WO2019138959A1 - 薬液、及び、薬液の製造方法 - Google Patents

薬液、及び、薬液の製造方法 Download PDF

Info

Publication number
WO2019138959A1
WO2019138959A1 PCT/JP2019/000041 JP2019000041W WO2019138959A1 WO 2019138959 A1 WO2019138959 A1 WO 2019138959A1 JP 2019000041 W JP2019000041 W JP 2019000041W WO 2019138959 A1 WO2019138959 A1 WO 2019138959A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
particles
metal
chemical solution
filter
Prior art date
Application number
PCT/JP2019/000041
Other languages
English (en)
French (fr)
Inventor
上村 哲也
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019564665A priority Critical patent/JPWO2019138959A1/ja
Priority to KR1020207019882A priority patent/KR20200091920A/ko
Priority to CN201980008099.0A priority patent/CN111587404A/zh
Priority to KR1020237028280A priority patent/KR20230128393A/ko
Publication of WO2019138959A1 publication Critical patent/WO2019138959A1/ja
Priority to US16/924,555 priority patent/US20200341381A1/en
Priority to JP2023001845A priority patent/JP2023041701A/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0048Photosensitive materials characterised by the solvents or agents facilitating spreading, e.g. tensio-active agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • G03F7/0043Chalcogenides; Silicon, germanium, arsenic or derivatives thereof; Metals, oxides or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/50Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1692Other shaped material, e.g. perforated or porous sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2003Glass or glassy material
    • B01D39/2017Glass or glassy material the material being filamentary or fibrous
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/325Non-aqueous compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/0231Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to electromagnetic radiation, e.g. UV light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0414Surface modifiers, e.g. comprising ion exchange groups
    • B01D2239/0421Rendering the filter material hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0414Surface modifiers, e.g. comprising ion exchange groups
    • B01D2239/0428Rendering the filter material hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • B01D2239/0478Surface coating material on a layer of the filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0622Melt-blown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0631Electro-spun
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1216Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain

Definitions

  • the present invention relates to a drug solution and a method for producing a drug solution.
  • a semiconductor device by a wiring formation process including photolithography, a pre-wet solution, a resist solution (resist composition), a developer, a rinse solution, a stripping solution, a chemical mechanical polishing (CMP) slurry, A chemical solution containing water and / or an organic solvent is used as a cleaning solution or the like after CMP, or as a diluted solution thereof.
  • a method of miniaturization of the pattern a method of shortening the wavelength of the exposure light source is used, and instead of the ultraviolet light, KrF excimer laser, ArF excimer laser, etc.
  • Pattern formation using a certain EUV (extreme ultraviolet) or the like has been attempted.
  • the pattern formation by EUV or the like is being developed with a target of 10 to 15 nm as a width of a resist pattern, and the above-mentioned chemical solution used for this process is required to have further defect suppression performance.
  • Patent Document 1 states, “A method for producing a resist composition used in a semiconductor device production process, wherein an apparatus for producing a resist composition is cleaned with a cleaning liquid. The cleaning solution was taken out of the manufacturing apparatus, spin coated on the evaluation substrate, and cleaned until the change in defect density at defects of 100 nm or more in size before and after application on the evaluation substrate was 0.2 / cm 2 or less. Later, “a method of producing a resist composition characterized by producing a resist composition with a production apparatus.” Is described, and ArF exposure is carried out using the chemical solution (resist composition) produced by this method in the above-mentioned document. As a result, it is described that a pattern defect or the like is suppressed.
  • the present invention is to provide a chemical solution having excellent defect suppression performance even when applied to a resist process by EUV exposure, in which defects are less likely to occur, in other words, when applied to a resist process by EUV exposure. It will be an issue.
  • Another object of the present invention is to provide a method for producing a drug solution.
  • a chemical solution containing an organic solvent and metal-containing metal-containing particles, wherein the unit volume of the chemical solution of metal nanoparticles having a particle diameter of 0.5 to 17 nm among the metal-containing particles The chemical solution, wherein the number of contained particles per 1.0 ⁇ 10 1 to 1.0 ⁇ 10 9 / cm 3 .
  • the particle size distribution based on the number of metal-containing particles has a maximum value in at least one range selected from the group consisting of a range of particle size less than 5 nm and a range of particle size more than 17 nm, [1] Chemical solution described in.
  • [3] The drug solution according to [2], wherein the particle size distribution has a maximum value in the range of 0.5 nm or more and less than 5 nm in particle size.
  • the metal nanoparticles are selected from the group consisting of particles A consisting of a single metal atom, particles B consisting of an oxide of a metal atom, and particles C consisting of a single metal atom and an oxide of a metal atom
  • the ratio of the number of contained particles of particle A to the total number of contained particles of particle B and the number of contained particles of particle C per unit volume of the chemical solution is less than 1.0, [5] Chemical solution described in. [7] The drug solution according to [5] or [6], wherein the contained particle number ratio is 1.0 ⁇ 10 ⁇ 1 or less. [8] The chemical solution according to any one of [1] to [7], further comprising an organic compound having a boiling point of 300 ° C. or higher. [9] The drug solution according to [8], which is a particle U, wherein at least a part of the metal nanoparticles contains an organic compound.
  • the metal nanoparticles are particles U containing an organic compound and particles V not containing an organic compound, wherein the particles U with respect to the number of particles contained in the particles V per unit volume of the chemical solution
  • the metal nanoparticles contain at least one selected from the group consisting of metal nanoparticles containing Pb atoms and metal nanoparticles containing Ti atoms Chemical solution described in crab.
  • the filtration step is a multistage filtration step in which the material to be purified is allowed to pass through two or more different filters of at least one selected from the group consisting of filter material, pore diameter, and pore structure [ 14]
  • the present invention it is possible to provide a chemical solution having excellent defect suppression performance even when applied to a resist process by EUV exposure. Further, the present invention can provide a method for producing a drug solution.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • ppm means “parts-per-million (10 -6 )
  • ppb means “parts-per-billion (10 -9 )
  • ppt means "Parts-per-trillion (10 -12 )”
  • ppq means "parts-per-quadrillion (10 -15 )”.
  • the notation not describing substitution and non-substitution within the scope not impairing the effect of the present invention also has a thing having a substituent together with one having no substituent.
  • hydrocarbon group includes not only a hydrocarbon group having no substituent (unsubstituted hydrocarbon group) but also a hydrocarbon group having a substituent (substituted hydrocarbon group) .
  • radiation in the present invention means, for example, deep ultraviolet, extreme ultraviolet (EUV), X-ray, electron beam or the like.
  • light means actinic rays or radiation.
  • the "exposure” in the present invention includes not only exposure by far ultraviolet rays, X-rays or EUV, but also drawing by particle beams such as electron beams or ion beams.
  • a drug solution according to an embodiment of the present invention is a drug solution containing an organic solvent and metal-containing particles containing a metal atom, and particles of the metal-containing particles It is a chemical solution in which the number of contained particles in a chemical solution of metal nanoparticles having a diameter of 0.5 to 17 nm is 1.0 ⁇ 10 1 to 1.0 ⁇ 10 9 particles / cm 3 .
  • the number of particles of metal nanoparticles having a particle diameter of 0.5 to 17 nm in the chemical solution was controlled to 1.0 ⁇ 10 1 to 1.0 ⁇ 10 9 particles / cm 3 among the metal-containing particles. Is one of the feature points.
  • the pattern width and / or the pattern interval is often about 10 to 15 nm (in this case, the pattern pitch is often 20 to 30 nm).
  • the present inventors have found that it is required to control finer particles in number units, which is not a problem in the conventional process.
  • metal-containing particles having a particle diameter of less than 0.5 nm are more likely to be aggregated, and as a result, they often form coarse particles, so they are removed in the process (for example, in a washout manner) In many cases, it is assumed that the influence on the defect control performance of the chemical solution is not so large.
  • metal-containing particles having a particle diameter of more than 17 nm are sufficiently large in the process as described above because they are sufficiently large compared to the required resist pitch. It is assumed that the influence on the suppression performance is not so great.
  • metal nanoparticles with a particle size of 0.5 to 17 nm tend to be more difficult to remove from the substrate. If the number of metal nanoparticles contained per unit volume of the chemical solution is 1.0 ⁇ 10 1 pieces / cm 3 or more, the metal nanoparticles are easily aggregated and easily removed during the process, and as a result, the chemical solution Is estimated to have excellent defect control performance. On the other hand, when the number of metal nanoparticles contained per unit volume of the chemical solution is 1.0 ⁇ 10 9 / cm 3 or less, the metal nanoparticles themselves are prevented from becoming the cause of defects, and as a result The chemical solution is presumed to have excellent defect control performance.
  • medical solution can be measured by the method described in the Example, and the particle number (number) of particles per unit volume of a chemical
  • the chemical solution contains an organic solvent.
  • the content of the organic solvent in the chemical solution is not particularly limited, but generally 98.0 mass% or more is preferable, 99.0 mass% or more is more preferable, and 99.9 mass% or more with respect to the total mass of the chemical solution. More preferably, 99.99% by mass or more is particularly preferable.
  • the upper limit is not particularly limited but is often less than 100% by mass.
  • the organic solvents may be used alone or in combination of two or more. When using 2 or more types of organic solvents together, it is preferable that total content is in the said range.
  • the organic solvent intends the liquid organic compound contained by content exceeding 10000 mass ppm per component with respect to the total mass of the said chemical
  • liquid means that the liquid is a liquid at 25 ° C. under atmospheric pressure.
  • the type of the organic solvent is not particularly limited, and known organic solvents can be used.
  • the organic solvent for example, alkylene glycol monoalkyl ether carboxylate, alkylene glycol monoalkyl ether, lactic acid alkyl ester, alkyl alkoxy propionate, cyclic lactone (preferably having a carbon number of 4 to 10), monoketone which may have a ring Compounds (preferably having a carbon number of 4 to 10), alkylene carbonates, alkyl alkoxyacetates, alkyl pyruvates and the like can be mentioned.
  • the organic solvent for example, those described in JP-A-2016-057614, JP-A-2014-219664, JP-A-2016-138219, and JP-A-2015-135379 may be used. Good.
  • propylene glycol monomethyl ether propylene glycol monoethyl ether
  • PGME propylene glycol monopropyl ether
  • PMEA propylene glycol monomethyl ether acetate
  • EL ethyl lactate
  • CHN cyclohexanone
  • nBA butyl acetate
  • isoamyl acetate isopropanol, 4-methyl-2-pentanol, dimethyl sulfoxide, n-methyl-2-pyrrolidone, diethylene glycol, ethylene glycol, dipropylene Glycol, propylene glycol, ethylene carbonate, propylene carbonate (PC), sulfolane, cycloheptanone, 1-hexanol, deca And, at least one selected from the group consisting of 2-heptanone is preferred.
  • CHN, PGMEA, PGME, nBA, PC, and a mixture thereof are preferable in that a drug solution having more excellent effects of the present invention can be obtained.
  • the organic solvents may be used alone or in combination of two or more.
  • medical solution can be measured using a gas chromatograph mass spectrometer.
  • the chemical solution contains metal-containing particles containing a metal atom.
  • medical solution can refine
  • the metal-containing particles may be intentionally added in the manufacturing process of the drug solution, or may be originally contained in the product to be purified, or transferred from the production apparatus of the drug solution or the like in the process of producing the drug solution (so-called It may be a contamination).
  • the metal atom is not particularly limited, and examples thereof include Fe atom, Al atom, Cr atom, Ni atom, Pb atom, Zn atom, and Ti atom.
  • the content in the chemical solution of the metal-containing particles containing at least one selected from the group consisting of Fe atoms, Al atoms, Pb atoms, Zn atoms, and Ti atoms is strictly controlled, it is more excellent. Defect suppression performance is easily obtained, and if the content of metal-containing particles containing at least one selected from the group consisting of Pb atoms and Ti atoms is strictly controlled in a chemical solution, further excellent defect suppression performance is obtained. It is easy to obtain.
  • the metal atom at least one selected from the group consisting of Fe atom, Al atom, Cr atom, Ni atom, Pb atom, Zn atom, Ti atom and the like is preferable, and Fe atom, Al atom, Pb is preferable. At least one selected from the group consisting of atoms, Zn atoms, and Ti atoms is more preferable, and at least one selected from the group consisting of Pb atoms and Ti atoms is further preferable, and the metal-containing particles are Pb It is particularly preferred to contain both an atom and a Ti atom.
  • the metal-containing particles may contain the above-described metal atoms singly or in combination of two or more.
  • the particle diameter of the metal-containing particles is not particularly limited.
  • the content of particles having a particle diameter of about 0.1 to 100 nm in a chemical is to be controlled There are many.
  • metal-containing particles having a particle diameter of 0.5 to 17 nm (hereinafter "metal nanoparticles")
  • metal nanoparticles metal-containing particles having a particle diameter of 0.5 to 17 nm
  • medical solution which has the outstanding defect suppression performance is easy to be obtained by controlling content in the chemical
  • fine resist spacing, resist width, and resist pitch are often required. In such a case, it is required to control finer particles in number units, which has not been a problem in the conventional process.
  • the particle size distribution on the basis of the number of metal-containing particles is not particularly limited, but in the point that a chemical solution having more excellent effects of the present invention is obtained, the particle size distribution is less than 5 nm and more than 17 nm. It is preferred that at least one selected from the group have a maximum value. In other words, it is preferable that the particle diameter does not have a maximum value in the range of 5 to 17 nm. By not having a maximum value in the range of 5 to 17 nm in particle diameter, the chemical solution has more excellent defect suppression performance, particularly, more excellent bridge defect suppression performance.
  • bridge defect suppression performance means the defect evaluated by the method described in the Example.
  • the particle diameter distribution on a number basis has a maximum value in the range of 0.5 nm or more and less than 5 nm in particle diameter distribution in that a chemical solution having further excellent effects of the present invention can be obtained. From the above, the chemical solution has a further excellent ability to suppress bridge defects.
  • the metal nanoparticles refer to metal-containing particles having a particle diameter of 0.5 to 17 nm.
  • the number of metal nanoparticles contained per unit volume of the drug solution is 1.0 ⁇ 10 1 to 1.0 ⁇ 10 9 particles / cm 3 , and the present drug solution is advantageous in that the effect of the present invention is more excellent.
  • the number of particles is preferably 1.0 ⁇ 10 2 particles / cm 3 or more, more preferably 1.0 ⁇ 10 3 particles / cm 3 or more, and preferably 1.0 ⁇ 10 6 particles / cm 3 or less, 1.0 X 10 5 pieces / cm 3 or less is more preferable, and 1. 10 4 pieces / cm 3 or less is more preferable.
  • the chemical solution has more excellent defect suppression performance.
  • the metal atom contained in the metal nanoparticle is not particularly limited, but is the same as the atom already described as the metal atom contained in the metal-containing particle. Among them, at least one selected from the group consisting of a Pb atom and a Ti atom is preferable as the metal atom in that a chemical solution having a more excellent effect of the present invention can be obtained. It is more preferable to contain both and Ti atoms.
  • the metal nanoparticles are also referred to as metal nanoparticles containing Pb atoms (hereinafter also referred to as “Pb nanoparticles”) and metal nanoparticles containing Ti atoms (hereinafter referred to as “Ti nanoparticles”).
  • s sort
  • metal nanoparticles contain both Pb atoms and Ti atoms typically means that the chemical solution contains both metal nanoparticles containing Pb atoms and metal nanoparticles containing Ti atoms. .
  • the content ratio (Pb / Ti) of the Pb nanoparticles and Ti nanoparticles in the chemical solution is not particularly limited, but in general, it is preferably 1.0 ⁇ 10 ⁇ 4 to 3.0, and 1.0 ⁇ 10 -3 to 2.0 is more preferable, and 1.0 ⁇ 10 -2 to 1.5 is more preferable.
  • the chemical solution has more excellent effects of the present invention, in particular, more excellent bridge defect suppression performance.
  • the present invention is that Pb nanoparticles and Ti nanoparticles easily associate, for example, when a chemical solution is applied on a wafer, and are likely to cause defects (in particular, causes of bridge defects) during development of a resist film. The people are aware.
  • Pb / Ti is 1.0 ⁇ 10 -3 to 2.0, surprisingly, the occurrence of defects is more easily suppressed.
  • Pb / Ti, A / (B + C) described later, and U / V described later are calculated by rounding off so that the significant digit has two digits.
  • the metal nanoparticle should just contain a metal atom, and the form in particular is not restrict
  • a simple substance of a metal atom, a compound containing a metal atom (hereinafter, also referred to as a “metal compound”), a complex of these, and the like can be mentioned.
  • the metal nanoparticles may contain a plurality of metal atoms.
  • the metal nanoparticles contain a plurality of metals, the metal atom having the highest content (atm%) of the plurality of metals is mainly contained. Therefore, when referring to Pb nanoparticles, in the case of containing a plurality of metals, it means that the Pb atom is the main component among the plurality of metals.
  • the composite is not particularly limited, but a so-called core-shell type particle having a single metal atom and a metal compound covering at least a part of the single metal atom, a solid solution containing a metal atom and another atom Particles, eutectic particles containing metal atoms and other atoms, aggregate particles of single metal atoms and metal compounds, aggregate particles of different types of metal compounds, and continuously or continuously from the particle surface to the center
  • the metal compound etc. which a composition changes intermittently are mentioned.
  • the atom other than the metal atom contained in the metal compound is not particularly limited, and examples thereof include a carbon atom, an oxygen atom, a nitrogen atom, a hydrogen atom, a sulfur atom, and a phosphorus atom. Among them, an oxygen atom is preferable.
  • the form in which the metal compound contains an oxygen atom is not particularly limited, but an oxide of a metal atom is more preferable.
  • particles consisting of a single metal atom particles consisting of an oxide of metal atoms (particles B), and metals, from the viewpoint that a chemical solution having more excellent effects of the present invention can be obtained It is preferable that it consists of at least 1 sort (s) selected from the group which consists of particle
  • the relationship among the number of contained particles of particle A, the number of contained particles of particle B, and the number of contained particles of particle C in the number of contained particles of metal nanoparticles per unit volume of the chemical solution is not particularly limited.
  • a / 1.5 or less The ratio of the number of contained particles of the particle A to the number of contained particles of the particle A with respect to the total of the number of contained particles of the particle B and the number of contained particles of the particle C (hereinafter referred to as “A / 1.5 or less is preferable, less than 1.0 is more preferable, 2.0 ⁇ 10 ⁇ 1 or less is more preferable, 1.0 ⁇ 10 ⁇ 1 or less is particularly preferable, and 1 It is preferably at least 1.0 ⁇ 10 ⁇ 3, more preferably at least 1.0 ⁇ 10 ⁇ 2 .
  • a / (B + C) is less than 1.0, the chemical solution has more excellent bridge defect suppression performance, better pattern width uniformity performance, and stain defect suppression performance.
  • the A / (B + C) is 0.1 (1.0 ⁇ 10 ⁇ 1 ) or less, the chemical solution has more excellent residual defect suppression performance.
  • the chemical solution may contain other components other than the above.
  • the other components include organic compounds other than organic solvents (in particular, organic compounds having a boiling point of 300 ° C. or higher), water, and resins.
  • the chemical solution may contain an organic compound other than the organic solvent (hereinafter, also referred to as a "specified organic compound").
  • the specific organic compound is a compound different from the organic solvent contained in the drug solution, and means an organic compound contained at a content of 10000 mass ppm or less with respect to the total mass of the drug solution. Do. That is, in the present specification, the organic compound contained at a content of 10000 mass ppm or less with respect to the total mass of the chemical solution corresponds to the specific organic compound and does not correspond to the organic solvent.
  • each organic compound is contained by content of 10000 mass ppm or less mentioned above, each corresponds to a specific organic compound.
  • the specific organic compound may be added to the chemical solution, or may be unintentionally mixed in the manufacturing process of the chemical solution.
  • a specific organic compound is contained in the raw material (for example, organic solvent) used for manufacture of a medical fluid as a case where it mixes unintentionally in the manufacturing process of medical fluid, for example, it mixes in the manufacturing process of medical fluid ( For example, although contamination etc. are mentioned, it is not restricted above.
  • GCMS gas chromatograph mass spectrometer; gas chromatography mass spectrometry
  • the number of carbon atoms of the specific organic compound is not particularly limited, but is preferably 8 or more, more preferably 12 or more, in terms of the effect of the present invention in which the chemical solution is more excellent.
  • the upper limit of the carbon number is not particularly limited, but is preferably 30 or less.
  • the specific organic compound may be, for example, a by-product generated along with the synthesis of the organic solvent, and / or an unreacted raw material (hereinafter, also referred to as "by-product etc.") or the like.
  • by-products and the like include compounds represented by the following formulas I to V, and the like.
  • R 1 and R 2 each independently represent an alkyl group or a cycloalkyl group, or they are bonded to each other to form a ring.
  • an alkyl group having 1 to 12 carbon atoms or a cycloalkyl group having 6 to 12 carbon atoms is preferable, and an alkyl having 1 to 8 carbon atoms is preferable.
  • a group or a cycloalkyl group having 6 to 8 carbon atoms is more preferable.
  • the ring formed by bonding R 1 and R 2 to each other is a lactone ring, preferably a 4 to 9-membered lactone ring, and more preferably a 4 to 6-membered lactone ring.
  • R 1 and R 2 satisfy
  • R 3 and R 4 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, or a cycloalkenyl group, or form a ring by bonding to each other. However, both of R 3 and R 4 are not hydrogen atoms.
  • alkyl group represented by R 3 and R 4 for example, an alkyl group having 1 to 12 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms is more preferable.
  • alkenyl group represented by R 3 and R 4 for example, an alkenyl group having 2 to 12 carbon atoms is preferable, and an alkenyl group having 2 to 8 carbon atoms is more preferable.
  • the cycloalkyl group represented by R 3 and R 4 is preferably a cycloalkyl group having 6 to 12 carbon atoms, more preferably a cycloalkyl group having 6 to 8 carbon atoms.
  • a cycloalkenyl group represented by R 3 and R 4 for example, a cycloalkenyl group having 3 to 12 carbon atoms is preferable, and a cycloalkenyl group having 6 to 8 carbon atoms is more preferable.
  • the ring formed by bonding R 3 and R 4 to each other is a cyclic ketone structure, and may be a saturated cyclic ketone or an unsaturated cyclic ketone.
  • the cyclic ketone is preferably a 6- to 10-membered ring, more preferably a 6- to 8-membered ring.
  • R 3 and R 4 preferably satisfy the relationship where the number of carbon atoms of the compounds of the formula II is 8 or more.
  • R 5 represents an alkyl group or a cycloalkyl group.
  • the alkyl group represented by R 5 is preferably an alkyl group having 6 or more carbon atoms, more preferably an alkyl group having 6 to 12 carbon atoms, and still more preferably an alkyl group having 6 to 10 carbon atoms.
  • the alkyl group may have an ether bond in the chain, and may have a substituent such as a hydroxy group.
  • the cycloalkyl group represented by R 5 is preferably a cycloalkyl group having 6 or more carbon atoms, more preferably a cycloalkyl group having 6 to 12 carbon atoms, and still more preferably a cycloalkyl group having 6 to 10 carbon atoms.
  • R 6 and R 7 each independently represent an alkyl group or a cycloalkyl group, or they are bonded to each other to form a ring.
  • the alkyl group represented by R 6 and R 7 is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 8 carbon atoms.
  • the cycloalkyl group represented by R 6 and R 7 is preferably a cycloalkyl group having 6 to 12 carbon atoms, more preferably a cycloalkyl group having 6 to 8 carbon atoms.
  • the ring formed by bonding R 6 and R 7 to each other is a cyclic ether structure.
  • the cyclic ether structure is preferably a 4- to 8-membered ring, more preferably a 5- to 7-membered ring.
  • R 6 and R 7 satisfy
  • R 8 and R 9 each independently represent an alkyl group or a cycloalkyl group, or they are bonded to each other to form a ring.
  • L represents a single bond or an alkylene group.
  • alkyl group represented by R 8 and R 9 for example, an alkyl group having 6 to 12 carbon atoms is preferable, and an alkyl group having 6 to 10 carbon atoms is more preferable.
  • the cycloalkyl group represented by R 8 and R 9 is preferably a cycloalkyl group having 6 to 12 carbon atoms, more preferably a cycloalkyl group having 6 to 10 carbon atoms.
  • the ring formed by bonding R 8 and R 9 to each other is a cyclic diketone structure.
  • the cyclic diketone structure is preferably a 6 to 12-membered ring, and more preferably a 6 to 10-membered ring.
  • alkylene group represented by L for example, an alkylene group having 1 to 12 carbon atoms is preferable, and an alkylene group having 1 to 10 carbon atoms is more preferable.
  • R 8 , R 9 and L satisfy the relationship in which the compound represented by Formula V has 8 or more carbon atoms.
  • the organic solvent is an amide compound, an imide compound and a sulfoxide compound
  • an amide compound having 6 or more carbon atoms an imide compound and a sulfoxide compound can be mentioned.
  • the following compound is also mentioned, for example.
  • BHT dibutylhydroxytoluene
  • DSTP distearylthiodipropionate
  • DSTP 4,4'-butylidenebis- (6-t-butyl-3-methylphenol
  • 2,2'- Antioxidants such as methylene bis- (4-ethyl-6-t-butyl
  • dioctyl phthalate DOP
  • DEHP bis (2-ethylhexyl) phthalate
  • DPHP bis (2-propylheptyl) phthalate
  • DBP dibutyl phthalate
  • BzP benzyl phthalate Butyl
  • DIDP diisodecyl phthalate
  • DIOP diisooctyl phthalate
  • DIBP diethyl phthalate
  • DIBP diisobutyl phthalate
  • DIBP dihexyl phthalate
  • DIBP diisononyl phthalate
  • ATM bis (2-ethylhexyl)
  • DEHA bis (2-ethylhexyl) adipate
  • MMAD monomethyl adipate
  • DOA dioctyl adipate
  • the chemical solution may contain an organic compound (high boiling point organic compound) at 300 ° C. or higher among the specific organic compounds.
  • organic compound high boiling point organic compound
  • the chemical solution contains an organic compound having a boiling point of 300 ° C. or more, the boiling point is high and it is difficult to evaporate during the photolithography process. Therefore, in order to obtain a chemical solution having excellent defect control performance, it is necessary to strictly control the content, presence form and the like of the high boiling point organic compound in the chemical solution.
  • dioctyl phthalate (boiling point 385 ° C.), diisononyl phthalate (boiling point 403 ° C.), dioctyl adipate (boiling point 335 ° C.), dibutyl phthalate (boiling point 340 ° C.), Ethylene propylene rubber (boiling point 300 to 450 ° C.) and the like have been confirmed.
  • the present inventors have found that there are various forms when the high boiling point organic compound is contained in the chemical solution.
  • particles in which particles made of metal atom or metal compound and particles of high boiling point organic compound are aggregated particles in which particles made of metal atom or metal compound and particles of high boiling point organic compound are aggregated; particles made of metal atom or metal compound and at least a part of the particles Particles having a high boiling point organic compound disposed so as to cover; particles formed by coordination bonding of a metal atom and the high boiling point organic compound; and the like.
  • metal nanoparticles (particles U) containing an organic compound (preferably, a high boiling point organic compound) can be mentioned as a form having a large influence on the defect suppression performance of a chemical solution.
