WO2019140740A1 - 一种复用光通信光接收组件mon管脚的电路 - Google Patents

一种复用光通信光接收组件mon管脚的电路 Download PDF

Info

Publication number
WO2019140740A1
WO2019140740A1 PCT/CN2018/077384 CN2018077384W WO2019140740A1 WO 2019140740 A1 WO2019140740 A1 WO 2019140740A1 CN 2018077384 W CN2018077384 W CN 2018077384W WO 2019140740 A1 WO2019140740 A1 WO 2019140740A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
optical communication
pin
input
receiving component
Prior art date
Application number
PCT/CN2018/077384
Other languages
English (en)
French (fr)
Other versions
WO2019140740A8 (zh
Inventor
林少衡
Original Assignee
厦门优迅高速芯片有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门优迅高速芯片有限公司 filed Critical 厦门优迅高速芯片有限公司
Priority to US16/772,151 priority Critical patent/US10992390B2/en
Publication of WO2019140740A1 publication Critical patent/WO2019140740A1/zh
Publication of WO2019140740A8 publication Critical patent/WO2019140740A8/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/693Arrangements for optimizing the preamplifier in the receiver
    • H04B10/6932Bandwidth control of bit rate adaptation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/083Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements in transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • H03F3/087Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light with IC amplifier blocks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0799Monitoring line transmitter or line receiver equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/441Protection of an amplifier being implemented by clamping means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/693Arrangements for optimizing the preamplifier in the receiver

