WO2019146446A1 - ガラス物品の製造方法及びその製造装置 - Google Patents

ガラス物品の製造方法及びその製造装置 Download PDF

Info

Publication number
WO2019146446A1
WO2019146446A1 PCT/JP2019/000915 JP2019000915W WO2019146446A1 WO 2019146446 A1 WO2019146446 A1 WO 2019146446A1 JP 2019000915 W JP2019000915 W JP 2019000915W WO 2019146446 A1 WO2019146446 A1 WO 2019146446A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubular portion
tube
transfer
glass
tubular
Prior art date
Application number
PCT/JP2019/000915
Other languages
English (en)
French (fr)
Inventor
裕之 板津
和幸 天山
周作 玉村
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020207006835A priority Critical patent/KR102649104B1/ko
Priority to CN201980005913.3A priority patent/CN111406037A/zh
Priority to JP2019567006A priority patent/JP7273372B2/ja
Priority to US16/960,385 priority patent/US11643351B2/en
Publication of WO2019146446A1 publication Critical patent/WO2019146446A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • C03B5/1672Use of materials therefor
    • C03B5/1675Platinum group metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/14Transferring molten glass or gobs to glass blowing or pressing machines
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor

Definitions

  • the present invention relates to a method of manufacturing a glass article and a manufacturing apparatus therefor, and more particularly to a method of manufacturing a glass article including a step of transporting the molten glass by circulating the molten glass inside a transfer tube and a manufacturing apparatus thereof .
  • the molten glass transport apparatus is used to transport the molten glass from the melting furnace to the apparatus for forming the glass articles.
  • a transfer pipe through which the molten glass flows is disposed in the middle of the path for transferring the molten glass.
  • the transfer pipe is, for example, between a melting furnace and a clarification tank, between a clarification tank and a stirring tank, between a plurality of stirring tanks, and between the stirring tank and a pot (volume part for mainly adjusting viscosity). It is used to communicate etc.
  • the transfer tube is also used as the body of the clarification tank.
  • the molten glass transfer apparatus in which this type of transfer pipe is used causes thermal expansion of the transfer pipe in the axial direction due to temperature rise at the time of start-up, etc., resulting in improper deformation or cracking of the transfer pipe. It may lead to damage of Therefore, it is preferable that this type of transfer pipe be configured to be able to eliminate the influence of thermal expansion.
  • the diameter is reduced toward the side of the tubular portion between the tubular portion having the same diameter over the entire length in the axial direction of the tube and the flange portion disposed near both ends in the axial direction of the tubular portion.
  • a transfer tube (a pipe member in the same document) in which a curved portion is interposed is disclosed. If this transfer pipe is used, the thermal expansion in the axial direction of the pipe is absorbed by the curved portion, and it can be expected that this will lead to suppression of undue deformation or breakage.
  • the present invention further allows the stress acting on the tubular portion to be sufficiently absorbed by the expansion of the tubular portion in the axial direction when the transfer tube undergoes thermal expansion in the axial direction.
  • the task is to reduce it.
  • the method according to the present invention invented to solve the above problems is a method for producing a glass article comprising the step of transferring the molten glass by circulating the molten glass through the inside of the transfer tube, wherein the transfer tube is A tube end portion forming an end portion in the tube axial direction, a tubular portion, and a joint portion joining the tube end portion and the tubular portion; the tube end portion includes a flange portion and an inner periphery of the flange portion And a curved portion extending from the end toward the tubular portion and having a diameter decreasing toward the tubular portion, and the tube end has a lower creep rupture strength at 1500 ° C. and 1000 hours than the tubular portion and / Alternatively, it is characterized in that it is formed of a material having a high creep strain rate.
  • the material forming the end of the transfer pipe has a smaller creep rupture strength at 1500 ° C. and 1000 hours and / or a higher creep strain rate than the material forming the tubular portion.
  • the tube end is more easily deformed than the tubular portion in the high temperature range. Therefore, when the transfer pipe thermally expands in the axial direction, the flange at the end of the pipe and the curved portion are easily deformed to sufficiently absorb the elongation in the axial direction of the tubular portion. And the stress acting on the tubular portion can be reduced.
  • the tube end further includes an extended tubular portion connected to the end of the curved portion on the tubular portion side and having the same diameter as the tubular portion.
  • the end portion of the tube that is easily deformed in the high temperature range further includes the extended tubular portion connected to the curved portion, so that the portion closer to the tubular portion of the curved portion is more easily deformed due to the presence of the extended tubular portion. Become.
  • the joint between the pipe end and the tubular portion is a portion where the strength is particularly weak, if the transfer pipe undergoes thermal expansion in the axial direction of the pipe, cracking or the like occurs from the joint. It may cause damage. Since the tube end has the extended tubular portion connected to the curved portion, the stress generated at the joint can be reduced, and breakage (for example, cracking) starting from the joint can be prevented.
  • the reinforcing material be disposed on the outer periphery of the joint.
  • the joint that joins the tube end and the tubular part has high strength due to the reinforcing material. This makes it possible to more reliably prevent damage originating from the joint.
  • the flange portion may be disposed in a vertical posture, and the tube axis of the tubular portion may be inclined with respect to the flange portion.
  • the transfer pipe can be used in a supply path for flowing molten glass from low to high or from high to low, measures for thermal expansion of the transfer in various supply paths should be taken. Is possible.
  • an apparatus for manufacturing a glass article configured to transfer the molten glass by circulating the molten glass through the inside of the transfer pipe
  • the transfer tube has a tube end forming an end in the tube axial direction, a tubular portion, and a joint portion joining the tube end and the tubular portion, the tube end including a flange portion, and the flange portion And a curved portion extending from the inner peripheral end toward the tubular portion and reducing in diameter toward the tubular portion, and the tube end has a creep rupture strength at 1500 ° C. and 1000 hours than the tubular portion. It is characterized by being formed of a material having a small and / or creep strain rate.
  • the transfer pipe when the transfer pipe is thermally expanded in the axial direction of the pipe, the elongation in the axial direction of the tubular portion is sufficiently absorbed, thereby ensuring that the tubular portion is deformed or damaged improperly. Restrained, this facilitates the transfer of the molten glass in the production of the glass article.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic side view which shows the whole structure of the manufacturing method of the glass article which concerns on embodiment of this invention, and the manufacturing apparatus for implementing it. It is a vertical side view which shows the transfer pipe used for the manufacturing method of the glass article which concerns on embodiment of this invention, and the manufacturing apparatus for implementing it. BRIEF DESCRIPTION OF THE DRAWINGS It is a front view which shows the transfer pipe used for the manufacturing method of the glass article which concerns on embodiment of this invention, and the manufacturing apparatus for implementing it. It is an enlarged longitudinal side view showing the important section of the transfer pipe used for the manufacturing method of the glass article concerning the embodiment of the present invention, and the manufacturing device for carrying out the same.
  • the manufacturing apparatus 1 for glass articles roughly includes a molten glass transfer device 2 for transferring molten glass, and a forming device 3 for forming a glass sheet GR from the molten glass.
  • the molten glass transfer device 2 includes a supply path 5 for supplying the molten glass GM from the melting furnace (melting furnace) 4 disposed at the upstream end to the forming device 3 disposed at the downstream end.
