WO2019140948A1 - 封装结构 - Google Patents

封装结构 Download PDF

Info

Publication number
WO2019140948A1
WO2019140948A1 PCT/CN2018/107599 CN2018107599W WO2019140948A1 WO 2019140948 A1 WO2019140948 A1 WO 2019140948A1 CN 2018107599 W CN2018107599 W CN 2018107599W WO 2019140948 A1 WO2019140948 A1 WO 2019140948A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
package structure
metal
metal extension
Prior art date
Application number
PCT/CN2018/107599
Other languages
English (en)
French (fr)
Inventor
陈兆礼
张金方
张露
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Priority to JP2020523482A priority Critical patent/JP7261796B2/ja
Priority to KR1020207001024A priority patent/KR102362044B1/ko
Priority to EP18901014.3A priority patent/EP3641000B1/en
Priority to US16/293,426 priority patent/US10756296B2/en
Publication of WO2019140948A1 publication Critical patent/WO2019140948A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements

Definitions

  • the present application relates to the field of display technologies, and in particular, to a package structure.
  • the flat display device has many advantages such as thin body, power saving, no radiation, and the like, and thus has been widely used.
  • the existing flat display devices mainly include a liquid crystal display (LCD) and an organic light-emitting diode (OLED) display device.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the fabrication process of the OLED display device includes a packaging process, such as a frit package.
  • a packaging process such as a frit package.
  • thermal energy in the laser sealing process when the temperature gradient and the stress distribution are not uniform and do not match the thermal expansion coefficient of the material, it is easy to generate cracks on the film under the glass paste, resulting in a signal. The line is broken, resulting in an abnormal display.
  • the purpose of the present application is to provide a package structure that improves the problem of signal line breakage.
  • the present application provides a package structure, including:
  • An encapsulation layer is disposed between the first substrate and the second substrate, the encapsulation layer covers the metal extension layer and is used to fix the first substrate and the second substrate.
  • the second substrate is a package cover.
  • the metal extension layer has a plurality of through holes therein.
  • the through holes are evenly arranged.
  • the power terminal is also provided with a through hole.
  • the through hole is square.
  • the width of the metal extension layer is the same as the width of the encapsulation layer.
  • the width of the metal extension layer is 1/4 to 1/3 of the width of the package layer.
  • the metal extension layer is located at an intermediate position of the encapsulation layer.
  • the power terminal includes an operating voltage terminal and a common ground terminal.
  • the metal extension layer extends from the working voltage end and the common ground end to the two ends, and extends from the working voltage end and the common ground end. Partially not in contact.
  • the first substrate is polygonal, and the power end is located at one side of the polygon.
  • a first metal layer is further disposed at other sides of the polygon, and the encapsulation layer is located on the first metal layer.
  • the first metal layer has a plurality of through holes therein.
  • the metal extension layer is in the shape of a line.
  • the present application also provides an OLED display device employing the package structure as described above.
  • the package structure provided by the present application includes: a first substrate having a power supply end on one side of the first substrate; a second substrate; a metal extension layer extending from the power supply end in a length direction of the side to the And an encapsulation layer covering the metal extension layer and for fixing the first substrate and the second substrate.
  • the extension filling of the metal is utilized, which contributes to the conduction of thermal energy and improves the breakage of the signal line.
  • the design of the metal extension layer and the width of the encapsulation layer can be used to improve the uniformity of the thickness of the film layer.
  • the through hole design of the metal extension layer can effectively eliminate stress and reduce the risk of signal line breakage.
  • the metal extension layer is located at an intermediate position of the encapsulation layer, which can eliminate the crack initiation point of stress concentration and reduce the risk of signal line breakage.
  • 1 is a schematic view of a package structure
  • FIG. 2 is a schematic diagram of a package structure in an embodiment of the present application.
  • Figure 3 is a schematic cross-sectional view taken along line A-A' of Figure 2;
  • FIG. 4 is a schematic view of a metal extension layer in an embodiment of the present application.
  • FIG. 5 is a schematic view of a metal extension layer in another embodiment of the present application.