Definitions

  • This invention relates to fiber optic communication systems, and more particularly to transimpedance amplifiers.
  • the core photoelectric conversion system includes a photodetector PD at the receiving end, a transimpedance amplifier TIA, a post-release LA, and the like, and the transmitting end includes a laser LD, a laser driver LDD, and the like.
  • the TIA and the PD are usually packaged together in the light receiving component ROSA (receiveroptical subassembly).
  • the optical communication optical receiving component ROSA has five pins, which are power supply VDD, ground GND, high-speed data output OUTP/OUTN, and average monitor photocurrent output MON.
  • the pins are very limited and difficult to increase. The first reason is to increase the tube. The foot will further increase the cost; but this type of pin distribution has been used for many years.
  • the optical components and optical modules have been matched to the design. The pin changes will cause a series of upstream and downstream supporting devices and devices to be changed synchronously and difficult to push.
  • the limited pins make the function of the TIA chip limited, especially it is difficult to control the working state and function of the chip through external control signal input, such as bandwidth/transimpedance selection, which is very important for TIA products of multi-rate compatible applications; Set the signal RESET, which is very useful for TIA products in burst mode applications.
  • the main technical problem to be solved by the present invention is to provide a circuit for multiplexing the MON pin of the optical communication light receiving component, which can realize the function of inputting a control signal to the transimpedance amplifier without affecting the normal output monitoring current of the MON pin.
  • the present invention provides a circuit for multiplexing a MON pin of an optical communication light receiving component, comprising an optical communication light receiving component, a monitoring current receiving portion outside the optical communication receiving component, and a control signal input portion;
  • the optical communication light receiving component includes a transimpedance amplifier, a photodiode D0, a first clamping circuit, and a current mirror;
  • the two output ends of the current mirror are respectively connected to the first clamping circuit such that the potentials of the two output ends of the current mirror are the same; the monitoring current of the current mirror output flows from the MON pin to the monitoring current receiving portion. And after the monitoring current receiving portion is converted into a voltage signal, the first analog-to-digital converter is input and converted into a digital signal, and the function of monitoring current is completed;
  • the control signal input portion includes a second clamp circuit, an output of the second clamp circuit is connected to the MON pin, and the voltage Vcont_out of the MON pin is clamped to an input of the second clamp circuit a voltage comparator or analog-to-digital converter in the optical communication light receiving component converts Vcont_in into various control variables to implement a transimpedance amplifier in the control optical communication light receiving component;
  • the input voltage Vcont_in of the second clamp circuit can satisfy the normal operation of the first clamp circuit and the second clamp circuit.
  • the current mirror comprises PMOS transistors M0, M1; wherein the gates of M0, M1 are connected to each other, the sources are also connected to each other, and the source of the MO is connected to the power supply voltage Vdd, and the drain is connected to The gate of the MO.
  • the first clamping circuit includes a first error amplifier and a PMOS transistor M2; wherein the drains of the PMOS transistors MO and MI are respectively connected to the positive and negative input terminals of the first error amplifier, wherein A positive input of an error amplifier is also coupled to the negative terminal of the photodiode D0; an output of the first error amplifier is coupled to the gate of M2; a source of M2 is coupled to the drain of M1, and a drain is coupled to the MON Pin.
  • the second clamping circuit includes a second error amplifier and a PMOS transistor M4; wherein a negative input of the second error amplifier is coupled to the MON pin and a positive input is coupled to the input
  • the voltage Vcont_in, the output is connected to the gate of M4; the source of M4 is connected to the MON pin.
  • the monitoring current receiving portion is an NMOS transistor M3, the drain of M3 is connected to the drain of M4, the source is grounded, the gate is connected to the drain of M3, and the gate of the M3 is connected.
  • the monitoring current receiving portion is an NMOS transistor M3, the drain of M3 is connected to the drain of M4, the source is grounded, the gate is connected to the drain of M3, and the gate of the M3 is connected.
  • the present invention provides a circuit for multiplexing the MON pins of the optical communication light receiving component, and the drain potentials of the PMOS transistors M0 and M1 in the current mirror are kept equal by the first clamp circuit to maintain the high dynamic range of the entire monitoring. Precision. After the monitoring current flows out through the MON pin, it flows into the NOMOS tube M3, converts it into the gate voltage of M3, inputs it into the first analog-to-digital converter, and converts it into a digital quantity, thereby realizing the current monitoring function.
  • the present invention provides a circuit for multiplexing a MON pin of an optical communication light receiving component.
  • the voltage of the MON pin is clamped to the input voltage Vcont_in of the second clamp circuit by the second clamp circuit, and thus the transimpedance amplifier unit By reading the voltage Vcont_out of the MON pin, it is the input control voltage.