  • the supply channel 5 includes, in order from the upstream side, a fining tank 6, one or more (one in the example shown) agitating tank 7, and a pot 8 (volume portion mainly for adjusting the viscosity of the molten glass GM). Is deployed.
  • the downstream side of the pot 8 communicates with the formed body 11 of the forming apparatus 3 through the small diameter pipe 9 and the large diameter pipe 10.
  • the forming apparatus 3 forms a strip-shaped sheet glass GR from the molten glass GM by an overflow down draw method.
  • the cross-sectional shape (cross-sectional shape orthogonal to the sheet of FIG. 1) of the molded body 11 in the molding apparatus 3 has a substantially wedge shape, and an overflow groove (not shown) is formed on the upper portion of the molded body 11. ) Is formed.
  • the formed body 11 causes the molten glass GM to flow out from the overflow groove and then flow down along the side wall surfaces (side wall surfaces located on the front and back sides of the paper surface) on both sides of the formed body 11. Further, the molded body 11 is formed into a plate shape by fusing the molten glass GM that has flowed down at the lower top of the side wall surface.
  • the formed strip-shaped plate glass GR is supplied to a slow cooling step and a cutting step to be described later, and a plate glass of a desired size is cut out.
  • the plate glass as a glass article obtained in this manner has, for example, a thickness of 0.01 to 2 mm, and a flat panel display such as a liquid crystal display or an organic EL display, a substrate such as an organic EL illumination, a solar cell, or protection Used for the cover.
  • the forming apparatus 3 may perform another downdraw method such as a slot downdraw method, or may perform a method other than the downdraw method, for example, a float method.
  • the non-alkali glass is a glass substantially not containing an alkali component (alkali metal oxide), and specifically, a glass having a weight ratio of an alkali component of 3000 ppm or less is there.
  • the weight ratio of the alkali component in the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less.
  • the transfer pipes 12 and 13 communicate the melting furnace 4 and the clarification tank 6 in the supply path 5, the clarification tank 6 and the agitation tank 7, and the agitation tank 7 and the pot 8, respectively. If it explains in full detail, between the melting furnace 4 and the clarification tank 6, and between the stirring tank 7 and the pot 8, the downstream is connected by the transfer pipe 12 which inclines upwards.
  • the clarifying tank 6 and the stirring tank 7 are communicated with each other by a non-inclined transfer pipe 13.
  • the molten glass GM is transferred downstream by flowing through the inside of the transfer tubes 12 and 13.
  • the non-inclined transfer pipe 13 may be used as the main body of the clarification tank 6.
  • the transfer tube 12 has a tube end 14 having both ends in the direction (tube axis direction) along the tube axis X1, and a tubular shape having a cylindrical shape of the same diameter over the entire length in the tube axis direction.
  • the part 15 is joined via the joint part 16.
  • the tube end portion 14 has a flange portion 17 having an annular shape, a curved portion 18 extending to the inner peripheral side of the flange portion 17, and an elongated tubular portion 19 having a cylindrical shape.
  • a reinforcing material 20 is disposed around the entire circumference of the joint portion 16.
  • the inclination angle A of the tube axis X1 with respect to the horizontal plane is, for example, 3 to 30 °.
  • the lower end 21 and the upper end 22 in the axial direction have the same structure.
  • the detailed description below will, for convenience, be made only around the lower end 21 of the transfer pipe 12 in the axial direction.
  • the tube end 14 extends from the flange portion 17 in the vertical posture formed of an annular flat plate and the inner peripheral end 17 a of the flange portion 17 toward the tubular portion 15 and toward the tubular portion 15. And a curved portion 18 whose diameter decreases toward the end. Furthermore, the tube end portion 14 has an extended tubular portion 19 which is continuous with the end portion 18 a of the curved portion 18 on the tubular portion 15 side and has the same diameter as the tubular portion 15. The end 19 a of the tubular portion 19 on the side of the tubular portion 15 is connected to the end 15 a of the tubular portion 15 on the side of the tubular portion 19 at the joint portion 16.
  • the reinforcing member 20 is formed by winding a band-like plate material around the outer periphery of the joint portion 16 and has a cylindrical shape.
  • the material forming the flange portion 17 which is the tube end portion 14, the curved portion 18 and the extended tubular portion 19 has a creep rupture strength at 1500 ° C. and 1000 hours than that of the material forming the tubular portion 15. Smaller and / or faster creep strain rates. More specifically, at least one of the following two characteristics (1) and (2) is satisfied for the tube end portion 14 and the tubular portion 15. (1) The creep rupture strength at 1500 ° C. and 1000 hours is made smaller than the material forming the tube end 14 than the material forming the tubular portion 15. (2) The creep strain rate at 1000 ° C. and 1000 hours is made faster than the material forming the tube end 14 than the material forming the tubular portion 15.
  • the tube end portion 14 is formed of platinum or platinum alloy
  • the tubular portion 15 is formed of reinforced platinum or reinforced platinum alloy obtained by dispersing zirconia in platinum or platinum alloy. It has the above characteristics.
  • both the tube end 14 and the tubular portion 15 are formed of platinum, platinum alloy, reinforced platinum or reinforced platinum alloy, and the rhodium content is, for example, the tube end 14 and the tubular portion 15. By making them different, the materials of both 14 and 15 have the above-mentioned characteristics.
  • the material which forms the pipe end part 14 and the tubular part 15 is not necessarily limited to these, and the material which forms the pipe end part 14 has the above-mentioned creep rupture strength rather than the material which forms the tubular part 15 Is small and / or the above-mentioned creep strain rate may be increased.
  • the relative strength of the tubular portion 15 with respect to the tube end 14 is reduced if the tube end 14 and the tubular portion 15 are also made of a material having a low creep rupture strength and / or a high creep strain rate as described above. Due to the expansion, breakage such as improper deformation or cracking of the tubular portion 15 is likely to occur.
  • the joint portion 16 is a portion formed by butt welding the tube end portion 14 and the tubular portion 15 in this embodiment.
  • the reinforcing material 20 disposed on the outer periphery of the joint portion 16 is preferably formed of the same material as the tubular portion 15, but the material is not particularly limited as long as the joint portion 16 can be reinforced. I will not.
  • the reinforcing material 20 of this embodiment is being fixed to the pipe end part 14 and the tubular part 15 by welding, if the reinforcing material 20 can exhibit the function, the reinforcing material 20 of the joining part 16 is made by another method. You may arrange
  • the radius of curvature of the curved portion 18 gradually decreases as it moves from the lower end to the upper end of the curved portion 18.
  • the radius of curvature R1 at the upper end position of the curved portion 18 is, for example, 2 to 20 mm, preferably 5 to 10 mm
  • the radius of curvature R2 at the lower end position is, for example, 3 to 30 mm, preferably 10 to 20 mm
  • the relationship of R1 ⁇ R2 is satisfied.
  • the difference between R1 and R2 is, for example, 1 to 10 mm, preferably 5 to 10 mm.
  • the thickness T1 of the flange portion 17, the curved portion 18, the elongated tubular portion 19 and the tubular portion 15 is, for example, 0.3 to 3 mm.
  • the axial length L1 of the extension tubular portion 19 is, for example, 5 to 20 mm, preferably 10 to 15 mm.
  • the inner diameter D2 of the tubular portion 15 is, for example, 10 to 300 mm, and the outer diameter D1 (mm) of the flange portion 17 is, for example, (D2 + 100) to (D2 + 300).
  • the above description relates to the structure around the lower end 21 of the transfer pipe 12, but the structure around the upper end 22 of the transfer pipe 12 is also substantially the same. More specifically, as shown in FIG. 2, also around the upper end 22 of the transfer tube 12, the tube end 14 composed of the flange 17, the curved portion 18 and the extended tubular portion 19, and the tubular portion 15 are joined The reinforcing members 20 are disposed on the outer periphery of the joint portion 16 so as to be joined via the joint 16. And the material of those parts is also the same as the lower end 21 described above.
