WO2019137430A1 - 有机电致发光材料与器件 - Google Patents

有机电致发光材料与器件 Download PDF

Info

Publication number
WO2019137430A1
WO2019137430A1 PCT/CN2019/071148 CN2019071148W WO2019137430A1 WO 2019137430 A1 WO2019137430 A1 WO 2019137430A1 CN 2019071148 W CN2019071148 W CN 2019071148W WO 2019137430 A1 WO2019137430 A1 WO 2019137430A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
organic
compound
Prior art date
Application number
PCT/CN2019/071148
Other languages
English (en)
French (fr)
Inventor
高文正
李国孟
魏金贝
张春雨
邵爽
Original Assignee
北京鼎材科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810021938.XA external-priority patent/CN108191853B/zh
Priority claimed from CN201810937733.6A external-priority patent/CN110835339A/zh
Application filed by 北京鼎材科技有限公司 filed Critical 北京鼎材科技有限公司
Publication of WO2019137430A1 publication Critical patent/WO2019137430A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the present invention relates to the field of organic electroluminescence technology, and more particularly to an organic compound, its use in the field of organic electroluminescence, and an organic electroluminescent device using the same in an illuminating layer.
  • organic electroluminescent materials produce 25% singlet and 75% triplet.
  • Traditional fluorescent materials can only utilize singlet excitons due to spin-forbidden.
  • researchers have proposed a number of methods, the most notable of which is the use of phosphorescent materials.
  • phosphorescent materials are expensive due to the use of rare heavy metals, which is not conducive to the reduction of product cost.
  • the thermally activated delayed fluorescence (TADF) material based on the triplet-single-line transition uses the ambient heat to achieve the reverse intersystem crossing of the energy from the triplet excited state to the singlet excited state, without the need for high High luminous efficiency can be achieved with a rare metal at a cost.
  • TADF thermally activated delayed fluorescence
  • the invention is characterized in that at least one luminescent layer on the substrate comprises an organic luminescent material emitting fluorescence and retarding fluorescence, and the difference between the excited singlet energy and the excited triplet energy of the luminescent material is 0-0.2 eV, which represents a compound exhibiting High efficiency performance.
  • the luminescence mechanism of Thermally Activated Delayed Fluorescence (TASF) proposed by Prof. Duan Lian of Tsinghua University focuses on the up-conversion of excited-state triplet energy to excited-state singlet energy, which is then transferred to the excited state by Foxter energy. The dye excited state singlet state, and then achieve luminescence, thereby achieving the separation of energy harvesting and luminescence process.
  • TASF Thermally Activated Delayed Fluorescence
  • Patent Document 2 discloses an organic electroluminescence device comprising an anode, a hole transport layer, a light-emitting layer, an electron transport layer, and a cathode stacked on each other, characterized in that the triplet state and the singlet state energy of the host material of the light-emitting layer The step is less than 0.15 eV, and the fluorescent material is doped in the host material, and the singlet energy level of the fluorescent dye is lower than the singlet energy level of the host material, achieving high efficiency and low efficiency roll-off and more Good color purity.
  • Patent Document 3 mentions a compound for a light-emitting material used in a type of organic electroluminescence device or the like, and the mother core of the compound is preferably a type of 3,3-linked carbazole group, which is mainly used as a light-emitting layer.
  • the luminescent object in the middle has a high external quantum efficiency.
  • Patent Document 4 discloses a compound for a class of organic electroluminescent devices containing a diphenylamino substituent. In addition, the compound is mainly used as a phosphorescent host.
  • Non-Patent Document 1 the current thermally activated delayed fluorescence (TADF) material exists.
  • Patent Document 1 CN102648268B
  • Patent Document 2 CN 102709485B
  • Patent Document 3 CN105531261
  • Patent Document 4 KR1020160076882
  • Non-Patent Document 1 Chem. Sci., 2016, 7, 3355–3363
  • an organic compound of a specific structure characterized by the following formula (1):
  • X 1 to X 8 are each independently selected from CR 1 or N, and at least one of X 1 to X 8 is an N atom; and R 1 is selected from hydrogen, substituted or unsubstituted C 1 to C. a 12 alkyl group, a substituted or unsubstituted C 1 -C 10 cycloalkyl group, a substituted or unsubstituted C 6 -C 30 aryl group or a substituted or unsubstituted C 3 -C 30 heteroaryl group, and at least one R 1 is a group obtained by removing a hydrogen from the structure represented by the following formula (2):
  • Y 1 to Y 8 are each independently selected from CR 2 or N, and at least one of them is an N atom;
  • R 2 is selected from hydrogen, substituted or unsubstituted C 1 -C 12 alkyl, substituted Or unsubstituted C 1 -C 10 cycloalkyl, substituted or unsubstituted C 6 -C 30 aryl or substituted or unsubstituted C 3 -C 30 heteroaryl;
  • R is hydrogen or L 2 -Ar 2 ,
  • L 1 and L 2 are each independently a single bond, a substituted or unsubstituted C 5 -C 30 arylene group, or a substituted or unsubstituted C 3 -C 30 heteroarylene group;
  • Ar 1 and Ar 2 are the same or different from each other and are represented by the following formula (3):
  • Z 1 to Z 5 are each independently selected from CR 5 or N, and 0 to 3 of them are N atoms; and R 5 is selected from hydrogen, cyano, substituted or unsubstituted C 1 to C 12 An alkyl group, a substituted or unsubstituted C 1 -C 10 cycloalkyl group, a substituted or unsubstituted C 6 -C 30 aryl group or a substituted or unsubstituted C 3 -C 30 heteroaryl group, wherein said C 6 When the -C 30 aryl group has a substituent, it is substituted by one or more C 1 -C 12 alkyl groups, substituted or unsubstituted C 6 -C 30 aryl groups or substituted or unsubstituted C. Substituted by a substituent in the 3 to C 30 heteroaryl group;
  • R 1 , R 2 and/or R 5 are present, they are the same or different from each other, and may be fused with an adjacent benzene ring or a heterocyclic ring;
  • substitution in "substituted or unsubstituted” means, unless otherwise specified, one or more alkyl groups selected from C 1 - C 12 , C 1 - C 12 alkoxy groups, and C 6 - C 12 aromatic groups. Substituents such as a heteroaryl group, a cyano group or a hydroxy group of C 3 to C 12 are substituted.
  • an organic electroluminescent material comprising the organic compound as described above.
  • an organic compound and an organic electroluminescent material as described above in an organic electroluminescent device there is also provided an application of an organic compound and an organic electroluminescent material as described above in an organic electroluminescent device.
  • an organic electroluminescent device comprising a first electrode, a second electrode, and a plurality of organic layers interposed between the first electrode and the second electrode, characterized in that The organic layer contains an organic compound or an organic electroluminescent material as described above.
  • an organic electroluminescent device comprising a first electrode, a second electrode, and a plurality of organic layers interposed between the first electrode and the second electrode, characterized in that The device contains an organic luminescent material that emits fluorescence and retards fluorescence, and the reverse intersystem crossing constant k RISC of the organic luminescent material is greater than 10 4 s -1 , preferably k RISC is greater than 10 5 s -1 .
  • such a compound containing a bipolar transport structure such as a carbazole (which also includes a nitrogen-substituted carbazole such as a porphyrin or the like in the present invention) can broaden the charge recombination region, thereby reducing the efficiency of the device.
  • Organic compounds having thermally activated delayed fluorescent properties can be obtained. Such organic compounds have a faster rate of reverse intersystem crossing and a higher fluorescence quantum yield, and they can be used to obtain an electrochemically stable, amorphous stable, high heat resistance and high current efficiency organic electroluminescent device.
  • Figure 1 is a HOMO orbital distribution diagram of the compound C1 of the present invention.
  • Figure 2 is a LUMO orbital distribution diagram of the compound C1 of the present invention.
  • Figure 3 is a HOMO orbital distribution diagram of the compound C2 of the present invention.
  • Figure 4 is a LUMO orbital distribution diagram of the compound C2 of the present invention.
  • Figure 5 is a transient fluorescence curve of the compound C1 of the present invention.
  • Figure 6 is a transient fluorescence curve of the compound C2 of the present invention.
  • Fig. 7 is a schematic view showing the basic structure of an organic electroluminescent device of the present invention.
  • the expression of Ca to Cb means that the group has a carbon number a to b, and unless otherwise specified, the number of carbon atoms generally does not include the number of carbon atoms of the substituent.
  • the expression of a chemical element includes the concept of a chemically identical isotope, such as the expression "hydrogen”, and also includes the concepts of " ⁇ " and " ⁇ " having the same chemical properties. It should be noted that in the present invention, "D" may also be used to indicate " ⁇ ".
  • substitution in "substituted or unsubstituted” means one or more alkyl groups selected from C 1 - C 12 , C 1 - C 12 alkoxy groups, and C 6 - C 12 aryl groups.
  • the substituents in the heteroaryl group, the cyano group and the hydroxyl group of C 3 to C 12 are substituted.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 12.
  • the C 1 -C 12 alkyl group include a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, a sec-butyl group, an isobutyl group, a t-butyl group, a pentyl group, and an isopentyl group.
  • hexyl, heptyl, octyl, decyl, decyl, undecyl, dodecyl and the like among which methyl, ethyl, n-propyl and isopropyl are preferred, and methyl is more preferred.
  • the aryl group is not particularly limited, but preferably has 6 to 30 carbon atoms.
  • Examples of the C 6 -C 30 aryl group include a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, an anthracenyl group, a phenanthryl group, an anthracenyl group, and a fluorenyl group.
  • fluoranthenyl benzo[a]indenyl, benzo[c]phenanthryl,triphenylene,benzo[k]fluoranthyl,benzo[g]
  • a benzo[b]triphenylene group, an anthracenyl group, a fluorenyl group or the like is preferable, and among them, a phenyl group, a naphthyl group, and a phenyl group are more preferable.
  • the heteroaryl group is a heteroaryl group containing one or more of O, N, S, and Si as a hetero atom, and the number of carbon atoms is preferably from 3 to 30.
  • the C 3 -C 30 heteroaryl group may be a nitrogen-containing heteroaryl group, an oxygen-containing heteroaryl group, a sulfur-containing heteroaryl group or the like, and specific examples thereof include a pyridyl group, a pyrimidinyl group, a pyrazinyl group and an anthracene group.
  • the organic compound of the present invention is characterized by the following formula (1):
  • X 1 to X 8 are each independently selected from CR 1 or N, and at least one of X 1 to X 8 is an N atom; and R 1 is selected from hydrogen, substituted or unsubstituted C 1 to C. a 12 alkyl group, a substituted or unsubstituted C 1 -C 10 cycloalkyl group, a substituted or unsubstituted C 6 -C 30 aryl group or a substituted or unsubstituted C 3 -C 30 heteroaryl group, and at least one R 1 is a group obtained by removing a hydrogen from the structure represented by the following formula (2):
  • Y 1 to Y 8 are each independently selected from CR 2 or N, and at least one of them is an N atom;
  • R 2 is selected from hydrogen, substituted or unsubstituted C 1 -C 12 alkyl, substituted Or unsubstituted C 1 -C 10 cycloalkyl, substituted or unsubstituted C 6 -C 30 aryl or substituted or unsubstituted C 3 -C 30 heteroaryl;
  • R is hydrogen or L 2 -Ar 2 ,
  • L 1 and L 2 are each independently a single bond, a substituted or unsubstituted C 5 -C 30 arylene group, or a substituted or unsubstituted C 3 -C 30 heteroarylene group;
  • Ar 1 and Ar 2 are the same or different from each other and are represented by the following formula (3):
  • Z 1 to Z 5 are each independently selected from CR 5 or N, and 0 to 3 of them are N atoms; and R 5 is selected from hydrogen, cyano, substituted or unsubstituted C 1 to C 12 An alkyl group, a substituted or unsubstituted C 1 -C 10 cycloalkyl group, a substituted or unsubstituted C 6 -C 30 aryl group or a substituted or unsubstituted C 3 -C 30 heteroaryl group, wherein said C 6 When the -C 30 aryl group has a substituent, it is substituted by one or more C 1 -C 12 alkyl groups, substituted or unsubstituted C 6 -C 30 aryl groups or substituted or unsubstituted C. Substituted by a substituent in the 3 to C 30 heteroaryl group;
  • R 1 , R 2 and/or R 5 are present, they are the same or different from each other, and may be fused with an adjacent benzene ring or a heterocyclic ring;
  • substitution in "substituted or unsubstituted” means, unless otherwise specified, one or more alkyl groups selected from C 1 - C 12 , C 1 - C 12 alkoxy groups, and C 6 - C 12 aromatic groups. Substituents such as a heteroaryl group, a cyano group or a hydroxy group of C 3 to C 12 are substituted.
  • the organic compound of the present invention employs an azacarbazole derivative as a donor group, and a nitrogen-containing heterocyclic compound as an acceptor group can emit fluorescence and retard fluorescence by a specific connection method.
  • the efficiency of the organic electroluminescent device using the organic compound of the present invention is remarkably improved. The specific reasons are not clear, and it is speculated that it may be the following reasons:
  • the electron donor uses a carbazole group, which has good stability and contributes to the improvement of the performance of the organic electroluminescent device; and, compared with the conventional carbazole.
  • the addition of a porphyrin molecule with an N atom substitution can significantly improve the electron mobility, and the carbazole molecule has a good hole transporting ability.
  • the combination of the two molecules enables the molecule to have excellent hole and electron transport at the same time. Performance, due to the excellent bipolar transmission capability of the molecule, can further broaden the charge recombination region, thereby reducing the efficiency roll-off of the device.
  • the energy levels of the compounds can be regulated, and the materials with different energy levels can be screened, which is easy to select and match the device materials.
  • the structure in which the structure represented by the formula (2) is removed by removing one hydrogen from the parent group can be classified into two types, one being linked to the mother nucleus by the nitrogen of the carbazole. The other is attached to the mother nucleus via the aromatic ring of the carbazole. Both of these cases can achieve the object of the present invention, but the obtained organic compounds are slightly different in properties, and thus there are also differences in their specific applications. The details are as follows.
  • R in the formula (2) is H, and at least in the formula (1)
  • One R 1 is a structure represented by the formula (2), and the group obtained by the H is removed.
  • organic compound of the present invention is preferably represented by the following formula (1):
  • X 1 to X 8 are each independently selected from CR 1 or N, and at least one of X 1 to X 8 is an N atom; L 1 is a single bond, and C 5 to C 12 is substituted or not. a substituted arylene group or a heteroarylene group, wherein when the above group has a substituent, the substituent is selected from a C 1 -C 4 hydrocarbon group; and R 1 is selected from hydrogen, a C 1 -C 10 alkyl group or a ring.
  • An alkyl group, a C 6 -C 15 aryl group or a C 6 -C 19 heteroaryl group, and at least one of them has a structure represented by the following formula (4):
  • Y 1 to Y 8 are each independently selected from CR 2 or N, and at least one of them is an N atom;
  • R 2 is selected from hydrogen, a C 1 -C 10 alkyl group or a cycloalkyl group, C An aryl group of 6 to C 15 or a heteroaryl group of C 6 to C 19 ;
  • Ar 1 is represented by the following formula (3):
  • Z 1 to Z 5 are each independently selected from CR 5 or N, and 1 to 3 of them are N atoms; and R 5 is selected from hydrogen, C 1 -C 10 alkyl or cycloalkyl, An aryl group of C 6 to C 15 or a heteroaryl group of C 6 to C 19 .
  • R 1 , R 2 and/or R 5 are present, they are the same or different from each other, and may be fused with an adjacent benzene ring or hetero ring.
  • X 1 to X 8 of the formula (1) is an N atom, that is, the compound of the present invention contains a porphyrin structure.
  • the organic compound of the present invention adopts a D- ⁇ -A structure, and by using a porphyrin group attached at a specific position as an electron-donating group, it has excellent charge transport properties while maintaining its high triplet energy level, and is conjugated.
  • the group and the electron-withdrawing group adjust the material structure to have excellent hole and electron transport properties, broaden the charge recombination region, and have a large reverse inter-system collision rate, thereby effectively utilizing the excited triplet energy.
  • the porphyrin group may be a porphyrin at any position on the aromatic ring, and its electron deficient property contributes to an increase in charge mobility.
  • one and only one of X 1 and X 8 of the general formula (1) is an N atom, that is, the compound of the present invention contains an ⁇ -carboline structure, and more preferably is represented by one of the following formulas:
  • the compound of the present invention can form a hydrogen bond with a nearby hydrogen atom, avoiding weakening of the bond energy caused by excessive distortion of the bond angle of the compound, maintaining better chemical stability, and having obvious synthesis.
  • Advantages, easier to achieve high-yield mass production, is conducive to the industrial application of materials.
  • Ar 1 in the general formula (1) is preferably a structure represented by the following formula:
  • R 4 is selected from the group consisting of phenyl, tolyl, xylyl, isopropylphenyl, tert-butylphenyl, biphenyl;
  • n 0, 1, or 2; when n is 2, two R 4 's may be the same or different.
  • Ar in the formula (1) is more preferably a triazine or pyrimidine group in the above structure.
  • R 1 in the formula (1) is preferably a porphyrin group represented by the following formula (5), and the porphyrin group is bonded to the parent group through a CN bond:
  • L in the formula (1) is preferably selected from the group consisting of a phenylene group, a xylylene group, a biphenylylene group, a pyridylene group, and a diazabiphenyl group.
  • the compound of the formula (1) of the present invention is preferably selected from the following C1 to C75:
  • the organic compound having the above structure emits fluorescence and retards fluorescence, and is applied to an organic electroluminescence device to obtain a highly efficient organic electroluminescence device.
  • the invention further relates to the use of the abovementioned organic compounds in organic electroluminescent devices, which can be used directly as luminescent dyes.
  • the present invention provides an organic electroluminescent device comprising a first electrode, a second electrode, and a plurality of organic layers interposed between the first electrode and the second electrode, wherein the organic layer contains the above Organic compound.
  • the above organic compound can be used as a dye in the light-emitting layer, and can also be used as a host.
  • the organic compound of the present invention is used as an organic electroluminescent device material.
  • the organic light-emitting material By including the organic light-emitting material in the light-emitting layer of the organic light-emitting element, energy can be collected by rapid reverse intersystem crossing, thereby improving the device. effectiveness.
  • the invention designs a material combination scheme of the first body, the second body and the dye, and the novel compound of the invention described in the general formula (1) is used as the second body of the light-emitting layer, which can achieve higher device efficiency and small efficiency.
  • the material of the present invention can realize the utilization of the excited state triplet energy and avoid the efficiency roll-off caused by the accumulation of the light-emitting layer.
  • the dye may be a fluorescent dye or a phosphorescent dye.
  • the present invention provides an organic electroluminescent device comprising a first electrode, a second electrode, and a plurality of organic layers interposed between the first electrode and the second electrode, wherein the device contains emission fluorescence And a delayed fluorescent organic luminescent material having a reverse intersystem crossing constant k RISC greater than 10 4 s -1 , preferably greater than 10 5 s -1 , more preferably greater than 10 6 s -1 .
  • the above organic luminescent material is an organic luminescent material having thermally activated delayed fluorescent properties, comprising a donor group and an acceptor group.
  • the organic light-emitting material may be a compound other than the compound represented by the general formula (1), but is preferably a compound represented by the general formula (1).
  • k RISC is not limited, but is preferably more than 10 4 s -1 , more preferably more than 10 6 s -1 .
  • the present invention also provides an organic electroluminescent device comprising a first electrode, a second electrode, and a plurality of organic layers interposed between the first electrode and the second electrode, wherein the organic layer contains
  • the above organic compound which can be used for a transport layer, and its good redox property contributes to an improvement in stability of device application.
  • R in the formula (2) is L 2 -Ar 2
  • at least one of R 1 is a structure represented by formula (2) to remove the group obtained by the H
  • the structure represented by the formula (2) is obtained by removing a hydrogen group from the aromatic ring in which Y 5 to Y 8 are located. It is bonded to the aromatic ring in which X 5 to X 8 are located in the formula (1).
  • organic compound of the present invention is preferably represented by the following formula (1):
  • X 1 to X 4 are independently selected from CR 1 or N, and X 5 to X 8 are each independently selected from CR 1 , and at least one of X 1 to X 4 is an N atom, and R 1 is selected from the group consisting of a hydrogen, substituted or unsubstituted C 1 -C 12 alkyl group, a substituted or unsubstituted C 6 -C 30 aryl group or a substituted or unsubstituted C 3 -C 30 heteroaryl group, and at least one R 1 is a structure obtained by removing a hydrogen from the structure represented by the following formula (2); when a plurality of R 1 are present, a plurality of R 1 are the same or different from each other, and may be fused with an adjacent benzene ring;
  • Y 1 to Y 4 are each independently selected from CR 2 or N, and Y 5 to Y 8 are each independently selected from CR 2 , and at least one of Y 1 to Y 4 is an N atom;
  • R 2 is selected From hydrogen, substituted or unsubstituted C 1 -C 12 alkyl, substituted or unsubstituted C 1 -C 10 cycloalkyl, substituted or unsubstituted C 6 -C 30 aryl or substituted or unsubstituted C 3 ⁇ C 30 heteroaryl group; when a plurality of R 2, R 2 the same inter plurality or different from each other, and can be fused to a benzene ring and an adjacent; is R & lt L 2 -Ar 2;
  • L 1 and L 2 are each independently a single bond, a substituted or unsubstituted C 6 -C 30 arylene group, or a substituted or unsubstituted C 3 -C 30 heteroarylene group;
  • Ar 1 and Ar 2 are the same or different from each other, and are selected from the following structures S1 to S8;
  • R 3 represents a substituted or unsubstituted C 1 -C 12 alkyl group, a substituted or unsubstituted C 6 -C 30 aryl group or a substituted or unsubstituted C 3 -C 30 heteroaryl group; when a plurality of R are present 3 , they are the same or different from each other, and may be fused with an adjacent benzene ring or a heterocyclic ring; q is an integer of 0-5;
  • substitution in "substituted or unsubstituted” means, unless otherwise specified, one or more alkyl groups selected from C 1 - C 12 , C 1 - C 12 alkoxy groups, and C 6 - C 12 aromatic groups. Substituents such as a heteroaryl group, a cyano group or a hydroxy group of C 3 to C 12 are substituted.
  • an organic electroluminescent molecule Since the hole transporting ability of an organic electroluminescent molecule is often superior to its electron transporting ability, such a substituent is introduced into a molecular material system by introducing an electron withdrawing group such as a phenylcyano group, a pyridylcyano group, a triazinyl group or a pyrimidinyl group into a molecular material system.
  • the group has good electron transport ability, which contributes to the improvement of molecular electron transport ability; in addition, such groups have strong electron-withdrawing ability, and thus form a donor-receptor with the central carbazole group.
  • - A donor (ADA) type structure that effectively enhances the thermal activation of the molecule to delay fluorescence.
  • one of X 1 to X 4 is an N atom, and one of Z 1 to Z 4 is an N atom.
  • L 1 and L 2 are each independently a single bond, a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted biphenylylene group, a substituted or unsubstituted sub Fenyl or a substituted or unsubstituted pyridylene group.
  • each of R 1 to R 3 is independently selected from a substituted or unsubstituted methyl group, an ethyl group, an isopropyl group, a t-butyl group, a phenyl group, a naphthyl group, a decyl group, a pyridyl group, a thienyl group, a thiazole group.
  • Base furanyl, carbazolyl.
  • Structural formula (2) to remove a hydrogen groups is preferably obtained by Y 5 ⁇ Y 8 where the aromatic ring of formula (1) X 5 ⁇ X 8 where the aromatic rings, and more preferably through X 6 Y 6 is connected, or connected through the Y X 5 and 6, or X 5 and connected through Y 5.
  • the present invention provides the use of the above described carbazole-containing compound having a novel ADA structure in an organic electroluminescent device.
  • the compound can be used not only as a guest material of the light-emitting layer but also as a host material to sensitize the guest material.
  • an embodiment of the present invention provides an organic electroluminescent device comprising a first electrode, a second electrode, and at least one light emitting layer interposed between the first electrode and the second electrode An organic layer, wherein the organic layer comprises a compound of the invention.
  • the organic layer between the first electrode and the second electrode includes at least a light-emitting layer, and generally further includes an organic layer such as an electron injection layer, an electron transport layer, a hole transport layer, a hole injection layer, and a hole blocking layer.
  • the organic layer containing the compound of the present invention can be used for, but not limited to, a light-emitting layer.
  • the compound of the present invention can be applied to an organic electronic device, which may, for example, be an organic electroluminescence device, a lighting element, an organic thin film transistor, an organic field effect transistor, an organic thin film solar cell, an information tag, or an electron.
  • an organic electronic device which may, for example, be an organic electroluminescence device, a lighting element, an organic thin film transistor, an organic field effect transistor, an organic thin film solar cell, an information tag, or an electron.
  • Large-area sensors such as artificial skin sheets and sheet-type scanners, electronic paper, and organic EL panels.
  • the compounds not mentioned in the synthesis method of the present invention are all commercially available raw materials.
  • Various chemicals used in the examples such as petroleum ether, ethyl acetate, N,N-dimethylformamide, 1,4-dioxane, toluene, xylene, dichloromethane, cuprous iodide, O-phenanthroline, [1,1'-bis(diphenylphosphino)ferrocene]palladium dichloride, divaleryl diboron, potassium acetate, potassium phosphate, (triphenylphosphine) palladium, 2- Bromo-4,6-diphenyl-[1,3,5]triazine, 6-chloro-9H-pyrido[2,3-b]indole, 8-chloro-5H-pyrido[4,3 -b]Basic chemical raw materials such as hydrazine, 3-bromocarbazole, 5-bromo-1,3-benzene
  • Analytical detection of the intermediates and compounds in the present invention was performed using an ABSCIEX mass spectrometer (4000QTRAP) and a Bruker nuclear magnetic resonance instrument (400 M Hz).
  • the reaction solution was cooled to room temperature, diluted with 500 mL of toluene, filtered on a short silica gel column, and evaporated to dryness. HPLC 99.66%, yield 80%.