  • the inventors have studied a package structure including a substrate 1 having a polygonal shape (for example, a rectangular shape), one of which has a power supply terminal 4 and the other side has a metal layer 3 and an encapsulation layer.
  • 2 for example, glass glue
  • the substrate 1 there are usually some film layers such as signal lines and the like, and as described above, cracks are generated on the film layer under the encapsulation layer 2 (for example, glass paste) due to factors such as high temperature during packaging, resulting in cracks.
  • the signal line is broken, causing an abnormal display.
  • Further studies by the inventors have found that cracks are mainly generated by the encapsulation layer 2 (for example, glass glue) and further extended, so that other film layers are affected.
  • the present application proposes a package structure comprising:
  • An encapsulation layer is disposed between the first substrate and the second substrate, the encapsulation layer covers the metal extension layer and is used to fix the first substrate and the second substrate.
  • the package structure of the embodiment of the present application includes:
  • the first substrate 10 has a power supply end 41, 42 on one side of the first substrate 10;
  • Metal extension layers 411, 421 extending from the power supply ends 41, 42 in the longitudinal direction of the side (eg, A-A' direction) to the two ends of the side;
  • the encapsulation layer 20 covers the metal extension layers 411, 421 and is used to fix the first substrate 10 and the second substrate 60.
  • the first substrate 10 may be, for example, a display substrate.
  • an OLED structure or the like is formed on the first substrate 10.
  • the present application is not particularly limited, and may be designed according to actual needs.
  • a well-known driving circuit may be formed on the substrate 10, wherein a drain electrode of a driving transistor of the driving circuit is electrically connected to a bottom electrode of the OLED through a via hole, and a specific structure and a forming method of the driving circuit are well known in the art. The content will not be described in detail here.
  • a passivation layer may also be formed on the substrate 10 to protect the driving circuit on the substrate.
  • the passivation layer is preferably an inorganic material, such as silicon nitride, silicon oxide, aluminum oxide, etc., but it should be understood that the above is only an example of a passivation layer, but the selection range is not limited to the above examples, and can be Some have been selected within the scope of published or commercial materials.
  • Around the display structure may be a drive region, for example for applying a voltage to the display structure.
  • the first metal layer 30 shown in FIG. 2 is located in the drive region.
  • the first substrate 10 has a polygonal shape, wherein the power end is located on one side of the polygon; for example, the first substrate 10 has a rectangular shape, and the power end is located at one side of the rectangle.
  • the other sides of the polygon further have a first metal layer 30, and the encapsulation layer 20 is located on the first metal layer 30.
  • the first metal layer 30 is provided with a plurality of through holes, which can effectively eliminate stress and reduce the risk of signal line breakage.
  • the second substrate 60 can be, for example, a package substrate.
  • the power terminals 41, 42 are not limited to one, and may include, for example, an operating voltage (VDD) terminal and a common ground (VSS) terminal. As shown in FIG. 2, the power terminals 41, 42 include two VDD terminals 41 and two VSS terminals 42, two VDD terminals 41 in the middle, and two VSS terminals 42 on both sides of the two VDD terminals 41.
  • VDD operating voltage
  • VSS common ground
  • the VDD terminal 41 and the VSS terminal 42 are inconvenient to make contact. Therefore, the metal extension layers 411 and 421 extending from the VDD terminal and the VSS terminal are also not contacted, that is, the metal extension layers 411 and 421 respectively.
  • the VDD terminal 41 and the VSS terminal 42 extend toward the both ends, and the opposite portions from the VDD terminal 41 and the VSS terminal 42 do not contact.
  • the metal extension layers 411 and 421 extending toward the VDD end 41 and the VSS end 42 in FIG. 2 may be opposite to each other. Of course, they may be staggered. In this case, the VDD end 41 and the VSS end 42 extend toward each other.
  • the metal extension layers 411, 421 may have a common overlap, and of course, it is also desirable to not contact.
  • the material of the metal extension layers 411 and 421 may be one or an alloy of lithium, magnesium, barium, aluminum, indium, copper, gold, and silver.
  • the metal extension layers 411 and 421 extend from the power supply ends 41 and 42 to both sides.
  • the rectangular first substrate 10 is taken as an example.
  • the ends 41, 42 are located on the side of the first substrate 10, and the metal extending layers 411, 421 extend from the power terminals 41, 42 to opposite sides of the two sides, and can extend to the position just below the encapsulation layer 20. Just fine.