  • the external control signal Vcont_in is copied into the transimpedance amplifier, and Vcont_in is converted into various control variables by a voltage comparator or an analog-to-digital converter. Therefore, multiplexing of the MON pins is achieved.
  • the invention provides a circuit for multiplexing the MON pin of the optical communication light receiving component, which is only required to satisfy the normal operation of the two clamp circuits, that is, the leakage of the mirror current mirror, within the entire monitoring dynamic range and the input control voltage range.
  • the pole voltages can be almost equal, and Vcont_in and Vcont_out can be almost equal, so that the monitoring function and the input control signal function can work properly at the same time. Therefore, as long as Vcont_in can make the PMOS transistors M2 and M4 operate in a saturated state, Vcont_in can be changed within a certain range. In this range, different Vcont_ins can be converted into different control variables to realize the transimpedance amplifier. Different controls.
  • the present invention provides a circuit for multiplexing a MON pin of an optical communication light receiving component
  • the mirror current is not shunted, and the mirror current output from the PMOS transistor M1 is all outputted into the NMOS transistor M3, so the current monitoring function can be realized normally.
  • FIG. 1 is a circuit diagram of a preferred embodiment of the present invention.
  • a circuit for multiplexing a MOS pin of an optical communication light receiving component includes an optical communication light receiving component, a monitoring current receiving portion outside the optical communication receiving component, and a control signal input portion;
  • the optical communication light receiving component includes a transimpedance amplifier, a photodiode D0, a first clamping circuit, and a current mirror;
  • the current mirror includes PMOS transistors M0, M1; wherein the gates of M0, M1 are connected to each other, the sources are also connected to each other, and the source of MO is connected to the power supply voltage Vdd, and the drain is connected to the gate of MO.
  • the first clamping circuit includes a first error amplifier and a PMOS transistor M2; wherein drains of the PMOS transistors MO, MI are respectively connected to positive and negative input terminals of the first error amplifier, wherein the positive input terminal of the first error amplifier is further Connected to the negative terminal of the photodiode D0; the output of the first error amplifier is connected to the gate of M2; the source of M2 is connected to the drain of M1, and the drain is connected to the MON pin.
  • the control signal input portion includes a second clamp circuit, and the second clamp circuit includes a second error amplifier and a PMOS transistor M4; wherein a negative input terminal of the second error amplifier is connected to the MON pin, and a positive input terminal Connected to the input voltage Vcont_in, the output is connected to the gate of M4; the source of M4 is connected to the MON pin.
  • the monitor current receiving portion is an NMOS transistor M3, the drain of M3 is connected to the drain of M4, the source is grounded, and the gate is connected to the drain of M3; the gate of the M3 is connected to the first analog to digital converter.
  • the above circuit allows the two output terminals of the current mirror to be respectively connected to the first clamp circuit such that the potentials of the two output terminals of the current mirror are the same;
  • the monitoring current of the current mirror output flows from the MON pin to the
  • the monitoring current receiving portion is converted into a voltage signal by the monitoring current receiving portion, and then input to the first analog-to-digital converter to be converted into a digital signal to complete the function of monitoring current;
  • An output end of the second clamping circuit is connected to the MON pin, and the voltage Vcont_out of the MON pin is clamped to an input voltage Vcont_in of the second clamping circuit; the first in the optical communication light receiving component
  • the two analog-to-digital converter converts Vcont_in into various control variables to implement a transimpedance amplifier in the control optical communication light receiving component;
  • the above-mentioned circuit for multiplexing the MON pin of the optical communication light receiving component maintains the drain potentials of the PMOS transistors M0 and M1 in the current mirror by the first clamp circuit to maintain the high precision of the entire monitoring dynamic range.
  • the monitoring current flows out through the MON pin, it flows into the NOMOS tube M3, converts it into the gate voltage of M3, inputs it into the first analog-to-digital converter, and converts it into a digital quantity, thereby realizing the current monitoring function.
  • the voltage of the MON pin is clamped to the input voltage Vcont_in of the second clamp circuit by the second clamp circuit. Therefore, the voltage Vcont_out of the MON pin is read by the transimpedance amplifier unit, that is, the input control voltage. In this way, the external control signal Vcont_in is copied into the transimpedance amplifier, and Vcont_in is converted into various control variables by an internal voltage comparator or analog-to-digital converter. Therefore, multiplexing of the MON pins is achieved.
  • Vcont_in can make the PMOS transistors M2 and M4 operate in a saturated state
  • Vcont_in can be changed within a certain range. In this range, different Vcont_ins can be converted into different control variables to realize the transimpedance amplifier. Different controls.
  • the mirror current is not shunted, and the mirror current output from the PMOS transistor M1 is all outputted into the NMOS transistor M3, so the current monitoring function can be realized normally.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

