WO2019141250A1 - 作为krasg12c突变蛋白抑制剂的吡啶酮并嘧啶类衍生物 - Google Patents

作为krasg12c突变蛋白抑制剂的吡啶酮并嘧啶类衍生物 Download PDF

Info

Publication number
WO2019141250A1
WO2019141250A1 PCT/CN2019/072393 CN2019072393W WO2019141250A1 WO 2019141250 A1 WO2019141250 A1 WO 2019141250A1 CN 2019072393 W CN2019072393 W CN 2019072393W WO 2019141250 A1 WO2019141250 A1 WO 2019141250A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
isomer
pharmaceutically acceptable
alkyl
Prior art date
Application number
PCT/CN2019/072393
Other languages
English (en)
French (fr)
Inventor
蔡亚仙
徐招兵
杨海龙
韩世启
胡国平
胡利红
丁照中
黎健
陈曙辉
Original Assignee
南京明德新药研发股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US16/962,951 priority Critical patent/US11453667B2/en
Priority to SG11202012697QA priority patent/SG11202012697QA/en
Priority to JP2020539829A priority patent/JP7289839B2/ja
Priority to ES19740933T priority patent/ES2969284T3/es
Priority to CN201980009147.8A priority patent/CN111630053A/zh
Priority to CN202011378153.1A priority patent/CN112442031B/zh
Application filed by 南京明德新药研发股份有限公司 filed Critical 南京明德新药研发股份有限公司
Priority to CN202011378149.5A priority patent/CN112442030B/zh
Priority to EP19740933.7A priority patent/EP3741756B1/en
Priority to EP21155251.8A priority patent/EP3842433B1/en
Priority to CN202110310525.5A priority patent/CN113121530B/zh
Publication of WO2019141250A1 publication Critical patent/WO2019141250A1/zh
Priority to US17/159,928 priority patent/US11655248B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • the present invention relates to a novel substituted pyridone pyrimidine derivative, in particular to a compound of the formula (I) or an isomer thereof, a pharmaceutically acceptable salt, and a compound of the formula (I) or an isomer thereof
  • a pharmaceutically acceptable salt and a pharmaceutical composition for the preparation of a medicament for the treatment of cancer.
  • the first RAS oncogene was found in rat sarcoma, hence the name.
  • the RAS protein is a product expressed by the RAS gene and refers to a closely related monomeric globulin consisting of 189 amino acids with a molecular weight of 21 kDa.
  • the RAS protein can bind to guanine trinucleotide phosphate (GTP) or guanine dinucleotide phosphate (GDP).
  • GTP guanine trinucleotide phosphate
  • GDP guanine dinucleotide phosphate
  • the active state of RAS protein has an effect on cell growth, differentiation, cytoskeleton, protein transport and secretion.
  • GTP or GDP Its activity is regulated by binding to GTP or GDP: when RAS protein binds to GDP, it is dormant, that is, "inactivated” state; when upstream specific cell growth factor is stimulated, RAS protein is induced Exchange GDP, combined with GTP, is called the "activation” state.
  • the RAS protein that binds to GTP activates downstream proteins for signal transmission.
  • the RAS protein itself has weak hydrolyzed GTP hydrolyzing activity and is capable of hydrolyzing GTP to GDP. This allows conversion from an activated state to an inactivated state. In this hydrolysis process, GAP (GTPase activating proteins) is also involved. It works with RAS proteins and greatly enhances its ability to hydrolyze GTP to GDP.
  • the G12C mutation is a relatively common subtype of the KRAS gene mutation, which means that the 12th glycine is mutated to cysteine.
  • KRAS G12C mutations are most common in lung cancer. According to data reported in the literature (Nat Rev Drug Discov 2014; 13: 828-851), KRAS G12C mutations account for about 10% of all lung cancer patients.
  • KRAS G12C mutant protein as a leading target, the current research is not a lot.
  • the literature (Nature. 2013; 503: 548-551) reports a class of covalent binding inhibitors that target the KRAS G12C mutation, but such compounds are not enzymatically active and exhibit no activity at the cellular level.
  • a class of compounds reported in the literature (Science 2016; 351: 604-608, Cancer Discov 2016; 6: 316-29) showed cell anti-proliferative activity at the muM level at the cellular level, but its metabolic stability was poor and its activity was difficult. Make further improvements.
  • Araxes Pharma has applied for several patents for KRAS G12C inhibitors.
  • WO2016164675 and WO2016168540 report that a class of quinazoline derivatives have high enzyme binding activity and exhibit cell proliferation resistance at the ⁇ M level. Its structure is stable and has certain selectivity.
  • Amgen (WO2018119183A2) and AstraZeneca (WO2018206539) have published patents on KRAS G12C inhibitors in 2018, respectively, and Amgen's KRAS G12C inhibitor AMG 510 initiated a phase I clinical study in July 2018. Looking at the KRAS G12C inhibitors reported in the literature, they all have a fragment of acrylamide which acts as a cysteine residue on the Michael addition receptor and the KRASG12C mutein to form a covalently bound complex.
  • LiuYi et al., Cell (Matthew R. Janes, Yi Liu et al., Cell, 2018, 172, 578-589.) publicly reported a covalent binding inhibitor, ARS-1620, targeting the KRAS G12C mutation. It has good metabolic stability, exhibits nM-level cell anti-proliferative activity at the cellular level, and can effectively inhibit tumor growth in a pancreatic cancer MIA-Paca2 cell subcutaneous xenograft tumor model.
  • the present invention provides a compound of the formula (I), a pharmaceutically acceptable salt thereof or an isomer thereof,
  • Ring A is selected from 3 to 8 membered heterocycloalkyl, and said 3 to 8 membered heterocycloalkyl is optionally substituted by 1, 2 or 3 R;
  • R 1 , R 2 , R 3 , R 4 and R 5 are each independently selected from the group consisting of H, halogen, OH, NH 2 , CN, C 1-6 alkyl and C 1-6 heteroalkyl, said C 1- 6 alkyl and C 1-6 heteroalkyl are optionally substituted by 1, 2 or 3 R;
  • R 1 and R 2 are joined together to form a ring B;
  • R 2 and R 3 are joined together to form a ring B;
  • R 3 and R 4 are joined together to form a ring B;
  • R 4 and R 5 are joined together to form a ring B;
  • Ring B is selected from the group consisting of phenyl, C 5-6 cycloalkenyl, 5- to 6-membered heterocycloalkenyl, and 5- to 6-membered heteroaryl, phenyl, C 5-6 cycloalkenyl, and 5 to 6-membered hetero a cycloalkenyl group, a 5- to 6-membered heteroaryl group, optionally substituted by 1, 2 or 3 R a ;
  • R a is selected from the group consisting of halogen, OH, NH 2 , CN, C 1-6 alkyl and C 1-6 heteroalkyl, the C 1-6 alkyl and C 1-6 heteroalkyl optionally being 1, 2 Or 3 R substitutions;
  • R 6 is selected from H, halogen and C 1-6 alkyl, said C 1-6 alkyl optionally substituted with 1, 2 or 3 R <
  • R 7 is selected from the group consisting of H, CN, NH 2 , C 1-8 alkyl, C 1-8 heteroalkyl, 4-6-membered heterocycloalkyl, 5- to 6-membered heteroaryl, and C 5-6 cycloalkyl , the C 1-8 alkyl group, the C 1-8 heteroalkyl group, the 4-6 membered heterocycloalkyl group, the 5- to 6-membered heteroaryl group, and the C 5-6 cycloalkyl group are selected from the group consisting of 1, 2 Or 3 R substitutions;
  • L' is selected from the group consisting of a single bond and -NH-;
  • R b is selected from C 1-3 alkyl and C 1-3 heteroalkyl, and the C 1-3 alkyl and C 1-3 heteroalkyl are optionally substituted by 1, 2 or 3 R;
  • R 8 is selected from H, C 1-6 alkyl and C 1-6 heteroalkyl, and the C 1-6 alkyl and C 1-6 heteroalkyl are optionally substituted by 1, 2 or 3 R;
  • R is selected from the group consisting of halogen, OH, NH 2 , CN, C 1-6 alkyl, C 1-6 heteroalkyl, and C 3-6 membered cycloalkyl, said C 1-6 alkyl, C 1-6 hetero An alkyl group and a C 3-6 membered cycloalkyl group are optionally substituted by 1, 2 or 3 R';
  • R' is selected from the group consisting of: F, Cl, Br, I, OH, NH 2 , CN, CH 3 , CH 3 CH 2 , CH 3 O, CF 3 , CHF 2 , CH 2 F, cyclopropyl, propyl, iso Propyl, N(CH 3 ) 2 , NH(CH 3 );
  • Heter means a hetero atom or a hetero atom group, the 3- to 8-membered heterocycloalkyl group, a C 1-6 heteroalkyl group, a 5- to 6-membered heterocycloalkenyl group, a 5- to 6-membered heteroaryl group, and C 1 - 8
  • the number of heteroatoms or heteroatoms is independently selected from 1, 2 and 3.
  • the above R is selected from the group consisting of F, Cl, Br, I, OH, NH 2 , CN, CH 3 , CH 3 CH 2 , CH 3 O, CF 3 , CHF 2 , CH 2 F, ring Propyl, propyl, isopropyl, N(CH 3 ) 2 , NH(CH 3 ) and N(CH 2 CH 3 ) 2 .
  • ring A is selected from the group consisting of aziridine, azetidine, pyrrolidine, piperidinyl, piperazinyl, 1,4-diazacycloheptyl, and 3,6- Diazabicyclo[3.2.0]heptane, the aziridine, azetidine, pyrrolidine, piperidinyl, piperazinyl, 1,4-diazacycloheptyl and 3, 6-diazabicyclo[3.2.0]heptane is optionally substituted by 1, 2 or 3 R.
  • the above ring B is selected from pyrazolyl, imidazolyl, pyrrolyl, thienyl, furyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, benzene a pyridyl group, a pyridalyl group, a pyridazinyl group Or oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, phenyl, pyridyl, pyrimidinyl, pyridazinyl, triazinyl, morpholinyl, cyclopentenyl and cyclohexenyl optionally Replaced by 1, 2 or 3 R a .
  • Ring B is selected from the group consisting of phenyl, pyrazolyl, 1-methyl-1H-pyrazolyl, and 1-(1H-pyrazol-1-yl)ethanone.
  • the above R 6 is selected from the group consisting of H, F, Cl, Br, I, and C 1-3 alkyl, and the C 1-3 alkyl group is optionally substituted with 1, 2 or 3 R.
  • the above R 6 is selected from the group consisting of H, F, Cl, Br, I, CH 3 , CF 3 , CHF 2 , CH 2 F.
  • R 7 above is selected from the group consisting of H, CN, NH 2 , C 1-6 alkyl, C 1-6 heteroalkyl, morpholinyl, piperidinyl, azetidinyl, Azacyclopentyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, cyclohexane, cyclopentyl, phenyl, pyridyl, pyridazinyl, Pyrimidinyl, pyrazinyl, said C 1-6 alkyl, C 1-6 heteroalkyl, morpholinyl, piperidinyl, azetidinyl, azetidinyl, pyrazolyl, Imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, cyclohexane,
  • the above R 7 is selected from the group consisting of H, CH 3 , CN, NH 2 , Said Optionally substituted by 1, 2 or 3 R.
  • R 7 is selected from the group consisting of H, CH 3 , CN, NH 2 ,
  • the above R 8 is selected from the group consisting of H, C 1-4 alkyl and C 1-4 heteroalkyl, the C 1-4 alkyl and C 1-4 heteroalkyl optionally being 1 , 2 or 3 R substitutions.
  • the above R 8 is selected from the group consisting of H, CH 3 , CH 3 CH 2 , (CH 3 ) 2 CHCH 2 , (CH 3 ) 2 CH, CH 3 O, CH 3 NH, (CH 3 ) 2 N, (CH 3 ) 2 NCH 2 and CH 3 NHCH 2 .
  • the structural unit Selected from Wherein R 9 is selected from the group consisting of H and C 1-3 alkyl.
  • the structural unit S selected from H, CN, CH 3 , CH 3 CH 2 , (CH 3 ) 2 CH, (CH 3 ) 2 N, (CH 3 ) 2 NCH 2 ,
  • the above R is selected from the group consisting of F, Cl, Br, I, OH, NH 2 , CN, CH 3 , CH 3 CH 2 , CH 3 O, CF 3 , CHF 2 , CH 2 F, ring Propyl, propyl, isopropyl, N(CH 3 ) 2 , NH(CH 3 ) and N(CH 2 CH 3 ) 2 , other variables are as defined in the present invention.
  • ring A is selected from the group consisting of aziridine, azetidine, pyrrolidine, piperidinyl, piperazinyl, 1,4-diazacycloheptyl, and 3,6- Diazabicyclo[3.2.0]heptane, the aziridine, azetidine, pyrrolidine, piperidinyl, piperazinyl, 1,4-diazacycloheptyl and 3, 6-diazabicyclo[3.2.0]heptane is optionally substituted by 1, 2 or 3 R, other variables being as defined herein.
  • the above ring B is selected from pyrazolyl, imidazolyl, pyrrolyl, thienyl, furyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, benzene a pyridyl group, a pyridalyl group, a pyridazinyl group Or oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, phenyl, pyridyl, pyrimidinyl, pyridazinyl, triazinyl, morpholinyl, cyclopentenyl and cyclohexenyl optionally It is substituted by 1, 2 or 3 R a and the other variables are as defined in the present invention.
  • the above ring B is selected from the group consisting of phenyl, pyrazolyl, 1-methyl-1H-pyrazolyl and 1-(1H-pyrazol-1-yl)ethanone, and other variables such as The invention is defined.
  • the above R 6 is selected from the group consisting of H, F, Cl, Br, I, and C 1-3 alkyl, and the C 1-3 alkyl group is optionally substituted with 1, 2 or 3 R.
  • Other variables are as defined by the present invention.
  • R 6 above is selected from the group consisting of H, F, Cl, Br, I, CH 3 , CF 3 , CHF 2 , CH 2 F, and other variables are as defined herein.
  • R 7 above is selected from the group consisting of H, CN, NH 2 , C 1-6 alkyl, C 1-6 heteroalkyl, morpholinyl, piperidinyl, azetidinyl, Azacyclopentyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, cyclohexane, cyclopentyl, phenyl, pyridyl, pyridazinyl, Pyrimidinyl, pyrazinyl, said C 1-6 alkyl, C 1-6 heteroalkyl, morpholinyl, piperidinyl, azetidinyl, azetidinyl, pyrazolyl, Imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, cyclohexane,
  • R 7 is selected from the group consisting of H, CH 3 , CN, NH 2 , Said Optionally substituted by 1, 2 or 3 R, other variables are as defined by the present invention.
  • R 7 is selected from the group consisting of H, CH 3 , CN, NH 2 , Other variables are as defined by the present invention.
  • the above R 8 is selected from the group consisting of H, C 1-4 alkyl and C 1-4 heteroalkyl, the C 1-4 alkyl and C 1-4 heteroalkyl optionally being 1 , 2 or 3 R substitutions, other variables as defined by the present invention.
  • the above R 8 is selected from the group consisting of H, CH 3 , CH 3 CH 2 , (CH 3 ) 2 CHCH 2 , (CH 3 ) 2 CH, CH 3 O, CH 3 NH, (CH 3 ) 2 N, (CH 3 ) 2 NCH 2 and CH 3 NHCH 2 , other variables are as defined in the present invention.
  • the structural unit Selected from Wherein R 9 is selected from the group consisting of H and C 1-3 alkyl, and other variables are as defined in the present invention.
  • the structural unit Selected from Other variables are as defined by the present invention.
  • the structural unit Selected from Other variables are as defined by the present invention.
  • the above compound, a pharmaceutically acceptable salt thereof or an isomer thereof is selected from
  • L, R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are as defined in the present invention.
  • the above compound, a pharmaceutically acceptable salt thereof or an isomer thereof is selected from
  • R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , L and ring B are as defined in the present invention.
  • the above compound, a pharmaceutically acceptable salt thereof or an isomer thereof is selected from
  • R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 , L, R 9 and R a are as defined in the present invention.
  • the present invention also provides a compound of the formula: a pharmaceutically acceptable salt thereof or an isomer thereof, selected from the group consisting of
  • the above compound, a pharmaceutically acceptable salt thereof or an isomer thereof is selected from
  • the present invention also provides the use of the above compound, a pharmaceutically acceptable salt thereof or an isomer thereof for the preparation of a medicament for treating cancer.
  • the cancer includes lung cancer, lymphoma, esophageal cancer, ovarian cancer, pancreatic cancer, rectal cancer, glioma, cervical cancer, urothelial carcinoma, gastric cancer, endometrial cancer, liver cancer. , cholangiocarcinoma, breast cancer, colon cancer, leukemia and melanoma.
  • the compound of the present invention comprises a substituted pyridone and pyrimidine derivative, which has high cell anti-proliferative activity against KRAS G12C mutein, and has a weak cell activity against wild type, showing good selectivity, showing that Classes of compounds have better safety as potential therapeutic agents.
  • the mother nucleus of the compound of the present invention is a pyridone-pyrimidine structure, which has a relatively high polarity and a high solubility, and the substituent on the aromatic ring on the left side has a significant influence on the activity, selectivity and pharmacokinetic properties of the compound. This type of structure has high chemical stability and also exhibits high metabolic stability in vitro.
  • the compounds of the present invention showed higher exposure and better oral availability than the reference compound ARS-1620.
  • the compound of the present invention exhibited a more significant antitumor effect than the reference compound ARS-1620 in the human non-small cell lung cancer NCI-H358 subcutaneous xenograft tumor model and the human pancreatic cancer x-MIA-PaCa2 subcutaneous xenograft model.
  • the structure of pyridone and pyrimidine is reported in the literature, and it is difficult to carry out substitution or derivatization chemistry in its structure.
  • the present invention also provides a novel pyridone-pyrimidine structure synthesis method which can synthesize a series of derivatives by first constructing a pyridone structure and then constructing a pyrimidine ring starting from different substituted amines. This method has not been reported in the literature and is an effective method for synthesizing such compounds.
  • pharmaceutically acceptable salt refers to a salt of a compound of the invention prepared from a compound having a particular substituent found in the present invention and a relatively non-toxic acid or base.
  • a base addition salt can be obtained by contacting a neutral amount of such a compound with a sufficient amount of a base in a neat solution or a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salts or similar salts.
  • an acid addition salt can be obtained by contacting a neutral form of such a compound with a sufficient amount of an acid in a neat solution or a suitable inert solvent.
  • pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, hydrogencarbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and an organic acid salt, such as acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid, and me
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound containing an acid group or a base by conventional chemical methods.
  • such salts are prepared by reacting these compounds in water or an organic solvent or a mixture of the two via a free acid or base form with a stoichiometric amount of a suitable base or acid.
  • the compounds provided herein also exist in the form of prodrugs.
  • Prodrugs of the compounds described herein are readily chemically altered under physiological conditions to convert to the compounds of the invention.
  • prodrugs can be converted to the compounds of the invention by chemical or biochemical methods in an in vivo setting.
  • Certain compounds of the invention may exist in unsolvated or solvated forms, including hydrated forms.
  • the solvated forms are equivalent to the unsolvated forms and are included within the scope of the invention.
  • the compounds of the invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including the cis and trans isomers, the (-)- and (+)-p-enantiomers, the (R)- and (S)-enantiomers, and the diastereomeric a conformation, a (D)-isomer, a (L)-isomer, and a racemic mixture thereof, and other mixtures, such as enantiomerically or diastereomeric enriched mixtures, all of which belong to It is within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in the substituents such as alkyl groups. All such isomers, as well as mixtures thereof, are included within the scope of the invention.
  • enantiomer or “optical isomer” refer to stereoisomers that are mirror images of one another.
  • cis-trans isomer or “geometric isomer” is caused by the inability to freely rotate a single bond due to a double bond or a ring-forming carbon atom.
  • diastereomer refers to a stereoisomer in which the molecule has two or more chiral centers and the molecules are in a non-mirrored relationship.
  • wedge-shaped dashed keys Represents the absolute configuration of a solid center with straight solid keys
  • straight dashed keys Indicates the relative configuration of the stereocenter, using wavy lines Indicates a wedge solid key Or wedge-shaped dotted key Or with wavy lines Represents a straight solid key And straight dashed keys
  • tautomer or “tautomeric form” mean that the different functional isomers are in dynamic equilibrium at room temperature and can be rapidly converted into each other. If tautomers are possible (as in solution), the chemical equilibrium of the tautomers can be achieved.
  • proton tautomers also known as prototropic tautomers
  • prototropic tautomers include interconversions by proton transfer, such as keto-enol isomerization and imine-enes. Amine isomerization.
  • the valence tautomer includes the mutual transformation of some of the bonding electrons.
  • keto-enol tautomerization is the interconversion between two tautomers of pentane-2,4-dione and 4-hydroxypent-3-en-2-one.
  • the terms "enriched in one isomer”, “isomer enriched”, “enriched in one enantiomer” or “enantiomeric enriched” refer to one of the isomers or pairs
  • the content of the oligo is less than 100%, and the content of the isomer or enantiomer is 60% or more, or 70% or more, or 80% or more, or 90% or more, or 95% or more, or 96% or more, or 97% or more, 98% or more, 99% or more, 99.5% or more, 99.6% or more, 99.7% or more, 99.8% or more, or greater than or equal to 99.9%.
  • the term “isomer excess” or “enantiomeric excess” refers to the difference between the two isomers or the relative percentages of the two enantiomers. For example, if one of the isomers or enantiomers is present in an amount of 90% and the other isomer or enantiomer is present in an amount of 10%, the isomer or enantiomeric excess (ee value) is 80%. .
  • optically active (R)- and (S)-isomers as well as the D and L isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If an enantiomer of a compound of the invention is desired, it can be prepared by asymmetric synthesis or by derivatization with a chiral auxiliary wherein the resulting mixture of diastereomers is separated and the auxiliary group cleaved to provide pure The desired enantiomer.
  • a diastereomeric salt is formed with a suitable optically active acid or base, followed by conventional methods well known in the art.
  • the diastereomers are resolved and the pure enantiomer is recovered.
  • the separation of enantiomers and diastereomers is generally accomplished by the use of chromatography using a chiral stationary phase, optionally in combination with chemical derivatization (eg, formation of an amino group from an amine). Formate).
  • the compounds of the present invention may contain unnatural proportions of atomic isotopes on one or more of the atoms that make up the compound.
  • radiolabeled compounds can be used, such as tritium (3 H), iodine -125 (125 I) or C-14 (14 C).
  • hydrogen can be replaced by heavy hydrogen to form a deuterated drug.
  • the bond composed of barium and carbon is stronger than the bond composed of common hydrogen and carbon.
  • deuterated drugs have reduced side effects and increased drug stability. Enhance the efficacy and prolong the biological half-life of the drug.
  • Alterations of all isotopic compositions of the compounds of the invention, whether radioactive or not, are included within the scope of the invention.
  • “Optional” or “optionally” means that the subsequently described event or condition may, but is not necessarily, to occur, and that the description includes instances in which the event or condition occurs and instances in which the event or condition does not occur.
  • substituted means that any one or more hydrogen atoms on a particular atom are replaced by a substituent, and may include variants of heavy hydrogen and hydrogen, as long as the valence of the particular atom is normal and the substituted compound is stable. of.
  • Oxygen substitution does not occur on the aromatic group.
  • optionally substituted means that it may or may not be substituted, and unless otherwise specified, the kind and number of substituents may be arbitrary on the basis of chemically achievable.
  • any variable eg, R
  • its definition in each case is independent.
  • the group may optionally be substituted with at most two R, and each case has an independent option.
  • combinations of substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • linking group When the number of one linking group is 0, such as -(CRR) 0 -, it indicates that the linking group is a single bond.
  • one of the variables When one of the variables is selected from a single bond, it means that the two groups to which it is attached are directly linked. For example, when L represents a single bond in A-L-Z, the structure is actually A-Z.
  • substituent When a substituent is vacant, it means that the substituent is absent.
  • X when X is vacant in A-X, the structure is actually A.
  • substituents are not indicated by which atom is attached to the substituted group, such a substituent may be bonded through any atom thereof, for example, a pyridyl group as a substituent may be passed through any one of the pyridine rings. A carbon atom is attached to the substituted group.
  • the medium linking group L is -MW-, and at this time, -MW- can be connected in the same direction as the reading order from left to right to form ring A and ring B. It is also possible to connect the ring A and the ring B in a direction opposite to the reading order from left to right. Combinations of the linking groups, substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • hetero denotes a hetero atom or a hetero atomic group (ie, a radical containing a hetero atom), including atoms other than carbon (C) and hydrogen (H), and radicals containing such heteroatoms, including, for example, oxygen (O).
  • ring means substituted or unsubstituted cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, cycloalkynyl, heterocycloalkynyl, aryl or heteroaryl.
  • the ring includes a single ring, and also includes a bicyclic or polycyclic ring system such as a spiro ring, a ring and a bridge ring.
  • the number of atoms on the ring is usually defined as the number of elements of the ring. For example, "5 to 7-membered ring" means 5 to 7 atoms arranged in a circle. Unless otherwise specified, the ring optionally contains from 1 to 3 heteroatoms.
  • the "5-7 membered ring” includes, for example, phenyl, pyridyl and piperidinyl; on the other hand, the term “5-7 membered heterocycloalkyl” includes pyridyl and piperidinyl, but does not include phenyl.
  • the term “ring” also includes ring systems containing at least one ring, each of which "ring” independently conforms to the above definition.
  • alkyl is used to mean a straight or branched saturated hydrocarbon group, and in some embodiments, the alkyl group is a C 1-12 alkyl group; in other embodiments The alkyl group is a C 1-6 alkyl group; in other embodiments, the alkyl group is a C 1-3 alkyl group. It may be monosubstituted (such as -CH 2 F) or polysubstituted (such as -CF 3 ), and may be monovalent (such as methyl), divalent (such as methylene) or polyvalent (such as methine). .
  • alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl, s-butyl) And t-butyl), pentyl (including n-pentyl, isopentyl and neopentyl), hexyl and the like.
  • alkenyl is used to indicate a straight or branched hydrocarbon group containing one or more carbon-carbon double bonds, and the carbon-carbon double bond may be located at any position of the group.
  • the alkenyl group is a C 2-8 alkenyl group; in other embodiments, the alkenyl group is a C 2-6 alkenyl group; in other embodiments, the alkenyl group is C 2-4 alkenyl. It may be monosubstituted or polysubstituted, and may be monovalent, divalent or multivalent.
  • alkenyl groups include, but are not limited to, ethenyl, propenyl, butenyl, pentenyl, hexenyl, butadienyl, pentadienyl, hexadienyl and the like.
  • heteroalkyl by itself or in conjunction with another term, denotes a stable straight or branched alkyl radical or a combination thereof consisting of a number of carbon atoms and at least one heteroatom or heteroatom. Things.
  • the heteroatoms are selected from the group consisting of B, O, N, and S, wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen heteroatoms are optionally quaternized.
  • the heteroalkyl group is a C1-6 heteroalkyl group; in other embodiments, the heteroalkyl group is a C1-3 heteroalkyl group.
  • a heteroatom or heteroatom can be located at any internal position of a heteroalkyl group, including the position at which the alkyl group is attached to the rest of the molecule, but the terms "alkoxy”, “alkylamino” and “alkylthio” (or thioalkyl) Oxyl) is a conventional expression and refers to those alkyl groups which are attached to the remainder of the molecule through an oxygen atom, an amino group or a sulfur atom, respectively.
  • heteroalkenyl by itself or in conjunction with another term, denotes a stable straight or branched alkenyl radical or a combination thereof consisting of a number of carbon atoms and at least one heteroatom or heteroatom. Things.
  • the heteroatoms are selected from the group consisting of B, O, N, and S, wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen heteroatoms are optionally quaternized.
  • the heteroalkenyl group is a C 2-6 heteroalkenyl group; in other embodiments, the heteroalkyl group is a C 2-4 heteroalkenyl group.
  • the hetero atom or heteroatom group may be located at any internal position of the heteroalkenyl group, including the position at which the alkenyl group is attached to the rest of the molecule, but the terms "alkenyloxy”, “alkenylamino” and “alkenylthio” are customary. By expression, it is meant those alkenyl groups which are attached to the remainder of the molecule through an oxygen atom, an amino group or a sulfur atom, respectively.
  • heteroalkynyl by itself or in conjunction with another term, denotes a stable straight or branched alkynyl radical or a combination thereof consisting of a number of carbon atoms and at least one heteroatom or heteroatom. Things.
  • the heteroatoms are selected from the group consisting of B, O, N, and S, wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen heteroatoms are optionally quaternized.
  • the heteroalkynyl group is a C 2-6 heteroalkynyl group; in other embodiments, the heteroalkyl group is a C 2-4 heteroalkynyl group.
  • hetero atom or heteroatom group may be located at any internal position of the heteroalkynyl group, including the position at which the alkynyl group is attached to the rest of the molecule, but the terms "alkynyloxy", “alkynylamino” and “alkynylthio” are customary. By expression, it is meant those alkynyl groups attached to the remainder of the molecule through an oxygen atom, an amino group or a sulfur atom, respectively.
  • heteroalkynyl groups include, but are not limited to, Up to two heteroatoms can be continuous, for example
  • cycloalkyl includes any stable cyclic alkyl group including monocyclic, bicyclic or tricyclic systems wherein the bicyclic and tricyclic systems include spiro, co and ring.
  • the cycloalkyl group is a C 3-8 cycloalkyl group; in other embodiments, the cycloalkyl group is a C 3-6 cycloalkyl group; in other embodiments, the The cycloalkyl group is a C 5-6 cycloalkyl group. It may be monosubstituted or polysubstituted, and may be monovalent, divalent or multivalent.
  • cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, norbornyl, [2.2.2]bicyclooctane, [4.4.0] Dicyclodecane and the like.
  • cycloalkenyl includes any stable cyclic alkenyl group containing one or more unsaturated carbon-carbon double bonds at any position of the group, including monocyclic, bicyclic or tricyclic The system wherein the bicyclic and tricyclic systems include spiro, parallel and bridged rings, but any ring of this system is non-aromatic.
  • the cycloalkenyl group is a C 3-8 cycloalkenyl group; in other embodiments, the cycloalkenyl group is a C 3-6 cycloalkenyl group; in other embodiments, the The cycloalkenyl group is a C 5-6 cycloalkenyl group.
  • cycloalkenyl groups include, but are not limited to, cyclopentenyl, cyclohexenyl, and the like.
  • cycloalkynyl includes any stable cyclic alkynyl group containing one or more carbon-carbon triple bonds at any position of the group, including monocyclic, bicyclic or tricyclic systems, wherein Bicyclic and tricyclic systems include spiro, parallel and bridging rings. It may be monosubstituted or polysubstituted, and may be monovalent, divalent or multivalent.
  • heterocycloalkyl by itself or in conjunction with other terms, denotes a cyclized “heteroalkyl”, respectively, which includes monocyclic, bicyclic, and tricyclic systems, wherein the bicyclic and tricyclic systems include spiro rings, And ring and bridge ring. Further, in the case of the "heterocycloalkyl group", a hetero atom may occupy a position where a heterocycloalkyl group is bonded to the rest of the molecule.
  • the heterocycloalkyl group is a 4-6 membered heterocycloalkyl group; in other embodiments, the heterocycloalkyl group is a 5-6 membered heterocycloalkyl group.
  • heterocycloalkyl groups include, but are not limited to, azetidinyl, oxetanyl, thioheterobutyl, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, tetrahydrothiophenyl (including tetrahydrothiophene) -2-yl and tetrahydrothiophen-3-yl, etc.), tetrahydrofuranyl (including tetrahydrofuran-2-yl, etc.), tetrahydropyranyl, piperidinyl (including 1-piperidinyl, 2-piperidinyl and 3-piperidinyl, etc.), piperazinyl (including 1-piperazinyl and
  • heterocyclenyl by itself or in conjunction with other terms, denotes a cyclized “heteroalkenyl”, respectively, which includes monocyclic, bicyclic, and tricyclic systems, wherein the bicyclic and tricyclic systems include spiro rings, Rings and bridge rings, but any ring of this system is non-aromatic.
  • a heteroatom can occupy the position of attachment of the heterocyclenyl group to the rest of the molecule.
  • the heterocycloalkenyl is 4 to 6 membered heterocycloalkenyl; in other embodiments, the heterocycloalkenyl is 5 to 6 membered heterocycloalkenyl.
  • heterocycloalkenyl groups include, but are not limited to,
  • heterocycloalkynyl by itself or in conjunction with other terms, denotes a cyclized “heteroalkynyl” group, respectively, which includes monocyclic, bicyclic, and tricyclic systems, wherein the bicyclic and tricyclic systems include spiro rings, And ring and bridge ring.
  • a hetero atom may occupy a position where a heterocyclic alkynyl group is bonded to the rest of the molecule.
  • the heterocycloalkynyl group is a 4 to 6 membered heterocycloalkynyl group; in other embodiments, the heterocycloalkynyl group is a 5 to 6 membered heterocycloalkynyl group.
  • halo or “halogen”, by itself or as part of another substituent, denotes a fluorine, chlorine, bromine or iodine atom. Further, the term “haloalkyl” is intended to include both monohaloalkyl and polyhaloalkyl.
  • halo(C 1 -C 4 )alkyl is intended to include, but is not limited to, trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3-bromopropyl, and the like. Wait. Unless otherwise specified, examples of haloalkyl include, but are not limited to, trifluoromethyl, trichloromethyl, pentafluoroethyl, and pentachloroethyl.
  • alkoxy represents attached through an oxygen bridge
  • C 1-6 alkoxy groups include C 1, C 2, C 3 , C 4, C 5 , and C 6 alkoxy groups.
  • the alkoxy group is a C 1-3 alkoxy group.
  • alkoxy groups include, but are not limited to, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentyloxy, and S- Pentyloxy.
  • aromatic ring and “aryl” are used interchangeably and the term “aryl ring” or “aryl” means a polyunsaturated carbocyclic ring system which may be monocyclic, bicyclic or poly A ring system in which at least one ring is aromatic, and each ring in the bicyclic and polycyclic ring system is fused together. It may be mono- or poly-substituted, may be monovalent, divalent or multivalent, in some embodiments, the aryl is a C 6-12 aryl; in other embodiments, the aryl It is a C 6-10 aryl group.
  • aryl groups include, but are not limited to, phenyl, naphthyl (including 1-naphthyl and 2-naphthyl, and the like). Substituents for any of the above aryl ring systems are selected from the group of acceptable substituents described herein.
  • heteroaryl ring and “heteroaryl” are used interchangeably and the term “heteroaryl” means 1, 2, 3 or 4 independently selected from B, N, O and An aryl (or aromatic ring) of a hetero atom of S, which may be a monocyclic, bicyclic or tricyclic ring system in which the nitrogen atom may be substituted or unsubstituted (ie, N or NR, wherein R is H or has been herein Other substituents are defined, and are optionally quaternized, and the nitrogen and sulfur heteroatoms can be optionally oxidized (i.e., NO and S(O) p , p is 1 or 2).
  • a heteroaryl group can be attached to the remainder of the molecule through a heteroatom.
  • the heteroaryl is a 5-10 membered heteroaryl; in other embodiments, the heteroaryl is a 5-6 membered heteroaryl.
  • the heteroaryl group include, but are not limited to, pyrrolyl (including N-pyrrolyl, 2-pyrrolyl, and 3-pyrrolyl, etc.), pyrazolyl (including 2-pyrazolyl and 3-pyrazolyl, etc.) , imidazolyl (including N-imidazolyl, 2-imidazolyl, 4-imidazolyl and 5-imidazolyl, etc.), oxazolyl (including 2-oxazolyl, 4-oxazolyl and 5-oxazolyl, etc.) , triazolyl (1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, 1H-1,2,4-triazolyl and 4H-1,2,4- Triazolyl
  • C n-n+m or C n -C n+m includes any one of n to n+m carbons, for example, C 1-12 includes C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , and C 12 , also including any range of n to n+m, for example, C 1-12 includes C 1-3 , C 1-6 , C 1-9 , C 3-6 , C 3-9 , C 3-12 , C 6-9 , C 6-12 , and C 9-12 , etc.; similarly, n to n
  • the +m element indicates that the number of atoms on the ring is n to n+m, for example, the 3-12 element ring includes a 3-membered ring, a 4-membered ring, a 5-membered ring, a 6-membered ring, a 7-membered ring, an 8-membere
  • a 10-membered ring, an 11-membered ring, and a 12-membered ring and includes any one of n to n+m, for example, a 3-12-membered ring including a 3-6-membered ring, a 3-9-membered ring, and a 5-6-membered ring. Ring, 5-7 membered ring, 6-7 membered ring, 6-8 membered ring, and 6-10 membered ring.
  • leaving group refers to a functional group or atom which may be substituted by another functional group or atom by a substitution reaction (for example, an affinity substitution reaction).
  • substituent groups include triflate; chlorine, bromine, iodine; sulfonate groups such as mesylate, tosylate, p-bromobenzenesulfonate, p-toluenesulfonic acid Esters and the like; acyloxy groups such as acetoxy, trifluoroacetoxy and the like.
  • protecting group includes, but is not limited to, "amino protecting group", “hydroxy protecting group” or “thiol protecting group”.
  • amino protecting group refers to a protecting group suitable for preventing side reactions at the amino nitrogen position.
  • Representative amino protecting groups include, but are not limited to, formyl; acyl, such as alkanoyl (e.g., acetyl, trichloroacetyl or trifluoroacetyl); alkoxycarbonyl, e.g., tert-butoxycarbonyl (Boc) Arylmethoxycarbonyl, such as benzyloxycarbonyl (Cbz) and 9-fluorenylmethoxycarbonyl (Fmoc); arylmethyl, such as benzyl (Bn), trityl (Tr), 1, 1-di -(4'-methoxyphenyl)methyl; silyl groups such as trimethylsilyl (TMS) and tert-
  • hydroxy protecting group refers to a protecting group suitable for use in preventing hydroxy side reactions.
  • Representative hydroxy protecting groups include, but are not limited to, alkyl groups such as methyl, ethyl and t-butyl groups; acyl groups such as alkanoyl groups (e.g., acetyl); arylmethyl groups such as benzyl (Bn), Oxybenzyl (PMB), 9-fluorenylmethyl (Fm) and diphenylmethyl (diphenylmethyl, DPM); silyl groups such as trimethylsilyl (TMS) and tert-butyl Dimethylsilyl (TBS) and the like.
  • alkyl groups such as methyl, ethyl and t-butyl groups
  • acyl groups such as alkanoyl groups (e.g., acetyl)
  • arylmethyl groups such as benzyl (Bn), Oxybenzyl (PMB), 9-fluoreny
  • the formate of a compound is obtained by chromatography in a formic acid system (A phase: H2O + 0.225% formic acid, B phase: acetonitrile).
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments set forth below, combinations thereof with other chemical synthetic methods, and those well known to those skilled in the art. Equivalent alternatives, preferred embodiments include, but are not limited to, embodiments of the invention.
  • the solvent used in the present invention is commercially available.
  • the present invention employs the following abbreviations: DCM stands for dichloromethane; DMF stands for N,N-dimethylformamide; DMSO stands for dimethyl sulfoxide; NMP stands for N-methylpyrrolidone; Boc stands for t-butoxycarbonyl.
  • THF tetrahydrofuran
  • NBS N-bromosuccinimide
  • TEA triethylamine
  • DIPEA N,N-diisopropylethylamine
  • NaOH stands for sodium hydroxide
  • DBU 1 , 8-diazabicycloundec-7-ene
  • TFE stands for trifluoroethanol
  • TFA trifluoroacetic acid
  • HOBt stands for 1-hydroxybenzotriazole
  • EDCI.HCl stands for 1-ethyl-(3- Dimethylaminopropyl)carbonyldiimide hydrochloride
  • NCS stands for N-chlorosuccinimide
  • EDTA-K 2 stands for dipotassium ethylenediaminetetraacetate
  • PEG400 stands for polyethylene glycol 400
  • PO Representative for oral administration
  • IV intravenous administration.
  • Compound A1 is subjected to a ring closure reaction with a suitable reagent such as triethyl orthoformate, sulfuric acid/formic acid to give compound A2.
  • a suitable reagent such as triethyl orthoformate, sulfuric acid/formic acid
  • Compound A2 is reacted with a suitable chlorinating reagent such as phosphorus oxychloride to give compound A3.
  • Compound A3 is reacted with a Boc protected amine under the action of a suitable base such as TEA or DIPEA to give compound A4.
  • Compound A4 undergoes a deprotection reaction under acidic conditions to give compound A5.
  • compound A5 is reacted with a suitable acylating reagent such as alkenyl chloride in the presence of a suitable base such as TEA.
  • a suitable base such as TEA
  • Compound (I) is obtained; if there is NH 2 in R 1 , R 2 , R 3 , R 4 and R 5 in compound A5, compound A5 is in the presence of a suitable base such as TEA and a suitable acylating agent ( The intermediate compound obtained is reacted with a nitro group at a corresponding position to obtain a compound (I) by a reaction such as alkenyl chloride.
  • Compound A1 is subjected to a ring closure reaction with a suitable reagent such as triethyl orthoformate, sulfuric acid/formic acid to give compound B1, and then compound B1 is treated with pyridine hydrochloride to give demethylated product B2.
  • Compound B2 is reacted with acetic anhydride in the presence of a suitable base such as pyridine to give compound B3.
  • Compound B3 is reacted with a suitable chlorinating reagent such as phosphorus oxychloride to give compound B4 which is then reacted with a Boc protected amine in the presence of a suitable base such as DIPEA to afford compound B5.
  • Compound B5 and compound B7 are obtained after deacetylating compound B5 and removing the Boc protecting group, respectively. If there is no NH 2 in R 1 , R 2 , R 3 , R 4 and R 5 in compound B7, compound B7 is reacted with a suitable acylating reagent such as alkenyl chloride in the presence of a suitable base such as TEA.
  • a suitable acylating reagent such as alkenyl chloride
  • Compound (I) is obtained; if there is NH 2 in R 1 , R 2 , R 3 , R 4 and R 5 in compound B7, compound B7 is in the presence of a suitable base such as TEA and a suitable acylating reagent (The intermediate compound obtained is reacted with a nitro group at a corresponding position to obtain a compound (I) by a reaction such as alkenyl chloride.
  • a suitable base such as TEA
  • a suitable acylating reagent The intermediate compound obtained is reacted with a nitro group at a corresponding position to obtain a compound (I) by a reaction such as alkenyl chloride.
  • Compound A1 is subjected to a ring closure reaction with a suitable reagent such as urea or a plasma liquid [HDBU + ] [TFE - ] and carbon dioxide gas prepared by DBU and TFE to obtain compound C1.
  • a suitable chlorinating reagent such as phosphorus oxychloride to give the dichloro product C2 which is then reacted with a Boc-protected amine in the presence of a suitable base such as DIPEA to afford compound C3.
  • Compound C3 is reacted with a nucleophile such as a substituted amino group, an alcohol or potassium cyanide in the presence of a suitable base such as DIPEA or potassium fluoride to provide compound C4.
  • Deprotection of compound C4 affords compound C5. If there is no NH 2 in R 1 , R 2 , R 3 , R 4 and R 5 in compound C5, compound C5 is reacted with a suitable acylating reagent such as alkenyl chloride in the presence of a suitable base such as TEA. Compound (I) is obtained; if there is NH 2 in R 1 , R 2 , R 3 , R 4 and R 5 in compound C5, compound C5 is in the presence of a suitable base such as TEA and a suitable acylating reagent ( The intermediate compound obtained is reacted with a nitro group at a corresponding position to obtain a compound (I) by a reaction such as alkenyl chloride.
  • a suitable acylating reagent such as alkenyl chloride
  • Compound A1 is subjected to a ring-closing reaction with a suitable reagent such as urea or a plasma liquid [HDBU + ][TFE - ] and carbon dioxide gas prepared by DBU and TFE to obtain compound D1, and then compound D1 is treated with pyridine hydrochloride to obtain a depolarization.
  • Base product D2 Compound D2 is reacted with acetic anhydride in the presence of a suitable base such as pyridine to afford compound D3.
  • Compound D3 is reacted with a suitable chlorinating reagent such as phosphorus oxychloride to give compound D4 which is then reacted with a Boc-protected amine in the presence of a suitable base such as DIPEA to afford compound D5.
  • Compound D5 is reacted with a nucleophile such as a substituted amino group, an alcohol or potassium cyanide in the presence of a suitable base such as DIPEA or potassium fluoride to give compound D6. Decarboxylation of compound D6 and removal of the Boc protecting group afforded compound D7 and compound D8, respectively. If there is no NH 2 in R 1 , R 2 , R 3 , R 4 and R 5 in compound D8, compound D8 is reacted with a suitable acylating reagent such as alkenyl chloride in the presence of a suitable base such as TEA.
  • a suitable acylating reagent such as alkenyl chloride
  • Compound (I) is obtained; if there is NH 2 in R 1 , R 2 , R 3 , R 4 and R 5 in compound D8, compound D8 is in the presence of a suitable base such as TEA and a suitable acylating reagent (The intermediate compound obtained is reacted with a nitro group at a corresponding position to obtain a compound (I) by a reaction such as alkenyl chloride.
  • a suitable base such as TEA
  • a suitable acylating reagent The intermediate compound obtained is reacted with a nitro group at a corresponding position to obtain a compound (I) by a reaction such as alkenyl chloride.
  • compound E1 is reacted with a suitable acid chloride such as methyl 3-chloro-3-oxopropionate to give compound E2.
  • a suitable acid chloride such as methyl 3-chloro-3-oxopropionate
  • a suitable enamine such as (E)-4-ethoxy-1,1,1-trifluoro-3-buten-2-one
  • E3 is heated and reacted under a dehydrating agent such as p-toluenesulfonic acid to obtain a compound A4 after dehydration, and the compound E2 is directly closed in the presence of a strong base (such as sodium methoxide) to obtain a compound E4.
  • a strong base such as sodium methoxide
  • Compound E4 is hydrolyzed to give compound E5, which is then subjected to a Curtius rearrangement reaction to give Boc protected amino compound E6.
  • Compound E6 is deprotected to give compound E7, which is then brominated with the appropriate bromination reagent (e.g., NBS) to afford compound E8.
  • Compound E8 is reacted with a suitable cyanating reagent such as cyanide to give compound E9.
  • Compound E9 is hydrolyzed to give compound A1.
  • the ninth step is a first step.
  • Example 4 The formate salt of Example 4 was synthesized by reference to Example 1.
  • Example 6 The synthesis of Example 6 is referred to Example 4.
  • Example 7 The synthesis of Example 7 is referred to Example 4.
  • Example 8 The formate salt of Example 8 was synthesized by reference to Example 4.
  • 1 H NMR 400MHz, CD 3 OD
  • ⁇ 8.48 s, 1H
  • 7.39-7.33 m, 1H
  • 7.14 s, 1H
  • 6.86-6.74 m, 3H
  • 4.40-4.35 m, 4H
  • 4.19-4.15 m, 4H
  • 3.92-3.90 m, 1H
  • 3.90 - 3.86 m, 8H
  • 2.87-2.82 m, 4H
  • LCMS m/z: 590.1 (M+1).
  • Example 11 The synthesis of Example 11 is referred to Example 1.
  • 1 H NMR 400 MHz, CD 3 OD
  • ⁇ 8.45 8.45 (brs, 1H), 7.29-7.21 (m, 1H), 7.13 (s, 1H), 6.77-6.60 (m, 3H), 6.21-6.14 (m, 1H), 5.73-5.68 (m, 1H), 3.96 (s, 3H), 3.92-3.83 (m, 4H), 3.83-3.75 (m, 4H);
  • Example 12 The synthesis of Example 12 is referred to Example 1.
  • 1 H NMR 400 MHz, CD 3 OD
  • ⁇ 7.30-7.21 m, 1H
  • 7.14 s, 1H
  • 6.75-6.61 m, 3H
  • 5.74-5.68 m, 1H
  • 5.28-5.14 m, 1H
  • 2.95-2.80 m, 2H
  • 2.70-2.55 m, 2H
  • 2.15-2.00 2.15-2.00 (m, 2H)
  • 1.97-1.85 m, 2H
  • LCMS ESI m/z: 577.2 (M+1).
  • Example 13 The formate salt of Example 13 was synthesized by reference to Example 1.
  • 1 H NMR 400 MHz, CD 3 OD
  • ⁇ 8.54 s, 1H
  • 7.42 - 7.38 m, 1H
  • 7.30 s, 1H
  • 6.86-6.74 m, 3H
  • 4.08-4.01 m, 4H
  • 3.92-3.88 m, 4H
  • LCMS LCMS (ESI) m/z: 489.0 (M+1).
  • Example 14 The formate salt of Example 14 was synthesized by reference to Example 1.
  • 1 H NMR 400MHz, CD 3 OD
  • ⁇ 8.55 s, 1H
  • 7.31-7.27 m, 1H
  • 6.57-6.22 m, 1H
  • 4.30-4.16 m, 4H), 3.99- 3.91 (m, 4H)
  • LCMS m.
  • Example 15 The synthesis of Example 15 is referred to Example 12.
  • 1 H NMR 400 MHz, CD 3 OD
  • LCMS ESI) m/ z: 560.1 (M+1).
  • Example 16 The synthesis of Example 16 is referred to Example 1.
  • 1 H NMR 400 MHz, CD 3 OD
  • Example 17 The synthesis of Example 17 is referred to Example 16.
  • 1 H NMR 400 MHz, CD 3 OD
  • LCMS (ESI) m/z: 478.1 (M+1).
  • Example 18 The synthesis of Example 18 is referred to Example 16.
  • the ninth step is a first step.
  • Example 20 The synthesis of Example 20 is referred to Example 1.
  • 1 H NMR 400MHz, CD 3 OD
  • ⁇ 8.73 s, 1H
  • 7.45-7.25 m, 2H
  • 6.95-6.75 m, 4H
  • 3.90 s, 8H
  • LCMS m/z: 396.1 (M+1).
  • the ninth step is a first step.
  • Example 2 To a solution of Example 2 (20 mg, 43.16 ⁇ mol, 1 eq.) and TEA (5 mg, 49.41 ⁇ mol, 6.88 ⁇ L, 1.14 eq.) in DCM (2 mL) Methylcarbamoyl chloride (5 mg, 46.49 micromoles, 4.27 microliters, 1.08 equivalents). The above reaction solution was stirred at 0 ° C for 0.5 hour. The target product was detected by LCMS. The reaction mixture was concentrated under reduced pressure.
  • Example 23 The synthesis of Example 23 is referred to Example 4.
  • Example 24 The synthesis of Example 24 was referred to Example 4.
  • Example 25 The synthesis of Example 25 is referred to Example 1 and Example 20.
  • 1 H NMR 400MHz, CD 3 OD
  • ⁇ 8.79 s, 1H
  • 7.33-7.20 m, 2H
  • 6.91-6.74 m, 3H
  • 4.00 br s, 4H
  • 2.09 s, 3H
  • LCMS ESI m/z: 460.3 (M+ 1).
  • Example 27 (150 mg, 250.46 ⁇ mol) was dissolved in methanol (3 ml), and a solution of hydrochloric acid (0.66 ml) dissolved in water (0.66 ml) was added to the solution, followed by stirring at 25 ° C 30 minute. LCMS showed the title product was formed, and the mixture was concentrated to give a crude product which was purified by preparative HPLC (carboxylic acid) to afford Example 28.
  • Example 29 The synthesis of Example 29 is referred to Example 26.
  • 1 H NMR 400 MHz, CD 3 OD
  • Example 32a The synthesis of compound 32a is referred to Example 1, Example 2 and Example 26.
  • Example 34 Example 35, and Example 36
  • Example 34 The formate salt of Example 34 was synthesized by referring to Example 2 and Example 26.
  • Example 38 The formate salt of Example 38 was obtained by the synthesis of Reference Example 1, Example 2 and Example 26.
  • 1 H NMR 400MHz, CD 3 OD
  • ⁇ 8.28 br s, 1H
  • 7.26-7.11 m, 2H
  • LCMS m/z : 561.4 (M+1).
  • Example 39 The formate salt of Example 39 was synthesized by reference to Example 1, Example 2 and Example 26.
  • 1 H NMR 400 MHz, CD 3 OD
  • Example 40 The formate salt of Example 40 was synthesized by reference to Example 2 and Example 26.
  • 1 H NMR 400MHz, CD 3 OD
  • Example 43 Example 43, Example 44 and Example 45
  • NCS 64.51 mg, 483.11 ⁇ mol, 2 eq.
  • HPLC showed the remaining material.
  • EtOAc EtOAc
  • EtOAc EtOAc
  • LC-MS showed that the starting material remained and the target product was formed.
  • the reaction mixture was stirred with EtOAc EtOAc EtOAc.
  • the ninth step is a first step.
  • Multi-label microplate reader Envision, cell culture flask, 384 cell culture microplate, Vi-cell XR cell activity analyzer, CO2 incubator, 300 ⁇ L 12-channel electric pipette, Echo ultrasonic nano-liquid workstation
  • NCI-H358 (G12C mutation) cells, anti of A375 (wild-type) cells and MIA PaCa2 (G12C mutant) cell proliferation activity IC 50 data is shown in Table 1 and Table 2.
  • the compounds of the present invention showed high anti-proliferative activity against KRAS G12C mutant cells NCI-H358 and MIA PaCa2, and the anti-proliferative activity of wild-type A375 cells was weak, showing high selectivity.
  • Example 1 5.3 17.8
  • Example 2 5.36 >50
  • Example 6 14.64 39.85 Formate for Example 8 1.41 39.09
  • Example 11 23.99 42.21
  • Example 12 14.18 9.89
  • Example 15 13.86 >50
  • Example 18 7.18 2.86
  • Example 22 5.12 24.41 Example 26 13.30 32.58 Example 27 20.8 50 Example 28 9.93 36.18 Example 31 1.64 33.29 Example 32 0.45 29.26 Example 33 15.82 39.64 Formate for Example 34 1.05 28.30 Example 37 1.05 19.69 Example 41 0.15 12.24 Example 42 0.01 4.57 Example 44 3.67 9.02 Example 45 0.01 6.24 Example 46 1.95 >50 Example 47 1.00 27.88 Example 48 0.18 20.79 Example 49 0.05 7.32 Example 50 5.49 >50 Example 51 2.04 8.82 Example 52 0.06 7.39 Example 53 2.27 8.91 Example 54 0.29 6.66 Trifluoroacetate salt of Example 55 4.26 50
  • Example 2 6.48
  • Example 6 12.7 Formate for Example 8 2.31
  • Example 25 15.27
  • Example 31 1.25
  • Example 32 0.37
  • Example 35 12.04
  • Example 36 1.11
  • Example 37 1.44
  • Example 41 0.16 Example 42 0.02 Example 44 2.97 Example 45 0.01 Example 46 1.79 Example 47 0.82 Example 48 0.13 Example 49 0.07 Example 50 3.90
  • Test article (10 mM), Testosterone (testosterone, control, 10 mM), Diclofenac (diclofenac, control, 10 mM), Propafenone (propylpropionide, control, 10 mM), human liver microsomes, rat liver microsomes, Mouse liver microsomes.
  • liver microsome solution final concentration: 0.5 mg protein/mL
  • T 1/2 and Cl int(mic) are calculated by the following formula.
  • Each gram of liver contains 45 mg of microsomal protein, and the liver weights of mice, rats, dogs, monkeys, and humans are 88 g/kg, 40 g/kg, 32 g/kg, 30 g/kg, and 20 g/kg, respectively.
  • C t is the concentration at time t
  • t is the incubation time
  • K e is the elimination rate constant
  • Cl int (mic) is the intrinsic clearance of liver particles
  • Cl int (liver) is the intrinsic clearance of liver rate.
  • CL int(liver) CL int(mic) ⁇ mg microsomal protein / g liver weight ⁇ liver weight to body weight ratio
  • the compound of the present invention shows a long half-life in the liver microsome stability test of human, rat and mouse, and therefore it is presumed that the compound of the present invention has good metabolic stability in vivo.
  • mice Male Sprague-Dawley rats were used as test animals, and the concentration of the drug in plasma at different times after intravenous administration and administration of the test compound was determined by LC/MS/MS. The pharmacokinetic behavior of the test compound in rats was studied and its pharmacokinetic characteristics were evaluated.
  • Test animals 10 healthy adult male Sprague-Dawley rats were divided into 4 groups according to the principle of similar body weight. Group IV (two groups) each group of 2, PO group (two groups) each group of 3. Animals were purchased from Beijing Weitong Lihua Experimental Animal Co., Ltd.
  • Group IV Weigh the appropriate amount of sample, add appropriate amount of DMSO, PEG400 and water according to the volume ratio of 10:60:30, and stir to obtain a clarified state of 1.5 mg/mL.
  • group IV was administered intravenously at a dose of 2 mL/kg at a dose of 3 mg/kg.
  • the PO group was administered intragastrically at a dose of 10 mL/kg and a dose of 10 mg/kg.
  • test compounds Male SD rats were given the test compound, and 200 ul of blood was collected at 0.0833, 0.25, 0.5, 1, 2, 4, 6, 8, and 24 hours, and placed in commercialization with EDTA-K 2 in advance. In the anti-coagulation tube. After administration of the test compound to the intragastric administration group, 200 ul of blood was collected at 0.25, 0.5, 1, 2, 4, 6, 8, and 24 hours, respectively, and placed in a commercial anticoagulant tube to which EDTA-K 2 was previously added. in. The tube was centrifuged for 15 minutes to separate the plasma and stored at -60 °C. Animals can be fed after 2 hours of administration. The content of test compounds in plasma after intravenous and intragastric administration in rats was determined by LC/MS/MS. The linear range of the method was 2.00-6000 nM; plasma samples were analyzed by acetonitrile precipitation protein analysis.
  • the compounds of the present invention showed higher exposure and better oral availability than the reference compound ARS-1620.
  • test compound The in vivo efficacy of the test compound on the subcutaneous xenograft tumor model of human pancreatic cancer MIA-PaCa2 cells was evaluated.
  • mice Female, 6-8 weeks, weigh approximately 18-22 grams. Each mouse was inoculated subcutaneously with 0.2 mL (1 ⁇ 10 7 ) MIA-PaCa 2 cells (with matrigel, volume ratio 1:1). Dosing begins when the average tumor volume reaches approximately 169 cubic millimeters.
  • the antitumor effect of the compound was evaluated by TGI (%). TGI (%), reflecting the tumor growth inhibition rate.
  • TGI (%) [(1 - mean tumor volume at the end of administration of a treatment group - mean tumor volume at the start of administration of the treatment group)) / (average tumor at the end of treatment of the solvent control group) Volume-solvent control group average tumor volume at the start of treatment)] ⁇ 100%.
  • the compounds of the invention exhibit good in vivo efficacy in a human pancreatic cancer MIA-PaCa2 cell subcutaneous xenograft model. Twenty days after the start of administration, the compound of the present invention had a significant antitumor effect as compared with the solvent control group, and had a significant dose-effect relationship.
  • test compound The in vivo efficacy of the test compound on the human non-small cell lung cancer NCI-H358 subcutaneous xenograft tumor model was evaluated.
  • TGI (%) [(1 - mean tumor volume at the end of administration of a treatment group - mean tumor volume at the start of administration of the treatment group) / (mean tumor volume at the end of treatment of the solvent control group) - The average tumor volume at the start of treatment in the solvent control group)] x 100%.
  • the compounds of the present invention exhibited good in vivo efficacy in a human non-small cell lung cancer NCI-H358 subcutaneous xenograft tumor model. Twenty days after the start of administration, the compound of the present invention has a significant antitumor effect as compared with the reference compound ARS-1620.
  • test compound The in vivo efficacy of the test compound on a human pancreatic cancer x-MIA-PaCa2 cell subcutaneous xenograft tumor model was evaluated.
  • NU/NU mice female, 6-8 weeks old, weighing 17-20 grams. A total of 100 (more than 30% of the animals) are required.
  • 0.2 mL (10 ⁇ 10 6 ) of x-MIA-PaCa 2 cells were subcutaneously inoculated into the right back of each mouse, and the group was started when the average tumor volume reached about 150 mm 3 .
  • the dose was administered as shown in Table 7. Tumor diameters were measured twice a week using vernier calipers.
  • TGI (%) [(1 - mean tumor volume at the end of administration of a treatment group - mean tumor volume at the start of administration of the treatment group) / (mean tumor volume at the end of treatment of the solvent control group) - The average tumor volume at the start of treatment in the solvent control group)] x 100%.
  • the compounds of the present invention show good in vivo efficacy in a human pancreatic cancer x-MIA-PaCa2 cell subcutaneous xenograft model.
  • the compound of the present invention had a significant antitumor effect compared to the reference compound ARS-1620 14 days after the start of administration.
  • test compound The in vivo efficacy of the test compound on the human non-small cell lung cancer NCI-H358 subcutaneous xenograft tumor model was evaluated.
  • mice Female, 6-8 weeks old, weighing 18-20 grams. A total of 40 are needed.
  • NCI-H358 tumor cells were resuspended in PBS to prepare a cell suspension with a density of 5 ⁇ 10 7 /mL, and subcutaneously inoculated into the right back of each mouse (0.1 mL, 5 ⁇ 10 6 /pc) Waiting for tumor growth.
  • the average tumor volume reached about 166 mm 3
  • randomized administration was started, and the doses are shown in Table 8. Tumor diameters were measured twice a week using vernier calipers.
  • TGI (%) [(1 - mean tumor volume at the end of administration of a treatment group - mean tumor volume at the start of administration of the treatment group) / (mean tumor volume at the end of treatment of the solvent control group) - The average tumor volume at the start of treatment in the solvent control group)] x 100%.
  • the compound of the present invention has a significant antitumor effect compared to the reference compound ARS-1620 at the same dose (15 mg/kg).
  • the compound of the present invention exhibited a remarkable tumor suppressing effect at a dose (5 mg/kg) lower than that of the reference compound ARS-1620 (15 mg/kg). This indicates that the compound of the present invention exhibits good in vivo efficacy in a human non-small cell lung cancer NCI-H358 subcutaneous xenograft tumor model, and the antitumor effect has a dose-dependent tendency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