  • the radius of curvature of the curved portion 18 around the upper end 22 of the transfer pipe 12 gradually increases from the lower end of the curved portion 18 to the upper end, so the radius of curvature of the lower end is lower than the above. It corresponds to R1, and the curvature radius of the upper end corresponds to the above-mentioned R2.
  • the non-inclined transfer pipe 13 shown in FIG. 1 more specifically, the transfer pipe 13 with non-inclined pipe axis X2 with respect to the flange portion 17A in the vertical posture as shown in FIG. It has substantially the same features as the transfer tube 12. Describing the outline, as shown in FIG. 5, the non-inclined transfer tube 13 has a tube end 14A having both ends in the tube axial direction, and a tubular portion 15A having the same diameter over the entire length in the tube axial direction. Bonding is performed via the bonding portion 16A, and the reinforcing material 20A is disposed on the outer periphery of the bonding portion 16A.
  • the pipe end portion 14A includes a flange portion 17A, a curved portion 18A, and an elongated tubular portion 19A, and a joint portion 16A by welding is interposed between the elongated tubular portion 19A and the tubular portion 15A.
  • the material and dimensions of the flange portion 17A, the curved portion 18A, the extended tubular portion 19A, the joint portion 16A and the tubular portion 15A are the same as those of the above-described transfer pipe 12.
  • the difference is that the radius of curvature R3 of the curved portion 18A in the transfer pipe 13 is the same over the entire circumference.
  • this manufacturing method includes a preheating step S1, an assembly step S2, a molten glass transfer step S3, a forming step S4, a slow cooling step S5, and a cutting step S6.
  • the preheating step S1 in a state in which the transfer pipes 12, 13 of the molten glass transfer apparatus 2 shown in FIG. 1, the stirring tank 7 and the pot 8 are separated, these are heated by a heating device (not shown).
  • the transfer pipes 12 and 13 are energized through the electrodes provided on the flanges 17 and 17A. At that time, for example, air is filled without flowing the molten glass GM into the inside of the transfer tubes 12 and 13.
  • a predetermined preheating temperature for example, 1200 to 1400 ° C.
  • the flanges 17 and 17A of the transfer pipes 12 and 13 are fixed to the side walls of the melting furnace 4, the clarification tank 6, the stirring tank 7, the pot 8 and the like, or the flanges 17 of the transfer pipes 12 and 13; Fix each other 17A.
  • the manufacturing apparatus 1 is assembled by connecting the melting furnace 4, the clarification tank 6, the stirring tank 7, the pot 8, the small diameter pipe 9, the large diameter pipe 10, the forming apparatus 3 and the like.
  • the assembly process S2 is completed.
  • the glass raw material supplied into the melting furnace 4 is heated to generate molten glass GM, and the molten glass GM is sequentially transferred to the clarification tank 6 through the transfer pipe 12.
  • a fining agent is blended in the glass raw material, and a gas (foam) is generated in the molten glass GM by the action of the fining agent. This gas is removed by circulating the molten glass GM in the clarification tank 6.
  • the molten glass GM from the clarification tank 6 is transferred to the forming device 3 through the transfer tubes 12 and 13, the stirring tank 7 and the pot 8.
  • the temperature of the transfer tubes 12 and 13 rises with the start of the transfer of the molten glass GM, and becomes, for example, 1400 to 1650.degree. Therefore, the transfer pipes 12 and 13 thermally expand in the axial direction of the pipe.
  • the curved portion 18 has a curvature as shown by a dashed line in FIG. While deforming so that radius R1, R2 may become small, flange part 17 deforms so that outside diameter D1 may enlarge.
  • the extension in the tube axial direction of the tubular portion 15 is sufficiently absorbed, it is possible to suppress damage such as improper deformation or cracking of the tubular portion 15.
  • the reason why such a phenomenon occurs is that the material forming the flange portion 17 and the curved portion 18 is smaller in creep rupture strength at 1500 ° C. and 1000 hours than the material forming the tubular portion 15 and / or creep This is because the strain rate is increased.
  • the tubular portion 15 has the characteristic of being harder and more brittle than the tube end portion 14, if the flange portion 17 is formed of the same material as the tubular portion 15 and directly connected to the tubular portion 15, It is not possible to properly absorb the axial extension of the portion 15. However, not only the flange portion 17 but also the curved portion 18 is formed of a material having a smaller creep rupture strength and / or a higher creep strain rate than the tubular portion 15. Therefore, the cooperative action of the flange portion 17 and the curved portion 18 has a sufficient effect of absorbing the extension in the tube axial direction of the tubular portion 15.
  • the curved portion 18 is continued to the elongated tubular portion 19 formed of a material having a low creep rupture strength and / or a high creep strain rate. Therefore, by the cooperative action of the extended tubular portion 19 and the curved portion 18 and, consequently, the cooperative action of the extended tubular portion 19, the curved portion 18 and the flange portion 17, an effect of absorbing the elongation in the tube axial direction of the tubular portion 15 is It will increase further.
  • the joint portion 16 is a portion where the strength is particularly weak and a portion where a large stress acts when the tubular portion 15 tries to extend in the axial direction of the tube.
  • the amount of deformation of the joint 16 can be smaller than in the case where the extended tubular portion 19 is not interposed, and the stress generated in the joint 16 is reduced. it can. For this reason, the failure (for example, crack) which originates in a junction part can be prevented.
  • the joint portion 16 is sufficiently strong by the reinforcing member 20. Therefore, the situation where the transfer pipe 12 is damaged starting from the joint portion 16 can be more reliably prevented.
  • the inclined transfer pipe 12 shown in FIG. 4 is connected to the volume portion such as the melting furnace 4 and the stirring tank 7 with the lower end 21 as the upstream end.
  • the transfer pipe 12 has a curvature radius R2 at the lower end position larger than the curvature radius R1 at the upper end position of the bending portion 18. Therefore, when the molten glass in the volume part flows into this transfer pipe 12, smooth inflow is performed, and it is also advantageous for receiving the load of the molten glass. Further, the degree to which the flange portion 17 and the curved portion 18 are easily deformed is smaller on the lower side where the curvature radius R2 is larger than on the upper side. Also by this, the inflow of the molten glass to the transfer tube 12 at the time of thermal expansion is smoothly performed.
  • the molten glass GM is formed into a sheet glass GR by an overflow downdraw method.
  • the strip-shaped plate glass GR is cut into a plate glass of a desired size through an annealing step S5 by an annealing furnace and a cutting step S6 by a cutting device.
  • the strip glass sheet GR may be wound into a roll after continuously removing both ends in the width direction of the strip glass sheet GR in the cutting step S6 (winding process).
  • the present invention is applied to the transfer pipe 12 in which the downstream side is inclined upward and the non-inclination transfer pipe 13, but the transfer pipe in which the downstream side is inclined downward (shown in FIG. 2)
  • the present invention can be similarly applied to the transfer pipe 12 in which the left side of the paper surface is the downstream side).
  • the present invention is applied to both ends of the transfer pipes 12 and 13 in the pipe axis direction, but only one end of the transfer pipes 12 and 13 in the pipe axis direction (especially the transfer pipe shown in FIG. 4)
  • the present invention may be applied to only the lower end 21 of 12).
  • the tubular portions 15 and 15A of the transfer tubes 12 and 13 have the same diameter over the entire length in the tube axial direction, but have a tapered tube whose diameter gradually decreases toward one side in the tube axial direction.
  • the present invention can be applied to parts as well.
  • a sheet glass and a glass roll are manufactured as a glass article, it is good also as a glass tube, glass fiber, etc. as a glass article.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