  • reaction solution was cooled to room temperature, 900 mL of pure water, 300 mL of toluene was added, and the aqueous phase was extracted with toluene (300 mL*2).
  • the organic phase was combined, washed with saturated brine, dried over anhydrous sodium sulfate, 15 g of crude brown solid was obtained, and 100 mL of petroleum ether was recrystallized (frozen) to give 13.5 g of a white powder solid.
  • intermediate M3 In a 100 mL single-necked flask, intermediate M2 9.8 g (58.7 mmol, 1 eq), dichloromethane 50 mL, stirring, NBS 1.51 g dropwise at room temperature, reaction overnight; stop reaction, filter The product was deprecipitated in water and spun dry to obtain a product 11 white solid with a yield of 93%.
  • the molecular weight of P9 mass spectrometry was 796.9 and the molecular weight was 796.5.
  • the energy structure of the compounds C1 to C75 of the present invention can be obtained by quantum chemical calculation, using Gaussian 09 software as a platform and density functional theory method (DFT) as a calculation method, based on 6-31g(d), design
  • DFT platform and density functional theory method
  • the coefficient of compounding between compounds can be obtained by transient fluorescence spectroscopy and fluorescence quantum yield tester in combination with the following formula.
  • C1 is the ratio of fluorescent components
  • ⁇ p is the fluorescence fraction and the lifetime of the delayed fluorescent moiety
  • ⁇ PLQY is the fluorescence quantum yield of the compound.
  • the fluorescence quantum yield of the compound was determined by an absolute fluorescence quantum yield meter C9920 (Hamamatsu).
  • An embodiment of the present invention provides an organic electroluminescent device comprising a first electrode and a second electrode on a substrate, and a plurality of organic layers interposed between the first electrode and the second electrode, wherein The organic layer contains the compound represented by the above formula (1). This configuration will be described in detail below.
  • the organic layer includes a hole transport layer, a light emitting layer, and an electron transport layer; and may further include a hole injection layer, an electron injection layer, and the like.
  • a hole transport layer a hole transport layer, a light emitting layer, and an electron transport layer
  • the organic layer may further include a hole injection layer, an electron injection layer, and the like.
  • the light-emitting layer is a layer that emits light by recombination of holes and electrons injected from the anode and the cathode to generate excitons.
  • the light-emitting layer may use a single organic light-emitting material, or a doping system having a combination of a host material and a guest material (also referred to as a dopant or a dye).
  • a host material also referred to as a dopant or a dye.
  • the organic compound of the present invention can be used alone; in order to obtain a highly efficient stable device, it is preferred to use the organic compound of the present invention as a second host, and a fluorescent or phosphorescent dye as a material combination system of a dopant.
  • the organic luminescent material of the present invention may be contained in the luminescent layer in an amount of from 1 to 99%.
  • the guest material may be selected from a phosphorescent material, preferably a complex containing Ir, Pt. Specific examples thereof include the following compounds:
  • the guest material may be selected from a fluorescent material, and specifically:
  • a compound having a core-shell structure wherein a portion of the first triplet state of the molecular excited state is a core, and a large sterically hindered group having no excited first state of the first triplet state is a shell, the large position A hinder group refers to a group whose radius is larger than the atomic radius of a hydrogen atom, and a compound having such a structure can prevent the Dexter energy transfer process of its triplet energy.
  • the device light-emitting layer host material includes, but is not limited to, a combination of one or more compounds of TDH1-TDH24 listed below.
  • the fluorescent dopant material is selected from at least one of the following molecular structures:
  • the organic electroluminescent device of the present invention is preferably supported by a substrate.
  • the substrate is not particularly limited as long as it is a substrate used in an organic electroluminescence device.
  • a substrate including glass, transparent plastic, quartz, silicon, or the like can be used.
  • the anode may be an inorganic material or an organic conductive polymer.
  • the inorganic material is generally a metal oxide such as indium tin oxide (ITO), zinc oxide (ZnO) or indium zinc oxide (IZO) or a metal having a higher work function such as gold, copper or silver, preferably ITO;
  • the organic conductive polymer is preferably One of polythiophene/sodium polyvinylbenzenesulfonate (hereinafter referred to as PEDOT/PSS) and polyaniline (hereinafter referred to as PANI).
  • the cathode generally uses a metal having a lower work function such as lithium, magnesium, calcium, barium, aluminum or indium or an alloy thereof with copper, gold or silver, or an electrode layer in which metal and metal fluoride are alternately formed.
  • the cathode is preferably a laminated LiF layer and an Al layer (the LiF layer is on the outer side).
  • the material of the hole transport layer contains a hole transport material having a function of transporting holes, and the hole transport layer may be provided in a single layer or a plurality of layers.
  • the hole transport layer can be, but is not limited to, a combination of one or more compounds of HT1-HT31 listed below.
  • the material of the electron transport layer contains an electron transport material having a function of transporting electrons, and the electron transport layer may be provided in a single layer or a plurality of layers.
  • the material of the electron transport layer may be an organometallic complex (such as Alq3, Gaq3, BAlq or Ga(Saph-q)), an organic compound of the formula (1) or other materials commonly used for electron transport layers, such as aromatic fused rings.
  • organometallic complex such as Alq3, Gaq3, BAlq or Ga(Saph-q)
  • an organic compound of the formula (1) or other materials commonly used for electron transport layers, such as aromatic fused rings such as aromatic fused rings.
  • compounds of the class e.g., pentacene, indole
  • o-phenanthroline e.g., Bphen, BCP
  • combinations of one or more of the compounds of ET1-ET57 listed below may also be employed.
  • the organic electroluminescent device of the present invention may further have an implantation layer which is a layer provided between the electrode and the organic layer in order to lower the driving voltage or increase the luminance of the light.
  • the injection layer includes an electron injection layer and a hole injection layer, and may exist between the anode and the light-emitting layer or the hole transport layer, and between the cathode and the light-emitting layer or the electron transport layer.
  • the injection layer can be set as needed.
  • the material of the electron injecting layer may be a material suitable for electron injection such as LiF, for example, one or more of LiQ, LiF, NaCl, CsF, Li 2 O, Cs 2 CO 3 , BaO, Na, Li, Ca. Combination of species.
  • the material of the hole injection layer may be, for example, 4,4',4"-tris(3-methylphenylaniline) triphenylamine doped with F4TCNQ, or copper phthalocyanine (CuPc), or may be a metal oxide.
  • molybdenum oxide, ruthenium oxide, or a combination of one or more compounds of HI-1-HI-3 listed below may also be employed.
  • the organic electroluminescent device of the present invention may further have a barrier layer which is a layer capable of blocking charges (electrons or holes) and/or excitons present in the light-emitting layer from diffusing out of the light-emitting layer.
  • the electron blocking layer may be disposed between the light emitting layer and the hole transporting layer while blocking electrons passing through the light emitting layer in a direction toward the hole transporting layer.
  • the hole blocking layer may be disposed between the light emitting layer and the electron transporting layer to block holes from passing through the light emitting layer in the direction of the electron transporting layer.
  • a barrier layer can be used to block the outward diffusion of the self-emitting layer. That is to say, the electron blocking layer and the hole blocking layer may also function as an exciton blocking layer, respectively.
  • each of the above layers may be conventionally used in the thickness of these layers in the art.
  • the present invention also provides a method of fabricating the organic electroluminescent device, as shown in FIG. 7, comprising sequentially depositing an anode 02, a hole injecting layer 04, a hole transporting layer 05, and a light emitting layer 06 laminated on each other on a substrate 01.
  • the electron transport layer 07 and the cathode 03 are then packaged.
  • the preferred device structure of the organic electroluminescent device of the present invention is:
  • HIL hole injection layer
  • HTL hole transport layer
  • EL light-emitting layer
  • ETL electron transport layer
  • EIL electrostatic injection layer
  • the "/" in the above device structure means that the different functional layers are sequentially stacked.
  • the compounds of the invention may be, but are not limited to, materials for luminescent layers.
  • the structure represented by the formula (2) wherein a group obtained by removing a hydrogen is bonded to a mother nucleus group by the nitrogen of the carbazole contained therein is suitable for use in an organic electroluminescence device. Used as a dye or host material in the luminescent layer.
  • the luminescent layer comprises a doping system of a first body, a second body and a dye
  • the first host material adopts CBP
  • the second host material uses the organic compound in the invention, 4i-PrCzBN as a dye
  • the organic electroluminescent device vacuum It is evaporated and its structure is as follows:
  • Cx is a specific compound of the formula (1) provided by the present invention.
  • the compounds TD1, TD2 and TD3 of the prior art were used as comparative materials. The following equation shows the structural formula of the materials used in each functional layer in the OLED device:
  • the preparation process of the organic electroluminescent device of the device examples 1 to 1 is as follows:
  • the glass plate coated with the ITO (50 nm) transparent conductive layer was sonicated in a commercial cleaning agent, rinsed in deionized water, and ultrasonically degreased in an acetone:ethanol mixed solvent (1:1 by volume) in a clean environment. Bake to completely remove moisture, wash with ultraviolet light and ozone, and bombard the surface with a low energy cation beam;
  • the above-mentioned glass substrate with an anode was placed in a vacuum chamber, and evacuated to 1 ⁇ 10 -5 to 9 ⁇ 10 -3 Pa, and 2-TNATA [4, 4', 4 was vacuum-deposited on the above anode film.
  • 2-TNATA [4, 4', 4 was vacuum-deposited on the above anode film.
  • "-(N,N-(2-naphthyl)-phenylamino)triphenylamine] forming a hole injection layer having a thickness of 60 nm; vacuum-decomposing the compound NPB over the hole injection layer to a thickness of 20 nm
  • the hole transport layer, the evaporation rate is 0.1 nm / s;
  • An electroluminescent layer is formed on the above hole transporting layer by specifically placing a compound mCBP as a main body of the light emitting layer in a chamber of a vacuum vapor deposition apparatus, and placing the compound C1 of the present invention as a second host in a vacuum gas phase.
  • the Bphen was vacuum-deposited on the light-emitting layer to form an electron transport layer having a thick film of 20 nm, and the evaporation rate was 0.1 nm/s;
  • LiF LiF was vacuum-deposited on the electron transport layer as an electron injection layer and an Al layer having a thickness of 150 nm as a cathode of the device.
  • the structure of the organic electroluminescent device prepared in this example was as follows: ITO (50 nm)/2-TNATA (60 nm) / NPB (20 nm) / mCBP: C1: 4i-PrCzBN (30 nm) / Bphen (20 nm) / LiF (0.5 nm) / Al (150 nm).
  • Example 1-14 the same device fabrication method as in Example 1-1 was used, except that the host material compound C1 was replaced with an equivalent amount of the compounds C2, C4, C10, C11, C12, C19, C20, respectively. , C34, C49, C55, C56, C67 and C73.
  • the structures of the organic electroluminescent devices prepared in Examples 1-15 to 1-18 were as follows: ITO (50 nm)/2-TNATA (60 nm) / NPB (20 nm) / mCBP: Cx (30%) (30 nm) / Bphen (20 nm) / LiF (0.5 nm) / Al (150 nm).
  • Cx is C1, C2, C10 and C12, respectively.
  • Comparative Examples 1-1 to 1-4 were produced in the same manner as in Example 1-1, except that the host material C1 was replaced with an equivalent amount of TD1, TD2, and TD3 as the second host material in the light-emitting layer. And a comparative experimental example replaced with a single compound mCBP using only a single-body structure device.
  • the fabricated organic electroluminescent device was subjected to photoelectric test, and the JVL (current density-pressure-brightness) performance was tested using a Keithley 2400 power supply unit and a corrected silicon photodiode.
  • the brightness was measured using a spectrophotometer (Model: Spectr Scan PR655, Photo Research).
  • the voltage and efficiency of the organic electroluminescent devices prepared in Comparative Examples 1-1 to 1-4 and Examples 1-1 to 1-14 were measured at a luminance of 1000 cd/m 2 , and the results are shown in Table 3.
  • the novel compound of the present invention is used as a sensitizer for the light-emitting layer of an organic electroluminescence device, which can effectively improve current efficiency and is a good organic light-emitting material.
  • This may be due to the fact that the compound of the examples contains an azacarbazole group, especially a porphyrin group, and the spectrum of the compound is blue-shifted, excited state energy compared to the carbazole groups of Comparative Examples 1-1 to 1-3. Higher, so that the fluorescent compound can be effectively sensitized; at the same time, due to the presence of the porphyrin nitrogen atom, intramolecular hydrogen bonds can be formed, thereby increasing the rigidity of the compound, and the fluorescence quantum yield is relatively high.
  • the compound having a triazine or a pyrimidine group (Examples 1-1 to 1-12 and 1-15 to 1-18) having an electron-withdrawing group is more efficient than the pyridine compound (Examples) 1-13 and 1-14), this is due to the faster inter-system rate of the band gap with faster energy, and the excited state triplet energy can be better utilized.
  • the thermally activated delayed fluorescent material of the present invention can be used as a dye having high fluorescence quantum efficiency.
  • the OLED device prepared by using the material with special structure designed by the invention as a sensitizer can achieve a current efficiency of up to 11.8 cd/A under the required brightness (1000 cd/m 2 ), which is obvious.
  • the improvement, especially for compounds using triazine groups, is more efficient due to its better charge injection transport performance.
  • the efficiency in Comparative Example 1-1 was low because the energy of TD1 was low, and the rapid transfer of energy from the second host to the dye could not be achieved, resulting in a voltage increase and a decrease in efficiency.
  • the kRISC of the compound TD2 used in Comparative Example 1-2 is 0s -1 (Hosokai et al., Sci. Adv. 2017; 3:e1603282), since the triplet level of the material cannot be transferred to the excited singlet level, thereby The efficiency was lowered; although the ⁇ Est of the compound TD3 was 0.41 eV (Chem. Sci., 2016, 7, 3355-3363) in Comparative Example 1-3, the thermal activation delayed fluorescence property was obtained, and a higher device was obtained.
  • Efficiency in Comparative Example 1-4, since there is no second host material, energy is directly transmitted from the host to the dye, and the triplet energy cannot be effectively utilized, so that the efficiency is low.
  • the structure represented by the formula (2) wherein a group obtained by removing a hydrogen is bonded to a core group through the aromatic ring of the carbazole contained therein is suitable for use in an organic electroluminescent device.
  • the luminescent layer is used as a guest material (in the present invention, a dye material) or a host material.
  • the glass plate coated with the ITO transparent conductive layer is ultrasonicated in a commercial cleaning agent, rinsed in deionized water, ultrasonically degreased in an acetone:ethanol mixed solvent, baked in a clean environment to completely remove moisture, and used ultraviolet light. Cleaning with ozone and bombarding the surface with a low energy cation beam;
  • the glass substrate with the anode was placed in a vacuum chamber, and evacuated to 1 ⁇ 10 -5 to 9 ⁇ 10 ⁇ 3 Pa, and HI-2 was vacuum-deposited on the anode layer film as a hole injection layer, and steamed.
  • the plating rate is 0.1 nm/s, and the thickness of the deposited film is 10 nm;
  • HT-2 was vacuum-deposited on the hole injection layer as a hole transport layer of the device, the evaporation rate was 0.1 nm/s, and the total vapor deposition thickness was 80 nm;
  • the light-emitting layer of the device is vacuum-deposited on the hole transport layer, and the light-emitting layer comprises a host material and a dye material, and the evaporation rate of the host material TDH10 is adjusted to 0.1 nm/s by a multi-source co-steaming method, and the examples and comparisons are made.
  • the dye evaporation rate is set at a ratio of 30%, and the total film thickness of the vapor deposition is 30 nm;
  • the electron transport layer material ET-34 of the device is vacuum-deposited on the light-emitting layer, the evaporation rate is 0.1 nm/s, and the total vapor deposition thickness is 20 nm;
  • LiF having a thickness of 0.5 nm was vacuum-deposited on the electron transport layer (ETL) as an electron injection layer, and an Al layer having a thickness of 150 nm was used as a cathode of the device.
  • ETL electron transport layer
  • Examples 2-1 to 2-9 and Comparative Example 2-1 were measured using a PR 750 photometer ST-86LA type luminance meter (Beijing Normal University Optoelectronic Instrument Factory) and a Keithley 4200 test system of Photo Research.
  • the driving voltage and current efficiency of the organic electroluminescent device prepared in the middle. Specifically, the voltage is raised at a rate of 0.1 V per second, and the voltage at which the luminance of the organic electroluminescent device reaches 1000 cd/m 2 , that is, the driving voltage, is measured, and the current density at this time is measured; the ratio of luminance to current density It is the current efficiency.
  • the following devices were prepared in the manner described above to have the following structure, and the device performance test was carried out in accordance with the above-described organic electroluminescent device test method.
  • 30% indicates that the weight ratio of P4 to TDH10 is 30%, and the following examples and comparative examples are also expressed in this manner.
  • the following devices were prepared in the manner described above to have the following structure, and the device performance test was carried out in accordance with the above-described organic electroluminescent device test method.
  • the following devices were prepared in the same manner as described above to have the following structure, and the device performance test was carried out in accordance with the above-described organic electroluminescent device test method.
  • the following devices were prepared in the manner described above to have the following structure, and the device performance test was carried out in accordance with the above-described organic electroluminescent device test method.
  • the following devices were prepared in the manner described above to have the following structure, and the device performance test was carried out in accordance with the above-described organic electroluminescent device test method.
  • the following devices were prepared in the manner described above to have the following structure, and the device performance test was carried out in accordance with the above-described organic electroluminescent device test method.
  • the following devices were prepared in the manner described above to have the following structure, and the device performance test was carried out in accordance with the above-described organic electroluminescent device test method.
  • the following devices were prepared in the manner described above to have the following structure, and the device performance test was carried out in accordance with the above-described organic electroluminescent device test method.
  • the following devices were prepared in the manner described above to have the following structure, and the device performance test was carried out in accordance with the above-described organic electroluminescent device test method.
  • the dye material selected for the organic electroluminescent device of Comparative Example 2-1 was R1, and the compound R1 was obtained by the method exemplified in the above Synthesis Examples.
  • the following devices were prepared in the manner described above to have the following structure, and the device performance test was carried out in accordance with the above-described organic electroluminescent device test method.
  • Examples 2-1 to 2-9 Electroluminescent device performance using the compound of the present invention Compared with Comparative Example 2-1, the OLED organic electroluminescence property of R1 dye was used, and the compound of the present invention obtained higher current efficiency and lower The driving voltage; this indicates that the introduction of a group such as an N-substituted carbazole into the dye can significantly improve the electron transporting ability of the material relative to the carbazole group of R1.
  • a group such as an N-substituted carbazole into the dye can significantly improve the electron transporting ability of the material relative to the carbazole group of R1.
  • it When prepared as an organic electroluminescent device, it has the advantage that the driving voltage can be significantly reduced and the luminous efficiency can be improved.
  • the organic electroluminescence properties of the OLEDs of Examples 2-1 and 2-3 to 2-5 using the compounds P4, P13, P32 and P33 of the present invention as dyes were slightly inferior to those of P9, P46, P47, P48 and P57.
  • the OLED organic electroluminescence properties of the dyes of Examples 2-2 and 2-6 to 2-9, P9 obtained higher current efficiency and lower driving voltage; this indicates that the porphyrin group was introduced into the molecule, Compared to other N-substituted carbazole groups, it seems to have the advantage of further reducing the driving voltage and improving the luminous efficiency.
  • novel organic material of the invention is used in an organic electroluminescent device, can effectively reduce the voltage drop-off voltage, improve the current efficiency, and has good stability performance, and is a dye material with good performance.
  • the compound of the present invention can also be used as a host material of the light-emitting layer for sensitizing the guest fluorescent dye.
  • the glass plate coated with the ITO transparent conductive layer is ultrasonicated in a commercial cleaning agent, rinsed in deionized water, ultrasonically degreased in an acetone:ethanol mixed solvent, baked in a clean environment to completely remove moisture, and used ultraviolet light. Cleaning with ozone and bombarding the surface with a low energy cation beam;
  • the glass substrate with the anode was placed in a vacuum chamber, and evacuated to 1 ⁇ 10 -5 to 9 ⁇ 10 ⁇ 3 Pa, and HI-2 was vacuum-deposited on the anode layer film as a hole injection layer, and steamed.
  • the plating rate is 0.1 nm/s, and the thickness of the deposited film is 10 nm;
  • HT-2 was vacuum-deposited on the hole injection layer as a hole transport layer of the device, the evaporation rate was 0.1 nm/s, and the total vapor deposition thickness was 80 nm;
  • the light-emitting layer of the device is vacuum-deposited on the hole transport layer, and the light-emitting layer includes a host material and a dye material, and the evaporation rate of the host material in each of the examples and the comparative examples is adjusted to 0.1 nm/by a multi-source co-evaporation method.
  • the dye F8 evaporation rate is set at a ratio of 30%, and the total film thickness of the vapor deposition is 30 nm;
  • the electron transport layer material ET-34 of the device is vacuum-deposited on the light-emitting layer, the evaporation rate is 0.1 nm/s, and the total vapor deposition thickness is 20 nm;
  • LiF having a thickness of 0.5 nm was vacuum-deposited on the electron transport layer (ETL) as an electron injection layer, and an Al layer having a thickness of 150 nm was used as a cathode of the device.
  • ETL electron transport layer
  • Examples 2-10 to 2-15 and Comparative Example 2-2 were measured using Photo Research's PR Model 750 Optical Radiometer ST-86LA Luminance Meter (Beijing Normal University Optoelectronic Instrument Factory) and Keithley 4200 Test System.
  • the driving voltage and current efficiency of the organic electroluminescent device prepared in the middle. Specifically, the voltage is raised at a rate of 0.1 V per second, and the voltage at which the luminance of the organic electroluminescent device reaches 10000 cd/m 2 , that is, the driving voltage, is measured, and the current density at this time is measured; the luminance and current density are measured.
  • the ratio is the current efficiency.
  • the following devices were prepared in the manner described above to have the following structure, and the device performance test was carried out in accordance with the above-described organic electroluminescent device test method.
  • 30% means that the weight ratio of the dye F8 to P3 is 30%, and is also expressed in this manner in the following examples and comparative examples.
  • the following devices were prepared in the manner described above to have the following structure, and the device performance test was carried out in accordance with the above-described organic electroluminescent device test method.
  • the following devices were prepared in the manner described above to have the following structure, and the device performance test was carried out in accordance with the above-described organic electroluminescent device test method.
  • the following devices were prepared in the manner described above to have the following structure, and the device performance test was carried out in accordance with the above-described organic electroluminescent device test method.
  • the following devices were prepared in the manner described above to have the following structure, and the device performance test was carried out in accordance with the above-described organic electroluminescent device test method.
  • the following devices were prepared in the manner described above to have the following structure, and the device performance test was carried out in accordance with the above-described organic electroluminescent device test method.
  • the host material selected for the organic electroluminescent device in this comparative example is CBP.
  • the following devices were prepared in the manner described above to have the following structure, and the device performance test was carried out in accordance with the above-described organic electroluminescent device test method.
  • the OLED organic electroluminescence properties of the examples 2-10 to 2-13 using the compound of the present invention as a host are superior to those of the OLED organic electroluminescence property using CBP as a host with respect to Comparative Example 2-2, and Examples 2-10 to The devices in 2-13 achieve higher current efficiency and lower driving voltage; this indicates that when such an organic electroluminescent device is prepared based on a carbazole-based material as a host material, the driving voltage can be significantly reduced and improved.
  • the organic electroluminescent properties of the OLEDs using the compound P46 of the present invention as the main body in Examples 2-12 are weaker than those of the organic light-emitting properties of the OLEDs using P48 as the main body in Examples 2-13, and P48 obtains higher current efficiency and comparison.
  • Low driving voltage the possible reason is that in the P48 molecule, the steric hindrance of the methyl group in the donor makes the P48 molecule have a smaller single triplet energy level difference, which is more conducive to the reverse intersystem crossing and energy transfer in the main body. .
  • novel organic material of the invention can effectively reduce the voltage drop-off voltage, improve the current efficiency, and has good stability performance when used in the main body of the organic electroluminescent device.

