WO2019140762A1 - 一种能同时加工两个工件的辅助折弯机器人 - Google Patents

一种能同时加工两个工件的辅助折弯机器人 Download PDF

Info

Publication number
WO2019140762A1
WO2019140762A1 PCT/CN2018/078497 CN2018078497W WO2019140762A1 WO 2019140762 A1 WO2019140762 A1 WO 2019140762A1 CN 2018078497 W CN2018078497 W CN 2018078497W WO 2019140762 A1 WO2019140762 A1 WO 2019140762A1
Authority
WO
WIPO (PCT)
Prior art keywords
axes
axis
additional
bending
workpieces
Prior art date
Application number
PCT/CN2018/078497
Other languages
English (en)
French (fr)
Inventor
徐丰羽
肖敏
蒋国平
Original Assignee
南京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京邮电大学 filed Critical 南京邮电大学
Priority to US16/086,605 priority Critical patent/US10773393B2/en
Priority to DE112018000026.5T priority patent/DE112018000026B4/de
Priority to JP2018555648A priority patent/JP6709857B2/ja
Publication of WO2019140762A1 publication Critical patent/WO2019140762A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0052Gripping heads and other end effectors multiple gripper units or multiple end effectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/004Bending sheet metal along straight lines, e.g. to form simple curves with program control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/02Bending sheet metal along straight lines, e.g. to form simple curves on press brakes without making use of clamping means
    • B21D5/0281Workpiece supporting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/02Manipulators mounted on wheels or on carriages travelling along a guideway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/046Revolute coordinate type