本发明提供了一种复用光通信光接收组件MON管脚的电路,通过第一箝位电路将电流镜中的PMOS管M0、M1的漏极电位保持相等,以保持整个监控动态范围的高精度。监控电流经MON管脚流出后,流入NMOS管M3,转化为M3的栅极电压后,输入第一模数转换器后转化为数字量,从而实现了电流监控功能。通过第二箝位电路,将MON管脚的电压钳制为第二箝位电路的输入电压Vcont_in,因此在跨阻放大器芯片内部通过读取MON管脚的电压Vcont_out。通过此种方式,将外部的控制信号Vcont_in复制输入到跨阻放大器内部,再通过比较器或模数转换器,将Vcont_in转化为各种控制变量。因此,就实现了MON管脚的复用。

Description

一种复用光通信光接收组件MON管脚的电路 技术领域
本发明-涉及光纤通信系统,尤其涉及跨阻放大器。
背景技术
在现代高速光纤通信系统中,核心的光电转换系统中,包括接收端的光电探测器PD、跨阻放大器TIA,后放LA等,发射端包括激光器LD、激光驱动器LDD等。其中接收端,由于处理的是高频的微弱电流信号,为最大化减小外部寄生参数、外部噪声的干扰,通常是将TIA与PD一起封装在光接收组件中ROSA(receiveropticalsubassembly)。
目前光通信光接收组件ROSA共有5个管脚,分别为电源VDD、地GND、高速数据输出OUTP/OUTN、平均监控光电流输出MON,管脚十分有限,且难以再增加,原因一是增加管脚会进一步增加成本;而是这种管脚分布方式已使用多年,光组件、光模块都已经匹配设计,管脚更改将会导致一系列上下游配套器件、设备需要同步更改,难以推动。有限的管脚使得TIA芯片的功能有限,尤其是难以通过外部控制信号输入去控制芯片的工作状态、功能等,比如带宽/跨阻选择,这对于多速率兼容应用的TIA产品十分重要;比如重置信号RESET,这对于突发模式应用的TIA产品十分有用。
因此,如果能通过这5个管脚复用,使得外部控制信号能够通过这些管脚输入到TIA芯片中,去控制芯片,将变得十分有吸引力。
发明内容
本发明所要解决的主要技术问题是提供一种复用光通信光接收组件MON管脚的电路,可以实现向跨阻放大器输入控制信号,同时又不影响MON管脚的正常输出监控电流的功能。
为了解决上述的技术问题,本发明提供了一种复用光通信光接收组件MON管脚的电路,包括光通信光接收组件、位于光通信接受组件外的监控电流接收部分和控制信号输入部分;
所述光通信光接收组件包括跨阻放大器、光电二极管D0、第一箝位电路和电流镜;
所述电流镜的两个输出端分别连接至第一箝位电路,使得电流镜的两个输出端的电位相同;所述电流镜输出的监控电流由MON管脚流至所述监控电流接收部分,并经所述监控电流接收部分转换为电压信号后输入第一模数转换器转换为数字信号,完成监控电流的功能;
所述控制信号输入部分包括第二箝位电路,所述第二箝位电路的输出端连接至所述MON管脚,将所述MON管脚的电压Vcont_out箝位为第二箝位电路的输入电压Vcont_in;所述光通信光接收组件内的电压比较器或模数转换器将Vcont_in转换为各种控制变量,以实现控制光通信光接收组件内的跨阻放大器;
所述第二箝位电路的输入电压Vcont_in能够满足第一箝位电路、第二箝位电路均正常工作。
在一较佳实施例中:所述电流镜包括PMOS管M0、M1;其中M0、M1的栅极相互连接、源极也相互连接,并且MO的源极连接至电源电压Vdd,漏极连接至MO的栅极。
在一较佳实施例中:所述第一箝位电路包括第一误差放大器和PMOS管M2;其中PMOS管MO、MI的漏极分别连接至第一误差放大器的正极和负极输入端,其中第一误差放大器的正极输入端还连接至所述光电二极管D0的负极;第一误差放大器的输出端连接至M2的栅极;M2的源极连接至M1的漏极,漏极连接至所述MON管脚。
在一较佳实施例中:所述第二箝位电路包括第二误差放大器和PMOS管M4;其中第二误差放大器的负极输入端连接至所述MON管脚,正极输入端连接至所述输入电压Vcont_in,输出端连接至M4的栅极;M4的源极连接至所述MON管脚。
在一较佳实施例中:所述监控电流接收部分为NMOS管M3,M3的漏极连接至M4的漏极,源极接地,栅极与M3的漏极相连;所述M3的栅极连接至第一模数转换器。
相较于现有技术,本发明的技术方案具备以下有益效果:
本发明提供了一种复用光通信光接收组件MON管脚的电路,通过第一箝位电路将电流镜中的PMOS管M0、M1的漏极电位保持相等,以保持整个监控动态范围的高精度。监控电流经MON管脚流出后,流入NOMOS管M3,转化为M3的栅极电压后,输入第一模数转换器后转化为数字量,从而实现了电流监控功能。