  • the generated heat can be better transferred by the metal extension layers 411, 421, contribute to the conduction of thermal energy, prevent the local temperature difference from being excessive, and improve the breakage of the signal line.
  • the metal extension layers 411, 421 have through holes 50.
  • the metal extension layer 421 extends from the power supply end 42 (specifically, the VSS end), and the through hole 50 can be arranged in the The metal extension layer 421 may also be disposed in the power terminal 42.
  • the through hole 50 in the power terminal 42 may have the same position (for example, a horizontal position) as the through hole 50 in the metal extension layer 421, or may be The power terminal 42 is entirely covered.
  • the through holes 50 may be evenly arranged or non-uniformly arranged, such as at a position where the through holes 50 are relatively more at a position where the breakage is more likely to occur, and the breakage is not likely to occur. There are no through holes or fewer through holes.
  • the through hole 50 is, for example, square and has a size (for example, a side length) of between 50 ⁇ m and 100 ⁇ m.
  • through holes 50 are formed in the metal extending layers 411 and 421, and the through holes 50 can effectively eliminate stress and reduce the risk of signal line breakage.
  • the width W2 of the metal extension layer 421 is the same as the width W1 of the encapsulation layer 20. This not only can effectively improve the temperature difference, but also can improve the uniformity of the film thickness.
  • the metal extending layers 411 and 421 may not have the through holes 50.
  • a part of the metal extending layer 421 is taken as an example, and a whole metal may be extended.
  • the width of the metal extension layer 421 can be appropriately reduced in consideration of the stress problem when the through hole is not provided.
  • the width W3 of the metal extension layer 421 is 1/4 to 1/3 of the width W1 of the package layer 20.
  • the metal extension layer 421 can be located at an intermediate position of the encapsulation layer 20, thereby Play a better role in dispersing stress.
  • the metal extending layer 421 is not limited to the above, and may be, for example, a broken line or the like, and can be adjusted as needed by those skilled in the art.
  • the metal extension layer 411 may be substantially identical to the metal extension layer 421, except that the extension direction and the extension length may be slightly different.
  • the encapsulation layer 20 is used to fix (for example, in a bonded form) the first substrate 10 and the second substrate 60 and form a package strip, which may generally be a frit comprising fine glass particles.
  • the glass particles include one or more of the following materials: magnesium oxide (MgO), calcium oxide (CaO), barium oxide (BaO), lithium oxide (Li 2 O), sodium oxide (Na 2 O), potassium oxide.
  • K 2 O boron oxide (B 2 O 3 ), vanadium oxide (V 2 O 5 ), zinc oxide (ZnO), cerium oxide (TeO 2 ), aluminum oxide (A1 2 O 3 ), silicon dioxide ( SiO 2 ), lead oxide (PbO), tin oxide (SnO), phosphorus oxide (P 2 O 5 ), ruthenium oxide (Ru 2 O), ruthenium oxide (Rb 2 O), ruthenium oxide (Rh 2 O), oxidation Iron (Fe 2 O 3 ), copper oxide (CuO), titanium oxide (TiO 2 ), tungsten oxide (WO 3 ), bismuth oxide (Bi 2 O 3 ), bismuth oxide (Sb 2 O 3 ), lead-boric acid Salt glass, tin-phosphate glass, vanadate glass and borosilicate.
  • the glass glue wraps around the first substrate 10, and the position covered by the glass glue is generally referred to as a package area.
  • the encapsulation layer 20 is facilitated to contact the dielectric layer under the metal extension layer, thereby improving the encapsulation effect. .
  • the package structure provided by the embodiment of the present application includes: a first substrate having a power supply end on one side of the first substrate; a second substrate; and a metal extension layer on the side from the power supply end a lengthwise direction extending to the two ends of the side; and an encapsulation layer covering the metal extension layer and for fixing the first substrate and the second substrate.
  • the extension filling of the metal is utilized, which contributes to the conduction of thermal energy and improves the breakage of the signal line.
  • the design of the metal extension layer and the width of the encapsulation layer can be used to improve the uniformity of the thickness of the film layer.
  • the through hole design of the metal extension layer can effectively eliminate stress and reduce the risk of signal line breakage.
  • the metal extension layer is located at an intermediate position of the encapsulation layer, which can eliminate the crack initiation point of stress concentration and reduce the risk of signal line breakage.
  • the embodiment of the present application also proposes an OLED display device, which adopts a package structure as described above.