  • the present inventors have found that the defect suppression performance of the chemical solution is dramatically improved by controlling the number of contained particles per unit volume of the chemical solution of the particles U.
  • the particle U tends to have a relatively small surface free energy as compared with metal nanoparticles (particles V) not containing an organic compound (preferably, a high boiling point organic compound).
  • Such particles U are unlikely to remain on the substrate treated with the chemical solution, and even if they remain, they are easily removed when they come in contact with the chemical solution again.
  • the particles U are less likely to remain on the substrate at the time of development, and are further easily removed by rinse or the like. That is, as a result, both the organic compound (preferably, the high boiling point organic compound) and the particle containing the metal atom are more easily removed.
  • the resist film is often water repellent, it is presumed that particles U having lower surface energy are less likely to remain on the substrate.
  • the ratio of the number of contained particles of the particle U to the number of contained particles of the particle V per unit volume of the drug solution is 10 (1.0 (1.0) in that a more excellent drug solution having the effect of the present invention can be obtained.
  • ⁇ 10 1 ) or more is preferable, 1.0 ⁇ 10 2 or less is preferable, 50 or less is more preferable, 35 or less is more preferable, and 25 or less is particularly preferable.
  • the chemical solution may contain water. It does not restrict
  • the content of water in the chemical solution is not particularly limited, but generally, 0.05 to 2.0% by mass is preferable with respect to the total mass of the chemical solution.
  • the content of water in the chemical solution means the water content measured using an apparatus based on the Karl-Fisher moisture measurement method.
  • the chemical solution may further contain a resin.
  • the resin P is preferably a resin P having a group which is decomposed by the action of an acid to generate a polar group.
  • the resin is more preferably a resin having a repeating unit represented by the formula (AI) described later, which is a resin whose solubility in a developer mainly containing an organic solvent is reduced by the action of an acid.
  • the resin having a repeating unit represented by the formula (AI) described later has a group which is decomposed by the action of an acid to generate an alkali-soluble group (hereinafter, also referred to as "acid-degradable group").
  • the polar group includes an alkali soluble group. Examples of the alkali-soluble group include a carboxy group, a fluorinated alcohol group (preferably a hexafluoroisopropanol group), a phenolic hydroxyl group, and a sulfo group.
  • the polar group is protected by an acid leaving group (acid leaving group).
  • the acid leaving group for example, -C (R 36) (R 37) (R 38), - C (R 36) (R 37) (OR 39), and, -C (R 01) (R 02 ) (OR 39 ) and the like.
  • each of R 36 to R 39 independently represents an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • R 36 and R 37 may combine with each other to form a ring.
  • R 01 and R 02 independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • the resin P preferably contains a repeating unit represented by the formula (AI).
  • Xa 1 represents a hydrogen atom or an alkyl group which may have a substituent.
  • T represents a single bond or a divalent linking group.
  • Each of Ra 1 to Ra 3 independently represents an alkyl group (linear or branched) or a cycloalkyl group (monocyclic or polycyclic). Two of Ra 1 to Ra 3 may combine to form a cycloalkyl group (monocyclic or polycyclic).
  • Examples of the alkyl group which may be substituted and represented by Xa 1 include, for example, a methyl group and a group represented by —CH 2 —R 11 .
  • R 11 represents a halogen atom (such as fluorine atom), a hydroxyl group, or a monovalent organic group.
  • Xa 1 is preferably a hydrogen atom, a methyl group, a trifluoromethyl group or a hydroxymethyl group.
  • Examples of the divalent linking group of T include an alkylene group, -COO-Rt- group, and -O-Rt- group.
  • Rt represents an alkylene group or a cycloalkylene group.
  • T is preferably a single bond or a -COO-Rt- group.
  • Rt is preferably an alkylene group having a carbon number of 1 to 5, and more preferably a -CH 2 -group, a-(CH 2 ) 2 -group or a-(CH 2 ) 3 -group.
  • the alkyl group of Ra 1 to Ra 3 preferably has 1 to 4 carbon atoms.
  • cycloalkyl group of Ra 1 to Ra 3 a monocyclic cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, or a multiple group such as a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group or an adamantyl group Cyclic cycloalkyl groups are preferred.
  • a cycloalkyl group formed by combining two of Ra 1 to Ra 3 a monocyclic cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, or a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group
  • a polycyclic cycloalkyl group such as a group or an adamantyl group. More preferred is a monocyclic cycloalkyl group having 5 to 6 carbon atoms.
  • the above cycloalkyl group formed by combining two of Ra 1 to Ra 3 is, for example, a group in which one of the methylene groups constituting the ring is a hetero atom such as an oxygen atom, or a group having a hetero atom such as a carbonyl group It may be replaced.
  • Ra 1 is a methyl group or an ethyl group
  • Ra 2 and Ra 3 are combined to form the above-mentioned cycloalkyl group
  • Each of the above groups may have a substituent, and examples of the substituent include an alkyl group (1 to 4 carbon atoms), a halogen atom, a hydroxyl group, an alkoxy group (1 to 4 carbon atoms), and a carboxy group And alkoxycarbonyl groups (having 2 to 6 carbon atoms) and the like, with 8 or less carbon atoms being preferred.
  • the content of the repeating unit represented by the formula (AI) is preferably 20 to 90 mol%, more preferably 25 to 85 mol%, still more preferably 30 to 80 mol%, based on all repeating units in the resin P. preferable.
  • the resin P preferably contains a repeating unit Q having a lactone structure.
  • the repeating unit Q having a lactone structure preferably has a lactone structure in a side chain, and more preferably a repeating unit derived from a (meth) acrylic acid derivative monomer.
  • the repeating unit Q having a lactone structure may be used alone or in combination of two or more, but it is preferable to use one type alone.
  • the content of the repeating unit Q having a lactone structure is preferably 3 to 80 mol%, more preferably 3 to 60 mol%, with respect to all the repeating units in the resin P.
  • the lactone structure is preferably a 5- to 7-membered lactone structure, and more preferably a 5- to 7-membered lactone structure in which a bicyclo structure or a spiro structure is formed to form a condensed ring with another ring structure.
  • the lactone structure preferably has a repeating unit having a lactone structure represented by any one of the following formulas (LC1-1) to (LC1-17).
  • a lactone structure represented by the formula (LC1-1), the formula (LC1-4), the formula (LC1-5), or the formula (LC1-8) is preferable, and the lactone structure is represented by the formula (LC1-4) Lactone structure is more preferred.
  • the lactone structure moiety may have a substituent (Rb 2 ).
  • Preferred examples of the substituent (Rb 2 ) include an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 4 to 7 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, and a carboxy group A halogen atom, a hydroxyl group, a cyano group, and an acid-degradable group.
  • n 2 represents an integer of 0 to 4;
  • the plurality of substituents (Rb 2 ) may be the same or different, and the plurality of substituents (Rb 2 ) may be combined to form a ring .
  • the resin P may contain a repeating unit having a phenolic hydroxyl group.
  • the repeating unit represented by the following general formula (I) is mentioned, for example.
  • R 41 , R 42 and R 43 each independently represent a hydrogen atom, an alkyl group, a halogen atom, a cyano group or an alkoxycarbonyl group.
  • R 42 may combine with Ar 4 to form a ring, and in this case, R 42 represents a single bond or an alkylene group.
  • X 4 represents a single bond, -COO-, or -CONR 64- , and R 64 represents a hydrogen atom or an alkyl group.
  • L 4 represents a single bond or an alkylene group.
  • Ar 4 represents an (n + 1) -valent aromatic ring group, and when it bonds to R 42 to form a ring, it represents an (n + 2) -valent aromatic ring group.
  • n represents an integer of 1 to 5;
  • alkyl group of R 41 , R 42 and R 43 in the general formula (I) a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group which may have a substituent
  • An alkyl group having 20 or less carbon atoms such as a group, hexyl group, 2-ethylhexyl group, octyl group and dodecyl group is preferable, an alkyl group having 8 or less carbon atoms is more preferable, and an alkyl group having 3 or less carbon atoms is more preferable.
  • the cycloalkyl group of R 41 , R 42 and R 43 in the general formula (I) may be monocyclic or polycyclic.
  • the cycloalkyl group is preferably a monocyclic, cycloalkyl group having 3 to 8 carbon atoms, such as cyclopropyl group, cyclopentyl group and cyclohexyl group which may have a substituent.
  • halogen atom of R 41, R 42 and R 43 in the general formula (I) the fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a fluorine atom is preferable.
  • alkyl group contained in the alkoxycarbonyl group of R 41, R 42 and R 43 in formula (I) the same alkyl groups represented by R 41, R 42 and R 43 are preferred.
  • an alkyl group, a cycloalkyl group, an aryl group, an amino group, an amide group, an ureido group, a urethane group, a hydroxyl group, a carboxy group, a halogen atom, an alkoxy group, a thioether group, an acyl group is mentioned, for example And acyloxy groups, alkoxycarbonyl groups, cyano groups, nitro groups and the like.
  • the carbon number of the substituent is preferably 8 or less.
  • Ar 4 represents an (n + 1) -valent aromatic ring group.
  • the divalent aromatic ring group in the case where n is 1 may have a substituent, and examples thereof include an arylene group having 6 to 18 carbon atoms, such as phenylene group, tolylene group, naphthylene group and anthracenylene group, and And aromatic ring groups containing heterocycles such as thiophene, furan, pyrrole, benzothiophene, benzofuran, benzopyrrole, triazine, imidazole, benzimidazole, triazole, thiadiazole and thiazole.
  • (n + 1) -valent aromatic ring group in the case where n is an integer of 2 or more, (n-1) arbitrary hydrogen atoms are removed from the specific examples of the divalent aromatic ring group described above. And the resulting groups.
  • the (n + 1) -valent aromatic ring group may further have a substituent.
  • Examples of the substituent which the above-mentioned alkyl group, cycloalkyl group, alkoxycarbonyl group, alkylene group and (n + 1) -valent aromatic ring group may have include, for example, R 41 , R 42 and R 43 in the general formula (I)
  • R 64 may represent hydrogen atom or an alkyl group
  • the alkyl group for R 64 in, which may have a substituent, a methyl group, an ethyl group, a propyl Alkyl group having 20 or less carbon atoms, such as isopropyl group, n-butyl group, sec-butyl group, hexyl group, 2-ethylhexyl group, octyl group and dodecyl group, and the alkyl group having 8 or less carbon atoms is more preferable. preferable.
  • a single bond, —COO— or —CONH— is preferable, and a single bond or —COO— is more preferable.
  • the alkylene group for L 4 is preferably an alkylene group having a carbon number of 1 to 8, which may have a substituent, such as methylene group, ethylene group, propylene group, butylene group, hexylene group and octylene group.
  • an aromatic ring group having 6 to 18 carbon atoms which may have a substituent is preferable, and a benzene ring group, a naphthalene ring group or a biphenylene ring group is more preferable.
  • the repeating unit represented by the general formula (I) preferably has a hydroxystyrene structure. That is, Ar 4 is preferably a benzene ring group.
  • the content of the repeating unit having a phenolic hydroxyl group is preferably from 0 to 50 mol%, more preferably from 0 to 45 mol%, still more preferably from 0 to 40 mol%, based on all repeating units in the resin P.
  • the resin P may further contain a repeating unit containing an organic group having a polar group, in particular, a repeating unit having an alicyclic hydrocarbon structure substituted with a polar group.
  • a repeating unit having an alicyclic hydrocarbon structure substituted with a polar group thereby, the substrate adhesion and the developer affinity are improved.
  • an alicyclic hydrocarbon structure of the alicyclic hydrocarbon structure substituted by the polar group an adamantyl group, a diamantyl group or a norbornane group is preferable.
  • a polar group a hydroxyl group or a cyano group is preferable.
  • the content thereof is preferably 1 to 50 mol%, more preferably 1 to 30 mol%, based on all repeating units in the resin P. More preferably, 5 to 25 mol% is more preferable, and 5 to 20 mol% is particularly preferable.
  • the resin P may contain a repeating unit represented by the following general formula (VI).
  • Each of R 61 , R 62 and R 63 independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, a cyano group or an alkoxycarbonyl group.
  • R 62 may combine with Ar 6 to form a ring, and in this case, R 62 represents a single bond or an alkylene group.
  • X 6 represents a single bond, -COO-, or -CONR 64- .
  • R 64 represents a hydrogen atom or an alkyl group.
  • L 6 represents a single bond or an alkylene group.
  • Ar 6 represents an (n + 1) -valent aromatic ring group, and when it forms a ring by bonding to R 62, it represents an (n + 2) -valent aromatic ring group.
  • Y 2 each independently represents a hydrogen atom or a group capable of leaving under the action of an acid when n ⁇ 2. However, at least one of Y 2 represents a group capable of leaving by the action of an acid.
  • n represents an integer of 1 to 4;
  • L 1 and L 2 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a group obtained by combining an alkylene group and an aryl group.
  • M represents a single bond or a divalent linking group.
  • Q represents an alkyl group, a cycloalkyl group which may contain a hetero atom, an aryl group which may contain a hetero atom, an amino group, an ammonium group, a mercapto group, a cyano group or an aldehyde group. At least two of Q, M and L 1 may combine to form a ring (preferably, a 5- or 6-membered ring).
  • the repeating unit represented by the above general formula (VI) is preferably a repeating unit represented by the following general formula (3).
  • Ar 3 represents an aromatic ring group.
  • R 3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkoxy group, an acyl group or a heterocyclic group.
  • M 3 represents a single bond or a divalent linking group.
  • Q 3 represents an alkyl group, a cycloalkyl group, an aryl group or a heterocyclic group. At least two of Q 3 , M 3 and R 3 may combine to form a ring.
  • the aromatic ring group represented by Ar 3 is the same as Ar 6 in the above general formula (VI) when n in the above general formula (VI) is 1, a phenylene group or naphthylene group is preferable, and a phenylene group is more preferable preferable.
  • the resin P may further contain a repeating unit having a silicon atom in the side chain.
  • a repeating unit which has a silicon atom in a side chain the (meth) acrylate type repeating unit which has a silicon atom, the vinyl-type repeating unit which has a silicon atom, etc. are mentioned, for example.
  • the repeating unit having a silicon atom in the side chain is typically a repeating unit having a group having a silicon atom in the side chain, and as the group having a silicon atom, for example, a trimethylsilyl group, a triethylsilyl group, a triphenyl group A silyl group, a tricyclohexylsilyl group, a tristrimethylsiloxysilyl group, a tristrimethylsilylsilyl group, a methylbistrimethylsilylsilyl group, a methylbistrimethylsiloxysilyl group, a dimethyltrimethylsilylsilyl group, a dimethyltrimethylsiloxysilyl group, and a cyclic group as described below Or linear polysiloxanes, or cage-type, ladder-type or random-type silsesquioxane structures.
  • each of R and R 1 independently represents a monovalent substituent. * Represents a bond.
  • repeating unit having the above group for example, a repeating unit derived from an acrylate compound or a methacrylate compound having the above group or a repeating unit derived from a compound having the above group and a vinyl group is preferable.
  • the content thereof is preferably 1 to 30% by mole, more preferably 5 to 25% by mole, relative to all repeating units in the resin P. Is more preferably 5 to 20 mol%.
  • the weight average molecular weight of the resin P is preferably 1,000 to 200,000, more preferably 3,000 to 20,000, and even 5,000 to 15,000 in terms of polystyrene as measured by GPC (Gel permeation chromatography). More preferable.
  • GPC Gel permeation chromatography
  • the degree of dispersion is usually 1 to 5, preferably 1 to 3, more preferably 1.2 to 3.0, and still more preferably 1.2 to 2.0.
  • the content of the resin P is preferably 50 to 99.9% by mass, and more preferably 60 to 99.0% by mass, based on the total solid content.
  • one type of resin P may be used, or a plurality of types may be used in combination.
  • the other components for example, an acid generator, a basic compound, a quencher, a hydrophobic resin, a surfactant, a solvent, and the like
  • known ones can be used.
  • JP-A-2013-195844, JP-A-2016-057645, JP-A-2015-207006, International Publication No. 2014/148241, JP-A-2016-188385, and The components contained in the actinic ray-sensitive or radiation-sensitive resin composition and the like described in JP-A-2017-219818 and the like can be mentioned.
  • medical solution which concerns on the said embodiment is used for manufacture of a semiconductor device.
  • the chemical solution according to the above embodiment has a pattern width and / or a pattern interval of 17 nm or less (preferably 15 nm or less, more preferably 12 nm or less), and / or an obtained wiring width and / or a wiring interval
  • Chemical solutions pre-wet solution, developer, rinse solution, solvent for resist solution, stripping solution, etc. used for resist process having 17 nm or less, in other words, pattern width and / or pattern interval is 17 nm or less More preferably, it is used for the manufacture of the semiconductor device manufactured using the resist film which is.
  • an organic substance is processed after each process is completed or before the next process is performed.
  • it is preferably used as a pre-wet solution, a developer, a rinse solution, and a stripping solution.
  • a pre-wet solution e.g., a developer, a rinse solution, and a stripping solution.
  • the above-mentioned chemical solution can also be used as a diluted solution of a resin contained in a resist solution, and a solvent contained in a resist solution.
  • the above-mentioned chemical solution can be used for other uses besides the production of semiconductor devices, and can also be used as a developing solution such as polyimide, a resist for a sensor, a resist for a lens, and a rinse solution.
  • medical solution can be used also as a solvent of medical use or cleaning use. In particular, it can be suitably used for cleaning containers, piping, and substrates (for example, wafers, glasses and the like).
  • the present chemical solution exhibits a more excellent effect when applied to a pre-wet solution, a developer, and a rinse solution in pattern formation using EUV (extreme ultraviolet).
  • Method of producing chemical solution It does not restrict
  • the material to be purified used in the filtration step can be obtained by purchasing or the like and by reacting the raw materials.
  • the material to be purified it is preferable to use the metal-containing particles described above and / or those having a low content of impurities.
  • As a commercial item of such a refined material what is called "high purity grade goods" is mentioned, for example.
  • the method for reacting the raw materials to obtain a product to be purified is not particularly limited, and a known method can be used.
  • a method of reacting one or more raw materials in the presence of a catalyst to obtain an organic solvent is not particularly limited, and a known method can be used.
  • cis-4-methyl-2-pentene is reacted in the presence of Ipc2BH (Diisopinocampheylborane) to obtain 4-methyl-2-pentanol
  • propylene oxide, methanol, and acetic acid Are reacted in the presence of sulfuric acid to obtain PGMEA (propylene glycol 1-monomethyl ether 2-acetate); acetone and hydrogen are reacted in the presence of copper oxide-zinc oxide-aluminum oxide to obtain IPA (isopropylyl).
  • IPA isopropylyl
  • medical solution which concerns on embodiment of this invention has a filtration process which filters the said thing to be refined using a filter, and obtains a chemical
  • the method for filtering the material to be purified using a filter is not particularly limited, but the material to be purified is passed through a filter unit having a housing and a cartridge filter housed in the housing under pressure or pressureless ( Preferably).
  • the pore diameter of the filter is not particularly limited, and a filter with a pore diameter usually used for filtration of a material to be purified can be used.
  • the pore diameter of the filter is preferably 200 nm or less, more preferably 20 nm or less, and more preferably 10 nm or less in that the number of particles contained in the chemical solution of particles of 0.5 to 17 nm can be easily controlled by a desired range. Is more preferable, 5 nm or less is particularly preferable, and 3 nm or less is most preferable.
  • the lower limit value is not particularly limited, but in general, 1 nm or more is preferable from the viewpoint of productivity.
  • the pore size and pore size distribution of the filter are isopropanol (IPA) or HFE-7200 (“Novec 7200”, manufactured by 3M, hydrofluoroether, C 4 F 9 OC 2 The pore size and pore size distribution determined by the bubble point of H 5 ) are meant.
  • the pore size of the filter is 5.0 nm or less, it is preferable in that the number of particles contained in the chemical solution of particles having a particle size of 0.5 to 17 nm can be more easily controlled.
  • a filter having a pore diameter of 5 nm or less is also referred to as a “small pore diameter filter”.
  • the fine pore size filter may be used alone or in combination with a filter having another pore size. Among them, it is preferable to use in combination with a filter having a larger pore diameter from the viewpoint of being more excellent in productivity.
  • the pore diameter of the filter when one filter is used, the pore diameter is preferably 5.0 nm or less, and when two or more filters are used, the pore diameter of the filter having the smallest pore diameter is 5.0 nm The following are preferred.
  • the form in which two or more types of filters having different pore sizes are sequentially used is not particularly limited, but there may be mentioned a method of sequentially arranging the filter units described above along the pipeline through which the material to be purified is transferred. At this time, if it is intended to make the flow rate per unit time of the material to be purified constant throughout the pipeline, a filter unit having a smaller pore diameter will be subjected to a larger pressure than the filter unit having a larger pore diameter. There is.
  • a pressure control valve, a damper, and the like are disposed between the filter units to make the pressure applied to the filter unit having a small pore diameter constant, and a filter unit in which the same filter is housed is It is preferable to increase the filtration area by arranging the filters in parallel. By doing so, the number of contained particles in the drug solution of 0.5 to 17 nm can be controlled more stably.
  • the material of the filter is not particularly limited, and any known material of the filter can be used. Specifically, in the case of a resin, polyamides such as 6-nylon and 6,6-nylon; polyolefins such as polyethylene and polypropylene; polystyrene; polyimide; polyamide imide; poly (meth) acrylate; Ethylene, perfluoroalkoxyalkane, perfluoroethylene propene copolymer, ethylene / tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, polychlorotrifluoroethylene, polyvinylidene fluoride, and polyfluorocarbons such as polyvinyl fluoride; polyvinyl Alcohol; polyester; cellulose; cellulose acetate etc.
  • polyamides such as 6-nylon and 6,6-nylon
  • polyolefins such as polyethylene and polypropylene
  • polystyrene polyimide
  • nylon in particular, 6,6-nylon is preferable
  • polyolefin in particular, polyethylene is preferable
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxyalkane
  • the filter may be surface treated.
  • the method of surface treatment is not particularly limited, and known methods can be used. Examples of the surface treatment method include chemical modification treatment, plasma treatment, hydrophobic treatment, coating, gas treatment, and sintering.
  • Plasma treatment is preferred because the surface of the filter is hydrophilized.
  • the water contact angle on the surface of the filter that has been hydrophilized by plasma treatment is not particularly limited, but the static contact angle at 25 ° C. measured with a contact angle meter is preferably 60 ° or less, more preferably 50 ° or less, 30 ° or less is more preferable.
  • transducing an ion exchange group to a base material is preferable. That is, as a filter, what introduce
  • a filter comprising a substrate having ion exchange groups on the surface is preferred.
  • the substrate on which the surface is modified is not particularly limited, and those in which an ion exchange group is introduced to the above-mentioned polymer are preferable from the viewpoint of easier production.
  • an ion exchange group a sulfonic acid group, a carboxy group, a phosphoric acid group etc. are mentioned as a cation exchange group, A quaternary ammonium group etc. are mentioned as an anion exchange group.
  • the method for introducing an ion exchange group into the polymer is not particularly limited, but a method of reacting a compound having an ion exchange group and a polymerizable group with the polymer and typically grafting it may be mentioned.
  • the method for introducing the ion exchange group is not particularly limited, but the fibers of the above-mentioned resin are irradiated with ionizing radiation ( ⁇ -ray, ⁇ -ray, ⁇ -ray, X-ray, electron beam etc.) to activate the active portion (resin Radical) is generated.
  • ionizing radiation ⁇ -ray, ⁇ -ray, ⁇ -ray, X-ray, electron beam etc.
  • the resin after this irradiation is immersed in a monomer-containing solution to graft polymerize the monomer onto the substrate. As a result, this monomer is formed as a graft polymerization side chain bonded to the polyolefin fiber.
  • the resin having the produced polymer as a side chain is reacted with a compound having an anion exchange group or a cation exchange group to introduce an ion exchange group into the graft-polymerized side chain polymer to obtain a final product.
  • the filter may be a combination of a woven or non-woven fabric having ion exchange groups formed by a radiation graft polymerization method and a conventional glass wool, woven or non-woven filter material.
  • the material of the filter having an ion exchange group is not particularly limited, and examples thereof include polyfluorocarbons and polyolefins in which an ion exchange group is introduced, and those in which an ion exchange group is introduced in a polyfluorocarbon are more preferable.
  • the pore diameter of the filter having an ion exchange group is not particularly limited, but is preferably 1 to 30 nm, and more preferably 5 to 20 nm.
  • the filter having an ion exchange group may double as the filter having the smallest pore size described above, or may be used separately from the filter having the smallest pore size.
  • the filtration step is a combination of a filter having an ion exchange group and a filter having no ion exchange group and having the smallest pore diameter in that a chemical solution having the more excellent effect of the present invention is obtained.
  • the material of the filter having the smallest pore diameter as described above is not particularly limited, but from the viewpoint of solvent resistance etc., at least one selected from the group consisting of polyfluorocarbons and polyolefins is generally preferred, and polyolefins are generally preferred. More preferable.
  • the material of the filter is polyamide (especially nylon)
  • the content of the high boiling point organic compound and the particles U in the drug solution can be controlled more easily, and in particular, the content of the particles U in the drug solution is further facilitated Can be controlled. Therefore, as a filter used in the filtration step, it is preferable to use two or more kinds of filters having different materials, and is selected from the group consisting of polyolefins, polyfluorocarbons, polyamides, and those into which ion exchange groups are introduced. It is more preferable to use two or more of them.
