WO2019146743A1 - マルテンサイト系ステンレス鋼薄板およびその製造方法、ならびに、薄物部品の製造方法 - Google Patents

マルテンサイト系ステンレス鋼薄板およびその製造方法、ならびに、薄物部品の製造方法 Download PDF

Info

Publication number
WO2019146743A1
WO2019146743A1 PCT/JP2019/002414 JP2019002414W WO2019146743A1 WO 2019146743 A1 WO2019146743 A1 WO 2019146743A1 JP 2019002414 W JP2019002414 W JP 2019002414W WO 2019146743 A1 WO2019146743 A1 WO 2019146743A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
thin plate
thin
martensitic stainless
less
Prior art date
Application number
PCT/JP2019/002414
Other languages
English (en)
French (fr)
Inventor
西田 純一
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2019567180A priority Critical patent/JP6735038B2/ja
Publication of WO2019146743A1 publication Critical patent/WO2019146743A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Definitions

  • the present invention relates to, for example, a martensitic stainless steel thin plate that can be used for thin parts such as cutters and sliding members, a method of manufacturing the same, and a method of manufacturing thin parts.
  • stainless steel thin plates having a martensitic component composition having high hardness and excellent corrosion resistance have been used as materials for thin parts (products) such as blades and sliding members. And as a method which can further improve the hardness and corrosion resistance of this stainless steel thin plate, C: 0.10 to 0.40%, Si: 1.00% or less, Mn: 0.10 to 10% by mass 1.50%, Cr: 10.0 to 18.0%, N: 2.00% or less, the balance of Fe and impurities, and the thickness is 0.3 mm or less.
  • a stainless steel member having an N content of 0.80 to 2.00 mass% in a range up to a depth of 05 mm has been proposed (Patent Document 1). This stainless steel member can be produced by heating and holding a stainless steel having the above-described composition and having a thickness of 0.3 mm or less in a nitrogen atmosphere at 860 ° C. or higher, and then cooling.
  • a "nitrogen-enriched layer” in which nitrogen is added to the surface of a martensitic stainless steel thin plate by “nitrogen absorption treatment” in which stainless steel is heated and held in a nitrogen atmosphere It can be formed.
  • the corrosion resistance and wear resistance of the surface of a martensitic stainless steel thin plate can be improved by performing hardening and tempering to the martensitic stainless steel thin plate in which the nitrogen enrichment layer was formed in this surface.
  • An object of the present invention is to provide a martensitic stainless steel thin plate capable of sufficiently compensating for the above-mentioned lack of corrosion resistance as well as making the entire thin part after quenching and tempering high in hardness, and a method of manufacturing the same. It is. Another object of the present invention is to provide a method of manufacturing thin parts.
  • the carbides in the structure also grow coarsely under conditions that allow a large amount of nitrogen to be absorbed from the surface of the stainless steel thin plate to the center of the plate thickness. It was found that this is the cause of insufficient corrosion resistance of the stainless steel sheet after quenching and tempering.
  • the martensitic stainless steel thin plate has a number density of carbide having a circle equivalent diameter of 0.5 ⁇ m or more of 0 to 50/1000 ⁇ m 2 .
  • the above-mentioned component composition is a martensitic stainless steel thin plate further including, by mass%, Ni: 1.0% or less.
  • C 0.25 to 0.45%, Si: 1.0% or less, Mn: 0.1 to 1.5%, Cr: 12.0 to 15.0% by mass. , Mo: 0.5 to 3.0%, N: 0.10% or less, the balance of Fe and impurities, and the material of stainless steel thin plate having a thickness of 0.1 mm or less, in a nitrogen atmosphere, 1000
  • This is a method for producing a martensitic stainless steel thin sheet, which is heat-treated to a temperature exceeding 1 ° C. for 1 to 10 minutes and then cooled.
  • said component composition is a manufacturing method of the martensitic stainless steel thin plate which further contains Ni: 1.0% or less by mass%.
  • this invention is a manufacturing method of the thin-piece components which hardens and tempers to said martensitic stainless steel thin plate.
  • the quenching temperature is set to 1000 to 1250 ° C.
  • the tempering temperature is set to 150 to 650 ° C.
  • Sample Nos. Evaluated in the examples It is a scanning electron micrograph which shows the cross-sectional structure of the martensitic stainless steel thin plate of 3 (this invention example). Sample Nos. Evaluated in the examples. It is a scanning electron micrograph which shows the cross-sectional structure of the martensitic stainless steel thin plate of 9 (comparative example). It is a scanning electron micrograph which shows the cross-sectional structure of the thin-piece components produced from the martensitic stainless steel thin plate of FIG. It is a scanning electron micrograph which shows the cross-sectional structure of the thin-piece components produced from the martensitic stainless steel thin plate of FIG.
  • the feature of the present invention is to find a method capable of achieving high hardness as a whole when quenching and tempering stainless steel thin plate, and capable of sufficiently maintaining corrosion resistance without being insufficient.
  • the inventor reviewed the conditions under which the hardness of the entire thin part after quenching and tempering can be increased.
  • the nitrogen content of 0.30 mass% or more is secured as a whole, 0 at the surface as in Patent Document 1, It has been found that, for example, a hardening and tempering hardness of 600 HV or more can be achieved without adding a high nitrogen content such as 80 mass% or more.
  • the martensitic stainless steel thin plate of the present invention will be described together with a preferable production method for achieving the same.
  • the martensitic stainless steel thin plate of the present invention is, by mass%, C: 0.25 to 0.45%, Si: 1.0% or less, Mn: 0.1 to 1.5%, Cr: 12.0% to 15.0%, Mo: 0.5% to 3.0%, N: 0.30% to 0.45%, balance of Fe and impurities.
  • the stainless steel as the material itself is subjected to hardening and tempering. It is adjusted to the "component composition that develops martensitic structure".
  • % C 0.25 to 0.45 mass% (hereinafter, simply referred to as “%”) C is an element effective to increase the hardness of the martensitic structure after quenching and tempering.
  • % C 0.25 to 0.45 mass% (hereinafter, simply referred to as “%”) C is an element effective to increase the hardness of the martensitic structure after quenching and tempering.
  • the amount of C is too large, coarse chromium-based carbides crystallize in the solidified structure of the ingot during solidification of the melting step involved in the production of a thin plate. Then, this coarse chromium-based carbide remains in the structure of the thin plate, and does not disappear even in the martensitic structure after quenching and tempering, and this becomes the starting point of corrosion, resulting in poor corrosion resistance of the thin part.
  • the content of C is set to 0.25 to 0.45%.
  • it is 0.30% or more.
  • it is 0.43% or less. More preferably, it is 0.40% or less.
  • Si 1.0% or less
  • Si is an element which is used as a deoxidizing agent or the like at the time of the melting step and can be inevitably contained. And when there is too much Si, cold workability will fall. Therefore, the content of Si is set to 1.0% or less. Preferably it is 0.8% or less. More preferably, it is 0.65% or less. More preferably, it is 0.5% or less. The lower limit is not particularly required, but the content of 0.01% or more is realistic.
  • Mn is an element which is used as a deoxidizer or the like at the time of the melting step and which can be unavoidably contained. And, particularly, in the present invention, it is an element having an effect of promoting the solid solution of nitrogen to the thin plate structure in the nitrogen absorption treatment described later.
  • the content of Mn is set to 0.1 to 1.5%. Preferably it is 0.2% or more, More preferably, it is 0.3% or more, More preferably, it is 0.4% or more. Further, it is preferably 1.3% or less, more preferably 1.1% or less, and still more preferably 1.0% or less.
  • Cr 12.0 to 15.0%
  • Cr is an element that forms an amorphous passive film on the surface of stainless steel to impart corrosion resistance to thin parts. It also has the effect of increasing the amount of nitrogen that can be solid-solved in stainless steel, and in the present invention, it is an element that works to promote the dissolution of nitrogen in the sheet structure by the nitrogen absorption treatment described later.
  • the content of Cr is set to 12.0 to 15.0%. Preferably it is less than 14.0%.
  • Mo is an element effective to enhance the corrosion resistance of stainless steel. And it is an element which has the effect of strengthening the function of the passive film by Cr in a solid solution state. Passivated films made of Cr also have a self-repairing function. And, Mo has the function of increasing the amount of Cr in the area where the passive film is wrinkled and strengthening the recovery power of the passive film. Furthermore, Mo has a great effect of promoting nitrogen absorption of stainless steel. However, when Mo is too large, like Cr, the ferrite structure is stabilized, and it is difficult to obtain a martensitic structure. Therefore, the content of Mo is set to 0.5 to 3.0%. Preferably it is 0.7% or more, more preferably 1.0% or more. Moreover, Preferably it is 2.5% or less, More preferably, it is 2.0% or less.
  • N Nitrogen (hereinafter also referred to as "N"): 0.30 to 0.45% N is one of the requirements for determining the characteristics of the martensitic stainless steel thin sheet of the present invention, and is an element that plays an important role in increasing the hardness and improving the corrosion resistance of thin parts after quenching and tempering. Then, by setting the N content to 0.30% or more at the time of the martensitic stainless steel thin plate before quenching and tempering, the thin part after quenching and tempering is combined with the distribution state of carbides in the thin plate structure described later. For example, hardness of 600 HV or more can be achieved.
  • the content of N is 0.30 to 0.45%. Preferably, it is 0.35% or more.
  • the N content is preferably given by the nitrogen absorption treatment of (4) described later.
  • a component composition containing the above-described element species and the balance being Fe and impurities can be a basic component composition. And it is also possible to contain the following elements to this basic ingredient composition.