Abstract

一种封装结构,包括:第一基底(10),所述第一基底(10)上一侧具有电源端(41、42);第二基底(60);金属延伸层(411、421),自所述电源端(41、42)在所述侧的长度方向延伸至所述侧两端;以及封装层(20),所述封装层(20)覆盖所述金属延伸层(411、421)且用以固定所述第一基底(10)与所述第二基底(60)。由此利用金属的延伸填充,有助于热能量的传导,改善信号线断裂的情况。

Description

封装结构
本申请要求2018年01月19日提交的申请号为201820093096.4的中国申请的优先权,通过引用将其全部内容并入本文。
技术领域
本申请涉及显示技术领域,具体涉及一种封装结构。
申请背景
平面显示器件具有机身薄、省电、无辐射等众多优点,因此得到了广泛的应用。现有的平面显示器件主要包括液晶显示器件(Liquid Crystal Display,LCD)及有机发光二极管(Organic Light-Emitting Diode,OLED)显示装置。
OLED显示装置的制备过程中包括封装工艺,例如采用玻璃胶(frit)封装。但是在封装过程中,由于激光密封过程中热能量的影响,当温度梯度和应力大小分布不均并与材料的热膨胀系数不匹配时,很容易在玻璃胶下的膜层上产生裂纹,导致信号线断线,从而导致显示异常。
申请内容
本申请申请的目的在于,提供一种封装结构,改善信号线断裂的问题。
为解决上述技术问题,本申请提供一种封装结构,包括:
第一基底,所述第一基底上一侧具有电源端;
第二基底;
金属延伸层,自所述电源端在所述侧的长度方向延伸至所述侧两端;以及
封装层,设于所述第一基底与所述第二基底之间,所述封装层覆盖所述金属延伸层且用以固定所述第一基底与所述第二基底。
可选的,其中,所述第二基底为封装盖板。
可选的,对于所述的封装结构,所述金属延伸层中具有若干个通孔。
可选的,对于所述的封装结构,所述通孔均匀排布。
可选的,所述电源端也设有通孔。
可选的,所述通孔呈方形。
可选的,对于所述的封装结构,所述金属延伸层的宽度与所述封装层的宽度相同。
可选的,对于所述的封装结构,所述金属延伸层的宽度为所述封装层宽度的1/4~1/3。
可选的,所述金属延伸层位于所述封装层中间位置。
可选的,对于所述的封装结构,所述电源端包括工作电压端和公共接地端。
可选的,对于所述的封装结构,所述金属延伸层分别由所述工作电压端和所述公共接地端向所述侧两端延伸,且自所述工作电压端和公共接地端相向延伸部分不接触。
可选的,对于所述的封装结构,所述第一基底呈多边形,所述电源端位于所述多边形的一个侧边。
可选的,对于所述的封装结构,在所述多边形的其他侧边处还具有第一金属层,且所述封装层位于所述第一金属层上。
可选的,对于所述的封装结构,所述第一金属层中具有若干个通孔。
可选的,所述金属延伸层呈折线状。
作为本申请的另一方面,本申请还提供了一种OLED显示装置,采用如前述所述的封装结构。
本申请提供的封装结构中,包括:第一基底,所述第一基底上一侧具有电源端;第二基底;金属延伸层,自所述电源端在所述侧的长度方向延伸至所述侧两端;以及封装层,所述封装层覆盖所述金属延伸层且用以固定所述第一基底与所述第二基底。由此利用金属的延伸填充,有助于热能量的传导,改善信号线断裂的情况。
进一步的,通过所述金属延伸层与所述封装层的宽度相同的设计可以起到提升膜层厚度均一性的作用。
进一步的,通过所述金属延伸层的通孔设计,可以有效消除应力,降低信号 线断裂的风险。
进一步的,使得金属延伸层位于所述封装层中间位置,可以消除应力集中的裂纹起始点,降低信号线断裂的风险。
附图简要说明
图1为一种封装结构的示意图;
图2为本申请一个实施例中封装结构的示意图;
图3为图2中A-A'处的剖面示意图;
图4为本申请一个实施例中金属延伸层的示意图;
图5为本申请另一个实施例中金属延伸层的示意图。
实施本申请的方式
为使本申请的目的、技术手段和优点更加清楚明白,以下结合附图对本申请作进一步详细说明。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
下面将结合示意图对本申请的封装结构进行更详细的描述,其中表示了本申请的优选实施例,应该理解本领域技术人员可以修改在此描述的本申请,而仍然实现本申请的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本申请的限制。