提供了一类KRAS G12C突变蛋白抑制剂,具体涉及式(I)所示化合物及其异构体、药学上可接受的盐。

Description

作为KRASG12C突变蛋白抑制剂的吡啶酮并嘧啶类衍生物
本申请主张如下优先权:
CN201810055396.8,申请日2018年01月19日;
CN201810712103.9,申请日2018年06月29日。
技术领域
本发明涉及新的取代吡啶酮并嘧啶类衍生物,具体涉及式(I)所示化合物或其异构体、药学上可接受的盐,以及式(I)所示合物或其异构体、药学上可接受的盐和药用组合物在制备治疗癌症药物中的应用。
背景技术
第一个RAS癌基因发现自大鼠肉瘤(rat sarcoma),因此得名。RAS蛋白是由RAS基因表达的产物,指一类紧密相关的,由189个氨基酸组成的单体球蛋白,其分子量为21KDa。RAS蛋白可以与鸟嘌呤三核苷酸磷酸(GTP)或鸟嘌呤二核苷酸磷酸(GDP)结合,RAS蛋白的活性状态对细胞的生长、分化、细胞骨架、蛋白质运输和分泌等都具有影响,其活性是通过与GTP或GDP的结合进行调节:当RAS蛋白与GDP结合时,它处于休眠状态,也就是“失活”状态;当有上游特定的细胞生长因子刺激时,RAS蛋白被诱导交换GDP,与GTP结合,此时称为“活化”状态。与GTP结合的RAS蛋白能够活化下游的蛋白,进行信号传递。RAS蛋白自身具有弱的水解GTP水解活性,能够水解GTP到GDP。这样就可以实现从活化状态到失活状态的转化。在这个水解过程中,还需要GAP(GTPase activating proteins,GTP水解酶活化蛋白)参与。它能与RAS蛋白作用,大大促进其水解GTP到GDP的能力。RAS蛋白的突变将影响其与GAP的作用,也就影响了其水解GTP到GDP的能力,使其一直处于活化状态。活化的RAS蛋白持续的给予下游蛋白生长信号,最终导致细胞不停的生长和分化,最终产生肿瘤。RAS基因家族成员众多,其中与各种癌症密切相关的亚家族主要有克尔斯滕大鼠肉瘤病毒致癌基因同源物(KRAS)、哈维大鼠肉瘤病毒致癌同源物(HRAS)和神经母细胞瘤大鼠肉瘤病毒致癌基因同源物(NRAS)。人们发现大约30%的人类肿瘤中都携带某些突变的RAS基因,其中以KRAS突变最为显著,占到所有RAS突变中的86%。对于KRAS突变,最为常见的突变出现在12号甘氨酸(G12),13号甘氨酸(G13)和61号谷氨酰胺(Q61)残基上,其中G12突变占到83%。
G12C突变是KRAS基因突变中比较常见的一个亚型,它是指12号甘氨酸突变为半胱氨酸。KRAS G12C突变在肺癌中最为常见,根据文献(Nat Rev Drug Discov 2014;13:828-851)报道的数据推算,KRAS G12C突变占到所有肺癌患者的10%左右。
KRAS G12C突变蛋白作为一个前沿靶点,目前的研究还不是很多。文献(Nature.2013;503:548-551)报道了一类靶向KRAS G12C突变的共价结合抑制剂,但是这类化合物酶活性不高,在细胞水平没有表现出活性。文献(Science 2016;351:604-608,Cancer Discov 2016;6:316-29)报道的一类化合物在细胞水平表现出了μM级别的细胞抗增殖活性,但是其代谢稳定性差,活性也很难进行进一步提高。近年来,Araxes Pharma公司申请了数篇针对KRAS G12C抑制剂的专利,例如WO2016164675和WO2016168540就报道了一类喹唑啉衍生物具有较高的酶结合活性,且表现出μM级别的细胞抗增殖活性,其结构稳定,并有一定的选择性。Amgen(WO2018119183A2)与AstraZeneca(WO2018206539)公司在2018年 分别有关于KRAS G12C抑制剂的专利公开,且Amgen的KRAS G12C抑制剂AMG 510在2018年7月份启动了一期临床研究。纵观目前文献报道的KRAS G12C抑制剂,它们都有一个丙烯酰胺的片段,其作为迈克尔加成受体和KRASG12C突变蛋白上的半胱氨酸残基作用形成共价结合复合物。2018年,LiuYi等人在Cell(Matthew R.Janes,Yi Liu et al.,Cell,2018,172,578–589.)上公开报道了靶向KRAS G12C突变的共价结合抑制剂ARS-1620,该化合物具有很好的代谢稳定性,在细胞水平表现出了nM级别的细胞抗增殖活性,且在胰腺癌MIA-Paca2细胞皮下异种移植肿瘤模型上能有效的抑制肿瘤生长。
WO2018/064510A1公开了化合物Ex3,但是没有给出表征数据和测试结果。
Figure PCTCN2019072393-appb-000001
发明内容
本发明提供式(I)所示化合物、其药学上可接受的盐或其异构体,
Figure PCTCN2019072393-appb-000002
其中,
环A选自3~8元杂环烷基,所述3~8元杂环烷基任选被1、2或3个R取代;
R 1、R 2、R 3、R 4和R 5分别独立地选自H、卤素、OH、NH 2、CN、C 1-6烷基和C 1-6杂烷基,所述C 1-6烷基和C 1-6杂烷基任选被1、2或3个R取代;
或者,R 1和R 2连接在一起形成环B;
或者,R 2和R 3连接在一起形成环B;
或者,R 3和R 4连接在一起形成环B;
或者,R 4和R 5连接在一起形成环B;
环B选自苯基、C 5~6环烯基、5~6元杂环烯基和5~6元杂芳基,所述苯基、C 5~6环烯基和5~6元杂环烯基、5~6元杂芳基任选被1、2或3个R a取代;
R a选自卤素、OH、NH 2、CN、C 1-6烷基和C 1-6杂烷基,所述C 1-6烷基和C 1-6杂烷基任选被1、2或3个R取代;
R 6选自H、卤素和C 1-6烷基,所述C 1-6烷基任选被1、2或3个R取代;
R 7选自H、CN、NH 2、C 1-8烷基、C 1-8杂烷基、4~6元杂环烷基、5~6元杂芳基和C 5-6环烷基,所述C 1-8烷基、C 1-8杂烷基、4~6元杂环烷基、5~6元杂芳基和C 5-6环烷基选自任选被1、2或3个R取代;
L选自单键、-NH-、-S-、-O-、-C(=O)-、-C(=S)-、-CH 2-、-CH(R b)-和-C(R b) 2-;
L’选自单键和-NH-;
R b选自C 1-3烷基和C 1-3杂烷基,所述C 1-3烷基和C 1-3杂烷基任选被1、2或3个R取代;
R 8选自H、C 1-6烷基和C 1-6杂烷基,所述C 1-6烷基和C 1-6杂烷基任选被1、2或3个R取代;
R选自卤素、OH、NH 2、CN、C 1-6烷基、C 1-6杂烷基和C 3-6元环烷基,所述C 1-6烷基、C 1-6杂烷基和C 3-6元环烷基任选被1、2或3个R’取代;
R’选自:F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 3CH 2、CH 3O、CF 3、CHF 2、CH 2F、环丙基、丙基、异丙基、N(CH 3) 2、NH(CH 3);
“杂”表示杂原子或杂原子团,所述3~8元杂环烷基、C 1-6杂烷基、5~6元杂环烯基、5~6元杂芳基、C 1- 8杂烷基、4~6元杂环烷基、C 1-3杂烷基之“杂”分别独立地选自-C(=O)N(R)-、-N(R)-、-NH-、N、-O-、-S-、-C(=O)O-、-C(=O)-、-C(=S)-、-S(=O)-、-S(=O) 2-和-N(R)C(=O)N(R)-;
以上任何一种情况下,杂原子或杂原子团的数目分别独立地选自1、2和3。
在本发明的一些方案中,上述R选自F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 3CH 2、CH 3O、CF 3、CHF 2、CH 2F、环丙基、丙基、异丙基、N(CH 3) 2、NH(CH 3)和N(CH 2CH 3) 2
在本发明的一些方案中,上述环A选自氮杂环丙烷、氮杂环丁烷、吡咯烷、哌啶基、哌嗪基、1,4-二氮环庚烷基和3,6-二氮杂二环[3.2.0]庚烷,所述氮杂环丙烷、氮杂环丁烷、吡咯烷、哌啶基、哌嗪基、1,4-二氮环庚烷基和3,6-二氮杂二环[3.2.0]庚烷任选被1、2或3个R取代。
在本发明的一些方案中,上述R 1、R 2、R 3、R 4和R 5分别独立地选自H、F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 3CH 2、(CH 3) 2CH、CH 3O、CH 3NH和CH 3NH(C=O)O,所述CH 3、CH 3CH 2、(CH 3) 2CH、CH 3O、CH 3NH和CH 3NH(C=O)O任选被1、2或3个R取代。
在本发明的一些方案中,上述R 1、R 2、R 3、R 4和R 5分别独立地选自H、F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 3CH 2、(CH 3) 2CH、CH 3O、CH 3NH、(CH 3) 2N、(CH 3) 2N(C=O)O和CH 3NH(C=O)O。
在本发明的一些方案中,上述环B选自吡唑基、咪唑基、吡咯基、噻吩基、呋喃基、三唑基、噁唑基、异噁唑基、噻唑基、异噻唑基、苯基、吡啶基、嘧啶基、哒嗪基、三嗪基、吗啉基、环戊烯基和环己烯基,所述吡唑基、咪唑基、吡咯基、噻吩基、呋喃基、三唑基、噁唑基、异噁唑基、噻唑基、异噻唑基、苯基、吡啶基、嘧啶基、哒嗪基、三嗪基、吗啉基、环戊烯基和环己烯基任选被1、2或3个R a取代。
在本发明的一些方案中,上述R a选自F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 3CH 2、(CH 3) 2CH、CH 3O、CH 3C(=O)。
在本发明的一些方案中,上述环B选自苯基、吡唑基、1-甲基-1H-吡唑基和1-(1H-吡唑-1-基)乙酮基。
在本发明的一些方案中,上述R 6选自H、F、Cl、Br、I和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R取代。
在本发明的一些方案中,上述R 6选自H、F、Cl、Br、I、CH 3、CF 3、CHF 2、CH 2F。
在本发明的一些方案中,上述R 7选自H、CN、NH 2、C 1-6烷基、C 1-6杂烷基、吗啉基、哌啶基、氮杂环丁烷基、氮杂环戊烷基、吡唑基、咪唑基、噁唑基、异恶唑基、噻唑基、异噻唑基、环己烷基、环戊烷基、苯基、吡啶基、哒嗪基、嘧啶基、吡嗪基,所述C 1-6烷基、C 1-6杂烷基、吗啉基、哌啶基、氮杂环丁烷基、氮杂环戊烷基、吡唑基、咪唑基、噁唑基、异恶唑基、噻唑基、异噻唑基、环己烷基、环戊烷基、苯基、吡啶基、哒嗪基、嘧啶基、吡嗪基任选被1、2或3个R取代。
在本发明的一些方案中,上述R 7选自H、CH 3、CN、NH 2
Figure PCTCN2019072393-appb-000003
Figure PCTCN2019072393-appb-000004
Figure PCTCN2019072393-appb-000005
所述
Figure PCTCN2019072393-appb-000006
Figure PCTCN2019072393-appb-000007
任选被1、2或3个R取代。
在本发明的一些方案中,上述R 7选自H、CH 3、CN、NH 2
Figure PCTCN2019072393-appb-000008
Figure PCTCN2019072393-appb-000009
在本发明的一些方案中,上述R 8选自H、C 1-4烷基和C 1-4杂烷基,所述C 1-4烷基和C 1-4杂烷基任选被1、2或3个R取代。
在本发明的一些方案中,上述R 8选自H、CH 3、CH 3CH 2、(CH 3) 2CHCH 2、(CH 3) 2CH、CH 3O、CH 3NH、(CH 3) 2N、(CH 3) 2NCH 2和CH 3NHCH 2
在本发明的一些方案中,上述结构单元
Figure PCTCN2019072393-appb-000010
选自
Figure PCTCN2019072393-appb-000011
Figure PCTCN2019072393-appb-000012
其中,R 9选自H和C 1-3烷基。
在本发明的一些方案中,上述结构单元
Figure PCTCN2019072393-appb-000013
选自
Figure PCTCN2019072393-appb-000014
Figure PCTCN2019072393-appb-000015
在本发明的一些方案中,上述结构单元
Figure PCTCN2019072393-appb-000016
选自H、CN、CH 3、CH 3CH 2、(CH 3) 2CH、(CH 3) 2N、(CH 3) 2NCH 2
Figure PCTCN2019072393-appb-000017
Figure PCTCN2019072393-appb-000018
在本发明的一些方案中,上述结构单元
Figure PCTCN2019072393-appb-000019
选自
Figure PCTCN2019072393-appb-000020
Figure PCTCN2019072393-appb-000021
在本发明的一些方案中,上述R选自F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 3CH 2、CH 3O、CF 3、CHF 2、CH 2F、环丙基、丙基、异丙基、N(CH 3) 2、NH(CH 3)和N(CH 2CH 3) 2,其他变量如本发明所定义。
在本发明的一些方案中,上述环A选自氮杂环丙烷、氮杂环丁烷、吡咯烷、哌啶基、哌嗪基、1,4-二氮环庚烷基和3,6-二氮杂二环[3.2.0]庚烷,所述氮杂环丙烷、氮杂环丁烷、吡咯烷、哌啶基、哌嗪基、1,4-二氮环庚烷基和3,6-二氮杂二环[3.2.0]庚烷任选被1、2或3个R取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 1、R 2、R 3、R 4和R 5分别独立地选自H、F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 3CH 2、(CH 3) 2CH、CH 3O、CH 3NH和CH 3NH(C=O)O,所述CH 3、CH 3CH 2、(CH 3) 2CH、CH 3O、CH 3NH和CH 3NH(C=O)O任选被1、2或3个R取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 1、R 2、R 3、R 4和R 5分别独立地选自H、F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 3CH 2、(CH 3) 2CH、CH 3O、CH 3NH、(CH 3) 2N、(CH 3) 2N(C=O)O和CH 3NH(C=O)O,其他变量如本发明所定义。
在本发明的一些方案中,上述环B选自吡唑基、咪唑基、吡咯基、噻吩基、呋喃基、三唑基、噁唑基、异噁唑基、噻唑基、异噻唑基、苯基、吡啶基、嘧啶基、哒嗪基、三嗪基、吗啉基、环戊烯基和环己烯基,所述吡唑基、咪唑基、吡咯基、噻吩基、呋喃基、三唑基、噁唑基、异噁唑基、噻唑基、异噻唑基、苯基、吡啶基、嘧啶基、哒嗪基、三嗪基、吗啉基、环戊烯基和环己烯基任选被1、2或3个R a取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R a选自F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 3CH 2、(CH 3) 2CH、CH 3O、CH 3C(=O),其他变量如本发明所定义。
在本发明的一些方案中,上述环B选自苯基、吡唑基、1-甲基-1H-吡唑基和1-(1H-吡唑-1-基)乙酮基,其他变量如本发明所定义。
在本发明的一些方案中,上述R 6选自H、F、Cl、Br、I和C 1-3烷基,所述C 1-3烷基任选被1、2或 3个R取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 6选自H、F、Cl、Br、I、CH 3、CF 3、CHF 2、CH 2F,其他变量如本发明所定义。
在本发明的一些方案中,上述R 7选自H、CN、NH 2、C 1-6烷基、C 1-6杂烷基、吗啉基、哌啶基、氮杂环丁烷基、氮杂环戊烷基、吡唑基、咪唑基、噁唑基、异恶唑基、噻唑基、异噻唑基、环己烷基、环戊烷基、苯基、吡啶基、哒嗪基、嘧啶基、吡嗪基,所述C 1-6烷基、C 1-6杂烷基、吗啉基、哌啶基、氮杂环丁烷基、氮杂环戊烷基、吡唑基、咪唑基、噁唑基、异恶唑基、噻唑基、异噻唑基、环己烷基、环戊烷基、苯基、吡啶基、哒嗪基、嘧啶基、吡嗪基任选被1、2或3个R取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 7选自H、CH 3、CN、NH 2
Figure PCTCN2019072393-appb-000022
Figure PCTCN2019072393-appb-000023
Figure PCTCN2019072393-appb-000024
所述
Figure PCTCN2019072393-appb-000025
Figure PCTCN2019072393-appb-000026
任选被1、2或3个R取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 7选自H、CH 3、CN、NH 2
Figure PCTCN2019072393-appb-000027
Figure PCTCN2019072393-appb-000028
Figure PCTCN2019072393-appb-000029
其他变量如本发明所定义。
在本发明的一些方案中,上述R 8选自H、C 1-4烷基和C 1-4杂烷基,所述C 1-4烷基和C 1-4杂烷基任选被1、2或3个R取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 8选自H、CH 3、CH 3CH 2、(CH 3) 2CHCH 2、(CH 3) 2CH、CH 3O、CH 3NH、(CH 3) 2N、(CH 3) 2NCH 2和CH 3NHCH 2,其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2019072393-appb-000030
选自
Figure PCTCN2019072393-appb-000031
Figure PCTCN2019072393-appb-000032
其中,R 9选自H和C 1-3烷基,其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2019072393-appb-000033
选自
Figure PCTCN2019072393-appb-000034
Figure PCTCN2019072393-appb-000035
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2019072393-appb-000036
选自H、CN、CH 3、CH 3CH 2、(CH 3) 2CH、(CH 3) 2N、(CH 3) 2NCH 2
Figure PCTCN2019072393-appb-000037
Figure PCTCN2019072393-appb-000038
Figure PCTCN2019072393-appb-000039
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2019072393-appb-000040
选自
Figure PCTCN2019072393-appb-000041
Figure PCTCN2019072393-appb-000042
Figure PCTCN2019072393-appb-000043
其他变量如本发明所定义。
在本发明的一些方案中,上述化合物、其药学上可接受的盐或其异构体,选自
Figure PCTCN2019072393-appb-000044
其中,L、R 1、R 2、R 4、R 5、R 6、R 7、R 8和R ,9如权利本发明所定义。
在本发明的一些方案中,上述化合物、其药学上可接受的盐或其异构体,选自
Figure PCTCN2019072393-appb-000045
其中,R 1、R 2、R 4、R 5、R 6、R 7、R 8、R 9、L和环B如本发明所定义。
在本发明的一些方案中,上述化合物、其药学上可接受的盐或其异构体,选自
Figure PCTCN2019072393-appb-000046
其中,R 1、R 2、R 4、R 5、R 6、R 7、R 8、L、R 9和R a如本发明所定义。
本发明还提供下式化合物、其药学上可接受的盐或其异构体,选自
Figure PCTCN2019072393-appb-000047
Figure PCTCN2019072393-appb-000048
Figure PCTCN2019072393-appb-000049
Figure PCTCN2019072393-appb-000050
在本发明的一些方案中,上述化合物、其药学上可接受的盐或其异构体,选自
Figure PCTCN2019072393-appb-000051
Figure PCTCN2019072393-appb-000052
Figure PCTCN2019072393-appb-000053
本发明还提供上述化合物、其药学上可接受的盐或其异构体在制备治疗癌症药物中的应用。
在本发明的一些方案中,上述癌症包括肺癌、淋巴瘤、食管癌、卵巢癌、胰腺癌、直肠癌、脑胶质瘤、子宫颈癌、尿路上皮癌、胃癌、子宫内膜癌、肝癌、胆管癌、乳腺癌、结肠癌、白血病和黑色素瘤。
本发明还有一些方案是由上述各变量任意组合而来。
技术效果
本发明化合物包括一种取代吡啶酮并嘧啶类衍生物,针对KRAS G12C突变蛋白具有较高的细胞抗增殖活性,而且针对野生型的细胞活性较弱,表现出很好的选择性,显示出该类化合物作为潜在的治疗用药具有较佳的安全性。本发明化合物母核为吡啶酮并嘧啶结构,极性较大,具有较高的溶解度,左侧的芳环上取代基对这个化合物的活性、选择性及药代动力学性质有显著影响。该类结构化学稳定性高,在体外也显示出较高的代谢稳定性。在大鼠药代动力学评价实验中,本发明化合物显示出较参考化合物ARS-1620更高的暴露量和更好的口服利用度。本发明化合物在人非小细胞肺癌NCI-H358皮下异体移植肿瘤模型和人胰腺癌x-MIA-PaCa2皮下异种移植瘤模型中均展示出比参考化合物ARS-1620更显著的抑瘤作用。另外,吡啶酮并嘧啶结构文献报道较少,在其结构上进行取代或衍生化学上有一定难度。本发明也提供了一条新颖的吡啶酮并嘧啶结构合成方法,该方法可以从不同取代的胺出发,通过先构建吡啶酮结构再构建嘧啶环的方法合成一系列衍生物。该方法未见文献报道,是合成此类化合物的一种有效方法。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物的中性形式接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物的中性形式接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
除了盐的形式,本发明所提供的化合物还存在前药形式。本文所描述的化合物的前药容易地在生理条件下发生化学变化从而转化成本发明的化合物。此外,前体药物可以在体内环境中通过化学或生化方法被转换到本发明的化合物。
本发明的某些化合物可以以非溶剂化形式或者溶剂化形式存在,包括水合物形式。一般而言,溶剂化形式与非溶剂化的形式相当,都包含在本发明的范围之内。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(D)”或者“(+)”表示右旋,“(L)”或者“(-)”表示左旋,“(DL)”或者“(±)”表示外消旋。
除非另有说明,用楔形实线键
Figure PCTCN2019072393-appb-000054
和楔形虚线键
Figure PCTCN2019072393-appb-000055
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2019072393-appb-000056
和直形虚线键
Figure PCTCN2019072393-appb-000057
表示立体中心的相对构型,用波浪线
Figure PCTCN2019072393-appb-000058
表示楔形实线键
Figure PCTCN2019072393-appb-000059
或楔形虚线键
Figure PCTCN2019072393-appb-000060
或用波浪线
Figure PCTCN2019072393-appb-000061
表示直形实线键
Figure PCTCN2019072393-appb-000062
和直形虚线键
Figure PCTCN2019072393-appb-000063
本发明的化合物可以存在特定的。除非另有说明,术语“互变异构体”或“互变异构体形式”是指在室温下,不同官能团异构体处于动态平衡,并能很快的相互转化。若互变异构体是可能的(如在溶液中), 则可以达到互变异构体的化学平衡。例如,质子互变异构体(proton tautomer)(也称质子转移互变异构体(prototropic tautomer))包括通过质子迁移来进行的互相转化,如酮-烯醇异构化和亚胺-烯胺异构化。价键异构体(valence tautomer)包括一些成键电子的重组来进行的相互转化。其中酮-烯醇互变异构化的具体实例是戊烷-2,4-二酮与4-羟基戊-3-烯-2-酮两个互变异构体之间的互变。
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示 该结构实际上是A-Z。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。
当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2019072393-appb-000064
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2019072393-appb-000065
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2019072393-appb-000066
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,术语“杂”表示杂原子或杂原子团(即含有杂原子的原子团),包括碳(C)和氢(H)以外的原子以及含有这些杂原子的原子团,例如包括氧(O)、氮(N)、硫(S)、硅(Si)、锗(Ge)、铝(Al)、硼(B)、-O-、-S-、、-C(=O)O-、-C(=O)-、-C(=S)-、-S(=O)、-S(=O) 2-,以及任选被取代的-C(=O)N(H)-、-N(H)-、-C(=NH)-、-S(=O) 2N(H)-或-S(=O)N(H)-。
除非另有规定,“环”表示被取代或未被取代的环烷基、杂环烷基、环烯基、杂环烯基、环炔基、杂环炔基、芳基或杂芳基。所述的环包括单环,也包括螺环、并环和桥环等双环或多环体系。环上原子的数目通常被定义为环的元数,例如,“5~7元环”是指环绕排列5~7个原子。除非另有规定,该环任选地包含1~3个杂原子。因此,“5~7元环”包括例如苯基、吡啶基和哌啶基;另一方面,术语“5~7元杂环烷基”包括吡啶基和哌啶基,但不包括苯基。术语“环”还包括含有至少一个环的环系,其中的每一个“环”均独立地符合上述定义。
除非另有规定,术语“烷基”用于表示直链或支链的饱和的碳氢基团,在一些实施方案中,所述烷基为C 1-12烷基;在另一些实施方案中,所述烷基为C 1-6烷基;在另一些实施方案中,所述烷基为C 1-3烷基。其可以是单取代(如-CH 2F)或多取代的(如-CF 3),可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。烷基的实例包括但不限于甲基(Me),乙基(Et),丙基(包括n-丙基和异丙基),丁基(包括n-丁基,异丁基,s-丁基和t-丁基),戊基(包括n-戊基,异戊基和新戊基)、己基等。
除非另有规定,“烯基”用于表示直链或支链的包含一个或多个碳-碳双键的碳氢基团,碳-碳双键可以位于该基团的任何位置上。在一些实施方案中,所述烯基为C 2-8烯基;在另一些实施方案中,所述烯基为C 2-6烯基;在另一些实施方案中,所述烯基为C 2-4烯基。其可以是单取代或多取代的,可以是一价、二价或者多价。烯基的实例包括但不限于乙烯基,丙烯基,丁烯基,戊烯基,己烯基,丁间二烯基,戊间二烯基,己间二烯基等。
除非另有规定,术语“杂烷基”本身或者与另一术语联合,表示由一定数目碳原子和至少一个杂原子 或杂原子团组成的,稳定的直链或支链的烷基原子团或其组合物。在一些实施方案中,杂原子选自B、O、N和S,其中氮和硫原子任选地被氧化,氮杂原子任选地被季铵化。在另一些实施方案中,杂原子团选自-C(=O)O-、-C(=O)-、-C(=S)-、-S(=O)、-S(=O) 2-、-C(=O)N(H)-、-N(H)-、-C(=NH)-、-S(=O) 2N(H)-和-S(=O)N(H)-。在一些实施方案中,所述杂烷基为C 1-6杂烷基;在另一些实施方案中,所述杂烷基为C 1-3杂烷基。杂原子或杂原子团可以位于杂烷基的任何内部位置,包括该烷基与分子其余部分的连接位置,但术语“烷氧基”、“烷氨基”和“烷硫基”(或硫代烷氧基)属于惯用表达,是指分别通过一个氧原子、氨基或硫原子连接到分子的其余部分的那些烷基基团。杂烷基的实例包括但不限于-OCH 3、-OCH 2CH 3、-OCH 2CH 2CH 3、-OCH 2(CH 3) 2、-CH 2-CH 2-O-CH 3、-NHCH 3、-N(CH 3) 2、-NHCH 2CH 3、-N(CH 3)(CH 2CH 3)、-CH 2-CH 2-NH-CH 3、-CH 2-CH 2-N(CH 3)-CH 3、-SCH 3、-SCH 2CH 3、-SCH 2CH 2CH 3、-SCH 2(CH 3) 2、-CH 2-S-CH 2-CH 3、-CH 2-CH 2、-S(=O)-CH 3、-CH 2-CH 2-S(=O) 2-CH 3、-CH=CH-O-CH 3、-CH 2-CH=N-OCH 3和–CH=CH-N(CH 3)-CH 3。至多两个杂原子可以是连续的,例如-CH 2-NH-OCH 3
除非另有规定,术语“杂烯基”本身或者与另一术语联合,表示由一定数目碳原子和至少一个杂原子或杂原子团组成的,稳定的直链或支链的烯基原子团或其组合物。在一些实施方案中,杂原子选自B、O、N和S,其中氮和硫原子任选地被氧化,氮杂原子任选地被季铵化。在另一些实施方案中,杂原子团选自-C(=O)O-、-C(=O)-、-C(=S)-、-S(=O)、-S(=O) 2-、-C(=O)N(H)-、-N(H)-、-C(=NH)-、-S(=O) 2N(H)-和-S(=O)N(H)-。在一些实施方案中,所述杂烯基为C 2-6杂烯基;在另一些实施方案中,所述杂烷基为C 2-4杂烯基。杂原子或杂原子团可以位于杂烯基的任何内部位置,包括该烯基与分子其余部分的连接位置,但术语“烯基氧基”、“烯基氨基”和“烯基硫基”属于惯用表达,是指分别通过一个氧原子、氨基或硫原子连接到分子的其余部分的那些烯基基团。杂烯基的实例包括但不限于-O-CH=CH 2、-O-CH=CHCH 3、-O-CH=C(CH 3) 2、-CH=CH-O-CH 3、-O-CH=CHCH 2CH 3、-CH 2-CH=CH-OCH 3、-NH-CH=CH 2、-N(CH=CH 2)-CH 3、-CH=CH-NH-CH 3、-CH=CH-N(CH 3) 2、-S-CH=CH 2、-S-CH=CHCH 3、-S-CH=C(CH 3) 2、-CH 2-S-CH=CH 2、-S(=O)-CH=CH 2和-CH=CH-S(=O) 2-CH 3。至多两个杂原子可以是连续的,例如-CH=CH-NH-OCH 3
除非另有规定,术语“杂炔基”本身或者与另一术语联合,表示由一定数目碳原子和至少一个杂原子或杂原子团组成的,稳定的直链或支链的炔基原子团或其组合物。在一些实施方案中,杂原子选自B、O、N和S,其中氮和硫原子任选地被氧化,氮杂原子任选地被季铵化。在另一些实施方案中,杂原子团选自-C(=O)O-、-C(=O)-、-C(=S)-、-S(=O)、-S(=O) 2-、-C(=O)N(H)-、-N(H)-、-C(=NH)-、-S(=O) 2N(H)-和-S(=O)N(H)-。在一些实施方案中,所述杂炔基为C 2-6杂炔基;在另一些实施方案中,所述杂烷基为C 2-4杂炔基。杂原子或杂原子团可以位于杂炔基的任何内部位置,包括该炔基与分子其余部分的连接位置,但术语“炔基氧基”、“炔基氨基”和“炔基硫基”属于惯用表达,是指分别通过一个氧原子、氨基或硫原子连接到分子的其余部分的那些炔基基团。杂炔基的实例包括但不限于
Figure PCTCN2019072393-appb-000067
Figure PCTCN2019072393-appb-000068
Figure PCTCN2019072393-appb-000069
至多两个杂原子可以是连续的,例如
Figure PCTCN2019072393-appb-000070
除非另有规定,“环烷基”包括任何稳定的环状烷基,其包括单环、双环或者三环体系,其中双环和三环体系包括螺环、并环和桥环。在一些实施方案中,所述环烷基为C 3-8环烷基;在另一些实施方案中,所述环烷基为C 3-6环烷基;在另一些实施方案中,所述环烷基为C 5-6环烷基。其可以是单取代或多取代的,可以是一价、二价或者多价。这些环烷基的实例包括,但不限于,环丙基、环丁基、环戊基、环己基、环庚基、降冰片烷基、[2.2.2]二环辛烷、[4.4.0]二环癸烷等。
除非另有规定,“环烯基”包括任何稳定的环状烯基,在该基团的任何位点含有一个或多个不饱和的碳-碳双键,其包括单环、双环或者三环体系,其中双环和三环体系包括螺环、并环和桥环,但是此体系的任意环都是非芳香性的。在一些实施方案中,所述环烯基为C 3-8环烯基;在另一些实施方案中,所述环烯基为C 3-6环烯基;在另一些实施方案中,所述环烯基为C 5-6环烯基。其可以是单取代或多取代的,可以是一价、二价或者多价。这些环烯基的实例包括,但不限于,环戊烯基、环己烯基等。
除非另有规定,“环炔基”包括任何稳定的环状炔基,在该基团的任何位点含有一个或多个碳-碳三键,其包含单环、双环或者三环体系,其中双环和三环体系包括螺环、并环和桥环。其可以是单取代或多取代的,可以是一价、二价或者多价。
除非另有规定,术语“杂环烷基”本身或者与其他术语联合分别表示环化的“杂烷基”,其包括单环、双环和三环体系,其中双环和三环体系包括螺环、并环和桥环。此外,就该“杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。在一些实施方案中,所述杂环烷基为4~6元杂环烷基;在另一些实施方案中,所述杂环烷基为5~6元杂环烷基。杂环烷基的实例包括但不限于氮杂环丁基、氧杂环丁基、硫杂环丁基、吡咯烷基、吡唑烷基、咪唑烷基、四氢噻吩基(包括四氢噻吩-2-基和四氢噻吩-3-基等)、四氢呋喃基(包括四氢呋喃-2-基等)、四氢吡喃基、哌啶基(包括1-哌啶基、2-哌啶基和3-哌啶基等)、哌嗪基(包括1-哌嗪基和2-哌嗪基等)、吗啉基(包括3-吗啉基和4-吗啉基等)、二噁烷基、二噻烷基、异噁唑烷基、异噻唑烷基、1,2-噁嗪基、1,2-噻嗪基、六氢哒嗪基、高哌嗪基、高哌啶基或氧杂环庚烷基。