Abstract

本发明提供一种特定结构的有机化合物,其特征在于,由下述通式(1)表示:式(1)中,X1~X8分别独立选自CR1或N,且其中至少有1个为N原子;L为单键,C5~C12的取代或未取代的亚芳基、亚杂芳基;R1选自氢、C1~C10的烷基或环烷基、C6~C15的芳基或C6~C19的稠环芳基,且至少有1个为氮杂咔唑;Ar为取代或未取代的N杂苯基。本发明揭示反向系间窜越常数与发射延迟荧光的规律,设计化合物用于有机电致发光器件中,可以有效的提高电流效率,是性能良好的有机发光材料。本发明同时提供采用所述通式化合物的有机电致发光器件。

Description

有机电致发光材料与器件
相关申请的引用
本申请要求于2018年1月10日递交的题为“一种有机电致发光材料与器件”的中国专利申请201810021938.X和于2018年8月17日递交的题为“有机电致发光材料及有机电致发光器件”的中国专利申请201810937733.6的优先权,其内容一并于此用作参考。
技术领域
本发明涉及有机电致发光技术领域,更具体地,涉及一种有机化合物、其在有机电致发光领域的应用以及将其用于发光层的有机电致发光器件。
背景技术
在电致激发的条件下,有机电致发光材料会产生25%的单线态和75%的三线态,传统的荧光材料由于自旋禁阻的原因只能利用单线态激子。为了利用三线态激子,研究者提出了许多方法,其中最为显著的是磷光材料的利用。然而磷光材料由于使用了稀有的重金属,材料较为昂贵,不利于产品成本的降低。
日本九州大学的Adachi教授发现的基于三线态-单线态跃迁的热激活延迟荧光(TADF)材料利用环境热量可实现能量从三线态激发态向单线态激发态的逆向系间窜越,无需使用高成本的稀有金属即可实现高发光效率。在专利文献1中,新日铁住金化学株式会社和九州大学揭示了一种基于吲哚并咔唑的材料(参见下图),并揭示了一种荧光及延迟荧光型的有机发光元件,其特征在于,在基板上具有至少一个发光层含有发射荧光及延迟荧光的有机发光材料,所述发光材料的激发单重态能量和激发三重态能量的差为0~0.2eV,代表化合物展示了较高的效率性能。
Figure PCTCN2019071148-appb-000001
清华大学段炼教授提出的热活化敏化延迟荧光(TASF:Thermally Activated Delayed Fluorescence)的发光机理的重点是将激发态三线态能量通过上转换至激发 态单重态能量,然后通过Foxter能量转移至染料激发态单重态,再实现发光,从而实现了能量采集和发光过程的分离。在专利文献2揭示了一种有机电致发光器件,包括彼此层叠的阳极、空穴传输层、发光层、电子传输层及阴极,其特征在于,发光层的主体材料的三线态与单线态能级差小于0.15eV,且在所述主体材料中掺杂荧光染料,并且所述荧光染料的单线态能级低于主体材料的单线态能级,实现了高的效率和低的效率滚降以及更好的色纯度。
此外,专利文献3中提到了一类有机电致发光元件等所使用的发光材料用化合物,所述化合物的母核优选为一类3,3-连咔唑基团,其主要用作发光层中的发光客体,具有较高的外量子效率。专利文献4公开了一类有机电致发光器件用的化合物,其中含有二苯氨基取代基。另外,该化合物主要用作磷光主体使用。
然而,随着研究的深入,人们发现,激发单重态和激发三重态能量差并不是材料具有TADF性质的充分条件(参见非专利文献1),且目前的热活化延迟荧光(TADF)材料存在空穴传输能力以及电子传输能力不匹配的情况、反向系间窜越速率(k RISC)较低、三线态-极化子湮灭(TPA)较为严重等问题。因此,如何设计新一代OLED材料,实现高效率、低成本材料的开发仍是人们研究的重点。
专利文献1:CN102648268B
专利文献2:CN 102709485B
专利文献3:CN105531261
专利文献4:KR1020160076882
非专利文献1:Chem.Sci.,2016,7,3355–3363
发明内容
为了解决上述问题,在有机电致发光器件中得到高的发光效率,需要开发具有热活化延迟荧光性质的新材料,以实现高性能、低成本的荧光器件性能。此外,在电化学稳定性、耐热性、以及无定形稳定性等方面也需要进一步改良。
鉴于此,本发明的主要目的在于提供一种具有热活化延迟荧光性质的有机电致发光材料、其在有机电致发光领域的应用以及用其作为发光层材料的有机电致发光器件。
具体而言,作为本发明的一个方面,提供了一种特定结构的有机化合物,其特征在于,由下述式(1)表示:
Figure PCTCN2019071148-appb-000002
式(1)中,X 1~X 8分别独立选自CR 1或N,且X 1~X 8中至少有1个为N原子;R 1选自氢、取代或未取代的C 1~C 12烷基、取代或未取代的C 1~C 10环烷基、取代或未取代的C 6~C 30芳基或取代或未取代的C 3~C 30杂芳基,且至少有1个R 1为下述式(2)所示的结构去掉一个氢所得的基团:
Figure PCTCN2019071148-appb-000003
式(2)中,Y 1~Y 8分别独立选自CR 2或N,且其中至少有1个为N原子;R 2选自氢、取代或未取代的C 1~C 12烷基、取代或未取代的C 1~C 10环烷基、取代或未取代的C 6~C 30芳基或取代或未取代的C 3~C 30杂芳基;R为氢或L 2-Ar 2
L 1和L 2分别独立为单键、取代或未取代的C 5~C 30的亚芳基、或者取代或未取代的C 3~C 30的亚杂芳基;
Ar 1和Ar 2彼此相同或不同,由下式(3)表示:
Figure PCTCN2019071148-appb-000004
式(3)中,Z 1~Z 5分别独立选自CR 5或N,且其中有0~3个为N原子;R 5选自氢、氰基、取代或未取代的C 1~C 12烷基、取代或未取代的C 1~C 10环烷基、取代或未取代的C 6~C 30芳基或者取代或未取代的C 3~C 30杂芳基,其中,所述C 6~C 30芳基具有取代基时,其被一个或多个选自取代或未取代的C 1~C 12烷基、取代或未取代的C 6~C 30芳基或者取代或未取代的C 3~C 30杂芳基中的取代基所取代;
当存在多个R 1、R 2和/或R 5时,它们彼此之间相同或不同,并且可以和相邻的苯环或杂环进行稠合;
“取代或未取代”中的取代,若无特别说明,则表示被一个或多个选自C 1~C 12的烷基、C 1~C 12的烷氧基、C 6~C 12的芳基、C 3~C 12的杂芳基、氰基、羟基中的取代基所取代。
作为本发明的另一个方面,还提供了一种有机电致发光材料,其包含如上所述的有机化合物。
作为本发明的又一个方面,还提供了一种如上所述的有机化合物和有机电致发光材料在有机电致发光器件中的应用。
作为本发明的又一个方面,还提供了一种有机电致发光器件,包括第一电极、第二电极和插入在所述第一电极和第二电极之间的多个有机层,其特征在于,所述有机层中含有如上所述的有机化合物或有机电致发光材料。
作为本发明的又一个方面,还提供了一种有机电致发光器件,包括第一电极、第二电极和插入在所述第一电极和第二电极之间的多个有机层,其特征在于,所述器件中含有发射荧光和延迟荧光的有机发光材料,所述有机发光材料的反向系间窜越常数k RISC大于10 4s -1,优选k RISC大于10 5s -1
根据本发明,这类含有连咔唑(本发明中也包括氮取代咔唑,如咔啉等)基团这样的双极传输结构的化合物能够拓宽电荷复合区域,从而降低器件的效率滚降,可以得到具有热活化延迟荧光性质的有机化合物。这类有机化合物的反向系间窜越速率较快、荧光量子产率较高,使用它们可以得到电化学稳定、无定形稳定、具有高耐热性和高电流效率的有机电致发光器件。
附图说明
图1是本发明的化合物C1的HOMO轨道分布图;
图2是本发明的化合物C1的LUMO轨道分布图;
图3是本发明的化合物C2的HOMO轨道分布图;
图4是本发明的化合物C2的LUMO轨道分布图;
图5是本发明的化合物C1的瞬态荧光曲线;
图6是本发明的化合物C2的瞬态荧光曲线;
图7是本发明的有机电致发光器件的基本结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚明白,以下对本发明作进一步的详细说明。
在本说明书中,除非另有说明,否则下述术语具有如下含义:
需要说明的是,本发明中,Ca~Cb的表达方式代表该基团具有的碳原子数为a~b,除非特殊说明,一般而言该碳原子数不包括取代基的碳原子数。本发明中,对于化学元素的表述包含化学性质相同的同位素的概念,例如“氢”的表述,也 包括化学性质相同的“氘”、“氚”的概念。需要说明的是,在本发明中,也可以用“D”表示“氘”。
在本说明书中,“取代或未取代”中的取代,表示被一个或多个选自C 1~C 12的烷基、C 1~C 12的烷氧基、C 6~C 12的芳基、C 3~C 12的杂芳基、氰基、羟基中的取代基所取代。
本说明书中,烷基可以为直链或支链的,且碳原子数没有特别限制,但优选为1~12个。作为C 1~C 12烷基的例子可举出:甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、戊基、异戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基等,其中优选甲基、乙基、正丙基、异丙基,更优选甲基。
在本说明书中,芳基没有特别限制,但优选具有6~30个碳原子。作为C 6~C 30芳基的例子可举出:苯基、联苯基、三联苯基、萘基、蒽基、菲基、芴基、芘基、
Figure PCTCN2019071148-appb-000005
基、荧蒽基、苯并[a]蒽基、苯并[c]菲基、三亚苯基、苯并[k]荧蒽基、苯并[g]
Figure PCTCN2019071148-appb-000006
基、苯并[b]三亚苯基、苉基、苝基等,其中优选苯基、萘基、更优选苯基。
在本说明书中,杂芳基为包含O、N、S、Si中的一个以上作为杂原子的杂芳基,碳原子数目优选为3~30个。作为C 3~C 30杂芳基,其可为含氮杂芳基、含氧杂芳基、含硫杂芳基等,具体的例如可举出:吡啶基、嘧啶基、吡嗪基、哒嗪基、三嗪基、喹啉基、异喹啉基、萘啶基、酞嗪基、喹喔啉基、喹唑啉基、菲啶基、吖啶基、菲咯啉基、吡咯基、咪唑基、吡唑基、三唑基、四唑基、吲哚基、苯并咪唑基、吲唑基、咪唑并吡啶基、苯并三唑基、咔唑基、呋喃基、噻吩基、噁唑基、噻唑基、异噁唑基、异噻唑基、噁二唑基、噻二唑基、苯并呋喃基、苯并噻吩基、苯并噁唑基、苯并噻唑基、苯并异噁唑基、苯并异噻唑基、苯并噁二唑基、苯并噻二唑基、二苯并呋喃基、二苯并噻吩基、哌啶基、吡咯烷基、哌嗪基、吗啉基、吩嗪基、吩噻嗪基、吩噁嗪基等,其中优选吡啶基、喹啉基、二苯并呋喃基、二苯并噻吩基,更优选吡啶基。
以下,对本发明的一个方面的有机化合物进行说明。
本发明的有机化合物的特征在于,由下述式(1)表示:
Figure PCTCN2019071148-appb-000007
式(1)中,X 1~X 8分别独立选自CR 1或N,且X 1~X 8中至少有1个为N原子;R 1选自氢、取代或未取代的C 1~C 12烷基、取代或未取代的C 1~C 10环烷基、取代或未取代的C 6~C 30芳基或取代或未取代的C 3~C 30杂芳基,且至少有1个R 1为下述式(2)所示的结构去掉一个氢所得的基团:
Figure PCTCN2019071148-appb-000008
式(2)中,Y 1~Y 8分别独立选自CR 2或N,且其中至少有1个为N原子;R 2选自氢、取代或未取代的C 1~C 12烷基、取代或未取代的C 1~C 10环烷基、取代或未取代的C 6~C 30芳基或取代或未取代的C 3~C 30杂芳基;R为氢或L 2-Ar 2
L 1和L 2分别独立为单键、取代或未取代的C 5~C 30的亚芳基、或者取代或未取代的C 3~C 30的亚杂芳基;
Ar 1和Ar 2彼此相同或不同,由下式(3)表示:
Figure PCTCN2019071148-appb-000009
式(3)中,Z 1~Z 5分别独立选自CR 5或N,且其中有0~3个为N原子;R 5选自氢、氰基、取代或未取代的C 1~C 12烷基、取代或未取代的C 1~C 10环烷基、取代或未取代的C 6~C 30芳基或者取代或未取代的C 3~C 30杂芳基,其中,所述C 6~C 30芳基具有取代基时,其被一个或多个选自取代或未取代的C 1~C 12烷基、取代或未取代的C 6~C 30芳基或者取代或未取代的C 3~C 30杂芳基中的取代基所取代;
当存在多个R 1、R 2和/或R 5时,它们彼此之间相同或不同,并且可以和相邻的苯环或杂环进行稠合;
“取代或未取代”中的取代,若无特别说明,则表示被一个或多个选自C 1~C 12的烷基、C 1~C 12的烷氧基、C 6~C 12的芳基、C 3~C 12的杂芳基、氰基、羟基中的取代基所取代。
本发明的有机化合物采用氮杂咔唑衍生物作为donor基团,含氮杂环化合物作为acceptor基团,通过特定的连接方式,可以发出荧光及延迟荧光。使用了本发明的有机化合物的有机电致发光器件效率明显提高。其具体原因尚不明确,推测可能是以下的原因:
首先,电子给体选用连咔唑类基团,这类电子给体基团有着较好的稳定性,有助于有机电致发光器件性能的提升;并且,相比于传统的连咔唑类基团,增加了一个N原子取代的咔啉分子的引入可以显著改善电子迁移率,咔唑分子则具有良好的空穴传输能力,通过2者的组合使得分子同时具备优异的空穴和电子传输性能,由于分子具有这种优异的双极性传输能力,进而能够拓宽电荷复合区域,从而降低器件的效率滚降。
其次,通过不同种类N取代咔唑分子的引入,以及搭配受体结构及取代位置的改变,可以对化合物的能级进行调控,从而筛选具有不同能级的材料,易于器件材料选择搭配。
在本发明的有机化合物中,式(2)所示的结构去掉一个氢所得的基团与母核基团的连接方式可以分为两种,一种是通过咔唑的氮连接至母核,另一种是通过咔唑的芳环连接至母核。这两种情况均能实现本发明的目的,但得到的有机化合物在性质上略有差别,因此其具体应用上也存在差异。具体说明如下。
[通过咔唑的氮连接至母核的情况]
在式(2)所示的结构去掉一个氢所得的基团通过其所包含的咔唑的氮连接至母核的情况下,式(2)中的R为H,式(1)中至少有一个R 1为式(2)所示的结构去掉该H所得的基团。
在这种情况下,本发明的有机化合物优选由下述式(1)表示:
Figure PCTCN2019071148-appb-000010
式(1)中,X 1~X 8分别独立选自CR 1或N,且X 1~X 8中至少有1个为N原子;L 1为单键、C 5~C 12的取代或未取代的亚芳基、亚杂芳基,当上述基团具有取代基时,所述取代基选自C 1~C 4的烃基;R 1选自氢、C 1~C 10的烷基或环烷基、C 6~C 15的芳基或C 6~C 19的杂芳基,且至少有1个为下式(4)所示的结构:
Figure PCTCN2019071148-appb-000011
式(4)中,Y 1~Y 8分别独立选自CR 2或N,且其中至少有1个为N原子;R 2选自氢、C 1~C 10的烷基或环烷基、C 6~C 15的芳基或C 6~C 19的杂芳基;
Ar 1由下式(3)表示:
Figure PCTCN2019071148-appb-000012
式(3)中,Z 1~Z 5分别独立选自CR 5或N,且其中有1~3个为N原子;R 5选自氢、C 1~C 10的烷基或环烷基、C 6~C 15的芳基或C 6~C 19的杂芳基。
需要说明的是,当存在多个R 1、R 2和/或R 5时,它们彼此之间相同或不同,并且可以和相邻的苯环或杂环进行稠合。
进一步地,优选通式(1)的X 1~X 8中有且只有1个是N原子,即本发明的化合物包含咔啉结构。
本发明的有机化合物采用D-π-A结构,通过使用特定位置连接的咔啉基团作为供电子基团,在保持其高三线态能级的同时,具有优良的电荷传输性能,通过共轭基团和吸电子基团调节材料结构,使其同时具备优异的空穴和电子传输性能,拓宽电荷复合区域,同时具备大的反向系间窜越速率,从而有效利用激发三重态能量。此外,咔啉基团可以是芳环上任一位置为N的咔啉,其缺电子性有助于提高电荷迁移率。
进一步地,优选通式(1)的X 1和X 8中有且只有1个是N原子,即,本发明的化合物包含α-咔啉结构,更优选由下述通式之一表示:
Figure PCTCN2019071148-appb-000013
本发明的化合物通过包含α-咔啉结构,可以与附近氢原子形成氢键,避免了化合物键角的过度扭曲导致的键能削弱,可维持更好的化学稳定性,同时在合成上具有明显优势,更易实现高产率的量产,有利于材料的产业化应用。
进一步地,通式(1)中的Ar 1优选为下式所示的结构:
Figure PCTCN2019071148-appb-000014
其中,R 4选自苯基、甲苯基、二甲苯基、异丙基苯基、叔丁基苯基、联苯基;
n为0、1或2;当n为2时,两个R 4可以相同或不同。
更进一步地,通式(1)中的Ar更优选为上述结构中的三嗪或嘧啶基团。
通过将Ar限定为这些基团,可以使化合物具备更快的能量的带隙的反向系间窜越速率,可以更好地利用激发态三线态能量,从而得到更高的效率。基于此,使用了本发明的有机化合物的有机电致发光器件的效率进一步提高。
进一步地,通式(1)中的R 1优选为下述式(5)所示的咔啉基团,该咔啉基团与母核基团通过C-N键连接:
Figure PCTCN2019071148-appb-000015
进一步地,通式(1)中的L优选选自亚苯基、亚二甲苯基、亚联苯基、亚吡啶基、亚氮杂联苯基。
更进一步地,本发明通式(1)所述的化合物优选选自下述C1~C75:
Figure PCTCN2019071148-appb-000016
Figure PCTCN2019071148-appb-000017
Figure PCTCN2019071148-appb-000018
Figure PCTCN2019071148-appb-000019
本发明具有上述结构的有机化合物可发出荧光及延迟荧光,将其应用于有机电致发光元件中,可以得到高效率的有机电致发光元件。
本发明还涉及上述有机化合物在有机电致发光器件中的应用,其可直接作为发光染料使用。
