating material
CN105257951B (zh) * 2014-07-17 2019-01-25 福建赛特新材股份有限公司 一种隔热箱及其所用的真空绝热板

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035320A (ja) * 2013-11-26 2016-03-17 三星電子株式会社Samsung Electronics Co.,Ltd. 真空断熱材、断熱箱体及び冷蔵庫
JP2015137689A (ja) * 2014-01-21 2015-07-30 日本グラスファイバー工業株式会社 真空断熱材及びその製造方法

Also Published As

Publication number Publication date
JPWO2019150478A1 (ja) 2020-11-19
TW201934314A (zh) 2019-09-01
AU2018406922B2 (en) 2021-07-15
AU2018406922A1 (en) 2020-07-09
CN111656076A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
KR101301504B1 (ko) 진공단열재 및 그 제조방법
WO2010087039A1 (ja) 真空断熱材及びこれを備えた断熱箱
KR100961802B1 (ko) 진공 단열재 및 그 제조 방법
JP2011174524A (ja) 断熱材
WO2015033717A1 (ja) 真空断熱材、断熱箱、及び真空断熱材の製造方法
WO2015115149A1 (ja) 真空断熱材、真空断熱材を用いた断熱箱、及び真空断熱材の製造方法
KR101863381B1 (ko) 진공단열재
KR100753720B1 (ko) 진공 단열재 및 그 제조 방법
WO2019150478A1 (ja) 真空断熱材及び断熱箱
JP2016061435A (ja) 真空断熱材、断熱箱、及び真空断熱材の製造方法
JP2009228886A (ja) 真空断熱材及びこれを用いた断熱箱
WO2018047261A1 (ja) 真空断熱材及び断熱箱
JP2007155135A (ja) 真空断熱材及びその製造方法
JP2011089740A (ja) 袋体、および真空断熱材
WO2017029727A1 (ja) 真空断熱材及び断熱箱
JP2007138976A (ja) 真空断熱材及びその製造方法
WO2019171566A1 (ja) 真空断熱材及び断熱箱
JP6422713B2 (ja) 袋体及び当該袋体を用いた真空断熱材
CN107816601B (zh) 真空隔热件
JP2011208763A (ja) 真空断熱材
JP6793571B2 (ja) 真空断熱材、それを備えた機器及び真空断熱材の製造方法
JP6598715B2 (ja) 真空断熱パネルおよびその製造方法、ガス吸着パック
JP2023004591A (ja) 真空断熱材および冷蔵庫
WO2021054395A1 (ja) 真空断熱材
JP7154316B2 (ja) 真空断熱材及び断熱箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568467

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018406922

Country of ref document: AU

Date of ref document: 20180131

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903324

Country of ref document: EP

Kind code of ref document: A1