  • Ni If necessary, 1.0% or less Ni has an effect of suppressing the progress of further corrosion in the early stage of the corrosion that occurs in stainless steel. In addition, it has the effect of enhancing the toughness of the base in the tissue. Furthermore, it is an element that works to stabilize the austenite structure, increase the solid solution limit of N, and absorb a large amount of nitrogen in the heat treatment described later. However, when the amount of Ni is too large, the austenite structure is excessively stabilized and it is difficult to obtain a martensitic structure. And, in the case of the present invention, since it is important that the composition of the stainless steel sheet is adjusted to one which develops a martensitic structure by quenching and tempering, is it not contained (not added)?
  • Ni can contain 1.0% or less as needed. Preferably it is 0.9% or less. More preferably, it is 0.8% or less. When Ni is contained, it is preferably 0.1% or more, more preferably 0.2% or more, and still more preferably 0.4% or more.
  • the martensitic stainless steel thin plate of the present invention has a thickness of 0.1 mm or less.
  • the thickness is 0.1 mm or less Even thin materials can improve the strength of thin parts. And setting of the lower limit of thickness is not particularly required. However, in terms of manufacturing efficiency, handling, etc., for example, it is realistic that the thickness is 0.02 mm or more.
  • the number density of carbides having a circle equivalent diameter of 0.5 ⁇ m or more is 0 to 50/1000 ⁇ m 2 .
  • part of N contained in the above-described component composition in the carbide is a solid solution in the matrix. It is also possible to include “carbonitrides” generated by combining with a nitride forming element such as Cr, Mo, etc.
  • carbides and carbonitrides increase the hardness (abrasion resistance) as the number thereof increases in the structure of the thin part after quenching and tempering. It is effective in point.
  • carbides are large, corrosion starting from this is apt to occur, which is a factor causing insufficient corrosion resistance of thin parts.
  • the objective of the present invention is to reduce carbides of 0.5 ⁇ m or more and reduce the number density thereof to 0 to 50/1000 ⁇ m 2 , which is effective for solving the insufficient corrosion resistance of thin plate components.
  • carbides which are hard to form a solid solution by quenching can be reduced, and formation of coarse carbides in the structure of the thin part can be suppressed.
  • carbides (carbide forming elements) which are maintained in a “solid solution” state in the structure of the thin plate precipitate finely even if they are precipitated by tempering.
  • this carbide is also easily solid-solved by the above-mentioned quenching, and it is precipitated even by tempering as above. , Finely precipitate.
  • the “cross-sectional structure of the thin plate” for measuring the distribution of carbides is a cross section parallel to the stretching direction (that is, the length direction of the thin plate) of the martensitic stainless steel thin plate.
  • one of the parallel cross sections can be a cross section (so-called TD cross section) perpendicular to the TD direction (transverse direction).
  • TD cross section the tissue located at the center in the plate thickness direction is observed with a scanning electron microscope with a visual field area of 1000 ⁇ m 2 or more, and image analysis is performed to obtain a circle equivalent diameter (area equivalent diameter).
  • the number of carbides of 0.5 ⁇ m or more can be counted.
  • the identification of the carbide can be confirmed by element mapping with an EPMA (electron beam microanalyzer) attached to a scanning electron microscope.
  • EPMA electron beam microanalyzer
  • the number density of carbides having an equivalent circle diameter of 0.5 ⁇ m or more is 0 to 50/1000 ⁇ m 2
  • a carbide having a diameter of 5 ⁇ m or more is not confirmed. That is, it is a martensitic stainless steel thin plate in which the number density of carbides having a circle equivalent diameter of 5 ⁇ m or more is less than 1.0 piece / 1000 ⁇ m 2 (including the case of 0 piece) in the above sectional structure.
  • the effective N of 0.30 to 0.45% mentioned above is applied to increase the hardness of the whole.
  • the content needs to be given to the entire martensitic stainless steel sheet.
  • this provision of content of N prepares the raw material of the martensitic stainless steel thin plate previously thinned to the above-mentioned "0.1 mm or less" thickness, and it is in the nitrogen atmosphere to the raw material of this thin plate. It is preferable to achieve by performing "nitrogen absorption processing" which heats and holds at.
  • the nitrogen absorption treatment according to the present invention will be described below.
  • the component composition of the material of the martensitic stainless steel thin plate before the above-mentioned nitrogen absorption treatment is the martensitic stainless steel of the present invention described above except that N is "0.10% or less". It is the same as the range of the component composition of the thin plate. And, it is assumed that nitrogen which can be contained in the material of the thin plate before this nitrogen absorption treatment is a control element (impurity). Preferably it is 0.05% or less, More preferably, it is 0.03% or less.
  • the ingot tends to work harden when it is obtained from the ingot, and the cold workability worsens, so an attempt to finish to a thickness of 0.1 mm or less is an intermediate
  • the annealing must be repeated several times. That is, for the present invention which provides a very thin material having a thickness of 0.1 mm or less, as in the prior art, if an ingot to which nitrogen is added is produced in the first melting step, this ingot is processed Is not easy to thin. Therefore, in the present invention, since martensitic stainless steel is used as the material of the thin plate and then nitrogen is added, it is easy to thin the ingot.
  • the plate thickness of the material is as thin as 0.1 mm or less, so it is sufficient to reach the center of the plate thickness by the nitrogen absorption treatment described later Nitrogen can be added.
  • a material can be an annealed material that has been annealed at, for example, 700 to 800 ° C. after thinning.
  • the above ingot can be subjected to a soaking treatment that is held at a high temperature of around 1200 ° C. for a long time.
  • the component composition of the stainless steel according to the present invention is such that coarse Cr-based carbides do not easily crystallize out during solidification in the melting step.
  • segregation may cause crystallization of coarse Cr-based carbides.
  • the above-described soaking treatment is effective for causing the coarse Cr-based carbide to be solid-solved in the structure.
  • the "nitrogen absorption treatment” performed on the material that has already been thinned to a thickness of 0.1 mm or less by the above method is a heat treatment in which it is heated for 1 to 10 minutes in a nitrogen atmosphere to a temperature exceeding 1000 ° C and then cooled. This is indeed effective for the present invention which gives “0.30 to 0.45%” of N to the above-mentioned material. And, by this heat treatment, the distribution state of the carbide according to the present invention “the number density of carbides with a circle equivalent diameter of 0.5 ⁇ m or more is 0 to 50/1000 ⁇ m 2 in the cross-sectional structure” is achieved. be able to.
  • the amount of solid solution of N when it is heated to the austenite temperature decreases as the heating temperature becomes higher.
  • an amount of N of at least 0.30% can be added to the material of the thin plate of martensitic stainless steel, it is sufficient for increasing the hardness of the thin part.
  • the heating temperature of the above-mentioned heat treatment is set to a high temperature exceeding 1000 ° C. Preferably it is 1050 degreeC or more.
  • the raw material of a thin plate should just be the temperature which does not fuse
  • a heating temperature of about 1100 ° C. is effective in that the amount of absorbed nitrogen is high, and a predetermined amount of nitrogen can be applied in a short time.
  • the heating time at the time of performing the above-mentioned heat treatment at high temperature. That is, in the case of the present invention, since the material of the thin plate to be subjected to the above heat treatment is as thin as 0.1 mm or less, when the heat treatment at the above high temperature is performed, the material is held if the heating time held at the heating temperature is long. Even if the whole of N can absorb a predetermined amount of N, carbides including carbonitrides in the structure grow coarsely. If the carbides become coarse at this point, these coarse carbides do not sufficiently form a solid solution even in the next quenching, remain in the structure of the thin part, and cause the corrosion resistance of the thin part to be insufficient.
  • a martensitic stainless steel thin plate can be manufactured without requiring a heat treatment for a long time, so it is also effective in shortening the manufacturing time and manufacturing cost.
  • the atmosphere of the heat treatment is "nitrogen atmosphere".
  • nitrogen gas can be used as the nitrogen atmosphere.
  • the atmosphere contains 90% by volume or more of the nitrogen gas.
  • a “pressurized atmosphere” including the atmospheric pressure
  • the absorption of nitrogen from the surface of the thin plate material is promoted, which is further effective in shortening the production time and cost. It is In this regard, it is also effective to reduce plasma time and cost by generating plasma in nitrogen atmosphere and using more active radical nitrogen.
  • the heating according to the above heat treatment that is, nitrogen absorption treatment
  • it is “temperarily cooled” to room temperature, “martensitic stainless steel thin plate” before quenching and tempering
  • temporary cooling for example, it may be quenched by air cooling or the like to cause martensitic transformation, or may be slowly cooled to have a ferrite structure at a cooling rate which does not undergo martensitic transformation.
  • quenching is preferable in that the carbide can be maintained in a solid solution state in the structure of the thin plate, or in that the carbide can be made finer.
  • the content of nitrogen can be increased in the entire martensitic stainless steel thin plate. And, even if nitrogen absorbed in the thin plate by this heat treatment dissolves in the structure or exists in the structure as a carbide, the carbide is fine as described above.
  • the above-mentioned carbides are easily dissolved in the structure by quenching, and even if they are precipitated by the subsequent tempering, since the precipitated carbides are fine, the structure of thin plate parts has few places to be the origin of corrosion, The corrosion resistance of the parts can be sufficiently maintained without a shortage. And it is also possible to make the whole of the thin part high in hardness up to the center.
