WO2019142487A1 - めっき構造体の製造方法 - Google Patents

めっき構造体の製造方法 Download PDF

Info

Publication number
WO2019142487A1
WO2019142487A1 PCT/JP2018/043015 JP2018043015W WO2019142487A1 WO 2019142487 A1 WO2019142487 A1 WO 2019142487A1 JP 2018043015 W JP2018043015 W JP 2018043015W WO 2019142487 A1 WO2019142487 A1 WO 2019142487A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromium
layer
chromium plating
plating
plating layer
Prior art date
Application number
PCT/JP2018/043015
Other languages
English (en)
French (fr)
Inventor
宏明 安藤
Original Assignee
豊田合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 豊田合成株式会社 filed Critical 豊田合成株式会社
Publication of WO2019142487A1 publication Critical patent/WO2019142487A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/38Chromatising
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Definitions

  • the present invention relates to a method of manufacturing a plated structure including a chromium plating layer.
  • a chromium plated component is disclosed that has a film thickness of 7 nm or more and a chromium compound film.
  • the cathodic acidic electrolytic chromate treatment is carried out in a bath having a pH of 1.0 to 5.5 and a temperature of 20 to 70 ° C. containing 20 to 40 g / l of at least one of dichromate, chromate and chromic anhydride. Treatment at a current density of 0.1 to 1.0 A / dm 2 under conditions of 10 to 90 seconds.
  • Hexavalent chromium has the problem of environmental pollution.
  • the film thickness of the chromium compound film formed by the cathodic acid electrolytic chromate treatment As shown in FIG. 2 is up to 12 nm, although it is described that the composition (at%) of each element tends to be stabilized in the larger region, particularly in the region larger than 9 nm. Therefore, it is not assumed that the film thickness is as thick as, for example, 20 nm or more, and the formation is considered to be difficult.
  • a first object of the present invention is to make it possible to easily form a highly corrosion resistant chromium oxide layer having a film thickness of 20 nm or more on the surface of an existing chromium plating layer using a trivalent chromium plating solution.
  • a second object is to use a trivalent chromium plating solution to easily form a chromium plating layer and a highly corrosion-resistant chromium oxide layer having a film thickness of 20 nm or more thereon.
  • the third object is to allow the color tone of the appearance of the plating structure to be changed by the chromium oxide layer.
  • the electrolytic treatment is performed at a current density of 0.05 to 2.5 A / dm 2 using a trivalent chromium plating solution.
  • a chromium oxide layer having a thickness of 20 nm or more is formed on the surface of the existing chromium plating layer.
  • a chromium plating layer is formed by electrolytic treatment at a current density of 3 A / dm 2 or more using a trivalent chromium plating solution. Then, a chromium oxide layer with a thickness of 20 nm or more is formed on the surface of the chromium plating layer by performing electrolytic processing by reducing the current density to 0.05 to 2.5 A / dm 2 using a trivalent chromium plating solution. It is characterized by
  • chromate treatment hexavalent chromium chemical conversion treatment
  • a chromium oxide layer formed by the same treatment is referred to as a chromate layer. Therefore, in the present invention, the chromium oxide layer formed by trivalent chromium electrolytic treatment is a chromate layer I will not say.
  • hexavalent chromium conversion treatment chromate treatment
  • trivalent chromium conversion treatment the film formation rate of the chromium oxide layer is slow, it is difficult to thicken the film thickness, and another chemical conversion treatment bath is required.
  • hexavalent chromium there is a problem that yellowness due to Cr 6+ occurs.
  • the film forming rate of the chromium oxide layer is faster than the chemical conversion treatment, and it is easy to make the film thickness 20 nm or more.
  • the thickness of the chromium oxide layer can be made to be 30 nm or more so as to exhibit an interference color, and the color tone of the appearance of the plating structure can be changed.
  • the interference color can be changed.
  • the chromium oxide layer By setting the chromium oxide layer to have a film thickness of 45 to 90 nm and exhibiting a blue interference color, a so-called plated structure of blue plating can be obtained.
  • a chromium plating layer and a chromium oxide layer can be formed by performing electrolytic treatment successively in one plating bath (trivalent chromium plating solution). ⁇ Yellow does not occur because Cr 6+ is not used.
  • a highly corrosion resistant chromium oxide layer having a thickness of 20 nm or more can be easily formed on the surface of the existing chromium plating layer using a trivalent chromium plating solution.
  • the chromium plating layer and the highly corrosion-resistant chromium oxide layer having a thickness of 20 nm or more can be easily formed continuously by using the trivalent chromium plating solution.
  • the color tone of the appearance of the plating structure can be changed by the chromium oxide layer.
  • it can be set as the plating structure of what is called blue plating.
  • FIG. 1 (a) is a schematic cross-sectional view of a plated structure manufactured in sample 1, (b) sample 2, (c) examples 1 and 2, and (d) in example 3, respectively.
  • Fig.2 (a) is a perspective view which shows a Hull cell test, (b) is sample 1, (c) is sample 2, (d) is Example 1, (e) is plating which used the Hull cell board of Example 2, respectively. It is a front view of a structure.
  • FIG. 3 is a graph showing XPS data of Example 1.
  • FIG. 4 is a graph showing XPS data of Example 2.
  • FIG. 5 is a graph showing the relationship between the film thickness of the chromium oxide layer of Example 1 and the reflection wavelength.