在下列段落中参照附图以举例方式更具体地描述本申请。根据下面说明和权利要求书,本申请的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本申请实施例的目的。
在下面的描述中,应该理解,当层(或膜)、区域、图案或结构被称作在基底、层(或膜)、区域、焊盘和/或图案“上”时,它可以直接位于另一个层或基底上,和/或还可以存在插入层。另外,应该理解,当层被称作在另一个层“下”时,它可以直接位于另一个层下,和/或还可以存在一个或多个插入层。另外,可以基于附图进行关于在各层“上”和“下”的指代。
请参考图1,发明人研究了一种封装结构,该封装结构包括基底1,基底1呈多边形(例如是矩形),其中一个侧边具有电源端4,其他侧边具有金属层3,封装层2(例如玻璃胶)围绕基底1一周(例如呈环形),且所述封装层2位于金属层3和电源端4上方,然后另一基底(未图示)通过封装层2与基底1封装在一起。
但是,在基底1中,通常存在有一些膜层,例如信号线等,如上文所述,在封装时由于高温等因素,在封装层2(例如玻璃胶)下的膜层上产生裂纹,导致信号线断线引起,从而导致显示异常。发明人进一步研究发现,裂纹主要由封装层2(例如玻璃胶)处产生,并进一步延伸,使得其他膜层受到影响。
于是,本申请提出一种封装结构,包括:
第一基底,所述第一基底上一侧具有电源端;
第二基底;
金属延伸层,自所述电源端在所述侧的长度方向延伸至所述侧两端;以及
封装层,设于所述第一基底与所述第二基底之间,所述封装层覆盖所述金属延伸层且用以固定所述第一基底与所述第二基底。
以下列举所述触摸屏结构及其制作方法的较优实施例,以清楚的说明本申请的内容,应当明确的是,本申请的内容并不限制于以下实施例,其他通过本领域普通技术人员的常规技术手段的改进亦在本申请的思想范围之内。
如图2-图5所示,本申请实施例的封装结构,包括:
第一基底10,所述第一基底10上一侧具有电源端41、42;
第二基底60;
金属延伸层411、421,自所述电源端41、42在所述侧的长度方向(例如A-A'方向)延伸至所述侧两端;以及
封装层20,所述封装层20覆盖所述金属延伸层411、421且用以固定所述第一基底10与所述第二基底60。
其中,图2为了便于显示,未示出第二基底60。
所述第一基底10例如可以是显示基板。在所述第一基底10上例如形成有显 示结构,例如OLED结构等,对于所述第一基底中显示结构的具体选择,本申请并不进行特别限定,可以依据实际需要进行设计。比如,所述基板10上还可形成有公知的驱动电路,其中驱动电路的驱动晶体管的漏电极通过过孔和OLED的底电极电连接,驱动电路的具体结构以及形成方法为本领域技术熟知的内容,在此不予详细介绍。所述基板10上还可形成有钝化层,用以保护基板上的驱动电路。所述钝化层优选是无机材料,例如是氮化硅、氧化硅、氧化铝等,但应理解,以上只是给出钝化层实例,但是其选择范围并不局限于以上举例,可以从现有的已公开或商业化的材料范围内选择。
在所述显示结构周围可以是驱动区域,例如用于给显示结构施加电压。例如,图2中所示的第一金属层30即位于所述驱动区域。
在本申请一实施例中,所述第一基底10呈多边形,其中电源端位于多边形的一个侧边;例如第一基底10呈矩形,电源端位于矩形的一个侧边。
在进一步的一实施例中,所述多边形的其他侧边还具有第一金属层30,且所述封装层20位于第一金属层30上。
在进一步的一实施例中,其中第一金属层30上设有若干个通孔,可以有效消除应力,降低信号线断裂的风险。
在一个实施例中,所述第二基底60例如可以是封装基板。
在本申请一实施例中,所述电源端41、42不限于一个,例如,可以是包括工作电压(VDD)端和公共接地(VSS)端。如图2中所示,所述电源端41、42包括两个VDD端41和两个VSS端42,两个VDD端41位于中间,两个VSS端42位于两个VDD端41的两侧。
可以理解的是,VDD端41和VSS端42不方便产生接触,因此,自VDD端和VSS端延伸的金属延伸层411、421也以不接触为宜,即所述金属延伸层411、421分别由所述VDD端41和VSS端42向所述两端延伸,且自所述VDD端41和VSS端42相向延伸部分不接触。
如图2中的所述VDD端41和VSS端42相向延伸出的金属延伸层411、421可以是正相对,当然,还可以是交错的情况,此时所述VDD端41和VSS端42 相向延伸出的金属延伸层411、421可以有着共同重叠部分,当然,同样以不接触为宜。
在进一步的一实施例中,所述金属延伸层411、421的材质可以是锂、镁、锶、铝、铟、铜、金、银中的一种或合金。