本发明提供了一种复用光通信光接收组件MON管脚的电路,通过第二箝位电路,将MON管脚的电压钳制为第二箝位电路的输入电压Vcont_in,因此在跨阻放大器部通过读取MON管脚的电压Vcont_out,即为输入的控制电压。通过此种方式,将外部的控制信号Vcont_in复制输入到跨阻放大器内部,再通过电压比较器或模数转换器等,将Vcont_in转化为各种控制变量。因此,就实现了MON管脚的复用。
本发明提供了一种复用光通信光接收组件MON管脚的电路,在整个监控动态范围内及输入控制电压范围内,只需要满足使得2个箝位电路正常工作,即镜像电流镜的漏极电压能够几乎相等,和Vcont_in和Vcont_out能够几乎相等,即可满足监控功能和输入控制信号功能同时正常工作。因此,只要Vcont_in能够使得PMOS管M2、M4工作在饱和状态即可,这样Vcont_in就可以在一定范围内改变,在这个范围内不同的Vcont_in就可以转换为不同的控制变量,实现对跨阻放大器进行不同的控制。
本发明提供了一种复用光通信光接收组件MON管脚的电路,
由于两个误差运放的输入端都是高阻输入,因此镜像电流并没有被分流掉,PMOS管M1输出的镜像电流全部被输出流入NMOS管M3,因此电流监控功能可以正常实现。
附图说明
图1为本发明优选实施例的电路图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细地描述,但本发明的实施方式并不因此限定于以下实施例。
参考图1,一种复用光通信光接收组件MON管脚的电路,包括光通信光接收组件、位于光通信接受组件外的监控电流接收部分和控制信号输入部分;
所述光通信光接收组件包括跨阻放大器、光电二极管D0、第一箝位电路和电流镜;
所述电流镜包括PMOS管M0、M1;其中M0、M1的栅极相互连接、源极也相互连接,并且MO的源极连接至电源电压Vdd,漏极连接至MO的栅极。
所述第一箝位电路包括第一误差放大器和PMOS管M2;其中PMOS管MO、MI的漏极分别连接至第一误差放大器的正极和负极输入端,其中第一误差放大器的正极输入端还连接至所述光电二极管D0的负极;第一误差放大器的输出端连接至M2的栅极;M2的源极连接至M1的漏极,漏极连接至所述MON管脚。
所述控制信号输入部分包括第二箝位电路,所述第二箝位电路包括第二误差放大器和PMOS管M4;其中第二误差放大器的负极输入端连接至所述MON管脚,正极输入端连接至所述输入电压Vcont_in,输出端连接至M4的栅极;M4的源极连接至所述MON管脚。
所述监控电流接收部分为NMOS管M3,M3的漏极连接至M4的漏极,源极接地,栅极与M3的漏极相连;所述M3的栅极连接至第一模数转换器。
因此,上述的电路使得所述电流镜的两个输出端分别连接至第一箝位电路,使得电流镜的两个输出端的电位相同;所述电流镜输出的监控电流由MON管脚流至所述监控电流接收部分,并经所述监控电流接收部分转换为电压信号后输入第一模数转换器转换为数字信号,完成监控电流的功能;
所述第二箝位电路的输出端连接至所述MON管脚,将所述MON管脚的电压Vcont_out箝位为第二箝位电路的输入电压Vcont_in;所述光通信光接收组件内的第二模数转换器将Vcont_in转换为各种控制变量,以实现控制光通信光接收组件内的跨阻放大器;
上述的一种复用光通信光接收组件MON管脚的电路,通过第一箝位电路将电流镜中的PMOS管M0、M1的漏极电位保持相等,以保持整个监控动态范围的高精度。监控电流经MON管脚流出后,流入NOMOS管M3,转化为M3的栅极电压后,输入第一模数转换器后转化为数字量,从而实现了电流监控功能。
通过第二箝位电路,将MON管脚的电压钳制为第二箝位电路的输入电压Vcont_in,因此在跨阻放大器部通过读取MON管脚的电压Vcont_out,即为输入的控制电压。通过此种方式,将外部的控制信号Vcont_in复制输入到跨阻放大器内部,再通过内部的电压比较器或模数转换器等,将Vcont_in转化为各种控制变量。因此,就实现了MON管脚的复用。
具体来说,在整个监控动态范围内及输入控制电压范围内,只需要满足使得2个箝位电路正常工作,即镜像电流镜的漏极电压能够几乎相等和Vcont_in和Vcont_out能够几乎相等,即可满足监控功能和输入控制信号功能同时正常工作。因此,只要Vcont_in能够使得PMOS管M2、M4工作在饱和状态即可,这样Vcont_in就可以在一定范围内改变,在这个范围内不同的Vcont_in就可以转换为不同的控制变量,实现对跨阻放大器进行不同的控制。
并且,由于两个误差运放的输入端都是高阻输入,因此镜像电流并没有被分流掉,PMOS管M1输出的镜像电流全部被输出流入NMOS管M3,因此电流监控功能可以正常实现。
本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。凡在本发明的构思和技术方案之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (5)