移送管12の内部を溶融ガラスGMが流通することによって該溶融ガラスGMを移送させてガラス物品GRを製造するに際して、移送管12は、管軸方向の端部をなす管端部14と、管状部15と、管端部14と管状部15とを接合する接合部16とを有し、管端部14は、フランジ部17と、該フランジ部17の内周端17aから管状部15側に延出し且つ管状部15側に移行するに連れて縮径する湾曲部18とを有し、管端部14は、管状部15よりも、1500℃で且つ1000時間でのクリープ破断強度が小さいおよび/またはクリープひずみ速度が速い材質で形成される。

Description

ガラス物品の製造方法及びその製造装置
 本発明は、ガラス物品の製造方法及びその製造装置に係り、詳しくは、移送管の内部を溶融ガラスが流通することによって該溶融ガラスを移送する工程を含むガラス物品の製造方法及びその製造装置に関する。
 周知のように、ガラス物品を製造する際には、溶融ガラス移送装置を用いて溶融炉からガラス物品の成形装置に溶融ガラスを移送することが行われる。この溶融ガラスを移送する経路の途中には、溶融ガラスが内部を流通する移送管が配設される。
 この移送管は、例えば、溶融炉と清澄槽との間、清澄槽と攪拌槽との間、複数の攪拌槽の相互間、及び攪拌槽とポット(主として粘度調整を行う容積部)との間などを連通するために使用される。また、移送管は、清澄槽の本体としても使用される。
 この種の移送管が使用された溶融ガラス移送装置は、立ち上げ時などに温度上昇が生じることに起因して、移送管が管軸方向に熱膨張を来たし、移送管の不当な変形や割れ等の破損を招き得る。そのため、この種の移送管は、熱膨張の影響を排除し得る構造とされていることが好ましい。
 特許文献1には、管軸方向の全長に亘って同径の管状部と、この管状部の管軸方向の両端付近に配置されるフランジ部との間に、管状部側に向かって縮径する湾曲部を介在させた移送管(同文献ではパイプ部材)が開示されている。この移送管を使用すれば、管軸方向の熱膨張が湾曲部によって吸収されるため、不当な変形や破損の抑止につながることが期待できる。
特開2013-245134号公報
 ところで、移送管が管軸方向に熱膨張を来たした場合には、管状部が管軸方向に伸びようとするため、特に管状部の管軸方向に大きな応力が作用する。移送管の熱膨張に起因する管状部の不当な変形や割れ等の破損を抑止するためには、管状部の管軸方向の伸びを十分に吸収することが重要となる。
 しかしながら、特許文献1に開示のように管状部とフランジ部との間に湾曲部を介在させただけの移送管では、管状部の管軸方向の伸びを吸収する効果が十分でなく、管状部に作用する応力をさらに低減させることが望まれている。
 以上の観点から、本発明は、移送管が管軸方向に熱膨張を来たした場合に、管状部の管軸方向の伸びを十分に吸収できるようにして、管状部に作用する応力をさらに低減させることを課題とする。
 上記課題を解決するために創案された本発明に係る方法は、移送管の内部を溶融ガラスが流通することによって該溶融ガラスを移送する工程を含むガラス物品の製造方法であって、移送管は、管軸方向の端部をなす管端部と、管状部と、管端部と管状部とを接合する接合部とを有し、管端部は、フランジ部と、該フランジ部の内周端から管状部側に延出し且つ管状部側に向かって縮径する湾曲部とを有し、管端部は、管状部よりも、1500℃で且つ1000時間でのクリープ破断強度が小さいおよび/またはクリープひずみ速度が速い材質で形成されていることに特徴づけられる。
 このような方法によれば、移送管の管端部を形成する材質が、管状部を形成する材質よりも、1500℃で且つ1000時間でのクリープ破断強度が小さくおよび/またはクリープひずみ速度が速くされているため、高温域において管端部は管状部よりも変形し易くなる。従って、移送管が管軸方向に熱膨張を来たした場合には、管端部であるフランジ部と湾曲部とが容易に変形することで、管状部の管軸方向の伸びが十分に吸収され、管状部に作用する応力を低減できる。
 この場合において、管端部は、湾曲部の管状部側の端部に連なり且つ管状部と同径の延管状部をさらに有することが好ましい。
 このようにすれば、高温域で変形し易い管端部が、湾曲部に連なる延管状部をさらに含むため、湾曲部の管状部側寄りの部位が延管状部の存在によってより一層変形し易くなる。これにより、熱膨張に起因する管状部の管軸方向の伸びをより確実に吸収することが可能となる。また、管端部と管状部との間の接合部は、強度が特に弱い部位であるため、移送管が管軸方向に熱膨張を来たした場合には、接合部を起点として割れ等の破損を招来するおそれがある。管端部が、湾曲部に連なる延管状部を有することにより、接合部に発生する応力を低減でき、接合部を起点とする破損(例えば割れ)を防止することができる。
 以上の方法において、接合部の外周に補強材が配置されていることが好ましい。
 このようにすれば、管端部と管状部とを接合している接合部が、補強材によって高強度になる。これにより、接合部を起点とする破損をより確実に防止することが可能となる。
 以上の方法において、フランジ部が垂直姿勢で配置され、該フランジ部に対して管状部の管軸が傾斜していてもよい。
 このようにすれば、溶融ガラスを低所から高所または高所から低所に流す供給経路に当該移送管を使用することができるため、様々な供給経路において移送管の熱膨張対策を講じることが可能となる。
 また、上記課題を解決するために創案された本発明に係る装置は、移送管の内部を溶融ガラスが流通することによって該溶融ガラスを移送するように構成したガラス物品の製造装置であって、移送管は、管軸方向の端部をなす管端部と、管状部と、管端部と管状部とを接合する接合部とを有し、管端部は、フランジ部と、該フランジ部の内周端から管状部側に延出し且つ管状部側に向かって縮径する湾曲部とを有し、管端部は、管状部よりも、1500℃で且つ1000時間でのクリープ破断強度が小さいおよび/またはクリープひずみ速度が速い材質で形成されていることに特徴づけられる。