  • the pore structure of the filter is not particularly limited, and may be appropriately selected according to the components in the material to be purified.
  • the pore structure of the filter means pore diameter distribution, positional distribution of the pores in the filter, and the shape of the pores, etc., typically controlled by the filter manufacturing method. It is possible. For example, when a powder such as a resin is sintered and formed, a porous film can be obtained, and when it is formed by a method such as electrospinning, electroblowing or melt blowing, a fiber film can be obtained. Each of these has a different pore structure.
  • the “porous membrane” is a membrane that retains components in the product such as gel, particles, colloids, cells, and poly-oligomer, but components that are substantially smaller than the pores pass through the pores.
  • the retention of the components in the material to be purified by the porous membrane may depend on the operating conditions, for example, surface velocity, use of surfactant, pH, and combinations thereof, and the pore size of the porous membrane, It may depend on the structure and the size of the particles to be removed and the structure (hard particles or gels etc).
  • non-sieving membranes include, but are not limited to, nylon-6 membranes and nylon membranes such as nylon-6,6 membranes. It is noted that "non-sieving" retention mechanism as used herein refers to the pressure drop of the filter or retention caused by mechanisms such as interference, diffusion and adsorption not related to the pore size.
  • Non-sieving retention includes retention mechanisms such as interference, diffusion and adsorption which remove particles to be removed in the material to be purified regardless of the pressure drop of the filter or the pore size of the filter.
  • the adsorption of particles on the filter surface can be mediated, for example, by intermolecular van der Waals forces, electrostatic forces etc.
  • a disturbing effect occurs when particles moving through the non-sieving membrane layer with serpentine paths can not be redirected fast enough to not contact the non-sieving membrane.
  • Particle transport by diffusion mainly results from random or brown motion of small particles, creating a certain probability that the particles collide with the filter. If there is no repulsive force between the particles and the filter, the non-sieving retention mechanism can be active.
  • UPE (ultra high molecular weight polyethylene) filters are typically sieve membranes.
  • Sieve membrane means a membrane that captures particles mainly through a sieve holding mechanism or a membrane optimized for capturing particles through a sieve holding mechanism.
  • Typical examples of sieve membranes include, but are not limited to, polytetrafluoroethylene (PTFE) membranes and UPE membranes.
  • PTFE polytetrafluoroethylene
  • maintenance mechanism points out the holding
  • the sieve retention can be improved by forming a filter cake (aggregation of particles to be removed on the surface of the membrane). The filter cake effectively performs the function of a second order filter.
  • the material of the fiber layer is not particularly limited as long as it is a polymer that can form the fiber layer.
  • a polymer polyamide etc. are mentioned, for example.
  • the polyamide include nylon 6 and nylon 6,6.
  • the polymer forming the fiber membrane may be poly (ether sulfone).
  • the surface energy of the fiber membrane is preferably higher than the polymer that is the material of the porous membrane on the secondary side.
  • Such combinations include, for example, the case where the material of the fiber membrane is nylon and the porous membrane is polyethylene (UPE).
  • a well-known method can be used.
  • the method for producing the fiber membrane include electrospinning, electroblowing and meltblowing.
  • the pore structure of the porous membrane is not particularly limited, but the shape of the pores may be, for example, a race, a string, and a node.
  • the distribution of pore sizes in the porous membrane and the distribution of positions in the membrane are not particularly limited. The size distribution may be smaller and the distribution position in the film may be symmetrical. In addition, the distribution of the size may be larger, and the distribution position in the membrane may be asymmetric (the above-mentioned membrane is also referred to as “asymmetric porous membrane”). In asymmetric porous membranes, the size of the pores changes in the membrane and typically the pore size increases from one surface of the membrane to the other surface of the membrane.
  • the surface on the side having many pores with large pore diameter is referred to as "open side”
  • the surface on the side having many pores with small pore diameter is also referred to as "tight side”.
  • the asymmetric porous membrane for example, one in which the pore size is minimized at a certain position within the thickness of the membrane (this is also referred to as “hourglass shape”) can be mentioned.
  • the primary side is a pore of a larger size, in other words, if the primary side is an open side, a pre-filtration effect can be produced.
  • the porous membrane may contain thermoplastic polymers such as PESU (polyether sulfone), PFA (perfluoroalkoxyalkane, copolymer of tetrafluoroethylene and perfluoroalkoxyalkane), polyamide, and polyolefin. , Polytetrafluoroethylene and the like. Among them, ultra high molecular weight polyethylene is preferable as the material of the porous membrane. Ultra high molecular weight polyethylene means thermoplastic polyethylene having a very long chain, and the molecular weight is preferably 1,000,000 or more, typically 2 to 6,000,000.
  • a filter used in the filtration step it is preferable to use two or more kinds of filters having different pore structures, and it is more preferable to have a porous membrane and a filter of a fiber membrane. Specifically, it is preferable to use a nylon fiber membrane filter and a UPE porous membrane filter in combination.
  • At least one selected from the group consisting of the material of the filter, the pore diameter, and the pore structure passes the purified product through two or more different filters.
  • it is a multistage filtration process.
  • FIG. 1 is a schematic view showing a typical example of a purification apparatus capable of carrying out a multistage filtration process.
  • the purification device 10 includes a production tank 11, a filtration device 16, and a filling device 13. The above units are connected by a pipeline 14.
  • the filtration device 16 has filter units 12 (a) and 12 (b) connected by a pipe line 14.
  • a regulating valve 15 (a) is disposed in the pipeline between the filter units 12 (a) and 12 (b).
  • the number of filter units is two is demonstrated in FIG. 1, three or more filter units may be used.
  • the material to be purified is stored in the manufacturing tank 11.
  • a pump (not shown) disposed in the conduit 14 is operated, and the material to be purified is sent from the production tank 11 to the filtration device 16 via the conduit 14.
  • the transfer direction of the material to be purified in the purification apparatus 10 is indicated by F 1 in FIG.
  • the filtration device 16 comprises filter units 12 (a) and 12 (b) connected by a pipe line 14, and each of the two filter units is composed of a group consisting of pore diameter, material, and pore structure. A cartridge filter having at least one different selected filter is accommodated.
  • the filtration device 16 has a function of filtering the material to be purified supplied through the pipe with a filter.
  • the filter housed in each filter unit is not particularly limited, but the filter having the smallest pore diameter is preferably housed in the 12 (b) filter unit.
  • the material to be purified is supplied to the filter unit 12 (a) and filtered.
  • the material to be purified filtered by the filter unit 12 (a) is depressurized as necessary by the control valve 15 (a), supplied to the filter unit 12 (b) and filtered.
  • the refining device may not have the adjusting valve 15 (a). Further, even when the adjusting valve 15 (a) is provided, the position thereof does not have to be on the primary side of the filter unit 12 (b), and is on the primary side of the filter unit 12 (a) It is also good. Moreover, you may use other than a regulating valve as an apparatus which can adjust the supply pressure of a material to be purified. As such a member, a damper etc. are mentioned, for example.
  • each filter forms a cartridge filter
  • the filter which can be used for the purification method which concerns on this embodiment is not restrict
  • the material to be purified may be passed through a plate-shaped filter.
  • the filter apparatus which enforces the said refinement
  • the material to be purified filtered through the filter unit 12 (b) is not limited to the above, and is returned to the manufacturing tank 11 to allow the filter unit 12 (a) and the filter unit 12 (b) to flow again. It may be configured.
  • the above filtration method is called circulation filtration.
  • purification of the material to be purified by circulation filtration at least one of two or more filters is used twice or more.
  • the operation of returning the filtered material to be purified filtered by each filter unit to the production tank is counted as one circulation. The number of circulations may be appropriately selected according to the components etc. in the material to be purified.
  • the material of the wetted part (meaning an object to be purified and an inner wall surface to which a chemical solution may come in contact) of the above purification apparatus is not particularly limited, but nonmetallic materials and electropolished metallic materials It is preferable to form from at least 1 sort (s) selected from the group which consists of (Hereafter, these are put together and it is also called "corrosion resistant material.”).
  • the production tank itself may be made of a corrosion resistant material, or the inner wall surface of the production tank may be coated with a corrosion resistant material. It can be mentioned.
  • the nonmetallic material is not particularly limited, and known materials can be used.
  • a nonmetal material for example, polyethylene resin, polypropylene resin, polyethylene-polypropylene resin, tetrafluoroethylene resin, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer resin Selected from the group consisting of tetrafluoroethylene-ethylene copolymer resin, trifluorochlorinated ethylene-ethylene copolymer resin, vinylidene fluoride resin, trifluorochlorinated ethylene copolymer resin, and vinyl fluoride resin There is at least one type, but not limited thereto.
  • the metal material is not particularly limited, and known materials can be used.
  • a metal material the metal material whose sum total of content of chromium and nickel is more than 25 mass% with respect to the metal material total mass is mentioned, for example, Especially, 30 mass% or more is preferable.
  • the upper limit of the total content of chromium and nickel in the metal material is not particularly limited, but is preferably 90% by mass or less. Examples of the metal material include stainless steel and nickel-chromium alloy.
  • the stainless steel is not particularly limited, and known stainless steels can be used. Among them, an alloy containing 8% by mass or more of nickel is preferable, and an austenitic stainless steel containing 8% by mass or more of nickel is more preferable.
  • austenitic stainless steel for example, SUS (Steel Use Stainless) 304 (Ni content 8 mass%, Cr content 18 mass%), SUS 304 L (Ni content 9 mass%, Cr content 18 mass%), SUS 316 (Stain Use Stainless) Ni content 10 mass%, Cr content 16 mass%), SUS316L (Ni content 12 mass%, Cr content 16 mass%), etc. are mentioned.
  • the nickel-chromium alloy is not particularly limited, and known nickel-chromium alloys can be used. Among them, a nickel-chromium alloy having a nickel content of 40 to 75% by mass and a chromium content of 1 to 30% by mass is preferable. Examples of the nickel-chromium alloy include Hastelloy (trade name, the same as the following), Monel (trade name, the same as the following), Inconel (trade name, the same below), and the like.
  • Hastelloy C-276 Ni content 63% by mass, Cr content 16% by mass
  • Hastelloy-C Ni content 60% by mass, Cr content 17% by mass
  • Hastelloy C- 22 Ni content: 61% by mass, Cr content: 22% by mass
  • the nickel-chromium alloy may further contain boron, silicon, tungsten, molybdenum, copper, cobalt and the like, as necessary.
  • the metallic material is electropolished so that the content of chromium in the passivation layer on the surface is higher than the content of chromium in the matrix. Therefore, it is presumed that the metal-containing particles are less likely to flow out into the material to be purified when using a purification device in which the liquid contact portion is formed of a metal material that has been electropolished.
  • the metal material may be buffed.
  • the method of buffing is not particularly limited, and known methods can be used.
  • the size of the abrasive grains used for the finish of the buffing is not particularly limited, but is preferably # 400 or less in that the unevenness of the surface of the metal material tends to be smaller.
  • the buffing is preferably performed before the electropolishing.
  • the distillation step is a step of distilling a material to be purified containing an organic solvent to obtain a distilled material to be distilled. It does not restrict
  • the liquid contact portion of the distillation column is not particularly limited, but is preferably made of the corrosion resistant material described above.
  • the reaction step is a step of reacting the raw materials to produce a purified product containing an organic solvent which is a reactant.
  • the method for producing the material to be purified is not particularly limited, and known methods can be used.
  • the reaction vessel is disposed on the primary side of the production tank (or distillation column) of the purification apparatus described above, and the reaction product is introduced into the production tank (or distillation column).
  • the liquid contact portion of the reaction tank is not particularly limited, but is preferably formed of the corrosion resistant material described above.
  • the charge removal step is a step of reducing the charge potential of the material to be purified by discharging the material to be purified. It does not restrict
  • the static elimination method for example, a method of contacting a material to be purified with a conductive material can be mentioned.
  • the contact time for contacting the material to be purified with the conductive material is preferably 0.001 to 60 seconds, more preferably 0.001 to 1 second, and still more preferably 0.01 to 0.1 second.
  • the conductive material stainless steel, gold, platinum, diamond, glassy carbon and the like can be mentioned.
  • As a method of bringing the material to be purified into contact with the conductive material for example, there is a method of placing a grounded mesh made of a conductive material inside the conduit and passing the material to be purified through it.
  • the purification of the material to be purified be conducted in a clean room, with the opening of the container, the cleaning of the container and the device, the storage of the solution, the analysis, and the like accompanying it.
  • the clean room is preferably a clean room of class 4 or more cleanliness defined by international standard ISO 14644-1: 2015 defined by the International Organization for Standardization. Specifically, it is preferable to satisfy any of ISO class 1, ISO class 2, ISO class 3 and ISO class 4, more preferable to satisfy ISO class 1 or ISO class 2, and to satisfy ISO class 1 Is more preferred.
  • the storage temperature of the chemical solution is not particularly limited, but the storage temperature is preferably 4 ° C. or higher, from the point that impurities contained in a small amount in the chemical solution are more difficult to elute and as a result the more excellent effect of the present invention is obtained.
  • the chemical solution produced by the above purification method may be housed in a container and stored until use.
  • a container and a drug solution (or a resist composition) contained in the container are collectively referred to as a drug solution container.
  • a drug solution is taken out and used from the stored drug solution container.
  • a container for storing the above-mentioned chemical solution As a container for storing the above-mentioned chemical solution, a container having high cleanliness in the container and less elution of impurities is preferable for semiconductor device manufacturing applications.
  • Specific examples of usable containers include, but are not limited to, “Clean Bottle” series manufactured by Icero Chemical Co., Ltd., “Pure Bottle” manufactured by Kodama Resin Industry, and the like.
  • a container for the purpose of preventing impurity contamination (contamination) to a chemical solution, a multilayer bottle in which the inner wall of the container has a six-layer structure with six resins, or a multilayer bottle having a seven-layer structure with six resins is used Is also preferred.
  • these containers include the containers described in JP-A-2015-123351.
  • the wetted part of the container is preferably made of the corrosion resistant material or glass described above. It is preferable that 90% or more of the area of the wetted portion be made of the above-described material, and it is more preferable that the whole of the wetted portion be made of the above-described material, in order to obtain more excellent effects of the present invention.
  • a material to be purified (commercially available product) containing cyclohexanone (CHN) as an organic solvent is prepared, and four filter units are arranged in series along the pipeline and have a filtering device without a control valve; After being filtered by the filter unit on the most downstream side, filtration is carried out using the same purification apparatus as described in FIG. 1 except that it has a pipe line which can return the filtered material to the production tank. , Produced a drug solution.
  • the following filters were arranged in each filter unit from the primary side.
  • the chemical solutions 2 to 30 were obtained by purifying the material to be purified containing the organic solvent described in Table 1 under the conditions described in Table 1.
  • Each chemical solution passes the substance to be purified through the filters listed in Table 1 in order from the first filter to the fourth filter (note that the chemical solution in which the filter column is blank indicates that the filter is not used).
  • the solution was passed from the first filter to the fourth filter), and this was repeatedly obtained the number of times described in “the number of circulations”.
  • the products to be purified described in Table 1 were procured from different lots. Therefore, components other than the organic solvent initially contained in each to-be-refined material may differ.
  • the content (the number of contained particles) of particles having a particle diameter of 0.5 to 17 nm in the chemical solution was measured by the following method. First, a fixed amount of chemical solution was applied on a silicon substrate to form a substrate with a chemical solution layer, and the surface of the substrate with a chemical solution layer was scanned with laser light to detect scattered light. Thereby, the position and particle diameter of the defect which exist in the surface of a substrate with a medical fluid layer were specified. Next, elemental analysis was performed by EDX (energy dispersive X-ray) analysis based on the position of the defect to investigate the composition of the defect.
  • EDX energy dispersive X-ray
  • the number of particles on the substrate of metal nanoparticles, Pb nanoparticles, and Ti nanoparticles was determined, and it was converted to the number of contained particles per unit volume (number / cm 3 ) of the chemical solution. Further, the particle size distribution of the metal nanoparticles was also determined by the above method.
  • the composition of the metal nanoparticles (a simple metal and an oxide of a metal atom), the association state with a high boiling point organic compound, and the like were also identified.
  • a combination of a wafer inspection system “SP-5” manufactured by KLA-Tencor and a fully automated defect review and classification system “SEMVision G6” manufactured by Applied Materials, Inc. was used. Moreover, about the presence or absence of content of the high boiling point organic compound, it measured by the gas chromatograph mass spectrometry.
  • a sample in which particles having a desired particle diameter could not be detected due to the resolution of the measuring device, etc. was detected using the method described in paragraphs 0015 to 0067 of JP-A-2009-188333. That is, a SiO X layer was formed on a substrate by a CVD (chemical vapor deposition) method, and then a chemical solution layer was formed to cover the above layer. Next, the composite layer having the SiO X layer and the chemical solution layer applied thereon is dry-etched, light is irradiated to the obtained projections, and scattered light is detected, and the scattered light is detected. The volume of the projections was calculated, and the particle size of the particles was calculated from the volume of the projections. Table 2 shows the measurement results for each chemical solution, and the contained particle number ratio calculated based on the measurement results.
  • the abbreviations in the particle size distribution represent particles having particle sizes in the following ranges, respectively.
  • -"Less than 0.5" metal-containing particles having a particle size of less than 0.5 nm-"0.5-3”: metal nanoparticles having a particle size of 0.5 nm or more and less than 3 nm-"3-5”: particles
  • 5-17 Metal nanoparticles with a particle diameter of 5 nm or more and 17 nm or less
  • Table 2 is described by being divided into Table 2 (part 1) and Table 2 (part 2). The measurement results and the like of each chemical solution are described over the corresponding rows of the above two tables.
  • the number of contained particles of metal nanoparticles is 1.0 ⁇ 10 4 / cm 3
  • the particle size distribution based on the number of metal-containing particles (number% 20% of metal-containing particles having a particle diameter of less than 0.5 nm, 50% of metal nanoparticles having a particle diameter of 0.5 nm or more and less than 3 nm, and 20 of metal nanoparticles having a particle diameter of 3 nm or more and 5 nm %, Containing 10% of metal nanoparticles with a particle diameter of 5 nm or more and 17 nm or less, containing 2% by number of particles A based on the total number of metal nanoparticles and 98% of the total of particles B and particles C A / (
  • Example 1 The chemical solution 1 prepared above was used as a pre-wet solution to evaluate the defect suppression performance.
  • the resist composition used is as follows.
  • resist composition 1 The resist composition 1 was obtained by mixing each component with the following composition.
  • reaction solution was cooled to room temperature and dropped into 3 liters of hexane to precipitate a polymer.
  • the filtered solid is dissolved in 500 mL of acetone, dropped again into 3 L of hexane, and the filtered solid is dried under reduced pressure to obtain 160 g of 4-acetoxystyrene / 1-ethylcyclopentyl methacrylate / monomer 1 copolymer (A-1)
  • A-1 4-acetoxystyrene / 1-ethylcyclopentyl methacrylate / monomer 1 copolymer
  • the weight average molecular weight (Mw) in terms of standard polystyrene equivalent by gel permeation chromatography (GPC) was 11,200, and the molecular weight dispersion degree (Mw / Mn) was 1.45.
  • the composition etc. are shown in Table 3 below.
  • a reflective mask with a pitch of 20 nm and a pattern width of 15 nm was used using an EUV exposure machine (manufactured by ASML; NXE 3350, NA 0.33, Dipole 90 °, outer sigma 0.87, inner sigma 0.35). It exposed through. Then, it was heated at 85 ° C. for 60 seconds (PEB: Post Exposure Bake). Next, it was developed for 30 seconds with an organic solvent-based developer and rinsed for 20 seconds. Subsequently, the wafer was rotated at a rotational speed of 2000 rpm for 40 seconds to form a line and space pattern having a pitch of 20 nm and a pattern line width of 15 nm.
  • EUV exposure machine manufactured by ASML; NXE 3350, NA 0.33, Dipole 90 °, outer sigma 0.87, inner sigma 0.35. It exposed through. Then, it was heated at 85 ° C. for 60 seconds (PEB: Post Exposure Bake). Next, it was developed for 30 seconds with
  • AA The number of defects was less than 30.
  • A The number of defects was 30 or more and less than 60.
  • B The number of defects was 60 or more and less than 90.
  • C The number of defects was 90 or more and less than 120.
  • D The number of defects was 120 or more and less than 150.
  • E The number of defects was 150 or more and less than 180.
  • F The number of defects was 180 or more.
  • AA 3 ⁇ was less than 1.5 nm.
  • A: 3 ⁇ was 1.5 nm or more and less than 1.8 nm.
  • B: 3 ⁇ was 1.8 nm or more and less than 2.2 nm.
  • C: 3 ⁇ was 2.2 nm or more and less than 2.5 nm.
  • D: 3 ⁇ was 2.5 nm or more and less than 2.8 nm.
  • E: 3 ⁇ was 2.8 nm or more and less than 3.1 nm.
  • F 3 ⁇ was 3.1 nm or more.
  • Examples 2 to 21 and Examples 23 to 28 In the same manner as described above, except that the chemical solutions 2 to 21 and the chemical solutions 23 to 28 are used instead of the chemical solution 1, the residual defect suppressing performance, the bridge defect suppressing performance, and the stain defect suppressing performance of each chemical solution And, the uniform performance of the pattern width was evaluated. The results are shown in Table 4.
  • Example 22 Residue defect suppression performance, bridge defect suppression performance, stain-like defect suppression performance of the chemical solution 22 in the same manner as described above except that the pre-wet solution was not used and the chemical solution 22 was used as the developer. And the uniform performance of the pattern width was evaluated. The results are shown in Table 4.
  • Example 29 Resist composition 1, except that PGMEA: 67.5 g and EL: 75 g were used instead of PGMEA: 67.5 g and EL: 75 g purified by the method of purifying liquid chemical 1 described in Example 1
  • medical solution was obtained using the method similar to the composition 1, and components.
  • the resist composition 2 was evaluated for the number of contained particles having a particle diameter of 0.5 to 17 nm in the chemical solution by the same method as described above. Further, the resist composition 2 is used and a pattern is formed by the same method as in Example 1 except that the pre-wet solution is not used, and the residual defect suppression performance, the bridge defect suppression performance, the uniform pattern width performance, When the stain-like defect suppression performance was examined, the same results as in Example 1 were obtained.
  • Example 29 had the outstanding residue defect suppression performance, the outstanding bridge defect suppression performance, the uniform performance of the outstanding pattern width, and the outstanding spot-like defect suppression performance as a resist liquid.
  • the chemical solution 1 having the maximum value in the particle diameter range of 0.5 nm or more and less than 5 nm is more excellent in residual defect suppression performance, more excellent bridge defect suppression performance, and more excellent pattern width uniformity compared to the chemical solution 8 It had the performance and the superior stain-like defect control performance. Moreover, compared with the chemical
  • the chemical solution 1 having A / (B + C) of less than 1.0 has better residue defect suppression performance, better bridge defect suppression performance, uniform pattern width uniformity performance, and the like compared to the chemical solution 10. It had better stain-like defect control performance.
  • the chemical solution 1 having A / (B + C) of 1.0 ⁇ 10 ⁇ 1 or less is more excellent in residual defect suppression performance, more excellent bridge defect suppression performance, and more excellent in pattern width uniformity than the chemical solution 12 It had the performance and the superior stain-like defect control performance.
  • the chemical solution 1 having a U / V of 1.0 ⁇ 10 1 or more is more excellent in the residual defect suppression performance, the superior bridge defect suppression performance, the uniform performance of the superior pattern width, and the uniform performance compared with the chemical solution 16. , Had better stain-like defect control performance.
  • the chemical solution 1 having Pb / Ti of 1.0 ⁇ 10 -3 to 2.0 is superior to the chemical solution 17 and the chemical solution 20 in the residual defect suppressing performance, the bridge defect suppressing performance and the superior. It had uniform pattern width uniformity performance and better stain-like defect suppression performance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