除非另有规定,术语“杂环烯基”本身或者与其他术语联合分别表示环化的“杂烯基”,其包括单环、双环和三环体系,其中双环和三环体系包括螺环、并环和桥环,但是此体系的任意环都是非芳香性的。此外,就该“杂环烯基”而言,杂原子可以占据杂环烯基与分子其余部分的连接位置。在一些实施方案中,所述杂环烯基为4~6元杂环烯基;在另一些实施方案中,所述杂环烯基为5~6元杂环烯基。杂环烯基的实例包括但不限于
Figure PCTCN2019072393-appb-000071
Figure PCTCN2019072393-appb-000072
除非另有规定,术语“杂环炔基”本身或者与其他术语联合分别表示环化的“杂炔基”,其包括单环、 双环和三环体系,其中双环和三环体系包括螺环、并环和桥环。此外,就该“杂环炔基”而言,杂原子可以占据杂环炔基与分子其余部分的连接位置。在一些实施方案中,所述杂环炔基为4~6元杂环炔基;在另一些实施方案中,所述杂环炔基为5~6元杂环炔基。除非另有规定,术语“卤代素”或“卤素”本身或作为另一取代基的一部分表示氟、氯、溴或碘原子。此外,术语“卤代烷基”意在包括单卤代烷基和多卤代烷基。例如,术语“卤代(C 1-C 4)烷基”意在包括但不仅限于三氟甲基、2,2,2-三氟乙基、4-氯丁基和3-溴丙基等等。除非另有规定,卤代烷基的实例包括但不仅限于:三氟甲基、三氯甲基、五氟乙基,和五氯乙基。
“烷氧基”代表通过氧桥连接的具有特定数目碳原子的上述烷基,除非另有规定,C 1-6烷氧基包括C 1、C 2、C 3、C 4、C 5和C 6的烷氧基。在一些实施方案中,所述烷氧基为C 1-3烷氧基。烷氧基的实例包括但不限于:甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、仲丁氧基、叔丁氧基、正戊氧基和S-戊氧基。
除非另有规定,本发明术语“芳环”和“芳基”可以互换使用,术语“芳环”或“芳基”表示多不饱和的碳环体系,它可以是单环、双环或多环体系,其中至少一个环是芳香性的,所述双环和多环体系中的各个环稠合在一起。其可以是单取代或多取代的,可以是一价、二价或者多价,在一些实施方案中,所述芳基为C 6-12芳基;在另一些实施方案中,所述芳基为C 6-10芳基。芳基的实例包括但不限于苯基、萘基(包括1-萘基和2-萘基等)。上述任意一个芳基环系的取代基选自本发明所述的可接受的取代基。
除非另有规定,本发明术语“杂芳环”和“杂芳基”可以互换使用,术语“杂芳基”是指含有1、2、3或4个独立选自B、N、O和S的杂原子的芳基(或芳环),其可以是单环、双环或三环体系,其中氮原子可以是被取代的或未取代的(即N或NR,其中R是H或本文已经定义过的其他取代基),且任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。杂芳基可通过杂原子连接到分子的其余部分。在一些实施方案中,所述杂芳基为5-10元杂芳基;在另一些实施方案中,所述杂芳基为5-6元杂芳基。所述杂芳基的实例包括但不限于吡咯基(包括N-吡咯基、2-吡咯基和3-吡咯基等)、吡唑基(包括2-吡唑基和3-吡唑基等)、咪唑基(包括N-咪唑基、2-咪唑基、4-咪唑基和5-咪唑基等)、噁唑基(包括2-噁唑基、4-噁唑基和5-噁唑基等)、三唑基(1H-1,2,3-三唑基、2H-1,2,3-三唑基、1H-1,2,4-三唑基和4H-1,2,4-三唑基等)、四唑基、异噁唑基(3-异噁唑基、4-异噁唑基和5-异噁唑基等)、噻唑基(包括2-噻唑基、4-噻唑基和5-噻唑基等)、呋喃基(包括2-呋喃基和3-呋喃基等)、噻吩基(包括2-噻吩基和3-噻吩基等)、吡啶基(包括2-吡啶基、3-吡啶基和4-吡啶基等)、吡嗪基、嘧啶基(包括2-嘧啶基和4-嘧啶基等)、苯并噻唑基(包括5-苯并噻唑基等)、嘌呤基、苯并咪唑基(包括2-苯并咪唑基等)、吲哚基(包括5-吲哚基等)、异喹啉基(包括1-异喹啉基和5-异喹啉基等)、喹喔啉基(包括2-喹喔啉基和5-喹喔啉基等)、喹啉基(包括3-喹啉基和6-喹啉基等)、吡嗪基、嘌呤基、苯基并噁唑基。上述任意一个杂芳基环系的取代基选自本发明所述的可接受的取代基。
除非另有规定,C n-n+m或C n-C n+m包括n至n+m个碳的任何一种具体情况,例如C 1-12包括C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11、和C 12,也包括n至n+m中的任何一个范围,例如C 1-12包括C 1-3、C 1-6、C 1-9、C 3-6、C 3-9、C 3-12、C 6-9、C 6-12、和C 9-12等;同理,n元至n+m元表示环上原子数为n至n+m个,例如3-12元环包括3元环、4元环、5元环、6元环、7元环、8元环、9元环、10元环、 11元环、和12元环,也包括n至n+m中的任何一个范围,例如3-12元环包括3-6元环、3-9元环、5-6元环、5-7元环、6-7元环、6-8元环、和6-10元环等。
术语“离去基团”是指可以被另一种官能团或原子通过取代反应(例如亲和取代反应)所取代的官能团或原子。例如,代表性的离去基团包括三氟甲磺酸酯;氯、溴、碘;磺酸酯基,如甲磺酸酯、甲苯磺酸酯、对溴苯磺酸酯、对甲苯磺酸酯等;酰氧基,如乙酰氧基、三氟乙酰氧基等等。
术语“保护基”包括但不限于“氨基保护基”、“羟基保护基”或“巯基保护基”。术语“氨基保护基”是指适合用于阻止氨基氮位上副反应的保护基团。代表性的氨基保护基包括但不限于:甲酰基;酰基,例如链烷酰基(如乙酰基、三氯乙酰基或三氟乙酰基);烷氧基羰基,如叔丁氧基羰基(Boc);芳基甲氧羰基,如苄氧羰基(Cbz)和9-芴甲氧羰基(Fmoc);芳基甲基,如苄基(Bn)、三苯甲基(Tr)、1,1-二-(4'-甲氧基苯基)甲基;甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。术语“羟基保护基”是指适合用于阻止羟基副反应的保护基。代表性羟基保护基包括但不限于:烷基,如甲基、乙基和叔丁基;酰基,例如链烷酰基(如乙酰基);芳基甲基,如苄基(Bn),对甲氧基苄基(PMB)、9-芴基甲基(Fm)和二苯基甲基(二苯甲基,DPM);甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。
本发明实验例供试品中,某化合物的甲酸盐系该化合物经色谱法在甲酸体系(A相:H2O+0.225%甲酸,B相:乙腈)下分离纯化得到。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明所使用的溶剂可经市售获得。
本发明采用下述缩略词:DCM代表二氯甲烷;DMF代表N,N-二甲基甲酰胺;DMSO代表二甲亚砜;NMP代表N-甲基吡咯烷酮;Boc代表叔丁氧羰基是一种胺保护基团;THF代表四氢呋喃;NBS代表N-溴代丁二酰亚胺;TEA代表三乙胺;DIPEA代表N,N-二异丙基乙胺;NaOH代表氢氧化钠;DBU代表1,8-二氮杂二环十一碳-7-烯;TFE代表三氟乙醇;TFA代表三氟乙酸;HOBt代表1-羟基苯并三唑;EDCI.HCl代表1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐,NCS代表N-氯代丁二酰亚胺;EDTA-K 2代表乙二胺四乙酸二钾;PEG400代表聚乙二醇400;PO代表口服给药;IV代表静脉注射给药。
化合物经手工或者
Figure PCTCN2019072393-appb-000073
软件命名,市售化合物采用供应商目录名称。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
方案A
Figure PCTCN2019072393-appb-000074
当L-R 7是H,且R 1、R 2、R 3、R 4和R 5均不是OH时,反应按方案A进行。
化合物A1和合适的试剂(比如原甲酸三乙酯、硫酸/甲酸)发生关环反应得到化合物A2。化合物A2与合适的氯代试剂(如三氯氧磷)反应得到化合物A3。化合物A3与Boc保护的胺在合适的碱(如TEA或DIPEA)作用下反应得到化合物A4。化合物A4在酸性条件下发生脱保护反应得到化合物A5。若化合物A5中的R 1、R 2、R 3、R 4和R 5中没有NH 2,将化合物A5在合适的碱(如TEA)存在下和合适的酰化试剂(如烯基酰氯)反应得到化合物(Ⅰ);若化合物A5中的R 1、R 2、R 3、R 4和R 5中有NH 2,将化合物A5在合适的碱(如TEA)存在下和合适的酰化试剂(如烯基酰氯)反应,得到的中间体化合物再由相应位置的硝基发生还原反应即可得到化合物(Ⅰ)。
方案B
Figure PCTCN2019072393-appb-000075
当L-R 7是H,且R 1、R 2、R 3、R 4和R 5中有OH(例如R 1是OH)时,反应按方案B进行。
化合物A1与合适的试剂(比如原甲酸三乙酯、硫酸/甲酸)发生关环反应得到化合物B1,然后化合物B1用吡啶盐酸盐处理得到脱甲基产物B2。将化合物B2在合适的碱(如吡啶)的存在下和乙酸酐反应得到化合物B3。化合物B3与合适的氯代试剂(如三氯氧磷)反应得到化合物B4,再在合适的碱(如DIPEA)存在下和Boc保护的胺反应得到化合物B5。将化合物B5脱乙酰基和脱Boc保护基后分别得到化合物B6和化合物B7。若化合物B7中的R 1、R 2、R 3、R 4和R 5中没有NH 2,将化合物B7在合适的碱(如TEA)存在下和合适的酰化试剂(如烯基酰氯)反应得到化合物(Ⅰ);若化合物B7中的R 1、R 2、R 3、R 4和R 5中有NH 2,将化合物B7在合适的碱(如TEA)存在下和合适的酰化试剂(如烯基酰氯)反应,得到的中间体化合物再由相应位置的硝基发生还原反应即可得到化合物(Ⅰ)。
方案C
Figure PCTCN2019072393-appb-000076
当L-R 7不是H,且R 1、R 2、R 3、R 4和R 5均不是OH时,反应按方案C进行。
化合物A1与合适的试剂(比如尿素或用DBU和TFE制备的等离子液体[HDBU +][TFE -]和二氧化碳气体)发生关环反应得到化合物C1。化合物C1与合适的氯代试剂(如三氯氧磷)反应得到双氯代产物C2,再在合适的碱(如DIPEA)存在下和Boc保护的胺反应,得到化合物C3。化合物C3在合适的碱(如DIPEA或氟化钾)存在下和亲核试剂(如取代的氨基,醇或氰化钾)反应,得到化合物C4。将化合物C4发生脱保护反应得到化合物C5。若化合物C5中的R 1、R 2、R 3、R 4和R 5中没有NH 2,将化合物C5在合适的碱(如TEA)存在下和合适的酰化试剂(如烯基酰氯)反应得到化合物(Ⅰ);若化合物C5中的R 1、R 2、R 3、R 4和R 5中有NH 2,将化合物C5在合适的碱(如TEA)存在下和合适的酰化试剂(如烯基酰氯)反应,得到的中间体化合物再由相应位置的硝基发生还原反应即可得到化合物(Ⅰ)。
方案D
Figure PCTCN2019072393-appb-000077
当L-R 7不是H,且R 1、R 2、R 3、R 4和R 5中有OH(例如R 1是OH)时,反应按方案D进行。
化合物A1与合适的试剂(比如尿素或用DBU和TFE制备的等离子液体[HDBU +][TFE -]和二氧化碳气体)发生关环反应得到化合物D1,然后化合物D1用吡啶盐酸盐处理得到脱甲基产物D2。将化合物D2在合适的碱(如吡啶)存在下和乙酸酐反应得到化合物D3。化合物D3与合适的氯代试剂(如三氯氧磷)反应得到化合物D4,再在合适的碱(如DIPEA)存在下和Boc保护的胺反应得到化合物D5。化合物D5在在合适的碱(如DIPEA或氟化钾)存在下和亲核试剂(如取代的氨基,醇或氰化钾)反应得到化合物D6。将化合物D6脱乙酰基和脱Boc保护基后分别得到化合物D7和化合物D8。若化合物D8中的R 1、R 2、R 3、R 4和R 5中没有NH 2,将化合物D8在合适的碱(如TEA)存在下和合适的酰化试剂(如烯基酰氯)反应得到化合物(Ⅰ);若化合物D8中的R 1、R 2、R 3、R 4和R 5中有NH 2,将化合物D8在合适的碱(如TEA)存在下和合适的酰化试剂(如烯基酰氯)反应,得到的中间体化合物再由相应位置的硝基发生还原反应即可得到化合物(Ⅰ)。
方案E
Figure PCTCN2019072393-appb-000078
在上述方案E中,化合物E1和合适的酰氯(如3-氯-3-氧代丙酸甲酯)反应得到化合物E2。化合物E4的合成有两种方法:①化合物E2和合适的烯醚(如(E)-4-乙氧基-1,1,1-三氟-3-丁烯-2-酮)缩合得到化合物E3。将化合物E3在对甲苯磺酸等脱水剂作用下加热反应,得到脱水后关环得到化合物A4;②化合物E2在强碱(如甲醇钠)存在下,直接关环得到化合物E4。化合物E4水解得到化合物E5,然后再经过库尔提斯(Curtius)重排反应,得到Boc保护的氨基化合物E6。将化合物E6脱保护得到化合物E7,再将化合物E7用合适的溴代试剂(如NBS)溴代得到化合物E8。化合物E8和合适的氰基化试剂(如氰化亚酮)反应得到化合物E9。化合物E9水解得到化合物A1。
实施例1
Figure PCTCN2019072393-appb-000079
第一步:
将化合物1a(4.8克,28.34毫摩尔)溶于乙酸乙酯(10毫升)中,在氮气保护下加入钯/碳(500毫克,10%)。将反应液用氢气置换几次后,在氢气球下于15℃搅拌反应6小时。将反应混合物过滤,滤液浓缩后得到化合物1b。 1H NMR(400MHz,CDCl 3)δ6.71-6.62(m,3H),3.88(s,3H),3.76(brs,2H).
第二步:
将化合物1b(4.00克,28.34毫摩尔)和TEA(5.74克,56.68毫摩尔)溶于DCM(50毫升)中,在15℃时搅拌滴加3-氯-3-氧代丙酸甲酯(5.00克,36.62毫摩尔)。滴完后,将反应混合物继续在15℃搅拌反应5分钟,然后用DCM(50毫升)稀释。将反应液分别用5%的稀盐酸(50毫升)和饱和食盐水(50毫升)洗涤,有机相用无水硫酸钠干燥,然后过滤。滤液浓缩后得到化合物1c。LCMS(ESI)m/z:264.0(M+23)。
第三步:
将化合物1c(6.50克,26.95毫摩尔),(E)-4-乙氧基-1,1,1-三氟-3-丁烯-2-酮(4.53克,26.95毫摩 尔)和DBU(4.31克,28.30毫摩尔)溶于THF(100毫升),在15℃搅拌反应2小时后浓缩。将残余物溶于乙酸乙酯(100毫升),分别用5%的稀盐酸(100毫升)和饱和食盐水(100毫升)洗涤。有机相分离后用无水硫酸钠干燥,过滤。滤液浓缩得到化合物1d。
第四步:
将化合物1d(10.50克,27.54毫摩尔)和一水合对甲苯磺酸(314.32毫克,1.65毫摩尔)溶于甲苯(150毫升),加热到回流。反应生成的水使用分水器分离。反应液回流1小时后,停止回流,冷却到15℃,然后分别用水(50毫升),饱和碳酸氢钠溶液(50毫升)和水(50毫升)洗涤。将有机相收集后,用无水硫酸钠干燥,过滤。滤液浓缩后得到化合物1e。LCMS(ESI)m/z:345.9(M+1)。
第五步:
将化合物1e(8.20克,23.75毫摩尔)溶于THF(80毫升),然后加入NaOH水溶液(80毫升,2M)。将反应液在15℃搅拌反应0.5小时后,加压浓缩除去部分溶剂,然后再用水(50毫升)稀释。将得到的混合物用甲基叔丁醚(80毫升*2)洗涤,分离出水相。将水相用浓盐酸调pH值到2,然后用乙酸乙酯(100毫升*2)萃取。将合并的有机相用饱和食盐水(120毫升)洗涤,经无水硫酸钠干燥后过滤,滤液浓缩得到化合物1f。 1H NMR(400MHz,CDCl 3)δ8.61(d,J=7.2Hz,1H),7.49-7.43(m,1H),7.05(d,J=7.2Hz,1H),6.86-6.81(m,2H),3.76(s,3H);LCMS(ESI)m/z:332.1(M+1)。
第六步:
将化合物1f(6.30克,19.02毫摩尔)和TEA(2.89克,28.53毫摩尔)溶于叔丁醇(100.00毫升),再加入叠氮磷酸二苯酯(6.28克,22.82毫摩尔)。将反应液加热到75℃反应2小时,然后减压浓缩。残余物经硅胶柱层析(石油醚:乙酸乙酯=10:1)纯化,得到化合物1g。LCMS(ESI)m/z:425.0(M+23)。
第七步:
将化合物1g(4.70克,11.68毫摩尔)溶于盐酸/甲醇溶液(50毫升,4M),在12℃搅拌反应13小时,然后减压浓缩。将残余物用饱和碳酸钠溶液(40毫升)中和,然后用乙酸乙酯萃取(50毫升*3)。合并萃取液,用饱和食盐水(80毫升)洗涤,无水硫酸钠干燥,过滤。滤液浓缩后得到化合物1h。LCMS(ESI)m/z:303.0(M+1)。
第八步:
将NBS(64.78毫克,363.97微摩尔)加入到化合物1h(100毫克,330.88微摩尔)的DMF溶液(2毫升)中,然后在20℃搅拌反应0.5小时,再用水(10毫升)淬灭反应。将混合物用乙酸乙酯萃取(10毫升*3)萃取,合并萃取液用饱和食盐水(30毫升)洗涤,无水硫酸钠干燥后过滤。滤液减压浓缩,再用制备的TLC(石油醚:乙酸乙酯=3:1)纯化,得到化合物1i。 1H NMR(400MHz,CDCl 3)δ7.38-7.34(m,1H),6.86(s,1H),6.79-6.73(m,2H),4.92(brs,2H),3.72(s,3H);LCMS(ESI)m/z:380.9(M+1)。
第九步:
将化合物1i(2.60克,6.82毫摩尔)和氰化亚铜(733.17毫克,8.18毫摩尔)溶于NMP(15毫升)中,在微波反应器中加热到190℃反应4.5小时。将反应液冷却到20℃,再加入乙酸乙酯(30毫升),水(30毫升)和浓氨水(10毫升)。将有机相分离后用饱和食盐水(50毫升)洗涤,无水硫酸钠干燥,过滤后浓缩。残余物用硅胶柱层析层析(石油醚:乙酸乙酯=3:1)纯化,得到化合物1j。LCMS(ESI) m/z:328.0(M+1)。
第十步:
将浓硫酸(36.80克,375.22毫摩尔)用水(5毫升)稀释,然后加入化合物1j(1.20克,3.67毫摩尔)。将反应混合物加热到80℃,搅拌反应1小时后冷却,倒入到冰水(200克)中,再用浓氨水调pH值到8。将此混合物用乙酸乙酯(40毫升*2)萃取,合并萃取液,饱和食盐水(50毫升)洗涤,无水硫酸钠干燥,过滤后浓缩。残余物用硅胶柱层析(石油醚:乙酸乙酯=1:1)纯化,得到化合物1k。LCMS(ESI)m/z:346.0(M+1)。
第十一步:
将化合物1k(0.9克,2.61毫摩尔)加入到原甲酸三乙酯(30毫升)中,加热到80℃反应2小时,然后减压浓缩。将残余物溶于乙酸乙酯(30毫升)中,分别用饱和碳酸氢钠溶液(20毫升)和饱和食盐水洗涤,无水硫酸钠干燥后过滤。滤液浓缩后得到化合物1l。LCMS(ESI)m/z:356.0(M+1)。
第十二步:
将化合物1l(0.9克,2.53毫摩尔)加入到三氯氧磷(10毫升,107.61毫摩尔)中,加热到80℃反应1小时,然后减压浓缩。往残余物中加入甲苯(15毫升),减压浓缩后得到化合物1m。LCMS(ESI)m/z:374.0(M+1)。
第十三步:
将化合物1m(1.00克,2.68毫摩尔),哌嗪-1-甲酸叔丁酯(498.41毫克,2.68毫摩尔)和TEA(812.36毫克,8.03毫摩尔)溶于DCM(20毫升)中,然后在15℃反应2小时。再补加TEA(812.36毫克,8.03毫摩尔),继续在15℃反应16小时。将反应液用DCM(30毫升)稀释,再分别用5%的稀盐酸(50毫升)和水洗涤,无水硫酸钠干燥,过滤后浓缩。将残余物用硅胶柱层析(石油醚:乙酸乙酯=2:1)纯化,得到化合物1n。 1H NMR(400MHz,CDCl 3)δ8.81(s,1H),7.39-7.34(m,1H),6.89(s,1H),6.80-6.75(m,2H),3.70-3.68(m,7H),3.59-3.52(m,4H),1.43(s,9H);LCMS(ESI)m/z:524.3(M+1)。
第十四步:
将化合物1n(0.45克,859.63微摩尔)加入到盐酸/甲醇溶液中(20毫升,4摩尔每升),在15℃反应2小时,浓缩得到化合物1o。LCMS(ESI)m/z:424.1(M+1)。
第十五步:
将1o(50毫克,108.74微摩尔)和TEA(33.01毫克,326.21微摩尔)加到DCM(5毫升)中,冷却到-30℃后加入丙烯酰氯(11.81毫克,130.48微摩尔)。将反应液在-30℃搅拌反应0.5小时,然后用稀盐酸(5毫升,0.5摩尔每升)淬灭反应。有机相分离后,用无水硫酸钠干燥,过滤后浓缩。残余物用制备的TLC(二氯甲烷:甲醇=20:1)纯化,得到粗产品。粗产品用制备的HPLC(甲酸)纯化,得到实施例1。 1H NMR(400MHz,CD 3OD)δ8.79(s,1H),7.61-7.55(m,1H),7.29(s,1H),7.06(d,J=8.8Hz,1H),6.96(t,J=8.8Hz,1H),6.87-6.80(m,1H),6.30(dd,J=16.81,1.88Hz,1H),5.83(dd,J=10.67,1.88Hz,1H),4.01(brs,4H),3.91(brs,4H),3.84(s,3H);LCMS(ESI)m/z:478.0(M+1)。
实施例2和实施例3
Figure PCTCN2019072393-appb-000080
第一步:
将化合物1j(18克,55.01毫摩尔)在25℃下溶于离子液体[HDBU +][TFE -](30.44克)中,反应在充满二氧化碳气体的气球下反应12小时,然后将反应液倒入水中(100毫升),用乙酸乙酯萃取(100毫升*3)。合并有机相,无水硫酸钠干燥,减压浓缩。将粗产品加入到石油醚和乙酸乙酯的混合溶剂中(石油醚:乙酸乙酯=10:1;15毫升)搅拌,过滤。滤饼干燥得到化合物2a。 1H NMR(400MHz,DMSO-d 6)δ12.03-11.34(m,2H),7.67-7.55(m,1H),7.19(s,1H),7.17-7.04(m,2H),3.79(s,3H)。
第二步:
将化合物2a(11.4克,30.71毫摩尔)和吡啶盐酸盐(35.49克,307.08毫摩尔)混合加热到180℃,反应15分钟后,冷却。将反应混合物倒入饱和碳酸氢钠水溶液(100毫升)中,用乙酸乙酯萃取(100毫升*2)。合并有机相,无水硫酸钠干燥后过滤,滤液减压浓缩得到化合物2b。LCMS(ESI)m/z:358.1(M+1)。
第三步:
将化合物2b(10克,27.99毫摩尔)溶于醋酸酐(109克,100毫升),然后滴加吡啶(2.21克,27.99毫摩尔)。反应混合物在20℃下反应10分钟,倒入水中(50毫升),用乙酸乙酯萃取(50毫升*2)。合并萃取液,无水硫酸钠干燥,过滤后减压浓缩。残余物加入到石油醚和乙酸乙酯的混合溶剂中(石油醚:乙酸乙酯=8:1;25毫升)搅拌,过滤,干燥得化合物2c。
第四步:
将化合物2c(1克,2.5毫摩尔)溶于三氯氧磷(3.84克,2.33毫升)中,加热到120℃下反应0.5小时。将反应液减压浓缩得到化合物2d。
第五步:
化合物2e的合成参考化合物1n。 1H NMR(400MHz,DMSO-d 6)δ7.70(dt,J=8.4,6.4Hz,1H),7.50-7.33(m,2H),7.23(s,1H),3.88(d,J=3.2Hz,4H),3.57(s,4H),2.11(s,3H),1.45(s,9H)。
第六步:
将化合物2e(150毫克,0.256毫摩尔)和TEA(26毫克,0.256毫摩尔)溶于甲醇(15毫升)中,加入钯碳(2.76毫克,10%)。将反应在充满氢气的气球下于30℃反应1小时。将反应液过滤,减压浓缩。残余物经制备的TLC(石油醚:乙酸乙酯=1:2)纯化,得到化合物2f。LCMS(ESI)m/z:510.0(M+1)。
第七步:
化合物2g的合成参考化合物1o。LCMS(ESI)m/z:410.0(M+1)。
第八步:
将化合物2g(80毫克,0.195毫摩尔)和TEA(39.55毫克,0.390毫摩尔)溶于DCM(10毫升)中,然后在0℃下将丙烯酰氯(17.69毫克,0.195毫摩尔)滴加到反应液中。滴加完后在20℃下反应10分钟,然后将反应液倒入水中(20毫升),用乙酸乙酯(20毫升*2)萃取,合并有机相后经无水硫酸钠干燥,过滤后减压浓缩。残余物经制备的TLC(石油醚:乙酸乙酯=1:2)纯化,得到的消旋混合物2h再经SFC(柱型号:Chiralcel OJ-3,100×4.6mm I.D.,3μm;流动相A:甲醇(含0.05%的二乙胺);流动相B:二氧化碳;流速:3mL/min;波长:220nm)纯化后得到实施例2(t R=1.763min)和实施例3(t R=1.954min)。LCMS(ESI)m/z:464.1(M+1)。
实施例2: 1H NMR(400MHz,CD 3OD)δ8.79(s,1H),7.47-7.34(m,1H),7.27(s,1H),6.94-6.71(m,3H),6.29(dd,J=16.8,1.6Hz,1H),5.82(dd,J=10.4,1.6Hz,1H),4.09-3.87(m,8H);LCMS(ESI)m/z:464.1(M+1)。
实施例3: 1H NMR(400MHz,CD 3OD)δ8.79(s,1H),7.48-7.33(m,1H),7.27(s,1H),6.94-6.72(m,3H),6.29(d,J=16.8Hz,1H),5.83(d,J=10.4Hz,1H),4.13-3.88(m,8H);LCMS(ESI)m/z:464.1(M+1)。
实施例4
Figure PCTCN2019072393-appb-000081
第一步:
将4-氨基-1-甲基哌啶(38.98毫克,341.34微摩尔)溶于DCM(3毫升)中,向该溶液中加入TEA(51.81毫克,512微摩尔)和化合物2e(100毫克,170.67微摩尔),然后在15℃下搅拌14小时。将饱和的氯化铵水溶液(20毫升)加入到反应液中淬灭反应,再用乙酸乙酯(20毫升*2)萃取。有机相经无水硫酸钠干燥,浓缩后,得到粗产品。该产品经制备的TLC(二氯甲烷:甲醇=10:1)纯化,得到化合物4a。 1H NMR(400MHz,CDCl 3)δ7.28-7.19(m,1H),7.06(br s,1H),6.92(s,1H),6.66-6.62(m,1H),4.22-4.11(m,1H),3.62-3.59(m,9H),2.70(s,3H),2.05-2.00(m,4H),1.48(s,9H),1.48-1.38(m,4H);LCMS(ESI)m/z:621.9(M+1)。
第二步:
化合物4b的合成参考化合物1o。LCMS(ESI)m/z:522.3(M+1)。
第三步:
参考实施例1合成得到实施例4的甲酸盐。 1H NMR(400MHz,CD 3OD)δ8.54(s,1H),7.40-7.36(m,1H),7.16(s,1H),6.86-6.77(m,3H),6.28(dd,J=2.0,2.0Hz,1H),5.82(dd,J=2.0,1.6Hz,1H),3.97-3.87(m,9H),3.21-3.18(m,2H),2.92(s,2H),2.71(s,3H),2.22(d,J=11.6Hz,2H),1.84-1.81(m,2H),2.49(s,3H);LCMS(ESI)m/z:576.1(M+1)。
实施例5
Figure PCTCN2019072393-appb-000082
参考实施例4合成得到实施例5的甲酸盐。 1H NMR(400MHz,CD 3OD)δ8.56(s,1H),7.40-7.34(m,1H),7.21(s,1H),6.83-6.75(m,3H),6.29(dd,J=2.0,2.0Hz,1H),5.82(dd,J=2.0,1.6Hz,1H),3.89(s,8H),3.71-3.69(m,2H),3.37(s,2H),3.29-3.28(m,2H),1.27(t,J=5.8Hz,6H)。LCMS(ESI)m/z:578.1(M+1)。
实施例6
Figure PCTCN2019072393-appb-000083
实施例6的合成参考实施例4。 1H NMR(400MHz,CD 3OD)δ7.39-7.33(m,1H),7.15(s,1H),6.86-6.74(m,3H),6.28(dd,J=2.0,2.0Hz,1H),5.81(dd,J=2.0,1.6Hz,1H),3.95(t,J=4.0Hz,9H),3.90-3.86(m,4H),3.85-3.81(m,4H),3.77-3.75(m,4H);LCMS(ESI)m/z:549.1(M+1)。
实施例7
Figure PCTCN2019072393-appb-000084
实施例7的合成参考实施例4。 1H NMR(400MHz,CD 3OD)δ7.39-7.33(m,1H),7.15(s,1H),6.86-6.76(m,3H),6.29(d,J=8.4Hz,1H),5.82(d,J=6.0Hz,1H),4.43-4.16(m,2H),3.96-3.77(m,10H),2.98-2.90(m,1H),2.14(s,3H),2.06(s,2H),1.49(s,2H);LCMS(ESI)m/z:604.2(M+1)。
实施例8
Figure PCTCN2019072393-appb-000085
参考实施例4合成得到实施例8的甲酸盐。 1H NMR(400MHz,CD 3OD)δ8.48(s,1H),7.39-7.33(m,1H),7.14(s,1H),6.86-6.74(m,3H),6.28(dd,J=2.0,1.6Hz,1H),5.82(dd,J=2.0,2.0Hz,1H),4.40-4.35(m,4H),4.19-4.15(m,4H),3.92-3.90(m,1H),3.90-3.86(m,8H),2.87-2.82(m,4H),1.16(t,J=6.8Hz,6H);LCMS(ESI)m/z:590.1(M+1)。
实施例9和实施例10
Figure PCTCN2019072393-appb-000086
实施例8经SFC(柱型号:Chiralcel OJ-3,100×4.6mm I.D.,3μm;流动相A:甲醇(含0.05%的二乙胺);流动相B:二氧化碳;流速:3mL/min;波长:220nm)纯化,得到实施例9(t R=2.90min)和
实施例10(t R=3.11min)。LCMS(ESI)m/z:590.1(M+1)。
实施例9: 1H NMR(400MHz,CD 3OD)δ7.36(dt,J=8.4,6.5Hz,1H),7.13(s,1H),6.89-6.71(m,3H),6.28(dd,J=16.8,2.0Hz,1H),5.81(dd,J=10.6,2.0Hz,1H),4.59(br s,1H),4.40-4.26(m,2H),4.18-4.04(m,2H),3.92-3.71(s,9H),2.71(q,J=7.2Hz,4H),1.10(t,J=7.2Hz,6H);LCMS(ESI)m/z:590.1(M+1)。
实施例10: 1H NMR(400MHz,CD 3OD)δ7.36(dt,J=8.4,6.5Hz,1H),7.13(s,1H),6.89-6.71(m,3H),6.28(dd,J=16.8,2.0Hz,1H),5.81(dd,J=10.6,2.0Hz,1H),4.59(br s,1H),4.40-4.26(m,2H),4.18-4.04(m,2H),3.92-3.71(s,9H),2.71(q,J=7.2Hz,4H),1.10(t,J=7.2Hz,6H);LCMS(ESI)m/z:590.1(M+1)。
实施例11
Figure PCTCN2019072393-appb-000087
第一步:
将化合物2e(80毫克,136.53微摩尔)和甲醇钠(29.50毫克,546.14微摩尔)溶于甲醇(3毫升)中,然后在20℃下搅拌30分钟。将反应液浓缩后,得到粗产品。该产品经制备的TLC(二氯甲烷:甲醇=10:1)纯化,得到化合物11a。LCMS(ESI)m/z:558.3(M+1)。
第二步:
化合物11b的合成参考化合物1o。
第三步:
实施例11的合成参考实施例1。 1H NMR(400MHz,CD 3OD)δ8.45(brs,1H),7.29-7.21(m,1H),7.13(s,1H),6.77-6.60(m,3H),6.21-6.14(m,1H),5.73-5.68(m,1H),3.96(s,3H),3.92-3.83(m,4H),3.83-3.75(m,4H);LCMS(ESI)m/z:494.0(M+1)。
实施例12
Figure PCTCN2019072393-appb-000088
第一步:
将化合物2e(100毫克,170.67微摩尔)和1-甲基哌啶-4-醇(196.56毫克,1.71毫摩尔)溶于DMSO(2毫升)和二氧六环(2毫升)中,向该溶液中加入氟化钾(99.16毫克,1.71毫摩尔),然后加热到120℃搅拌反应2小时。将水(10毫升)加入到反应液中淬灭反应,再用乙酸乙酯(20毫升*2)萃取。合并有机相,经饱和食盐水洗涤(10毫升),无水硫酸钠干燥后,过滤。滤液浓缩后,得到粗产品。该产品经制备的TLC(二氯甲烷:甲醇=10:1)纯化,得到化合物12a。LCMS(ESI)m/z:623.1(M+1)。
第二步:
化合物12b的合成参考化合物1o。LCMS(ESI)m/z:523.1(M+1)。
第三步:
实施例12的合成参考实施例1。 1H NMR(400MHz,CD 3OD)δ7.30-7.21(m,1H),7.14(s,1H),6.75-6.61(m,3H),6.18(dd,J=16.0,4.0Hz,1H),5.74-5.68(m,1H),5.28-5.14(m,1H),3.91-3.75(m,8H),2.95-2.80(m,2H),2.70-2.55(m,2H),2.41(s,3H),2.15-2.00(m,2H),1.97-1.85(m,2H);LCMS(ESI)m/z:577.2(M+1)。
实施例13
Figure PCTCN2019072393-appb-000089
第一步:
将氰化钾(0.2克,3.07毫摩尔)溶于DMSO(4毫升)中,向该溶液中加入18-冠醚-6(338.33毫克,1.28毫摩尔)和化合物2e(150毫克,256微摩尔),然后在15℃下搅拌反应15小时。用饱和的碳酸氢钠水溶液(20毫升)淬灭反应,再用乙酸乙酯(20毫升*2)萃取。有机相经无水硫酸钠干燥,浓缩后,得到粗产品。该产品经制备的TLC(石油醚:乙酸乙酯=1:1)纯化,得到化合物13a。LCMS(ESI)m/z:535.1(M+1)。
第二步:
化合物13b的合成参考化合物1o。LCMS(ESI)m/z:435.0(M+1)。
第三步:
参考实施例1合成实施例13的甲酸盐。 1H NMR(400MHz,CD 3OD)δ8.54(s,1H),7.42-7.38(m,1H),7.30(s,1H),6.86-6.74(m,3H),6.31(dd,J=1.6,1.6Hz,1H),5.87-5.80(dd,J=2.0,2.0Hz,1H),4.08-4.01(m,4H),3.92-3.88(m,4H);LCMS(ESI)m/z:489.0(M+1)。
实施例14
Figure PCTCN2019072393-appb-000090
第一步:
将化合物13a(55毫克,102.91微摩尔)溶于二氧六环溶液(2毫升),再向该溶液中加入盐酸/二氧六环溶液(4.13毫升,4M),然后在15℃下搅拌反应1小时,过滤。滤液浓缩得到化合物14a。LCMS(ESI)m/z:453.0(M+1)。
第二步:
参考实施例1合成得到实施例14的甲酸盐。 1H NMR(400MHz,CD 3OD)δ8.55(s,1H),7.31-7.27(m,1H),6.84(dd,J=10.4,10.4Hz,1H),6.70(d,J=8.8Hz,1H),6.57-6.22(m,1H),6.32(dd,J=2.0,2.0Hz,1H),5.85(d,J=12.8Hz,1H),4.30-4.16(m,4H),3.99-3.91(m,4H);LCMS(ESI)m/z:507.0(M+1)。
实施例15
Figure PCTCN2019072393-appb-000091
实施例15的合成参考实施例12。 1H NMR(400MHz,CD 3OD)δ7.91(s,1H),7.59(s,1H),7.43-7.34(m,1H),7.28(s,1H),6.86-6.74(m,3H),6.33-6.25(m,1H),5.85-5.79(m,1H),3.99-3.94(m,4H),3.91(s,3H),3.90-3.85(m,4H);LCMS(ESI)m/z:560.1(M+1)。
实施例16
Figure PCTCN2019072393-appb-000092
第一步:
将化合物1l(7.00克,19.70毫摩尔)和吡啶盐酸盐(22.77克,197.05毫摩尔)混合,然后在180℃下搅拌15分钟。将反应混合物倒入饱和碳酸氢钠溶液(50毫升)中,用乙酸乙酯(80毫升*2)萃取。合并有机相,经无水硫酸钠干燥,过滤。滤液减压浓缩后得到化合物16a。
第二步:
将化合物16a(6.00克,17.58毫摩尔)溶于醋酸酐(35.9克,351.68毫摩尔)中,然后加入吡啶(1.39克,17.58毫摩尔)。此反应液在20℃下反应10分钟,然后倒入水中(30毫升),用乙酸乙酯(50毫升*2)萃取。合并有机相,经无水硫酸钠干燥,过滤。滤液减压浓缩得到化合物16b。
第三步:
化合物16c的合成参考化合物1m。
第四步:
化合物16d的合成参考化合物1n。LCMS(ESI)m/z:566.1(M+1)。
第五步:
将化合物16d(60.0毫克,106.1微摩尔)溶于THF(3毫升)和水(3毫升)中,向该溶液中加入一水合氢氧化锂(251.8毫克,6.0毫摩尔),然后在25℃下搅拌0.2小时。将反应混合物用稀盐酸(10毫升,1摩尔每升)淬灭,用乙酸乙酯(15毫升*3)萃取。合并有机相,经无水硫酸钠干燥,过滤。滤液浓缩后得到化合物16e。LCMS(ESI)m/z:524.1(M+1)。
第六步:
化合物16f的合成参考化合物1o。LCMS(ESI)m/z:424.1(M+1)。
第七步:
实施例16的合成参考实施例1。 1H NMR(400MHz,CD 3OD)δ8.75(s,1H),7.41-7.36(m,1H),7.20(s,1H),6.84-6.76(m,2H),6.25(d,J=6.0Hz,2H),5.69(t,J=2.0Hz,1H),4.43(d,J=10.0Hz,2H),4.18-4.15(m,1H),3.53-3.46(m,2H),2.71(s,3H),2.10(d,J=11.2Hz,2H),1.73-1.64(m,2H);LCMS(ESI)m/z:478.2(M+1)。
实施例17
Figure PCTCN2019072393-appb-000093
实施例17的合成参考实施例16。 1H NMR(400MHz,CD 3OD)δ8.68(d,J=3.6Hz,1H),7.41-7.29(m,2H),6.88-6.67(m,3H),6.21-6.08(m,1H),5.80-5.64(m,1H),4.61(s,4H),4.20-4.13(m,2H),4.12-3.94(m,4H),3.87-3.71(m,2H),2.15(br s,2H);LCMS(ESI)m/z:478.1(M+1)。
实施例18
Figure PCTCN2019072393-appb-000094
实施例18的合成参考实施例16。 1H NMR(400MHz,CD 3OD)δ8.68(s,1H),7.53(s,1H),7.44-7.34(m,1H),6.87-6.81(m,1H),6.81-6.71(m,1H),6.59-6.16(m,2H),5.86-5.70(m,1H),5.30-5.05(m,1H),4.77-4.54(m,3H),4.50-4.15(m,1H),4.00-3.59(m,3H),3.51-3.38(m,1H);LCMS(ESI)m/z:476.0(M+1)。
实施例19
Figure PCTCN2019072393-appb-000095
将化合物19a(22.29毫克,134.59微摩尔),HOBt(9.09毫克,67.30微摩尔)和EDCI.HCl(12.90毫克,67.30微摩尔)溶于DMF(5毫升)中,氮气保护下向该溶液中加入TEA(6.81毫克,67.30微摩尔)和化合物2g(30毫克,67.30微摩尔),然后在25℃下搅拌反应2小时。将反应液用水(10毫升)淬灭,再用DCM(20毫升*2)萃取。合并有机相,经饱和食盐水洗涤(10毫升),无水硫酸钠干燥,过滤。滤液减压浓缩后得到粗产品。该粗产品先后经过制备的TLC(二氯甲烷:甲醇=10:1)和制备的HPLC(甲酸)纯化,得到实施例19的甲酸盐。 1HNMR(400MHz,CD 3OD)δ8.80(s,1H),8.44(s,1H),7.44-7.35(m,1H),7.27(s,1H),6.87-6.74(m,4H),4.05-3.96(m,4H),3.96-3.86(m,4H),3.69-3.64(m,2H),2.68(s,6H);LCMS(ESI)m/z:521.1(M+1)。
实施例20
Figure PCTCN2019072393-appb-000096
第一步:
向化合物20a(93.21克,567.69毫摩尔,93.97毫升,1.5当量)和氯化锌(2.58克,18.92毫摩尔,886.29微升,0.05当量)的醋酸酐(77.27克,756.92毫摩尔,70.89毫升,2当量)混合液中滴加丙二酸二甲酯(50克,378.46毫摩尔,43.48毫升,1当量),0.5小时内滴完。将上述反应液加热至140℃,搅拌1小时。将反应液减压浓缩,得到的残余物溶解在醋酸酐(80毫升)中,回流反应1小时。TLC(石油醚:乙酸乙酯=10:1)显示有新点生成。反应液浓缩,得到的残余物通过硅胶柱层析(石油醚:乙酸乙酯=10:1)纯化,得到化合物20b。 1H NMR(400MHz,CDCl 3)δ7.45(d,J=12.0Hz,1H),7.11(d,J=12.4Hz,1H),6.25(t,J=12.4Hz,1H),3.82(s,2H),3.84-3.81(m,1H),3.76(d,J=4.0Hz,6H)。
第二步:
向化合物20b(28.37克,141.70毫摩尔,1当量)和2-氟-6-甲氧基-苯胺(20克,141.70毫摩尔,1当量)的甲醇(150毫升)溶液中加入一水合对甲苯磺酸(2.70克,14.17毫摩尔,0.1当量),将上述混合物加热至80℃,搅拌12小时。LCMS检测到目标产物的MS。将反应液浓缩,得到的残余物通过硅胶柱层析(石油醚:乙酸乙酯=2:1)纯化,得到化合物20c。 1H NMR(400MHz,CDCl 3)δ7.69-7.54 (m,2H),6.94-6.81(m,2H),6.74-6.59(m,2H),6.40(dt,J=12.4,2.4Hz,1H),3.83(s,3H),3.76(s,3H),3.71(s,3H);LCMS(ESI)m/z:278.0(M+1)。
第三步:
化合物20d的合成参考化合物1f。
第四步:
化合物20e的合成参考化合物1g。 1H NMR(400MHz,CDCl 3)δ7.97(d,J=7.0Hz,1H),7.59(s,1H),7.31(dt,J=8.4,6.4Hz,1H),6.86-6.67(m,3H),6.21(t,J=7.2Hz,1H),3.80-3.69(m,3H),1.49-1.36(m,9H)。
第五步:
化合物20f的合成参考化合物1h。
第六步:
化合物20g的合成参考化合物1i。
第七步:
化合物20h的合成参考化合物1j。
第八步:
将化合物20h(1.4克,5.40毫摩尔,1当量),甲酸(5.19克,108.01毫摩尔,20当量)和硫酸(1.59克,16.20毫摩尔,863.60微升,3当量)的混合物加热至100℃,搅拌0.5小时。TLC(石油醚:乙酸乙酯=1:1)显示有新点生成。将上述反应液倒入水(30毫升)中,用乙酸乙酯(30毫升*2)萃取。合并的有机相经无水硫酸钠干燥后过滤,滤液浓缩,得到化合物20i,为一粗品,不经纯化,可直接用于下一步。
第九步:
化合物20j的合成参考化合物2b。LCMS(ESI)m/z:274.0(M+1)。
第十步:
化合物20k的合成参考化合物2c。LCMS(ESI)m/z:316.2(M+1)。
第十一步:
化合物20l的合成参考化合物1m。
第十二步:
化合物20m的合成参考化合物1n。LCMS(ESI)m/z:442.2(M+1)。
第十三步:
化合物20n的合成参考化合物1o。LCMS(ESI)m/z:342.2(M+1)。
第十四步:
实施例20的合成参考实施例1。 1H NMR(400MHz,CD 3OD)δ8.73(s,1H),7.45-7.25(m,2H),6.95-6.75(m,4H),6.28(dd,J=16.8,2.0Hz,1H),5.82(dd,J=10.6,2.0Hz,1H),3.90(s,8H);LCMS(ESI)m/z:396.1(M+1)。
实施例21
Figure PCTCN2019072393-appb-000097
第一步:
向化合物1c(19.5克,80.84毫摩尔,1当量)的甲醇(100毫升)溶液中缓慢加入新制备的甲醇钠(由钠(2.23克,97.01毫摩尔,2.30毫升,1.2当量)和甲醇(100毫升)制备)。将反应混合物加热至70℃,反应16小时。LCMS显示原料反应完全并监测到目标产物的MS。将反应液浓缩,得到的残余物溶解在水(300毫升)中并在30℃下搅拌30分钟,然后用乙酸乙酯(200毫升)萃取。用35%的浓盐酸调节有机相pH至2,然后用乙酸乙酯(200毫升*3)萃取。将合并的有机相用饱和食盐水(100毫升)洗涤,经无水硫酸钠干燥后减压浓缩。在25℃下,将得到的残余物在石油醚:乙酸乙酯=1:2(30毫升)混合溶液搅拌16小时,过滤,滤饼真空干燥,得到化合物21a。LCMS(ESI)m/z:278.0(M+1)。
第二步:
化合物21b的合成参考化合物1g。LCMS(ESI)m/z:293.2(M+1-56)。
第三步:
化合物21c的合成参考化合物1h。LCMS(ESI)m/z:249.2(M+1)。
第四步:
化合物21d的合成参考化合物1i。LCMS(ESI)m/z:327.1(M+1)。
第五步:
化合物21e的合成参考化合物1j。LCMS(ESI)m/z:274.3(M+1)。
第六步:
化合物21f的合成参考化合物20i。LCMS(ESI)m/z:302.2(M+1)。
第七步:
化合物21g的合成参考化合物2b。 1H NMR(400MHz,DMSO-d 6)δ8.10(s,1H),7.44-7.22(m,1H),6.96-6.78(m,2H),6.71(s,1H),2.01(s,3H);LCMS(ESI)m/z:288.1(M+1)。
第八步:
化合物21h的合成参考化合物2c。LCMS(ESI)m/z:330.2(M+1)。
第九步:
化合物21i的合成参考化合物1m。LCMS(ESI)m/z:344.0(M+1-35+31)。
第十步:
化合物21j的合成参考化合物1n。LCMS(ESI)m/z:456.4(M+1)。
第十一步:
化合物21k的合成参考化合物1o。LCMS(ESI)m/z:356.3(M+1)。
第十二步:
实施例21的合成参考实施例1。1H NMR(400MHz,CD 3OD)δ8.74-8.63(m,1H),8.68(s,1H),7.39(dt,J=8.4,6.6Hz,1H),6.93-6.79(m,3H),6.69(s,1H),6.29(dd,J=16.8,2.0Hz,1H),5.89-5.78(m,1H),3.89(s,8H),2.17(s,3H);LCMS(ESI)m/z:410.0(M+1)。
实施例22
Figure PCTCN2019072393-appb-000098
在0℃且氮气保护下,向实施例2(20毫克,43.16微摩尔,1当量)和TEA(5毫克,49.41微摩尔,6.88微升,1.14当量)的DCM(2毫升)溶液中加入二甲氨基甲酰氯(5毫克,46.49微摩尔,4.27微升,1.08当量)。将上述反应液在0℃搅拌0.5小时。LCMS检测到目标产物生成。将反应液减压浓缩,得到的残余物通过制备的HPLC(甲酸)纯化,得到实施例22。 1H NMR(400MHz,CD 3OD)δ8.79(s,1H),7.69-7.60(m,1H),7.48-7.41(m,1H),7.33(s,1H),7.28-7.19(m,1H),6.88-6.78(m,1H),6.30(dd,J=16.8,2.0Hz,1H),5.83(dd,J=10.6,1.9Hz,1H),4.09-3.96(m,4H),3.95-3.85(m,4H),2.89(s,3H),2.74(s,3H);LCMS(ESI)m/z:535.0(M+1)。
实施例23
Figure PCTCN2019072393-appb-000099
实施例23的合成参考实施例4。 1H NMR(400MHz,DMSO-d 6)δ7.40-7.28(m,1H),7.01(s,1H),6.90-6.76(m,3H),6.17(dd,J=16.8,2.4Hz,1H),5.83-5.66(m,1H),4.95-4.79(m,2H),4.86(br d,J=12.0Hz,1H),3.88-3.48(m,8H),3.04-2.91(m,4H),2.78(br s,5H),1.92(br d,J=11.2Hz,2H),1.47(br d,J=8.8Hz,2H),1.09(br t,J=7.2Hz,6H);LCMS(ESI)m/z:618.5(M+1)。
实施例24
Figure PCTCN2019072393-appb-000100
实施例24的合成参考实施例4。 1H NMR(400MHz,CDCl 3)δ7.23(br d,J=6.8Hz,1H),6.93(s,1H),6.80(br d,J=7.9Hz,1H),6.67(br t,J=8.3Hz,1H),6.57(dd,J=16.8,10.6Hz,1H),6.41-6.28(m,1H),5.83-5.71(m,1H),3.81-3.65(m,9H),3.52(br s,2H),2.96-2.75(m,7H),2.65-2.47(m,2H);LCMS(ESI)m/z:578.4(M+1)。
实施例25
Figure PCTCN2019072393-appb-000101
实施例25的合成参考实施例1和实施例20。 1H NMR(400MHz,CD 3OD)δ8.79(s,1H),7.33-7.20(m,2H),6.91-6.74(m,3H),6.30(dd,J=16.8,2.0Hz,1H),5.83(dd,J=10.8,2.0Hz,1H),4.00(br s,4H),3.91(br s,4H),2.09(s,3H);LCMS(ESI)m/z:460.3(M+1)。
实施例26
Figure PCTCN2019072393-appb-000102
化合物26a的合成参考实施例1。LCMS(ESI)m/z:503.2(M+1)。
将化合物26a(1.1克,2.19毫摩尔)溶于乙醇(10毫升)和水(5毫升)中,向该溶液中加入铁粉(611.36克,10.95毫摩尔)和氯化铵(1.17克,21.89毫摩尔),然后在70℃下搅拌1小时。LCMS显示监控到目标产物。混合物用硅藻土过滤,滤饼用水(20毫升*2)洗涤,混合后的滤液用DCM(40毫升*3)萃取,合并的有机层经饱和食盐水洗涤(100毫升*2),无水硫酸钠(50克)干燥,过滤,浓缩后,得到粗产品。该产品经制备的HPLC(甲酸)纯化,得到实施例26。 1H NMR(400MHz,DMSO-d 6)δ8.75(s,1H),7.19(s,1H),6.90(d,J=8.0Hz,1H),6.78(dd,J=10.4,16.4Hz,1H),6.71(d,J=8.0Hz,1H),6.17(dd,J=16.8,2.0Hz,1H),5.72(dd,J=10.4,2.0Hz,1H),3.88-3.86(m,4H),3.79(br d,J=13.6Hz,4H),1.82(s,3H),1.72(s,3H);LCMS(ESI)m/z:473.3(M+1)。
实施例27和实施例28
Figure PCTCN2019072393-appb-000103
第一步:
将化合物27a(500毫克,8.12毫摩尔),乙酸酐(209.92毫克,2.06毫摩尔)、18-冠-6(27.17毫克,102.81毫摩尔)和醋酸钾(100.9毫克,1.03毫摩尔)溶于氯仿(10毫升)中,在25℃下搅拌15分钟,然后加入亚硝酸异戊酯(361.32毫克,3.08毫摩尔),该混合物在75℃下搅拌18小时。LCMS显示有目标产物生成,TLC(乙酸乙酯:甲醇=20:1)显示反应完全,混合物通过减压浓缩得到粗品,溶于乙酸乙酯(30毫升),用饱和碳酸氢钠(15毫升*3)萃取,合并的有机层经饱和食盐水洗涤(20毫升*1),无水硫酸钠干燥,过滤,浓缩后,得到粗产品。该产品经柱层析(乙酸乙酯:甲醇=1:0至20:1)纯化,得到的残余物通过制备的HPLC(甲酸)纯化,得到实施例27。 1H NMR(400MHz,DMSO-d 6)δ8.82(s,1H),8.45(s,1H),8.37(d,J=8.4Hz,1H),7.70(d,J=8.8Hz,1H),7.26(s,1H),6.91-6.78(m,1H),6.19(dd,J=16.8,2.0Hz,1H),5.80-5.70(m,1H),3.95-3.73(m,8H),2.73(s,3H),2.18(s,3H);LCMS(ESI)m/z:484.2(M+1)。
第二步:
将实施例27(150毫克,250.46微摩尔)溶于甲醇(3毫升)中,向该溶液中加入盐酸溶液(0.66毫升)溶于水(0.66毫升)的混合溶液,然后在25℃下搅拌30分钟。LCMS显示有目标产物生成,混合物通过浓缩得到粗产品,经制备的HPLC(甲酸)纯化,得到实施例28。 1H NMR(400MHz,DMSO-d 6)δ8.80(s,1H),7.88(s,1H),7.62(d,J=8.4Hz,1H),7.39(d,J=8.4Hz,1H),7.23(s,1H),6.84(dd,J=16.8,10.4Hz,1H),6.18(dd,J=16.8,2.4Hz,1H),5.75(dd,J=10.4,2.0Hz,1H),3.92(br s,4H),3.87-3.74(m,4H),2.12(s,3H);LCMS(ESI)m/z:526.2(M+1)。
实施例29、实施例30和实施例31
Figure PCTCN2019072393-appb-000104
实施例29的合成参考实施例26。 1H NMR(400MHz,CD 3OD)δ8.78(s,1H),7.28-7.16(m,2H),6.83(dd,J=16.8,10.6Hz,1H),6.66(d,J=8.4Hz,1H),6.49-6.42(m,1H),6.29(dd,J=16.8,1.9Hz,1H),5.82(dd,J=10.6,2.0Hz,1H),4.05-3.95(m,4H),3.94-3.86(m,4H);LCMS(ESI)m/z:463.2(M+1)。
将实施例29经SFC(柱型号:Chiralpak AS-350×4.6mm I.D.,3μm;流动相A:甲醇(含0.05%的二乙胺);流动相B:二氧化碳;流速:3mL/min;波长:220nm)分离纯化后得到实施例30(t R=1.45min)和实施例31(t R=1.76min)。
实施例30: 1H NMR(400MHz,CD 3OD)δ8.78(s,1H),7.28-7.17(m,2H),6.83(dd,J=16.7,10.6Hz,1H),6.66(d,J=8.4Hz,1H),6.45(t,J=8.8Hz,1H),6.34-6.26(m,1H),5.87-5.79(m,1H),4.04-3.95(m,4H),3.94-3.85(m,4H);LCMS(ESI)m/z:463.2(M+1)。
实施例31: 1H NMR(400MHz,CD 3OD)δ8.66(s,1H),7.15-7.04(m,2H),6.71(dd,J=16.8,10.6Hz,1H),6.54(d,J=8.3Hz,1H),6.33(t,J=8.9Hz,1H),6.22-6.13(m,1H),5.76-5.62(m,1H),3.90-3.83(m,4H),3.82-3.73(m,4H);LCMS(ESI)m/z:463.2(M+1)。
实施例32和实施例33
Figure PCTCN2019072393-appb-000105
化合物32a的合成参考实施例1、实施例2和实施例26。化合物32a经SFC(柱型号:Chiralpak AS-350×4.6mm I.D.,3μm;流动相A:甲醇(含0.05%的二乙胺);流动相B:二氧化碳;流速:3mL/min;波长:220nm)分离纯化后得到实施例32(t R=2.03min)和实施例33(t R=2.50min)。
实施例32: 1H NMR(400MHz,CD 3OD)δ7.13-6.98(m,2H),6.70(dd,J=16.8,10.6Hz,1H),6.53(d,J=8.3Hz,1H),6.32(t,J=8.7Hz,1H),6.16(d,J=16.6Hz,1H),5.70(d,J=10.8Hz,1H),4.25-4.12(m,2H),4.03-3.88(m,2H),3.80-3.67(m,8H),3.64-3.56(m,1H),2.53(q,J=6.9Hz,4H),0.96(t,J=7.1Hz,6H);
LCMS(ESI)m/z:589.4(M+1)。
实施例33: 1H NMR(400MHz,CD 3OD)δ7.13-6.97(m,2H),6.70(dd,J=16.8,10.6Hz,1H),6.53(d,J=8.2Hz,1H),6.32(t,J=8.8Hz,1H),6.16(d,J=16.8Hz,1H),5.69(d,J=10.6Hz,1H),4.25-4.12(m,2H),4.03-3.90(m,2H),3.80-3.67(m,8H),3.64-3.56(m,1H),2.53(q,J=6.9Hz,4H),0.96(t,J=7.0Hz,6H);LCMS(ESI)m/z:589.4(M+1)。
实施例34、实施例35和实施例36
Figure PCTCN2019072393-appb-000106
参考实施例2和实施例26合成得到实施例34的甲酸盐。 1H NMR(400MHz,CD 3OD)δ8.50(br s, 1H),7.22(s,1H),6.99(d,J=8.4Hz,1H),6.87-6.76(m,2H),6.29(dd,J=16.8,2.0Hz,1H),5.85-5.77(m,1H),4.45-4.32(m,2H),4.17(dd,J=9.6,5.6Hz,2H),3.97-3.83(m,9H),2.82(q,J=7.2Hz,4H),1.93(s,3H),1.86(s,3H),1.16(t,J=7.2Hz,6H);LCMS(ESI)m/z:599.2(M+1)。
实施例34通过SFC(柱型号:Chiralpak AS-350×4.6mm I.D.,3μm;流动相A:甲醇(含0.05%的二乙胺);流动相B:二氧化碳;流速:3mL/min;波长:220nm)分离纯化得到实施例35(t R=2.41min)和
实施例36(t R=3.04min)。
实施例35: 1H NMR(400MHz,CD 3OD)δ7.22(s,1H),6.99(d,J=8.4Hz,1H),6.88-6.74(m,2H),6.29(dd,J=16.8,2.0Hz,1H),5.82(dd,J=10.8,2.0Hz,1H),4.40-4.23(m,2H),4.11(br d,J=9.6Hz,2H),3.96-3.73(m,9H),2.73(br d,J=7.2Hz,4H),1.93(s,3H),1.86(s,3H),1.18-1.16(m,1H),1.18-1.08(m,6H);LCMS(ESI)m/z:590.3(M+1)。
实施例36: 1H NMR(400MHz,CD 3OD)δ7.22(s,1H),6.99(d,J=8.4Hz,1H),6.88-6.74(m,2H),6.29(dd,J=16.8,2.0Hz,1H),5.82(dd,J=10.8,2.0Hz,1H),4.40-4.23(m,2H),4.11(br d,J=9.6Hz,2H),3.96-3.73(m,9H),2.73(br d,J=7.2Hz,4H),1.93(s,3H),1.86(s,3H),1.18-1.16(m,1H),1.18-1.08(m,6H);LCMS(ESI)m/z:590.3(M+1)。
实施例37
Figure PCTCN2019072393-appb-000107
向实施例34(40毫克,66.82微摩尔,1当量)的氯仿(1毫升)溶液中加入醋酸(12.04毫克,200.45微摩尔,11.46微升,3当量),得到的混合物在0℃搅拌1小时,然后向上述反应液中加入醋酸钾(1.97毫克,20.04微摩尔,0.3当量)和亚硝酸异戊酯(15.65毫克,133.63微摩尔,17.99微升,2当量)。将上述混合物在0℃搅拌0.5小时,然后升至25℃搅拌1.4小时。TLC(二氯甲烷:甲醇=12:1)显示原料反应完全,且LCMS检测到目标化合物的MS。将反应液用饱和碳酸氢钠水溶液(25毫升)淬灭,然后用乙酸乙酯(10毫升*3)萃取。将合并的有机相用饱和食盐水(10毫升*2)洗涤,经无水硫酸钠干燥后浓缩。得到的残余物通过制备的TLC(二氯甲烷:甲醇=12:1)纯化,得到的粗产物再通过制备的HPLC(甲酸)纯化,得到实施例37。 1H NMR(400MHz,CD 3OD)δ7.77(s,1H),7.65(d,J=8.0Hz,1H),7.44(d,J=8.8Hz,1H),7.26(s,1H),6.84(dd,J=16.8,10.8Hz,1H),6.29(dd,J=16.8,2.0Hz,1H),5.83(dd,J=10.8,2.0Hz,1H),4.63(br s,4H),4.42-4.29(m,2H),4.14(dd,J=5.2,9.6Hz,2H),3.90-3.847(m,9H),2.77(q,J=7.2Hz,4H),2.20(s,3H),1.13(t,J=7.2Hz,6H);LCMS(ESI)m/z:610.4(M+1)。
实施例38
Figure PCTCN2019072393-appb-000108
参考实施例1、实施例2和实施例26合成得到实施例38的甲酸盐。 1H NMR(400MHz,CD 3OD)δ8.28(br s,1H),7.26-7.11(m,2H),6.82(dd,J=16.8,10.6Hz,1H),6.66(d,J=8.3Hz,1H),6.45(t,J=8.9Hz,1H),6.28(dd,J=16.7,1.8Hz,1H),5.82(dd,J=10.6,1.7Hz,1H),4.48-4.34(m,2H),4.21(br dd,J=10.2,4.8Hz,2H),3.86(br s,8H),3.78-3.66(m,1H),2.59(s,6H);LCMS(ESI)m/z:561.4(M+1)。
实施例39
Figure PCTCN2019072393-appb-000109
参考实施例1、实施例2和实施例26合成实施例39的甲酸盐。 1H NMR(400MHz,CD 3OD)δ8.43(br s,1H),7.30-7.14(m,2H),6.83(dd,J=16.8,10.6Hz,1H),6.68(br d,J=8.4Hz,1H),6.47(br t,J=8.9Hz,1H),6.30(br d,J=16.9Hz,1H),5.83(br d,J=10.7Hz,1H),4.01-3.85(m,10H),3.42(br d,J=4.9Hz,2H),3.35(s,3H),2.92(s,6H);LCMS(ESI)m/z:563.1(M+1)。
实施例40
Figure PCTCN2019072393-appb-000110
参考实施例2和实施例26合成实施例40的甲酸盐。 1H NMR(400MHz,CD 3OD)δ8.43(br s,1H),7.20(s,1H),7.11(t,J=7.8Hz,1H),6.83(dd,J=16.8,10.6Hz,1H),6.73(d,J=7.5Hz,1H),6.63(d,J=7.3Hz,1H),6.29(dd,J=16.8,1.8Hz,1H),5.87-5.74(m,1H),4.46-4.32(m,2H),4.21(dd,J=10.0,5.6Hz,2H),4.10-3.92(m,1H),3.87(br s,8H),2.93(q,J=7.2Hz,4H),1.97(s,3H),1.20(t,J=7.3Hz,6H);LCMS(ESI)m/z:585.2(M+1)。
实施例41和实施例42
Figure PCTCN2019072393-appb-000111
将实施例32(102.32毫克,164.07微摩尔,1当量,t R=2.03min)溶于乙腈(15毫升)中,然后加入NCS(28.48毫克,213.29微摩尔,1.3当量),将所得到的反应液在70℃搅拌13小时。LCMS监测到目标产物生成。加入水(20毫升)淬灭反应,用EtOAc(30毫升*2)萃取,有机相经无水硫酸钠干燥后,过滤浓缩。所得到的粗产品经制备的HPLC(甲酸)纯化,得到的混合物进一步由制备的TLC(二氯乙烷:甲醇=10:1)纯化,得到实施例41和实施例42。
实施例41: 1H NMR(400MHz,CD 3OD)δ7.26(dd,J=8.93,5.62Hz,1H),7.03(s,1H),6.71(dd,J=16.87,10.64Hz,1H),6.38(t,J=8.99Hz,1H),6.17(dd,J=16.81,1.90Hz,1H),5.63-5.76(m,1H),4.20(br t,J=8.01Hz,2H),3.98(br d,J=5.50Hz,2H),3.55-3.81(m,9H),2.57(q,J=7.09Hz,4H);0.98(t,J=7.15Hz,6H);LCMS(ESI)m/z:623.4(M+1)。
实施例42: 1H NMR(400MHz,CD 3OD)δ7.14(t,J=8.56Hz,1H),7.04(s,1H),6.71(dd,J=16.75,10.64Hz,1H),6.53(dd,J=8.99,1.53Hz,1H),6.17(dd,J=16.75,1.83Hz,1H),5.70(dd,J=10.64,1.83Hz,1H),4.18-4.34(m,2H),3.94-4.11(m,2H),2.70(br s,4H),1.04(br t,J=7.09Hz,6H);LCMS(ESI)m/z:563.1(M+1)。
实施例43、实施例44和实施例45
Figure PCTCN2019072393-appb-000112
第一步:
在30分钟内向化合物32a(5.5克,8.67毫摩尔,1当量)的乙腈(70毫升)溶液中逐滴加入NCS (1.39克,10.41毫摩尔,1.2当量),将得到的混合物在80℃下搅拌15.5小时。HPLC显示46.86%的原料剩余,34.22%的目标产物生成。向反应体系中再加入NCS(694.75毫克,5.201毫摩尔,0.6当量),得到的混合物在80℃下搅拌2小时。HPLC显示4.11%的原料剩余,53.36%的目标产物生成。上述反应液用水(20毫升)淬灭,浓缩的残余物用二氯乙烷(200毫升)溶解、过滤,滤液用水(50毫升)洗涤干燥,得到的粗品通过硅胶柱层析(二氯乙烷:甲醇=50:1至20:1)纯化,得到化合物43a。
第二步:
向化合物43a(200毫克,241.56微摩尔,1当量)的乙腈(10毫升)溶液中逐滴加入NCS(64.51毫克,483.11微摩尔,2当量),将得到的混合物在80℃下搅拌1小时。HPLC显示原料剩余。将混合物在80℃下继续搅拌12小时。TLC(二氯乙烷:甲醇=10:1)显示原料反应完全,有目标产物生成。将上述反应液用(100毫升)淬灭,用二氯甲烷(40毫升*3)萃取,将合并的有机相用饱和食盐水(100毫升)洗涤,经无水硫酸钠干燥后,过滤,浓缩。得到的粗品通过制备的HPLC(甲酸)纯化,得到实施例43。LCMS(ESI)m/z:657.2(M+1)。
第三步:
将实施例43经SFC手性拆分(柱型号:Cellucoat 50×4.6mm I.D.,3um;流动相A:乙醇(含0.1%的氨水)流动相B:二氧化碳;流速:3mL/min;波长:220nm)得到实施例44(t R=2.155min)和实施例45(t R=2.361min)。
实施例44: 1H NMR(400MHz,CD 3OD)δ7.41(br d,J=7.2Hz,1H),7.04(s,1H),6.70(dd,J=16.8,10.6Hz,1H),6.16(d,J=16.4Hz,1H),5.69(d,J=10.4Hz,1H),4.17(d,J=7.6Hz,2H),3.97(s,2H),3.73(d,J=8.8Hz,8H),3.65-3.54(m,1H),2.53(q,J=7.2Hz,4H),0.96(br t,J=7.2Hz,6H);LCMS(ESI)m/z:657.2(M+1)。
实施例45: 1H NMR(400MHz,CD 3OD)δ7.41(br d,J=7.2Hz,1H),7.04(s,1H),6.70(dd,J=16.8,10.6Hz,1H),6.16(d,J=16.4Hz,1H),5.69(d,J=10.8Hz,1H),4.18(d,J=7.6Hz,2H),3.97(s,2H),3.73(d,J=8.8Hz,8H),3.65-3.54(m,1H),2.53(q,J=7.2Hz,4H),0.96(br t,J=7.2Hz,6H);LCMS(ESI)m/z:657.2(M+1)。
实施例46
Figure PCTCN2019072393-appb-000113
向实施例8(400毫克,678.45微摩尔,1当量)的醋酸(10毫升)溶液中逐滴加入NCS(181.19毫克,1.36毫摩尔,2当量),将得到的混合物在15℃下搅拌3小时。LC-MS显示原料剩余且有目标产 物生成。TLC(二氯乙烷:甲醇=10:1)显示原料反应完全,有三个新点生成。上述反应液用饱和碳酸氢钠水溶液(500毫升)淬灭,用乙酸乙酯(30毫升*3)萃取,有机相用饱和食盐水(50毫升*2)洗涤,再用无水硫酸钠干燥,得到的混合物通过制备的TLC(二氯乙烷:甲醇=10:1)纯化,得到的粗品再用制备的HPLC(甲酸)纯化,得到实施例46。LCMS(ESI)m/z:658.0(M+1)。
实施例47和实施例48
Figure PCTCN2019072393-appb-000114