在进一步的另一实施例中,如图2所示,所述金属延伸层411、421自所述电源端41、42向两侧延伸,具体的,以矩形的第一基底10为例,电源端41、42位于该第一基底10一侧,所述金属延伸层411、421即是从所述电源端41、42向两侧的对边处延伸,可以延伸至恰至封装层20所在位置即可。
由此,当封装层20被加热进行封装时,产生的热量可以由金属延伸层411、421较好的转移,有助于热能量的传导,防止局部温差过大,改善信号线断裂的情况。
在本申请的一实施例中,所述金属延伸层411、421具有通孔50。
请参考图4,以其中的部分所述金属延伸层421为例进行说明,所述金属延伸层421从电源端42(具体是VSS端)延伸出,所述通孔50可以排布在所述金属延伸层421中,也可以排布到所述电源端42中,在电源端42中的通孔50可以与金属延伸层421中的通孔50具有相同的位置(例如水平位置),也可以整个布满所述电源端42。
在进一步的一实施例中,所述通孔50可以是均匀排布,也可以是非均匀排布,比如在较容易发生断裂的位置处通孔50相对较多,而不容易发生断裂的位置处不具有通孔或具有较少的通孔。
在进一步的另一实施例中,所述通孔50例如呈方形,尺寸(例如边长)在50μm~100μm之间。
本申请实施例通过在金属延伸层411、421上设置通孔50,通过所述通孔50,可以有效消除应力,降低信号线断裂的风险。
在本申请的一实施例中,所述金属延伸层421的宽度W2与所述封装层20的宽度W1相同。这样不仅能够有效改善温差,还可以起到提升膜层厚度均一性的作用。
当然,所述金属延伸层411、421还可以是不具有通孔50,例如图5所示,以其中的部分所述金属延伸层421为例进行说明,可以是一整条的金属延伸出来,考虑到不具有通孔时的应力问题,可以适当降低金属延伸层421的宽度,例如,所述金属延伸层421的宽度W3为所述封装层20宽度W1的1/4~1/3。进一步的,由于出现裂纹时通常是从所述封装层20的中间位置开始,即可以认为是应力集中部分,因此,所述金属延伸层421可以位于所述封装层20中间位置,由此,可以起到较好的分散应力的作用。
可以理解的是,所述金属延伸层421不限于上述情况,例如,还可以是折线状等,本领域技术人员可以依据需要进行调整。
显然,所述金属延伸层411可以与所述金属延伸层421基本一致,区别在于延伸方向、延伸长度可以略有差异,
所述封装层20,用于固定(例如采用粘接形式)第一基底10与第二基底60并形成封装条,通常可以为玻璃胶(frit),其包括细小的玻璃颗粒。玻璃颗粒包括下述材料中的一种或多种:氧化镁(MgO),氧化钙(CaO)、氧化钡(BaO)、氧化锂(Li 2O),氧化钠(Na 2O)、氧化钾(K 2O),氧化硼(B 2O 3)、氧化钒(V 2O 5)、氧化锌(ZnO)、氧化碲(TeO 2)、氧化铝(A1 2O 3)、二氧化硅(SiO 2)、氧化铅(PbO),氧化锡(SnO)、氧化磷(P 2O 5)、氧化钌(Ru 2O)、氧化铷(Rb 2O)、氧化铑(Rh 2O)、氧化铁(Fe 2O 3)、氧化铜(CuO),氧化钛(TiO 2)、氧化钨(WO 3)、氧化铋(Bi 2O 3)、氧化锑(Sb 2O 3)、铅-硼酸盐玻璃、锡-磷酸盐玻璃、钒酸盐玻璃和硼硅酸盐等。
为保证密封的可靠性,玻璃胶绕第一基底10环绕整圈,通常将玻璃胶所覆盖的位置称作封装区域。
并且,借助于上述金属延伸层的设计,(例如金属延伸层具有通孔,或者是金属延伸层宽度较小),有助于封装层20与金属延伸层下方的介质层接触,从而提高封装效果。
综上所述,本申请实施例提供的封装结构中,包括:第一基底,所述第一基底上一侧具有电源端;第二基底;金属延伸层,自所述电源端在所述侧的长度方向延伸至所述侧两端;以及封装层,所述封装层覆盖所述金属延伸层且用以固定 所述第一基底与所述第二基底。由此利用金属的延伸填充,有助于热能量的传导,改善信号线断裂的情况。
进一步的,通过所述金属延伸层与所述封装层的宽度相同的设计可以起到提升膜层厚度均一性的作用。
进一步的,通过所述金属延伸层的通孔设计,可以有效消除应力,降低信号线断裂的风险。
进一步的,使得金属延伸层位于所述封装层中间位置,可以消除应力集中的裂纹起始点,降低信号线断裂的风险。
本申请实施例还提出了一种OLED显示装置,采用如前述所述的封装结构。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (16)