本発明は、EUV露光によるレジストプロセスに適用した際にも優れた欠陥抑制性能を有する薬液を提供することを課題とする。また、薬液の製造方法を提供することも課題とする。本発明の薬液は、有機溶剤と、金属原子を含有する、金属含有粒子と、を含有する薬液であって、金属含有粒子のうち、粒子径が0.5~17nmの金属ナノ粒子の、薬液の単位体積あたりの含有粒子数が1.0×10~1.0×10個/cmである。

Description

薬液、及び、薬液の製造方法
 本発明は、薬液、及び、薬液の製造方法に関する。
 フォトリソグラフィを含む配線形成工程による半導体デバイスの製造の際、プリウェット液、レジスト液(レジスト組成物)、現像液、リンス液、剥離液、化学機械的研磨(CMP:Chemical Mechanical Polishing)スラリー、及び、CMP後の洗浄液等として、又は、それらの希釈液として、水及び/又は有機溶剤を含有する薬液が用いられている。
 近年、フォトリソグラフィ技術の進歩によりパターンの微細化が進んでいる。パターンの微細化の手法としては、露光光源を短波長化する手法が用いられ、露光光源として、従来用いられていた紫外線、KrFエキシマレーザー、及び、ArFエキシマレーザー等に代えて、更に短波長であるEUV(極紫外線)等を用いたパターン形成が試みられている。
 上記EUV等によるパターン形成は、レジストパターンの幅として10~15nmを目標として開発が進められており、このプロセスに用いる上記の薬液には更なる欠陥抑制性能が求められている。
 従来のレジストパターン形成に用いられる薬液の製造方法として、特許文献1には、「半導体装置製造工程で使用されるレジスト組成物の製造方法であって、レジスト組成物の製造装置を洗浄液で洗浄し、該洗浄液を製造装置から取り出して評価基板に回転塗布し、該評価基板上における塗布前後での100nm以上のサイズの欠陥における欠陥密度の変化が0.2個/cm以下となるまで洗浄した後に、製造装置でレジスト組成物を製造することを特徴とするレジスト組成物の製造方法。」が記載され、上記文献には、この方法により製造された薬液(レジスト組成物)を用いてArF露光したところ、パターン欠陥等が抑制されたことが記載されている。
特開2015-049395号公報
 本発明者らは、上記製造方法により製造された薬液を含有するレジスト組成物を用いてEUV露光によりパターン形成したところ、欠陥が発生することを知見した。
 そこで、本発明は、EUV露光によるレジストプロセスに適用した際にも欠陥が発生しにくい、言い換えれば、EUV露光によるレジストプロセスに適用した際にも優れた欠陥抑制性能を有する薬液を提供することを課題とする。
 また、本発明は、薬液の製造方法を提供することも課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。
 [1] 有機溶剤と、金属原子を含有する、金属含有粒子と、を含有する薬液であって、金属含有粒子のうち、粒子径が0.5~17nmの金属ナノ粒子の、薬液の単位体積あたりの含有粒子数が1.0×10~1.0×10個/cmである、薬液。
 [2] 金属含有粒子の個数基準の粒子径分布が、粒子径5nm未満の範囲、及び、粒子径17nmを超える範囲からなる群より選択される少なくとも一方の範囲に極大値を有する、[1]に記載の薬液。
 [3] 粒子径分布が、粒子径が0.5nm以上、5nm未満の範囲に極大値を有する、[2]に記載の薬液。
 [4] 半導体デバイスの製造に用いられる[1]~[3]のいずれかに記載の薬液。
 [5] 金属ナノ粒子は、金属原子の単体からなる粒子A、金属原子の酸化物からなる粒子B、並びに、金属原子の単体及び金属原子の酸化物からなる粒子Cからなる群より選択される少なくとも1種からなる、[1]~[4]のいずれかに記載の薬液。
 [6] 薬液の単位体積あたりの、粒子Bの含有粒子数と粒子Cの含有粒子数との合計に対する、粒子Aの含有粒子数の含有粒子数比が1.0未満である、[5]に記載の薬液。
 [7] 含有粒子数比が1.0×10-1以下である、[5]又は[6]に記載の薬液。
 [8] 更に、沸点が300℃以上の有機化合物を含有する、[1]~[7]のいずれかに記載の薬液。
 [9] 金属ナノ粒子の少なくとも一部が、有機化合物を含有する、粒子Uである、[8]に記載の薬液。
 [10] 金属ナノ粒子の少なくとも一部が、有機化合物を含有する粒子U、及び、有機化合物を含有しない粒子Vであって、薬液の単位体積あたりの、粒子Vの含有粒子数に対する、粒子Uの含有粒子数の含有粒子数比が1.0×10以上である、[8]又は[9]に記載の薬液。
 [11] 金属ナノ粒子が、Pb原子を含有する金属ナノ粒子、及び、Ti原子を含有する金属ナノ粒子からなる群より選択される少なくとも1種を含有する、[1]~[10]のいずれかに記載の薬液。
 [12] 金属ナノ粒子が、Pb原子を含有する金属ナノ粒子、及び、Ti原子を含有する金属ナノ粒子を含有する、[1]~[11]のいずれかに記載の薬液。
 [13] 薬液の単位体積あたりの、Ti原子を含有する金属ナノ粒子の含有粒子数に対する、Pb原子を含有する金属ナノ粒子の含有粒子数の含有粒子数比が1.0×10-3~2.0である、[1]~[12]のいずれかに記載の薬液。
 [14] フィルタを用いて有機溶剤を含有する被精製物をろ過して薬液を得る、ろ過工程を有する、[1]~[13]のいずれかに記載の薬液を製造するための、薬液の製造方法。
 [15] ろ過工程が、フィルタの材料、細孔径、及び、細孔構造からなる群より選択される少なくとも1種が異なる2種以上のフィルタに被精製物を通過させる、多段ろ過工程である[14]に記載の薬液の製造方法。
 [16] フィルタを1つ用いる場合、フィルタの細孔径が5nm以下であり、フィルタを2つ以上用いる場合、フィルタのうち最小の細孔径を有するフィルタの細孔径が5nm以下である、[14]又は[15]に記載の薬液の製造方法。
 本発明によれば、EUV露光によるレジストプロセスに適用した際にも優れた欠陥抑制性能を有する薬液を提供できる。また、本発明は、薬液の製造方法を提供できる。
多段ろ過工程を実施可能な精製装置の典型例を表す模式図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本発明において、「ppm」は「parts-per-million(10-6)」を意味し、「ppb」は「parts-per-billion(10-9)」を意味し、「ppt」は「parts-per-trillion(10-12)」を意味し、「ppq」は「parts-per-quadrillion(10-15)」を意味する。
 また、本発明における基(原子群)の表記において、置換及び無置換を記していない表記は、本発明の効果を損ねない範囲で、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「炭化水素基」とは、置換基を有さない炭化水素基(無置換炭化水素基)のみならず、置換基を有する炭化水素基(置換炭化水素基)をも包含するものである。このことは、各化合物についても同義である。
 また、本発明における「放射線」とは、例えば、遠紫外線、極紫外線(EUV;Extreme ultraviolet)、X線、又は、電子線等を意味する。また、本発明において光とは、活性光線又は放射線を意味する。本発明中における「露光」とは、特に断らない限り、遠紫外線、X線又はEUV等による露光のみならず、電子線又はイオンビーム等の粒子線による描画も露光に含める。
[薬液]
 本発明の実施形態に係る薬液(以下「本薬液」ともいう。)は、有機溶剤と、金属原子を含有する、金属含有粒子と、を含有する薬液であって、金属含有粒子のうち、粒子径が0.5~17nmの金属ナノ粒子の薬液中における含有粒子数が1.0×10~1.0×10個/cmである、薬液である。
 本薬液により上記課題が解決される機序は必ずしも明確ではないが、本発明者はその機序について以下のとおり推測する。なお、以下の機序は推測であり、異なる機序により本発明の効果が得られる場合であっても本発明の範囲に含まれる。
 本薬液は、金属含有粒子のうち、粒子径が0.5~17nmの金属ナノ粒子の薬液中における含有粒子数を1.0×10~1.0×10個/cmに制御したことを特徴点の一つとする。
 EUV露光が適用されるプロセスでは、レジストのパターン間隔、パターン幅、及び、これらが周期的に並んだ一つのパターン幅とパターン間隔を合計したパターンのピッチ、並びに、製造される配線の間隔、配線の幅、及び、これらが周期的に並んだ一つの配線幅と配線間隔を合計した配線のピッチの狭小化が求められている。
 具体的には、パターン幅、及び/又は、パターン間隔は、10~15nm程度であることが多い(この場合、パターンピッチとしては20~30nmであることが多い)。このような場合、従来のプロセスではあまり問題とならなかった、より微細な粒子をその個数単位で制御することが求められることを本発明者らは知見している。
 上記粒子のうち、粒子径が0.5nm未満の金属含有粒子はより凝集しやすく、結果として粗大な粒子を形成することが多いため、プロセス中に(例えば洗い流されるような形で)除去されることが多く、薬液の欠陥抑制性能への影響はあまり大きくないものと推測される。
 一方で、上記粒子のうち、粒子径が17nmを超える金属含有粒子は、求められるレジストピッチと比較して十分に大きいため、上記と同様に、プロセス中に除去されることが多く、薬液の欠陥抑制性能への影響はあまり大きくないものと推測される。
 粒子径が0.5~17nmの金属ナノ粒子は、基板上からより除去されにくい傾向があるものと推測される。薬液の単位体積あたりの金属ナノ粒子の含有粒子数が、1.0×10個/cm以上であると、金属ナノ粒子同士が凝集しやすく、プロセス中により除去されやすくなり、結果として薬液は優れた欠陥抑制性能を有するものと推測される。
 一方で、薬液の単位体積あたりの金属ナノ粒子の含有粒子数が、1.0×10個/cm以下であると、金属ナノ粒子自体が欠陥の原因となることが抑制され、結果として薬液は優れた欠陥抑制性能を有するものと推測される。
 なお、薬液中における金属ナノ粒子の含有量は、実施例に記載した方法により測定でき、金属ナノ粒子の薬液の単位体積あたりの粒子数(個数)は、有効数字が2桁となるように四捨五入して求める。
〔有機溶剤〕
 薬液は有機溶剤を含有する。薬液中における有機溶剤の含有量としては特に制限されないが、一般に薬液の全質量に対して、98.0質量%以上が好ましく、99.0質量%以上がより好ましく、99.9質量%以上が更に好ましく、99.99質量%以上が特に好ましい。上限は特に制限されないが、100質量%未満の場合が多い。
 有機溶剤は1種を単独で用いても、2種以上を併用してもよい。2種以上の有機溶剤を併用する場合には、合計含有量が上記範囲内であることが好ましい。
 なお、本明細書において、有機溶剤とは、上記薬液の全質量に対して、1成分あたり10000質量ppmを超えた含有量で含有される液状の有機化合物を意図する。つまり、本明細書においては、上記薬液の全質量に対して10000質量ppmを超えて含有される液状の有機化合物は、有機溶剤に該当するものとする。
 なお、本明細書において液状とは、25℃、大気圧下において、液体であることを意味する。
 上記有機溶剤の種類としては特に制限されず、公知の有機溶剤を用いることができる。有機溶剤としては、例えば、アルキレングリコールモノアルキルエーテルカルボキシレート、アルキレングリコールモノアルキルエーテル、乳酸アルキルエステル、アルコキシプロピオン酸アルキル、環状ラクトン(好ましくは炭素数4~10)、環を有してもよいモノケトン化合物(好ましくは炭素数4~10)、アルキレンカーボネート、アルコキシ酢酸アルキル、及び、ピルビン酸アルキル等が挙げられる。
 また、有機溶剤としては、例えば、特開2016-057614号公報、特開2014-219664号公報、特開2016-138219号公報、及び、特開2015-135379号公報に記載のものを用いてもよい。
 有機溶剤としては、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル(PGME)、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、乳酸エチル(EL)、メトキシプロピオン酸メチル、シクロペンタノン、シクロヘキサノン(CHN)、γ-ブチロラクトン、ジイソアミルエーテル、酢酸ブチル(nBA)、酢酸イソアミル、イソプロパノール、4-メチル-2-ペンタノール、ジメチルスルホキシド、n-メチル-2-ピロリドン、ジエチレングリコール、エチレングリコール、ジプロピレングリコール、プロピレングリコール、炭酸エチレン、炭酸プロピレン(PC)、スルホラン、シクロヘプタノン、1-ヘキサノール、デカン、及び、2-ヘプタノンからなる群から選択される少なくとも1種が好ましい。なかでも、より優れた本発明の効果を有する薬液が得られる点で、CHN、PGMEA、PGME、nBA、PC、及び、これらの混合物が好ましい。
 なお、有機溶剤は1種を単独で用いても、2種以上を併用してもよい。
 なお、薬液中における有機溶剤の種類及び含有量は、ガスクロマトグラフ質量分析計を用いて測定できる。
〔金属含有粒子〕
 本薬液は、金属原子を含有する金属含有粒子を含有する。
 本薬液の製造方法の好適形態は後述するが、一般に本薬液は、既に説明した有機溶剤と、不純物とを含有する被精製物を精製して製造できる。金属含有粒子は、薬液の製造工程において意図的に添加されてもよいし、もともと被精製物に含有されていてもよいし、又は、薬液の製造過程において、薬液の製造装置等から移行(いわゆるコンタミネーション)したものであってもよい。
 金属原子としては特に制限されないが、Fe原子、Al原子、Cr原子、Ni原子、Pb原子、Zn原子、及び、Ti原子等が挙げられる。なかでも、Fe原子、Al原子、Pb原子、Zn原子、及び、Ti原子からなる群より選択される少なくとも1種を含有する金属含有粒子の薬液中の含有量を厳密に制御すると、より優れた欠陥抑制性能が得られやすく、Pb原子、及び、Ti原子からなる群より選択される少なくとも1種を含有する金属含有粒子の薬液中における含有量を厳密に制御すると、更に優れた欠陥抑制性能が得られやすい。
 すなわち、金属原子としては、Fe原子、Al原子、Cr原子、Ni原子、Pb原子、Zn原子、及び、Ti原子等からなる群より選択される少なくとも1種が好ましく、Fe原子、Al原子、Pb原子、Zn原子、及び、Ti原子からなる群より選択される少なくとも1種がより好ましく、Pb原子、及び、Ti原子からなる群より選択される少なくとも1種が更に好ましく、金属含有粒子は、Pb原子、及び、Ti原子のいずれをも含有することが特に好ましい。
 なお、金属含有粒子は、上記金属原子を1種単独で含有しても、2種以上を併せて含有してもよい。
 金属含有粒子の粒子径としては特に制限されないが、例えば、半導体デバイス製造用の薬液においては0.1~100nm程度の粒子径を有する粒子の薬液中における含有量が制御の対象とされることが多い。
 なかでも、本発明者の検討によれば、特にEUV露光のフォトレジストプレセスに適用される薬液においては、その粒子径が、0.5~17nmの金属含有粒子(以下、「金属ナノ粒子」ともいう。)の薬液中における含有量を制御することにより、優れた欠陥抑制性能を有する薬液が得られやすいことがわかった。すでに説明したとおり、EUV露光のフォトレジストプロセスにおいては、微細なレジスト間隔、レジスト幅、及び、レジストピッチが求められることが多い。このような場合、従来のプロセスではあまり問題とならなかった、より微細な粒子をその個数単位で制御することが求められるのである。
 金属含有粒子の個数基準の粒子径分布としては特に制限されないが、より優れた本発明の効果を有する薬液が得られる点で、粒子径5nm未満の範囲、及び、粒子径17nmを超える範囲からなる群より選択される少なくとも一方に極大値を有することが好ましい。
 言い換えれば、粒子径が5~17nmの範囲には極大値を有しないことが好ましい。粒子径が5~17nmの範囲には極大値を有さないことにより、薬液はより優れた欠陥抑制性能、特に、より優れたブリッジ欠陥抑制性能を有する。なお、ブリッジ欠陥抑制性能とは、実施例に記載した方法により評価される欠陥を意味する。
 また、更に優れた本発明の効果を有する薬液が得られる点で、個数基準の粒子径分布が、粒子径が0.5nm以上、5nm未満の範囲に極大値を有することが更に好ましい。上記により、薬液は更に優れたブリッジ欠陥抑制能を有する。
<金属ナノ粒子>
 金属ナノ粒子は、金属含有粒子のうち、その粒子径が0.5~17nmのものをいう。
 薬液の単位体積あたりの金属ナノ粒子の含有粒子数は1.0×10~1.0×10個/cmであり、本薬液がより優れた本発明の効果を有する点で、含有粒子数としては1.0×10個/cm以上が好ましく、1.0×10個/cm以上がより好ましく、1.0×10個/cm以下が好ましく、1.0×10個/cm以下がより好ましく、1.×10個/cm以下が更に好ましい。
 薬液の単位体積あたりの金属ナノ粒子の含有粒子数が、1.0×10~1.0×10個/cmであると、薬液はより優れた欠陥抑制性能を有する。
 金属ナノ粒子に含有される金属原子としては特に制限されないが、金属含有粒子に含有される金属原子としてすでに説明した原子と同様である。なかでも、より優れた本発明の効果を有する薬液が得られる点で、金属原子としては、Pb原子、及び、Ti原子からなる群より選択される少なくとも1種が好ましく、金属ナノ粒子はPb原子、及び、Ti原子の両方を含有することがより好ましい。言い換えれば、金属ナノ粒子は、Pb原子を含有する金属ナノ粒子(以下、「Pbナノ粒子」ともいう。)、及び、Ti原子を含有する金属ナノ粒子(以下、「Tiナノ粒子」ともいう。)からなる群より選択される少なくとも1種を含有することが好ましく、Pbナノ粒子及びTiナノ粒子の両方を含有することがより好ましい。
 金属ナノ粒子がPb原子及びTi原子の両方を含有するとは、典型的には、薬液が、Pb原子を含有する金属ナノ粒子とTi原子を含有する金属ナノ粒子の両方を含有する形態が挙げられる。
 なお、薬液中におけるPbナノ粒子、及び、Tiナノ粒子の含有粒子数比(Pb/Ti)としては特に制限されないが、一般に、1.0×10-4~3.0が好ましく、1.0×10-3~2.0がより好ましく、1.0×10-2~1.5が更に好ましい。Pb/Tiが1.0×10-3~2.0であると、薬液はより優れた本発明の効果、特に、より優れたブリッジ欠陥抑制性能を有する。
 Pbナノ粒子とTiナノ粒子は、例えば、薬液をウェハ上に塗布した際等に会合しやすく、レジスト膜の現像の際に欠陥の原因(特にブリッジ欠陥の原因)になりやすいことを、本発明者らは知見している。
 Pb/Tiが1.0×10-3~2.0であると、驚くべきことに、欠陥の発生がより抑制されやすい。なお、本明細書においてPb/Ti、後述するA/(B+C)及び後述するU/Vは有効数字が2桁となるように四捨五入して求める。
 金属ナノ粒子は金属原子を含有していればよく、その形態は特に制限されない。例えば、金属原子の単体、金属原子を含有する化合物(以下、「金属化合物」ともいう。)、及び、これらの複合体等が挙げられる。また、金属ナノ粒子は複数の金属原子を含有してもよい。なお、金属ナノ粒子が複数の金属を含有する場合、上記複数の金属のうち最も含有量(atm%)の多い金属原子を主成分とする。従って、Pbナノ粒子というときには、複数の金属を含有している場合にあっては、複数の金属のうちで、Pb原子が主成分であることを意味する。
 複合体としては特に制限されないが、金属原子の単体と、上記金属原子の単体の少なくとも一部を覆う金属化合物と、を有するいわゆるコア-シェル型の粒子、金属原子と他の原子とを含む固溶体粒子、金属原子と他の原子とを含む共晶体粒子、金属原子の単体と金属化合物との凝集体粒子、種類の異なる金属化合物の凝集体粒子、及び、粒子表面から中心に向かって連続的又は断続的に組成が変化する金属化合物等が挙げられる。
 金属化合物が含有する金属原子以外の原子としては特に制限されないが、例えば、炭素原子、酸素原子、窒素原子、水素原子、硫黄原子、及び、燐原子等が挙げられ、中でも、酸素原子が好ましい。金属化合物が酸素原子を含有する形態としては特に制限されないが、金属原子の酸化物がより好ましい。
 より優れた本発明の効果を有する薬液が得られる点で、金属ナノ粒子としては、金属原子の単体からなる粒子(粒子A)、金属原子の酸化物からなる粒子(粒子B)、並びに、金属原子の単体及び金属原子の酸化物からなる粒子(粒子C)からなる群より選択される少なくとも1種からなることが好ましい。
 なお、薬液の単位体積あたりの、金属ナノ粒子の含有粒子数における、粒子Aの含有粒子数、粒子Bの含有粒子数、及び、粒子Cの含有粒子数の関係としては特に制限されないが、より優れた本発明の効果を有する薬液が得られる点で、粒子Bの含有粒子数と粒子Cの含有粒子数との合計に対する、粒子Aの含有粒子数の含有粒子数比(以下、「A/(B+C)」ともいう。)が、1.5以下が好ましく、1.0未満がより好ましく、2.0×10-1以下が更に好ましく、1.0×10-1以下が特に好ましく、1.0×10-3以上が好ましく、1.0×10-2以上がより好ましい。
 A/(B+C)が1.0未満であると、薬液は、より優れたブリッジ欠陥抑制性能、より優れたパターン幅の均一性能、及び、シミ状欠陥抑制性能を有する。
 また、A/(B+C)が0.1(1.0×10-1)以下であると、薬液は、より優れた残渣欠陥抑制性能を有する。
〔その他の成分〕
 薬液は、上記以外のその他の成分を含有してもよい。その他の成分としては、例えば、有機溶剤以外の有機化合物(特に、沸点が300℃以上の有機化合物)、水、及び、樹脂等が挙げられる。
<有機溶剤以外の有機化合物>
 薬液は、有機溶剤以外の有機化合物(以下、「特定有機化合物」ともいう。)を含有してもよい。本明細書において、特定有機化合物とは、薬液に含有される有機溶剤とは異なる化合物であって、上記薬液の全質量に対して、10000質量ppm以下の含有量で含有される有機化合物を意味する。つまり、本明細書においては、上記薬液の全質量に対して10000質量ppm以下の含有量で含有される有機化合物は、特定有機化合物に該当し、有機溶剤には該当しないものとする。
 なお、複数種の有機化合物が薬液に含有される場合であって、各有機化合物が上述した10000質量ppm以下の含有量で含有される場合には、それぞれが特定有機化合物に該当する。
 特定有機化合物は、薬液中に添加されてもよいし、薬液の製造工程において意図せず混合されるものであってもよい。薬液の製造工程において意図せず混合される場合としては例えば、特定有機化合物が、薬液の製造に用いる原料(例えば、有機溶剤)に含有されている場合、及び、薬液の製造工程で混合する(例えば、コンタミネーション)等が挙げられるが、上記に制限されない。
 なお、上記薬液中における特定有機化合物の含有量は、GCMS(ガスクロマトグラフ質量分析装置;gas chromatography mass spectrometry)を用いて測定できる。
 特定有機化合物の炭素数としては特に制限されないが、薬液がより優れた本発明の効果を有する点で、8以上が好ましく、12以上がより好ましい。なお、炭素数の上限として特に制限されないが、30以下が好ましい。
 特定有機化合物としては、例えば、有機溶剤の合成に伴い生成する副生成物、及び/又は、未反応の原料(以下、「副生成物等」ともいう。)等であってもよい。
 上記副生成物等としては、例えば、下記の式I~Vで表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式I中、R及びRは、それぞれ独立に、アルキル基、若しくは、シクロアルキル基を表すか、又は、互いに結合し、環を形成している。
 R及びRにより表されるアルキル基、又は、シクロアルキル基としては、炭素数1~12のアルキル基、又は、炭素数6~12のシクロアルキル基が好ましく、炭素数1~8のアルキル基、又は、炭素数6~8のシクロアルキル基がより好ましい。
 R及びRが互いに結合して形成する環は、ラクトン環であり、4~9員環のラクトン環が好ましく、4~6員環のラクトン環がより好ましい。
 なお、R及びRは、式Iで表される化合物の炭素数が8以上となる関係を満たすことが好ましい。
 式II中、R及びRは、それぞれ独立に、水素原子、アルキル基、アルケニル基、シクロアルキル基、若しくは、シクロアルケニル基を表すか、又は、互いに結合して環を形成している。但し、R及びRの双方が水素原子であることはない。
 R及びRにより表されるアルキル基としては、例えば、炭素数1~12のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましい。
 R及びRにより表されるアルケニル基としては、例えば、炭素数2~12のアルケニル基が好ましく、炭素数2~8のアルケニル基がより好ましい。
 R及びRにより表されるシクロアルキル基としては、炭素数6~12のシクロアルキル基が好ましく、炭素数6~8のシクロアルキル基がより好ましい。
 R及びRにより表されるシクロアルケニル基としては、例えば、炭素数3~12のシクロアルケニル基が好ましく、炭素数6~8のシクロアルケニル基がより好ましい。
 R及びRが互いに結合して形成する環は、環状ケトン構造であり、飽和環状ケトンであってもよく、不飽和環状ケトンであってもよい。この環状ケトンは、6~10員環が好ましく、6~8員環がより好ましい。
 なお、R及びRは、式IIで表される化合物の炭素数が8以上となる関係を満たすことが好ましい。
 式III中、Rは、アルキル基又はシクロアルキル基を表す。
 Rにより表されるアルキル基は、炭素数6以上のアルキル基が好ましく、炭素数6~12のアルキル基がより好ましく、炭素数6~10のアルキル基が更に好ましい。
 上記アルキル基は、鎖中にエーテル結合を有していてもよく、ヒドロキシ基等の置換基を有していてもよい。
 Rにより表されるシクロアルキル基は、炭素数6以上のシクロアルキル基が好ましく、炭素数6~12のシクロアルキル基がより好ましく、炭素数6~10のシクロアルキル基が更に好ましい。
 式IV中、R及びRは、それぞれ独立に、アルキル基若しくはシクロアルキル基を表すか、又は、互いに結合し、環を形成している。
 R及びRにより表されるアルキル基としては、炭素数1~12のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましい。
 R及びRにより表されるシクロアルキル基としては、炭素数6~12のシクロアルキル基が好ましく、炭素数6~8のシクロアルキル基がより好ましい。
 R及びRが互いに結合して形成する環は、環状エーテル構造である。この環状エーテル構造は、4~8員環であることが好ましく、5~7員環であることがより好ましい。
 なお、R及びRは、式IVで表される化合物の炭素数が8以上となる関係を満たすことが好ましい。
 式V中、R及びRは、それぞれ独立に、アルキル基、若しくは、シクロアルキル基を表すか、又は、互いに結合し、環を形成している。Lは、単結合又はアルキレン基を表す。
 R及びRにより表されるアルキル基としては、例えば、炭素数6~12のアルキル基が好ましく、炭素数6~10のアルキル基がより好ましい。
 R及びRにより表されるシクロアルキル基としては、炭素数6~12のシクロアルキル基が好ましく、炭素数6~10のシクロアルキル基がより好ましい。
 R及びRが互いに結合して形成する環は、環状ジケトン構造である。この環状ジケトン構造は、6~12員環であることが好ましく、6~10員環であることがより好ましい。
 Lにより表されるアルキレン基としては、例えば、炭素数1~12のアルキレン基が好ましく、炭素数1~10のアルキレン基がより好ましい。
 なお、R、R及びLは、式Vで表される化合物の炭素数が8以上となる関係を満たす。
 特に制限されないが、有機溶剤が、アミド化合物、イミド化合物及びスルホキシド化合物である場合は、一形態において、炭素数が6以上のアミド化合物、イミド化合物及びスルホキシド化合物が挙げられる。また、特定有機化合物としては、例えば、下記化合物も挙げられる。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 また、特定有機化合物としては、ジブチルヒドロキシトルエン(BHT)、ジステアリルチオジプロピオネート(DSTP)、4,4’-ブチリデンビス-(6-t-ブチル-3-メチルフェノール)、2,2’-メチレンビス-(4-エチル-6-t-ブチルフェノール)、及び、特開2015-200775号公報に記載されている酸化防止剤等の酸化防止剤;未反応の原料;有機溶剤の製造時に生じる構造異性体及び副生成物;有機溶剤の製造装置を構成する部材等からの溶出物(例えば、Oリングなどのゴム部材から溶出した可塑剤);等も挙げられる。
 また、特定有機化合物としては、フタル酸ジオクチル(DOP)、フタル酸ビス(2-エチルヘキシル)(DEHP)、フタル酸ビス(2-プロピルヘプチル)(DPHP)、フタル酸ジブチル(DBP)、フタル酸ベンジルブチル(BBzP)、フタル酸ジイソデシル(DIDP)、フタル酸ジイソオクチル(DIOP)、フタル酸ジエチル(DEP)、フタル酸ジイソブチル(DIBP)、フタル酸ジヘキシル、フタル酸ジイソノニル(DINP)、トリメリット酸トリス(2-エチルヘキシル)(TEHTM)、トリメリット酸トリス(n-オクチル-n-デシル)(ATM)、アジピン酸ビス(2-エチルヘキシル)(DEHA)、アジピン酸モノメチル(MMAD)、アジピン酸ジオクチル(DOA)、セバシン酸ジブチル(DBS)、マレイン酸ジブチル(DBM)、マレイン酸ジイソブチル(DIBM)、アゼライン酸エステル、安息香酸エステル、テレフタレート(例:ジオクチルテレフタレート(DEHT))、1,2-シクロヘキサンジカルボン酸ジイソノニルエステル(DINCH)、エポキシ化植物油、スルホンアミド(例:N-(2-ヒドロキシプロピル)ベンゼンスルホンアミド(HP BSA)、N-(n-ブチル)ベンゼンスルホンアミド(BBSA-NBBS))、有機リン酸エステル(例:リン酸トリクレジル(TCP)、リン酸トリブチル(TBP))、アセチル化モノグリセリド、クエン酸トリエチル(TEC)、アセチルクエン酸トリエチル(ATEC)、クエン酸トリブチル(TBC)、アセチルクエン酸トリブチル(ATBC)、クエン酸トリオクチル(TOC)、アセチルクエン酸トリオクチル(ATOC)、クエン酸トリへキシル(THC)、アセチルクエン酸トリへキシル(ATHC)エポキシ化大豆油、エチレンプロピレンゴム、ポリブテン、5-エチリデン-2-ノルボルネンの付加重合体、及び、以下に例示される高分子可塑剤も挙げられる。
 これらの特定有機化合物は、精製工程で触れるフィルタ、配管、タンク、O-ring、及び、容器等から被精製物又は薬液へと混入するものと推定される。特に、アルキルオレフィン以外の化合物は、ブリッジ欠陥の発生に関連する。
Figure JPOXMLDOC01-appb-C000004
(沸点が300℃以上の有機化合物)
 薬液は特定有機化合物のうち、300℃以上の有機化合物(高沸点有機化合物)を含有してもよい。沸点が300℃以上の有機化合物を薬液が含有する場合、沸点が高く、フォトリソグラフィのプロセス中には揮発し難い。そのため、優れた欠陥抑制性能を有する薬液を得るためには、高沸点有機化合物の薬液中における含有量、及び、存在形態等を厳密に管理する必要がある。
 そのような高沸点有機化合物としては、例えば、フタル酸ジオクチル(沸点385℃)、フタル酸ジイソノニル(沸点403℃)、アジピン酸ジオクチル(沸点335℃)、フタル酸ジブチル(沸点340℃)、及び、エチレンプロピレンゴム(沸点300~450℃)等が確認されている。
 高沸点有機化合物が薬液中に含有される場合、様々な形態があることを本発明者らは見出している。高沸点有機化合物の薬液中における存在形態としては、金属原子又は金属化合物からなる粒子と、高沸点有機化合物粒子とが凝集した粒子;金属原子又は金属化合物からなる粒子と、上記粒子の少なくとも一部を被覆するように配置された高沸点有機化合物とを有する粒子;金属原子と高沸点有機化合物とが配位結合して形成された粒子;等が挙げられる。
 なかでも、薬液の欠陥抑制性能に与える影響が大きい形態として、有機化合物(好ましくは、高沸点有機化合物)を含有する金属ナノ粒子(粒子U)が挙げられる。本発明者らは、上記粒子Uの薬液の単位体積あたりの含有粒子数を制御することで、飛躍的に薬液の欠陥抑制性能が向上することを見出している。