Definitions

  • the invention relates to the field of sheet metal processing, in particular to an auxiliary bending robot capable of processing two workpieces at the same time.
  • the core technology of sheet metal processing automation lies in the automation of sheet bending. Especially for the processing of large-size and heavy-weight parts, the labor intensity of the workers is large, and usually requires two or even several operators to complete the work, the labor intensity is high, and the working environment is bad.
  • the sheet bending automation solution has become the consensus of the industry and has great market potential and development space.
  • the 6-joint general-purpose robot is used.
  • the name of the invention is “a robot for non-interference between the sheet metal and the body when the automatic bending is performed”, which is the 6-joint industry.
  • the distance from the J2 axis to the J1 axis Z the robot arm span / the setting of the maximum side length of the sheet metal - the sum of the length of the arm member and the length of the wrist member X - the length of the boom arm Y.
  • the set distance between the J4 axis and the J1 axis is offset, and the J3 axis motor is placed outside the boom.
  • the Cartesian robot is used.
  • the name of the invention is “A gantry bending robot”, which includes: X-axis guide rails, Y-axis guide rails and Z perpendicular to each other.
  • the shaft guide rail and the X-axis guide rail are fixedly connected with the body; the X-axis guide rail and the Z-axis guide rail are vertically connected by the first sliding block, and the first sliding block is respectively provided with an X-direction sliding connection with the X-axis guide rail and the Z-axis guide rail.
  • a block guide rail and a Z-direction slide rail a second slider is fixed on a lower end of the Z-axis guide rail, and a Y-axis slide rail is slidably connected to the Y-axis guide rail on the second slider; the front end of the Y-axis guide rail is connected to the A-axis
  • the B axis is perpendicularly connected to the A axis
  • the C axis perpendicular to the B axis is rotatably connected to the B axis, and the end effector is provided at the front end of the C axis.
  • the technical problem to be solved by the present invention is to provide an auxiliary bending robot capable of simultaneously processing two workpieces, and the auxiliary bending robot capable of simultaneously processing two workpieces can be used for two sheet metal.
  • the sheet metal parts are bent at the same time, and the efficiency is doubled, which truly solves the problem of the efficiency of the automatic bending process.
  • the technical solution adopted by the present invention is:
  • An auxiliary bending robot capable of machining two workpieces at the same time, including a linear base slide, a slider, a movable boom, a movable arm, a forearm, a swing lever, and an additional seven-axis.
  • the slider is slidably coupled to the linear base rail, and an axis is formed between the slider and the linear base rail.
  • the top of the slider is directly or indirectly hinged to the rear end of the movable boom through two axes.
  • the front end of the movable boom is hinged to the rear end of the movable arm through the three axes, and the front end of the movable arm passes through the rear end of the four axes and the forearm.
  • the front end of the forearm is rotatably connected to the middle of the swing lever through the five shafts.
  • the number of the additional seven axes is two, and the two additional seven axes are symmetrically arranged on the swing bars on both sides of the five axes, and each additional seven axes are rotatably connected with the swing bar.
  • One axis, two axes, three axes and four axes are parallel to each other, and each additional seven axes are parallel to the five axes, five axes are perpendicular to the four axes, and each of the additional seven axes is provided with a sheet metal holder. Fixture for sheet workpieces.
  • the rotary support is further included, and the bottom of the rotary support is rotatably coupled to the top of the slider by an additional six-axis, and the top of the rotary support is rotatably coupled to the rear end of the movable boom through the two shafts.
  • the axis of the five axes does not intersect the axis of the four axes.
  • the origin is set on the axis of the two axes, and the horizontal direction perpendicular to the axis of the two axes is the X axis, and the vertical direction is the Y axis, and a Cartesian coordinate system is established, and the center of the four axes is in the Cartesian coordinate system.
  • the coordinates are (d x , d y ), then the formulas for d x and d y are as follows:
  • X 0 is the X-axis distance value of the center line of the die in the bending machine
  • Y 0 is the lower die height in the bending machine
  • L 10 is the vertical offset of the jig
  • L 20 is the horizontal offset of the jig
  • is the angle between the sheet metal and the horizontal plane during the bending process.
  • the two axes, the three axes, and the four axes are interlocked with each other, assuming that the driving angle of the two axes is ⁇ 2 , the driving angle of the three axes is ⁇ 3 , and the driving angle of the four axes is ⁇ 4 ; then ⁇ 2 , ⁇ 3 , and ⁇ 4 satisfy the following Calculation formula:
  • ⁇ 3 a 3 -a 2 ;
  • ⁇ 4 a 4 - a 3 ;
  • the angle ⁇ between the sheet metal and the horizontal plane during the bending process is calculated by the following formula:
  • the utility model further comprises two moving shafts, wherein the moving shaft is arranged between the additional seven shafts and the swinging rod, the moving shaft is slidably connected with the swinging rod, and the bottom of the additional seven shafts is rotatably connected with the moving shaft.
  • the invention can be set to six axes according to requirements, that is, including one axis, two axes, three axes, four axes, five axes and two additional seven axes, or can be set to seven axes, that is, including one axis and two axes.
  • the moving range is large; compared with the rectangular coordinates, the flexibility is great.
  • the blank rack and the finished rack are variable in position and variable in number, enabling fully automated bending without manual intervention.
  • the above two additional seven-axis and five-axis settings can adjust the positioning accuracy of the sheet metal plate to prevent the deviation of the positioning size and the positioning angle.
  • Fig. 1 is a schematic view showing the structure of an auxiliary bending robot capable of simultaneously processing two workpieces.
  • Figure 2 shows a partial enlarged view of the five axes and the additional seven axes of Figure 1.
  • Figure 3 shows a half-sectional schematic view of the rotary support and the slider.
  • Figure 4 shows a partial enlarged view of the moving shaft.
  • Figure 5 shows a schematic diagram of the direction of movement of the moving axis and the direction of rotation of the additional seven axes.
  • Figure 6 shows a schematic diagram of the relationship between five axes and two additional seven axes.
  • Figure 7 shows a schematic diagram of the process of sizing the sheet metal by five-axis rotation.
  • Figure 8 shows the process of the five-axis and additional seven-axis linkage positioning and angle adjustment of the sheet metal sheet metal.