  1. 一种封装结构,包括:
    第一基底,所述第一基底上一侧具有电源端;
    第二基底;
    金属延伸层,自所述电源端在所述侧的长度方向延伸至所述侧两端;以及
    封装层,设于所述第一基底与所述第二基底之间,所述封装层覆盖所述金属延伸层且用以固定所述第一基底与所述第二基底。
  2. 如权利要求1所述的封装结构,其中,所述第二基底为封装盖板。
  3. 如权利要求1所述的封装结构,其中,所述金属延伸层中具有若干个通孔。
  4. 如权利要求3所述的封装结构,其中,所述通孔均匀排布。
  5. 如权利要求3所述的封装结构,其中,所述电源端也设有通孔。
  6. 如权利要求3-5任一项所述的封装结构,其中,所述通孔呈方形。
  7. 如权利要求1~3任一项所述的封装结构,其中,所述金属延伸层的宽度与所述封装层的宽度相同。
  8. 如权利要求1所述的封装结构,其中,所述金属延伸层的宽度为所述封装层宽度的1/4~1/3。
  9. 如权利要求8所述的封装结构,其中,所述金属延伸层位于所述封装层的中间位置。
  10. 如权利要求1所述的封装结构,其中,所述电源端包括工作电压端和公共接地端。
  11. 如权利要求10所述的封装结构,其中,所述金属延伸层分别由所述工作电压端和所述公共接地端向所述侧两端延伸,且自所述工作电压端和所述公共接地端相向延伸部分不接触。
  12. 如权利要求1所述的封装结构,其中,所述第一基底呈多边形,所述电源端位于所述多边形的一个侧边。
  13. 如权利要求12所述的封装结构,其中,在所述多边形的其他侧边处还具 有第一金属层,且所述封装层位于所述第一金属层上。
  14. 如权利要求13所述的封装结构,其中,所述第一金属层中具有若干个通孔。
  15. 如权利要求1所述的封装结构,其中,所述金属延伸层呈折线状。
  16. 一种OLED显示装置,采用如权利要求1-15任一项所述的封装结构。
PCT/CN2018/107599 2018-01-19 2018-09-26 封装结构 WO2019140948A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020523482A JP7261796B2 (ja) 2018-01-19 2018-09-26 パッケージ構造
KR1020207001024A KR102362044B1 (ko) 2018-01-19 2018-09-26 패키징 구조
EP18901014.3A EP3641000B1 (en) 2018-01-19 2018-09-26 Encapsulation structure
US16/293,426 US10756296B2 (en) 2018-01-19 2019-03-05 Packaging structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201820093096.4 2018-01-19
CN201820093096.4U CN208014747U (zh) 2018-01-19 2018-01-19 封装结构