  • FIG. 6 is a graph showing the relationship between the integrated current value and the film thickness of the chromium oxide layers of Examples 1 and 2 (and the hexavalent chromate layer of the Comparative Example).
  • FIG. 7 is a scanning electron micrograph of a comparative example.
  • the material of the substrate of the object to be treated is not particularly limited, and examples thereof include metals and resins (surface conductive).
  • the resin may be thermoplastic or thermosetting, and is not particularly limited, but acrylonitrile butadiene styrene copolymer (ABS) resin, polycarbonate (PC) resin, PC / ABS resin, acrylic resin, styrene A resin, a polyamide resin, a polycarbonate resin, a polypropylene resin, a vinyl chloride resin, a polyurethane resin etc. can be illustrated.
  • the under-plating layer under the chromium plating layer is not essential and it is not limited in particular, a nickel plating layer is preferred. This is because the nickel plating layer maintains the aesthetic appearance of the chromium plating layer and electrochemically corrodes.
  • the specific configuration of the nickel plating layer is not particularly limited, and may be a single layer or a plurality of layers.
  • the base plating layer preferably includes a copper plating layer below the nickel plating layer. It is because a copper plating layer follows a resin base material well because it is rich in ductility.
  • the trivalent chromium compound used for the trivalent chromium plating solution is not particularly limited, but chromium sulfate (Cr 2 (SO 4 ) 3 ), chromium alum (CrK (SO 4 ) 2 ), chromium nitrate (Cr (NO 3) 3) , chromium chloride (CrCl 3), chromium acetate (Cr (CH 3 COO) 3 ) or the like can be mentioned.
  • the same trivalent chromium plating solution should be used continuously during the formation of the chromium plating layer and the formation of the chromium oxide layer, or the material is added to the composition during the formation of the chromium plating layer during the formation of the chromium oxide layer. It is preferable from the viewpoint of efficiency to use one having a difference in degree, but a trivalent chromium plating solution separately prepared may be used.
  • Chromium plating layer The kind of chromium plating layer is not particularly limited, but in the case where an interference color due to the chromium oxide layer is expected, the black chromium plating layer is that the interference color can be clearly seen as the lower color is darker Is preferred.
  • the thickness of the chromium plating layer is not particularly limited, but is preferably 0.1 ⁇ m or more in terms of durability, 2 ⁇ m or less in view of preventing an increase in internal film stress, and more preferably 1.5 ⁇ m or less.
  • the upper limit of the film thickness of the chromium oxide layer and the chromium oxide layer is not particularly limited.
  • the application of the plating structure is not particularly limited, but it may be a vehicle decorative component (radiator grille, fender, garnish, wheel cap, back panel, air spoiler, emblem, etc.), electrical product (mobile phone, smart A housing part etc. of a phone, a portable information terminal, a game machine etc. can be illustrated.
  • vehicle decorative component radio grille, fender, garnish, wheel cap, back panel, air spoiler, emblem, etc.
  • electrical product mobile phone, smart A housing part etc. of a phone, a portable information terminal, a game machine etc.
  • a plated structure [Sample 1] using a hull cell plate shown in FIGS. 1 (a) and 2 (b) and a hull cell plate shown in FIGS. 1 (b) and 2 (c) are used.
  • the plated structure [Sample 2] was experimentally prepared by the following method.
  • Example 1 Pretreatment of Hull Cell Plate and Formation of Bright Nickel Plating Layer
  • a hull cell plate made of brass (dimension 100 mm ⁇ 75 mm ⁇ 0.3 mm) was pretreated (degreased, pickled, washed with water, etc.).
  • a bright nickel plating layer was formed on the surface of the hull cell as a base plating layer.
  • the base plating was performed by putting a nickel plating solution in a nickel plating tank, dipping the hull cell plate and the anode plate in parallel, and performing electrolytic plating.
  • the Hull cell plate 1 taken out from the nickel plating tank is set as a cathode on the slant wall of the Hull Cell tank 4 (267 ml)
  • Anode plate 2 is set on the wall, and a trivalent chromium plating solution 3 (a trivalent chromium compound is basic chromium sulfate contained in trichrome azitib) consisting of an aqueous solution containing the following components in a tank:
  • the plating was carried out by electrolytic plating under the processing conditions of a bath temperature of 35.degree. C., a current of 2 A and a processing time of 300 seconds.
  • FIG. 2 (b) shows the sample 1, in which each distance (mm) from the edge of the high voltage part 1a of the hull cell to a plurality of analysis points is entered. Table 1 shows the current density and the precipitate at each analysis point.
  • the lower bright nickel plating layer is covered with black plating visually, and metal chromium (black chromium) in analysis The plating layer was deposited. That is, in the case where the layer immediately below was a bright nickel plating layer, attempts to form a chromium oxide layer by the new method were not satisfied.
  • a chromium oxide layer was formed on the surface of the black chromium plating layer by a new method of performing electrolytic treatment with a trivalent chromium plating solution at a low current density. Specifically, the Hull cell test is to be used, and as shown in FIG.
  • the Hull cell plate 1 taken out from the chromium plating tank is set as a cathode on the slant wall of the Hull Cell tank 4 (267 ml)
  • Anode plate 2 is set on the opposite wall, and trivalent chromium plating solution 3 (same composition as used in (2) of sample 1) is put in the tank, bath temperature 35 ° C, current 2A, processing time 300 seconds