 このような装置によれば、冒頭で説明した本発明に係るガラス物品の製造方法と実質的に同一の作用効果を享受することができる。
 本発明によれば、移送管が管軸方向に熱膨張を来たした場合に、管状部の管軸方向の伸びが十分に吸収されることで、管状部の不当な変形や破損が確実に抑止され、これによりガラス物品を製造する際の溶融ガラスの移送が円滑に行われる。
本発明の実施形態に係るガラス物品の製造方法及びそれを実施するための製造装置の全体構成を示す概略側面図である。 本発明の実施形態に係るガラス物品の製造方法及びそれを実施するための製造装置に用いられる移送管を示す縦断側面図である。 本発明の実施形態に係るガラス物品の製造方法及びそれを実施するための製造装置に用いられる移送管を示す正面図である。 本発明の実施形態に係るガラス物品の製造方法及びそれを実施するための製造装置に用いられる移送管の要部を示す拡大縦断側面図である。 本発明の実施形態に係るガラス物品の製造方法及びそれを実施するための製造装置に用いられる移送管の他の例を示す縦断側面図である。 本発明の実施形態に係るガラス物品の製造方法の手順を示すフローチャートである。
 以下、本発明の実施形態に係るガラス物品の製造方法及びその方法を実施するための製造装置について添付図面を参照して説明する。
 図1に示すように、ガラス物品の製造装置1は、大別すると、溶融ガラスを移送するための溶融ガラス移送装置2と、溶融ガラスから板ガラスGRを成形するための成形装置3とを有する。溶融ガラス移送装置2は、上流端に配備された溶融炉(溶融窯)4から、下流端に配備された成形装置3に溶融ガラスGMを供給する供給経路5を備えている。この供給経路5には、上流側から順に、清澄槽6と、一個または複数個(図例では一個)の攪拌槽7と、ポット8(主として溶融ガラスGMの粘度調整のための容積部)とが配備されている。ポット8の下流側は、小径パイプ9及び大径パイプ10を介して成形装置3の成形体11に通じている。
 成形装置3は、オーバーフローダウンドロー法によって溶融ガラスGMから帯状の板ガラスGRを成形する。詳細には、成形装置3における成形体11は、断面形状(図1の紙面と直交する断面形状)が略楔形状を呈しており、この成形体11の上部には、オーバーフロー溝(図示せず)が形成されている。成形体11は、溶融ガラスGMをオーバーフロー溝から溢れ出させた後、その溶融ガラスGMを成形体11の両側の側壁面(紙面の表裏面側に位置する側壁面)に沿って流下させる。さらに、成形体11は、流下させた溶融ガラスGMを側壁面の下頂部で融合させ、板状に成形する。
 成形された帯状の板ガラスGRは、後述する徐冷工程及び切断工程に供給され、所望寸法の板ガラスが切り出される。このようにして得られたガラス物品としての板ガラスは、例えば、厚みが0.01~2mmであって、液晶ディスプレイや有機ELディスプレイなどのフラットパネルディスプレイ、有機EL照明、太陽電池などの基板や保護カバーに利用される。なお、成形装置3は、スロットダウンドロー法などの他のダウンドロー法を実行するものであってもよく、ダウンドロー法以外の方法、例えばフロート法を実行するものであってもよい。
 板ガラスGRのガラスとしては、ケイ酸塩ガラス、シリカガラスが用いられ、好ましくはホウ珪酸ガラス、ソーダライムガラス、アルミノ珪酸塩ガラス、化学強化ガラスが用いられ、最も好ましくは無アルカリガラスが用いられる。ここで、無アルカリガラスとは、アルカリ成分(アルカリ金属酸化物)が実質的に含まれていないガラスのことであって、具体的には、アルカリ成分の重量比が3000ppm以下のガラスのことである。本発明におけるアルカリ成分の重量比は、好ましくは1000ppm以下であり、より好ましくは500ppm以下であり、最も好ましくは300ppm以下である。
 供給経路5における溶融炉4と清澄槽6との間、清澄槽6と攪拌槽7との間、攪拌槽7とポット8との間は、それぞれ、移送管12、13によって連通されている。詳述すると、溶融炉4と清澄槽6との間、及び攪拌槽7とポット8との間は、下流側が上方に向かって傾斜する移送管12によって連通されている。清澄槽6と攪拌槽7との間は、非傾斜の移送管13によって連通されている。溶融ガラスGMは、これらの移送管12、13の内部を流通することによって下流側に移送される。なお、清澄槽6の本体として非傾斜の移送管13を用いてもよい。
 図2及び図3は、これら二種類の移送管12、13のうち、下流側が上方に向かって傾斜する移送管12を例示している。同図に示すように、この移送管12は、管軸X1に沿う方向(管軸方向)の両端部をそれぞれなす管端部14と、管軸方向の全長にわたって同径の円筒形状を呈する管状部15とを、接合部16を介して接合したものである。管端部14は、円環形状を呈するフランジ部17と、フランジ部17の内周側に延出する湾曲部18と、円筒形状を呈する延管状部19とを有する。接合部16の外周には、全周に亘って補強材20が配置されている。管軸X1の水平面に対する傾斜角度Aは、例えば3~30°である。
 管軸方向の下方端21周辺と上方端22周辺とは、同様の構造である。以下での詳細な説明は、便宜上、この移送管12の管軸方向の下方端21周辺のみについて行う。
 図4に示すように、管端部14は、円環形状の平板からなる垂直姿勢のフランジ部17と、フランジ部17の内周端17aから管状部15側に延出し且つ管状部15側に向かって縮径する湾曲部18とを有する。さらに、管端部14は、湾曲部18の管状部15側の端部18aに連なり且つ管状部15と同径とされた延管状部19を有する。そして、延管状部19の管状部15側の端部19aが、管状部15の延管状部19側の端部15aと接合部16で連接している。同図では、管端部14に平行斜線のハッチングを付し、管状部15にクロスハッチングを付している(図2も同様)。なお、補強材20は、帯状の板材を接合部16の外周に巻回したものであって、円筒形状を呈している。