  1. 一种复用光通信光接收组件MON管脚的电路,其特征在于:包括光通信光接收组件、位于光通信接受组件外的监控电流接收部分和控制信号输入部分;
    所述光通信光接收组件包括跨阻放大器、光电二极管D0、第一箝位电路和电流镜;
    所述电流镜的两个输出端分别连接至第一箝位电路,使得电流镜的两个输出端的电位相同;所述电流镜输出的监控电流由MON管脚流至所述监控电流接收部分,并经所述监控电流接收部分转换为电压信号后输入第一模数转换器转换为数字信号,完成监控电流的功能;
    所述控制信号输入部分包括第二箝位电路,所述第二箝位电路的输出端连接至所述MON管脚,将所述MON管脚的电压Vcont_out箝位为第二箝位电路的输入电压Vcont_in;所述光通信光接收组件内的电压比较器或模数转换器等,将Vcont_in转换为各种控制变量,以实现控制光通信光接收组件内的跨阻放大器的功能;
    所述第二箝位电路的输入电压Vcont_in能够满足第一箝位电路、第二箝位电路均正常工作。
  2. 根据权利要求1所述的一种复用光通信光接收组件MON管脚的电路,其特征在于:所述电流镜包括PMOS管M0、M1;其中M0、M1的栅极相互连接、源极也相互连接,并且MO的源极连接至电源电压Vdd,漏极连接至MO的栅极。
  3. 根据权利要求2所述的一种复用光通信光接收组件MON管脚的电路,其特征在于:所述第一箝位电路包括第一误差放大器和PMOS管M2;其中PMOS管MO、MI的漏极分别连接至第一误差放大器的正极和负极输入端,其中第一误差放大器的正极输入端还连接至所述光电二极管D0的负极;第一误差放大器的输出端连接至M2的栅极;M2的源极连接至M1的漏极,漏极连接至所述MON管脚。
  4. 根据权利要求3所述的一种复用光通信光接收组件MON管脚的电路,其特征在于:所述第二箝位电路包括第二误差放大器和PMOS管M4;其中第二误差放大器的负极输入端连接至所述MON管脚,正极输入端连接至所述输入电压Vcont_in,输出端连接至M4的栅极;M4的源极连接至所述MON管脚。
  5. 根据权利要求3所述的一种复用光通信光接收组件MON管脚的电路,其特征在于:所述监控电流接收部分为NMOS管M3,M3的漏极连接至M4的漏极,源极接地,栅极与M3的漏极相连;所述M3的栅极连接至第一模数转换器。
PCT/CN2018/077384 2018-01-19 2018-02-27 一种复用光通信光接收组件mon管脚的电路 WO2019140740A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/772,151 US10992390B2 (en) 2018-01-19 2018-02-27 Circuit for multiplexing MON pin of receiver optical sub-assembly for optical communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810054480.8A CN108111230B (zh) 2018-01-19 2018-01-19 一种复用光通信光接收组件mon管脚的电路
CN201810054480.8 2018-01-19