  • the electrolytic plating was performed under the processing conditions of
  • FIG. 2 (c) shows a sample 2, in which each distance (mm) from the edge of the high voltage part 1a of the hull cell to a plurality of analysis points is entered.
  • Table 2 shows the current density and the precipitate at each analysis point.
  • the analysis point at a current density of 10 to 3 A / dm 2 had no change in the color tone of the lower black chromium plating layer visually, and metal chromium (black chromium plating layer) was deposited in the analysis.
  • the color tone of the lower black chromium plating layer changed visually, and chromium oxide was precipitated in the analysis.
  • Example 1 was the same as sample 2 except that the current was 0.5 A, the processing time was 120 seconds, and the processing conditions were changed.
  • FIG. 2 (d) shows Example 1, and each distance (mm) from the edge of the high voltage part 1a of the hull cell to a plurality of analysis points is entered.
  • Example 2 was different from Sample 2 in that the processing conditions were changed, such as a current of 0.5 A and a processing time of 30 seconds, and the others were performed in the same manner as Sample 2.
  • FIG. 2 (e) shows Example 2, and each distance (mm) from the edge of the high electric part 1a of a hull cell board to several analysis location is entered. Table 3 below shows the current density at each analysis point in Examples 1 and 2.
  • the elements (especially O, Cr and C) present at each analysis site in Examples 1 and 2 were analyzed by XPS (X-ray photoelectric spectroscopy). Specifically, analysis of elements is performed each time etching is performed at 5.4 nm depth with an X-ray spot size of 400 ⁇ m and an etching rate of 0.09 nm / sec ⁇ 60 seconds, and a total of about 160 nm (5.4 nm ⁇ 30 times) Etched.
  • the XPS data of each analysis place of Example 1 is shown in FIG. 3, and the XPS data of each analysis place of Example 2 is shown in FIG. From this XPS data, chromium oxide was deposited at each analysis location in Examples 1 and 2, and a plating structure as shown in FIG. 1A was obtained, and the thickness of the chromium oxide layer at each analysis location was It turns out that it is the grade described in Table 3.
  • the deposited chromium oxide layer itself was transparent, and as shown in Table 3, when the film thickness was 20 nm, there was no change in the color tone of the lower black chromium plating layer. However, as the film thickness changes from 30 ⁇ 50 ⁇ 60 ⁇ 110 ⁇ 140 nm, the color tone of the appearance of the plating structure looks brown ⁇ blue ⁇ light blue ⁇ yellow ⁇ red, so oxidation occurs. It is considered that the color is developed by the interference of the reflected light on both sides of the chromium layer.
  • FIG. 5 shows the relationship between the film thickness of the chromium oxide layer of Example 1 and the reflection wavelength. From this result, it is easy to obtain an arbitrary interference color by changing the film thickness of the chromium oxide layer by controlling the current density in the range of 2.5 to 0.05 A / dm 2 , and it is particularly preferred in recent years. It can be seen that so-called blue plating can be easily realized.
  • FIG. 6 shows the relationship between the integrated current value and the film thickness of the chromium oxide layer at each analysis location in Examples 1 and 2, and when forming a chromate layer by the current hexavalent chromium chemical conversion treatment as a comparative example.
  • the relationship (example) between the integrated current value and the film thickness is shown.
  • the scanning electron microscope (SEM) photograph of the comparative example which formed the chromate layer in FIG. 7 is shown. From these, it can be seen that the film formation rate is slow in the current hexavalent chromate treatment and the chromate layer is thin, whereas the film formation rate is fast and the chromium oxide layer is thick in the new method of the example.
  • SEM scanning electron microscope
  • Example 3 The plated structure [Example 3] using the resin base shown in FIG. 1 (d) was produced by the following method.
  • a plate-like resin base material made of ABS resin was pretreated (degreased, acid treated, washed with water, etc.).
  • An electroless nickel plating layer was formed on the surface of the resin substrate.
  • a copper plating layer, a semi-bright nickel plating layer, a bright nickel plating layer, and a corrosion-dispersed nickel plating layer having a microporous structure were formed in this order as a base plating layer.
  • the base plating was performed by putting each metal plating solution in each plating tank, immersing the resin base material and the anode plate in parallel, and performing electrolytic plating.
  • a chromium oxide bath having a thickness of 70 nm was formed on the surface of the black chromium plating layer by electrolytic treatment.
  • the electrolytic treatment while the resin base material and the anode plate were immersed in parallel in the trivalent chromium plating solution of the chromium plating tank of (2) above, the bath temperature was 35 ° C., the current was lowered to 0.5 A, and the plating time was 120 seconds.
  • the same electrolytic treatment as the above-mentioned electrolytic plating was carried out under the treatment conditions of
  • the CASS test (JIS H 8502) was performed under the following conditions. Test solution: sodium chloride 40 g / L, cupric chloride 0.205 g / L, pH 3.0 Saturator temperature 63 ° C Test chamber temperature 50 ° C Spray amount 1.5 ml / 80 cm 2 / h Compressed air pressure 0.98MPa Sample installation angle 30 ° Test time 80 hours After the CASS test, the rating number was 8 or more, and no visual corrosion was observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