  • continuous heat treatment is preferably applied. That is, it is a manufacturing method of the martensitic stainless steel thin plate which performs continuous heat treatment which heats continuously in a nitrogen atmosphere, and is continuously cooled to the raw material of the above-mentioned martensitic stainless steel thin plate.
  • the continuous heat treatment is a heat treatment in which the thin plate is continuously passed (passed) through a heat treatment apparatus in which the ambient temperature is controlled to a predetermined temperature.
  • the heat treatment apparatus is provided with a heating chamber which is heated while being continuously fed thin plates, and furthermore, the thin plates continuously provided downstream of the heating chamber are continuously fed.
  • the heating temperature that is, the ambient temperature of the heating chamber
  • the heating time that is, heating
  • the hardness of the martensitic stainless steel thin plate of the present invention is preferably 400 HV or less. More preferably, it is 350 HV or less. Although the lower limit is not particularly required, for example, 200 HV or more is preferable in terms of securing the handling property. These hardnesses can be measured at the center of the thin plate in the thickness direction.
  • annealing treatment may be performed further.
  • the hardness of the martensitic stainless steel thin plate can be lowered while maintaining the above-described distribution of carbides.
  • Such annealing treatment is preferably performed by cooling according to the above-mentioned heat treatment (nitrogen absorption treatment), particularly when quenching. It is preferable that the above-mentioned annealing treatment be heating for a short time at a temperature equal to or lower than the A 1 point. If the heating temperature is too high or the heating time is too long, carbides in the structure grow and become coarse.
  • annealing at about 700 to 800 ° C. for about 1 to 15 minutes is preferable.
  • the residual austenite can be sufficiently decomposed by repeating this annealing process a plurality of times (for example, twice or three times).
  • the cooling related to this annealing process can be air cooling.
  • the method for producing a thin part according to the present invention is to perform hardening and tempering on the martensitic stainless steel thin sheet according to the present invention described above.
  • the carbides in the sheet structure are finer as well as the above, and these carbides can be sufficiently solid-solved.
  • the quenching temperature can be, for example, 1000 to 1250 ° C.
  • the holding time at the quenching temperature can be, for example, 30 seconds to 10 minutes.
  • an inert (non-reactive) atmosphere including vacuum and a reduced pressure atmosphere
  • an inert gas atmosphere such as argon is used.
  • the treatment temperature can be, for example, ⁇ 50 ° C. or less.
  • the holding time at the processing temperature can be, for example, 30 seconds to 1 hour.
  • the effect of the nitrogen content mentioned above can make the hardness of the thin part high, for example, to 600 HV or more. Preferably it is 650 HV or more. Although it is not necessary to specify the upper limit of the hardness, about 800 HV is realistic. This hardness can be measured at the center of the thin part in the thickness direction.
  • the tempering temperature can be, for example, 150 to 650.degree.
  • the holding time at the tempering temperature can be, for example, 30 seconds to 1 hour.
  • the tempering temperature can be, for example, “low temperature tempering” of 200 to 400 ° C.
  • low temperature tempering By lowering the tempering temperature, it is possible to appropriately suppress the precipitation of Cr-based carbides, nitrides and the like and to reduce the deficiency of Cr in the portion adjacent to the precipitation portion, so it is more effective to solve the corrosion resistance deficiency.
  • the above-mentioned quenching and tempering can be carried out by continuous heat treatment either or both of the treatments.
  • the “steel material of thin plates” in Table 1 is subjected to “heat treatment (nitrogen absorption treatment)” that is quenched to room temperature by air cooling. , Got a "thin sheet” of stainless steel.
  • the “heating temperature” and the “heating time” in the above heat treatment are as shown in Table 2.
  • the obtained thin plate had a martensitic structure.
  • the hardness of each of the obtained thin plates was approximately 500 HV measured at the center position in the thickness direction.
  • the N content of the thin plate after the above heat treatment is shown in Table 2.
  • the measurement of the N content was carried out by the “inert gas melting-gas chromatography method” in which the amount of nitrogen generated by melting the entire thin plate was determined from the thermal conductivity.
  • N content shown in Table 2 it was confirmed by the line analysis by EPMA that the value was substantially the same value over the whole region of the thickness direction of a thin plate.
  • FIG. 8 shows sample No. 1 described later. It is the result of measuring the value of N content in the thickness direction of the thin plate of 3 by line analysis by EPMA from one surface of the thin plate to the other surface.
  • the N content in the thickness direction of the thin plate is uniformly distributed at the value of the X-ray intensity corresponding to the N content with respect to the N content shown in Table 2 (N content as the entire thin plate) I understand that
  • FIG. 1 is a microscopic image of a thin plate (sample No. 3 of the embodiment to be described later) of the inventive example
  • FIG. 2 is a microscopic image of the thin plate (the same sample No. 9) of a comparative example.
  • the distribution observed in the granular or rod-like white contrast phase is a carbide (including carbonitrides). This has been confirmed by element mapping by EPMA attached to a scanning electron microscope. Then, the number of carbides having a circle equivalent diameter of 0.5 ⁇ m or more was counted by image analysis of the carbides confirmed in this visual field area, and the number density (piece / 1000 ⁇ m 2 ) was calculated. In addition, the open source image processing software ImageJ (http://imageJ.nih.gov/ij/) provided by the National Institutes of Health (NIH) was used for the above image analysis. These results are also shown in Table 2.
  • quenching and tempering were performed on the above-mentioned thin plate to produce a thin part.
  • the above-mentioned thin plate is charged for 2 minutes in a furnace of an atmosphere of argon gas (atmospheric pressure, 99% purity) heated to 1100 ° C., and then quenched (air-cooled).
  • argon gas atmospheric pressure, 99% purity
  • a subzero treatment was performed using liquefied carbon dioxide at -75.degree. C. for 30 minutes.
  • the tempering was to be maintained at a tempering temperature of 350 ° C. for 30 minutes.
  • the hardness measured at the center of the thickness direction of these thin parts is shown in Table 2.
  • the corrosion resistance was evaluated by performing the salt spray test which sprays 5% salt water of 35 degreeC for 5 hours on the surface of said thin-part.
  • the corrosion resistance was evaluated by observing the occurrence of rust on the surface after the salt spray test. Based on the rust occurrence status shown in FIGS. 5 to 7, the evaluation criteria are those in which the occurrence of rust is smaller than that in FIG. 6 (approximately 5 area% of rust occurrence parts) The occurrence of rust is remarkable, but the one less than that in FIG. 7 (about 30% by area in the same figure) is designated as “ ⁇ ”, and the one where the occurrence of rust is more prominent than in FIG. 7 is “X”. And what generation
  • Sample No. The thin plate of No. 1 is a comparative example in which the C content in the material is increased and the heat treatment (nitrogen absorption treatment) according to the present invention is not performed.
  • the heat treatment nitrogen absorption treatment
  • FIG. 7 a large number of coarse carbides were observed in the structure of the thin plate, and a high hardness of 600 HV or more was obtained in the thin part after quenching and tempering, but a large amount of rust was generated in the salt spray test (FIG. 7).
  • Sample No. The thin plates 2 to 4 are examples of the present invention in which stainless steels of the same composition are used as the base material and heat treatment under different conditions is applied thereto.
  • the carbides observed in the structure of each sheet were fine (FIG. 1).
  • a high hardness of 600 HV or more was achieved, and no rust was confirmed in the salt spray test.
  • Sheet No. 3 had high N content at the same heating time, and achieved a hardness of 618 HV for thin parts.
  • coarse carbides were not observed in the structure of the thin part (FIG. 3; the structure at the center position in the thickness direction in the TD cross section was observed with a scanning electron microscope at a magnification of 3000).
  • the corrosion resistance was also excellent (Fig. 5).
  • Sample No. The thin plates 5 to 8 are examples of the present invention in which stainless steels of different component compositions are used as the base material and subjected to heat treatment under the same conditions.
  • the carbides observed in the structure of each sheet were fine. And in the thin part after quenching and tempering, high hardness of 600 HV or more was achieved, and corrosion resistance was also excellent.
  • sample No. 1 having a high C content.
  • the thin plate of 5 achieved high hardness of 650 HV or more in thin parts.
  • the thin plate of No. 8 had a high content of Cr and Mo, the high Ni content achieved a sufficient N content. And it achieved high hardness of over 650 HV with thin parts.
  • Sample No. The thin plates 9 and 10 are comparative examples in which the heating time during heat treatment is a long time of "three hours". By lengthening heating time, even if heating temperature was 1000 degrees C or less, N content of a thin plate increased. However, in any of the thin plates, coarse carbides were often observed in the structure (FIG. 2). And as a result, in the thin part after quenching and tempering, rust was generated in a salt spray test, although high hardness of 600 HV or more was achieved. Sample No. In the thin plate of No. 9, the N content is the same as that of sample No. It is comparable to that of 4 sheets. However, coarse carbides in the structure remain in solution in the structure of thin parts after quenching and tempering without remaining in solid solution (FIG.
  • the structure at the center position in the plate thickness direction has a magnification of 3000
  • the observation was made with a scanning electron microscope at a magnification of 2.
  • the granular white contrast phase is a carbide), and the corrosion resistance was insufficient (FIG. 6).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