Publications (2)

Publication Number Publication Date
WO2019140740A1 true WO2019140740A1 (zh) 2019-07-25
WO2019140740A8 WO2019140740A8 (zh) 2020-06-04

Family

ID=62220130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077384 WO2019140740A1 (zh) 2018-01-19 2018-02-27 一种复用光通信光接收组件mon管脚的电路

Country Status (3)

Country Link
US (1) US10992390B2 (zh)
CN (1) CN108111230B (zh)
WO (1) WO2019140740A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110412927B (zh) * 2019-08-23 2024-07-26 深圳市欧深特信息技术有限公司 一种光模块在位检测方法及光模块
CN111555739B (zh) * 2020-05-20 2023-10-20 广州金升阳科技有限公司 一种信号隔离系统的解调方法及电路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807885A (zh) * 2010-03-10 2010-08-18 烽火通信科技股份有限公司 跨阻放大器的输出信号控制方法及电路
CN102868439A (zh) * 2012-09-26 2013-01-09 索尔思光电(成都)有限公司 实现olt光模块管脚复用的控制系统
CN103746744A (zh) * 2013-07-26 2014-04-23 厦门优迅高速芯片有限公司 一种支持apd应用的平均光电流监控电路
CN104300920A (zh) * 2013-07-16 2015-01-21 美国亚德诺半导体公司 用于电子放大的装置和方法
US20150277470A1 (en) * 2014-03-26 2015-10-01 Megachips Corporation Current mirror circuit and receiver using the same
CN106341180A (zh) * 2016-09-26 2017-01-18 青岛海信宽带多媒体技术有限公司 一种光模块及光模块控制方法、装置
CN106936398A (zh) * 2017-02-27 2017-07-07 烽火通信科技股份有限公司 一种用于跨阻放大器的rssi电路