 この理由は必ずしも明らかではないが、粒子Uは、有機化合物(好ましくは、高沸点有機化合物)を含有しない金属ナノ粒子(粒子V)と比較して、相対的に表面自由エネルギーが小さくなりやすい。このような粒子Uは、薬液で処理した基板上に残存しにくく、また、残存したとしても、再度薬液に接触した際に、除去されやすい。例えば、薬液を現像液及びリンス液として用いるような場合には、現像時には、基板上に粒子Uがより残存しにくく、更に、リンス等により除去されやすい。すなわち、結果として、有機化合物(好ましくは、高沸点有機化合物)、及び、金属原子を含有する粒子の両方がより除去されやすくなる。
 また、一般にレジスト膜は、撥水的であることが多いため、表面エネルギーがより低い粒子Uは基板上に残りにくいと推測される。
 薬液の単位体積あたりの、粒子Vの含有粒子数に対する、粒子Uの含有粒子数の含有粒子数比としては、より優れた本発明の効果を有する薬液が得られる点で、10(1.0×10)以上が好ましく、1.0×10以下が好ましく、50以下がより好ましく、35以下が更に好ましく、25以下が特に好ましい。
<水>
 上記薬液は、水を含有してもよい。水としては特に制限されず、例えば、蒸留水、イオン交換水、及び、純水等を用いることができる。なお、水は、上記有機不純物には含まれない。
 水は、薬液中に添加されてもよいし、薬液の製造工程において意図せずに薬液中に混合されるものであってもよい。薬液の製造工程において意図せずに混合される場合としては、例えば、水が、薬液の製造に用いる原料(例えば、有機溶剤)に含有されている場合、及び、薬液の製造工程で混合する(例えば、コンタミネーション)等が挙げられるが、上記に制限されない。
 上記薬液中における水の含有量としては特に制限されないが、一般に、薬液の全質量に対して、0.05~2.0質量%が好ましい。薬液中における水の含有量は、カールフィッシャー水分測定法を測定原理とする装置を用いて、測定される水分含有量を意味する。
<樹脂>
 上記薬液は更に樹脂を含有してもよい。樹脂としては、酸の作用により分解して極性基を生じる基を有する樹脂Pが好ましい。上記樹脂としては、酸の作用により有機溶剤を主成分とする現像液に対する溶解性が減少する樹脂である、後述する式(AI)で表される繰り返し単位を有する樹脂がより好ましい。後述する式(AI)で表される繰り返し単位を有する樹脂は、酸の作用により分解してアルカリ可溶性基を生じる基(以下、「酸分解性基」ともいう)を有する。
 極性基としては、アルカリ可溶性基が挙げられる。アルカリ可溶性基としては、例えば、カルボキシ基、フッ素化アルコール基(好ましくはヘキサフルオロイソプロパノール基)、フェノール性水酸基、及びスルホ基が挙げられる。
 酸分解性基において極性基は酸で脱離する基(酸脱離性基)によって保護されている。酸脱離性基としては、例えば、-C(R36)(R37)(R38)、-C(R36)(R37)(OR39)、及び、-C(R01)(R02)(OR39)等が挙げられる。
 式中、R36~R39は、各々独立に、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。R36とR37とは、互いに結合して環を形成してもよい。
 R01及びR02は、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。
 以下、酸の作用により有機溶剤を主成分とする現像液に対する溶解性が減少する樹脂Pについて詳述する。
(式(AI):酸分解性基を有する繰り返し単位)
 樹脂Pは、式(AI)で表される繰り返し単位を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000005
 式(AI)に於いて、
 Xaは、水素原子又は置換基を有していてもよいアルキル基を表す。
 Tは、単結合又は2価の連結基を表す。
 Ra~Raは、それぞれ独立に、アルキル基(直鎖状又は分岐鎖状)又はシクロアルキル基(単環又は多環)を表す。
 Ra~Raの2つが結合して、シクロアルキル基(単環又は多環)を形成してもよい。
 Xaにより表される、置換基を有していてもよいアルキル基としては、例えば、メチル基、及び-CH-R11で表される基が挙げられる。R11は、ハロゲン原子(フッ素原子等)、水酸基、又は1価の有機基を表す。
 Xaは、水素原子、メチル基、トリフルオロメチル基又はヒドロキシメチル基が好ましい。
 Tの2価の連結基としては、アルキレン基、-COO-Rt-基、及び、-O-Rt-基等が挙げられる。式中、Rtは、アルキレン基又はシクロアルキレン基を表す。
 Tは、単結合又は-COO-Rt-基が好ましい。Rtは、炭素数1~5のアルキレン基が好ましく、-CH-基、-(CH-基、又は、-(CH-基がより好ましい。
 Ra~Raのアルキル基としては、炭素数1~4のものが好ましい。
 Ra~Raのシクロアルキル基としては、シクロペンチル基、若しくはシクロヘキシル基等の単環のシクロアルキル基、又は、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、若しくはアダマンチル基等の多環のシクロアルキル基が好ましい。
 Ra~Raの2つが結合して形成されるシクロアルキル基としては、シクロペンチル基、若しくはシクロヘキシル基等の単環のシクロアルキル基、又は、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、若しくはアダマンチル基等の多環のシクロアルキル基が好ましい。炭素数5~6の単環のシクロアルキル基がより好ましい。
 Ra~Raの2つが結合して形成される上記シクロアルキル基は、例えば、環を構成するメチレン基の1つが、酸素原子等のヘテロ原子、又はカルボニル基等のヘテロ原子を有する基で置き換わっていてもよい。
 式(AI)で表される繰り返し単位は、例えば、Raがメチル基又はエチル基であり、RaとRaとが結合して上述のシクロアルキル基を形成している態様が好ましい。
 上記各基は、置換基を有していてもよく、置換基としては、例えば、アルキル基(炭素数1~4)、ハロゲン原子、水酸基、アルコキシ基(炭素数1~4)、カルボキシ基、及びアルコキシカルボニル基(炭素数2~6)等が挙げられ、炭素数8以下が好ましい。
 式(AI)で表される繰り返し単位の含有量は、樹脂P中の全繰り返し単位に対して、20~90モル%が好ましく、25~85モル%がより好ましく、30~80モル%が更に好ましい。
(ラクトン構造を有する繰り返し単位)
 また、樹脂Pは、ラクトン構造を有する繰り返し単位Qを含有することが好ましい。
 ラクトン構造を有する繰り返し単位Qは、ラクトン構造を側鎖に有していることが好ましく、(メタ)アクリル酸誘導体モノマーに由来する繰り返し単位であることがより好ましい。
 ラクトン構造を有する繰り返し単位Qは、1種単独で用いてもよく、2種以上を併用していてもよいが、1種単独で用いることが好ましい。
 ラクトン構造を有する繰り返し単位Qの含有量は、樹脂P中の全繰り返し単位に対して、3~80モル%が好ましく、3~60モル%がより好ましい。
 ラクトン構造としては、5~7員環のラクトン構造が好ましく、5~7員環のラクトン構造にビシクロ構造又はスピロ構造を形成する形で他の環構造が縮環している構造がより好ましい。
 ラクトン構造としては、下記式(LC1-1)~(LC1-17)のいずれかで表されるラクトン構造を有する繰り返し単位を有することが好ましい。ラクトン構造としては式(LC1-1)、式(LC1-4)、式(LC1-5)、又は式(LC1-8)で表されるラクトン構造が好ましく、式(LC1-4)で表されるラクトン構造がより好ましい。
Figure JPOXMLDOC01-appb-C000006
 ラクトン構造部分は、置換基(Rb)を有していてもよい。好ましい置換基(Rb)としては、炭素数1~8のアルキル基、炭素数4~7のシクロアルキル基、炭素数1~8のアルコキシ基、炭素数2~8のアルコキシカルボニル基、カルボキシ基、ハロゲン原子、水酸基、シアノ基、及び酸分解性基等が挙げられる。nは、0~4の整数を表す。nが2以上のとき、複数存在する置換基(Rb)は、同一でも異なっていてもよく、また、複数存在する置換基(Rb)同士が結合して環を形成してもよい。
(フェノール性水酸基を有する繰り返し単位)
 また、樹脂Pは、フェノール性水酸基を有する繰り返し単位を含有していてもよい。
 フェノール性水酸基を有する繰り返し単位としては、例えば、下記一般式(I)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 式中、
 R41、R42及びR43は、各々独立に、水素原子、アルキル基、ハロゲン原子、シアノ基又はアルコキシカルボニル基を表す。但し、R42はArと結合して環を形成していてもよく、その場合のR42は単結合又はアルキレン基を表す。
 Xは、単結合、-COO-、又は-CONR64-を表し、R64は、水素原子又はアルキル基を表す。
 Lは、単結合又はアルキレン基を表す。
 Arは、(n+1)価の芳香環基を表し、R42と結合して環を形成する場合には(n+2)価の芳香環基を表す。
 nは、1~5の整数を表す。
 一般式(I)におけるR41、R42及びR43のアルキル基としては、置換基を有していてもよい、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、ヘキシル基、2-エチルヘキシル基、オクチル基及びドデシル基など炭素数20以下のアルキル基が好ましく、炭素数8以下のアルキル基がより好ましく、炭素数3以下のアルキル基が更に好ましい。
 一般式(I)におけるR41、R42及びR43のシクロアルキル基としては、単環型でも、多環型でもよい。シクロアルキル基としては、置換基を有していてもよい、シクロプロピル基、シクロペンチル基及びシクロヘキシル基などの炭素数3~8で単環型のシクロアルキル基が好ましい。
 一般式(I)におけるR41、R42及びR43のハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられ、フッ素原子が好ましい。
 一般式(I)におけるR41、R42及びR43のアルコキシカルボニル基に含まれるアルキル基としては、上記R41、R42及びR43におけるアルキル基と同様のものが好ましい。
 上記各基における置換基としては、例えば、アルキル基、シクロアルキル基、アリール基、アミノ基、アミド基、ウレイド基、ウレタン基、ヒドロキシ基、カルボキシ基、ハロゲン原子、アルコキシ基、チオエーテル基、アシル基、アシロキシ基、アルコキシカルボニル基、シアノ基、及び、ニトロ基等が挙げられ、置換基の炭素数は8以下が好ましい。
 Arは、(n+1)価の芳香環基を表す。nが1である場合における2価の芳香環基は、置換基を有していてもよく、例えば、フェニレン基、トリレン基、ナフチレン基及びアントラセニレン基などの炭素数6~18のアリーレン基、並びに、チオフェン、フラン、ピロール、ベンゾチオフェン、ベンゾフラン、ベンゾピロール、トリアジン、イミダゾール、ベンゾイミダゾール、トリアゾール、チアジアゾール及びチアゾール等のヘテロ環を含む芳香環基が挙げられる。
 nが2以上の整数である場合における(n+1)価の芳香環基の具体例としては、2価の芳香環基の上記した具体例から、(n-1)個の任意の水素原子を除してなる基が挙げられる。
 (n+1)価の芳香環基は、更に置換基を有していてもよい。
 上述したアルキル基、シクロアルキル基、アルコキシカルボニル基、アルキレン基及び(n+1)価の芳香環基が有し得る置換基としては、例えば、一般式(I)におけるR41、R42及びR43で挙げたアルキル基;メトキシ基、エトキシ基、ヒドロキシエトキシ基、プロポキシ基、ヒドロキシプロポキシ基及びブトキシ基等のアルコキシ基;フェニル基等のアリール基が挙げられる。
 Xにより表される-CONR64-(R64は、水素原子又はアルキル基を表す。)におけるR64のアルキル基としては、置換基を有していてもよい、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、ヘキシル基、2-エチルヘキシル基、オクチル基及びドデシル基等の炭素数20以下のアルキル基が挙げられ、炭素数8以下のアルキル基がより好ましい。
 Xとしては、単結合、-COO-又は-CONH-が好ましく、単結合又は-COO-がより好ましい。
 Lにおけるアルキレン基としては、置換基を有していてもよい、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基及びオクチレン基等の炭素数1~8のアルキレン基が好ましい。
 Arとしては、置換基を有していてもよい炭素数6~18の芳香環基が好ましく、ベンゼン環基、ナフタレン環基又はビフェニレン環基がより好ましい。
 一般式(I)で表される繰り返し単位は、ヒドロキシスチレン構造を備えていることが好ましい。即ち、Arは、ベンゼン環基であることが好ましい。
 フェノール性水酸基を有する繰り返し単位の含有量は、樹脂P中の全繰り返し単位に対して、0~50モル%が好ましく、0~45モル%がより好ましく、0~40モル%が更に好ましい。
(極性基を有する有機基を含有する繰り返し単位)
 樹脂Pは、極性基を有する有機基を含有する繰り返し単位、特に、極性基で置換された脂環炭化水素構造を有する繰り返し単位を更に含有していてもよい。これにより基板密着性、現像液親和性が向上する。
 極性基で置換された脂環炭化水素構造の脂環炭化水素構造としては、アダマンチル基、ジアマンチル基又はノルボルナン基が好ましい。極性基としては、水酸基又はシアノ基が好ましい。
 樹脂Pが、極性基を有する有機基を含有する繰り返し単位を含有する場合、その含有量は、樹脂P中の全繰り返し単位に対して、1~50モル%が好ましく、1~30モル%がより好ましく、5~25モル%が更に好ましく、5~20モル%が特に好ましい。
(一般式(VI)で表される繰り返し単位)
 樹脂Pは、下記一般式(VI)で表される繰り返し単位を含有していてもよい。
Figure JPOXMLDOC01-appb-C000008
 一般式(VI)中、
 R61、R62及びR63は、各々独立に、水素原子、アルキル基、シクロアルキル基、ハロゲン原子、シアノ基、又はアルコキシカルボニル基を表す。但し、R62はArと結合して環を形成していてもよく、その場合のR62は単結合又はアルキレン基を表す。
 Xは、単結合、-COO-、又は-CONR64-を表す。R64は、水素原子又はアルキル基を表す。
 Lは、単結合又はアルキレン基を表す。
 Arは、(n+1)価の芳香環基を表し、R62と結合して環を形成する場合には(n+2)価の芳香環基を表す。
 Yは、n≧2の場合には各々独立に、水素原子又は酸の作用により脱離する基を表す。但し、Yの少なくとも1つは、酸の作用により脱離する基を表す。
 nは、1~4の整数を表す。
 酸の作用により脱離する基Yとしては、下記一般式(VI-A)で表される構造が好ましい。
Figure JPOXMLDOC01-appb-C000009
 L及びLは、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、又はアルキレン基とアリール基とを組み合わせた基を表す。
 Mは、単結合又は2価の連結基を表す。
 Qは、アルキル基、ヘテロ原子を含んでいてもよいシクロアルキル基、ヘテロ原子を含んでいてもよいアリール基、アミノ基、アンモニウム基、メルカプト基、シアノ基又はアルデヒド基を表す。
 Q、M、Lの少なくとも2つが結合して環(好ましくは、5員若しくは6員環)を形成してもよい。
 上記一般式(VI)で表される繰り返し単位は、下記一般式(3)で表される繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 一般式(3)において、
 Arは、芳香環基を表す。
 Rは、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルコキシ基、アシル基又はヘテロ環基を表す。
 Mは、単結合又は2価の連結基を表す。
 Qは、アルキル基、シクロアルキル基、アリール基又はヘテロ環基を表す。
 Q、M及びRの少なくとも二つが結合して環を形成してもよい。
 Arが表す芳香環基は、上記一般式(VI)におけるnが1である場合の、上記一般式(VI)におけるArと同様であり、フェニレン基又はナフチレン基が好ましく、フェニレン基がより好ましい。
(側鎖に珪素原子を有する繰り返し単位)
 樹脂Pは、更に、側鎖に珪素原子を有する繰り返し単位を含有していてもよい。側鎖に珪素原子を有する繰り返し単位としては、例えば、珪素原子を有する(メタ)アクリレート系繰り返し単位、及び、珪素原子を有するビニル系繰り返し単位などが挙げられる。側鎖に珪素原子を有する繰り返し単位は、典型的には、側鎖に珪素原子を有する基を有する繰り返し単位であり、珪素原子を有する基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリフェニルシリル基、トリシクロヘキシルシリル基、トリストリメチルシロキシシリル基、トリストリメチルシリルシリル基、メチルビストリメチルシリルシリル基、メチルビストリメチルシロキシシリル基、ジメチルトリメチルシリルシリル基、ジメチルトリメチルシロキシシリル基、及び、下記のような環状若しくは直鎖状ポリシロキサン、又は、カゴ型若しくははしご型若しくはランダム型のシルセスキオキサン構造などが挙げられる。式中、R、及び、Rは各々独立に、1価の置換基を表す。*は、結合手を表す。
Figure JPOXMLDOC01-appb-C000011
 上記の基を有する繰り返し単位としては、例えば、上記の基を有するアクリレート化合物又はメタクリレート化合物に由来する繰り返し単位、又は、上記の基とビニル基とを有する化合物に由来する繰り返し単位が好ましい。
 樹脂Pが、上記側鎖に珪素原子を有する繰り返し単位を有する場合、その含有量は、樹脂P中の全繰り返し単位に対して、1~30モル%が好ましく、5~25モル%がより好ましくは、5~20モル%が更に好ましい。
 樹脂Pの重量平均分子量は、GPC(Gel permeation chromatography)法によりポリスチレン換算値として、1,000~200,000が好ましく、3,000~20,000がより好ましく、5,000~15,000が更に好ましい。重量平均分子量を、1,000~200,000とすることにより、耐熱性及びドライエッチング耐性の劣化を防ぐことができ、且つ現像性が劣化したり、粘度が高くなって製膜性が劣化したりすることを防ぐことができる。
 分散度(分子量分布)は、通常1~5であり、1~3が好ましく、1.2~3.0がより好ましく、1.2~2.0が更に好ましい。
 薬液中において、樹脂Pの含有量は、全固形分中、50~99.9質量%が好ましく、60~99.0質量%がより好ましい。
 また、薬液中において、樹脂Pは、1種で使用してもよいし、複数併用してもよい。
 薬液に含まれるその他の成分(例えば酸発生剤、塩基性化合物、クエンチャー、疎水性樹脂、界面活性剤、及び溶剤等)についてはいずれも公知のものを使用できる。その他の成分としては、例えば、特開2013-195844号公報、特開2016-057645号公報、特開2015-207006号公報、国際公開第2014/148241号、特開2016-188385号公報、及び、特開2017-219818号公報等に記載の感活性光線性又は感放射線性樹脂組成物等に含有される成分が挙げられる。
〔薬液の用途〕
 上記実施形態に係る薬液は、半導体デバイスの製造に用いられることが好ましい。特に、ノード10nm以下の微細パターンを形成するため(例えば、EUVを用いたパターン形成を含む工程)に用いられることがより好ましい。
 上記実施形態に係る薬液は、パターン幅、及び/又は、パターン間隔が17nm以下(好ましくは15nm以下、より好ましくは、12nm以下)、及び/又は、得られる配線幅、及び/又は、配線間隔が17nm以下であるレジストプロセスに使用される薬液(プリウェット液、現像液、リンス液、レジスト液の溶剤、及び、剥離液等)、言いかえれば、パターン幅、及び/又は、パターン間隔が17nm以下であるレジスト膜を用いて製造される半導体デバイスの製造用として、更に好ましく用いられる。
 具体的には、リソグラフィー工程、エッチング工程、イオン注入工程、及び、剥離工程等を含有する半導体デバイスの製造工程において、各工程の終了後、又は、次の工程に移る前に、有機物を処理するために使用され、具体的には、プリウェット液、現像液、リンス液、及び、剥離液等として好適に用いられる。例えば、レジスト塗布前後の半導体基板のエッジエラインのリンスにも使用できる。
 また、上記薬液は、レジスト液に含有される樹脂の希釈液、レジスト液に含有される溶剤としても用いることができる。また、他の有機溶剤、及び/又は、水等により希釈してもよい。
 また、上記薬液は、半導体デバイスの製造用以外の、他の用途にも用いることができ、ポリイミド、センサー用レジスト、レンズ用レジスト等の現像液、及び、リンス液等としても使用できる。
 また、上記薬液は、医療用途又は洗浄用途の溶剤としても用いることができる。特に、容器、配管、及び、基板(例えば、ウェハ、及び、ガラス等)等の洗浄に好適に用いることができる。
 なかでも、本薬液は、EUV(極紫外線)を用いたパターン形成における、プリウェット液、現像液、及び、リンス液に適用した場合、より優れた効果を発揮する。
[薬液の製造方法]
 上記薬液の製造方法としては特に制限されず、公知の製造方法が使用できる。なかでも、より優れた本発明の効果を有する薬液が得られる点で、薬液の製造方法は、フィルタを用いて有機溶剤を含有する被精製物をろ過して薬液を得る、ろ過工程を有することが好ましい。
 ろ過工程において使用する被精製物は、購入等により調達する、及び、原料を反応させることにより得られる。被精製物としては、すでに説明した金属含有粒子、及び/又は、不純物の含有量が少ないものを使用するのが好ましい。そのような被精製物の市販品としては、例えば、「高純度グレード品」と呼ばれるものが挙げられる。
 原料を反応させて被精製物(典型的には、有機溶剤を含有する被精製物)を得る方法として特に制限されず、公知の方法を用いることができる。例えば、触媒の存在下において、一又は複数の原料を反応させて、有機溶剤を得る方法が挙げられる。
 より具体的には、例えば、酢酸とn-ブタノールとを硫酸の存在下で反応させ、酢酸ブチルを得る方法;エチレン、酸素、及び、水をAl(Cの存在下で反応させ、1-ヘキサノールを得る方法;シス-4-メチル-2-ペンテンをIpc2BH(Diisopinocampheylborane)の存在下で反応させ、4-メチル-2-ペンタノールを得る方法;プロピレンオキシド、メタノール、及び、酢酸を硫酸の存在下で反応させ、PGMEA(プロピレングリコール1-モノメチルエーテル2-アセタート)を得る方法;アセトン、及び、水素を酸化銅-酸化亜鉛-酸化アルミニウムの存在下で反応させて、IPA(isopropyl alcohol)を得る方法;乳酸、及び、エタノールを反応させて、乳酸エチルを得る方法;等が挙げられる。
<ろ過工程>
 本発明の実施形態に係る薬液の製造方法は、フィルタを用いて上記被精製物をろ過して薬液を得るろ過工程を有する。フィルタを用いて被精製物をろ過する方法としては特に制限されないが、ハウジングと、ハウジングに収納されたカートリッジフィルタと、を有するフィルタユニットに、被精製物を加圧又は無加圧で通過させる(通液する)のが好ましい。
・フィルタの細孔径
 フィルタの細孔径としては特に制限されず、被精製物のろ過用として通常使用される細孔径のフィルタが使用できる。なかでも、フィルタの細孔径は、粒子径が0.5~17nmの粒子の薬液中における含有粒子数を所望の範囲により制御しやすい点で、200nm以下が好ましく、20nm以下がより好ましく、10nm以下が更に好ましく、5nm以下が特に好ましく、3nm以下が最も好ましい。下限値としては特に制限されないが、一般に1nm以上が、生産性の観点から好ましい。
 なお、本明細書において、フィルタの細孔径、および、細孔径分布とは、イソプロパノール(IPA)又は、HFE-7200(「ノベック7200」、3M社製、ハイドロフロオロエーテル、COC)のバブルポイントによって決定される細孔径及び細孔径分布を意味する。
 フィルタの細孔径が、5.0nm以下であると、粒子径が0.5~17nmの粒子の薬液中における含有粒子数をより制御しやすい点で好ましい。以下、細孔径が5nm以下のフィルタを「微小孔径フィルタ」ともいう。
 なお、微小孔径フィルタは単独で用いてもよいし、他の細孔径を有するフィルタと併用してもよい。なかでも、生産性により優れる観点から、より大きな細孔径を有するフィルタと併用することが好ましい。この場合、予めより大きな細孔径を有するフィルタによってろ過した被精製物を、微小孔径フィルタに通液させることで、微小孔径フィルタの目詰まりを防ぐことができる。
 すなわち、フィルタの細孔径としては、フィルタを1つ用いる場合には、細孔径は5.0nm以下が好ましく、フィルタを2つ以上用いる場合、最小の細孔径を有するフィルタの細孔径が5.0nm以下が好ましい。
 細孔径の異なる2種以上のフィルタを順次使用する形態としては特に制限されないが、被精製物が移送される管路に沿って、既に説明したフィルタユニットを順に配置する方法が挙げられる。このとき、管路全体として被精製物の単位時間当たりの流量を一定にしようとすると、細孔径のより小さいフィルタユニットには、細孔径のより大きいフィルタユニットと比較してより大きな圧力がかかる場合がある。この場合、フィルタユニットの間に圧力調整弁、及び、ダンパ等を配置して、小さい細孔径を有するフィルタユニットにかかる圧力を一定にしたり、また、同一のフィルタが収納されたフィルタユニットを管路に沿って並列に配置したりして、ろ過面積を大きくすることが好ましい。このようにすることで、より安定して、0.5~17nmの粒子の薬液中における含有粒子数を制御できる。
・フィルタの材料
 フィルタの材料としては特に制限されず、フィルタの材料として公知のものが使用できる。具体的には、樹脂である場合、6-ナイロン、及び、6,6-ナイロン等のポリアミド;ポリエチレン、及び、ポリプロピレン等のポリオレフィン;ポリスチレン;ポリイミド;ポリアミドイミド;ポリ(メタ)アクリレート;ポリテトラフルオロエチレン、パーフルオロアルコキシアルカン、パーフルオロエチレンプロペンコポリマー、エチレン・テトラフルオロエチレンコポリマー、エチレン-クロロトリフロオロエチレンコポリマー、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、及び、ポリフッ化ビニル等のポリフルオロカーボン;ポリビニルアルコール;ポリエステル;セルロース;セルロースアセテート等が挙げられる。なかでも、より優れた耐溶剤性を有し、得られる薬液がより優れた欠陥抑制性能を有する点で、ナイロン(なかでも、6,6-ナイロンが好ましい)、ポリオレフィン(なかでも、ポリエチレンが好ましい)、ポリ(メタ)アクリレート、及び、ポリフルオロカーボン(なかでも、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)が好ましい。)からなる群から選択される少なくとも1種が好ましい。これらの重合体は単独で又は二種以上を組み合わせて使用できる。
 また、樹脂以外にも、ケイソウ土、及び、ガラス等であってもよい。
 また、フィルタは表面処理されたものであってもよい。表面処理の方法としては特に制限されず、公知の方法が使用できる。表面処理の方法としては、例えば、化学修飾処理、プラズマ処理、疎水処理、コーティング、ガス処理、及び、焼結等が挙げられる。
 プラズマ処理は、フィルタの表面が親水化されるために好ましい。プラズマ処理して親水化されたフィルタの表面における水接触角としては特に制限されないが、接触角計で測定した25℃における静的接触角が、60°以下が好ましく、50°以下がより好ましく、30°以下が更に好ましい。
 化学修飾処理としては、基材にイオン交換基を導入する方法が好ましい。
 すなわち、フィルタとしては、上記で挙げた各材料を基材として、上記基材にイオン交換基を導入したものが好ましい。典型的には、表面にイオン交換基を有する基材を含むフィルタが好ましい。表面修飾された基材としては特に制限されず、製造がより容易な点で、上記重合体にイオン交換基を導入したものが好ましい。
 イオン交換基としては、カチオン交換基として、スルホン酸基、カルボキシ基、及び、リン酸基等が挙げられ、アニオン交換基として、4級アンモニウム基等が挙げられる。イオン交換基を重合体に導入する方法としては特に制限されないが、イオン交換基と重合性基とを有する化合物を重合体と反応させ典型的にはグラフト化する方法が挙げられる。
 イオン交換基の導入方法としては特に制限されないが、上記の樹脂の繊維に電離放射線(α線、β線、γ線、X線、及び、電子線等)を照射して樹脂中に活性部分(ラジカル)を生成させる。この照射後の樹脂をモノマー含有溶液に浸漬してモノマーを基材にグラフト重合させる。その結果、このモノマーがポリオレフィン繊維にグラフト重合側鎖として結合したものが生成する。この生成されたポリマーを側鎖として有する樹脂をアニオン交換基又はカチオン交換基を有する化合物と接触反応させることにより、グラフト重合された側鎖のポリマーにイオン交換基が導入されて最終生成物が得られる。
 また、フィルタは、放射線グラフト重合法によりイオン交換基を形成した織布、又は、不織布と、従来のガラスウール、織布、又は、不織布のろ過材とを組み合わせた構成でもよい。
 イオン交換基を有するフィルタを用いると、金属原子を含有する粒子の薬液中における含有量を所望の範囲により制御しやすい。イオン交換基を有するフィルタの材料としては特に制限されないが、ポリフルオロカーボン、及び、ポリオレフィンにイオン交換基を導入したもの等が挙げられ、ポリフルオロカーボンにイオン交換基を導入したものがより好ましい。
 イオン交換基を有するフィルタの細孔径としては特に制限されないが、1~30nmが好ましく、5~20nmがより好ましい。イオン交換基を有するフィルタは、既に説明した最小の細孔径を有するフィルタを兼ねてもよいし、最小の細孔径を有するフィルタとは別に使用してもよい。なかでもより優れた本発明の効果を有する薬液が得られる点で、ろ過工程は、イオン交換基を有するフィルタと、イオン交換基を有さず、最小の細孔径を有するフィルタとを併用する形態が好ましい。
 既に説明した最小の細孔径を有するフィルタの材料としては特に制限されないが、耐溶剤性等の観点から、一般に、ポリフルオロカーボン、及び、ポリオレフィンからなる群より選択される少なくとも1種が好ましく、ポリオレフィンがより好ましい。
 また、フィルタの材料がポリアミド(特にナイロン)であると、高沸点有機化合物、及び、粒子Uの薬液中における含有量をより容易に制御でき、特に、粒子Uの薬液中における含有量を更に容易に制御できる。
 従って、ろ過工程で使用されるフィルタとしては、材料の異なる2種以上のフィルタを使用することが好ましく、ポリオレフィン、ポリフルオロカーボン、ポリアミド、及び、これらにイオン交換基を導入したものからなる群より選択される2種以上を使用することがより好ましい。
・フィルタの細孔構造
 フィルタの細孔構造としては特に制限されず、被精製物中の成分に応じて適宜選択すればよい。本明細書において、フィルタの細孔構造とは、細孔径分布、フィルタ中の細孔の位置的な分布、及び、細孔の形状等を意味し、典型的には、フィルタの製造方法により制御可能である。
 例えば、樹脂等の粉末を焼結して形成すれば多孔質膜が得られ、及び、エレクトロスピニング、エレクトロブローイング、及び、メルトブローイング等の方法により形成すれば繊維膜が得られる。これらは、それぞれ細孔構造が異なる。
 「多孔質膜」とは、ゲル、粒子、コロイド、細胞、及び、ポリオリゴマー等の被精製物中の成分を保持するが、細孔よりも実質的に小さい成分は、細孔を通過する膜を意味する。多孔質膜による被精製物中の成分の保持は、動作条件、例えば、面速度、界面活性剤の使用、pH、及び、これらの組み合わせに依存することがあり、かつ、多孔質膜の孔径、構造、及び、除去されるべき粒子のサイズ、及び、構造(硬質粒子か、又は、ゲルか等)に依存し得る。