【課題】3価クロムめっき液を用いて、クロムめっき層と、その上の膜厚20nm以上の耐食性の高い酸化クロム層とを容易に形成できるようにする。 【解決手段】3価クロムめっき液を用いて電流密度3A/dm2以上で電解処理することにより、クロムめっき層を形成した後、3価クロムめっき液を用いて電流密度0.05~2.5A/dm2に下げて電解処理することにより、クロムめっき層の表面に膜厚20nm以上の酸化クロム層を形成する。

Description

めっき構造体の製造方法
 本発明は、クロムめっき層を含むめっき構造体の製造方法に関するものである。
 特許文献1には、塩基性硫酸クロムを金属供給源として形成した膜厚0.05~2.5μmの3価クロムめっき層と、この3価クロムめっき層の上に陰極酸性電解クロメート処理により形成した膜厚が7nm以上のクロム化合物の皮膜とを備えたクロムめっき部品が開示されている。陰極酸性電解クロメート処理は、重クロム酸塩、クロム酸塩、無水クロム酸のうち少なくともいずれか一つを20~40g/l含有するpH1.0~5.5、温度20~70℃の浴中にて0.1~1.0A/dm2の電流密度で10~90秒間の条件にて処理するとしている。
 このように、陰極酸性電解クロメート処理には、3価クロムめっき層のめっき液とは全く別の、6価クロムを含有する電解液を用いる必要があった。6価クロムには環境汚染の問題がある。
 また、陰極酸性電解クロメート処理により形成されるクロム化合物の皮膜の膜厚について、特許文献1には「図2は・・・同図から明らかなように、クロム化合物皮膜7の膜厚が7nmよりも大きくなる領域、特に9nmよりも大きくなる領域において各元素の組成(at%)が安定化する傾向にある」と記載されているものの、図2に示された膜厚は12nmまでである。よって、膜厚が例えば20nm以上といった厚いものまでは想定されておらず、形成も困難と考えられる。
 近年、いわゆるブルーめっきのように、金属色の色調を変化させためっきが嗜好されているが、本発明者の検討によると、前記膜厚12nm程度までのクロム化合物皮膜では、クロムめっき槽の色調を変化させることはできない。
特開2009-74168号公報
 そこで、本発明の第1の目的は、既設のクロムめっき層の表面に、3価クロムめっき液を用いて膜厚20nm以上の耐食性の高い酸化クロム層を容易に形成できるようにすることにある。
 第2の目的は、3価クロムめっき液を用いて、クロムめっき層と、その上の膜厚20nm以上の耐食性の高い酸化クロム層とを容易に形成できるようにすることにある。
 第3の目的は、酸化クロム層によりめっき構造体の外観の色調を変化させられるようにすることにある。
(1)第1の目的のため、第1の発明のめっき構造体の製造方法は、3価クロムめっき液を用いて電流密度0.05~2.5A/dm2で電解処理することにより、既設のクロムめっき層の表面に膜厚20nm以上の酸化クロム層を形成することを特徴とする。
(2)第1の目的のため、第2の発明のめっき構造体の製造方法は、3価クロムめっき液を用いて電流密度3A/dm2以上で電解処理することにより、クロムめっき層を形成した後、3価クロムめっき液を用いて電流密度0.05~2.5A/dm2に下げて電解処理することにより、クロムめっき層の表面に膜厚20nm以上の酸化クロム層を形成することを特徴とする。
 なお、一般に、6価クロム化成処理をクロメート処理といい、同処理により形成される酸化クロム層をクロメート層というので、本発明で3価クロム電解処理により形成される酸化クロム層をクロメート層とはいわないことにする。
[作用]
 これまで、3価クロム電解処理で酸化クロム層を形成することは知られていないが、それが本発明により可能となった。3価クロムめっき液にて電流密度0.05~2.5A/dm2で電解処理することにより、クロムめっき層の表面に酸化クロム層が形成されるメカニズムは、酸化還元電位に関係していると思われるが、詳細は不明である。
 なお、後述するサンプル1のとおり、ニッケルめっき層の表面に、同じく3価クロムめっき液にて電解処理をしても、電流密度にかかわらず酸化クロム層は形成されなかったため、クロムめっき層の存在は酸化クロム層の形成に必須と考えられる。
 現行の6価クロム化成処理(クロメート処理)又は3価クロム化成処理では、酸化クロム層の成膜速度が遅い、膜厚を厚くすることが難しい、めっき浴とは別の化成処理浴が必要である、6価クロムの場合にはCr6+に起因する黄味が発生する、等の問題がある。
 これに対して、本発明には次の利点がある。
・前記化成処理よりも、酸化クロム層の成膜速度が速く、膜厚20nm以上にすることが容易である。
・第3の目的のため、酸化クロム層の膜厚を30nm以上にして干渉色を呈するようにし、めっき構造体の外観の色調を変化させることができる。酸化クロム層の膜厚を30nm以上において変えることにより、干渉色を変えることができる。酸化クロム層を、膜厚45~90nmで青色の干渉色を呈するものとすることにより、いわゆるブルーめっきのめっき構造体とすることができる。