 ここで、管端部14であるフランジ部17と湾曲部18と延管状部19とを形成する材質は、管状部15を形成する材質よりも、1500℃で且つ1000時間でのクリープ破断強度が小さくおよび/またはクリープひずみ速度が速くされている。詳しくは、管端部14および管状部15については、次の(1)、(2)の二つの特性のうち、少なくとも一つの特性が満たされている。(1)管端部14を形成する材質が管状部15を形成する材質よりも1500℃で且つ1000時間でのクリープ破断強度が小さくされること。(2)管端部14を形成する材質が管状部15を形成する材質よりも1500℃で且つ1000時間でのクリープひずみ速度が速くされること。一例として、管端部14を白金または白金合金で形成し、管状部15を白金または白金合金にジルコニアを分散させてなる強化白金または強化白金合金で形成することで、両者14、15の材質が上記の特性とされる。また、他の例として、管端部14と管状部15との両者を白金、白金合金、強化白金または強化白金合金で形成し、例えばロジウムの含有量を管端部14と管状部15とで異ならせることで、両者14、15の材質が上記の特性とされる。なお、管端部14及び管状部15を形成する材質は、これらに限定されるわけではなく、管端部14を形成する材質が、管状部15を形成する材質よりも、上記のクリープ破断強度が小さくおよび/または上記のクリープひずみ速度が速くされていればよい。なお、管端部14と共に管状部15も上記のクリープ破断強度が小さいおよび/または上記のクリープひずみ速度が速い材質にすると、管端部14に対する管状部15の相対的な強度が低下し、熱膨張に起因して管状部15の不当な変形や割れ等の破損が発生しやすくなる。
 接合部16は、この実施形態では、管端部14と管状部15とを突き合わせ溶接することによって形成された部位である。この接合部16の外周に配置されている補強材20は、管状部15と同じ材質で形成されることが好ましいが、接合部16を補強することができるものであれば、その材質は特に限定されない。また、本実施形態の補強材20は、溶接によって管端部14及び管状部15に固定されているが、補強材20がその機能を発揮できれば、他の方法で補強材20を接合部16の外周に配置してもよい。
 湾曲部18の曲率半径は、湾曲部18の下端から上端に移行するに連れて漸次小さくなっている。湾曲部18の上端位置での曲率半径R1は、例えば2~20mm、好ましくは5~10mmであり、下端位置での曲率半径R2は、例えば3~30mm、好ましくは10~20mmであり、且つ、R1<R2の関係を満たしている。なお、R1とR2との差は、例えば1~10mm、好ましくは5~10mmである。
 フランジ部17、湾曲部18、延管状部19及び管状部15の厚みT1は、例えば0.3~3mmである。延管状部19の管軸方向の長さL1は、例えば5~20mm、好ましくは10~15mmである。管状部15の内径D2は、例えば10~300mmであり、フランジ部17の外径D1(mm)は、例えば(D2+100)~(D2+300)である。
 なお、以上の説明は、移送管12の下方端21周辺の構造に関するものであるが、移送管12の上方端22周辺の構造も実質的に同一である。詳述すると、図2に示すように、移送管12の上方端22周辺についても、フランジ部17、湾曲部18及び延管状部19からなる管端部14と、管状部15とが、接合部16を介して接合され、接合部16の外周に補強材20が配置されている。そして、それら各部の材質も、既述の下方端21周辺と同一である。なお、相違点として、移送管12の上方端22周辺における湾曲部18の曲率半径は、湾曲部18の下端から上端に移行するに連れて漸次大きくなっているため、下端の曲率半径が上記のR1に該当し、上端の曲率半径が上記のR2に該当する。
 また、この実施形態では、図1に示す非傾斜の移送管13、詳しくは図5に示すように垂直姿勢のフランジ部17Aに対して管軸X2が非傾斜の移送管13は、既述の移送管12と実質的に同一の特徴を有している。概略を説明すると、図5に示すように、非傾斜の移送管13は、管軸方向の両端部をそれぞれなす管端部14Aと、管軸方向の全長にわたって同径の管状部15Aとが、接合部16Aを介して接合され、接合部16Aの外周に補強材20Aが配置されている。管端部14Aは、フランジ部17Aと湾曲部18Aと延管状部19Aとからなり、延管状部19Aと管状部15Aとの間に溶接による接合部16Aが介在している。フランジ部17A、湾曲部18A、延管状部19A、接合部16A及び管状部15Aの材質や各寸法などは、既述の移送管12と同一である。なお、相違点として、この移送管13における湾曲部18Aの曲率半径R3は、全周にわたって同一である。
 次に、上記の構成を備えた製造装置1によってガラス物品(板ガラスGR)を製造する方法について説明する。図6に示すように、この製造方法は、予熱工程S1、組立工程S2、溶融ガラス移送工程S3、成形工程S4、徐冷工程S5、及び切断工程S6を備える。
 予熱工程S1では、図1に示す溶融ガラス移送装置2の移送管12、13、攪拌槽7及びポット8を分離させた状態で、これらを加熱装置(図示せず)により加熱する。この場合、移送管12、13は、フランジ部17、17Aに設けられる電極を介して通電される。その際には、移送管12、13の内部に溶融ガラスGMを流通させることなく、例えば空気を充満させる。移送管12、13の管状部15、15Aが所定の予熱温度(例えば1200~1400℃)にまで到達すると、次の組立工程S2が実行される。
 組立工程S2では、移送管12、13のフランジ部17、17Aを、溶融炉4、清澄槽6、攪拌槽7、ポット8などの側壁に固定したり、移送管12、13のフランジ部17、17A同士を固定したりする。そして、最終的に、溶融炉4、清澄槽6、攪拌槽7、ポット8、小径パイプ9、大径パイプ10、成形装置3等を接続することで、製造装置1が組み立てられる。以上により、組立工程S2が終了する。