本发明提供一种有机电致发光器件,包括第一电极、第二电极和插入在所述第一电极和第二电极之间的多个有机层,其特征在于,所述有机层中含有上述有机化合物。上述有机化合物可用作发光层中的染料,也可用作主体。
本发明的有机化合物作为有机电致发光器件材料来使用,通过在有机发光元件的发光层中含有该有机发光材料,能量可通过快速的反向系间窜越实现能量的收集,从而提高器件的效率。本发明设计了第一主体、第二主体与染料的材料组合方案,通式(1)所述的本发明新型化合物作为发光层的第二主体,可以实现更高的器件效率和小的效率滚降,本发明所述材料可实现激发态三线态能量的利用,避免在发光层的堆积导致的效率滚降。所述染料可以是荧光染料也可以是磷光染料。
本发明提供一种有机电致发光器件,包括第一电极、第二电极和插入在所述第一电极和第二电极之间的多个有机层,其特征在于,所述器件中含有发射荧光和延迟荧光的有机发光材料,所述有机发光材料的反向系间窜越常数k RISC大于10 4s -1,优选大于10 5s -1,更优选大于10 6s -1。上述有机发光材料是具有热活化延迟荧光性质的有机发光材料,包含donor基团和acceptor基团。上述有机发光材料可以是由通式(1)表示的化合物以外的化合物,但优选为由通式(1)表示的化合物。另外,在本发明的有机发光材料为由通式(1)表示的化合物的情况下,k RISC没有限制,但优选大于10 4s -1,更优选大于10 6s -1
本发明还提供了一种有机电致发光器件,包括第一电极、第二电极和插入在所述第一电极和第二电极之间的若干有机层,其特征在于,所述有机层中含有上述有机化合物,所述化合物可用于传输层,其良好的氧化还原性质有助于器件应用稳定性的提高。
[通过咔唑的芳环连接至母核的情况]
在式(2)所示的结构去掉一个氢所得的基团通过其所包含的咔唑的芳环连接至母核的情况下,式(2)中的R为L 2-Ar 2,式(1)中至少有一个R 1为式(2)所示的结构去掉该H所得的基团,式(2)所示的结构去掉一个氢所得的基团通过Y 5~Y 8所在的芳环与式(1)中X 5~X 8所在的芳环连接。
在这种情况下,本发明的有机化合物优选由下述式(1)表示:
Figure PCTCN2019071148-appb-000020
式(1)中,X 1~X 4别独立选自CR 1或N,X 5~X 8分别独立选自CR 1,且X 1~X 4至少有1个为N原子,R 1选自氢、取代或未取代的C 1~C 12烷基、取代或未取代的C 6~C 30芳基或者取代或未取代的C 3~C 30杂芳基,且至少有1个R 1为下述式(2)所示的结构去掉一个氢所得的基团;当存在多个R 1时,多个R 1彼此间相同或不相同,并且可以和相邻的苯环进行稠合;
Figure PCTCN2019071148-appb-000021
式(2)中,Y 1~Y 4分别独立选自CR 2或N,Y 5~Y 8分别独立选自CR 2,且Y 1~Y 4中至少有1个为N原子;R 2选自氢、取代或未取代的C 1~C 12烷基、取代或未取代的C 1~C 10环烷基、取代或未取代的C 6~C 30芳基或取代或未取代的C 3~C 30杂芳基;当存在多个R 2时,多个R 2彼此间相同或不相同,并且可以和相邻的苯环进行稠合;R为L 2-Ar 2
L 1和L 2分别独立为单键,取代或未取代的C 6~C 30的亚芳基、或者取代或未取代的C 3~C 30的亚杂芳基;
Ar 1和Ar 2彼此相同或不同,选自如下S1~S8结构;
Figure PCTCN2019071148-appb-000022
其中,R 3表示取代或未取代的C 1~C 12烷基、取代或未取代的C 6~C 30芳基或者取代或未取代的C 3~C 30杂芳基;当存在多个R 3时,它们彼此之间相同或不同,并且可以和相邻的苯环或杂环进行稠合;q为0-5的整数;
“取代或未取代”中的取代,若无特别说明,则表示被一个或多个选自C 1~C 12的烷基、C 1~C 12的烷氧基、C 6~C 12的芳基、C 3~C 12的杂芳基、氰基、羟基中的取代基所取代。
由于有机电致发光分子中空穴传输能力往往优于其电子传输能力,通过将苯氰基、吡啶氰基、三嗪基、嘧啶基等吸电子基团引入至分子材料体系中,这类取代基团有着良好的电子传输能力,而这都有助于分子电子传输能力的提升;另外这类基团的吸电子能力较强,从而与中心的连咔唑类基团形成了给体-受体-给体(A-D-A)型结构,有效地增强分子的热活化延迟荧光能力。
进一步地,优选X 1~X 4中的一者为N原子,且Z 1~Z 4中的一者为N原子。
进一步地,优选L 1、L 2彼此独立地为单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚菲基或者取代或未取代的亚吡啶基。
进一步地,优选上述R 1~R 3各自独立地选自取代或未取代的甲基、乙基、异丙基、叔丁基、苯基、萘基、蒽基、吡啶基、噻吩基、噻唑基、呋喃基、咔唑基。
式(2)所示的结构去掉一个氢所得的基团优选通过Y 5~Y 8所在的芳环与式(1)中X 5~X 8所在的芳环连接,进一步优选通过X 6与Y 6相连,或者通过X 5与Y 6相连,或者通过X 5与Y 5相连。
进一步地,作为本发明的化合物的优选例子,可举出选用下述代表性化合物P1~P81:
Figure PCTCN2019071148-appb-000023
Figure PCTCN2019071148-appb-000024
Figure PCTCN2019071148-appb-000025
Figure PCTCN2019071148-appb-000026
另外,本发明还提供了上述含有新型ADA结构的连咔唑类化合物在有机电致发光器件中的用途。其中,所述化合物不但可以用作发光层的客体材料,还能作为主体材料来敏化客体材料。
具体而言,本发明的一个实施方案提供了一种有机电致发光器件,包括第一电极、第二电极和插入在所述第一电极和第二电极之间的至少包含一层发光层的有机层,其中,所述有机层包含本发明的化合物。
进一步地,作为第一电极和第二电极之间的有机层,至少包含发光层,通常还包含电子注入层、电子传输层、空穴传输层、空穴注入层、空穴阻挡层等有机层,其中,含有本发明的化合物的有机层可以用作但不限于用在发光层。
此外,本发明的化合物可以应用于有机电子器件中,所述有机电子器件可举出例如有机电致发光器件、照明元件、有机薄膜晶体管、有机场效应晶体管、有机薄膜太阳能电池、信息标签、电子人工皮肤片材、片材型扫描器等大面积传感器、电子纸及有机EL面板等。
合成实施例
下面以多个合成实施例为例来详述本发明的上述新化合物的具体制备方法,但本发明的制备方法并不限于这些合成实施例。
本发明合成方法中未提到的化合物都是通过商业途径获得的原料产品。实施例中所用的各种化学药品如石油醚、乙酸乙酯、N,N-二甲基甲酰胺、1,4-二氧六环、甲苯、二甲苯、二氯甲烷、碘化亚铜、邻菲罗啉、[1,1’-双(二苯基膦基)二茂铁]二氯化钯、双戊酰二硼、醋酸钾、磷酸钾、(三苯基膦)钯、2-溴-4,6-二苯基-[1,3,5]三嗪、6-氯-9H-吡啶并[2,3-b]吲哚、8-氯-5H-吡啶并[4,3-b]吲哚、3-溴咔唑、5-溴-1,3-苯二腈、4-溴间苯二腈、5-溴-2-氰基吡啶等基础化工原料均购自市面上常见的化工产品提供商,包括但不限于上海泰坦科技股份有限公司和西陇化工股份有限公司。
本发明中的中间体和化合物的分析检测使用ABSCIEX质谱仪(4000QTRAP)和布鲁克核磁共振仪(400M Hz)。
下面对本发明化合物的合成方法进行简要的说明。
合成实施例1-1
化合物C1的合成:
Figure PCTCN2019071148-appb-000027
中间体M1的合成:室温下在一个装有磁力搅拌的1000mL三口烧瓶中加入苯胺17.3g(186mmol,1eq)、2-溴-4-氯吡啶41.3g(216mmol,1.16eq)、Pd 2(dba) 31.7g(18.6mmol,1%eq)、dppf 2.06g(3.7mmol,2%eq)、叔丁醇钠27g(279mmol,1.5eq)、甲苯500mL,加毕,置换氮气3次,开启搅拌,油浴加热升温至回流(油浴温度120℃)反应5小时。TLC跟踪反应显示2,4-二甲基苯胺反应完全(PE/EA=20:1),停止反应。将反应液降至室温,加入500mL甲苯稀释,短硅胶柱抽滤,减压旋干,降至室温得棕黄色固体50g,进一步用石油醚重结晶得到类白色粉末45g。HPLC99.66%,收率为80%。
中间体M2的合成:室温下在一个装有磁力搅拌的1000mL三口烧瓶中加入中间体M1 20.4g(100mmol,1eq)、Pd(OAc)2 2.25g(10mmol,10%eq)、P(Cy) 3HBF 47.36g(20mmol,20%eq)、碳酸钾27.8g(200mmol,2eq)、DMAC 300mL,加毕,置换氮气3次,开启搅拌,电热套加热升温至回流反应4小时。TLC跟踪反应显示中间体(1)反应完全(PE/EA=20:1),停止反应。将反应液降至室温,加入纯水900mL,甲苯300mL分液,水相用甲苯(300mL*2)萃取,合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,短硅胶柱抽滤旋干得到棕黄色固体粗品15g,100mL石油醚重结晶(冷冻)得到13.5g白色粉末固体。HPLC99.84%,收率为60%。
中间体M3的合成:氮气保护下,100mL单口瓶中,将中间体M2 9.8g(58.7mmol,1eq),二氯甲烷50mL,开启搅拌,NBS 1.51g室温滴加,反应过夜;停止反应,过滤,水中反沉淀,旋干即得产物11白色固体,收率93%。
中间体M4的合成:100毫升三口瓶中加入中间体M2、中间体M3、Pd(PPh 3) 4、磷酸钾,然后氮气保护下,加入甲苯和H 2O,在油浴上加热回流反应6h,停止反应,降至室温,加水(50mL)淬灭,EA(50mL*4)萃取,100mL饱和NaCl溶液洗涤,收集有机相加入无水MgSO 4干燥,旋除有机相后,过柱分离(石油醚:乙酸乙酯=10:1)得中间体M2,收率为78.9%。
化合物C1的合成:氮气保护下,1000L单口瓶中,将M4 12g(35.8mmol,1.1eq),2-(4-溴苯基)-4,6-二苯基-1,3,5-三嗪12.6g(32.5mmol,1eq),叔丁醇钠6.2g (65.1mmol,2eq),三叔丁基磷1.1ml(6%,0.06eq),Pd 2(dba) 30.9g(2%,0.02eq)投入反应瓶,随后加入二甲苯300mL,开启搅拌,升温回流反应过夜,停止反应,用200mL甲苯稀释,用500mL水洗,有机相干燥,过硅胶柱,旋干,用甲苯/正己烷重结晶三次,得22g产品,白色固体,收率94%。
产物MS(m/e):641.2,元素分析(C43H27N7):理论值C,80.48%;H,4.24%;N,15.28%;实测值C,80.17%;H,4.21%;N,15.30%。 1H NMR(400MHz,Chloroform)δ8.55(s,4H),8.49–8.33(m,38H),7.83(t,J=52.0Hz,22H),7.51(d,J=8.0Hz,29H),7.32(s,5H),7.19–7.04(m,15H).
合成实施例1-2
化合物C2的合成:
Figure PCTCN2019071148-appb-000028
化合物C2的合成:合成步骤同化合物C1,只是将2-(4-溴苯基)-4,6-二苯基-1,3,5-三嗪换成2-(3-溴苯基)-4,6-二苯基-1,3,5-三嗪,其它试剂不变,得到化合物C2,收率63%。
产物MS(m/e):641.2,元素分析(C43H27N7):理论值C,80.48%;H,4.24%;N,15.28%;实测值C,80.18%;H,4.27%;N,15.22%。 1H NMR(400MHz,Chloroform)δ8.50(d,J=36.4Hz,8H),8.44–8.34(m,31H),8.22(d,J=12.0Hz,9H),7.65(d,J=4.0Hz,8H),7.56(d,J=32.0Hz,18H),7.50(s,14H),7.32(s,4H),7.19–7.05(m,16H).
合成实施例1-3
化合物C5的合成:
Figure PCTCN2019071148-appb-000029
化合物C5的合成:合成步骤同化合物C2,只是将中间体M4换成9H-7,9’-咔啉[2,3-b]咔啉,其它试剂不变,得到化合物C5,收率72%。
产物MS(m/e):714.2,元素分析(C52H34N4):理论值C,87.37%;H,4.79%;N,7.84%;实测值C,87.31%;H,4.90%;N,7.49%。 1H NMR(400MHz,Chloroform)δ8.55(s,21H),8.38(dd,J=21.9,9.9Hz,231H),8.22(d,J=12.0Hz,38H),8.14(s,24H),7.62(d,J=20.0Hz,51H),7.56(dd,J=6.1,4.1Hz,4H),7.54–7.52(m,22H),7.52–7.19(m,172H),7.19–7.05(m,82H).
合成实施例1-4
化合物C10的合成:
Figure PCTCN2019071148-appb-000030
化合物C10的合成:合成步骤同化合物C1,只是将中间体M4换成9’H-9,3’:6’,9”-二咔啉咔啉,其它试剂不变,得到化合物C10,收率67%。
产物MS(m/e):807.3,元素分析(C54H33N9):理论值C,80.28%;H,4.12%;N,15.60%;实测值C,80.31%;H,4.04%;N,15.62%。 1H NMR(400MHz,Chloroform)δ9.27(s,1H),8.69(s,1H),8.53(d,J=15.0Hz,3H),8.46–8.33(m,7H),7.83(t,J=52.0Hz,5H),7.51(d,J=8.0Hz,7H),7.32(s,1H),7.18–7.05(m,5H).
合成实施例1-5
化合物C12的合成:
Figure PCTCN2019071148-appb-000031
中间体M5的合成:氮气保护下,1000L单口瓶中,将2-氯-4,6-二苯基-1,3,5-三嗪30g(0.11mol,1eq),间氯苯硼酸19.5g(0.12mol,1.1eq),碳酸钾46.8g(0.33mol,3eq)投入反应瓶,随后加入二氧六环300mL,水150mL,开启搅拌,反应溶液鼓氮气20min,再加入四三苯基磷钯1.2g(1%,0.01eq),升温回流反应过夜,停止反应,分液,水相用乙酸乙酯200mL提取,合并有机相,过短柱子,旋干,甲苯重结晶得25g白色固体,收率65%。
中间体M6的合成:氮气保护下,1000L单口瓶中,将M5 23g(67mmol,1eq),醋酸钾19.7g(201mmol,3eq),三环己基膦四氟硼酸盐1.5g(3.9mmol,0.06eq),1g(1.3mmol,2%)投入反应瓶,随后加入DMF 300mL,开启搅拌,升温回流反应过夜,停止反应,倾倒入600mL水中,抽滤,固体用甲苯溶解,过硅胶柱,洗提液旋干,石油醚煮洗得25.5g白色固体产品,收率87.6%。
中间体M7的合成:氮气保护下,1000L单口瓶中,将M6 25.5g(58.7mmol,1eq),间氯溴苯12.4g(64.6mmol,1.1eq),碳酸钾24.3g(176.3mol,3eq)投入反应瓶,随后加入二氧六环300mL,水150mL,开启搅拌,反应溶液鼓氮气20min,再加入四三苯基磷钯0.7g(1%,0.01eq),升温回流反应过夜,停止反应,分液,水相用乙酸乙酯200mL提取,合并有机相,过短柱子,旋干,甲苯重结晶得15g白色固体,收率61%。
化合物C12的合成:合成步骤同化合物C10,只是将2-(4-溴苯基)-4,6-二苯基-1,3,5-三嗪换成中间体M7,其它试剂不变,得到化合物C12,收率62%。
产物MS(m/e):883.3,元素分析(C60H37N9):理论值C,81.52%;H,4.22%;N,14.26%;实测值C,81.54%;H,4.20%;N,14.24%。 1H NMR(400MHz,Chloroform)δ9.67(s,1H),9.53(s,1H),8.55(s,2H),8.48(s,2H),8.39(dd,J=14.0,10.0Hz,8H), 8.24(d,J=22.4Hz,2H),7.75–7.57(m,5H),7.54–7.40(m,9H),7.32(s,1H),7.18–7.05(m,5H).
合成实施例1-6
化合物C13的合成:
Figure PCTCN2019071148-appb-000032
中间体M8的合成:合成步骤同中间体M5,只是将2-氯-4,6-二苯基-1,3,5-三嗪改为3-氯-2,5-二苯基吡嗪,其它试剂不变,得到中间体M8,收率73%。
化合物C13的合成:合成步骤同化合物C1,只是将2-(4-溴苯基)-4,6-二苯基-1,3,5-三嗪换成中间体M8,其它试剂不变,得到化合物C13,收率53%。
产物MS(m/e):640.2,元素分析(C44H28N6):理论值C,82.48%;H,4.40%;N,13.12%;实测值C,82.43%;H,4.38%;N,13.11%。 1H NMR(400MHz,Chloroform)δ8.78(d,J=8.0Hz,13H),8.55(s,6H),8.48–8.33(m,39H),8.26(s,12H),7.90–7.66(m,16H),7.59(s,18H),7.53(d,J=8.0Hz,19H),7.34(d,J=12.0Hz,31H),7.19–7.05(m,22H).
合成实施例1-7
化合物C15的合成:
Figure PCTCN2019071148-appb-000033
化合物C15的合成:合成步骤同化合物C1,只是将2-(4-溴苯基)-4,6-二苯基-1,3,5-三嗪换成2-(4-溴苯基)-4,6-二苯基嘧啶,其它试剂不变,得到化合物C15,收率61%。