焼入れ焼戻し後の薄物部品の全体を高硬度化できた上で、耐食性にも優れるマルテンサイト系ステンレス鋼薄板と、その製造方法を提供する。そして、薄物部品の製造方法を提供する。 質量%で、C:0.25~0.45%、Si:1.0%以下、Mn:0.1~1.5%、Cr:12.0~15.0%、Mo:0.5~3.0%、N:0.30~0.45%、残部Feおよび不純物の成分組成でなり、厚さが0.1mm以下のマルテンサイト系ステンレス鋼薄板であって、断面組織中において、円相当径が0.5μm以上の炭化物の個数密度が0~50個/1000μmのマルテンサイト系ステンレス鋼薄板である。そして、このマルテンサイト系ステンレス鋼薄板の製造方法、および、このマルテンサイト系ステンレス鋼薄板に焼入れ焼戻しを行う薄物部品の製造方法である。

Description

マルテンサイト系ステンレス鋼薄板およびその製造方法、ならびに、薄物部品の製造方法
 本発明は、例えば、刃物や摺動部材等の薄物部品に用いることができるマルテンサイト系ステンレス鋼薄板とその製造方法、および、薄物部品の製造方法に関する。
 従来、刃物や摺動部材等の薄物部品(製品)には、その材料として、高硬度でかつ耐食性に優れたマルテンサイト系の成分組成を有するステンレス鋼薄板が用いられてきた。そして、このステンレス鋼薄板の硬度と耐食性とをさらに向上させることができる手法として、質量%で、C:0.10~0.40%、Si:1.00%以下、Mn:0.10~1.50%、Cr:10.0~18.0%、N:2.00%以下、残部Feおよび不純物の成分組成を有し、厚さが0.3mm以下であり、表面から少なくとも0.05mmの深さまでの範囲のN量が0.80~2.00質量%のステンレス鋼部材が提案されている(特許文献1)。このステンレス鋼部材は、上記の成分組成でなり、厚さが0.3mm以下のステンレス鋼を、窒素雰囲気中で860℃以上に加熱して保持した後、冷却することで作製することができる。
 特許文献1の手法によれば、ステンレス鋼を窒素雰囲気中で加熱して保持する「窒素吸収処理」によって、マルテンサイト系ステンレス鋼薄板の表面に、窒素が添加された「窒素富化層」を形成することができる。そして、この表面に窒素富化層が形成されたマルテンサイト系ステンレス鋼薄板に、焼入れ焼戻しを行うことで、マルテンサイト系ステンレス鋼薄板の表面の耐食性および耐摩耗性を向上させることができる。さらに、上記の窒素吸収処理によって、表面から添加された窒素が、ステンレス鋼薄板の中心にまで及んでいた場合には、焼入れ焼戻し後のステンレス鋼薄板において、その表面から板厚の中心に至るまでの全体の硬さが向上する。
国際公開第2017/150738号パンフレット
 ステンレス鋼薄板の全体を高硬度化することは、薄物部品の総合的な寿命特性の向上にとって効果的である。しかし、特許文献1のステンレス鋼薄板の場合、焼入れ焼戻し後において、その全体の硬さが向上したとしても、その一方で、期待された耐食性が不足しているものがあった。
 本発明の目的は、焼入れ焼戻し後の薄物部品の全体を高硬度化できた上で、上記した耐食性の不足も十分に補うことができるマルテンサイト系ステンレス鋼薄板と、その製造方法を提供することである。そして、薄物部品の製造方法を提供することである。
 本発明者は、特許文献1に係るマルテンサイト系ステンレス鋼薄板の耐食性が不足する要因を調査した。その結果、上記の窒素吸収処理のときに、ステンレス鋼薄板の表面から多量の窒素を、しかもその板厚の中心に及ぶまで吸収させるような条件では、組織中の炭化物も粗大に成長して、これが焼入れ焼戻し後のステンレス鋼薄板の耐食性不足の要因となっていることを突きとめた。そして、この組織中の炭化物が粗大に成長することを抑制してなお、焼入れ焼戻し後の薄物部品の全体の硬さを向上できる要件を明確にして、本発明に到達した。
 すなわち、本発明は、質量%で、C:0.25~0.45%、Si:1.0%以下、Mn:0.1~1.5%、Cr:12.0~15.0%、Mo:0.5~3.0%、N:0.30~0.45%、残部Feおよび不純物の成分組成でなり、厚さが0.1mm以下のマルテンサイト系ステンレス鋼薄板であって、断面組織中において、円相当径が0.5μm以上の炭化物の個数密度が0~50個/1000μmのマルテンサイト系ステンレス鋼薄板である。
 そして、好ましくは、上記の成分組成が、さらに、質量%で、Ni:1.0%以下を含むマルテンサイト系ステンレス鋼薄板である。
 また、本発明は、質量%で、C:0.25~0.45%、Si:1.0%以下、Mn:0.1~1.5%、Cr:12.0~15.0%、Mo:0.5~3.0%、N:0.10%以下、残部Feおよび不純物の成分組成でなり、厚さが0.1mm以下のステンレス鋼薄板の素材に、窒素雰囲気中で1000℃を越える温度に1~10分間加熱した後、冷却する熱処理を行うマルテンサイト系ステンレス鋼薄板の製造方法である。
 そして、好ましくは、上記の成分組成が、さらに、質量%で、Ni:1.0%以下を含むマルテンサイト系ステンレス鋼薄板の製造方法である。
 そして、本発明は、上記のマルテンサイト系ステンレス鋼薄板に、焼入れ焼戻しを行う薄物部品の製造方法である。好ましくは、上記の焼入れ焼戻しにおいて、焼入れ温度を1000~1250℃とし、焼戻し温度を150~650℃とする。
 本発明によれば、ステンレス鋼薄板を焼入れ焼戻ししたときに、その表面から板厚の中心に至るまでの全体で高硬度を得ることができる。そして、その焼入れ焼戻しされたステンレス鋼薄板の耐食性を不足なく維持することができる。
実施例で評価した試料No.3(本発明例)のマルテンサイト系ステンレス鋼薄板の断面組織を示す走査型電子顕微鏡写真である。 実施例で評価した試料No.9(比較例)のマルテンサイト系ステンレス鋼薄板の断面組織を示す走査型電子顕微鏡写真である。 図1のマルテンサイト系ステンレス鋼薄板から作製した薄物部品の断面組織を示す走査型電子顕微鏡写真である。 図2のマルテンサイト系ステンレス鋼薄板から作製した薄物部品の断面組織を示す走査型電子顕微鏡写真である。 図3の薄物部品の塩水噴霧試験後の錆の発生状況を示す図面代用写真である。 図4の薄物部品の塩水噴霧試験後の錆の発生状況を示す図面代用写真である。 実施例で評価した試料No.1(比較例)のマルテンサイト系ステンレス鋼薄板から作製した薄物部品の塩水噴霧試験後の錆の発生状況を示す図面代用写真である。 実施例で評価した試料No.3(本発明例)のマルテンサイト系ステンレス鋼薄板の厚さ方向におけるN含有量の分布状況を示す図である。
 本発明の特徴は、ステンレス鋼薄板を焼入れ焼戻ししたときに、その全体を高硬度化できるとともに、耐食性をも不足なく十分に維持することができる手法を見いだしたところにある。
 本発明者は、まず、焼入れ焼戻し後の「薄物部品」の全体を高硬度化できる条件を見直した。その結果、焼入れ焼戻し前の「マルテンサイト系ステンレス鋼薄板」の状態において、その全体で0.30質量%以上の窒素含有量を確保しておけば、特許文献1のように、その表面で0.80質量%以上といった高い窒素含有量を付加しなくても、例えば、600HV以上の焼入れ焼戻し硬さを達成できることを知見した。
 そして、この600HV以上といった焼入れ焼戻し硬さの達成のためには、一方で、マルテンサイト系ステンレス鋼薄板の組織中の炭化物の分布状態を調整しておくことが重要である。そして、この炭化物の分布状態を調整しておくことは、薄物部品の耐食性を不足なく十分に維持することにとってこそ重要である。
 以下、本発明のマルテンサイト系ステンレス鋼薄板について、その達成に好ましい製造方法も合わせて、説明する。
(1)本発明のマルテンサイト系ステンレス鋼薄板は、質量%で、C:0.25~0.45%、Si:1.0%以下、Mn:0.1~1.5%、Cr:12.0~15.0%、Mo:0.5~3.0%、N:0.30~0.45%、残部Feおよび不純物の成分組成でなるものである。
 本発明のステンレス鋼薄板は、これを用いて作製される薄物部品に優れた耐摩耗性(つまり、高硬度)を付与するために、まず、この材料となるステンレス鋼自体が、焼入れ焼戻しによって“マルテンサイト組織を発現する”成分組成に調整されたものである。そして、このマルテンサイト系ステンレス鋼の成分組成に対して、更に、「0.30~0.45質量%」の窒素を含有させたことで、後述する組織中の炭化物の分布状態と相まって、焼入れ焼戻し後に、例えば、600HV以上もの高硬度を達成できるものである。そして同時には、上記のマルテンサイト系ステンレス鋼の成分組成において、その炭素含有量を低めに調整したことで、粗大な炭化物の晶出を抑制でき、かつ、後述する組織中の炭化物の分布状態と相まって、薄物部品の耐食性も不足なく十分に維持することができるものである。
・C:0.25~0.45質量%(以下、単に「%」と表記する。)
 Cは、焼入れ焼戻し後のマルテンサイト組織の硬度を高めるのに有効な元素である。しかし、Cが多すぎると、薄板の作製に係る、溶製工程の凝固時において、鋳塊の凝固組織に粗大なクロム系炭化物が晶出する。そして、この粗大なクロム系炭化物は、薄板の組織にも残って、かつ、焼入れ焼戻し後のマルテンサイト組織でも消失せず、これが腐食の起点となって、薄物部品の耐食性不足が生じる。また、上記の鋳塊から薄板を作製するときにおいては、Cが多すぎると、その作製の過程で冷間加工性が低下して、所定の板厚の薄板に仕上げることが容易でない。
 よって、Cの含有量は、0.25~0.45%とする。好ましくは0.30%以上である。また、好ましくは0.43%以下である。より好ましくは0.40%以下である。
・Si:1.0%以下