  • Figure 9 shows a schematic view of the dimensions of the active boom, the active boom and the forearm.
  • Figure 10 shows an analytical diagram showing the bending motion in a Cartesian coordinate system.
  • Figure 11 shows the relationship between the angle ⁇ between the sheet metal and the horizontal plane during bending and the lower die of the bending machine.
  • linear base slide 20. slider; 30. rotary support; 31. additional six axes; 40. active boom; 41. two axes; 50. active arm; 51. three axes; Forearm; 61. Four axes; 70. Pendulum; 71. Five axes; 80. Additional seven axes; 81. Moving axis; 90. Bending machine; 101. Mold center line; 92. Displacement sensor; Shelf; 110. finished material rack; 120. sheet metal sheet.
  • an auxiliary bending robot capable of simultaneously processing two workpieces includes a linear base slide 10 , a slider 20 , a rotary support 30 , a movable boom 40 , a movable arm 50 , a forearm 60 , and a pendulum Rod 70 and additional seven shafts 80.
  • the linear base slide rail is disposed on the bend inlet side of the bending machine 90, and the linear base slide rail is preferably parallel to the bending opening of the bending machine.
  • the bending inlet of the bending machine is provided with two sensor groups, each of which preferably comprises two displacement sensors 92 as shown in FIG. 5, each of which can dimension the corresponding sheet metal plate. Positioning measurement makes it easy for the bending robot to perform dimensional positioning and angle adjustment.
  • the blank rack 100 and the finished material 110 are disposed on the outer side of the linear slide rail, and the position is variable and the number is variable, so that the fully automated bending of the sheet metal sheet 120 without manual intervention can be realized.
  • the slider is slidably coupled to the linear base rail, and an axis is formed between the slider and the linear base rail.
  • the top of the slider is hinged directly or indirectly to the rear end of the movable boom via the two shafts 41, preferably with the following two preferred arrangements.
  • Embodiment 1 The rear end of the movable boom is directly hinged to the top of the slider through the two shafts, that is, the rotary bearing is not required to be included.
  • the bending robot of the present application is a five-axis robot, and has a larger moving range than the six-axis general robot, and one axis is a linear moving axis, which expands the moving range of the robot.
  • Embodiment 2 The rear end of the movable boom is indirectly hinged to the top of the slider through the two shafts 41. As shown in FIG. 3, the bottom of the rotary support is rotatably connected to the top of the slider by the additional six shafts 31, and the top of the rotary support passes. The two shafts are rotationally coupled to the rear end of the boom joint.
  • the use of the rotary support makes the bending robot of the present application a six-axis robot with a large moving range, a variable position of the blank material rack and the finished material rack, and a variable number, which can realize fully automated bending without manual intervention.
  • the front end of the movable boom is hinged to the rear end of the movable arm through a three-axis 51, and the front end of the movable arm is hinged to the rear end of the forearm through the four-axis 61, and the front end of the forearm is pivotally connected to the middle of the swing lever through the five-axis 71. .
  • the number of the additional seven axes is two, and the two additional seven axes are symmetrically arranged on the swing bars on both sides of the five axes, and each additional seven axes are directly or indirectly connected with the swing bar, and the specific preferred setting is The way is as follows:
  • Method 1 As shown in Figure 2, the bottom of each additional seven-axis is directly connected to the swing rod.
  • each additional seven-axis is indirectly connected to the gripper.
  • the specific setting manner is as follows: as shown in FIG. 4, the bending robot of the present application further includes two moving shafts 81.
  • the moving shaft is disposed between the additional seven axes and the swinging rod, and the moving shaft is slidably connected with the swinging rod, and the seven-axis bottom is attached. Rotate the connection with the moving shaft.
  • the sliding direction of each moving shaft along the swing rod is perpendicular to the longitudinal direction of the swing rod.
  • the one axis, the two axes, the three axes, and the four axes are all parallel to each other, and each of the additional seven axes is parallel to the five axes, the five axes are perpendicular to the four axes, and the axes of the five axes and the axes of the four axes preferably have no intersection point, thus
  • the present application can avoid mechanical interference between the four-axis and the bending machine, and is suitable for bending of small parts.
  • the axis of the five axes and the axis of the four axes may also intersect a little.
  • the present invention is different in kinematics due to the special process for bending, and can be completely reversed even if it does not intersect.
  • the first mode is as follows: an additional seven-axis and a clamp are integrally arranged, that is, the additional seven-axis is a flanged shaft, and the flange in the flanged shaft is formed as a clamp, and the flange is screwed with the metal plate.
  • the setting method 2 the clamp is a vacuum chuck.
  • the third mode is set: the clamp is an electromagnet.
  • clamp can also be other arrangements known in the art.
  • the origin is set on the axis of the two axes, and the horizontal direction perpendicular to the axis of the two axes is the X axis, and the vertical direction is the Y axis, and a Cartesian coordinate system is established, and the center of the four axes is in the Cartesian coordinate system.
  • the coordinates are (d x , d y ), then the formulas for d x and d y are as follows:
  • X 0 is the X-axis distance value of the center line of the mold in the bending machine
  • Y 0 is the lower mold height in the bending machine
  • L 10 is the vertical offset of the jig
  • L 20 is The horizontal offset of the fixture
  • is the angle between the sheet metal and the horizontal plane during the bending process.
  • the two axes, the three axes, and the four axes are interlocked with each other, assuming that the driving angle of the two axes is ⁇ 2 , the driving angle of the three axes is ⁇ 3 , and the driving angle of the four axes is ⁇ 4 ; then ⁇ 2 , ⁇ 3 , and ⁇ 4 satisfy the following Calculation formula:
  • ⁇ 3 a 3 -a 2 ;
  • ⁇ 4 a 4 - a 3 ;
  • the angle ⁇ between the sheet metal and the horizontal plane during the bending process is calculated by the following formula:
  • the angle ⁇ between the metal sheet and the horizontal plane during the bending process can also be measured by other known methods such as detection by an angle sensor, and is also within the scope of protection of the present application.
  • the additional seven-axis can be used to adjust the angular deviation of the positioning of a single sheet metal.
  • the five-axis and two additional seven-axis linkages, as shown in Figure 8, will enable the positioning accuracy and angular accuracy of the two boards to be adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Human Computer Interaction (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Manipulator (AREA)