 溶融ガラス移送工程S3では、溶融炉4内に供給されたガラス原料が加熱されることで、溶融ガラスGMが生成され、この溶融ガラスGMは、移送管12を通じて清澄槽6に順次移送される。ガラス原料には清澄剤が配合されており、溶融ガラスGMには、この清澄剤の作用によりガス(泡)が発生する。このガスは、清澄槽6に溶融ガラスGMを流通させることで除去される。さらに、清澄槽6からの溶融ガラスGMは、移送管12、13、攪拌槽7、ポット8を通じて成形装置3に移送される。
 組立工程S2の直後の溶融ガラス移送工程S3(製造装置1の立ち上げ時)では、溶融ガラスGMの移送開始に伴って移送管12、13の温度が上昇し、例えば1400~1650℃となる。このため、移送管12、13は、管軸方向に熱膨張を来たす。
 この場合、熱膨張に伴って、図2~4に示す移送管12の管状部15が管軸方向に伸びようとした場合には、図4に鎖線で示すように、湾曲部18が、曲率半径R1,R2が小さくなるように変形すると共に、フランジ部17が、外径D1が拡大するように変形する。これによって、管状部15の管軸方向の伸びが十分に吸収されるので、管状部15の不当な変形や割れ等の破損を抑止できる。このような現象が生じる理由は、フランジ部17と湾曲部18とを形成する材質が、管状部15を形成する材質よりも、1500℃で且つ1000時間でのクリープ破断強度が小さくおよび/またはクリープひずみ速度が速くされているからである。
 ここで、管状部15は管端部14よりも硬くて脆いという特性を有しているため、管状部15と同じ材質でフランジ部17を形成して管状部15に直接接続したならば、管状部15の管軸方向の伸びを適切に吸収できなくなる。しかし、フランジ部17だけでなくこれに加えて湾曲部18も、管状部15よりも、上記のクリープ破断強度が小さいおよび/または上記のクリープひずみ速度が速い材質で形成されている。そのため、フランジ部17と湾曲部18との協働作用によって、管状部15の管軸方向の伸びを吸収する効果が十分なものになる。
 湾曲部18は、上記のクリープ破断強度が小さいおよび/または上記のクリープひずみ速度が速い材質で形成されている延管状部19に連なっている。そのため、延管状部19と湾曲部18との協働作用、ひいては延管状部19と湾曲部18とフランジ部17との協働作用によって、管状部15の管軸方向の伸びを吸収する効果がさらに増大する。
 なお、接合部16は、強度が特に弱い部位であり且つ管状部15が管軸方向に伸びようとした場合に大きな応力が作用する部位である。湾曲部18と接合部16との間に延管状部19を介在させる場合、延管状部19を介在させない場合よりも、接合部16の変形量を小さくでき、接合部16に発生する応力を低減できる。このため、接合部を起点する破損(例えば割れ)を防止することができる。加えて、接合部16は、補強材20によって十分に強度が高くなっている。そのため、接合部16を起点として移送管12が破損する事態をより確実に防止できる。
 以上のような作用効果は、図5に示す非傾斜の移送管13についても、同様にして享受することができる。
 図4に示す傾斜の移送管12は、下方端21を上流端として溶融炉4や攪拌槽7などの容積部に接続される。そして、この移送管12は、湾曲部18の上端位置での曲率半径R1よりも、下端位置での曲率半径R2の方が大きくなっている。そのため、容積部内の溶融ガラスが、この移送管12に流入する際には、スムーズな流入が行われ、さらに溶融ガラスの荷重を受ける上でも有利となる。また、フランジ部17及び湾曲部18が変形し易い度合いは、曲率半径R2が大きい下部側の方が、上部側よりも小さくなる。これによっても、熱膨張時における移送管12への溶融ガラスの流入がスムーズに行われる。
 以上のような溶融ガラス移送工程S3を経た溶融ガラスGMは、成形装置3における成形体11のオーバーフロー溝に流入する。成形工程S4では、溶融ガラスGMを、オーバーフローダウンドロー法によって、板ガラスGRに成形する。
 その後、帯状の板ガラスGRは、徐冷炉による徐冷工程S5、切断装置による切断工程S6を経て、所望寸法の板ガラスに切り出される。或いは、切断工程S6で帯状の板ガラスGRの幅方向の両端を連続的に除去した後、帯状の板ガラスGRをロール状に巻き取ってもよい(巻取工程)。以上により、ガラス物品(板ガラスGR)の製造が完了する。
 なお、上記実施形態では、下流側が上方に向かって傾斜する移送管12と、非傾斜の移送管13とに本発明を適用したが、下流側が下方に向かって傾斜する移送管(図2に示す移送管12において紙面の左側を下流側とするもの)についても、同様にして本発明を適用することができる。
 また、上記実施形態では、移送管12、13の管軸方向の両端部周辺について本発明を適用したが、移送管12、13の管軸方向の一端部周辺のみ(特に図4に示す移送管12の下方端21周辺のみ)に本発明を適用するようにしてもよい。
 さらに、上記実施形態では、移送管12,13の管状部15、15Aが、管軸方向の全長にわたって同径であるが、管軸方向の一方側に向かって漸次縮径するテーパ管からなる管状部であっても、同様にして本発明を適用することができる。
 また、上記実施形態では、ガラス物品として、板ガラス及びガラスロールを製造するが、ガラス物品は、ガラス管やガラス繊維等としてもよい。
1     ガラス物品の製造装置
12,13    移送管
14   管端部
14A 管端部
15   管状部
15A 管状部
16   接合部
16A 接合部
17   フランジ部
17A フランジ部
17a  フランジ部の内周端
18   湾曲部
18A 湾曲部
19   延管状部
19A 延管状部
20   補強材
20A 補強材
GM   溶融ガラス
GR   板ガラス(ガラス物品)
S3   溶融ガラス移送工程
X1   管軸
X2   管軸