 Siは、溶製工程時の脱酸剤等として使用され、不可避的に含まれ得る元素である。そして、Siが多すぎると、冷間加工性が低下する。
 よって、Siの含有量は、1.0%以下とする。好ましくは0.8%以下である。より好ましくは0.65%以下である。さらに好ましくは0.5%以下である。なお、下限は特に要しないが、0.01%以上の含有が現実的である。
・Mn:0.1~1.5%
 Mnは、溶製工程時の脱酸剤等として使用され、不可避的に含まれ得る元素である。そして、特に、本発明においては、後述する窒素吸収処理で、薄板組織への窒素の固溶を促進する効果を有する元素である。しかし、Mnが多すぎると、オーステナイト組織が安定化されて、マルテンサイト組織が得られ難くなる。
 よって、Mnの含有量は、0.1~1.5%とする。好ましくは0.2%以上、より好ましくは0.3%以上、さらに好ましくは0.4%以上である。また、好ましくは1.3%以下、より好ましくは1.1%以下、さらに好ましくは1.0%以下である。
・Cr:12.0~15.0%
 Crは、ステンレス鋼の表面に非晶質の不動態皮膜を形成して、薄物部品に耐食性を付与する元素である。また、ステンレス鋼に固溶できる窒素量を増加させる効果もあり、本発明においては、後述する窒素吸収処理で、薄板組織への窒素の固溶促進に働く元素である。但し、Crが多すぎると、フェライト組織が安定化されて、マルテンサイト組織が得られ難くなる。
 よって、Crの含有量は、12.0~15.0%とする。好ましくは14.0%未満である。
・Mo:0.5~3.0%
 Moは、ステンレス鋼の耐食性を高めるのに効果的な元素である。そして、固溶状態で、Crによる不動態皮膜の機能を強化する効果を有する元素である。Crによる不動態皮膜は、それ自体にも自己修復機能がある。そして、Moには、Crによる不動態皮膜が疵ついたときに、その疵ついた場所のCr量を高めて、不動態皮膜の修復力を強める働きがある。さらに、Moには、ステンレス鋼の窒素吸収を促す大きな効果がある。但し、Moが多すぎると、Crと同様、フェライト組織が安定化されて、マルテンサイト組織が得られ難くなる。
 よって、Moの含有量は、0.5~3.0%とする。好ましくは0.7%以上、より好ましくは1.0%以上である。また、好ましくは2.5%以下、より好ましくは2.0%以下である。
・窒素(以下、「N」とも記す。):0.30~0.45%
 Nは、本発明のマルテンサイト系ステンレス鋼薄板の特徴を決定付ける要件の一つであり、焼入れ焼戻し後の薄物部品の高硬度化および耐食性の向上に重要な役割を果たす元素である。そして、焼入れ焼戻し前のマルテンサイト系ステンレス鋼薄板の時点で、Nの含有量を0.30%以上としておくことで、後述する薄板組織中の炭化物の分布状態と相まって、焼入れ焼戻し後の薄物部品で、例えば、600HV以上の硬度を達成することができる。但し、Nの含有量が多すぎると、このNを含んだ炭化物(つまり、炭窒化物)が焼入れで固溶せずに、薄物部品の組織中に多く残存して、これが耐食性不足の要因となる。また、焼入れ後の残留オーステナイト組織が安定化されて、高硬度を得難くなる。
 よって、Nの含有量は、0.30~0.45%とする。好ましくは0.35%以上である。このNの含有量は、後述する(4)の窒素吸収処理で付与することが好ましい。
 本発明のマルテンサイト系ステンレス鋼薄板では、上記の元素種を含み、残部がFeおよび不純物でなる成分組成を基本的な成分組成とすることができる。そして、この基本的な成分組成に対して、以下の元素を含有することも可能である。
・Ni:必要に応じて、1.0%以下
 Niは、ステンレス鋼に生じる腐食の初期において、これ以上の腐食が進行することを抑える効果を有する。また、組織における基地の靱性を高める効果を有する。更には、オーステナイト組織を安定化させて、Nの固溶限を上げ、後述する熱処理で多くの窒素を吸収させるのに働く元素である。但し、Niが多すぎると、オーステナイト組織が過度に安定化されて、マルテンサイト組織が得られ難くなる。そして、本発明の場合、ステンレス鋼薄板の成分組成が、焼入れ焼戻しによってマルテンサイト組織を発現するものに調整されていることが重要であることから、Niは、含有しないか(添加されないか)、または、含有するとしても、必要量以上を含有しないことが求められる。
 よって、Niは、必要に応じて、1.0%以下を含有することができる。好ましくは0.9%以下である。より好ましくは0.8%以下である。なお、Niを含有する場合、好ましくは0.1%以上、より好ましくは0.2%以上、さらに好ましくは0.4%以上である。
(2)本発明のマルテンサイト系ステンレス鋼薄板は、厚さが0.1mm以下のものである。
 本発明のマルテンサイト系ステンレス鋼薄板によれば、上述した(1)の成分組成に加えて、後述する(3)の炭化物の分布状態をも満たすことで、その厚さが0.1mm以下という実に薄い材料であっても、薄物部品の強度を向上させることができる。そして、厚さの下限の設定は、特に要しない。但し、製造効率やハンドリング性等の面で、例えば、0.02mm以上の厚さであることが現実的である。
(3)本発明のマルテンサイト系ステンレス鋼薄板は、その断面組織中において、円相当径が0.5μm以上の炭化物の個数密度が0~50個/1000μmのものである。
 上述した(1)の成分組成でなるマルテンサイト系ステンレス鋼薄板の組織に炭化物が存在する場合、その炭化物の中には、上記の成分組成に含まれるNの一部が、基地中に固溶せずに、Cr、Mo等の窒化物形成元素と結合して生成された「炭窒化物」も含まれ得る。そして、これら炭化物および炭窒化物(以下、本発明では、纏めて「炭化物」として扱う。)は、焼入れ焼戻し後の薄物部品の組織において、その数が多い程、硬度(耐摩耗性)を高める点で効果的である。しかし、この一方で、個々の炭化物が大きいと、これを起点とした腐食が発生しやすく、薄物部品の耐食性が不足する要因となる。
 そこで、薄板部品の硬度を高めながらも、耐食性を不足させないためには、薄物部品の組織中にある炭化物を微細にすることが求められる。そして、このためには、焼入れ焼戻し前のマルテンサイト系ステンレス鋼薄板において、その組織中に炭化物を形成させないか(つまり、炭化物を固溶させた状態に維持するか)、または、その組織中に炭化物がある場合であっても、その炭化物を小さくすることが、効果的である。つまり、マルテンサイト系ステンレス鋼薄板の組織中に炭化物がある場合であっても、その炭化物を小さくすることで、これらの炭化物は焼入れによって組織中に固溶しやすくなる。そして、続く焼戻しによって析出するとしても、析出した炭化物(二次炭化物)は微細なので、薄板部品の耐食性を不足させることなく、硬度を高めることができる。
 そして、本発明者が検討した結果、薄板の組織中に炭化物が存在するかしないかに依らず、上記の焼入れで固溶し難い未固溶炭化物として、薄板の断面組織中において、円相当径が0.5μm以上の炭化物を対象とし、これの個数密度を0~50個/1000μmに低減することが、薄板部品の耐食性不足の解決に効果的であることを突きとめた。好ましくは45個/1000μm以下、より好ましくは40個/1000μm以下、さらに好ましくは35個/1000μm以下、よりさらに好ましくは30個/1000μm以下である。このことにより、薄板の組織中では、焼入れで固溶し難い炭化物が低減できて、薄物部品の組織中における粗大な炭化物の形成を抑制することができる。そして、薄板の組織中に“固溶した状態で”維持されていた炭化物(炭化物形成元素)は、焼戻しによって析出するとしても、微細に析出する。そして、薄板の組織中に、円相当径が0.5μm未満の炭化物があったとしても、この炭化物もまた、上記の焼入れで固溶しやすく、かつ、焼戻しによって析出するとしても、上記と同様、微細に析出する。よって、薄板部品の組織中の微細炭化物の増量に加えて、薄板部品の組織中の固溶C、Nの増量による基地の硬度向上にも繋がり、薄板部品の耐摩耗性の向上に効果的である。
 なお、上記において、炭化物の分布状態を測定する「薄板の断面組織」は、マルテンサイト系ステンレス鋼薄板の、圧延加工の延伸方向(つまり、薄板の長さ方向)に対して平行な断面であり、一具体的には、この平行な断面のうちで、TD方向(Transverse Direction;延伸直角方向)に垂直な断面(いわゆる、TD断面)とすることができる。そして、このTD断面で、板厚方向の中心に位置する組織を、視野面積が1000μm以上の走査型電子顕微鏡で観察し、それを画像解析することで、円相当径(面積円相当径である。)が0.5μm以上の炭化物の個数をカウントすることができる。なお、炭化物の同定は、走査型電子顕微鏡に付属する、EPMA(電子線マイクロアナライザ)による元素マッピングで確認することができる。
 本発明のマルテンサイト系ステンレス鋼薄板の断面組織中においては、上述した円相当径が0.5μm以上の炭化物の個数密度が0~50個/1000μmであることに加えて、更に、円相当径が5μm以上の炭化物が確認されないことが好ましい。すなわち、上記の断面組織中において、円相当径が5μm以上の炭化物の個数密度が1.0個/1000μm未満(0個のときを含む)のマルテンサイト系ステンレス鋼薄板である。
(4)本発明のマルテンサイト系ステンレス鋼薄板の製造方法は、質量%で、C:0.25~0.45%、Si:1.0%以下、Mn:0.1~1.5%、Cr:12.0~15.0%、Mo:0.5~3.0%、N:0.10%以下、残部Feおよび不純物の成分組成でなり(必要に応じて、1.0%以下のNiを含有することができる)、厚さが0.1mm以下のステンレス鋼薄板の素材に、窒素雰囲気中で1000℃を越える温度に1~10分間加熱した後、冷却する熱処理を行うものである。