Abstract

一种能同时加工两个工件的辅助折弯机器人,包括直线底座滑轨(10)、滑块(20)、活动大臂(40)、活动小臂(50)、前臂(60)、摆杆(70)和附加七轴(80);滑块(20)滑动连接在直线底座滑轨(10)上,滑块(20)与直线底座滑轨(10)之间形成一轴;滑块(20)顶部通过二轴直接或间接与活动大臂(40)的后端相铰接,活动大臂(40)的前端通过三轴与活动小臂(50)的后端相铰接,活动小臂(50)的前端通过四轴与前臂(60)的后端相铰接,前臂(60)的前端通过五轴与摆杆(70)的中部转动连接;附加七轴(80)的数量为两根,两根附加七轴(80)对称设置在五轴两侧的摆杆(70)上,每根附加七轴(80)均与摆杆(70)转动连接。该折弯机器人能对两个钣金板材零件进行同时折弯,效率成倍提升,真正解决自动化折弯加工的效率问题。

Description

一种能同时加工两个工件的辅助折弯机器人 技术领域
本发明涉及钣金板材加工领域,特别是一种能同时加工两个工件的辅助折弯机器人。
背景技术
近年来,钣金板材加工领域,自动化加工技术的应用逐渐普及。钣金板材加工自动化的核心技术在于板材折弯的自动化。尤其大尺寸重量较大零件的加工,工人的劳动强度大,通常需要2名甚至几名操作工人完成,劳动强度大,工作环境恶劣。板材折弯自动化解决方案已经成为行业的共识,具有巨大的市场潜力和发展空间。
目前,板材折弯自动化的解决方案,主要有如下两种。
1、采用6关节通用机器人,具体参照申请号为201710513061.1的中国发明专利申请,其发明创造的名称为“一种用于自动折弯时钣金与机体互不干涉的机器人”,为6关节工业机器人,小臂部件杆长与手腕部件杆长之和X/大臂杆长Y=2~3,折弯机下模刀口高度-转座J2轴距离地面的距离H=500~600mm,转座J2轴距离J1轴的距离Z=机器人臂展/设定钣金最大边长-小臂部件杆长与手腕部件杆长之和X-大臂杆长Y。J4轴与J1轴之间偏置设定的距离,J3轴电机设置在大臂外侧。
上述专利申请,通过合理的杆长配比关系,用于大尺寸钣金折弯,钣金和机体不会相互干渉,规避了通用工业机器人在折弯应用中的诸多弊端。然而,由于控制轴数过多(6轴,自由度冗余),成本高,移动范围小,受到臂展的限制。
2、采用直角坐标机器人,具体参照申请号为201710110029.9的中国发明专利申请,其发明创造的名称为“一种龙门式折弯机器人”,其包括:相互垂直的X轴导轨、Y轴导轨和Z轴导轨,X轴导轨与机身固定连接;X轴导轨与Z轴导轨通过第一滑块垂直连接,第一滑块上分别设有与X轴导轨和Z轴导轨相对滑动连接的X向滑块导轨和Z向滑块导轨;Z轴导轨下端固定设有第二滑块,第二滑块上固定设有与Y轴导轨滑动连接Y轴滑块导轨;Y轴导轨的前端转动连接A轴,A轴上转动连接有与A轴垂直的B轴,B轴上转动连接有与B轴垂直的C轴,C轴前端设有末端执行机构。该专利申请的优点是:成本低,负载能力强。然而缺点也非常明显:结构尺寸大,占地面积大,速度慢,不灵活。
上述两种板材折弯自动化解决方案均存在着如下缺陷:手腕关节中末端两个轴的轴线都相交于一点,主要是方便运动学方程的求解。另外,折弯大尺寸工件的时候适用,小尺寸工件折弯容易与折弯机发生干涉,完全不适合小尺寸工件的折弯且只能单次加工一个零件。
发明内容
本发明要解决的技术问题是针对上述现有技术的不足,而提供一种能同时加工两个工件的辅助折弯机器人,该能同时加工两个工件的辅助折弯机器人能对两个钣金板材零件进行同时折弯,效率成倍提升,真正解决自动化折弯加工的效率问题。
为解决上述技术问题,本发明采用的技术方案是:
一种能同时加工两个工件的辅助折弯机器人,包括直线底座滑轨、滑块、活动大臂、活动小臂、前臂、摆杆和附加七轴。
滑块滑动连接在直线底座滑轨上,滑块与直线底座滑轨之间形成一轴。
滑块顶部通过二轴直接或间接与活动大臂的后端相铰接,活动大臂的前端通过三轴与活动小臂的后端相铰接,活动小臂的前端通过四轴与前臂的后端相铰接,前臂的前端通过五轴与摆杆的中部转动连接。
附加七轴的数量为两根,两根附加七轴对称设置在五轴两侧的摆杆上,每根附加七轴均与摆杆转动连接。
一轴、二轴、三轴和四轴均相互平行,每个附加七轴均与五轴相互平行,五轴与四轴相垂直,每个附加七轴的顶部均设置一个能夹持钣金板材工件的夹具。
还包括旋转支座,旋转支座的底部通过附加六轴与滑块顶部转动连接,旋转支座顶部通过二轴与活动大臂的后端转动连接。
五轴的轴线与四轴的轴线无相交点。
将原点设置在二轴的轴线上,并将与二轴的轴线相垂直的水平方向为X轴,竖直方向为Y轴,建立直角坐标系,则四轴中心在所述直角坐标系中的坐标为(d x,d y),则d x和d y的计算公式如下:
Figure PCTCN2018078497-appb-000001
Figure PCTCN2018078497-appb-000002
式中,X 0为折弯机中模具中心线的X轴向距离值;Y 0为折弯机中下模高度;L 10为夹具的竖直偏距;L 20为夹具的水平偏距;β为折弯过程中钣金板材与水平面之间的夹角。
二轴、三轴和四轴相互联动,假设二轴的驱动转角为θ 2、三轴的驱动转角为θ 3、四轴的驱动转角为θ 4;则θ 2、θ 3和θ 4满足如下计算公式:
θ 2=a 2
θ 3=a 3-a 2
θ 4=a 4-a 3
Figure PCTCN2018078497-appb-000003
Figure PCTCN2018078497-appb-000004
a 4=-β
C x=d x-L 4cos(a 4)
C y=d y-L 4sin(a 4)
式中,a 2为活动大臂与X轴夹角;a 3为活动小臂与X轴夹角;a 4为前臂与X轴的夹角;L 2为活动大臂长度;L 3为活动小臂的长度;L 4为前臂长度,C x和C y为中间变量。
折弯过程中钣金板材与水平面之间的夹角β采用如下公式进行计算:
Figure PCTCN2018078497-appb-000005
式中,B为折弯机中下模槽口的宽度;d为折弯机中上模的工进行程。
还包括两个移动轴,移动轴设在附加七轴与摆杆之间,移动轴与摆杆滑动连接,附加七轴底部与移动轴转动连接。
本发明具有如下有益效果:
1、上述两根附加七轴及五轴的设置,能实现对两个钣金板材零件的同时折弯。
2、本发明能根据需要设置成六轴,也即包括一轴、二轴、三轴、四轴、五轴和两个附加七轴,也可以设置成七轴,也即包括一轴、二轴、三轴、四轴、五轴、附加六轴和两个附加七轴。与现有技术6关节比,移动范围大;与直角坐标比,灵活性很大。毛坯料架和成品料架位置可变,数量可变,能实现无人工干预的全自动化折弯。