・クロムめっき層と、酸化クロム層とを、1つのめっき浴(3価クロムめっき液)で続けて電解処理して形成できるようになる。
・Cr6+を使用しないため、黄味が発生しない。
 請求項1に係る発明によれば、既設のクロムめっき層の表面に、3価クロムめっき液を用いて膜厚20nm以上の耐食性の高い酸化クロム層を容易に形成することができる。
 請求項2に係る発明によれば、3価クロムめっき液を用いて、クロムめっき層と、その上の膜厚20nm以上の耐食性の高い酸化クロム層とを続けて容易に形成することができる。
 請求項3に係る発明によれば、酸化クロム層によりめっき構造体の外観の色調を変化させることができる。
 請求項4に係る発明によれば、いわゆるブルーめっきのめっき構造体とすることができる。
図1(a)はサンプル1、(b)はサンプル2、(c)は実施例1,2、(d)は実施例3でそれぞれ製造しためっき構造体の模式的な断面図である。 図2(a)はハルセル試験を示す斜視図、(b)はサンプル1、(c)はサンプル2、(d)は実施例1、(e)は実施例2のそれぞれハルセル板を用いためっき構造体の正面図である。 図3は実施例1のXPSデータを示すグラフ図である。 図4は実施例2のXPSデータを示すグラフ図である。 図5は実施例1の酸化クロム層の膜厚と反射波長との関係を示すグラフ図である。 図6は実施例1及び2の酸化クロム層(並びに比較例の6価クロメート層)の積算電流値と膜厚との関係を示すグラフ図である。 図7は比較例の走査型電子顕微鏡写真である。
1.被処理物の基材
 基材の材料は、特に限定されず、金属、樹脂(表面導電化)等を例示できる。樹脂基材の場合、樹脂は熱可塑性でも熱硬化性でもよく、特に限定されないが、アクリロニトリル・ブタジエン・スチレン共重合体(ABS)樹脂、ポリカーボネート(PC)樹脂、PC/ABS樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリプロピレン樹脂、塩化ビニル樹脂、ポリウレタン樹脂等を例示できる。
2.下地めっき層
 クロムめっき層の下の下地めっき層は、必須ではなく、特に限定されないが、ニッケルめっき層が好ましい。ニッケルめっき層は、クロムめっき層を美感保持するとともに、電気化学的に防食するからである。ニッケルめっき層の具体的構成は、特に限定されず、1層でも複数層でもよい。
 基材が樹脂基材である場合、下地めっき層はニッケルめっき層の下に銅めっき層を含むものが好ましい。銅めっき層は、延性に富むため樹脂基材によく追従するからである。
3.3価クロムめっき液
 3価クロムめっき液に使用する3価クロム化合物としては、特に限定されないが、硫酸クロム(Cr2(SO43)、クロムミョウバン(CrK(SO42)、硝酸クロム(Cr(NO33)、塩化クロム(CrCl3)、酢酸クロム(Cr(CH3COO)3)等を例示できる。
 3価クロムめっき液は、クロムめっき層の形成時と酸化クロム層の形成時とで、同じものを続けて用いること、あるいは酸化クロム層の形成時にはクロムめっき層の形成時の組成に材料を加える程度の差異があるものを用いることが効率上好ましいが、別々に調製した3価クロムめっき液を用いてもよい。
4.クロムめっき層
 クロムめっき層の種類は、特に限定されないが、酸化クロム層による干渉色を期待する場合には、その下の色が濃いほど干渉色が鮮明に見て取れる点で、黒色クロムめっき層であることが好ましい。
 クロムめっき層の膜厚は、特に限定されないが、耐久性の点で0.1μm以上が好ましく、膜内部応力の増大を防ぐ点で2μm以下が好ましく、1.5μm以下がより好ましい。
5.酸化クロム層
 酸化クロム層の膜厚の上限は、特にないが、敢えていえば、処理時間を過長にしない点で200nm以下が好ましく、150nm以下がより好ましい。
6.めっき構造体の用途
 めっき構造体の用途は、特に限定されないが、車両用加飾部品(ラジエータグリル、フェンダ、ガーニッシュ、ホイールキャップ、バックパネル、エアスポイラー、エンブレム等)、電気製品(携帯電話、スマートホン、携帯情報端末、ゲーム機等)用筐体部品等を例示できる。
 実施例の前に、図1(a)及び図2(b)に示すハルセル板を用いためっき構造体[サンプル1]と、図1(b)及び図2(c)に示すハルセル板を用いためっき構造体[サンプル2]とを、次の方法で試験的に作製した。
[サンプル1]
(1)ハルセル板の前処理と光沢ニッケルめっき層の形成
 真鍮製のハルセル板(寸法100mm×75mm×0.3mm)を前処理(脱脂、酸洗、水洗等)した。
 ハルセル板の表面に、下地めっき層として光沢ニッケルめっき層を形成した。下地めっきは、ニッケルめっき槽にニッケルめっき液を入れ、ハルセル板と陽極板を平行にして浸し、電解めっきすることにより行った。