 本発明のマルテンサイト系ステンレス鋼薄板の場合、それに焼入れ焼戻しを行った後の薄物部品において、その全体を高硬度化させるために、上述した0.30~0.45%という効果的なNの含有量を、マルテンサイト系ステンレス鋼薄板の全体に付与する必要がある。そして、このNの含有量の付与は、予め上記の「0.1mm以下」の厚さに薄板化されたマルテンサイト系ステンレス鋼薄板の素材を準備して、この薄板の素材に、窒素雰囲気中で加熱して保持する「窒素吸収処理」を行って達成することが好適である。以下に、本発明に係る窒素吸収処理について、説明する。
 まず、上記の窒素吸収処理を行う前のマルテンサイト系ステンレス鋼薄板の素材の成分組成は、Nが「0.10%以下」であることを除いて、上述した本発明のマルテンサイト系ステンレス鋼薄板の成分組成の範囲と同じである。そして、この窒素吸収処理が行われる前の薄板の素材が含み得る窒素は、規制元素(不純物)であることを想定している。好ましくは0.05%以下、さらに好ましくは0.03%以下である。
 薄板の素材の窒素量が多すぎると、この素材を鋳塊から得るときに、鋳塊が加工硬化しやすく、冷間加工性が悪くなるので、0.1mm以下の厚さまで仕上げようとすると中間焼鈍を数回繰り返さなければならない。つまり、厚さが0.1mm以下という実に薄い材料を提供する本発明にとっては、従来のように、最初の溶製工程で窒素を付与した鋳塊を作製してしまうと、この鋳塊を加工して薄板化するのが容易でない。そこで、本発明であれば、マルテンサイト系ステンレス鋼を薄板の素材にしてから窒素を付与するので、鋳塊からの薄板化が容易である。そして、この薄板化された素材の時点で、それが窒素を含まないとしても、素材の板厚は0.1mm以下という実に薄いものなので、後述の窒素吸収処理で板厚の中心にまで十分に窒素を付与することができる。このような素材は、その薄板化の後に、例えば、700~800℃の範囲で焼鈍処理を行った、焼鈍材とすることができる。
 なお、本発明の場合、上記の鋳塊には、例えば、1200℃前後の高い温度で長時間保持するソーキング処理を行うことができる。本発明に係るステンレス鋼の成分組成は、溶製工程での凝固時に粗大なCr系炭化物が晶出し難いものとなっている。しかし、鋳塊が大きくなると、偏析によって、粗大なCr系炭化物が少なからず晶出する場合がある。このような場合、上記のソーキング処理によって、この粗大なCr系炭化物を組織中に固溶させるのに効果的である。
 そして、上記によって既に0.1mm以下の厚さに薄板化された素材に行う「窒素吸収処理」は、窒素雰囲気中で1000℃を越える温度に1~10分間加熱した後、冷却する熱処理とすることが、上記の素材に「0.30~0.45%」のNを付与する本発明にとって、実に有効である。そして、この熱処理によって、本発明に係る上記の「断面組織中において、円相当径が0.5μm以上の炭化物の個数密度が0~50個/1000μmである」という炭化物の分布状態を達成することができる。
 まず、本発明に係るマルテンサイト系ステンレス鋼の場合、それがオーステナイト温度に加熱されたときのNの固溶量は、その加熱温度が高くなると少なくなる。しかし、本発明においては、マルテンサイト系ステンレス鋼の薄板の素材に、少なくとも0.30%のN量を付与できれば、薄物部品の高硬度化にとって十分である。そして、本発明においては、薄板の素材に多量のNを付与することよりも、この薄板の素材の中心に至るまでの全体にNを付与することこそが重要である。そして、このときに、上記の加熱温度を高くすることで、薄板の素材中におけるNの拡散速度を大きくすることができるので、薄板の素材の厚さを0.1mm以下に薄くしたことと相まって、薄板の素材の全体に0.30%以上のNを付与することが可能になる。
 よって、本発明において、上記の熱処理の加熱温度は、1000℃を超える高温に設定する。好ましくは1050℃以上である。なお、上限については、薄板の素材が溶融しない温度であればよいが、例えば、1200℃以下が好ましい。より好ましくは1150℃以下である。1100℃前後の加熱温度であることが、窒素の吸収量が高くなり、短時間で所定量の窒素を付与できる点で効果的である。
 そして、ここで本発明にとって重要となるのが、上記の高温での熱処理を行う際の「加熱時間」である。つまり、本発明の場合、上記の熱処理を施す薄板の素材が0.1mm以下と薄いことから、上記の高温での熱処理を行ったときに、その加熱温度で保持する加熱時間が長いと、素材の全体が所定量のNを吸収できたとしても、組織中の炭窒化物を含む炭化物が粗大に成長してしまう。この時点で炭化物が粗大になると、これら粗大な炭化物は、次の焼入れでも十分に固溶せず、薄物部品の組織に残って、薄物部品の耐食性不足の要因となる。そこで、本発明の場合、この炭化物の成長を抑制するために、上記の熱処理における加熱時間を短くする必要がある。そして、この加熱時間を、1~10分間の範囲にすることよって、薄板の中心にまで十分量の窒素を均一に吸収させながらも、上記の炭化物の分布状態に調整することが可能である。好ましくは9分以下である。より好ましくは8分以下である。また、好ましくは2分以上である。より好ましくは3分以上である。
 これらの熱処理条件によって、特許文献1のように、長時間の熱処理を要せずに、マルテンサイト系ステンレス鋼薄板を製造できるので、その製造時間や製造コストの短縮にも効果的である。
 そして、熱処理の雰囲気は「窒素雰囲気」とする。この窒素雰囲気として、例えば、窒素ガスを使用できる。具体例として、この窒素ガスが90体積%以上含まれた雰囲気である。そして、好ましくは、この窒素雰囲気を「加圧雰囲気」とすることで(大気圧を含む)、薄板素材の表面からの窒素の吸収が促進されるので、製造時間や製造コストの短縮に更に効果的である。これについては、窒素雰囲気中でプラズマを発生させ、より活性なラジカル窒素を利用することも、製造時間や製造コストの短縮に効果的である。
 そして、薄板の素材に対し、上記の熱処理(すなわち、窒素吸収処理)に係る加熱を終えた後には、それを室温まで“一旦冷却して”、焼入れ焼戻し前の「マルテンサイト系ステンレス鋼薄板」とすることが重要である。このとき、上記の一旦冷却することについては、例えば、空冷等によって急冷してマルテンサイト変態させてもよいし、マルテンサイト変態しない冷却速度でゆっくりと冷却してフェライト組織にしてもよい。このとき、急冷することは、薄板の組織中で、炭化物を固溶させた状態に維持できる点で、または、炭化物を微細にできる点で、好ましい。そして、この冷却したマルテンサイト系ステンレス鋼薄板を、改めて、焼入れ温度に加熱して、焼入れを行えば、その加熱工程で再びオーステナイト変態し、新たなオーステナイト粒が生成されて、かつ、その変態点を繰り返し通過することで、結晶粒が微細化された薄物部品を得ることができる。焼入れ加熱を行うことにより、薄板の組織には新しいオーステナイト粒が形成されるため、結晶粒は細分化される。
 以上の熱処理によって、マルテンサイト系ステンレス鋼薄板の全体で、窒素の含有量を高めることができる。そして、この熱処理で薄板中に吸収された窒素は、組織中に固溶するか、または、炭化物として組織に存在するとしても、その炭化物は、上述の通り、微細である。これによって、上記の炭化物は焼入れで組織中に固溶しやすく、そして、続く焼戻しによって析出するとしても、析出した炭化物は微細なので、薄板部品の組織には腐食の起点となる場所が少なく、薄物部品の耐食性を不足なく十分に維持することができる。そして、薄物部品の中心に至るまでの全体を高硬度化することもできる。
 上記の熱処理には、例えば、連続熱処理を適用することが好ましい。すなわち、上記のマルテンサイト系ステンレス鋼薄板の素材に、窒素雰囲気中で連続的に加熱した後、連続的に冷却する連続熱処理を行うマルテンサイト系ステンレス鋼薄板の製造方法である。
 連続熱処理とは、薄板を、雰囲気温度が所定温度に制御されている熱処理装置に連続的に通過させる(通板させる)熱処理のことである。そして、この熱処理装置には、薄板が連続して送給されながら加熱される加熱室を備えてなるものや、さらに、この加熱室の下流側に連設されている、薄板が連続して送給されながら冷却される冷却室を備えてなるもの等がある。連続熱処理であれば、薄板素材が加熱室内に滞留する時間が短いので、加熱温度(つまり、加熱室の雰囲気温度)を、1000℃を超える温度に設定して、かつ、加熱時間(つまり、加熱室内に入った薄板素材の全体が1000℃を越える温度に到達してからの、加熱室内の滞留時間)が1~10分になるように、通板速度を調節することが容易である。
 上記の熱処理を行った後のマルテンサイト系ステンレス鋼薄板が硬い場合、例えば、これに冷間圧延を行って、厚さを更に薄くしたい等のときに、冷間加工が困難になり、薄物部品の形状に整えることが容易でないかも知れない。よって、本発明のマルテンサイト系ステンレス鋼薄板の硬度は、400HV以下とすることが好ましい。より好ましくは350HV以下である。なお、下限については、特に要しないが、ハンドリング性を確保する点で、例えば、200HV以上が好ましい。これらの硬度は、薄板の板厚方向の中心の位置で測定することができる。
 そして、本発明のマルテンサイト系ステンレス鋼薄板の製造方法では、上記の熱処理を行った後に、更に焼鈍処理を行ってもよい。この焼鈍処理を行うことで、上述した炭化物の分布状態を維持したままで、マルテンサイト系ステンレス鋼薄板の硬度を下げることができる。このような焼鈍処理は、上記の熱処理(窒素吸収処理)に係る冷却で、特に、急冷した場合に、行うことが好ましい。