3.上述两根附加七轴及五轴的设置,能使钣金板材的定位精度调整,防止定位尺寸和定位角度的偏差。
附图说明
图1显示了本发明一种能同时加工两个工件的辅助折弯机器人的结构示意图。
图2显示了图1中五轴及附加七轴的局部放大示意图。
图3显示了旋转支座与滑块的半剖面结构示意图。
图4显示了具有移动轴时的局部放大示意图。
图5显示了移动轴的移动方向以及附加七轴的转动方向示意图。
图6显示了五轴与两个附加七轴的关系示意图。
图7显示了五轴旋转对钣金板材进行尺寸定位调整的过程示意图。
图8显示了五轴与附加七轴联动对钣金钣金尺寸定位及角度调整的过程示意图。
图9显示了活动大臂、活动小臂和前臂的尺寸示意图。
图10显示了显示了在直角坐标系下的折弯运动解析示意图。
图11显示了折弯过程中钣金板材与水平面之间的夹角β与折弯机下模的关系图。
其中有:10.直线底座滑轨;20.滑块;30.旋转支座;31.附加六轴;40.活动大臂;41.二轴;50.活动小臂;51.三轴;60.前臂;61.四轴;70.摆杆;71.五轴;80.附加七轴;81.移动轴;90.折弯机;101.模具中心线;92.位移传感器;100.毛坯料架;110.成品料架;120.钣金板材。
具体实施方式
下面结合附图和具体较佳实施方式对本发明作进一步详细的说明。
如图1所示,一种能同时加工两个工件的辅助折弯机器人,包括直线底座滑轨10、滑块20、旋转支座30、活动大臂40、活动小臂50、前臂60、摆杆70和附加七轴80。
直线底座滑轨设置在折弯机90的折弯进口侧,直线底座滑轨与折弯机的折弯口优选相平行。折弯机的折弯进口处优选设置有能两个传感器组,每个传感器组均优选包括两个如图5所示的位移传感器92,每个传感器组均能对相应的钣金板材进行尺寸定位测量,方便折弯机器人进行尺寸定位及角度调整。
毛坯料架100和成品料110设置在直线滑轨的外侧,位置可变,数量可变,能实现对钣金板材120无人工干预的全自动化折弯。
滑块滑动连接在直线底座滑轨上,滑块与直线底座滑轨之间形成一轴。
滑块顶部通过二轴41直接或间接与活动大臂的后端相铰接,优选具有如下两种优选设置方式。
实施例1:活动大臂的后端通过二轴直接与滑块顶部相铰接,也即不需包括旋转支座。此时,本申请的折弯机器人为五轴机器人,与6轴通用机械人相比,移动范围大,且一轴为线性移动轴,扩展了机器人的移动范围。
实施例2:活动大臂的后端通过二轴41间接与滑块顶部相铰接,如图3所示,旋转支座的底部通过附加六轴31与滑块顶部转动连接,旋转支座顶部通过二轴与大臂关节的后端转动连接。旋转支座的使用,使得本申请的折弯机器人为六轴机器人,移动范围大,毛坯料架和成品料架的位置可变,数量可变,能实现无人工干预的全自动化折弯。
活动大臂的前端通过三轴51与活动小臂的后端相铰接,活动小臂的前端通过四轴61与前臂的后端相铰接,前臂的前端通过五轴71与摆杆的中部转动连接。
如图2所示,附加七轴的数量为两根,两根附加七轴对称设置在五轴两侧的摆杆上,每根附加七轴均直接或间接与摆杆转动连接,具体优选设置方式如下:
方式一:如图2所示,每根附加七轴的底部均直接与摆杆转动连接。
方式二,每根附加七轴的底部均间接与抓手转动连接。具体设置方式为:如图4所示,本申请的折弯机器人还包括两个移动轴81,移动轴设在附加七轴与摆杆之间,移动轴与摆杆滑动连接,附加七轴底部与移动轴转动连接。
每个移动轴沿摆杆的滑移方向与摆杆的长度方向相垂直。
一轴、二轴、三轴和四轴均相互平行,每个附加七轴均与五轴相互平行,五轴与四轴相垂直,五轴的轴线与四轴的轴线优选无相交点,因而,本申请能够避免四轴与折弯机发生机械干涉,适合小零件的折弯。
当然,作为替换,五轴的轴线与四轴的轴线也可以相交一点,本发明由于针对折弯的特殊工艺,运动学特性不同,即便不相交也完全能够反解出来。
每个附加七轴的顶部均设置一个能夹持钣金板材工件的夹具,夹具的设置方式有多种,优选有如下三种设置方式:
优选设置方式一:附加七轴和夹具一体设置,也即附加七轴为法兰轴,法兰轴中的法兰盘形成为夹具,法兰盘与金属板材螺纹连接。
优选设置方式二:夹具为真空吸盘。
优选设置方式三:夹具为电磁铁。
当然,作为替换,夹具还可以为现有技术中已知的其他设置方式。
将原点设置在二轴的轴线上,并将与二轴的轴线相垂直的水平方向为X轴,竖直方向为Y轴,建立直角坐标系,则四轴中心在所述直角坐标系中的坐标为(d x,d y),则d x和d y的计算公式如下:
Figure PCTCN2018078497-appb-000006
Figure PCTCN2018078497-appb-000007
式中,如图10所示,X 0为折弯机中模具中心线的X轴向距离值;Y 0为折弯机中下模高度;L 10为夹具的竖直偏距;L 20为夹具的水平偏距;β为折弯过程中钣金板材与水平面之间的夹角。
二轴、三轴和四轴相互联动,假设二轴的驱动转角为θ 2、三轴的驱动转角为θ 3、四轴的驱动转角为θ 4;则θ 2、θ 3和θ 4满足如下计算公式:
θ 2=a 2
θ 3=a 3-a 2
θ 4=a 4-a 3
Figure PCTCN2018078497-appb-000008
Figure PCTCN2018078497-appb-000009
a 4=-β
C x=d x-L 4cos(a 4)
C y=d y-L 4sin(a 4)
式中,a 2为活动大臂与X轴夹角;a 3为活动小臂与X轴夹角;a 4为前臂与X轴的夹角;如图9所示,L 2为活动大臂长度;L 3为活动小臂的长度;L 4为前臂长度,C x和C y为中间变量。
折弯过程中钣金板材与水平面之间的夹角β采用如下公式进行计算:
Figure PCTCN2018078497-appb-000010
式中,如图11所示,B为折弯机中下模槽口的宽度;d为折弯机中上模的工进行程,式中忽略钣金板材厚度的影响。
当然,作为替换,折弯过程中金属板材与水平面之间的夹角β也可采用角度传感器进行检测等其他已知的方式进行测量,也在本申请的保护范围之内。
上述附加七轴能对进行单个钣金板材定位角度偏差的调整。
五轴与两个附加七轴的关系,如图6所示。当五轴旋转,而附加七轴小角度旋转修正时,能对两个钣金板材定位尺寸精度进行调整,调整过程如图7所示。
五轴和两个附加七轴联动,如图8所示,将能实现两块板子的定位尺寸精度、角度精度的调整。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种等同变换,这些等同变换均属于本发明的保护范围。