向实施例30(150毫克,316.04微摩尔,1当量,t R=1.45min)的乙腈(8毫升)溶液中在氮气保护下加入NCS(33.76毫克,252.83微摩尔,0.8当量),将得到的混合物在70℃下搅拌1小时。LC-MS显示目标产物已生成,且TLC显示有新点生成。将上述反应液倒入水(30毫升)中,水相用二氯甲烷(50毫升*3)萃取,将合并得到的有机层经饱和食盐水(20毫升)洗涤,经无水硫酸钠(30克)干燥,过滤浓缩。得到的残余物通过制备的TLC(二氯甲烷:甲醇=12:1)纯化,得到的粗品再通过制备的HPLC(甲酸)纯化,得到实施例47和实施例48。
实施例47: 1HNMR(400MHz,CD 3OD)δ8.66(s,1H),7.28(dd,J=5.6,8.9Hz,1H),7.16(s,1H),6.71(dd,J=16.8,10.6Hz,1H),6.40(t,J=9.0Hz,1H),6.17(dd,J=16.8,1.2Hz,1H),5.76-5.64(m,1H),3.92-3.84(m,4H),3.82-3.73(m,4H);LCMS(ESI)m/z:497.3(M+1)。
实施例48: 1HNMR(400MHz,CD 3OD)δ8.78(br s,1H),7.35-7.20(m,2H),6.83(br dd,J=16.8,11.4Hz,1H),6.66(br d,J=8.2Hz,1H),6.29(br d,J=16.9Hz,1H),5.82(br d,J=10.3Hz,1H),4.06-3.95(m,4H),3.94-3.82(m,4H);LCMS(ESI)m/z:497.1(M+1)。
实施例49
Figure PCTCN2019072393-appb-000115
在氮气保护下,向实施例30或31(100毫克,210.69微摩尔,1当量,t R=1.45min)的乙腈(5毫升)溶液中加入NCS(28.13毫克,210.69微摩尔,1当量),将得到的混合物在15℃下搅拌2小时。LC-MS显示原料未反应完全。然后将混合物在70℃下搅拌2小时。LC-MS显示检测到产物。将上述反 应液倒入水(30毫升)中,水相用二氯甲烷(50毫升*3)萃取,合并得到的有机层经饱和食盐水(20毫升)洗涤,经无水硫酸钠(30克)干燥后,过滤浓缩。得到的残余物通过制备的HPLC(甲酸)纯化,得到实施例49。 1HNMR(400MHz,CD 3OD)δ8.80(s,1H),7.56(br d,J=7.2Hz,1H),7.30(s,1H),6.83(br dd,J=16.6,10.6Hz,1H),6.30(br d,J=16.6Hz,1H),5.83(br d,J=10.6Hz,1H),4.06-3.95(m,4H),3.95-3.83(m,4H);LCMS(ESI)m/z:531.2(M+1)。
实施例50
Figure PCTCN2019072393-appb-000116
将化合物2h(800毫克,1.73毫摩尔,1当量)溶于乙酸(30毫升)中,然后加入NCS(691.59毫克,5.18毫摩尔,3当量),将所得到的反应液在25℃搅拌36小时。LCMS监测到目标产物生成。加入水(100毫升)淬灭反应,用乙酸乙酯(200毫升)萃取,有机相依次用水(100毫升*3)、饱和食盐水(100毫升)和饱和碳酸氢钠水溶液(100毫升)洗涤,经无水硫酸钠干燥后,过滤浓缩。所得到的粗产品经制备的HPLC(甲酸)分离后得到实施例50。 1H NMR(400MHz,DMSO-d 6)δ11.37(br s,1H),8.90-8.73(m,1H),7.96(br s,1H),7.22(s,1H),6.83(dd,J=16.7,10.5Hz,1H),6.18(dd,J=16.8,2.3Hz,1H),5.85-5.62(m,1H),3.99-3.70(m,8H);LCMS(ESI)m/z:532.2(M+1)。
实施例51和实施例52
Figure PCTCN2019072393-appb-000117
第一步:
参考实施例29合成化合物51a。LCMS(ESI)m/z:477.1(M+1)。
第二步:
向化合物51a(340毫克,713.65微摩尔,1当量)的乙腈(10毫升)溶液中加入NCS(200.12毫克,1.50毫摩尔,2.1当量),得到的混合物加热至90℃反应2小时。LC-MS和HPLC显示原料转化完全,并检测的目标产物生成。加入饱和碳酸氢钠水溶液(50毫升)淬灭反应,用乙酸乙酯(30毫升*3)萃取,有机相用饱和食盐水(50毫升)洗涤,经无水硫酸钠干燥后,过滤浓缩。所得到的粗产品经制备的HPLC(甲酸)分离后得到化合物51b。LCMS(ESI)m/z:545.3(M+1)。
第三步:
将化合物51b经SFC手性拆分(柱型号:DAICEL CHIRALPAK AS(250mm*30mm,10um;流动相A:乙醇(含0.1%的氨水);流动相B:二氧化碳)得到实施例51(t R=1.569min)和实施例52(t R=2.350min)。
实施例51: 1H NMR(400MHz,CD 3OD)δ8.68(s,1H),7.44(d,J=7.2Hz,1H),7.07(s,1H),6.81-6.58(m,1H),6.19(br dd,J=16.8,6.4Hz,1H),5.71(br d,J=10.6Hz,1H),4.70-4.64(m,1H),4.53-3.90(m,3H),3.72-3.34(m,2H),3.17-2.95(m,1H),1.33(br s,3H);LCMS(ESI)m/z:545.1(M+1)。
实施例52: 1H NMR(400MHz,CD 3OD)δ8.8(s,1H),7.44(d,J=7.2Hz,1H),7.07(s,1H),6.81-6.46(m,1H),6.19(br d,J=16.4Hz,1H),5.71(dd,J=10.8,1.2Hz,1H),4.64(br s,1H),4.51-4.24(m,1H),4.26-3.84(m,2H),3.68-3.36(m,2H),3.17-2.95(m,1H),1.34(br s,3H);LCMS(ESI)m/z:545.1(M+1)。
实施例53和实施例54
Figure PCTCN2019072393-appb-000118
第一步:
参考化合物51b合成化合物53a。
第二步:
将化合物53a经SFC手性拆分(柱型号:DAICEL CHIRALPAK AS(250mm*30mm,10um;流动相A:乙醇(含0.1%的氨水);流动相B:二氧化碳)得到实施例53(t R=1.429min)和实施例52(t R=2.028min)。
实施例53: 1H NMR(400MHz,CD 3OD)δ8.79(s,1H),7.56(br d,J=7.2Hz,1H),7.19(s,1H),6.97-6.70(m,1H),6.31(br d,J=16.0Hz,1H),5.83(br d,J=10.4Hz,1H),4.75(br s,1H),4.62-4.27(m,2H),4.26-3.97(m,1H),3.79-3.48(m,2H),3.30-3.09(m,1H),1.46(br s,3H);LCMS(ESI)m/z:545.1(M+1)。
实施例54: 1H NMR(400MHz,CD 3OD)δ8.80(s,1H),7.56(d,J=7.2Hz,1H),7.20(s,1H),6.93-6.71(m,1H),6.31(br dd,J=6.0,16.4Hz,1H),5.83(dd,J=10.4,1.7Hz,1H),4.82-4.77(m,1H),4.61-4.24(m,2 H),4.22-4.02(m,1H),3.83-3.48(m,2H),3.30-3.12(m,1H),1.45(br d,J=5.2Hz,3H);LCMS(ESI)m/z:545.1(M+1)。
实施例55
Figure PCTCN2019072393-appb-000119
第一步:
将化合物55a(20克,138.73毫摩尔,57.14毫升,1当量)溶于THF(200毫升)中,在0℃下加入氢化钠(11.10克,277.45毫摩尔,纯度:60%,2当量),在0℃下搅拌30分钟,加入碘甲烷(29.54克,208.09毫摩尔,12.95毫升,1.5当量),得到的混合物在25℃下继续反应18小时。LC-MS显示原料少量剩余,目标产物生成。向反应体系中加入水(200毫升),乙酸乙酯萃取(300毫升*3)。合并有机相,无水硫酸钠干燥,减压浓缩,得到化合物55b的粗品。LCMS(ESI)m/z:159.0(M+1); 1H NMR(400MHz,CDCl 3)δ7.92-7.85(m,3H),7.59-7.54(m,1H),7.50-7.44(m,1H),7.32-7.25(m,2H),4.05(s,3H).LCMS(ESI)m/z:159.0(m+1).
第二步:
将化合物55b(10克,63.21毫摩尔,1当量)溶于乙酸酐(100毫升)中,在0℃下滴加加入浓硝酸(6.37克,101.14毫摩尔,4.55毫升,1.6当量),滴加完毕后,将反应体系冷却至0℃并搅拌1小时。TLC(石油醚:乙酸乙酯=5:1)显示原料反应完全。将反应物倒至饱和碳酸氢钠溶液(1升)中,乙酸乙酯萃取(500毫升*3)。将有机相合并,减压浓缩,得到的残余物通过硅胶柱层析纯化(二氧化硅,乙酸乙酯:石油醚=1:10),得到化合物55c。 1H NMR(400MHz,CDCl 3)δ7.97(d,J=9.17Hz,1H),7.85(d,J=8.31Hz,1H),7.73-7.67(m,1H),7.65-7.57(m,1H),7.51-7.43(m,1H),7.35(d,J=9.17Hz,1H),4.04(s,3H).
第三步:
将化合物55c(3克,14.76毫摩尔,1当量)溶于乙醇(40毫升)和水(20毫升)的混合溶液中,加入氯化铵(7.9克,147.64毫摩尔,10当量)和铁粉(8.25克,147.64毫摩尔,10当量),在90℃下搅拌2小时。LCMS显示反应完全,检测到目标产物。将反应体系过滤,减压浓缩得到化合物55d。LCMS(ESI)m/z:174.0(M+1)。
第四步:
将化合物55d(2.5克,14.43毫摩尔,1当量)和碳酸钾(5.98克,43.30毫摩尔,3当量)溶于乙腈(50毫升)中,在0℃下加入丙二酸单甲酯酰氯(2.96克,21.65毫摩尔,2.31毫升,1.5当量),在25℃下搅拌12小时。LCMS显示部分原料剩余,补加丙二酸单甲酯酰氯(2.96克,21.65毫摩尔,2.31毫升,1.5当量),在25℃下继续搅拌2小时。LCMS显示反应完全并检测到产物生成。加入水(100毫升)淬灭反应,乙酸乙酯萃取(100毫升*3),合并有机相,无水硫酸钠干燥,减压浓缩。将浓缩后的粗品打浆2小时(乙酸乙酯:石油醚=1:1,12毫升),过滤,滤饼减压干燥。得到化合物55e。LCMS(ESI)m/z:274.0(M+1)。
第五步:
将化合物55e(3.8克,11.19毫摩尔,1当量)溶于甲醇(50毫升)中,加入4-乙氧基-1,1,1-三氟-3-丁烯-2-酮(2.82克,16.79毫摩尔,2.39毫升,1.5当量)和甲醇钠(907.01毫克,16.79毫摩尔,1.5当量),将反应体系在90℃下搅拌12小时。LCMS显示原料有剩余,将反应体系在90℃下继续搅拌6小时。LCMS显示原料仍有剩余,补加4-乙氧基-1,1,1-三氟-3-丁烯-2-酮(940.89毫克,5.60毫摩尔,797.36微升,0.5当量)和甲醇钠(302.36毫克,5.60毫摩尔,0.5当量),将反应体系在90℃下搅拌15小时。LCMS显示反应完全并检测到产物生成。将反应体系减压浓缩,加入饱和氯化铵水溶液(100毫升),乙酸乙酯萃取(100毫升*2)。合并有机相,减压浓缩得化合物55f的粗品。LCMS(ESI)m/z:378.1(M+1)。
第六步:
将化合物55f(4.6克,12.19毫摩尔,1当量)溶于水(30毫升)和THF(30毫升)的混合溶剂中,加入一水合氢氧化锂(1.02克,24.38毫摩尔,2当量),在25℃下搅拌16小时。LCMS显示反应完全并检测到目标产物生成。加入水(100毫升)淬灭反应,加入稀盐酸(1M)调节pH到2,乙酸乙酯萃取(200毫升*3)。合并有机相,无水硫酸钠干燥,减压浓缩,得到化合物55g的粗品。LCMS(ESI)m/z:363.9(M+1)。
第七步:
将化合物55g(4.4克,12.11毫摩尔,1当量)溶于叔丁醇(50毫升)中,加入三乙胺(2.45克,24.22毫摩尔,3.37毫升,2当量)和4A分子筛(4克),将得到的混合物在90℃下搅拌1小时。之后加入DPPA(3.50克,12.72毫摩尔,2.76毫升,1.05当量),在90℃下搅拌1小时。LCMS显示反应完全并检测到目标产物。过滤,将滤液减压浓缩,得到的粗产品经硅胶柱层析纯化(二氧化硅,石油醚:乙酸乙酯=10:1),得到化合物55h。LCMS(ESI)m/z:379.1(M+1-56); 1H NMR(400MHz,CDCl 3-d)δ8.14(br d,J=7.70Hz,1H),8.01(d,J=9.05Hz,1H),7.79-7.88(m,2H),7.42-7.48(m,1H),7.34-7.40(m,2H),7.21(d,J=8.56Hz,1H),6.93(d,J=7.95Hz,1H),3.91(s,3H),1.52(s,9H).
第八步:
将化合物55h(300毫克,690.60微摩尔,1当量)溶于1,4-二氧六环(4毫升)中,加入氯化氢/1,4-二氧六环溶液(4M,4毫升,23.17当量),之后在25℃下搅拌12小时。LCMS显示部分原料剩余,升高到45℃搅拌2小时。LCMS显示很少原料剩余并检测到目标产物生成。将反应液直接减压浓缩,再用乙酸乙酯(10毫升)溶解。有机相用饱和碳酸氢钠溶液洗(10毫升*2),得到的有机相减压浓缩得到化合物55i的粗品。LCMS(ESI)m/z:335.1(M+1)。
第九步:
将化合物55i(1.2克,3.59毫摩尔,1当量)溶于DCM(20毫升)中,在0℃下加入溴代丁二酰亚胺(638.90毫克,3.59毫摩尔,1当量),继续在下搅拌0.5小时。TLC(石油醚:乙酸乙酯=3:1)显示反应完全,有一个新点生成。加入饱和亚硫酸钠溶液(50毫升)淬灭反应,乙酸乙酯萃取(50毫升*2)。合并有机相,减压浓缩,得到的残余物通过硅胶柱层析纯化(二氧化硅,石油醚:乙酸乙酯=5:1),得到化合物55j。 1H NMR(400MHz,CDCl 3)δ8.01(d,J=9.05Hz,1H),7.85(d,J=8.19Hz,1H),7.49-7.42(m,1H),7.41-7.33(m,2H),7.25(d,J=8.44Hz,1H),7.03(s,1H),5.02(br s,2H),3.92(s,3H).
第十步:
在氮气保护下,将化合物55j(850毫克,2.06毫摩尔,1当量)溶于N,N-二甲基乙酰胺(20毫升)中,加入锌粉(1.75克,26.74毫摩尔),Pd 2(dba) 3(376.76毫克,411.43微摩尔,0.2当量),1,1'-双(二苯基膦)二茂铁(456.18毫克,822.87微摩尔,0.4当量)和氰化锌(966.25毫克,8.23毫摩尔,522.30微升,4当量),加热到120℃搅拌16小时。LCMS显示反应完全,检测到目标产物。将反应液过滤,加入乙酸乙酯(50毫升),水洗(50毫升*2)。将有机相减压浓缩,得到的残余物通过硅胶柱层析纯化(二氧化硅,石油醚:乙酸乙酯=4:1),得到化合物55k的粗品。LCMS(ESI)m/z:360.2(M+1); 1H NMR(400MHz,CDCl 3)δ8.02(d,J=9.17Hz,1H),7.86(d,J=8.07Hz,1H),7.51-7.44(m,1H),7.43-7.35(m,2H),7.23(d,J=8.44Hz,1H),6.85(s,1H),5.78(br,s,2H),3.92(s,3H).
第十一步:
将化合物55k(880毫克,2.45毫摩尔,1当量)溶于甲酸(10毫升)中,加入浓硫酸(1.20g,12.25毫摩尔,652.75微升,5当量),在100℃下搅拌1小时。LCMS显示反应完全,检测到目标产物生成。将反应液倒至冰水中(100毫升),过滤,滤饼减压干燥。将滤饼打浆(石油醚:乙酸乙酯=1:1,10毫升)1小时,过滤,滤饼减压干燥可得化合物55l。LCMS(ESI)m/z:388.1(M+1); 1H NMR(400MHz, DMSO-d 6)δ13.06(br s,1H),8.36(s,1H),8.17(d,J=9.17Hz,1H),7.99(d,J=7.83Hz,1H),7.65(d,J=9.17Hz,1H),7.52-7.35(m,3H),7.32(s,1H),3.87(s,3H).
第十二步:
将化合物55l(600毫克,1.55毫摩尔,1当量)溶于三氯氧磷(16.50克,107.61毫摩尔,10毫升,69.46当量)中,加入N,N-二甲基苯胺(938.62毫克,7.75毫摩尔,981.82微升,5当量),将反应液加热到搅拌2小时。TLC(二氯甲烷:甲醇=10:1)显示反应完全。将反应液减压浓缩,得到化合物55m的粗品。
第十三步:
将化合物55m(700毫克,1.73毫摩尔,1当量)溶于1,4-二氧六环(20毫升)中,在0℃下加入TEA(2.79克,27.60毫摩尔,3.84毫升,16当量)和N-Boc哌嗪(2.57克,13.80毫摩尔,8当量),之后加热到50℃搅拌2小时。LCMS显示反应完全,并检测到目标产物。加入饱和氯化铵水溶液(100毫升)淬灭反应,乙酸乙酯萃取(50毫升*3),有机相减压浓缩,柱层析纯化(二氧化硅,石油醚:乙酸乙酯=1:1),得到化合物55n。LCMS(ESI)m/z:556.5(M+1); 1H NMR(400MHz,CDCl 3)δ8.93(s,1H),8.03(d,J=9.05Hz,1H),7.86(d,J=7.46Hz,1H),7.44-7.36(m,3H),7.35-7.30(m,1H),7.05(s,1H),3.90(s,3H),3.83-3.78(m,4H),3.69(dd,J=3.85,6.30Hz,4H),1.52(s,9H).
第十四步:
将化合物55n(800毫克,1.44毫摩尔,1当量)溶于DCM(10毫升)中,加入TFA(4.62克,40.52毫摩尔,3毫升,28.14当量),将反应液在下搅拌1小时。LCMS显示反应完全,检测到目标产物。将反应液减压浓缩得到化合物55o的三氟乙酸盐。LCMS(ESI)m/z:456.2(M+1);
第十五步:
将化合物55o(800毫克,1.40毫摩尔,1当量)的三氟乙酸盐溶于DCM(15毫升)中,在0℃下加入TEA(1.42克,14.05毫摩尔,1.96毫升,10当量)和丙烯酰氯(254。30毫克,2.81毫摩尔,229.10微升,2当量),在0℃下搅拌0.5小时。LCMS显示反应完全,并检测到目标产物。加入饱和氯化铵(20毫升)淬灭反应,乙酸乙酯萃取(20毫升*2)。合并有机相,减压浓缩。得到的粗产品打浆(乙酸乙酯:石油醚=1:2,12毫升),过滤,滤饼减压干燥,得到化合物55p。LCMS(ESI)m/z:510.2(M+1);
第十六步:
将化合物55p(200毫克,392.56微摩尔,1当量)溶于DCM(10毫升)中,在0℃下加入三溴化硼(2.95克,11.78毫摩尔,1.13毫升,30当量),在25℃下反应1小时。LCMS显示约22.82%的产物生成。在0℃下缓慢加入水(30毫升)淬灭反应,乙酸乙酯萃取(30毫升*2),合并有机相,减压浓缩,得到的残余物通过制备的TLC(二氯甲烷:甲醇=20:1)纯化,再通过制备的HPLC(0.075%三氟乙酸)纯化,得到实施例55的三氟乙酸盐。LCMS(ESI)m/z:496.2(M+1); 1H NMR(400MHz,DMSO-d 6)δ10.33(br s,1H),8.82(s,1H),8.01-7.87(m,2H),7.44-7.2344(m,5H),6.83(dd,J=16.69,10.45Hz,1H),6.18(dd,J=16.69,2.14Hz,1H),5.81-5.70(m,1H),3.99-3.73(m,8H).
实验例1:细胞实验
实验目的:
本实验旨在验证本发明化合物对KRAS G12C突变的NCI-H358人非小细胞肺癌细胞、KRAS G12C突变的MIA PaCa2人胰腺癌细胞和野生型的A375人恶性黑色素瘤细胞的增殖抑制效果。
主要试剂:
细胞株NCI-H358、细胞株A375、细胞株MIA Paca2、Cell Titer-Glo检测试剂盒、RPMI1640培养基、DMEM细胞培养基、胎牛血清、0.25%胰蛋白酶-EDTA消化液、DPBS、细胞培养级DMSO、青链霉素
主要仪器:
多标记微孔板检测仪Envision、细胞培养瓶、384细胞培养微孔板、Vi-cell XR细胞活性分析仪、CO2恒温培养箱、300μL 12道电动移液器、Echo超声波纳升级液体工作站
实验方法:
分别向3块384微孔板的外围孔中加入40μl磷酸盐缓冲液,分别向每块板的其它孔中加40μl待测细胞悬液(板1:NCI-H358细胞悬液,其中包含500个NCI-H358细胞;板2:MIA PaCa2细胞悬液,其中包含300个MIA PaCa2细胞;板3:A375细胞悬液,其中包含300个A375细胞)。然后将三块细胞板放到二氧化碳培养箱中过夜培养。用Echo对待测化合物进行3倍梯度稀释,将每个化合物稀释10个浓度梯度(从50μM稀释至0.003μM)并分别加100nl到细胞板的对应孔中,加药后,A、P行,1、24列每孔加入40μL磷酸盐缓冲液,然后将细胞板放回到二氧化碳培养箱中培养5天。向细胞板中加入每孔20μl的Promega CellTiter-Glo试剂,室温避光震荡10分钟使发光信号稳定。采用PerkinElmer Envision多标记分析仪读数。
数据分析:IC 50结果由IDBS公司的GraphPad Prism 5.0软件进行分析。
实验结果:
本发明化合物对NCI-H358(G12C突变)细胞,A375(野生型)细胞和MIA PaCa2(G12C突变)细胞的抗增殖活性IC 50的数据在表1和表2中展示。
结论:本发明化合物对于KRAS G12C突变型细胞NCI-H358和MIA PaCa2显示了较高的细胞抗增殖活性,同时对于野生型的A375细胞抗增殖活性较弱,体现了高的选择性。
表1
受试化合物 NCI-H358 IC 50(μM) A375 IC 50(μM)
实施例1 5.3 17.8
实施例2 5.36 >50
实施例6 14.64 39.85
实施例8的甲酸盐 1.41 39.09
实施例11 23.99 42.21
实施例12 14.18 9.89
实施例15 13.86 >50
实施例18 7.18 2.86
实施例22 5.12 24.41
实施例26 13.30 32.58
实施例27 20.8 50
实施例28 9.93 36.18
实施例31 1.64 33.29
实施例32 0.45 29.26
实施例33 15.82 39.64
实施例34的甲酸盐 1.05 28.30
实施例37 1.05 19.69
实施例41 0.15 12.24
实施例42 0.01 4.57
实施例44 3.67 9.02
实施例45 0.01 6.24
实施例46 1.95 >50
实施例47 1.00 27.88
实施例48 0.18 20.79
实施例49 0.05 7.32
实施例50 5.49 >50
实施例51 2.04 8.82
实施例52 0.06 7.39
实施例53 2.27 8.91
实施例54 0.29 6.66
实施例55的三氟乙酸盐 4.26 50
表2
受试化合物 MIA PaCa2 IC 50(μM)
实施例2 6.48
实施例6 12.7
实施例8的甲酸盐 2.31
实施例25 15.27
实施例31 1.25
实施例32 0.37
实施例35 12.04
实施例36 1.11
实施例37 1.44
实施例41 0.16
实施例42 0.02
实施例44 2.97
实施例45 0.01
实施例46 1.79
实施例47 0.82
实施例48 0.13
实施例49 0.07
实施例50 3.90
实验例2:肝微粒体稳定性试验
实验目的:
测试供试品在小鼠、大鼠和人肝微粒体中的代谢稳定性。
实验材料:
供试品(10mM),Testosterone(睾酮,对照品,10mM),Diclofenac(双氯芬酸,对照品,10mM),Propafenone(丙胺苯丙酮,对照品,10mM),人肝微粒体,大鼠肝微粒体,小鼠肝微粒体。
缓冲体系:
1. 100mM磷酸钾缓冲剂(pH 7.4)。
2. 10mM二氯化镁溶液。
化合物稀释:
1.中间体溶液:采用45μL DMSO(带有450μL 1:1甲醇/水)来稀释5μL供试品或对照品。
2.工作液:采用450μL 100mM磷酸钾缓冲剂来稀释中间体溶液。
NADPH再生体系:
1.β-磷酸酰胺腺嘌呤二核苷酸,来源于西格玛,Cat.No.N0505。
2.异柠檬酸,来源于西格玛,目录号I1252。
3.异柠檬酸脱氢酶,来源于Sigma,Cat.No.I2002。
肝微粒体溶液制备(最后浓度:0.5mg蛋白/mL):
终止液:
含100ng/mL Tolbutamide(甲糖宁)和100ng/mL Labetalol(拉贝洛尔)的冷乙腈作为内标物。
实验方法:
1.加10μL供试品或对照品工作液到所有板中(T0,T5,T10,T20,T30,T60,NCF60)。
2.分配680μL/孔肝微粒体溶液到96孔板上,然后添加80μL/孔到每块板上,将上述孵育板放置于37℃预孵育大约10分钟。
3.在NCF60板上每孔添加10μL 100mM磷酸钾缓冲液。
4.预孵育结束后,分配90μL/孔NADPH再生体系工作液到96孔板上,然后添加10μL/孔l到 每块板上以启动反应。
5.孵化适当的时间(如5、10、20、30和60分钟)。
6.分别在每个样品孔中加入300μL终止液(于4℃冷藏,含100ng/mL Tolbutamide和100ng/mL Labetalol)。
7.样品板摇匀约10分钟并在4度下4000转离心20分钟。
8.离心时,加300μL HPLC水到每孔中,取100μL上清液用于LC-MS/MS分析。
数据分析:
通过下面公式中计算T 1/2和Cl int(mic)
Figure PCTCN2019072393-appb-000120
Figure PCTCN2019072393-appb-000121
Figure PCTCN2019072393-appb-000122
Figure PCTCN2019072393-appb-000123
Figure PCTCN2019072393-appb-000124
每克肝含45mg微粒体蛋白,小鼠、大鼠、犬、猴和人的肝重分别为88g/kg、40g/kg、32g/kg、30g/kg和20g/kg。
C t为时间t时的浓度,t为孵育时间,C 0为0时的浓度,K e为消除速率常数,Cl int(mic)为肝微粒固有清除率,Cl int(liver)为肝固有清除率。
CL int(mic)=0.693/半衰期/mg微粒体蛋白每mL(孵育时微粒体浓度)
CL int(liver)=CL int(mic)×mg微粒体蛋白/g肝重×肝重体重比
实验结果:见表3。
实验结论:
本发明化合物在人,大鼠和小鼠的肝微粒体稳定性实验中,显示了较长的半衰期,因此可以推测本发明化合物的体内代谢稳定性较好。
表3
Figure PCTCN2019072393-appb-000125
实验例3:大鼠药代动力学评价实验
实验目的:
以雄性SD大鼠为受试动物,应用LC/MS/MS法测定大鼠静脉和灌胃给与受试化合物后不同时刻血浆中的药物浓度。研究受试化合物在大鼠体内的药代动力学行为,评价其药动学特征。
实验方案:试验动物:健康成年雄性SD大鼠10只,按照体重相近的原则分成4组,IV组(两组)每组2只,PO组(两组)每组3只。动物购买自北京维通利华实验动物有限公司。
药物配制:
IV组:称取适量样品,按照体积比10:60:30依次加入适量DMSO,PEG400和水,搅拌超声后达到1.5mg/mL的澄清状态。
PO组:称取适量样品,按照体积比10:60:30依次加入适量DMSO,PEG400和水,搅拌超声后达到1.0mg/mL的澄清状态。
给药:
禁食一夜后,IV组分别进行静脉给药,给药体积为2mL/kg,剂量为3mg/kg;PO组分别进行灌胃给药,给药体积为10mL/kg,剂量为10mg/kg。
实验操作:
雄性SD大鼠静脉注射组分别给与受试化合物后,在0.0833,0.25,0.5,1,2,4,6,8,及24小时采血200ul,置于预先加有EDTA-K 2的商品化抗凝管中。灌胃给药组分别给与受试化合物后,分别在0.25,0.5,1,2,4,6,8,及24小时采血200ul,置于预先加有EDTA-K 2的商品化抗凝管中。将试管离心15分钟分离血浆,并于-60℃保存。给药2小时后动物可进食。用LC/MS/MS法测定大鼠静脉和灌胃给药后,血浆中的受试化合物含量。方法的线性范围为2.00~6000nM;血浆样品经乙腈沉淀蛋白处理后进行分析。
实验结果:
实验结果见表4。
实验结论:
在大鼠药代动力学评价实验中,本发明化合物显示出较参考化合物ARS-1620更高的暴露量和更好的口服利用度。
表4
Figure PCTCN2019072393-appb-000126
Figure PCTCN2019072393-appb-000127
注:Cl:清除率;V d:分布容积;AUC:暴露量;T 1/2:半衰期;C max:口服给药后化合物浓度最大值;T max:达到C max的时间;F:生物利用度。
实验例4:体内药效试验(一)
实验目的:
评价受试化合物在人胰腺癌MIA-PaCa2细胞皮下异种移植肿瘤模型上的体内药效。
实验操作:
BALB/c裸鼠,雌性,6-8周,体重约18-22克。每只小鼠在右后背皮下接种0.2mL(1×10 7个)MIA-PaCa2细胞(加基质胶,体积比为1:1)。当平均肿瘤体积达到约169立方毫米时开始给药。将试验化合物每日口服给药,给药剂量如表5所示。肿瘤体积每周两次测量,体积以立方毫米计量,通过以下公式计算:V=0.5a×b 2,其中a和b分别是肿瘤的长径和短径。化合物的抑瘤疗效用TGI(%)评价。TGI(%),反映肿瘤生长抑制率。TGI(%)的计算:TGI(%)=【(1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积))/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)】×100%。实验结果:见表5。
表5
组别 肿瘤体积(mm 3)(第20天) TGI(%)
溶剂对照组 612±75 --
实施例2(50mg/kg) 457±94 35
实施例2(200mg/kg) 307±61 69
实验结论:
本发明化合物在人胰腺癌MIA-PaCa2细胞皮下异种移植瘤模型中展示出良好的体内药效。开始给药后20天,本发明化合物与溶剂对照组相比具有显著的抑瘤作用,且有明显的量效关系。
实验例5:体内药效试验(二)
实验目的:
评价受试化合物在人非小细胞肺癌NCI-H358皮下异体移植肿瘤模型上的体内药效。
实验操作:
BALB/c裸小鼠,雌性,6-8周龄,体重18-21克。共需100只。由上海灵畅实验动物有限公司提供。将NCI-H358肿瘤细胞重悬于PBS中,制备成0.1mL(5×10 6个)的细胞悬液,皮下接种于每只小鼠的右后背(5×10 6/只)等待肿瘤生长。在肿瘤平均体积达到约150-200mm 3时开始进行随机分组给药,给药剂量如表6所示。每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5a×b 2,a和b分别表示肿瘤的长径和短径。化合物的抑瘤疗效用TGI(%)评价。TGI(%),反映肿瘤生长抑 制率。TGI(%)的计算:TGI(%)=[(1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积)/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100%。
实验结果:见表6。
表6
Figure PCTCN2019072393-appb-000128
实验结论:本发明化合物在人非小细胞肺癌NCI-H358皮下异体移植肿瘤模型中展示出良好的体内药效。开始给药后20天,本发明化合物与参考化合物ARS-1620相比具有显著的抑瘤作用。
实验例6:体内药效试验(三)
实验目的:
评价受试化合物在人胰腺癌x-MIA-PaCa2细胞皮下异种移植肿瘤模型上的体内药效。
实验操作:
NU/NU小鼠,雌性,6-8周龄,体重17-20克。共需100只(多接种30%的动物)。由北京维通利华科技股份有限公司提供。将0.2mL(10×10 6个)x-MIA-PaCa2细胞(加基质胶,体积比为1:1)皮下接种于每只小鼠的右后背,肿瘤平均体积达到约150mm 3时开始分组给药,给药剂量如表7所示。每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5a×b 2,a和b分别表示肿瘤的长径和短径。化合物的抑瘤疗效用TGI(%)评价。TGI(%),反映肿瘤生长抑制率。TGI(%)的计算:TGI(%)=[(1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积)/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100%。
实验结果:见表7。
表7
Figure PCTCN2019072393-appb-000129
实验结论:本发明化合物在人胰腺癌x-MIA-PaCa2细胞皮下异种移植瘤模型中展示出良好的体内药效。开始给药后14天,本发明化合物与参考化合物ARS-1620相比具有显著的抑瘤作用。
实验例7:体内药效试验(四)
实验目的:
评价受试化合物在人非小细胞肺癌NCI-H358皮下异体移植肿瘤模型上的体内药效。
实验操作:
BALB/c裸小鼠,雌性,6-8周龄,体重18-20克。共需40只。由上海灵畅实验动物有限公司提供。将NCI-H358肿瘤细胞重悬于PBS中,制备成密度为5×10 7个/mL的细胞悬液,皮下接种于每只小鼠的右后背(0.1mL,5×10 6/只)等待肿瘤生长。在肿瘤平均体积达到约166mm 3时,开始进行随机分组给药,给药剂量如表8所示。每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5a×b 2,a和b分别表示肿瘤的长径和短径。化合物的抑瘤疗效用TGI(%)评价。TGI(%),反映肿瘤生长抑制率。TGI(%)的计算:TGI(%)=[(1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积)/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100%。
实验结果:见表8。
表8
Figure PCTCN2019072393-appb-000130
实验结论:开始给药27天后,在同等给药剂量(15mg/kg)下,本发明化合物与参考化合物ARS-1620相比具有显著的抑瘤作用。另外,本发明化合物在给药剂量(5mg/kg)低于参考化合物ARS-1620给药剂量(15mg/kg)时,仍展示出显著的缩瘤效果。这表明本发明化合物在人非小细胞肺癌NCI-H358皮下异体移植肿瘤模型中展示出良好的体内药效,且抗肿瘤作用具有剂量依赖性的趋势。