 被精製物に不純物として粒子U(ゲル状であってもよい)が含有されている場合、高沸点有機化合物を含有する粒子は負に帯電している場合が多く、そのような粒子の除去には、ポリアミド製のフィルタが非ふるい膜の機能を果たす。典型的な非ふるい膜には、ナイロン-6膜及びナイロン-6,6膜等のナイロン膜が含まれるが、これらに制限されない。
 なお、本明細書で使用される「非ふるい」による保持機構は、フィルタの圧力降下、又は、細孔径に関連しない、妨害、拡散及び吸着などの機構によって生じる保持を指す。
 非ふるい保持は、フィルタの圧力降下又はフィルタの細孔径に関係なく、被精製物中の除去対象粒子を除去する、妨害、拡散及び吸着等の保持機構を含む。フィルタ表面への粒子の吸着は、例えば、分子間のファンデルワールス力及び静電力等によって媒介され得る。蛇行状のパスを有する非ふるい膜層中を移動する粒子が、非ふるい膜と接触しないように十分に速く方向を変えることができない場合に、妨害効果が生じる。拡散による粒子輸送は、粒子がろ過材と衝突する一定の確率を作り出す、主に、小さな粒子のランダム運動またはブラウン運動から生じる。粒子とフィルタの間に反発力が存在しない場合、非ふるい保持機構は活発になり得る。
 UPE(超高分子量ポリエチレン)フィルタは、典型的には、ふるい膜である。ふるい膜は、主にふるい保持機構を介して粒子を捕捉する膜、又は、ふるい保持機構を介して粒子を捕捉するために最適化された膜を意味する。
 ふるい膜の典型的な例としては、ポリテトラフルオロエチレン(PTFE)膜とUPE膜が含まれるが、これらに制限されない。
 なお、「ふるい保持機構」とは、除去対象粒子が多孔質膜の細孔径よりも大きいことによる結果の保持を指す。ふるい保持力は、フィルタケーキ(膜の表面での除去対象となる粒子の凝集)を形成することによって向上させることができる。フィルタケーキは、2次フィルタの機能を効果的に果たす。
 繊維層の材質は、繊維層を形成可能なポリマーであれば特に制限されない。ポリマーとしては、例えば、ポリアミド等が挙げられる。ポリアミドとしては、例えば、ナイロン6、及び、ナイロン6,6等が挙げられる。繊維膜を形成するポリマーとしては、ポリ(エーテルスルホン)であってもよい。繊維膜が多孔質膜の一次側にある場合、繊維膜の表面エネルギーは、二次側にある多孔質膜の材質であるポリマーより高いことが好ましい。そのような組合せとしては、例えば、繊維膜の材料がナイロンで、多孔質膜がポリエチレン(UPE)である場合が挙げられる。
 繊維膜の製造方法としては特に制限されず、公知の方法を用いることができる。繊維膜の製造方法としては、例えば、エレクトロスピニング、エレクトロブローイング、及び、メルトブローイング等が挙げられる。
 多孔質膜(例えば、UPE、及び、PTFE等を含む多孔質膜)の細孔構造としては特に制限されないが、細孔の形状としては例えば、レース状、ストリング状、及び、ノード状等が挙げられる。
 多孔質膜における細孔の大きさの分布とその膜中における位置の分布は、特に制限されない。大きさの分布がより小さく、かつ、その膜中における分布位置が対称であってもよい。また、大きさの分布がより大きく、かつ、その膜中における分布位置が非対称であってもよい(上記の膜を「非対称多孔質膜」ともいう。)。非対称多孔質膜では、孔の大きさは膜中で変化し、典型的には、膜一方の表面から膜の他方の表面に向かって孔径が大きくなる。このとき、孔径の大きい細孔が多い側の表面を「オープン側」といい、孔径が小さい細孔が多い側の表面を「タイト側」ともいう。
 また、非対称多孔質膜としては、例えば、細孔の大きさが膜の厚さ内のある位置においてで最小となるもの(これを「砂時計形状」ともいう。)が挙げられる。
 非対称多孔質膜を用いて、一次側をより大きいサイズの孔とすると、言い換えれば、一次側をオープン側とすると、前ろ過効果を生じさせることができる。
 多孔質膜は、PESU(ポリエーテルスルホン)、PFA(パーフルオロアルコキシアルカン、四フッ化エチレンとパーフルオロアルコキシアルカンとの共重合体)、ポリアミド、及び、ポリオレフィン等の熱可塑性ポリマーを含んでもよいし、ポリテトラフルオロエチレン等を含んでもよい。
 なかでも、多孔質膜の材料としては、超高分子量ポリエチレンが好ましい。超高分子量ポリエチレンは、極めて長い鎖を有する熱可塑性ポリエチレンを意味し、分子量が百万以上、典型的には、200~600万が好ましい。
 ろ過工程で使用されるフィルタとしては、細孔構造の異なる2種以上のフィルタを使用することが好ましく、多孔質膜、及び、繊維膜のフィルタを有することがより好ましい。具体的には、ナイロン繊維膜のフィルタと、UPE多孔質膜のフィルタとを併用することが好ましい。
 上記のとおり、本発明の実施形態に係るろ過工程は、フィルタの材料、細孔径、及び、細孔構造からなる群より選択される少なくとも1種が異なる2種以上のフィルタに被精製物を通過させる、多段ろ過工程であることが好ましい。
(多段ろ過工程)
 多段ろ過工程は公知の精製装置を用いて実施可能である。図1は、多段ろ過工程を実施可能な精製装置の典型例を表す模式図である。精製装置10は、製造タンク11と、ろ過装置16と、充填装置13とを有しており、上記それぞれのユニットは、管路14で接続されている。
 ろ過装置16は、管路14で接続されたフィルタユニット12(a)及び12(b)を有している。上記フィルタユニット12(a)及び12(b)の間の管路には、調整弁15(a)が配置されている。
 なお、図1では、フィルタユニットの数が2つの場合について説明するが、フィルタユニットは3つ以上用いられてもよい。
 図1において、被精製物は、製造タンク11に貯留される。次に、管路14中に配置された図示しないポンプが稼動し、製造タンク11から管路14を経由して、被精製物が、ろ過装置16へと送られる。精製装置10中における被精製物の移送方向は、図1中のFで示した。
 ろ過装置16は、管路14で接続されたフィルタユニット12(a)及び12(b)からなり、上記2つのフィルタユニットのそれぞれには、細孔径、材料、及び、細孔構造からなる群より選択される少なくとも1種が異なるフィルタを有するカートリッジフィルタが収納されている。ろ過装置16は、管路を通じて供給される被精製物をフィルタでろ過する機能を有する。
 各フィルタユニットに収納されるフィルタとしては特に制限されないが、最小の細孔径を有するフィルタは、12(b)のフィルタユニットに収納されることが好ましい。
 ポンプが稼動することにより、被精製物は、フィルタユニット12(a)に供給され、ろ過される。フィルタユニット12(a)でろ過された被精製物は、調整弁15(a)で必要に応じて減圧され、フィルタユニット12(b)に供給され、ろ過される。
 なお、精製装置は、調整弁15(a)を有していなくてもよい。また、調整弁15(a)を有している場合であっても、その位置は、フィルタユニット12(b)の一次側でなくてもよく、フィルタユニット12(a)の一次側であってもよい。
 また、被精製物の供給圧力を調整できる装置としては、調整弁以外を使用してもよい。そのような部材としては、例えば、ダンパ等が挙げられる。
 また、ろ過装置16においては、各フィルタはカートリッジフィルタを形成しているが、本実施形態に係る精製方法に使用できるフィルタは上記の形態に制限されない。例えば、平板状に形成されたフィルタに被精製物を通液する形態であってもよい。
 また、上記精製装置10においては、フィルタユニット12(b)を経たろ過後の被精製物を充填装置13に移送し、容器に収容する構成となっているが、上記精製方法を実施するろ過装置としては上記に制限されず、フィルタユニット12(b)を経てろ過された被精製物を、製造タンク11に返送し、再度フィルタユニット12(a)及びフィルタユニット12(b)を通液させるよう構成されていてもよい。上記のようなろ過の方法を循環ろ過という。循環ろ過による被精製物の精製では、2種以上のフィルタの少なくとも1つが2回以上用いられることになる。なお、本明細書において、各フィルタユニットによりろ過されたろ過済み被精製物を製造タンクに返送する操作を循環回数1回と数える。
 循環回数は、被精製物中の成分等に応じて適宜選択すればよい。
 上記精製装置の接液部(被精製物、及び、薬液が接触する可能性のある内壁面等を意味する)の材料としては特に制限されないが、非金属材料、及び、電解研磨された金属材料からなる群から選択される少なくとも1種(以下、これらをあわせて「耐腐食材料」ともいう。)から形成されることが好ましい。例えば、製造タンクの接液部が耐腐食材料から形成される、とは、製造タンク自体が耐腐食材料からなるか、又は、製造タンクの内壁面等が耐腐食材料で被覆されている場合が挙げられる。
 上記非金属材料としては、特に制限されず、公知の材料が使用できる。
 非金属材料としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレン-ポリプロピレン樹脂、四フッ化エチレン樹脂、四フッ化エチレン-パーフルオロアルキルビニルエーテル共重合体、四フッ化エチレン-六フッ化プロピレン共重合樹脂、四フッ化エチレン-エチレン共重合体樹脂、三フッ化塩化エチレン-エチレン共重合樹脂、フッ化ビニリデン樹脂、三フッ化塩化エチレン共重合樹脂、及び、フッ化ビニル樹脂からなる群から選択される少なくとも1種が挙げられるが、これに制限されない。
 上記金属材料としては、特に制限されず、公知の材料が使用できる。
 金属材料としては、例えば、クロム及びニッケルの含有量の合計が金属材料全質量に対して25質量%超である金属材料が挙げられ、なかでも、30質量%以上が好ましい。金属材料におけるクロム及びニッケルの含有量の合計の上限値としては特に制限されないが、90質量%以下が好ましい。
 金属材料としては、例えば、ステンレス鋼、及びニッケル-クロム合金等が挙げられる。
 ステンレス鋼としては、特に制限されず、公知のステンレス鋼が使用できる。なかでも、ニッケルを8質量%以上含有する合金が好ましく、ニッケルを8質量%以上含有するオーステナイト系ステンレス鋼がより好ましい。オーステナイト系ステンレス鋼としては、例えばSUS(Steel Use Stainless)304(Ni含有量8質量%、Cr含有量18質量%)、SUS304L(Ni含有量9質量%、Cr含有量18質量%)、SUS316(Ni含有量10質量%、Cr含有量16質量%)、及び、SUS316L(Ni含有量12質量%、Cr含有量16質量%)等が挙げられる。
 ニッケル-クロム合金としては、特に制限されず、公知のニッケル-クロム合金が使用できる。なかでも、ニッケル含有量が40~75質量%、クロム含有量が1~30質量%のニッケル-クロム合金が好ましい。
 ニッケル-クロム合金としては、例えば、ハステロイ(商品名、以下同じ。)、モネル(商品名、以下同じ)、及び、インコネル(商品名、以下同じ)等が挙げられる。より具体的には、ハステロイC-276(Ni含有量63質量%、Cr含有量16質量%)、ハステロイ-C(Ni含有量60質量%、Cr含有量17質量%)、及び、ハステロイC-22(Ni含有量61質量%、Cr含有量22質量%)等が挙げられる。
 また、ニッケル-クロム合金は、必要に応じて、上記した合金の他に、更に、ホウ素、ケイ素、タングステン、モリブデン、銅、及び、コバルト等を含有していてもよい。
 金属材料を電解研磨する方法としては特に制限されず、公知の方法が使用できる。例えば、特開2015-227501号公報の0011~0014段落、及び、特開2008-264929号公報の0036~0042段落等に記載された方法が使用できる。
 金属材料は、電解研磨されることにより表面の不動態層におけるクロムの含有量が、母相のクロムの含有量よりも多くなっているものと推測される。そのため、接液部が電解研磨された金属材料から形成された精製装置を用いると、被精製物中に金属含有粒子が流出しにくいものと推測される。
 なお、金属材料はバフ研磨されていてもよい。バフ研磨の方法は特に制限されず、公知の方法を用いることができる。バフ研磨の仕上げに用いられる研磨砥粒のサイズは特に制限されないが、金属材料の表面の凹凸がより小さくなりやすい点で、#400以下が好ましい。なお、バフ研磨は、電解研磨の前に行われることが好ましい。
<その他の工程>
 本発明の実施形態に係る薬液の製造方法としてはろ過工程を有していれば特に制限されず、ろ過工程以外の工程を更に有していてもよい。ろ過工程以外の工程としては、例えば、蒸留工程、反応工程、及び、除電工程等が挙げられる。
(蒸留工程)
 蒸留工程は、有機溶剤を含有する被精製物を蒸留して、蒸留済み被精製物を得る工程である。被精製物を蒸留する方法としては特に制限されず、公知の方法が使用できる。典型的には、既に説明した精製装置の一次側に、蒸留塔を配置し、蒸留された被精製物を製造タンクに導入する方法が挙げられる。
 このとき、蒸留塔の接液部としては特に制限されないが、既に説明した耐腐食材料で形成されることが好ましい。
(反応工程)
 反応工程は、原料を反応させて、反応物である有機溶剤を含有する被精製物を生成する工程である。被精製物を生成する方法としては特に制限されず、公知の方法が使用できる。典型的には、既に説明した精製装置の製造タンク(又は、蒸留塔)の一次側に反応槽を配置し、反応物を製造タンク(又は蒸留塔)に導入する方法が挙げられる。
 このとき、反応槽の接液部としては特に制限されないが、既に説明した耐腐食材料で形成されることが好ましい。
(除電工程)
 除電工程は、被精製物を除電することで、被精製物の帯電電位を低減させる工程である。
 除電方法としては特に制限されず、公知の除電方法を用いることができる。除電方法としては、例えば、被精製物を導電性材料に接触させる方法が挙げられる。
 被精製物を導電性材料に接触させる接触時間は、0.001~60秒が好ましく、0.001~1秒がより好ましく、0.01~0.1秒が更に好ましい。導電性材料としては、ステンレス鋼、金、白金、ダイヤモンド、及び、グラッシーカーボン等が挙げられる。
 被精製物を導電性材料に接触させる方法としては、例えば、導電性材料からなる接地されたメッシュを管路内部に配置し、ここに被精製物を通す方法等が挙げられる。
 被精製物の精製は、それに付随する、容器の開封、容器及び装置の洗浄、溶液の収容、並びに、分析等は、全てクリーンルームで行うことが好ましい。クリーンルームは、国際標準化機構が定める国際標準ISO14644-1:2015で定めるクラス4以上の清浄度のクリーンルームが好ましい。具体的にはISOクラス1、ISOクラス2、ISOクラス3、及び、ISOクラス4のいずれかを満たすことが好ましく、ISOクラス1又はISOクラス2を満たすことがより好ましく、ISOクラス1を満たすことが更に好ましい。
 薬液の保管温度としては特に制限されないが、薬液が微量に含有する不純物等がより溶出しにくく、結果としてより優れた本発明の効果が得られる点で、保管温度としては4℃以上が好ましい。
[薬液収容体]
 上記精製方法により製造された薬液は、容器に収容されて使用時まで保管してもよい。
このような容器と、容器に収容された薬液(又はレジスト組成物)とをあわせて薬液収容体という。保管された薬液収容体からは、薬液が取り出され使用される。
 上記薬液を保管する容器としては、半導体デバイス製造用途向けに、容器内のクリーン度が高く、不純物の溶出が少ないものが好ましい。
 使用可能な容器としては、具体的には、アイセロ化学(株)製の「クリーンボトル」シリーズ、及び、コダマ樹脂工業製の「ピュアボトル」等が挙げられるが、これらに制限されない。
 容器としては、薬液への不純物混入(コンタミ)防止を目的として、容器内壁を6種の樹脂による6層構造とした多層ボトル、又は、6種の樹脂による7層構造とした多層ボトルを使用することも好ましい。これらの容器としては例えば特開2015-123351号公報に記載の容器が挙げられる。
 この容器の接液部は、既に説明した耐腐食材料又はガラスからなることが好ましい。より優れた本発明の効果が得られる点で、接液部の面積の90%以上が上記材料からなることが好ましく、接液部の全部が上記材料からなることがより好ましい。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
 また、実施例及び比較例の薬液の調製にあたって、容器の取り扱い、薬液の調製、充填、保管及び分析測定は、全てISOクラス2又は1を満たすレベルのクリーンルームで行った。測定精度向上のため、有機不純物の含有量の測定、及び、金属原子の含有量の測定においては、通常の測定で検出限界以下のものの測定を行う際には、薬液を体積換算で100分の1に濃縮して測定を行い、濃縮前の溶液の濃度に換算して含有量を算出した。なお、精製に仕様した装置、並びに、フィルター及び容器などの器具は、薬液接液面を、同様の手法で精製しておいた薬液で十分に洗浄してから用いた。
[薬液1の精製]
 有機溶剤としてシクロヘキサノン(CHN)を含有する被精製物(市販品)を準備し、フィルタユニットが管路に沿って4つ直列に配置され、調整弁を有さないろ過装置を有すること、及び、最も下流側のフィルタユニットでろ過された後、ろ過済み被精製物を製造タンクに返送できる管路を有している点以外は図1に記載したのと同様の精製装置を用いてろ過して、薬液を製造した。各フィルタユニットには、一次側から、以下のフィルタが配置されていた。(表1中には、それぞれ、第1~第4フィルタとして記載した。)
・ポリプロピレン製フィルタ(細孔径:200nm、多孔質膜、表中では「PP」と記載した。)
・イオン交換基を有するポリフルオロカーボン製フィルタ(細孔径:20nm、PTFEとPES(ポリエチレンスルホン酸)の重合体の繊維膜、表中では「IEX」と記載した。)
・ナイロン製フィルタ(細孔径:10nm、繊維膜、表中では「Nylon」と記載した。)
・UPE製フィルタ(細孔径:3nm、多孔質膜、表中では「UPE」と記載した。)
 上記4つのフィルタユニットに通液した被精製物を製造タンクに返送し、これを8回繰り返して、薬液を得た。
[薬液2~30の精製]
 薬液2~30は、表1に記載した条件で、表1に記載した有機溶剤を含有する被精製物を精製して得た。なお、各薬液は被精製物を表1に記載した各フィルタに第1フィルタから順に第4フィルタまで通液し(なお、フィルタ欄が空欄の薬液は、そのフィルタを用いなかったことを表す。例えば、薬液2であれば、第1フィルタ~第4フィルタまで通液した)、これを「循環回数」に記載した回数繰り返して得た。
 なお、表1中に記載された被精製物は、それぞれロットの異なるものを調達したものである。従って、各被精製物に当初含有されている有機溶剤以外の成分は異なる場合がある。
 なお、表1中における略号は、それぞれ以下の内容を表す。
・PGMEA/PGME (7:3):PGMEAとPGMEの7:3(v/v)混合液
・nBA:n-酢酸ブチル
・iAA:酢酸イソアミル
・MIBC:メチルイソブチルカルビノール
・IPA:イソプロパノール
・PC/PGMEA (1:9):PCとPGMEAの1:9(v/v)混合液
・EL:乳酸エチル
・IEX/10nm:細孔径10nmのIEXフィルタ
・PTFE/:ポリテトラフルオロエチレン製フィルタ(多孔質膜である)
・UPE:超高分子量ポリエチレン製フィルタ(多孔質膜である。)
・Nylon:ナイロン製フィルタ(繊維膜である。)
Figure JPOXMLDOC01-appb-T000012
[薬液中における粒子径0.5~17nmの含有粒子数の評価]
 薬液中における粒子径0.5~17nmの粒子の含有量(含有粒子数)は、以下の方法により測定した。
 まず、シリコン基板上に一定量の薬液を塗布して薬液層付き基板を形成し、薬液層付き基板の表面をレーザ光により走査し、散乱光を検出した。これにより、薬液層付き基板の表面に存在する欠陥の位置及び粒子径を特定した。次に、その欠陥の位置を基準にEDX(エネルギー分散型X線)分析法により元素分析し、欠陥の組成を調べた。この方法により、金属ナノ粒子、Pbナノ粒子、及び、Tiナノ粒子の基板上における粒子数を求め、それを薬液の単位体積あたりの含有粒子数(個/cm)に換算した。また、上記により金属ナノ粒子の粒子径分布も上記方法により求めた。
 また同様にして、金属ナノ粒子の組成(金属単体、及び、金属原子の酸化物)、及び、高沸点有機化合物との会合状態等も同定した。
 なお、分析には、KLA-Tencor社製のウェハ検査装置「SP-5」と、アプライドマテリアル社の全自動欠陥レビュー分類装置「SEMVision G6」を組み合わせて使用した。また、高沸点有機化合物の含有の有無については、ガスクロマトグラフ質量分析法で測定した。
 なお、測定装置の分解能等の都合で、所望の粒子径の粒子が検出できなかった試料については、特開2009-188333号公報の0015~0067段落に記載の方法を用いて検出した。すなわち、基板上に、CVD(化学気相成長)法によりSiO層を形成し、次に、上記層上を覆うように薬液層を形成した。次に、上記SiO層とその上に塗布された薬液層とを有する複合層をドライエッチングして、得られた突起物に対して光照射して、散乱光を検出し、上記散乱光から、突起物の体積を計算し、上記突起物の体積から粒子の粒径を計算する方法を用いた。
 各薬液に係る測定結果、及び、測定結果をもとに計算した含有粒子数比等を表2に示した。
 なお、表2中、粒子径分布における略号は、粒子径が以下の範囲にある粒子をそれぞれ表すものとする。
・「0.5未満」:粒子径が0.5nm未満の金属含有粒子
・「0.5-3」:粒子径が0.5nm以上、3nm未満の金属ナノ粒子
・「3-5」:粒子径が3nm以上、5nm未満の金属ナノ粒子
・「5-17」:粒子径が5nm以上、17nm以下の金属ナノ粒子
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 なお、表2は、表2(その1)と表2(その2)に分割して記載した。各薬液の測定結果等は、上記2表の対応する各行にわたって記載してある。例えば、薬液1であれば、有機溶剤としてはシクロヘキサノンを用い、金属ナノ粒子の含有粒子数が1.0×10個/cmであり、金属含有粒子の個数基準の粒子径分布(個数%)として、粒子径が0.5nm未満の金属含有粒子が20%、粒子径が0.5nm以上、3nm未満の金属ナノ粒子が50%、粒子径が3nm以上、5nm未満の金属ナノ粒子が20%、粒子径が5nm以上、17nm以下の金属ナノ粒子が10%含まれており、粒子Aが金属ナノ粒子の全体に対して個数基準で2%、粒子Bと粒子Cの合計が98%含まれており、A/(B+C)が2.0×10-2であり、高沸点有機化合物を含有し、金属ナノ粒子の全体に対して、個数基準で、粒子Uが94%、粒子Vが6%含まれており、U/Vが1.6×10である。金属ナノ粒子のうち、Pbナノ粒子は1.3×10個/cmであり、Tiナノ粒子は、5.4×10個/cmであり、Pb/Tiが2.4×10-1であることを表している。他の薬液についても、薬液1と同様の要領で表中に記載した。
[実施例1]
 上記で調整した薬液1をプリウェット液として用いて、欠陥抑制性能を評価した。なお、使用したレジスト組成物は以下のとおりである。
〔レジスト組成物1〕
 レジスト組成物1は、各成分を以下の組成で混合して得た。
・樹脂(A-1):0.77g
・酸発生剤(B-1):0.03g
・塩基性化合物(E-3):0.03g
・PGMEA:67.5g
・EL:75g
 <樹脂(A)等>
(合成例1)樹脂(A-1)の合成
 2Lフラスコにシクロヘキサノン600gを入れ、100mL/minの流量で一時間窒素置換した。その後、重合開始剤V-601(和光純薬工業(株)製)4.60g(0.02mol)を加え、内温が80℃になるまで昇温した。次に、以下のモノマーと重合開始剤V-601(和光純薬工業(株)製)4.60g(0.02mol)とを、シクロヘキサノン200gに溶解し、モノマー溶液を調製した。モノマー溶液を上記80℃に加熱したフラスコ中に6時間かけて滴下した。滴下終了後、更に80℃で2時間反応させた。
 4-アセトキシスチレン        48.66g(0.3mol)
 1-エチルシクロペンチルメタクリレート109.4g(0.6mol)
 モノマー1               22.2g(0.1mol)
Figure JPOXMLDOC01-appb-C000015
 反応溶液を室温まで冷却し、ヘキサン3L中に滴下しポリマーを沈殿させた。ろ過した固体をアセトン500mLに溶解し、再度ヘキサン3L中に滴下、ろ過した固体を減圧乾燥して、4-アセトキシスチレン/1-エチルシクロペンチルメタクリレート/モノマー1共重合体(A-1)160gを得た。
 反応容器中に上記で得られた重合体10g、メタノール40mL、1-メトキシ-2-プロパノール200mL、及び、濃塩酸1.5mLを加え、80℃に加熱して5時間攪拌した。反応溶液を室温まで放冷し、蒸留水3L中に滴下した。ろ過した固体をアセトン200mLに溶解し、再度蒸留水3L中に滴下、ろ過した固体を減圧乾燥して樹脂(A-1)(8.5g)を得た。ゲルパーミエーションクロマトグラフィー(GPC)(溶剤:THF(tetrahydrofuran))による標準ポリスチレン換算の重量平均分子量(Mw)は11200、分子量分散度(Mw/Mn)は1.45であった。組成等を以下の表3に示した。
Figure JPOXMLDOC01-appb-T000016
 <光酸発生剤(B)>
 光酸発生剤としては、以下のものを用いた。
Figure JPOXMLDOC01-appb-C000017
 <塩基性化合物(E)>
 塩基性化合物としては、以下のものを用いた。
Figure JPOXMLDOC01-appb-C000018
(残渣欠陥抑制性能、ブリッジ欠陥抑制性能、及び、シミ状欠陥抑制性能)
 以下の方法により、薬液の残渣欠陥抑制性能、ブリッジ欠陥抑制性能、及び、シミ状欠陥抑制性能を評価した。なお、試験には、SOKUDO社製コータデベロッパ「RF3S」を用いた。
 まず、シリコンウエハ上にAL412(Brewer Science社製)を塗布し、200℃で60秒間ベークを行い、膜厚20nmのレジスト下層膜を形成した。その上にプリウェット液(薬液1)を塗布し、その上からレジスト組成物1を塗布し、100℃で60秒間ベーク(PB:Prebake)を行い、膜厚30nmのレジスト膜を形成した。
 このレジスト膜をEUV露光機(ASML社製;NXE3350、NA0.33、Dipole 90°、アウターシグマ0.87、インナーシグマ0.35)を用い、ピッチが20nm且つパターン幅が15nmの反射型マスクを介して露光した。その後、85℃にて60秒間加熱(PEB:Post Exposure Bake)した。次いで、有機溶剤系の現像液で30秒間現像し、20秒間リンスした。続いて、2000rpmの回転数で40秒間ウェハを回転させることにより、ピッチが20nm、且つパターン線幅が15nmのラインアンドスペースのパターンを形成した。
 上記のパターンの画像を取得し、得られた画像を、上記の分析装置を用いて解析し、単位面積当たりの未露光部における残渣数(表4中で「残渣欠陥抑制性能」と記載した。)、及び、パターン同士の架橋様の不良数(ブリッジ欠陥数、表4中で「ブリッジ欠陥抑制性能」と記載した。)を計測した。また、欠陥が検出された座標においてEDX(エネルギー分散型X線分析)した結果、金属原子が検出されなかった欠陥をシミ状欠陥と定義して、これを計測した(表4中で、「シミ状欠陥抑制性能」と記載した。)。結果は以下の基準により評価し、表4に示した。なお、下記の評価基準において「欠陥数」とあるのは、それぞれ、残渣欠陥数、ブリッジ欠陥数、及び、シミ状欠陥数を表す。
AA:欠陥数が30個未満だった。
A:欠陥数が30個以上、60個未満だった。
B:欠陥数が60個以上、90個未満だった。
C:欠陥数が90個以上、120個未満だった。
D:欠陥数が120個以上、150個未満だった。
E:欠陥数が150個以上、180個未満だった。
F:欠陥数が180個以上だった。
(パターン幅の均一性能)
 上記パターンの画像を取得し、得られた画像を、上記の分析装置を用いて解析し、LWR(Line Width Roughness)を求めた。すなわち、パターン上部から観察する際、パターンの中心からエッジまでの距離を任意のポイントで観測し、その測定ばらつきを3σで評価した。結果は以下の基準により評価し、パターン幅の均一性能の評価とした。結果を表4に示した。
AA:3σが、1.5nm未満だった。
A:3σが、1.5nm以上、1.8nm未満だった。
B:3σが、1.8nm以上、2.2nm未満だった。
C:3σが、2.2nm以上、2.5nm未満だった。
D:3σが、2.5nm以上、2.8nm未満だった。
E:3σが、2.8nm以上、3.1nm未満だった。
F:3σが、3.1nm以上だった。
[実施例2~21、及び、実施例23~28]
 薬液1に代えて、薬液2~21、及び、薬液23~28を用いたことを除いては、上記と同様にして、各薬液の残渣欠陥抑制性能、ブリッジ欠陥抑制性能、シミ状欠陥抑制性能、及び、パターン幅の均一性能を評価した。結果を表4に示した。
[比較例1、2]
 薬液1に代えて、薬液29及び30を用いたことを除いては、上記と同様にして、残渣欠陥抑制性能、ブリッジ欠陥抑制性能、シミ状欠陥抑制性能、及び、パターン幅の均一性能を評価した。結果を表4に示した。
[実施例22]
 プリウェット液を用いなかったこと、及び、現像液として、薬液22を用いたことを除いては、上記と同様にして薬液22の残渣欠陥抑制性能、ブリッジ欠陥抑制性能、シミ状欠陥抑制性能、及び、パターン幅の均一性能を評価した。結果を表4に示した。
Figure JPOXMLDOC01-appb-T000019
[実施例29]
 レジスト組成物1におけるPGMEA:67.5g及びEL:75gに代えて、実施例1に記載した薬液1の精製方法により精製したPGMEA:67.5g及びEL:75gを用いたことを除いてはレジスト組成物1と同様の方法、及び、成分を用いて、薬液であるレジスト組成物2を得た。
 次に、レジスト組成物2について、上記と同様の方法により、薬液中における粒子径0.5~17nmの含有粒子数を評価したところ、実施例1と同程度だった。
 また、レジスト組成物2を用い、プリウェット液を用いなかったことを除いては実施例1と同様の方法によりパターン形成し、残渣欠陥抑制性能、ブリッジ欠陥抑制性能、パターン幅の均一性能、及び、シミ状欠陥抑制性能を調べたところ、実施例1と同様の結果だった。
 表4の結果から、実施例1~21、及び、実施例23~28に記載した薬液は、プリウェット液として用いた場合に、優れた残渣欠陥抑制性能、優れたブリッジ欠陥抑制性能、優れたパターン幅の均一性能、及び、優れたシミ状欠陥抑制性能を有していた。
 また、表4の結果から、実施例22に記載した薬液は、現像液として用いた場合に、優れた残渣欠陥抑制性能、優れたブリッジ欠陥抑制性能、優れたパターン幅の均一性能、及び、優れたシミ状欠陥抑制性能を有していた。
 また、実施例29の薬液は、レジスト液として、優れた残渣欠陥抑制性能、優れたブリッジ欠陥抑制性能、優れたパターン幅の均一性能、及び、優れたシミ状欠陥抑制性能を有していた。
 粒子径0.5nm以上、5nm未満の範囲に極大値を有する薬液1は、薬液8と比較して、より優れた残渣欠陥抑制性能、より優れたブリッジ欠陥抑制性能、より優れたパターン幅の均一性能、及び、より優れたシミ状欠陥抑制性能を有していた。また、薬液9と比較して、更に優れたブリッジ欠陥抑制性能を有していた。
 A/(B+C)が1.0未満である薬液1は、薬液10と比較して、より優れた残渣欠陥抑制性能、より優れたブリッジ欠陥抑制性能、より優れたパターン幅の均一性能、及び、より優れたシミ状欠陥抑制性能を有していた。
 A/(B+C)が1.0×10-1以下である薬液1は、薬液12と比較して、より優れた残渣欠陥抑制性能、より優れたブリッジ欠陥抑制性能、より優れたパターン幅の均一性能、及び、より優れたシミ状欠陥抑制性能を有していた。
 U/Vが1.0×10以上である薬液1は、薬液16と比較して、より優れた残渣欠陥抑制性能、より優れたブリッジ欠陥抑制性能、より優れたパターン幅の均一性能、及び、より優れたシミ状欠陥抑制性能を有していた。
 Pb/Tiが1.0×10-3~2.0である薬液1は、薬液17、及び、薬液20と比較してより優れた残渣欠陥抑制性能、より優れたブリッジ欠陥抑制性能、より優れたパターン幅の均一性能、及び、より優れたシミ状欠陥抑制性能を有していた。
 10 精製装置
 11 製造タンク
 12(a)、12(b) フィルタユニット
 13 充填装置
 14 管路
 15(a) 調整弁
 16 ろ過装置