(2)新手法による酸化クロム層の形成の試み
 前記光沢ニッケルめっき層の表面に、3価クロムめっき液による電解処理を低い電流密度で行うという新手法により、酸化クロム層の形成を試みた。具体的にはハルセル試験を利用することとし、図2(a)に示すように、前記ニッケルめっき槽から取り出したハルセル板1をハルセル槽4(267ml)の斜壁に陰極としてセットし、その対峙壁に陽極板2をセットし、槽内に以下の成分を配合した水溶液からなる3価クロムめっき液3(3価クロム化合物はトライクロムアジチブ中に含まれる塩基性硫酸クロムである。)を入れ、浴温35℃、電流2A、処理時間300秒の処理条件で、電解めっきすることにより行った。
  ホウ酸 10g/L
  アトテック社製トライクロムアジチブ 400g/L
  アトテック社製トライクロムスタビライザー 90ml/L
  アトテック社製トライクロムコレクター 3ml/L
  アトテック社製トライクロムレギュレーター 3.5ml/L
  アトテック社製トライクロムグラファイトメイキャップ 90ml/L
  塩酸を用いてpH値を3.2に調整した
 ハルセル試験では、陽極板との極間距離が短いハルセル板の高電部1aで電流密度が高くなり、陽極板との極間距離が長いハルセル板の低電部1bで電流密度が低くなる。図2(b)はサンプル1を示し、ハルセル板の高電部1aの縁から複数の分析箇所までの各距離(mm)を記入している。表1に、この各分析箇所における電流密度と析出物を示す。電流密度10~3A/dm2の分析箇所も、電流密度2~0.1A/dm2の分析箇所も、目視では下の光沢ニッケルめっき層が黒色めっきで覆われ、分析では金属クロム(黒色クロムめっき層)が析出していた。すなわち、直下の層が光沢ニッケルめっき層である場合には、新手法による酸化クロム層の形成の試みは叶わなかった。
Figure JPOXMLDOC01-appb-T000001
[サンプル2]
(1)ハルセル板の前処理と光沢ニッケルめっき層の形成
 サンプル1の(1)と同様である。
(2)3価クロムめっきによる黒色クロムめっき層の形成
 光沢ニッケルめっき層の表面に、3価クロムめっきにより膜厚0.3μmの黒色クロムめっき層を形成した。3価クロムめっきは、クロムめっき槽に3価クロムめっき液(サンプル1の(2)で用いた液組成と同じ。)を入れ、ハルセル板と陽極板とを平行にして浸し、浴温35℃、電流2A、めっき時間150秒の処理条件で、電解めっきすることにより行った。
(3)新手法による酸化クロム層の形成
 前記黒色クロムめっき層の表面に、3価クロムめっき液による電解処理を低い電流密度で行うという新手法により、酸化クロム層を形成した。具体的にはハルセル試験を利用することとし、図2(a)に示すように、前記クロムめっき槽から取り出したハルセル板1を、ハルセル槽4(267ml)の斜壁に陰極としてセットし、その対峙壁に陽極板2をセットし、槽内に3価クロムめっき液3(サンプル1の(2)で用いた液組成と同じ。)を入れ、浴温35℃、電流2A、処理時間300秒の処理条件で、電解めっきすることにより行った。
 図2(c)はサンプル2を示し、ハルセル板の高電部1aの縁から複数の分析箇所までの各距離(mm)を記入している。表2に、この各分析箇所における電流密度と析出物を示す。電流密度10~3A/dm2の分析箇所は、目視では下の黒色クロムめっき層の色調に変化がなく、分析では金属クロム(黒色クロムめっき層)が析出していた。電流密度2~0.1A/dm2の分析箇所は、目視では下の黒色クロムめっき層の色調が変化し、分析では酸化クロムが析出していた。
Figure JPOXMLDOC01-appb-T000002
[実施例1,2]
 次に、図1(c)及び図2(d)に示すハルセル板を用いためっき構造体[実施例1]と、図1(c)及び図2(e)に示すハルセル板を用いためっき構造体[実施例2]を、次の方法で作製した。
(1)ハルセル板の前処理と光沢ニッケルめっき層の形成
 サンプル1の(1)と同様である。
(2)3価クロムめっきによる黒色クロムめっき層の形成
 サンプル2の(2)と同様である。
(3)新手法による酸化クロム層の形成
 実施例1は、電流0.5A、処理時間120秒と処理条件を変えた点においてサンプル2と相違し、その他はサンプル2と同様に行った。図2(d)は実施例1を示し、ハルセル板の高電部1aの縁から複数の分析箇所までの各距離(mm)を記入している。
 実施例2は、電流0.5A、処理時間30秒と処理条件を変えた点においてサンプル2と相違し、その他はサンプル2と同様に行った。図2(e)は実施例2を示し、ハルセル板の高電部1aの縁から複数の分析箇所までの各距離(mm)を記入している。
 次の表3に、実施例1,2の各分析箇所における電流密度を示す。