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/293,426 Continuation-In-Part US10756296B2 (en) 2018-01-19 2019-03-05 Packaging structure

Publications (1)

Publication Number Publication Date
WO2019140948A1 true WO2019140948A1 (zh) 2019-07-25

Family

ID=63883165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107599 WO2019140948A1 (zh) 2018-01-19 2018-09-26 封装结构

Country Status (5)

Country Link
EP (1) EP3641000B1 (zh)
JP (1) JP7261796B2 (zh)
KR (1) KR102362044B1 (zh)
CN (1) CN208014747U (zh)
WO (1) WO2019140948A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120293064A1 (en) * 2011-05-19 2012-11-22 Samsung Mobile Display Co., Ltd. Organic Light Emitting Diode Display and Method for Manufacturing the Same
CN103682147A (zh) * 2012-09-10 2014-03-26 力志国际光电股份有限公司 有机发光二极管平面照明装置
CN104157792A (zh) * 2014-08-08 2014-11-19 上海和辉光电有限公司 Oled封装结构及封装方法
CN104183686A (zh) * 2014-09-09 2014-12-03 厦门市三安光电科技有限公司 发光二极管器件及其制作方法
CN104882566A (zh) * 2015-05-21 2015-09-02 京东方科技集团股份有限公司 一种发光二极管封装结构和封装方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911733B2 (en) * 2002-02-28 2005-06-28 Hitachi, Ltd. Semiconductor device and electronic device
KR100592273B1 (ko) * 2004-05-20 2006-06-22 삼성에스디아이 주식회사 평판 디스플레이 장치
US20070271808A9 (en) * 2004-09-21 2007-11-29 Eastman Kodak Company Lewis acid organometallic desiccant
KR100700653B1 (ko) * 2005-02-03 2007-03-27 삼성에스디아이 주식회사 유기전계발광표시장치
JP4774787B2 (ja) 2005-03-31 2011-09-14 Tdk株式会社 表示装置
KR100671638B1 (ko) * 2006-01-26 2007-01-19 삼성에스디아이 주식회사 유기 전계 발광 표시장치
JP4860530B2 (ja) * 2006-04-04 2012-01-25 コイズミ照明株式会社 El光源体
KR20080069032A (ko) * 2007-01-22 2008-07-25 삼성전자주식회사 디스플레이장치
TWI471661B (zh) 2011-06-29 2015-02-01 Innolux Corp 影像顯示系統
KR102160829B1 (ko) * 2012-11-02 2020-09-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 밀봉체 및 밀봉체의 제작 방법
KR102135882B1 (ko) * 2013-07-22 2020-07-22 삼성디스플레이 주식회사 유기전계발광 표시장치
KR102439308B1 (ko) 2015-10-06 2022-09-02 삼성디스플레이 주식회사 표시장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120293064A1 (en) * 2011-05-19 2012-11-22 Samsung Mobile Display Co., Ltd. Organic Light Emitting Diode Display and Method for Manufacturing the Same
CN103682147A (zh) * 2012-09-10 2014-03-26 力志国际光电股份有限公司 有机发光二极管平面照明装置
CN104157792A (zh) * 2014-08-08 2014-11-19 上海和辉光电有限公司 Oled封装结构及封装方法
CN104183686A (zh) * 2014-09-09 2014-12-03 厦门市三安光电科技有限公司 发光二极管器件及其制作方法
CN104882566A (zh) * 2015-05-21 2015-09-02 京东方科技集团股份有限公司 一种发光二极管封装结构和封装方法

Also Published As

Publication number Publication date
EP3641000A1 (en) 2020-04-22
KR20200011048A (ko) 2020-01-31
JP7261796B2 (ja) 2023-04-20
EP3641000B1 (en) 2024-02-14
KR102362044B1 (ko) 2022-02-14
CN208014747U (zh) 2018-10-26
EP3641000A4 (en) 2020-11-18
JP2020527289A (ja) 2020-09-03

Similar Documents

Publication Publication Date Title
TWI715561B (zh) 有機發光顯示設備
CN109119447B (zh) 一种显示面板及显示装置
KR100688796B1 (ko) 유기전계발광 표시 장치 및 그의 제작 방법
TWI323521B (en) Organic electroluminescence display device and manufacturing method thereof
TWI333286B (en) Organic electroluminescence display device and manufacturing method thereof
TWI381766B (zh) 有機發光顯示裝置及其製法
CN106299084A (zh) Led倒装芯片封装基板和led封装结构
US9966332B2 (en) Solid-state device including a conductive bump connected to a metal pattern and method of manufacturing the same
US9379353B2 (en) Display panel
CN109686866A (zh) 显示面板和显示装置
WO2021006247A1 (ja) 表示装置、及びその製造方法
KR100703518B1 (ko) 유기전계발광 표시 장치 및 그의 제작 방법
CN108598284B (zh) 显示面板、显示面板制备方法及显示装置
CN108666447A (zh) 一种显示基板及其制作方法、显示器件
US9276232B2 (en) Display apparatus and method of manufacturing the same
US10756296B2 (en) Packaging structure
WO2019140948A1 (zh) 封装结构
JP4968214B2 (ja) 液晶表示装置
WO2017063460A1 (zh) 倒装led芯片的共晶电极结构及倒装led芯片
TWM572076U (zh) Package structure
CN110071223A (zh) 一种oled封装结构及oled封装方法
TW201513332A (zh) 有機發光封裝結構及其製造方法
KR101097320B1 (ko) 유기전계발광표시장치 및 그 제조방법
KR100698688B1 (ko) 유기전계발광 표시 장치 및 그의 제작 방법
TW201515228A (zh) 半導體元件、顯示裝置、半導體元件的製造方法、及顯示裝置的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207001024

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020523482

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018901014

Country of ref document: EP

Effective date: 20200116

NENP Non-entry into the national phase

Ref country code: DE