产物MS(m/e):640.2,元素分析(C44H28N6):理论值C,82.48%;H,4.40%;N,13.12%;实测值C,82.45%;H,4.42%;N,13.16%。 1H NMR(400MHz,Chloroform) δ8.55(s,2H),8.47–8.26(m,10H),8.23(s,2H),7.92(t,J=6.0Hz,16H),7.66(s,2H),7.52(t,J=12.0Hz,14H),7.32(s,2H),7.19–7.05(m,7H).
合成实施例2-1
化合物P9的合成
Figure PCTCN2019071148-appb-000034
中间体M2的制备
在N 2保护下,将20.2g(100mmol)M1(6-氯-9H-吡啶并[2,3-b]吲哚),34.21g(110mmol)2-溴-4,6-二苯基-[1,3,5]三嗪,0.38g(2mmol)CuI,0.72g(4mmol)邻菲罗啉,42.45g(200mmol)磷酸钾加入到三口烧瓶中,并加入500ml二甲苯,145℃回流过夜。反应结束后,将所得溶液冷却至室温,加入水及乙酸乙酯萃取,浓缩有机相,得到的粗产品用石油醚和二氯甲烷(PE:DCM=10:1)为流动相过柱子。得到白色固体粉末29.15g。
中间体M3的制备
在N 2保护下,将43.3g(100mmol)M2,1.46g(2mmol)Pd(dppf)Cl 2,1.02g(4mmol)双戊酰二硼,19.6g(200mmol)KCOOCH 3加入到三口烧瓶中,并加入600ml的1,4-二氧六环,101℃回流过夜。反应结束后,将所得溶液冷却至室温,加入水及乙酸乙酯萃取,浓缩有机相,得到的粗产品用甲苯重结晶得到白色固体35.94g。
化合物P9的制备
在N 2保护下,将4.33g(10mmol)M2,5.77g(11mmol)M3,0.23g(0.2mmol)四三苯基磷钯,2M磷酸钾溶液15ml加入到三口烧瓶中,并加入30ml的1,4-二氧六环,100℃回流过夜。反应结束后,将所得溶液冷却至室温,加入水及乙酸乙酯萃取,浓缩有机相,得到的粗产品用石油醚和二氯甲烷(PE:DCM=5:1)为流动相过柱子,得到产品使用甲苯冷热重结晶后,得到白色固体粉末5.28g,纯度99.6%。
P9质谱分子量理论值796.9,分子量检测值796.5。元素分析理论值C,78.38%;H,4.05%;N,17.58%,元素分析检测值C,78.55%;H,4.16%;N,17.38%。
合成实施例2-2
化合物P21的合成
Figure PCTCN2019071148-appb-000035
中间体M2和M3的制备与上述方案相同。
中间体M4的制备
在N 2保护下,将24.6g(100mmol)的3-溴咔唑,57.7g(111mmol)M3,2.3g(2mmol)四三苯基磷钯,2M磷酸钾溶液150ml加入到三口烧瓶中,并加入300ml的1,4-二氧六环,100℃回流过夜。反应结束后,将所得溶液冷却至室温,加入水及乙酸乙酯萃取,浓缩有机相,得到的粗产品用石油醚和二氯甲烷(PE:DCM=5:1)为流动相过柱子,得到产品使用甲苯冷热重结晶后,得到白色固体粉末M4约有39.8g。
化合物P21的制备
在N 2保护下,将57g(110mmol)M4,20.5g(100mmol)4-溴间苯二腈,3.8g(20mmol)CuI,7.22g(40mmol)邻菲罗啉,42.45g(200mmol)磷酸钾加入到三口烧瓶中,并加入500ml的DMF,145℃回流过夜。反应结束后,将所得溶液冷却至室温,加入水及乙酸乙酯萃取,浓缩有机相,得到的粗产品用石油醚和二 氯甲烷(PE:DCM=3:1)为流动相过柱子,收集样品使用甲苯做冷热重结晶,得到白色固体粉末49.6g,纯度99.3%。
P21质谱分子量理论值690.7,分子量检测值690.6。元素分析理论值C,79.98%;H,3.79%;N,16.22%,元素分析检测值C,80.18%;H,3.86%;N,16.12%。
合成实施例2-3
化合物P54的合成:
Figure PCTCN2019071148-appb-000036
中间体M6的制备
在N 2保护下,将20.2g(100mmol)的M5(8-氯-5H-吡啶并[4,3-b]吲哚),20.5g(100mmol)5-溴-1,3-苯二腈,0.38g(2mmol)CuI,0.72g(4mmol)邻菲罗啉,42.45g(200mmol)磷酸钾加入到三口烧瓶中,并加入500ml二甲苯,145℃回流过夜。反应结束后,将所得溶液冷却至室温,加入水及乙酸乙酯萃取,浓缩有机相,得到的粗产品用石油醚和二氯甲烷(PE:DCM=10:1)为流动相过柱子。得到白色固体粉末20.5g。
中间体M7的制备
在N 2保护下,将32.8g的(100mmol)M6,1.46g(2mmol)Pd(dppf)Cl 2,1.02g(4mmol)双戊酰二硼,19.6g(200mmol)KCOOCH 3加入到三口烧瓶中,并加入600ml的1,4-二氧六环,101℃回流过夜。反应结束后,将所得溶液冷却至室温, 加入水及乙酸乙酯萃取,浓缩有机相,得到的粗产品用甲苯重结晶得到白色固体30.44g。
中间体M8的制备
在N 2保护下,将20.2g(100mmol)的M5,46.2g(111mmol)M7,2.3g(2mmol)四三苯基磷钯,2M磷酸钾溶液150ml加入到三口烧瓶中,并加入300ml的1,4-二氧六环,100℃回流过夜。反应结束后,将所得溶液冷却至室温,加入水及乙酸乙酯萃取,浓缩有机相,得到的粗产品用石油醚和二氯甲烷(PE:DCM=6:1)为流动相过柱子,得到产品使用甲苯冷热重结晶后,得到白色固体粉末M4约有36.7g。
化合物P54的制备
在N 2保护下,将50.8g(110mmol)M4,18.2g(100mmol)5-溴-2-氰基吡啶,3.8g(20mmol)CuI,7.22g(40mmol)邻菲罗啉,42.45g(200mmol)磷酸钾加入到三口烧瓶中,并加入500ml的DMF,145℃回流过夜。反应结束后,将所得溶液冷却至室温,加入水及乙酸乙酯萃取,浓缩有机相,得到的粗产品用石油醚和二氯甲烷(PE:DCM=4:1)为流动相过柱子,收集样品使用甲苯做冷热重结晶,得到白色固体粉末43.6g,纯度99.1%。
P54质谱分子量理论值562.6,分子量检测值562.3。元素分析理论值C,76.86%;H,3.23%;N,19.92%,元素分析检测值C,76.77%;H,3.32%;N,19.97%。
本发明的化合物的量化计算
本发明的化合物C1~C75的能量结构可通过量子化学计算得到,采用高斯09软件为平台,以密度泛函理论方法(DFT)作为计算方法,以6-31g(d)为基组,对设计化合物进行了量化理论计算。通过对设计化合物几何构型的优化计算,得到化合物的空间构型,相应的分子轨道能级(HOMO能级、LUMO能级)分布及数据;进而以TD-DFT对化合物的激发态能级的计算,得到化合物的激发态能级(T1,S1)。量化计算结果见表1。
表1本发明部分化合物的量化计算结果:
  HOMO(eV) LUMO(eV) S1 T1
C1 -5.42 -1.87 3.20 2.82
C2 -5.45 -1.89 3.19 2.88
C3 -5.41 -1.85 3.17 2.85
C4 -5.51 -1.89 3.13 2.89
C7 -5.50 -1.93 3.11 2.91
C10 -5.49 -1.91 3.13 2.99
C11 -5.47 -1.87 3.21 2.98
C13 -5.41 -1.88 3.18 2.92
C16 -5.42 -1.83 3.12 2.95
C17 -5.46 -1.92 3.11 2.96
C22 -5.42 -1.88 3.12 2.95
C23 -5.43 -1.89 3.09 2.97
C24 -5.48 -1.86 3.07 2.99
C25 -5.51 -1.83 3.08 2.94
C28 -5.39 -1.84 3.13 2.96
C29 -5.41 -1.86 3.10 2.95
C32 -5.43 -1.88 3.12 2.95
C33 -5.42 -1.88 3.11 2.96
C34 -5.41 -1.86 3.13 2.88
C37 -5.42 -1.85 3.13 2.83
C38 -5.43 -1.86 3.12 2.86
C40 -5.41 -1.92 3.03 2.91
C42 -5.39 -1.91 3.03 2.93
C43 -5.38 -1.78 3.02 2.95
C45 -5.42 -1.81 3.01 2.94
C47 -5.43 -1.79 3.04 2.99
C51 -5.43 -1.82 3.10 2.94
C55 -5.45 -1.86 3.13 2.96
C56 -5.37 -1.84 3.12 2.95
C57 -5.38 -1.79 3.13 2.93
C58 -5.39 -1.83 3.11 2.96
C61 -5.37 -1.84 3.13 2.97
C62 -5.42 -1.86 3.21 3.01
C63 -5.42 -1.79 3.17 2.99
C64 -5.46 -1.76 3.11 2.95
C68 -5.43 -1.82 3.03 2.89
C69 -5.43 -1.83 3.02 2.83
C72 -5.41 -1.81 3.01 2.84
C73 -5.43 -1.86 3.04 2.93
C75 -5.44 -1.81 3.04 2.89
化合物速率常数测试:
化合物系间窜越系数可以通过瞬态荧光光谱和荧光量子产率测试仪,结合下述公式得到。
Figure PCTCN2019071148-appb-000037
Figure PCTCN2019071148-appb-000038
Figure PCTCN2019071148-appb-000039
Figure PCTCN2019071148-appb-000040
其中,C1为荧光成分比例,τ pd为荧光部分和延迟荧光部分寿命,Φ PLQY为化合物荧光量子产率。
化合物瞬态荧光寿命在溶液中测试得到。溶液中通入氮气15min除氧后,用爱丁堡FLS920稳态瞬态荧光光谱仪得到瞬态发射光谱,并对光谱进行二级拟合得到荧光和延迟荧光部分的成分比例C1和C2(C1+C2=1),以及荧光和延迟荧光部分的寿命τ p和τ d。化合物的荧光量子产率由绝对荧光量子产率仪C9920(Hamamatsu)测试得到。
化合物C1,C2,C10和C12的系间窜越速率常数数据见表2。
表2:四种化合物的瞬态荧光数据
Figure PCTCN2019071148-appb-000041
有机电致发光器件
接下来,对有机电致发光器件进行详细说明。
本发明的一个实施方案提供了一种有机电致发光器件,包括位于基板上的第一电极和第二电极、以及插入所述第一电极和第二电极之间的多个有机层,其中,所述有机层中含有上述式(1)所示的化合物。关于该构成,于下文详细叙述。
更具体地,所述有机层包含空穴传输层、发光层、电子传输层;还可以包含空穴注入层、电子注入层等。以下,对有机电致发光元件的各构件及各层进行说明。
[发光层]
发光层是通过自阳极及阴极分别注入的空穴与电子进行再结合而生成激子后进行发光的层。
本发明的有机电致发光器件中,发光层可以使用单一有机发光材料,也可使用具有主体材料(host)和客体材料(也称掺杂剂或染料)组合的掺杂体系。作为有机发光层,可以单独使用本发明的有机化合物;为了获得高效率的稳定器件,优选使用本发明所述有机化合物作为第二主体,荧光或磷光染料为掺杂剂的材料组合体系。
在使用主客体掺杂体系的器件中,本发明的有机发光材料在发光层中含有的量可在1~99%的范围。
在使用主客体掺杂体系的器件中,客体材料可选用磷光发光材料,优选含Ir,Pt的配合物。具体可举出如下化合物:
Figure PCTCN2019071148-appb-000042
Figure PCTCN2019071148-appb-000043
Figure PCTCN2019071148-appb-000044
Figure PCTCN2019071148-appb-000045
在使用主客体掺杂体系的器件中,客体材料可选用荧光发光材料,具体可举出:
Figure PCTCN2019071148-appb-000047
Figure PCTCN2019071148-appb-000048
,优选含有核壳结构的化合物,其分子激发态第一三线态能级分布的部分为核,其外围没有激发态第一三线态能级分布的大位阻基团为壳,所述大位阻基团是指基团半径大于氢原子原子半径的基团,采用这类结构的化合物能阻止其三线态能量的Dexter能量传递过程。
器件发光层主体材料包括但不限于以下所列出的TDH1-TDH24的一种或多种化合物的组合。
Figure PCTCN2019071148-appb-000049
Figure PCTCN2019071148-appb-000050
荧光掺杂材料选自以下分子结构中的至少一种:
Figure PCTCN2019071148-appb-000051
Figure PCTCN2019071148-appb-000052
[其他层]
本发明的有机电致发光器件优选被基板所支撑。该基板并无特别限制,只要为先前于有机电致发光元件中所用的基板即可,例如可使用包含玻璃、透明塑料、石英、硅等的基板。
阳极可以采用无机材料或有机导电聚合物。无机材料一般为氧化铟锡(ITO)、氧化锌(ZnO)、氧化铟锌(IZO)等金属氧化物或金、铜、银等功函数较高的金 属,优选ITO;有机导电聚合物优选为聚噻吩/聚乙烯基苯磺酸钠(以下简称PEDOT/PSS)、聚苯胺(以下简称PANI)中的一种。
阴极一般采用锂、镁、钙、锶、铝、铟等功函数较低的金属或它们与铜、金、银的合金,或金属与金属氟化物交替形成的电极层。本发明中阴极优选为层叠的LiF层和Al层(LiF层在外侧)。
空穴传输层的材料包含具有传输空穴的功能的空穴传输材料,且空穴传输层可设置单层或数层。空穴传输层可以为但不限于以下所列出的HT1-HT31的一种或多种化合物的组合。
Figure PCTCN2019071148-appb-000053
Figure PCTCN2019071148-appb-000054
电子传输层的材料包含具有传输电子的功能的电子传输材料,且电子传输层可设置单层或数层。电子传输层的材料可采用有机金属配合物(如Alq3、Gaq3、BAlq或Ga(Saph-q))、通式(1)所述有机化合物或其他常用于电子传输层的材料,如芳香稠环类(如pentacene、苝)或邻菲咯啉类(如Bphen、BCP)化合物,也可以采用以下所列出的ET1-ET57的一种或多种化合物的组合。
Figure PCTCN2019071148-appb-000055
Figure PCTCN2019071148-appb-000056
Figure PCTCN2019071148-appb-000057
本发明的有机电致发光器件还可具有注入层,所述注入层是为了降低驱动电压或提高发光亮度而设置于电极与有机层间的层。注入层包括电子注入层与空穴注入层,可存在于阳极与发光层或空穴传输层之间、及阴极与发光层或电子传输层之间。注入层可根据需要进行设置。所述电子注入层的材料可采用LiF等有利于电子注入的材料,例如,LiQ,LiF,NaCl,CsF,Li 2O,Cs 2CO 3,BaO,Na,Li,Ca中的一种或多种的组合。所述空穴注入层的材料例如可采用4,4’,4”-三(3-甲基苯基苯胺)三苯胺掺杂F4TCNQ,或者采用铜酞菁(CuPc),或可为金属氧化物类,如氧化钼,氧化铼,也可以采用以下所列出的HI-1-HI-3的一种或多种化合物的组合。
Figure PCTCN2019071148-appb-000058
本发明的有机电致发光器件还可具有阻挡层,阻挡层是能够阻挡存在于发光层中的电荷(电子或空穴)及/或激子向发光层外扩散的层。电子阻挡层可配置于发光层及空穴传输层之间,而阻挡电子朝向空穴传输层的方向通过发光层。同样地,空穴阻挡层可配置于发光层及电子传输层之间,阻挡空穴向电子传输层的方向通过发光层。此外,阻挡层可用以阻挡激于自发光层的外向扩散。也就是说,电子阻挡层、空穴阻挡层也可分别兼具作为激子阻挡层的功能。
上述各层的厚度可采用本领域中这些层常规的厚度。
器件实施例
本发明还提供所述有机电致发光器件的制备方法,如附图7所示,包括在基板01上依次沉积彼此层叠的阳极02、空穴注入层04、空穴传输层05、发光层06、电子传输层07及阴极03,然后封装。
由上,本发明的有机电致发光器件优选的器件结构为:
基片/阳极/空穴注入层(HIL)/空穴传输层(HTL)/发光层(EL)/电子传输层(ETL)/电子注入层(EIL)/阴极
上述器件结构中的“/”表示不同功能层之间按顺序层叠。
本发明化合物可以但不限于用于发光层材料。
上述有机电致发光器件各层中未注明来源的材料均是通过市售或本领域公知的制备方法自行制备得到的。
下面通过有机电致发光器件的具体实施例来进一步说明本发明的技术方案和效果。
首先,本发明的有机化合物中式(2)所示的结构去掉一个氢所得的基团通过其包含的咔唑的氮与母核基团进行连接的情况下,其适合在有机电致发光器件的发光层中用作染料或主体材料。
器件实施例1-1~器件实施例1-14
所述发光层包含第一主体、第二主体和染料的掺杂体系,第一主体材料采用CBP,第二主体材料采用本发明中的有机化合物,4i-PrCzBN作为染料,有机电致发光器件真空蒸镀而成,其结构如下:
ITO(50nm)/2-TNATA(60nm)NPB(20nm)/mCBP:Cx:4i-PrCzBN(5wt%)(30nm)/Bphen(20nm)/LiF(0.5nm)/Al(150nm)。其中,Cx为本发明提供的通式(1)中的具体化合物。使用现有技术中的化合物TD1、TD2和TD3作为对比材料。下式示出了OLED器件中各功能层所使用材料的结构式:
Figure PCTCN2019071148-appb-000059
器件实施例1~1的有机电致发光器件的制备过程如下:
将涂布了ITO(50nm)透明导电层的玻璃板在商用清洗剂中超声处理,在去离子水中冲洗,在丙酮:乙醇混合溶剂(体积比1:1)中超声除油,在洁净环境下烘烤至完全除去水分,用紫外光和臭氧清洗,并用低能阳离子束轰击表面;
把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10 -5~9×10 -3Pa,在上述阳极层膜上真空蒸镀2-TNATA[4,4’,4”-三(N,N-(2-萘基)-苯基氨基)三苯胺],形成厚度为60nm的空穴注入层;在空穴注入层之上真空蒸镀化合物NPB,形成厚度为20nm的空穴传输层,蒸镀速率为0.1nm/s;
在上述空穴传输层上形成电致发光层,具体操作为:将作为发光层主体的化合物mCBP放置在真空气相沉积设备的小室中,将作为第二主体的本发明的化合物C1放置在真空气相沉积设备的另一室中,将作为掺杂剂的化合物4i-PrCzBN放置在真空气相沉积设备的另一室中,以不同的速率同时蒸发三种材料,化合物比例为PH:TD:BD=65%:30%:5%,蒸镀总膜厚为30nm;
在发光层之上真空蒸镀Bphen形成厚膜为20nm的电子传输层,其蒸镀速率为0.1nm/s;
在电子传输层上真空蒸镀0.5nm的LiF作为电子注入层和厚度为150nm的Al层作为器件的阴极。
本实施例中制备得到的有机电致发光器件的结构如下:ITO(50nm)/2-TNATA(60nm)/NPB(20nm)/mCBP:C1:4i-PrCzBN(30nm)/Bphen(20nm)/LiF(0.5nm)/Al(150nm)。
实施例1-2~1-14
实施例1-2~1-14采用和实施例1-1相同的器件制作方法,区别仅在于,将主体材料化合物C1分别替换等当量的化合物C2、C4、C10、C11、C12、C19、C20、C34、C49、C55、C56、C67和C73。
实施例1-15~1-18
实施例1-15~1-18制备得到的有机电致发光器件的结构如下:ITO(50nm)/2-TNATA(60nm)/NPB(20nm)/mCBP:Cx(30%)(30nm)/Bphen(20nm)/LiF(0.5nm)/Al(150nm)。
其中Cx分别为C1,C2,C10和C12。
比较例1-1~1-4
比较例1-1~1-4采用与实施例1-1相同的制作方法,区别仅在于,将主体材料C1分别置换为等当量的TD1,TD2,TD3作为发光层中的第二主体材料,以及替换为仅采用唯一化合物mCBP为单主体结构器件的对比实验实施例。
将制造出的有机电致发光器件进行光电测试,J-V-L(电流密度-压-亮度)性能的测试采用Keithley 2400电源单元和已校正的硅光电二极管。亮度利用分光光度计(型号:Spectr Scan PR655,Photo Research)测试。在亮度1000cd/m 2下,测定比较例1-1~1-4和实施例1-1~1-14中制备得到的有机电致发光器件的电压和效率,结果见表3。
表3有机电致发光器件性能
Figure PCTCN2019071148-appb-000060
以上结果表明,本发明的新的化合物用于有机电致发光器件的发光层作为敏化剂,可以有效的提高电流效率,是性能良好的有机发光材料。这可能是由于实施例的化合物中包含氮杂咔唑基团尤其是咔啉基团,与比较例1-1~1-3的咔唑基团相比,化合物的光谱蓝移,激发态能量更高,从而能有效的敏化荧光化合物;同时由于咔啉氮原子的存在,可以形成分子内氢键,从而提高化合物刚性,荧光量子产率相对较高。
另外,通过实施例可以发现,拉电子基采用三嗪或嘧啶基团的化合物(实施例1-1~1-12和1-15~1-18)效率要更优于吡啶类化合物(实施例1-13和1-14),这是由于其具备更快的能量的带隙的反向系间窜越速率,激发态三线态能量可以得到更好的利用。
根据实施例1-15~1-18可见,本发明所述热活化延迟荧光材料,可用作染料具备高的荧光量子效率。为了获得更好的色纯度,采用本发明设计的具有特殊结构的材料用作敏化剂制备的OLED器件在要求亮度下(1000cd/m 2)的电流效率最大可达到11.8cd/A,有明显的提高,特别是采用三嗪基团的化合物,由于其更好的电荷注入传输性能,器件效率更优。
在对比实施例中,比较例1-1中的效率较低,是由于TD1的能量较低,不能实现能量有第二主体到染料的快速传递,从而导致电压升高和效率的下降。比较例1-2中所用化合物TD2的kRISC为0s -1(Hosokai et al.,Sci.Adv.2017;3:e1603282),由于材料的三线态能级不能传递到激发态单线态能级,从而使效率降低;比较例1-3中尽管化合物TD3的△Est为0.41eV(Chem.Sci.,2016,7,3355–3363),但仍具有热活化延迟荧光性能,也能获得较高的器件效率;比较例1-4中由于没有第二主体材料的存在,能量直接由主体传至染料,由三线态能量不能有效利用,从而效率较低。
其次,本发明的有机化合物中式(2)所示的结构去掉一个氢所得的基团通过其包含的咔唑的芳环与母核基团进行连接的情况下,其适合在有机电致发光器件的发光层中用作客体材料(本发明中为染料材料)或主体材料。
[本发明化合物作为染料材料]
有机电致发光器件制备
将涂布了ITO透明导电层的玻璃板在商用清洗剂中超声处理,在去离子水中冲洗,在丙酮:乙醇混合溶剂中超声除油,在洁净环境下烘烤至完全除去水分,用紫外光和臭氧清洗,并用低能阳离子束轰击表面;
把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10 -5~9×10 -3Pa,在上 述阳极层膜上真空蒸镀HI-2作为空穴注入层,蒸镀速率为0.1nm/s,蒸镀膜厚为10nm;
在空穴注入层之上真空蒸镀HT-2作为器件的空穴传输层,蒸镀速率为0.1nm/s,蒸镀总膜厚为80nm;
在空穴传输层之上真空蒸镀器件的发光层,发光层包括主体材料和染料材料,利用多源共蒸的方法,调节主体材料TDH10蒸镀速率为0.1nm/s,各实施例和比较例中的染料蒸镀速率30%比例设定,蒸镀总膜厚为30nm;
在发光层之上真空蒸镀器件的电子传输层材料ET-34,其蒸镀速率为0.1nm/s,蒸镀总膜厚为20nm;
在电子传输层(ETL)上真空蒸镀厚度为0.5nm的LiF作为电子注入层,厚度为150nm的Al层作为器件的阴极。
有机电致发光器件的测试方法
对由上述过程制备的有机电致发光器件进行如下性能测定:
在同样亮度下,使用Photo Research公司的PR 750型光辐射计ST-86LA型亮度计(北京师范大学光电仪器厂)及Keithley4200测试系统测定实施例2-1~2-9以及比较例2-1中制备得到的有机电致发光器件的驱动电压和电流效率。具体而言,以每秒0.1V的速率提升电压,测定当有机电致发光器件的亮度达到1000cd/m 2时的电压即驱动电压,同时测出此时的电流密度;亮度与电流密度的比值即为电流效率。
实施例2-1
使用本发明化合物P4作为发光层中的染料材料,按照上文所述的方法制备以下各器件,使其具有以下结构,并按照上述有机电致发光器件测试方法进行器件性能测试。
ITO(150nm)/HI-2(10nm)/HT-2(40nm)/TDH10:30%P4(30nm)/ET34(20nm)/LiF(0.5nm)/Al(150nm)
其中30%表示P4相对于TDH10的重量比为30%,以下实施例和比较例也按此方式表达。
实施例2-2
使用本发明化合物P9作为发光层中的染料材料,按照上文所述的方法制备以下各器件,使其具有以下结构,并按照上述有机电致发光器件测试方法进行器件性能测试。
ITO(150nm)/HI2(10nm)/HT2(40nm)/TDH10:30%P9(30nm)/ET34(20nm)/LiF(0.5nm)/Al(150nm)
实施例2-3
使用本发明化合物P13作为发光层中的染料材料,按照上文所述的方法制备以下各器件,使其具有以下结构,并按照上述有机电致发光器件测试方法进行器件性能测试。
ITO(150nm)/HI2(10nm)/HT2(40nm)/TDH10:30%P13(30nm)/ET34(20nm)/LiF(0.5nm)/Al(150nm)
实施例2-4
使用本发明化合物P32作为发光层中的染料材料,按照上文所述的方法制备以下各器件,使其具有以下结构,并按照上述有机电致发光器件测试方法进行器件性能测试。
ITO(150nm)/HI2(10nm)/HT2(40nm)/TDH10:30%P32(30nm)/ET34(20nm)/LiF(0.5nm)/Al(150nm)
实施例2-5
使用本发明化合物P33作为发光层中的染料材料,按照上文所述的方法制备以下各器件,使其具有以下结构,并按照上述有机电致发光器件测试方法进行器件性能测试。
ITO(150nm)/HI2(10nm)/HT2(40nm)/TDH10:30%P33(30nm)/ET34(20nm)/LiF(0.5nm)/Al(150nm)
实施例2-6
使用本发明化合物P46作为发光层中的染料材料,按照上文所述的方法制备以下各器件,使其具有以下结构,并按照上述有机电致发光器件测试方法进行器件性能测试。
ITO(150nm)/HI2(10nm)/HT2(40nm)/TDH10:30%P46(30nm)/ET34(20nm)/LiF(0.5nm)/Al(150nm)
实施例2-7
使用本发明化合物P47作为发光层中的染料材料,按照上文所述的方法制备以下各器件,使其具有以下结构,并按照上述有机电致发光器件测试方法进行器件性能测试。
ITO(150nm)/HI2(10nm)/HT2(40nm)/TDH10:30%P47(30nm)/ET37(20nm)/LiF(0.5nm)/Al(150nm)
实施例2-8
使用本发明化合物P48作为发光层中的染料材料,按照上文所述的方法制备以下各器件,使其具有以下结构,并按照上述有机电致发光器件测试方法进行器件性能测试。
ITO(150nm)/HI2(10nm)/HT2(40nm)/TDH10:30%P48(30nm)/ET34(20nm)/LiF(0.5nm)/Al(150nm)
实施例2-9
使用本发明化合物P57作为发光层中的染料材料,按照上文所述的方法制备以下各器件,使其具有以下结构,并按照上述有机电致发光器件测试方法进行器件性能测试。
ITO(150nm)/HI2(10nm)/HT2(40nm)/TDH10:30%P57(30nm)/ET34(20nm)/LiF(0.5nm)/Al(150nm)
比较例2-1
比较例2-1中的有机电致发光器件所选用的染料材料为R1,化合物R1可通过上述合成实施例中例示的方法获得。
Figure PCTCN2019071148-appb-000061
使用化合物R1作为发光层中的染料材料,按照上文所述的方法制备以下各器件,使其具有以下结构,并按照上述有机电致发光器件测试方法进行器件性能测试。
ITO(150nm)/HI2(10nm)/HT2(40nm)/TDH10:30%R1(30nm)/ET34(20nm)/LiF(0.5nm)/Al(150nm)
有机电致发光器件性能见下表:
表4有机电致发光器件性能
Figure PCTCN2019071148-appb-000062
由上表数据可以看到:
实施例2-1~2-9采用本发明化合物的电致发光器件性能相对于比较例2-1采用R1染料的OLED有机电致发光性能,本发明化合物获得了更高的电流效率和较低的驱动电压;这说明将N取代咔唑这类基团引入染料中,相对于R1的连咔唑基团,可以明显提升材料的电子传输能力。制备成有机电致发光器件时,具有可以明显降低驱动电压及提高发光效率的优势。
同时,采用本发明化合物P4、P13、P32和P33作为染料的实施例2-1、2-3~2-5的OLED有机电致发光性能要略差于采用P9、P46、P47、P48和P57作为染料的实施例2-2、2-6~2-9的OLED有机电致发光性能,P9获得了更高的电流效 率和较低的驱动电压;这说明将连咔啉基团引入分子中,相比于其他的N取代连咔唑基团,似乎具有更进一步降低驱动电压及提高发光效率的优势。
以上结果表明,本发明的新型有机材料用于有机电致发光器件,可以有效地降低起降电压,提高电流效率,且具有良好的稳定性能,是性能良好的染料材料。
另外,如上所述,本发明的化合物还可以作为发光层的主体材料使用,用于敏化客体荧光染料。
[本发明化合物作为主体材料]
有机电致发光器件制备
将涂布了ITO透明导电层的玻璃板在商用清洗剂中超声处理,在去离子水中冲洗,在丙酮:乙醇混合溶剂中超声除油,在洁净环境下烘烤至完全除去水分,用紫外光和臭氧清洗,并用低能阳离子束轰击表面;
把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10 -5~9×10 -3Pa,在上述阳极层膜上真空蒸镀HI-2作为空穴注入层,蒸镀速率为0.1nm/s,蒸镀膜厚为10nm;
在空穴注入层之上真空蒸镀HT-2作为器件的空穴传输层,蒸镀速率为0.1nm/s,蒸镀总膜厚为80nm;
在空穴传输层之上真空蒸镀器件的发光层,发光层包括主体材料和染料材料,利用多源共蒸的方法,调节各实施例和比较例中的主体材料蒸镀速率为0.1nm/s,染料F8蒸镀速率30%比例设定,蒸镀总膜厚为30nm;
在发光层之上真空蒸镀器件的电子传输层材料ET-34,其蒸镀速率为0.1nm/s,蒸镀总膜厚为20nm;
在电子传输层(ETL)上真空蒸镀厚度为0.5nm的LiF作为电子注入层,厚度为150nm的Al层作为器件的阴极。
有机电致发光器件的测试方法
对由上述过程制备的有机电致发光器件进行如下性能测定:
在同样亮度下,使用Photo Research公司的PR 750型光辐射计ST-86LA型亮度计(北京师范大学光电仪器厂)及Keithley4200测试系统测定实施例2-10~2-15以及比较例2-2中制备得到的有机电致发光器件的驱动电压和电流效率。具体而言,以每秒0.1V的速率提升电压,测定当有机电致发光器件的亮度达到10000 cd/m 2时的电压即驱动电压,同时测出此时的电流密度;亮度与电流密度的比值即为电流效率。
实施例2-10
使用本发明化合物P3作为发光层中的主体材料,按照上文所述的方法制备以下各器件,使其具有以下结构,并按照上述有机电致发光器件测试方法进行器件性能测试。
ITO(150nm)/HI2(10nm)/HT2(40nm)/P3:30%F8(30nm)/ET34(20nm)/LiF(0.5nm)/Al(150nm)
其中,30%表示染料F8相对于P3的重量比为30%,以下实施例和比较例中也按此方式表达。
实施例2-11:
使用本发明化合物P13作为发光层中的主体材料,按照上文所述的方法制备以下各器件,使其具有以下结构,并按照上述有机电致发光器件测试方法进行器件性能测试。
ITO(150nm)/HI2(10nm)/HT2(40nm)/P13:30%F8(30nm)/ET34(20nm)/LiF(0.5nm)/Al(150nm)
实施例2-12:
使用本发明化合物P46作为发光层中的主体材料,按照上文所述的方法制备以下各器件,使其具有以下结构,并按照上述有机电致发光器件测试方法进行器件性能测试。
ITO(150nm)/HI2(10nm)/HT2(40nm)/P46:30%F8(30nm)/ET34(20nm)/LiF(0.5nm)/Al(150nm)
实施例2-13:
使用本发明化合物P48作为发光层中的主体材料,按照上文所述的方法制备以下各器件,使其具有以下结构,并按照上述有机电致发光器件测试方法进行器件性能测试。
ITO(150nm)/HI2(10nm)/HT2(40nm)/P48:30%F8(30nm)/ET34(20nm)/LiF(0.5nm)/Al(150nm)
实施例2-14:
使用本发明化合物P76作为发光层中的主体材料,按照上文所述的方法制备以下各器件,使其具有以下结构,并按照上述有机电致发光器件测试方法进行器件性能测试。
ITO(150nm)/HI2(10nm)/HT2(40nm)/P76:30%F8(30nm)/ET34(20nm)/LiF(0.5nm)/Al(150nm)
实施例2-15:
使用本发明化合物P77作为发光层中的主体材料,按照上文所述的方法制备以下各器件,使其具有以下结构,并按照上述有机电致发光器件测试方法进行器件性能测试。
ITO(150nm)/HI2(10nm)/HT2(40nm)/P77:30%F8(30nm)/ET34(20nm)/LiF(0.5nm)/Al(150nm)
比较例2-2:
本比较例中的有机电致发光器件所选用的主体材料为CBP
Figure PCTCN2019071148-appb-000063
使用化合物CPB作为发光层中的主体材料,按照上文所述的方法制备以下各器件,使其具有以下结构,并按照上述有机电致发光器件测试方法进行器件性能测试。
ITO(150nm)/HI2(10nm)/HT2(40nm)/CBP:30%F8(30nm)/ET34(20nm)/LiF(0.5nm)/Al(150nm)
有机电致发光器件性能见下表:
表5有机电致发光器件性能
Figure PCTCN2019071148-appb-000064
由上表数据可以看到:
实施例2-10~2-13采用本发明化合物作为主体的OLED有机电致发光性能要优于相对于比较例2-2采用CBP作为主体的OLED有机电致发光性能,实施例2-10~2-13中的器件获得了更高的电流效率和较低的驱动电压;这说明这类基于连咔唑类的材料作为主体材料制备有机电致发光器件时,具有可以明显降低驱动电压及提高发光效率的优势。
同时实施例2-12采用本发明化合物P46作为主体的OLED有机电致发光性能要弱于实施例2-13采用P48作为主体的OLED有机电致发光性能,P48获得了更高的电流效率和较低的驱动电压;可能的原因是P48分子中,给体中甲基的位阻使得P48分子具有更小的单三线态能级差,更有利于做主体时的反向系间穿越以及能量的传递。
以上结果表明,本发明的新型有机材料用于有机电致发光器件的主体时,可以有效的降低起降电压,提高电流效率,且具有良好的稳定性能。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (14)