Figure JPOXMLDOC01-appb-T000003
 実施例1,2の各分析箇所に存在する元素(特にOとCrとC)を、XPS(X線光電分光法)により分析した。詳しくは、X線スポットサイズ400μm、エッチングレート0.09nm/秒×60秒にて深さ5.4nmのエッチングをする毎に元素の分析を行い、トータルで約160nm(5.4nm×30回)のエッチングをした。図3に実施例1の各分析箇所のXPSデータを示し、図4に実施例2の各分析箇所のXPSデータを示す。このXPSデータから、実施例1,2の各分析箇所には酸化クロムが析出し、図1(a)に示すようなめっき構造体ができたこと、各分析箇所の酸化クロム層の膜厚は表3に記載した程度であることが分かる。
 また、析出した酸化クロム層自体は透明であり、表3に示すとおり、膜厚が20nmでは下の黒色クロムめっき層の色調に変化はなかった。しかし、膜厚が30→50→60→110→140nmと変わるに伴い、めっき構造体の外観の色調が褐色→青→薄青→黄→赤と変化して見えるようになったことから、酸化クロム層の両面での反射光の干渉により発色していると考えられる。
 この観察される色調のLab色度を色差計を用いて測定した。さらに、大塚電子社製の分光光度計MCPD3700を用いて、反射波長を測定した(リファレンス:AL、垂直入射(入射角θ=0°))。これらの測定結果を表3に示す。また、図5に実施例1の酸化クロム層の膜厚と反射波長との関係を示す。この結果から、電流密度を2.5~0.05A/dm2の範囲で制御して酸化クロム層の膜厚を変えることにより、任意の干渉色を容易に得られること、特に近年嗜好されているいわゆるブルーめっきを容易に実現できることが分かる。
 また、ブラッグの反射式
  λpeak=2d(neff 2-sin2θ)0.5
  (θ:入射角、λpeak:反射波長、d:面間隔、neff:屈折率)
と、垂直入射(θ=0°)の測定結果より、
  λpeak(nm)=5.9149×膜厚(nm)
  酸化クロム層の屈折率neff=2.96
と算出される。
 また、図6に、実施例1,2の各分析箇所の酸化クロム層の積算電流値と膜厚との関係を示すとともに、比較例として現行の6価クロム化成処理によりクロメート層を形成する際の積算電流値と膜厚との関係(例)を示す。また、図7にクロメート層を形成した比較例の走査型電子顕微鏡(SEM)写真を示す。これらから、現行の6価クロメート処理では、成膜速度が遅く、クロメート層が薄いのに対して、実施例の新手法では、成膜速度が速く、酸化クロム層が厚いことが分かる。
[実施例3]
 図1(d)に示す樹脂基材を用いためっき構造体[実施例3]を、次の方法で作製した。
(1)樹脂基材の前処理と光沢ニッケルめっき層の形成
 ABS樹脂製の板状の樹脂基材を前処理(脱脂、酸処理、水洗等)した。
 樹脂基材の表面に、無電解ニッケルめっき層を形成した。
 無電解ニッケルめっき層の上に、下地めっき層として、銅めっき層、半光沢ニッケルめっき層、光沢ニッケルめっき層、及びマイクロポーラス構造をもつ腐食分散ニッケルめっき層をこの順で形成した。下地めっきは、各めっき槽に各金属めっき液を入れ、樹脂基材と陽極板を平行にして浸し、電解めっきすることにより行った。
(2)3価クロムめっきによる黒色クロムめっき層の形成
 腐食分散ニッケルめっき層の表面に、3価クロムめっきにより膜厚0.3μmの黒色クロムめっき層を形成した。3価クロムめっきは、クロムめっき槽に3価クロムめっき液(サンプル1の(2)で用いた液組成と同じ。)を入れ、樹脂基材と陽極板とを平行にして浸し、浴温35℃、電流2A、めっき時間150秒の処理条件で、電解めっきすることにより行った。
(3)新手法による酸化クロム層の形成
 続いて、黒色クロムめっき層の表面に、電解処理により膜厚70nmの酸化クロム槽を形成した。電解処理は、上記(2)のクロムめっき槽の3価クロムめっき液に樹脂基材と陽極板とを平行にして浸したまま、浴温35℃、電流0.5Aに下げ、めっき時間120秒の処理条件で、前記電解めっきと同様の電解処理を続行することにより行った。
 作製した実施例3のめっき構造体の耐食性を評価するため、CASS試験(JIS H 8502)を次の条件で行った。
  試験液:塩化ナトリウム40g/L、塩化第二銅0.205g/L、pH値3.0
  飽和器温度 63℃
  試験槽温度 50℃
  噴霧量 1.5ml/80cm2/h
  圧縮空気圧力 0.98MPa
  試料設置角度 30°
  試験時間 80時間
 CASS試験終了後、レイティングナンバーは8以上であり、目視による腐食はみられなかった。
 なお、本発明は前記実施例に限定されるものではなく、発明の趣旨から逸脱しない範囲で適宜変更して具体化することができる。
  1  ハルセル板
  2  陽極板
  3  3価クロムめっき液
  4  ハルセル槽