Claims (26)

  1. 式(I)所示化合物、其药学上可接受的盐或其异构体,
    Figure PCTCN2019072393-appb-100001
    其中,
    环A选自3~8元杂环烷基,所述3~8元杂环烷基任选被1、2或3个R取代;
    R 1、R 2、R 3、R 4和R 5分别独立地选自H、卤素、OH、NH 2、CN、C 1-6烷基和C 1-6杂烷基,所述C 1-6烷基和C 1-6杂烷基任选被1、2或3个R取代;
    或者,R 1和R 2连接在一起形成环B;
    或者,R 2和R 3连接在一起形成环B;
    或者,R 3和R 4连接在一起形成环B;
    或者,R 4和R 5连接在一起形成环B;
    环B选自苯基、C 5~6环烯基、5~6元杂环烯基和5~6元杂芳基,所述苯基、C 5~6环烯基和5~6元杂环烯基、5~6元杂芳基任选被1、2或3个R a取代;
    R a选自卤素、OH、NH 2、CN、C 1-6烷基和C 1-6杂烷基,所述C 1-6烷基和C 1-6杂烷基任选被1、2或3个R取代;
    R 6选自H、卤素和C 1-6烷基,所述C 1-6烷基任选被1、2或3个R取代;
    R 7选自H、CN、NH 2、C 1-8烷基、C 1-8杂烷基、4~6元杂环烷基、5~6元杂芳基和C 5-6环烷基,所述C 1-8烷基、C 1-8杂烷基、4~6元杂环烷基、5~6元杂芳基和C 5-6环烷基选自任选被1、2或3个R取代;
    L选自单键、-NH-、-S-、-O-、-C(=O)-、-C(=S)-、-CH 2-、-CH(R b)-和-C(R b) 2-;
    L’选自单键和-NH-;
    R b选自C 1-3烷基和C 1-3杂烷基,所述C 1-3烷基和C 1-3杂烷基任选被1、2或3个R取代;
    R 8选自H、C 1-6烷基和C 1-6杂烷基,所述C 1-6烷基和C 1-6杂烷基任选被1、2或3个R取代;
    R选自卤素、OH、NH 2、CN、C 1-6烷基、C 1-6杂烷基和C 3-6元环烷基,所述C 1-6烷基、C 1-6杂烷基和C 3-6元环烷基任选被1、2或3个R’取代;
    R’选自:F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 3CH 2、CH 3O、CF 3、CHF 2、CH 2F、环丙基、丙基、异丙基、N(CH 3) 2、NH(CH 3);
    “杂”表示杂原子或杂原子团,所述3~8元杂环烷基、C 1-6杂烷基、5~6元杂环烯基、5~6元杂芳基、C 1- 8杂烷基、4~6元杂环烷基、C 1-3杂烷基之“杂”分别独立地选自-C(=O)N(R)-、-N(R)-、-NH-、N、-O-、-S-、-C(=O)O-、-C(=O)-、-C(=S)-、-S(=O)-、-S(=O) 2-和-N(R)C(=O)N(R)-;
    以上任何一种情况下,杂原子或杂原子团的数目分别独立地选自1、2和3。
  2. 根据权利要求1所述的化合物、其药学上可接受的盐或其异构体,其中,R选自F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 3CH 2、CH 3O、CF 3、CHF 2、CH 2F、环丙基、丙基、异丙基、N(CH 3) 2、NH(CH 3)和N(CH 2CH 3) 2
  3. 根据权利要求1或2所述的化合物、其药学上可接受的盐或其异构体,其中,环A选自氮杂环丙烷、氮杂环丁烷、吡咯烷、哌啶基、哌嗪基、1,4-二氮环庚烷基和3,6-二氮杂二环[3.2.0]庚烷,所述氮杂环丙烷、氮杂环丁烷、吡咯烷、哌啶基、哌嗪基、1,4-二氮环庚烷基和3,6-二氮杂二环[3.2.0]庚烷任选被1、2或3个R取代。
  4. 根据权利要求1或2所述的化合物、其药学上可接受的盐或其异构体,其中,R 1、R 2、R 3、R 4和R 5分别独立地选自H、F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 3CH 2、(CH 3) 2CH、CH 3O、CH 3NH和CH 3NH(C=O)O,所述CH 3、CH 3CH 2、(CH 3) 2CH、CH 3O、CH 3NH和CH 3NH(C=O)O任选被1、2或3个R取代。
  5. 根据权利要求4所述的化合物、其药学上可接受的盐或其异构体,其中,R 1、R 2、R 3、R 4和R 5分别独立地选自H、F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 3CH 2、(CH 3) 2CH、CH 3O、CH 3NH、(CH 3) 2N、(CH 3) 2N(C=O)O和CH 3NH(C=O)O。
  6. 根据权利要求1或2所述的化合物、其药学上可接受的盐或其异构体,其中,环B选自吡唑基、咪唑基、吡咯基、噻吩基、呋喃基、三唑基、噁唑基、异噁唑基、噻唑基、异噻唑基、苯基、吡啶基、嘧啶基、哒嗪基、三嗪基、吗啉基、环戊烯基和环己烯基,所述吡唑基、咪唑基、吡咯基、噻吩基、呋喃基、三唑基、噁唑基、异噁唑基、噻唑基、异噻唑基、苯基、吡啶基、嘧啶基、哒嗪基、三嗪基、吗啉基、环戊烯基和环己烯基任选被1、2或3个R a取代。
  7. 根据权利要求1或2所述的化合物、其药学上可接受的盐或其异构体,其中,R a选自F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 3CH 2、(CH 3) 2CH、CH 3O、CH 3C(=O)。
  8. 根据权利要求6或7所述的化合物、其药学上可接受的盐或其异构体,其中,环B选自苯基、吡唑基、1-甲基-1H-吡唑基和1-(1H-吡唑-1-基)乙酮基。
  9. 根据权利要求1或2所述的化合物、其药学上可接受的盐或其异构体,其中,R 6选自H、F、Cl、Br、I和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R取代。
  10. 根据权利要求9所述的化合物、其药学上可接受的盐或其异构体,其中,R 6选自H、F、Cl、Br、I、CH 3、CF 3、CHF 2、CH 2F。
  11. 根据权利要求1或2所述的化合物、其药学上可接受的盐或其异构体,其中,R 7选自H、CN、NH 2、C 1-6烷基、C 1-6杂烷基、吗啉基、哌啶基、氮杂环丁烷基、氮杂环戊烷基、吡唑基、咪唑基、噁唑基、异恶唑基、噻唑基、异噻唑基、环己烷基、环戊烷基、苯基、吡啶基、哒嗪基、嘧啶基、吡嗪基,所述C 1-6烷基、C 1-6杂烷基、吗啉基、哌啶基、氮杂环丁烷基、氮杂环戊烷基、吡唑基、咪唑基、噁唑基、异恶唑基、噻唑基、异噻唑基、环己烷基、环戊烷基、苯基、吡啶基、哒嗪基、嘧啶基、吡嗪基任选被1、2或3个R取代。
  12. 根据权利要求11所述的化合物、其药学上可接受的盐或其异构体,其中,R 7选自H、CH 3、CN、NH 2
    Figure PCTCN2019072393-appb-100002
    Figure PCTCN2019072393-appb-100003
    所述
    Figure PCTCN2019072393-appb-100004
    Figure PCTCN2019072393-appb-100005
    任选被1、2或3个R取代。
  13. 根据权利要求12所述的化合物、其药学上可接受的盐或其异构体,其中,R 7选自H、CH 3、CN、NH 2
    Figure PCTCN2019072393-appb-100006
    Figure PCTCN2019072393-appb-100007
  14. 根据权利要求1或2所述的化合物、其药学上可接受的盐或其异构体,其中,R 8选自H、C 1-4烷基和C 1-4杂烷基,所述C 1-4烷基和C 1-4杂烷基任选被1、2或3个R取代。
  15. 根据权利要求14所述的化合物、其药学上可接受的盐或其异构体,其中,R 8选自H、CH 3、CH 3CH 2、(CH 3) 2CHCH 2、(CH 3) 2CH、CH 3O、CH 3NH、(CH 3) 2N、(CH 3) 2NCH 2和CH 3NHCH 2
  16. 根据权利要求1或2所述的化合物、其药学上可接受的盐或其异构体,其中,结构单元
    Figure PCTCN2019072393-appb-100008
    选自
    Figure PCTCN2019072393-appb-100009
    其中,R 9选自H和C 1-3烷基。
  17. 根据权利要求16所述的化合物、其药学上可接受的盐或其异构体,其中,结构单元
    Figure PCTCN2019072393-appb-100010
    选自
    Figure PCTCN2019072393-appb-100011
  18. 根据权利要求1或2所述的化合物、其药学上可接受的盐或其异构体,其中,结构单元
    Figure PCTCN2019072393-appb-100012
    选自H、CN、CH 3、CH 3CH 2、(CH 3) 2CH、(CH 3) 2N、(CH 3) 2NCH 2
    Figure PCTCN2019072393-appb-100013
    Figure PCTCN2019072393-appb-100014
  19. 根据权利要求1或2所述的化合物、其药学上可接受的盐或其异构体,其中,结构单元
    Figure PCTCN2019072393-appb-100015
    选自
    Figure PCTCN2019072393-appb-100016
    Figure PCTCN2019072393-appb-100017
  20. 根据权利要求1~19任意一项所述的化合物、其药学上可接受的盐或其异构体,选自
    Figure PCTCN2019072393-appb-100018
    其中,L如权利要求1所定义,
    R 1、R 2、R 4和R 5如权利要求1或4所定义,
    R 6如权利要求1或9所定义,
    R ,7如权利要求1、11、12或13所定义,
    R ,8如权利要求1、14或15所定义,
    R ,9如权利要求16所定义。
  21. 根据权利要求20所述的化合物、其药学上可接受的盐或其异构体,选自
    Figure PCTCN2019072393-appb-100019
    其中,R 1、R 2、R 4、R 5、R 6、R 7、R 8、R 9和L如权利要求20所定义,环B如权利要求1或6所定义。
  22. 根据权利要求21所述的化合物、其药学上可接受的盐或其异构体,选自
    Figure PCTCN2019072393-appb-100020
    其中,R 1、R 2、R 4、R 5、R 6、R 7、R 8、L、R 9和R a如权利要求21所定义。
  23. 下式化合物、其药学上可接受的盐或其异构体,选自
    Figure PCTCN2019072393-appb-100021
    Figure PCTCN2019072393-appb-100022
    Figure PCTCN2019072393-appb-100023
    Figure PCTCN2019072393-appb-100024
  24. 根据权利要求23所述的化合物、其药学上可接受的盐或其异构体,选自
    Figure PCTCN2019072393-appb-100025
    Figure PCTCN2019072393-appb-100026
    Figure PCTCN2019072393-appb-100027
  25. 根据权利要求1~24任意一项所述的化合物、其药学上可接受的盐或其异构体在制备治疗癌症药物中的应用。
  26. 根据权利要求25所述的应用,其中,所述癌症包括肺癌、淋巴瘤、食管癌、卵巢癌、胰腺癌、直肠癌、脑胶质瘤、子宫颈癌、尿路上皮癌、胃癌、子宫内膜癌、肝癌、胆管癌、乳腺癌、结肠癌、白血病和黑色素瘤。
PCT/CN2019/072393 2018-01-19 2019-01-18 作为krasg12c突变蛋白抑制剂的吡啶酮并嘧啶类衍生物 WO2019141250A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
SG11202012697QA SG11202012697QA (en) 2018-01-19 2019-01-18 Pyridone-pyrimidine derivative acting as krasg12c mutein inhibitor
JP2020539829A JP7289839B2 (ja) 2018-01-19 2019-01-18 Krasg12c突然変異タンパク質阻害剤としてのピリドン-ピリミジン系誘導体
ES19740933T ES2969284T3 (es) 2018-01-19 2019-01-18 Derivado de piridona-pirimidina que actúa como inhibidor de la muteína krasg12c
CN201980009147.8A CN111630053A (zh) 2018-01-19 2019-01-18 作为krasg12c突变蛋白抑制剂的吡啶酮并嘧啶类衍生物
CN202011378153.1A CN112442031B (zh) 2018-01-19 2019-01-18 作为krasg12c突变蛋白抑制剂的吡啶酮并嘧啶类衍生物
US16/962,951 US11453667B2 (en) 2018-01-19 2019-01-18 Pyridone-pyrimidine derivative acting as KRASG12C mutein inhibitor
CN202011378149.5A CN112442030B (zh) 2018-01-19 2019-01-18 作为krasg12c突变蛋白抑制剂的吡啶酮并嘧啶类衍生物
EP19740933.7A EP3741756B1 (en) 2018-01-19 2019-01-18 Pyridone-pyrimidine derivative acting as krasg12c mutein inhibitor
EP21155251.8A EP3842433B1 (en) 2018-01-19 2019-01-18 Pyridone-pyrimidine derivative acting as krasg12c mutein inhibitor
CN202110310525.5A CN113121530B (zh) 2018-01-19 2019-01-18 作为krasg12c突变蛋白抑制剂的吡啶酮并嘧啶类衍生物
US17/159,928 US11655248B2 (en) 2018-01-19 2021-01-27 Pyridone-pyrimidine derivative acting as KRAS G12C mutein inhibitor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810055396 2018-01-19
CN201810055396.8 2018-01-19
CN201810712103 2018-06-29
CN201810712103.9 2018-06-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/962,951 A-371-Of-International US11453667B2 (en) 2018-01-19 2019-01-18 Pyridone-pyrimidine derivative acting as KRASG12C mutein inhibitor
US17/159,928 Continuation US11655248B2 (en) 2018-01-19 2021-01-27 Pyridone-pyrimidine derivative acting as KRAS G12C mutein inhibitor