 上記の焼鈍処理は、AC1点以下の温度で、短時間の加熱とすることが好ましい。加熱温度が高すぎたり、加熱時間が長すぎたりすると、組織中の炭化物が成長し粗大化する。よって、例えば、700~800℃で1~15分程度の焼鈍処理が好ましい。そして、さらに好ましくは、この焼鈍処理を複数回(例えば、2回や3回)繰り返すことで、残留オーステナイトを十分に分解させることもできる。この焼鈍処理に係る冷却は、空冷とすることができる。
(5)本発明の薄物部品の製造方法は、上述した本発明のマルテンサイト系ステンレス鋼薄板に、焼入れ焼戻しを行うものである。
 上述した本発明のマルテンサイト系ステンレス鋼薄板に焼入れを行うことで、その薄板組織中の炭化物はもとより微細であり、かつ、それら炭化物を十分に固溶させることができる。このとき、焼入れ温度は、例えば、1000~1250℃とすることができる。焼入れ温度での保持時間は、例えば、30秒~10分とすることができる。また、焼入れ時の加熱は、薄板中の炭素や窒素が抜けていくことを抑制できる点で、不活性(非反応性)の雰囲気(真空や、減圧された雰囲気を含む)で行うことが好ましい。例えば、アルゴン等の不活性ガス雰囲気である。
 なお、焼入れ後には、マルテンサイト組織への変態促進および微細化された結晶粒の安定化のために、サブゼロ処理を行うことが可能である。処理温度は、例えば、-50℃以下とすることができる。そして、処理温度での保持時間は、例えば、30秒~1時間とすることができる。
 そして、上記の焼入れを終えたマルテンサイト系ステンレス鋼薄板に、焼戻しを行うことで、組織中には微細な炭化物が析出するので、薄板部品の耐食性を不足させることなく、耐摩耗性を向上させることができる。そして、これに、上述した窒素含有の効果も相まって、薄物部品の硬度を、例えば、600HV以上に高硬度化することができる。好ましくは650HV以上である。なお、この硬度の上限を指定する必要はないが、800HV程度が現実的である。この硬度は、薄物部品の板厚方向の中心の位置で測定することができる。
 焼戻し温度は、例えば、150~650℃とすることができる。焼戻し温度での保持時間は、例えば、30秒~1時間とすることができる。この焼戻し温度について、耐食性を重視する場合は、例えば、200~400℃の「低温焼戻し」とすることができる。焼戻し温度を低くすることによって、Cr系の炭化物や窒化物等の析出を適当に抑制し、この析出箇所に隣接する部分のCrの欠乏を低減できるので、耐食性不足の解決により効果的である。
 上記の焼入れ焼戻しは、そのいずれか一方、または両方の処理を、連続熱処理によって行うことができる。
 高周波誘導溶解炉で溶解した10kgの溶湯を鋳造して、複数の成分組成を有するマルテンサイト系ステンレス鋼の鋳塊を作製した。次に、これらの鋳塊に、鍛造比(鍛造前の断面積/鍛造後の断面積)が10程度の熱間鍛造を行って冷却した後、780℃で焼鈍して、焼鈍材を得た。そして、これらの焼鈍材から厚さ1mmの板材を切り出して、この板材に冷間圧延を行い、厚さが0.08mm(80μm)の帯材に仕上げた後に、これを780℃で焼鈍して、「薄板の素材」を得た。これら薄板の素材の成分組成を、表1に示す(素材A~C、E、GのNiは不純物(無添加)である)。
Figure JPOXMLDOC01-appb-T000001
 表1のステンレス鋼の「薄板の素材」に、大気圧の窒素ガス(純度99%)でなる窒素雰囲気中で加熱した後、空冷により室温まで急冷する「熱処理(窒素吸収処理)」を行って、ステンレス鋼の「薄板」を得た。上記の熱処理における「加熱温度」および「加熱時間」は、表2の通りである。得られた薄板はマルテンサイト組織を有していた。また、得られた薄板のそれぞれの硬度は、その板厚方向の中心の位置で測定して、概ね500HVであった。
 上記の熱処理後の薄板のN含有量を、表2に示す。N含有量の測定は、薄板の全体を溶融させて発生した窒素の量を、熱伝導度から求める「不活性ガス溶融-ガスクロマトグラフ法」によった。なお、表2に示したN含有量については、その値が、薄板の厚さ方向の全域に亘って、ほぼ同値であったことを、EPMAによるライン分析で確認済みである。図8は、後述する試料No.3の薄板の厚さ方向におけるN含有量の値を、EPMAによるライン分析で、その薄板の一表面から他表面に向けて測定した結果である。薄板の厚さ方向におけるN含有量は、表2に示したN含有量(薄板全体としてのN含有量)に対して、このN含有量に相当するX線強度の値で均一に分布していることがわかる。
 そして、薄板の断面組織中にある「円相当径が0.5μm以上の炭化物の個数密度」を確認した。この炭化物の個数密度を確認した断面は、上記で説明したTD断面とした。まず、このTD断面で、板厚方向の中心の位置の組織を、視野面積が1000μmの走査型電子顕微鏡で観察した(倍率3000倍)。図1は、本発明例の薄板(後述する実施例の試料No.3)の顕微鏡像であり、図2は、比較例の薄板(同試料No.9)の顕微鏡像である。図1、2において、粒状または棒状の白色コントラスト相で確認される分布物が炭化物(炭窒化物を含む)である。このことについては、走査型電子顕微鏡に付属するEPMAによる元素マッピングで確認済みである。そして、この視野面積で確認された炭化物について画像解析することで、円相当径が0.5μm以上の炭化物の個数をカウントして、個数密度(個/1000μm)を算出した。なお、上記の画像解析には、アメリカ国立衛生研究所(NIH)が提供しているオープンソース画像処理ソフトウェアImageJ(http://imageJ.nih.gov/ij/)を用いた。これらの結果も、表2に示す。本発明例の薄板の断面組織中には、円相当径が5μm以上の炭化物は確認されなかった。すなわち、円相当径が5μm以上の炭化物の個数密度は1.0個/1000μm未満(0個のときを含む)であった。
 そして、上記の薄板に、焼入れ焼戻しを行って、薄物部品を作製した。焼入れは、1100℃に加熱したアルゴンガス(大気圧、純度99%)でなる雰囲気の炉内に、上記の薄板を2分間投入した後、これを急冷(空冷)するものとした。なお、焼入れ後には、-75℃の液化二酸化炭素を用いて、これに30分保持するサブゼロ処理を行った。焼戻しは、350℃の焼戻し温度で30分保持するものとした。これらの薄物部品について、その板厚方向の中心の位置で測定した硬度を、表2に示す。
 そして、上記の薄物部品の表面に35℃の5%塩水を5時間噴霧する塩水噴霧試験を行って、耐食性を評価した。耐食性の評価は、塩水噴霧試験後の表面における錆の発生状況を観察して行った。評価基準は、図5~7に示した錆の発生状況を基準として、図6(錆の発生部分が約5面積%)よりも錆の発生が軽微なものを「〇」、図6よりも錆の発生が顕著であるが、図7(同約30面積%)のそれよりも軽微なものを「△」、図7よりも錆の発生が顕著なものを「×」とした。そして、錆の発生が認められなかったもの(図5)を「◎」とした。これらの結果も、併せて表2に示す。
Figure JPOXMLDOC01-appb-T000002
 試料No.1の薄板は、その素材におけるC含有量を高めて、かつ、本発明に係る熱処理(窒素吸収処理)を行わなかった比較例である。その結果、薄板の組織には粗大な炭化物が多く観察されて、焼入れ焼戻し後の薄物部品では、600HV以上の高硬度は得られたが、塩水噴霧試験で錆が多数発生した(図7)。
 試料No.2~4の薄板は、同じ成分組成のステンレス鋼を素材として、これに異なる条件の熱処理を行った本発明例である。いずれの薄板においても、その組織に観察される炭化物は微細であった(図1)。そして、焼入れ焼戻し後の薄物部品において、600HV以上の高硬度が達成され、かつ、塩水噴霧試験でも錆が確認されなかった。その中でも、1100℃の加熱温度で熱処理を行った試料No.3の薄板は、同じ加熱時間でもN含有量が高く、薄物部品で618HVの硬度を達成した。また、薄物部品の組織には、粗大な炭化物が認められず(図3;TD断面で、板厚方向の中心の位置の組織を、倍率3000倍の走査型電子顕微鏡で観察したもの。)、耐食性にも優れていた(図5)。
 試料No.5~8の薄板は、異なる成分組成のステンレス鋼を素材として、これに同じ条件の熱処理を行った本発明例である。いずれの薄板においても、その組織に観察される炭化物は微細であった。そして、焼入れ焼戻し後の薄物部品においても、600HV以上の高硬度が達成され、かつ、耐食性にも優れていた。その中でも、C含有量が多い試料No.5の薄板は、薄物部品で650HV以上の高硬度を達成した。また、試料No.8の薄板は、CrおよびMoの含有量が高いものの、Ni含有量が多いことで、十分なN含有量を達成した。そして、薄物部品で650HV以上の高硬度を達成した。
 試料No.9、10の薄板は、熱処理のときの加熱時間を「3時間」の長時間とした比較例である。加熱時間を長くしたことで、加熱温度が1000℃以下であっても、薄板のN含有量は増加した。しかし、いずれの薄板においても、その組織には粗大な炭化物が多く観察された(図2)。そして、その結果、焼入れ焼戻し後の薄物部品において、600HV以上の高硬度は達成されたもの、塩水噴霧試験で錆が発生した。
 試料No.9の薄板は、N含有量こそ、試料No.4の薄板のそれと同程度である。しかし、その組織中の粗大な炭化物が、焼入れ焼戻し後の薄物部品の組織でも固溶しきらずに多く残存して(図4;TD断面で、板厚方向の中心の位置の組織を、倍率3000倍の走査型電子顕微鏡で観察したもの。粒状の白色コントラスト相が炭化物である。)、耐食性が不足した(図6)。