Claims (7)

  1. 一种能同时加工两个工件的辅助折弯机器人,其特征在于:包括直线底座滑轨、滑块、活动大臂、活动小臂、前臂、摆杆和附加七轴;
    滑块滑动连接在直线底座滑轨上,滑块与直线底座滑轨之间形成一轴;
    滑块顶部通过二轴直接或间接与活动大臂的后端相铰接,活动大臂的前端通过三轴与活动小臂的后端相铰接,活动小臂的前端通过四轴与前臂的后端相铰接,前臂的前端通过五轴与摆杆的中部转动连接;
    附加七轴的数量为两根,两根附加七轴对称设置在五轴两侧的摆杆上,每根附加七轴均与摆杆转动连接;
    一轴、二轴、三轴和四轴均相互平行,每个附加七轴均与五轴相互平行,五轴与四轴相垂直,每个附加七轴的顶部均设置一个能夹持钣金板材工件的夹具。
  2. 根据权利要求1所述的能同时加工两个工件的辅助折弯机器人,其特征在于:还包括旋转支座,旋转支座的底部通过附加六轴与滑块顶部转动连接,旋转支座顶部通过二轴与活动大臂的后端转动连接。
  3. 根据权利要求1所述的能同时加工两个工件的辅助折弯机器人,其特征在于:五轴的轴线与四轴的轴线无相交点。
  4. 根据权利要求1所述的能同时加工两个工件的辅助折弯机器人,其特征在于:将原点设置在二轴的轴线上,并将与二轴的轴线相垂直的水平方向为X轴,竖直方向为Y轴,建立直角坐标系,则四轴中心在所述直角坐标系中的坐标为(d x,d y),则d x和d y的计算公式如下:
    Figure PCTCN2018078497-appb-100001
    Figure PCTCN2018078497-appb-100002
    式中,X 0为折弯机中模具中心线的X轴向距离值;Y 0为折弯机中下模高度;L 10为夹具的竖直偏距;L 20为夹具的水平偏距;β为折弯过程中钣金板材与水平面之间的夹角。
  5. 根据权利要求1所述的能同时加工两个工件的辅助折弯机器人,其特征在于:二轴、三轴和四轴相互联动,假设二轴的驱动转角为θ 2、三轴的驱动转角为θ 3、四轴的驱动转角为θ 4;则θ 2、θ 3和θ 4满足如下计算公式:
    θ 2=a 2
    θ 3=a 3-a 2
    θ 4=a 4-a 3
    Figure PCTCN2018078497-appb-100003
    Figure PCTCN2018078497-appb-100004
    a 4=-β
    C x=d x-L 4cos(a 4)
    C y=d y-L 4sin(a 4)
    式中,a 2为活动大臂与X轴夹角;a 3为活动小臂与X轴夹角;a 4为前臂与X轴的夹角;L 2为活动大臂长度;L 3为活动小臂的长度;L 4为前臂长度,C x和C y为中间变量。
  6. 根据权利要求4或5所述的能同时加工两个工件的辅助折弯机器人,其特征在于:折弯过程中钣金板材与水平面之间的夹角β采用如下公式进行计算:
    Figure PCTCN2018078497-appb-100005
    式中,B为折弯机中下模槽口的宽度;d为折弯机中上模的工进行程。
  7. 根据权利要求1所述的能同时加工两个工件的辅助折弯机器人,其特征在于:还包括两个移动轴,移动轴设在附加七轴与摆杆之间,移动轴与摆杆滑动连接,附加七轴底部与移动轴转动连接。
PCT/CN2018/078497 2018-01-17 2018-03-09 一种能同时加工两个工件的辅助折弯机器人 WO2019140762A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/086,605 US10773393B2 (en) 2018-01-17 2018-03-09 Auxiliary bending robot capable of processing two workpieces simultaneously
DE112018000026.5T DE112018000026B4 (de) 2018-01-17 2018-03-09 Hilfsbiegeroboter zum Biegen großformatiger Blechtafeln
JP2018555648A JP6709857B2 (ja) 2018-01-17 2018-03-09 2つのワークを同時に加工できる補助ベンディングロボット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810043746.9A CN108405667B (zh) 2018-01-17 2018-01-17 一种能同时加工两个工件的辅助折弯机器人
CN201810043746.9 2018-01-17