Claims (5)

  1.  移送管の内部を溶融ガラスが流通することによって該溶融ガラスを移送する工程を含むガラス物品の製造方法であって、
     前記移送管は、管軸方向の端部をなす管端部と、管状部と、前記管端部と前記管状部とを接合する接合部とを有し、
     前記管端部は、フランジ部と、該フランジ部の内周端から前記管状部側に延出し且つ前記管状部側に向かって縮径する湾曲部とを有し、
     前記管端部は、前記管状部よりも、1500℃で且つ1000時間でのクリープ破断強度が小さいおよび/またはクリープひずみ速度が速い材質で形成されていることを特徴とするガラス物品の製造方法。
  2.  前記管端部は、前記湾曲部の前記管状部側の端部に連なり且つ前記管状部と同径の延管状部をさらに有する請求項1に記載のガラス物品の製造方法。
  3.  前記接合部の外周に補強材が配置されている請求項1または2に記載のガラス物品の製造方法。
  4.  前記フランジ部が垂直姿勢で配置され、該フランジ部に対して前記管状部の管軸が傾斜している請求項1~3の何れかに記載のガラス物品の製造方法。
  5.  移送管の内部を溶融ガラスが流通することによって該溶融ガラスを移送するように構成したガラス物品の製造装置であって、
     前記移送管は、管軸方向の端部をなす管端部と、管状部と、前記管端部と前記管状部とを接合する接合部とを有し、
     前記管端部は、フランジ部と、該フランジ部の内周端から前記管状部側に延出し且つ前記管状部側に向かって縮径する湾曲部とを有し、
     前記管端部は、前記管状部よりも、1500℃で且つ1000時間でのクリープ破断強度が小さいおよび/またはクリープひずみ速度が速い材質で形成されていることを特徴とするガラス物品の製造装置。
PCT/JP2019/000915 2018-01-29 2019-01-15 ガラス物品の製造方法及びその製造装置 WO2019146446A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207006835A KR102649104B1 (ko) 2018-01-29 2019-01-15 유리 물품의 제조 방법 및 그 제조 장치
CN201980005913.3A CN111406037A (zh) 2018-01-29 2019-01-15 玻璃物品的制造方法及其制造装置
JP2019567006A JP7273372B2 (ja) 2018-01-29 2019-01-15 ガラス物品の製造方法及びその製造装置
US16/960,385 US11643351B2 (en) 2018-01-29 2019-01-15 Method and apparatus for manufacturing glass article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018012534 2018-01-29
JP2018-012534 2018-01-29

Publications (1)

Publication Number Publication Date
WO2019146446A1 true WO2019146446A1 (ja) 2019-08-01

Family

ID=67394607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000915 WO2019146446A1 (ja) 2018-01-29 2019-01-15 ガラス物品の製造方法及びその製造装置

Country Status (5)

Country Link
US (1) US11643351B2 (ja)
JP (1) JP7273372B2 (ja)
KR (1) KR102649104B1 (ja)
CN (1) CN111406037A (ja)
WO (1) WO2019146446A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021066614A (ja) * 2019-10-18 2021-04-30 日本電気硝子株式会社 ガラス物品の製造装置および製造方法
WO2024038740A1 (ja) * 2022-08-19 2024-02-22 日本電気硝子株式会社 ガラス物品の製造方法及びガラス物品の製造装置
WO2024048298A1 (ja) * 2022-08-30 2024-03-07 日本電気硝子株式会社 ガラス物品の製造装置及び製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6925583B2 (ja) * 2017-12-20 2021-08-25 日本電気硝子株式会社 ガラス物品の製造方法及び製造装置
WO2024118218A1 (en) * 2022-11-29 2024-06-06 Corning Incorporated Apparatus for glass manufacturing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160799A (ja) * 2014-02-28 2015-09-07 AvanStrate株式会社 ガラス板製造装置及びガラス板の製造方法
CN104926083A (zh) * 2015-06-24 2015-09-23 湖北新华光信息材料有限公司 一种保护衬里及其的用途和制备方法
JP2015209366A (ja) * 2014-04-30 2015-11-24 AvanStrate株式会社 ガラス板の製造装置、及び、ガラス板の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5818164B2 (ja) 2012-05-25 2015-11-18 日本電気硝子株式会社 溶融ガラス用管状体及び溶融ガラス供給装置並びにパイプ部材
JP5752647B2 (ja) * 2012-06-29 2015-07-22 AvanStrate株式会社 ガラス基板の製造方法
TWI565669B (zh) * 2012-09-04 2017-01-11 Avanstrate Inc A method for manufacturing a glass substrate, and a manufacturing apparatus for a glass substrate
US20140123710A1 (en) * 2012-11-02 2014-05-08 David Myron Lineman Apparatus and method for minimizing platinum group metal particulate inclusion in molten glass
JP6281747B2 (ja) * 2014-03-13 2018-02-21 日本電気硝子株式会社 ガラス物品の製造装置およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160799A (ja) * 2014-02-28 2015-09-07 AvanStrate株式会社 ガラス板製造装置及びガラス板の製造方法
JP2015209366A (ja) * 2014-04-30 2015-11-24 AvanStrate株式会社 ガラス板の製造装置、及び、ガラス板の製造方法
CN104926083A (zh) * 2015-06-24 2015-09-23 湖北新华光信息材料有限公司 一种保护衬里及其的用途和制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021066614A (ja) * 2019-10-18 2021-04-30 日本電気硝子株式会社 ガラス物品の製造装置および製造方法
JP7375454B2 (ja) 2019-10-18 2023-11-08 日本電気硝子株式会社 ガラス物品の製造装置および製造方法
WO2024038740A1 (ja) * 2022-08-19 2024-02-22 日本電気硝子株式会社 ガラス物品の製造方法及びガラス物品の製造装置
WO2024048298A1 (ja) * 2022-08-30 2024-03-07 日本電気硝子株式会社 ガラス物品の製造装置及び製造方法

Also Published As

Publication number Publication date
US11643351B2 (en) 2023-05-09
JP7273372B2 (ja) 2023-05-15
JPWO2019146446A1 (ja) 2021-01-07
KR102649104B1 (ko) 2024-03-20
KR20200112800A (ko) 2020-10-05
CN111406037A (zh) 2020-07-10
US20200354251A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
WO2019146446A1 (ja) ガラス物品の製造方法及びその製造装置
US8065892B2 (en) Device for manufacturing sheet glass and method for manufacturing sheet glass
US8468851B2 (en) Vacuum degassing apparatus and vacuum degassing method for molten glass
TWI835935B (zh) 玻璃物品的製造方法
KR20190003381A (ko) 유리 기판의 제조 방법 및 유리 기판 제조 장치
KR20190113755A (ko) 유리 제조 방법 및 유리 공급관의 예열 방법
JP5818164B2 (ja) 溶融ガラス用管状体及び溶融ガラス供給装置並びにパイプ部材
JP6979172B2 (ja) ガラス物品の製造方法
JP2019043815A (ja) 移送容器及び移送装置並びにガラス物品の製造方法
CN221397648U (zh) 玻璃物品的制造装置
WO2023053923A1 (ja) ガラス物品の製造装置及びガラス物品の製造方法
KR20240088976A (ko) 구조적으로 강화된 도관을 갖는 용융 유리 형성 장치
JP2024538182A (ja) 構造的に強化された導管を用いて溶融ガラスを形成する装置
WO2024118218A1 (en) Apparatus for glass manufacturing
CN114144382A (zh) 玻璃形成装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19744230

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567006

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19744230

Country of ref document: EP

Kind code of ref document: A1