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436215A (en) * 1987-07-31 1989-02-07 Toshiba Corp Clamp circuit
JP3335455B2 (ja) * 1994-01-19 2002-10-15 富士通株式会社 電流電圧変換回路
JP3329680B2 (ja) * 1996-05-16 2002-09-30 株式会社デンソー 光センサ
US6930300B1 (en) * 2002-07-30 2005-08-16 Finisar Corporation Method and apparatus for monitoring a photo-detector in an optical transceiver
JP2004153400A (ja) * 2002-10-29 2004-05-27 Nec Electronics Corp 電圧増幅回路
US6876259B2 (en) * 2003-09-05 2005-04-05 Gennum Corporation Fully integrated received signal strength indicator for a transimpedance amplifier
US20050224697A1 (en) * 2004-04-08 2005-10-13 Naoki Nishiyama Light-receiving circuit capable of expanding a dynamic range of an optical input
JP4590974B2 (ja) * 2004-08-09 2010-12-01 住友電気工業株式会社 光受信回路
JP4892287B2 (ja) * 2006-06-30 2012-03-07 富士通株式会社 Pon通信用光パワーモニタ
US8121495B2 (en) * 2008-02-04 2012-02-21 Sumitomo Electric Industries, Ltd. Current mirror circuit and optical receiver circuit using the same
JP5374234B2 (ja) * 2009-05-22 2013-12-25 株式会社フジクラ モニタ回路、モニタ信号の出力方法、及び、光受信器
US8450676B2 (en) * 2009-12-12 2013-05-28 Iptronics A/S Optical receiver
JP5406113B2 (ja) * 2010-05-07 2014-02-05 セイコーインスツル株式会社 差動増幅回路
JP5516260B2 (ja) * 2010-09-14 2014-06-11 ミツミ電機株式会社 負電源制御回路
CN102590601A (zh) * 2012-01-19 2012-07-18 厦门优迅高速芯片有限公司 宽范围电流监控装置
CN104054185B (zh) * 2012-01-25 2016-05-18 三菱电机株式会社 光接收器、站侧光终端装置以及受光等级监视方法
CN102629836B (zh) * 2012-04-23 2014-09-17 山东大学 一种新的两级式交流光伏模块
JP6271372B2 (ja) * 2014-08-27 2018-01-31 株式会社東芝 光受信回路および光結合装置
CN105913875B (zh) * 2016-03-31 2019-11-26 清华大学 控制电路、存储装置及操作方法
CN208158595U (zh) * 2018-01-19 2018-11-27 厦门优迅高速芯片有限公司 复用光通信光接收组件mon管脚的电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807885A (zh) * 2010-03-10 2010-08-18 烽火通信科技股份有限公司 跨阻放大器的输出信号控制方法及电路
CN102868439A (zh) * 2012-09-26 2013-01-09 索尔思光电(成都)有限公司 实现olt光模块管脚复用的控制系统
CN104300920A (zh) * 2013-07-16 2015-01-21 美国亚德诺半导体公司 用于电子放大的装置和方法
CN103746744A (zh) * 2013-07-26 2014-04-23 厦门优迅高速芯片有限公司 一种支持apd应用的平均光电流监控电路
US20150277470A1 (en) * 2014-03-26 2015-10-01 Megachips Corporation Current mirror circuit and receiver using the same
CN106341180A (zh) * 2016-09-26 2017-01-18 青岛海信宽带多媒体技术有限公司 一种光模块及光模块控制方法、装置
CN106936398A (zh) * 2017-02-27 2017-07-07 烽火通信科技股份有限公司 一种用于跨阻放大器的rssi电路

Also Published As

Publication number Publication date
CN108111230B (zh) 2023-07-21
WO2019140740A8 (zh) 2020-06-04
CN108111230A (zh) 2018-06-01
US10992390B2 (en) 2021-04-27
US20210075518A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
US6037841A (en) Impedance matched CMOS transimpedance amplifier for high-speed fiber optic communications
US8509629B2 (en) High sensitivity two-stage amplifier
CN109002075B (zh) 双极型晶体管的基极电流镜像电路、rssi电路及芯片
EP2383885A1 (en) Transimpedance amplifier
TWI354442B (en) Configurable post-amplifiers that are capable of b
US9054655B2 (en) Transimpedance amplifier
CN106656061B (zh) 一种跨阻放大器
WO2014010515A1 (ja) 光受信器および受光電流モニタ方法
WO2019140740A1 (zh) 一种复用光通信光接收组件mon管脚的电路
CN104868949B (zh) 一种应用于跨阻放大电路的光电流监控电路
KR100271432B1 (ko) 반도체 집적회로
JP4295075B2 (ja) 光・電気変換回路および電界検出光学装置
CN102185647B (zh) 一种光电流监控装置
CN109002076B (zh) 电阻电流镜像电路、rssi电路及芯片
US9246601B2 (en) Optical receiver
CN208158595U (zh) 复用光通信光接收组件mon管脚的电路
CN202026306U (zh) 一种光电流监控电路
US6498334B2 (en) Infrared transreceiver with isolated analog output
JP3402674B2 (ja) 光受信用前置増幅器および光受信装置
JP2002076793A (ja) トランスインピーダンスアンプ
CN114152338B (zh) 光检测装置及系统
US11881827B2 (en) Traveling-wave transimpedance amplifier
Romanova et al. Inductor-less low-noise CMOS transimpedance amplifier for OTDR applications
US20230291366A1 (en) Transimpedance amplifier circuits and devices
CN110572133A (zh) 全差分跨阻放大电路及通讯装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901797

Country of ref document: EP

Kind code of ref document: A1