 

Claims (6)

  1. 質量%で、C:0.25~0.45%、Si:1.0%以下、Mn:0.1~1.5%、Cr:12.0~15.0%、Mo:0.5~3.0%、N:0.30~0.45%、残部Feおよび不純物の成分組成でなり、厚さが0.1mm以下のマルテンサイト系ステンレス鋼薄板であって、
    断面組織中において、円相当径が0.5μm以上の炭化物の個数密度が0~50個/1000μmであることを特徴とするマルテンサイト系ステンレス鋼薄板。
  2. 前記成分組成が、さらに、質量%で、Ni:1.0%以下を含むことを特徴とする請求項1に記載のマルテンサイト系ステンレス鋼薄板。
  3. 質量%で、C:0.25~0.45%、Si:1.0%以下、Mn:0.1~1.5%、Cr:12.0~15.0%、Mo:0.5~3.0%、N:0.10%以下、残部Feおよび不純物の成分組成でなり、厚さが0.1mm以下のステンレス鋼薄板の素材に、窒素雰囲気中で1000℃を越える温度に1~10分間加熱した後、冷却する熱処理を行うことを特徴とするマルテンサイト系ステンレス鋼薄板の製造方法。
  4. 前記成分組成が、さらに、質量%で、Ni:1.0%以下を含むことを特徴とする請求項3に記載のマルテンサイト系ステンレス鋼薄板の製造方法。
  5. 請求項1または2に記載のマルテンサイト系ステンレス鋼薄板に、焼入れ焼戻しを行うことを特徴とする薄物部品の製造方法。
  6. 焼入れ温度を1000~1250℃とし、焼戻し温度を150~650℃とすることを特徴とする請求項5に記載の薄物部品の製造方法。

     
PCT/JP2019/002414 2018-01-29 2019-01-25 マルテンサイト系ステンレス鋼薄板およびその製造方法、ならびに、薄物部品の製造方法 WO2019146743A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019567180A JP6735038B2 (ja) 2018-01-29 2019-01-25 マルテンサイト系ステンレス鋼薄板およびその製造方法、ならびに、薄物部品の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-012520 2018-01-29
JP2018012520 2018-01-29

Publications (1)

Publication Number Publication Date
WO2019146743A1 true WO2019146743A1 (ja) 2019-08-01

Family

ID=67395019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002414 WO2019146743A1 (ja) 2018-01-29 2019-01-25 マルテンサイト系ステンレス鋼薄板およびその製造方法、ならびに、薄物部品の製造方法

Country Status (2)

Country Link
JP (1) JP6735038B2 (ja)
WO (1) WO2019146743A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094275A (ja) * 2018-12-04 2020-06-18 日立金属株式会社 マルテンサイト系ステンレス鋼部品およびその製造方法
CN112779465A (zh) * 2020-11-30 2021-05-11 江苏联峰能源装备有限公司 一种微合金车轴钢的制备方法
JP2022521977A (ja) * 2019-02-28 2022-04-13 エッジウェル パーソナル ケア ブランズ リミテッド ライアビリティ カンパニー かみそり刃及びかみそり刃のための組成物
WO2024166577A1 (ja) * 2023-02-10 2024-08-15 株式会社プロテリアル 鋼部品およびその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212679A (ja) * 2001-01-10 2002-07-31 Daido Steel Co Ltd 刃物及びそれに用いるFe系刃物用合金
JP2006523482A (ja) * 2003-03-07 2006-10-19 サンドビック インテレクチュアル プロパティー アクティエボラーグ 析出硬化型マルテンサイトステンレス鋼の使用
JP2008133499A (ja) * 2006-11-27 2008-06-12 Daido Steel Co Ltd 高硬度マルテンサイト系ステンレス鋼
JP2008163452A (ja) * 2006-12-08 2008-07-17 Nippon Steel & Sumikin Stainless Steel Corp 耐食性に優れるマルテンサイト系ステンレス鋼
JP2010024486A (ja) * 2008-07-17 2010-02-04 Daido Steel Co Ltd 高窒素マルテンサイト系ステンレス鋼
JP2010138425A (ja) * 2008-12-09 2010-06-24 Minebea Co Ltd マルテンサイト系ステンレス鋼
WO2014162997A1 (ja) * 2013-04-01 2014-10-09 日立金属株式会社 刃物用鋼の製造方法
WO2017150738A1 (ja) * 2016-03-04 2017-09-08 日立金属株式会社 ステンレス鋼部材およびその製造方法、ならびに、ステンレス鋼部品およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212679A (ja) * 2001-01-10 2002-07-31 Daido Steel Co Ltd 刃物及びそれに用いるFe系刃物用合金
JP2006523482A (ja) * 2003-03-07 2006-10-19 サンドビック インテレクチュアル プロパティー アクティエボラーグ 析出硬化型マルテンサイトステンレス鋼の使用
JP2008133499A (ja) * 2006-11-27 2008-06-12 Daido Steel Co Ltd 高硬度マルテンサイト系ステンレス鋼
JP2008163452A (ja) * 2006-12-08 2008-07-17 Nippon Steel & Sumikin Stainless Steel Corp 耐食性に優れるマルテンサイト系ステンレス鋼
JP2010024486A (ja) * 2008-07-17 2010-02-04 Daido Steel Co Ltd 高窒素マルテンサイト系ステンレス鋼
JP2010138425A (ja) * 2008-12-09 2010-06-24 Minebea Co Ltd マルテンサイト系ステンレス鋼
WO2014162997A1 (ja) * 2013-04-01 2014-10-09 日立金属株式会社 刃物用鋼の製造方法
WO2017150738A1 (ja) * 2016-03-04 2017-09-08 日立金属株式会社 ステンレス鋼部材およびその製造方法、ならびに、ステンレス鋼部品およびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094275A (ja) * 2018-12-04 2020-06-18 日立金属株式会社 マルテンサイト系ステンレス鋼部品およびその製造方法
JP7404792B2 (ja) 2018-12-04 2023-12-26 株式会社プロテリアル マルテンサイト系ステンレス鋼部品およびその製造方法
JP2022521977A (ja) * 2019-02-28 2022-04-13 エッジウェル パーソナル ケア ブランズ リミテッド ライアビリティ カンパニー かみそり刃及びかみそり刃のための組成物
JP7461366B2 (ja) 2019-02-28 2024-04-03 エッジウェル パーソナル ケア ブランズ リミテッド ライアビリティ カンパニー かみそり刃及びかみそり刃のための組成物
CN112779465A (zh) * 2020-11-30 2021-05-11 江苏联峰能源装备有限公司 一种微合金车轴钢的制备方法
WO2024166577A1 (ja) * 2023-02-10 2024-08-15 株式会社プロテリアル 鋼部品およびその製造方法

Also Published As

Publication number Publication date
JP6735038B2 (ja) 2020-08-05
JPWO2019146743A1 (ja) 2020-05-28

Similar Documents

Publication Publication Date Title
WO2019146743A1 (ja) マルテンサイト系ステンレス鋼薄板およびその製造方法、ならびに、薄物部品の製造方法
JP6631860B2 (ja) マルテンサイト系ステンレス鋼部材の製造方法、ならびに、マルテンサイト系ステンレス鋼部品およびその製造方法
JP5920555B1 (ja) オーステナイト系ステンレス鋼板およびその製造方法
JP6366326B2 (ja) 高靱性熱間工具鋼およびその製造方法
JP7404792B2 (ja) マルテンサイト系ステンレス鋼部品およびその製造方法
KR20170086099A (ko) 고강도 용융 아연 도금 강판 및 그 제조 방법
WO2015004906A1 (ja) 高炭素熱延鋼板およびその製造方法
JP2007224405A (ja) 刃物用鋼
CN115667570B (zh) 高断裂韧性、高强度、沉淀硬化型不锈钢
US20230107193A1 (en) Highly anticorrosive martensitic stainless steel, and manufacturing method therefor
CN111655893B (zh) 高碳热轧钢板及其制造方法
JP2008081776A (ja) Ni含有鋼板の製造方法
WO2015159650A1 (ja) 熱間圧延線材
WO2022153790A1 (ja) マルテンサイト系ステンレス鋼材及びその製造方法
WO2024057705A1 (ja) ステンレス鋼およびその製造方法、ならびに、ステンレス鋼製品およびその製造方法
JP4277112B2 (ja) 通電加熱または高周波加熱による短時間焼入れ性に優れた工具鋼
JP6819829B1 (ja) 鋼板、部材及びそれらの製造方法
JP3734765B2 (ja) 浸炭部品およびその製造方法
JP2004003011A (ja) 非調質型熱間鍛造部品およびその製造方法
JP2004003008A (ja) 熱間圧延型非調質棒鋼およびその製造方法
JP2004315947A (ja) 無段変速機用マルエージング鋼帯の製造方法
JP2024008729A (ja) 窒素富化処理用マルテンサイト系ステンレス鋼及びマルテンサイト系ステンレス鋼部材
JP2022122482A (ja) 熱延鋼板およびその製造方法
WO2019044721A1 (ja) 低熱膨張合金
JP2018178151A (ja) 異方性が小さく経年変化の少ない低熱膨張鋳鋼及び鍛鋼品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743749

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567180

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743749

Country of ref document: EP

Kind code of ref document: A1