Claims (6)

  1.  3価クロムめっき液を用いて電流密度0.05~2.5A/dm2で電解処理することにより、既設のクロムめっき層の表面に膜厚20nm以上の酸化クロム層を形成するめっき構造体の製造方法。
  2.  3価クロムめっき液を用いて電流密度3A/dm2以上で電解処理することにより、クロムめっき層を形成した後、3価クロムめっき液を用いて電流密度0.05~2.5A/dm2に下げて電解処理することにより、クロムめっき層の表面に膜厚20nm以上の酸化クロム層を形成するめっき構造体の製造方法。
  3.  酸化クロム層は、膜厚30nm以上である請求項1又は2記載のめっき構造体の製造方法。
  4.  酸化クロム層は、膜厚45~90nmで青色の干渉色を呈するものである請求項1又は2記載のめっき構造体の製造方法。
  5.  クロムめっき層は黒色クロムめっき層である請求項1~4のいずれか一項に記載のめっき構造体の製造方法。
  6.  クロムめっき層の膜厚は0.1~2μmである請求項1~5のいずれか一項に記載のめっき構造体の製造方法。
PCT/JP2018/043015 2018-01-19 2018-11-21 めっき構造体の製造方法 WO2019142487A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-007532 2018-01-19
JP2018007532A JP6927061B2 (ja) 2018-01-19 2018-01-19 めっき構造体の製造方法

Publications (1)

Publication Number Publication Date
WO2019142487A1 true WO2019142487A1 (ja) 2019-07-25

Family

ID=67301745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043015 WO2019142487A1 (ja) 2018-01-19 2018-11-21 めっき構造体の製造方法

Country Status (2)

Country Link
JP (1) JP6927061B2 (ja)
WO (1) WO2019142487A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123023A1 (en) * 2020-12-11 2022-06-16 Atotech Deutschland GmbH & Co. KG Black plated substrate
WO2022123008A3 (en) * 2020-12-11 2022-07-21 Atotech Deutschland GmbH & Co. KG Electroplating bath for depositing a black chromium layer, method for depositing, and substrate comprising such a layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928543A (ja) * 1972-07-14 1974-03-14
JPH08337897A (ja) * 1995-06-06 1996-12-24 Atotech Usa Inc 三価クロム溶液からの酸化クロムの付着
JP2015520794A (ja) * 2012-03-30 2015-07-23 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv 包装用途向け被覆基材および被覆基材の製造方法
JP2016528378A (ja) * 2013-06-20 2016-09-15 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv クロム−酸化クロム被覆基板を製造する方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR122019020336B1 (pt) * 2011-05-03 2020-08-11 Atotech Deutschland Gmbh Banho de galvanização e método eletrodeposição de uma camada de cromo escuro em uma peça de trabalho
JP2015209579A (ja) * 2014-04-28 2015-11-24 ユケン工業株式会社 着色部材およびその製造方法、液状電解質ならびに濃縮組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928543A (ja) * 1972-07-14 1974-03-14
JPH08337897A (ja) * 1995-06-06 1996-12-24 Atotech Usa Inc 三価クロム溶液からの酸化クロムの付着
JP2015520794A (ja) * 2012-03-30 2015-07-23 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv 包装用途向け被覆基材および被覆基材の製造方法
JP2016528378A (ja) * 2013-06-20 2016-09-15 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv クロム−酸化クロム被覆基板を製造する方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123023A1 (en) * 2020-12-11 2022-06-16 Atotech Deutschland GmbH & Co. KG Black plated substrate
WO2022123008A3 (en) * 2020-12-11 2022-07-21 Atotech Deutschland GmbH & Co. KG Electroplating bath for depositing a black chromium layer, method for depositing, and substrate comprising such a layer

Also Published As

Publication number Publication date
JP2019127597A (ja) 2019-08-01
JP6927061B2 (ja) 2021-08-25

Similar Documents

Publication Publication Date Title
US9650722B2 (en) Chrome-plated part and manufacturing method of the same
RU2500839C2 (ru) Хромированная деталь (варианты) и способ ее изготовления
JP6414001B2 (ja) 黒色めっき樹脂部品及びその製造方法
US11761106B2 (en) Method for producing black plated resin part
WO2019142487A1 (ja) めっき構造体の製造方法
JP2014095097A (ja) 3価クロムめっき成形品の製造方法および3価クロムめっき成形品
JP2014100809A (ja) 黒色めっき皮膜を有する車両用加飾部品及びその製造方法
JP7030739B2 (ja) 黒色めっき樹脂部品及びその製造方法
JP6823030B2 (ja) 黒色めっき樹脂部品
US20240011178A1 (en) Black plated substrate
US10753008B2 (en) Nickel plated coating and method of manufacturing the same
JP7227338B2 (ja) 黒色めっき樹脂部品の黄味がかり抑制方法
JP7015403B2 (ja) 黒色めっき樹脂部品
JP2009209419A (ja) 色調に優れた電気Znめっき鋼板およびその製造方法
JP2008223132A (ja) めっき品及びその製造方法
CN116635576A (zh) 镀黑衬底
KR101264189B1 (ko) 무광택 흑색 3가크롬도금층을 위한 3가크롬도금액 및 이의 제조방법
JP2949676B2 (ja) 黒色化処理鋼板の製造方法
KR20070021601A (ko) 부식 형성을 억제하는 플라스틱 소재 상에 고 내식성귀금속 도금 구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901675

Country of ref document: EP

Kind code of ref document: A1