  1. 一种有机化合物,其特征在于,由下述式(1)表示:
    Figure PCTCN2019071148-appb-100001
    式(1)中,X 1~X 8分别独立选自CR 1或N,且X 1~X 8中至少有1个为N原子;R 1选自氢、取代或未取代的C 1~C 12烷基、取代或未取代的C 1~C 10环烷基、取代或未取代的C 6~C 30芳基或取代或未取代的C 3~C 30杂芳基,且至少有1个R 1为下述式(2)所示的结构去掉一个氢所得的基团:
    Figure PCTCN2019071148-appb-100002
    式(2)中,Y 1~Y 8分别独立选自CR 2或N,且其中至少有1个为N原子;R 2选自氢、取代或未取代的C 1~C 12烷基、取代或未取代的C 1~C 10环烷基、取代或未取代的C 6~C 30芳基或取代或未取代的C 3~C 30杂芳基;R为氢或L 2-Ar 2
    L 1和L 2分别独立为单键、取代或未取代的C 5~C 30的亚芳基、或者取代或未取代的C 3~C 30的亚杂芳基;
    Ar 1和Ar 2彼此相同或不同,由下式(3)表示:
    Figure PCTCN2019071148-appb-100003
    式(3)中,Z 1~Z 5分别独立选自CR 5或N,且其中有0~3个为N原子;R 5选自氢、氰基、取代或未取代的C 1~C 12烷基、取代或未取代的C 1~C 10环烷基、取代或未取代的C 6~C 30芳基或者取代或未取代的C 3~C 30杂芳基,其中,所述C 6~C 30芳基具有取代基时,其被一个或多个选自取代或未取代的C 1~C 12烷基、取代或未取代的C 6~C 30芳基或者取代或未取代的C 3~C 30杂芳基中的取代基所取代;
    当存在多个R 1、R 2和/或R 5时,它们彼此之间相同或不同,并且可以和相邻的苯环或杂环进行稠合;
    “取代或未取代”中的取代,若无特别说明,则表示被一个或多个选自C 1~C 12的烷基、C 1~C 12的烷氧基、C 6~C 12的芳基、C 3~C 12的杂芳基、氰基、羟基中的取代基所取代。
  2. 根据权利要求1所述的有机化合物,其特征在于,L 1为单键,C 5~C 12的取代或未取代的亚芳基、亚杂芳基,当上述基团具有取代基时,所述取代基选自C 1~C 4的烃基;R 1选自氢、C 1~C 10的烷基或环烷基、C 6~C 15的芳基或C 6~C 19的杂芳基,且至少有1个为下式(4)所示的结构:
    Figure PCTCN2019071148-appb-100004
    式(4)中,Y 1~Y 8分别独立选自CR 2或N,且其中至少有1个为N原子;R 2选自氢、C 1~C 10的烷基或环烷基、C 6~C 15的芳基或C 6~C 19的杂芳基;
    所述式(3)中,Z 1~Z 5分别独立选自CR 3或N,且其中有1~3个为N原子;R 3选自氢、C 1~C 10的烷基或环烷基、C 6~C 15的芳基或C 6~C 19的杂芳基。
  3. 根据权利要求1所述的有机化合物,其特征在于,X 5~X 8分别独立为CR 1,Y 5~Y 8分别独立为CR 2,式(2)所示的结构去掉一个氢所得的基团通过Y 5~Y 8所在的芳环与式(1)中X 5~X 8所在的芳环连接;R为L 2-Ar 2
    L 1和L 2分别独立为单键、取代或未取代的C 6~C 30的亚芳基、或者取代或未取代的C 3~C 30的亚杂芳基;
    Ar 1和Ar 2彼此相同或不同,选自如下S1~S8结构;
    Figure PCTCN2019071148-appb-100005
    R 1、R 2、R 3分别独立表示取代或未取代的C 1~C 12烷基、取代或未取代的C 6~C 30芳基或者取代或未取代的C 3~C 30杂芳基;当存在多个R 1时,多个R 1彼此间相同或不相同,并且可以和相邻的苯环进行稠合;当存在多个R 2时,多个R 2彼此间相同或不相同,并且可以和相邻的苯环进行稠合;当存在多个R 3时,多个R 3彼此间相同或不相同,并且可以和相邻的苯环或杂环进行稠合;q为0~5的整数。
  4. 根据权利要求1~3中任一项所述的有机化合物,其特征在于,式(1)的X 1~X 8中有且只有1个是N原子,优选只有X 1为N原子。
  5. 根据权利要求1或2所述的有机化合物,其特征在于,R 1为下述式(5)所示的咔啉基团,该咔啉基团与母核基团通过C-N键连接:
    Figure PCTCN2019071148-appb-100006
  6. 根据权利要求1或2所述的有机化合物,其特征在于,所述有机化合物选自下述C1~C75:
    Figure PCTCN2019071148-appb-100007
    Figure PCTCN2019071148-appb-100008
    Figure PCTCN2019071148-appb-100009
    Figure PCTCN2019071148-appb-100010
  7. 根据权利要求1或3所述的有机化合物,其中,L 1、L 2彼此独立地为单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚菲基或者取代或未取代的亚吡啶基。
  8. 根据权利要求1或3所述的有机化合物,其特征在于,所述有机化合物选自下述P1~P81:
    Figure PCTCN2019071148-appb-100011
    Figure PCTCN2019071148-appb-100012
    Figure PCTCN2019071148-appb-100013
  9. 一种有机电致发光材料,其特征在于,包含权利要求1~8中任一项所述的有机化合物。
  10. 权利要求1~8中任一项所述的有机化合物或权利要求9所述的有机电致发光材料在有机电致发光器件中的应用。
  11. 一种有机电致发光器件,包括第一电极、第二电极和插入在所述第一电极和第二电极之间的多个有机层,其特征在于,所述有机层中含有权利要求1~8中任一项所述的有机化合物或权利要求9所述的有机电致发光材料。
  12. 根据权利要求11所述有机电致发光器件,其中,权利要求1、2、4~6中任一项所述的有机化合物在发光层中用作染料或主体材料。
  13. 根据权利要求11所述有机电致发光器件,其中,权利要求1、3、4、7、8中任一项所述的有机化合物在发光层中用作客体材料或主体材料。
  14. 一种有机电致发光器件,包括第一电极、第二电极和插入在所述第一电极和第二电极之间的多个有机层,其特征在于,所述器件中含有发射荧光和延迟荧光的有机发光材料,所述有机发光材料的反向系间窜越常数k RISC大于10 4s -1,优选k RISC大于10 5s -1
PCT/CN2019/071148 2018-01-10 2019-01-10 有机电致发光材料与器件 WO2019137430A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810021938.X 2018-01-10
CN201810021938.XA CN108191853B (zh) 2018-01-10 2018-01-10 一种有机电致发光材料与器件
CN201810937733.6 2018-08-16
CN201810937733.6A CN110835339A (zh) 2018-08-16 2018-08-16 有机电致发光材料及有机电致发光器件