Publications (1)

Publication Number Publication Date
WO2019140762A1 true WO2019140762A1 (zh) 2019-07-25

Family

ID=63125939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078497 WO2019140762A1 (zh) 2018-01-17 2018-03-09 一种能同时加工两个工件的辅助折弯机器人

Country Status (5)

Country Link
US (1) US10773393B2 (zh)
JP (1) JP6709857B2 (zh)
CN (1) CN108405667B (zh)
DE (1) DE112018000026B4 (zh)
WO (1) WO2019140762A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112275848A (zh) * 2020-09-25 2021-01-29 武汉爱姆依电气有限公司 一种配电柜制造板材折弯辅助设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110193564A (zh) * 2019-05-29 2019-09-03 广东翠峰机器人科技股份有限公司 一种机器人七轴联动折弯跟随的装置及工作方法
CN111687327A (zh) * 2020-05-22 2020-09-22 瑞鹄汽车模具股份有限公司 冲压工艺数据挖掘的冲压工艺中的板件调整方法
CN111645104A (zh) * 2020-06-15 2020-09-11 贵州大学 一种大行程且可快速替换的四自由度刚柔耦合机械臂
CN111872190B (zh) * 2020-07-23 2021-07-13 南京云上自动化科技有限公司 一种高精、重载数控折边机
CN112296210B (zh) * 2020-10-09 2022-12-06 深圳市冰旭科技有限公司 一种用于折弯二极管管脚的工装
KR102280711B1 (ko) * 2020-12-11 2021-07-22 (주)성연테크 취출암이 구비된 로봇 절곡기
CN114670434B (zh) * 2022-03-28 2024-05-07 广东伟犇自动化科技有限公司 一种多功能覆膜设备
KR102562014B1 (ko) * 2023-01-11 2023-07-31 한수열 Z-벤딩 성형장치
CN117208572B (zh) * 2023-11-09 2024-02-13 四川名人居门窗有限公司 一种玻璃吸盘车摆动结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1702691A1 (fr) * 2005-03-14 2006-09-20 Lexovienne de Mécanique et Outillage (LMO) Machine de cintrage avec etirage
CN103538060A (zh) * 2013-10-24 2014-01-29 扬州恒佳机械有限公司 一种六轴折弯机器人
CN107249830A (zh) * 2015-02-19 2017-10-13 株式会社天田控股集团 折弯机器人及工件检测方法
CN107262561A (zh) * 2017-07-25 2017-10-20 芜湖超源力工业设计有限公司 一种折弯角度可调节的折弯机器人
CN206661992U (zh) * 2017-04-17 2017-11-24 广州市捷迈智能装备制造有限公司 一种折弯机器人
CN206717861U (zh) * 2017-05-18 2017-12-08 南京埃斯顿机器人工程有限公司 一种内部布线的6关节折弯机器人