Claims (16)

  1.  有機溶剤と、
     金属原子を含有する、金属含有粒子と、
    を含有する薬液であって、
     前記金属含有粒子のうち、粒子径が0.5~17nmの金属ナノ粒子の、薬液の単位体積あたりの含有粒子数が1.0×10~1.0×10個/cmである、薬液。
  2.  前記金属含有粒子の個数基準の粒子径分布が、粒子径5nm未満の範囲、及び、粒子径17nmを超える範囲からなる群より選択される少なくとも一方の範囲に極大値を有する、請求項1に記載の薬液。
  3.  前記粒子径分布が、粒子径が0.5nm以上、5nm未満の範囲に極大値を有する、請求項2に記載の薬液。
  4.  半導体デバイスの製造に用いられる請求項1~3のいずれか一項に記載の薬液。
  5.  前記金属ナノ粒子は、前記金属原子の単体からなる粒子A、前記金属原子の酸化物からなる粒子B、並びに、前記金属原子の単体及び前記金属原子の酸化物からなる粒子Cからなる群より選択される少なくとも1種からなる、請求項1~4のいずれか一項に記載の薬液。
  6.  前記薬液の単位体積あたりの、前記粒子Bの含有粒子数と前記粒子Cの含有粒子数との合計に対する、前記粒子Aの含有粒子数の含有粒子数比が1.0未満である、請求項5に記載の薬液。
  7.  前記含有粒子数比が1.0×10-1以下である、請求項5又は6に記載の薬液。
  8.  更に、沸点が300℃以上の有機化合物を含有する、請求項1~7のいずれか一項に記載の薬液。
  9.  前記金属ナノ粒子の少なくとも一部が、前記有機化合物を含有する、粒子Uである、請求項8に記載の薬液。
  10.  前記金属ナノ粒子の少なくとも一部が、
     前記有機化合物を含有する粒子U、及び、
     前記有機化合物を含有しない粒子Vであって、
     前記薬液の単位体積あたりの、前記粒子Vの含有粒子数に対する、前記粒子Uの含有粒子数の含有粒子数比が1.0×10以上である、請求項8又は9に記載の薬液。
  11.  前記金属ナノ粒子が、Pb原子を含有する金属ナノ粒子、及び、Ti原子を含有する金属ナノ粒子からなる群より選択される少なくとも1種を含有する、請求項1~10のいずれか一項に記載の薬液。
  12.  前記金属ナノ粒子が、前記Pb原子を含有する金属ナノ粒子、及び、前記Ti原子を含有する金属ナノ粒子を含有する、請求項1~11のいずれか一項に記載の薬液。
  13.  前記薬液の単位体積あたりの、Ti原子を含有する金属ナノ粒子の含有粒子数に対する、Pb原子を含有する金属ナノ粒子の含有粒子数の含有粒子数比が1.0×10-3~2.0である、請求項1~12のいずれか一項に記載の薬液。
  14.  フィルタを用いて有機溶剤を含有する被精製物をろ過して薬液を得る、ろ過工程を有する、請求項1~13のいずれか一項に記載の薬液を製造するための、薬液の製造方法。
  15.  前記ろ過工程が、フィルタの材料、細孔径、及び、細孔構造からなる群より選択される少なくとも1種が異なる2種以上のフィルタに前記被精製物を通過させる、多段ろ過工程である請求項14に記載の薬液の製造方法。
  16.  前記フィルタを1つ用いる場合、前記フィルタの細孔径が5nm以下であり、前記フィルタを2つ以上用いる場合、前記フィルタのうち最小の細孔径を有するフィルタの細孔径が5nm以下である、請求項14又は15に記載の薬液の製造方法。
PCT/JP2019/000041 2018-01-12 2019-01-07 薬液、及び、薬液の製造方法 WO2019138959A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019564665A JPWO2019138959A1 (ja) 2018-01-12 2019-01-07 薬液、及び、薬液の製造方法
KR1020207019882A KR20200091920A (ko) 2018-01-12 2019-01-07 약액, 및 약액의 제조 방법
CN201980008099.0A CN111587404A (zh) 2018-01-12 2019-01-07 药液及药液的制造方法
KR1020237028280A KR20230128393A (ko) 2018-01-12 2019-01-07 약액, 및 약액의 제조 방법
US16/924,555 US20200341381A1 (en) 2018-01-12 2020-07-09 Liquid chemical and method for producing liquid chemical
JP2023001845A JP2023041701A (ja) 2018-01-12 2023-01-10 薬液、及び、薬液の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018003505 2018-01-12
JP2018-003505 2018-02-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/924,555 Continuation US20200341381A1 (en) 2018-01-12 2020-07-09 Liquid chemical and method for producing liquid chemical

Publications (1)

Publication Number Publication Date
WO2019138959A1 true WO2019138959A1 (ja) 2019-07-18

Family

ID=67219772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000041 WO2019138959A1 (ja) 2018-01-12 2019-01-07 薬液、及び、薬液の製造方法

Country Status (6)

Country Link
US (1) US20200341381A1 (ja)
JP (2) JPWO2019138959A1 (ja)
KR (2) KR20230128393A (ja)
CN (1) CN111587404A (ja)
TW (1) TW201937280A (ja)
WO (1) WO2019138959A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062667A (ja) * 2000-08-23 2002-02-28 Sumitomo Chem Co Ltd 微粒子量の低減されたフォトレジスト組成物の製造方法
JP2012047896A (ja) * 2010-08-25 2012-03-08 Fujifilm Corp パターン形成方法
JP2016073922A (ja) * 2014-10-07 2016-05-12 信越化学工業株式会社 有機溶剤の精製装置
WO2017170428A1 (ja) * 2016-03-31 2017-10-05 富士フイルム株式会社 電子材料製造用薬液の製造方法、パターン形成方法、半導体デバイスの製造方法、電子材料製造用薬液、容器、及び、品質検査方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103097296B (zh) * 2010-09-16 2015-02-18 旭化成化学株式会社 二氧化硅系材料及其制造方法以及贵金属负载物和使用其作为催化剂的羧酸类的制造方法
JP5886804B2 (ja) 2013-09-02 2016-03-16 信越化学工業株式会社 レジスト組成物の製造方法
JP6267951B2 (ja) * 2013-12-18 2018-01-24 富士フイルム株式会社 感光性転写材料、パターン形成方法およびエッチング方法
US10429738B2 (en) * 2015-09-30 2019-10-01 Tokyo Ohka Kogyo Co., Ltd. Filtration filter, filtration method, production method of purified liquid chemical product for lithography, and method of forming resist pattern
KR20180121650A (ko) * 2016-04-28 2018-11-07 후지필름 가부시키가이샤 정제 장치, 정제 방법, 제조 장치, 약액의 제조 방법, 용기, 및 약액 수용체

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062667A (ja) * 2000-08-23 2002-02-28 Sumitomo Chem Co Ltd 微粒子量の低減されたフォトレジスト組成物の製造方法
JP2012047896A (ja) * 2010-08-25 2012-03-08 Fujifilm Corp パターン形成方法
JP2016073922A (ja) * 2014-10-07 2016-05-12 信越化学工業株式会社 有機溶剤の精製装置
WO2017170428A1 (ja) * 2016-03-31 2017-10-05 富士フイルム株式会社 電子材料製造用薬液の製造方法、パターン形成方法、半導体デバイスの製造方法、電子材料製造用薬液、容器、及び、品質検査方法

Also Published As

Publication number Publication date
CN111587404A (zh) 2020-08-25
US20200341381A1 (en) 2020-10-29
KR20230128393A (ko) 2023-09-04
JP2023041701A (ja) 2023-03-24
KR20200091920A (ko) 2020-07-31
TW201937280A (zh) 2019-09-16
JPWO2019138959A1 (ja) 2020-12-17

Similar Documents

Publication Publication Date Title
JP6703124B2 (ja) パターン形成方法、電子デバイスの製造方法、キット
JP2023015246A (ja) 薬液、薬液の製造方法
JP7453435B2 (ja) 薬液、キット、パターン形成方法、薬液の製造方法及び薬液収容体
WO2018092763A1 (ja) 薬液、薬液収容体、パターン形成方法、及び、キット
JP7446498B2 (ja) 薬液及び薬液収容体
WO2018043695A1 (ja) 溶液、溶液収容体、感活性光線性又は感放射線性樹脂組成物、パターン形成方法、半導体デバイスの製造方法
TW202028893A (zh) 藥液、藥液收容體、光阻圖案形成方法、半導體晶片之製造方法
JP2023067897A (ja) 薬液、薬液の製造方法、及び、被検液の分析方法
JP2022173352A (ja) 薬液、薬液収容体
WO2019138959A1 (ja) 薬液、及び、薬液の製造方法
KR102519818B1 (ko) 약액, 약액 수용체
WO2020040034A1 (ja) 薬液収容体
JP2024061780A (ja) 薬液、キット、パターン形成方法、薬液の製造方法及び薬液収容体
JP2023001193A (ja) 薬液、薬液収容体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19739120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564665

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207019882

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19739120

Country of ref document: EP

Kind code of ref document: A1