Publications (1)

Publication Number Publication Date
WO2019141250A1 true WO2019141250A1 (zh) 2019-07-25

Family

ID=67301292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072393 WO2019141250A1 (zh) 2018-01-19 2019-01-18 作为krasg12c突变蛋白抑制剂的吡啶酮并嘧啶类衍生物

Country Status (7)

Country Link
US (2) US11453667B2 (zh)
EP (2) EP3842433B1 (zh)
JP (2) JP7289839B2 (zh)
CN (4) CN111630053A (zh)
ES (1) ES2969284T3 (zh)
SG (2) SG11202012697QA (zh)
WO (1) WO2019141250A1 (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111423366A (zh) * 2020-04-28 2020-07-17 山东汇海医药化工有限公司 一种吡非尼酮的制备方法
WO2020165732A1 (en) 2019-02-12 2020-08-20 Novartis Ag Pharmaceutical combination comprising tno155 and a krasg12c inhibitor
WO2021052499A1 (zh) * 2019-09-20 2021-03-25 上海济煜医药科技有限公司 稠合吡啶酮类化合物及其制备方法和应用
WO2021058018A1 (en) * 2019-09-29 2021-04-01 Beigene, Ltd. Inhibitors of kras g12c
CN112824410A (zh) * 2019-11-21 2021-05-21 苏州泽璟生物制药股份有限公司 氮杂七元环类抑制剂及其制备方法和应用
US11071730B2 (en) 2018-10-31 2021-07-27 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds
CN113286794A (zh) * 2019-11-04 2021-08-20 北京加科思新药研发有限公司 Kras突变蛋白抑制剂
CN113651814A (zh) * 2019-12-19 2021-11-16 北京加科思新药研发有限公司 Kras突变蛋白抑制剂
US11203591B2 (en) 2018-10-31 2021-12-21 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds
WO2022002018A1 (zh) * 2020-07-03 2022-01-06 苏州闻天医药科技有限公司 一种用于抑制krasg12c突变蛋白的化合物及其制备方法和用途
WO2022048545A1 (zh) * 2020-09-01 2022-03-10 勤浩医药(苏州)有限公司 一种吡啶并嘧啶化合物的晶型
WO2022052895A1 (zh) * 2020-09-11 2022-03-17 南京明德新药研发有限公司 氮杂环丁烷取代化合物的晶型
WO2022140246A1 (en) 2020-12-21 2022-06-30 Hangzhou Jijing Pharmaceutical Technology Limited Methods and compounds for targeted autophagy
US11453681B2 (en) 2019-05-23 2022-09-27 Gilead Sciences, Inc. Substituted eneoxindoles and uses thereof
WO2022222871A1 (en) * 2021-04-21 2022-10-27 Beijing Innocare Pharma Tech Co., Ltd. Heterocyclic compounds as kras g12c inhibitors
WO2022266206A1 (en) 2021-06-16 2022-12-22 Erasca, Inc. Kras inhibitor conjugates
WO2022269525A1 (en) 2021-06-23 2022-12-29 Novartis Ag Pharmaceutical combinations comprising a kras g12c inhibitor and uses thereof for the treatment of cancers
WO2023031781A1 (en) 2021-09-01 2023-03-09 Novartis Ag Pharmaceutical combinations comprising a tead inhibitor and uses thereof for the treatment of cancers
CN113527293B (zh) * 2020-04-20 2023-09-08 苏州璞正医药有限公司 Kras g12c突变蛋白抑制剂及其药物组合物、制备方法和用途
WO2023199180A1 (en) 2022-04-11 2023-10-19 Novartis Ag Therapeutic uses of a krasg12c inhibitor
WO2023205701A1 (en) 2022-04-20 2023-10-26 Kumquat Biosciences Inc. Macrocyclic heterocycles and uses thereof
US11845761B2 (en) 2020-12-18 2023-12-19 Erasca, Inc. Tricyclic pyridones and pyrimidones
WO2024081674A1 (en) 2022-10-11 2024-04-18 Aadi Bioscience, Inc. Combination therapies for the treatment of cancer
EP4389751A1 (en) 2021-09-03 2024-06-26 Kumquat Biosciences Inc. Heterocyclic compounds and uses thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019141250A1 (zh) * 2018-01-19 2019-07-25 南京明德新药研发股份有限公司 作为krasg12c突变蛋白抑制剂的吡啶酮并嘧啶类衍生物
WO2022121839A1 (zh) * 2020-12-08 2022-06-16 上海和誉生物医药科技有限公司 吡啶并[2,3-d]嘧啶-2(1H)-酮衍生物及其制备方法和应用
MX2024008849A (es) * 2022-01-21 2024-07-25 Usynova Pharmaceuticals Ltd Compuestos de benzopirimidina y uso de estos.
WO2023173017A1 (en) * 2022-03-09 2023-09-14 Blossomhill Therapeutics, Inc. Kras inhibitors for treating disease
CN117430620A (zh) * 2022-07-22 2024-01-23 上海医药集团股份有限公司 嘧啶环类化合物、其中间体、其药物组合物及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016164675A1 (en) 2015-04-10 2016-10-13 Araxes Pharma Llc Substituted quinazoline compounds and methods of use thereof
WO2016168540A1 (en) 2015-04-15 2016-10-20 Araxes Pharma Llc Fused-tricyclic inhibitors of kras and methods of use thereof
WO2018064510A1 (en) 2016-09-29 2018-04-05 Araxes Pharma Llc Inhibitors of kras g12c mutant proteins
WO2018119183A2 (en) 2016-12-22 2018-06-28 Amgen Inc. Kras g12c inhibitors and methods of using the same
WO2018206539A1 (en) 2017-05-11 2018-11-15 Astrazeneca Ab Heteroaryl compounds that inhibit g12c mutant ras proteins

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2858515T3 (es) * 2012-03-30 2021-09-30 Orthodontic Res And Development S L Procedimiento de montaje de un distalizador
CA2926328C (en) 2013-10-10 2022-11-29 Araxes Pharma Llc Substituted quinazolinyl and quinolinyl derivatives and pharmaceutical compositions thereof useful as inhibitors of kras g12c
TW201726656A (zh) * 2015-11-16 2017-08-01 亞瑞克西斯製藥公司 包含經取代雜環基團之2-經取代喹唑啉化合物及其使用方法
WO2017100546A1 (en) * 2015-12-09 2017-06-15 Araxes Pharma Llc Methods for preparation of quinazoline derivatives
JP7039489B2 (ja) * 2016-05-18 2022-03-22 ミラティ セラピューティクス, インコーポレイテッド Kras g12c阻害剤
CN110382482A (zh) 2017-01-26 2019-10-25 亚瑞克西斯制药公司 稠合的杂-杂二环化合物及其使用方法
WO2019141250A1 (zh) 2018-01-19 2019-07-25 南京明德新药研发股份有限公司 作为krasg12c突变蛋白抑制剂的吡啶酮并嘧啶类衍生物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016164675A1 (en) 2015-04-10 2016-10-13 Araxes Pharma Llc Substituted quinazoline compounds and methods of use thereof
WO2016168540A1 (en) 2015-04-15 2016-10-20 Araxes Pharma Llc Fused-tricyclic inhibitors of kras and methods of use thereof
WO2018064510A1 (en) 2016-09-29 2018-04-05 Araxes Pharma Llc Inhibitors of kras g12c mutant proteins
WO2018119183A2 (en) 2016-12-22 2018-06-28 Amgen Inc. Kras g12c inhibitors and methods of using the same
WO2018206539A1 (en) 2017-05-11 2018-11-15 Astrazeneca Ab Heteroaryl compounds that inhibit g12c mutant ras proteins

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CANCER DISCOV, vol. 6, 2016, pages 316 - 29
MATTHEW R. JANESYI LIU ET AL., CELL, vol. 172, 2018, pages 578 - 589
NAT REV DRUG DISCOV, vol. 13, 2014, pages 828 - 851
NATURE, vol. 503, 2013, pages 548 - 551
SCIENCE, vol. 351, 2016, pages 604 - 608

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11897878B2 (en) 2018-10-31 2024-02-13 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds
US11071730B2 (en) 2018-10-31 2021-07-27 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds
US11925631B2 (en) 2018-10-31 2024-03-12 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds
US11203591B2 (en) 2018-10-31 2021-12-21 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds
WO2020165732A1 (en) 2019-02-12 2020-08-20 Novartis Ag Pharmaceutical combination comprising tno155 and a krasg12c inhibitor
EP4249000A2 (en) 2019-02-12 2023-09-27 Novartis AG Pharmaceutical combination comprising tno155 and a krasg12c inhibitor
US11453681B2 (en) 2019-05-23 2022-09-27 Gilead Sciences, Inc. Substituted eneoxindoles and uses thereof
US12037342B2 (en) 2019-05-23 2024-07-16 Gilead Sciences, Inc. Substituted eneoxindoles and uses thereof
WO2021052499A1 (zh) * 2019-09-20 2021-03-25 上海济煜医药科技有限公司 稠合吡啶酮类化合物及其制备方法和应用
WO2021058018A1 (en) * 2019-09-29 2021-04-01 Beigene, Ltd. Inhibitors of kras g12c
CN113286794A (zh) * 2019-11-04 2021-08-20 北京加科思新药研发有限公司 Kras突变蛋白抑制剂
CN113286794B (zh) * 2019-11-04 2024-03-12 北京加科思新药研发有限公司 Kras突变蛋白抑制剂
CN112824410A (zh) * 2019-11-21 2021-05-21 苏州泽璟生物制药股份有限公司 氮杂七元环类抑制剂及其制备方法和应用
CN113651814B (zh) * 2019-12-19 2022-06-17 北京加科思新药研发有限公司 Kras突变蛋白抑制剂
CN113651814A (zh) * 2019-12-19 2021-11-16 北京加科思新药研发有限公司 Kras突变蛋白抑制剂
CN113527293B (zh) * 2020-04-20 2023-09-08 苏州璞正医药有限公司 Kras g12c突变蛋白抑制剂及其药物组合物、制备方法和用途
CN111423366B (zh) * 2020-04-28 2022-05-27 山东汇海医药化工有限公司 一种吡非尼酮的制备方法
CN111423366A (zh) * 2020-04-28 2020-07-17 山东汇海医药化工有限公司 一种吡非尼酮的制备方法
WO2022002018A1 (zh) * 2020-07-03 2022-01-06 苏州闻天医药科技有限公司 一种用于抑制krasg12c突变蛋白的化合物及其制备方法和用途
CN116018343A (zh) * 2020-09-01 2023-04-25 勤浩医药(苏州)有限公司 一种吡啶并嘧啶化合物的晶型
WO2022048545A1 (zh) * 2020-09-01 2022-03-10 勤浩医药(苏州)有限公司 一种吡啶并嘧啶化合物的晶型
WO2022052895A1 (zh) * 2020-09-11 2022-03-17 南京明德新药研发有限公司 氮杂环丁烷取代化合物的晶型
US11845761B2 (en) 2020-12-18 2023-12-19 Erasca, Inc. Tricyclic pyridones and pyrimidones
WO2022140246A1 (en) 2020-12-21 2022-06-30 Hangzhou Jijing Pharmaceutical Technology Limited Methods and compounds for targeted autophagy
WO2022222871A1 (en) * 2021-04-21 2022-10-27 Beijing Innocare Pharma Tech Co., Ltd. Heterocyclic compounds as kras g12c inhibitors
WO2022266206A1 (en) 2021-06-16 2022-12-22 Erasca, Inc. Kras inhibitor conjugates
WO2022269525A1 (en) 2021-06-23 2022-12-29 Novartis Ag Pharmaceutical combinations comprising a kras g12c inhibitor and uses thereof for the treatment of cancers
WO2023031781A1 (en) 2021-09-01 2023-03-09 Novartis Ag Pharmaceutical combinations comprising a tead inhibitor and uses thereof for the treatment of cancers
EP4389751A1 (en) 2021-09-03 2024-06-26 Kumquat Biosciences Inc. Heterocyclic compounds and uses thereof
WO2023199180A1 (en) 2022-04-11 2023-10-19 Novartis Ag Therapeutic uses of a krasg12c inhibitor
WO2023205701A1 (en) 2022-04-20 2023-10-26 Kumquat Biosciences Inc. Macrocyclic heterocycles and uses thereof
WO2024081674A1 (en) 2022-10-11 2024-04-18 Aadi Bioscience, Inc. Combination therapies for the treatment of cancer

Also Published As

Publication number Publication date
CN113121530B (zh) 2022-08-05
CN112442030B (zh) 2022-09-27
EP3741756A4 (en) 2020-12-09
CN112442031A (zh) 2021-03-05
JP7352587B2 (ja) 2023-09-28
EP3842433A1 (en) 2021-06-30
EP3741756A1 (en) 2020-11-25
US20210147418A1 (en) 2021-05-20
US11655248B2 (en) 2023-05-23
CN113121530A (zh) 2021-07-16
JP7289839B2 (ja) 2023-06-12
US20210371411A1 (en) 2021-12-02
CN112442030A (zh) 2021-03-05
SG11202012697QA (en) 2021-02-25
JP2021510721A (ja) 2021-04-30
CN111630053A (zh) 2020-09-04
US11453667B2 (en) 2022-09-27
JP2021091691A (ja) 2021-06-17
ES2969284T3 (es) 2024-05-17
CN112442031B (zh) 2022-07-12
EP3842433B1 (en) 2023-11-01
EP3741756B1 (en) 2023-11-01
SG10202102462SA (en) 2021-04-29

Similar Documents

Publication Publication Date Title
WO2019141250A1 (zh) 作为krasg12c突变蛋白抑制剂的吡啶酮并嘧啶类衍生物
CN111372925B (zh) 作为c-MET/AXL抑制剂的尿嘧啶类化合物
JP6877407B2 (ja) Ntrk関連障害の治療に有用な化合物および組成物
CN109415341B (zh) 作为TGF-βR1抑制剂的苯并三氮唑衍生的α,β不饱和酰胺类化合物
CN113993860B (zh) 作为kras g12c突变蛋白抑制剂的七元杂环类衍生物
WO2021043322A1 (zh) 氮杂环庚烷并嘧啶类衍生物及其医药用途
WO2019154365A1 (zh) 一种atr抑制剂及其应用
JP7168149B2 (ja) Fgfr阻害剤としてのピラジン-2(1h)-オン系化合物
JP6746613B2 (ja) ウレア誘導体、またはその薬理学的に許容される塩
WO2020035065A1 (zh) 作为ret抑制剂的吡唑衍生物
EP3689351B1 (en) Quinoline derivative and application thereof as tyrosine kinase inhibitor
WO2019085933A1 (zh) 作为Wee1抑制剂的大环类化合物及其应用
JP7530128B2 (ja) Fgfr阻害剤化合物及びその使用
WO2022228576A1 (zh) 一种靶向蛋白调节剂的化合物及其应用
CN111433207A (zh) 作为αV整合素抑制剂的吡咯并吡嗪衍生物
WO2019056950A1 (zh) 噻吩并二氮杂卓衍生物及其应用
WO2016124129A1 (zh) 二氮杂-苯并荧蒽类化合物
KR20230163466A (ko) Ddr1 및 ddr2 억제제로서의 인돌린 유도체
WO2019149244A1 (zh) Jak抑制剂及其应用
WO2024067744A1 (zh) 杂环取代喹唑啉及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19740933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539829

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019740933

Country of ref document: EP

Effective date: 20200819