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4590578A (en) * 1983-07-11 1986-05-20 United Technologies Corporation Off-line programmable robot
JPH0747132Y2 (ja) * 1988-05-12 1995-11-01 鋼鈑工業株式会社 移動型材料取扱いロボット
JPH0747154Y2 (ja) * 1988-08-26 1995-11-01 鋼鈑工業株式会社 ロボット用材料把持機構
JPH071042A (ja) * 1993-06-15 1995-01-06 Komatsu Ltd プレスブレーキ用ロボット装置
US6345818B1 (en) * 1998-10-26 2002-02-12 Fanuc Robotics North America Inc. Robotic manipulator having a gripping tool assembly
DE60016588T2 (de) 1999-04-07 2006-03-02 Amada Co., Ltd., Isehara Automatisches biegesystem
US20030180135A1 (en) * 2002-03-25 2003-09-25 Sawdon Edwin G. Adjustable end arm effector
BE1016590A3 (nl) 2005-05-19 2007-02-06 Robosoft Nv Verbeterde plaatbewerkingsmachine en werkwijze voor het bewerken van platen.
ITTO20050705A1 (it) 2005-10-07 2007-04-08 Crea Srl Pressa piegatrice per pezzi di lamiera con manipolatore integrato in un dispositivo di posizionamento posteriore
AT504585A1 (de) 2006-10-23 2008-06-15 Trumpf Maschinen Austria Gmbh Handhabungsvorrichtung und fertigungseinrichtung
AT509857B1 (de) 2010-08-05 2011-12-15 Trumpf Maschinen Austria Gmbh Biegepresse mit einer werkteil-positionier- vorrichtung sowie ein verfahren zum betrieb
JP6101454B2 (ja) * 2012-09-04 2017-03-22 株式会社アマダホールディングス ワーク加工装置及び該ワーク加工装置における金型の移動方法
JP2014133251A (ja) * 2013-01-11 2014-07-24 Amada Co Ltd ワーク掴み変え金型及びその方法
CN105492348B (zh) * 2013-08-28 2018-04-13 因特利格兰特总部有限责任公司 机器人纸箱卸载机
JP2016163921A (ja) 2015-03-06 2016-09-08 ファナック株式会社 曲げ加工機と同期動作するロボットを有するロボットシステム
CN205096301U (zh) * 2015-10-30 2016-03-23 佛山市南海区广工大数控装备协同创新研究院 用于电梯门板四边弯折的机器人
CN106903187A (zh) 2017-02-28 2017-06-30 南通壹选工业设计有限公司 一种折弯机器人
CN107081761B (zh) 2017-06-29 2023-06-09 南京埃斯顿机器人工程有限公司 一种用于自动折弯时钣金与机体互不干涉的机器人
CN107297399B (zh) * 2017-08-08 2018-10-16 南京埃斯顿机器人工程有限公司 一种机器人自动寻找折弯位置的方法
CN107379013A (zh) * 2017-09-12 2017-11-24 李从宾 一种智能机器人专用的机械臂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1702691A1 (fr) * 2005-03-14 2006-09-20 Lexovienne de Mécanique et Outillage (LMO) Machine de cintrage avec etirage
CN103538060A (zh) * 2013-10-24 2014-01-29 扬州恒佳机械有限公司 一种六轴折弯机器人
CN107249830A (zh) * 2015-02-19 2017-10-13 株式会社天田控股集团 折弯机器人及工件检测方法
CN206661992U (zh) * 2017-04-17 2017-11-24 广州市捷迈智能装备制造有限公司 一种折弯机器人
CN206717861U (zh) * 2017-05-18 2017-12-08 南京埃斯顿机器人工程有限公司 一种内部布线的6关节折弯机器人
CN107262561A (zh) * 2017-07-25 2017-10-20 芜湖超源力工业设计有限公司 一种折弯角度可调节的折弯机器人

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112275848A (zh) * 2020-09-25 2021-01-29 武汉爱姆依电气有限公司 一种配电柜制造板材折弯辅助设备

Also Published As

Publication number Publication date
CN108405667B (zh) 2019-11-12
JP6709857B2 (ja) 2020-06-17
US20200101622A1 (en) 2020-04-02
JP2020506810A (ja) 2020-03-05
DE112018000026T5 (de) 2019-10-02
CN108405667A (zh) 2018-08-17
DE112018000026B4 (de) 2022-02-03
US10773393B2 (en) 2020-09-15

Similar Documents

Publication Publication Date Title
WO2019140762A1 (zh) 一种能同时加工两个工件的辅助折弯机器人
US6974297B2 (en) Industrial robot
TW200930524A (en) Multijoint robot
CN108380706B (zh) 一种自动化钣金折弯生产线
CN105945496B (zh) 用于空间异型管路焊接的多点柔性夹持装置
JPS58501420A (ja) 回転可能な作業台を含む工作物位置決め装置
CN110231010B (zh) 一种基于Delta并联机构的三坐标测量机及测量方法
CN113579766A (zh) 一种六自由度串并混联数控机床及其后处理方法
CN108405666B (zh) 一种应用于金属板材加工的辅助机器人
TWI335852B (zh)
CN207839677U (zh) 五轴金属板材折弯加工机器人
JP2770498B2 (ja) ハンドリング用多関節ロボット
JPH068182A (ja) 多関節ロボット
CN209857862U (zh) 一种基于Delta并联机构的三坐标测量机
JP2000218451A (ja) 混合機構式多軸工作機械
JPS6231366B2 (zh)
CN207839678U (zh) 一种具有附加七轴的钣金折弯机器人
JPH0911164A (ja) ベンディング用6軸垂直多関節型ロボット
CN207839679U (zh) 一种金属板材折弯机
JP2002172545A (ja) 刃先位置測定装置及び刃先位置補正方法
CN117773885A (zh) 一种可偏转的四自由度并联机构及机械设备
CN109967642B (zh) 快速上下料机械手
JPH0357344Y2 (zh)
JPH049104Y2 (zh)
JPH03196980A (ja) 多関節6自由度ロボット機構および該ロボット機構を用いた組立、加工装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018555648

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900731

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18900731

Country of ref document: EP

Kind code of ref document: A1