Publications (1)

Publication Number Publication Date
WO2019137430A1 true WO2019137430A1 (zh) 2019-07-18

Family

ID=67218505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071148 WO2019137430A1 (zh) 2018-01-10 2019-01-10 有机电致发光材料与器件

Country Status (1)

Country Link
WO (1) WO2019137430A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122247A (ja) * 2013-12-25 2015-07-02 コニカミノルタ株式会社 透明電極及び電子デバイス
JP2015122185A (ja) * 2013-12-24 2015-07-02 コニカミノルタ株式会社 透明電極及び電子デバイス
CN106749341A (zh) * 2017-01-18 2017-05-31 江西冠能光电材料有限公司 平衡电荷注入有机半导体及其有机发光二极管应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122185A (ja) * 2013-12-24 2015-07-02 コニカミノルタ株式会社 透明電極及び電子デバイス
JP2015122247A (ja) * 2013-12-25 2015-07-02 コニカミノルタ株式会社 透明電極及び電子デバイス
CN106749341A (zh) * 2017-01-18 2017-05-31 江西冠能光电材料有限公司 平衡电荷注入有机半导体及其有机发光二极管应用

Similar Documents

Publication Publication Date Title
WO2021057264A1 (zh) 化合物、光电转化器件及电子装置
TWI650403B (zh) 一種熱活化敏化磷光有機電致發光器件
JP6144418B2 (ja) ヘテロ環化合物およびこれを含む有機発光素子
JP5805862B2 (ja) 新規な化合物およびこれを用いた有機電子素子
US11939341B2 (en) Organic compound, electroluminescent material, and application thereof
JP6290381B2 (ja) ヘテロ環化合物およびこれを含む有機発光素子
US20150144937A1 (en) Compound for organic optoelectronic device, organic light emitting diode comprising same, and display device comprising organic light emitting diode
EP2796529B1 (en) Compound for an organic optoelectronic device, organic light-emitting element comprising same, and display device comprising the organic light-emitting element
CN107129471B (zh) 有机化合物、有机光电装置及显示装置
CN111886236A (zh) 化合物及包含其的有机发光器件
KR101644699B1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
KR102396694B1 (ko) 유기 화합물과 그 용도 및 이를 이용한 유기 전계 발광 소자
KR101982749B1 (ko) 화합물 및 이를 이용한 유기전기소자, 그 전자장치
JP2018531232A (ja) アミン化合物およびこれを含む有機発光素子
CN115894491A (zh) 一种电子传输材料及其制备方法、发光器件、发光装置
JP2018531232A6 (ja) アミン化合物およびこれを含む有機発光素子
CN108191853B (zh) 一种有机电致发光材料与器件
CN113735793B (zh) 一种包含苯并五元杂环的化合物及其有机电致发光器件
JP6508657B2 (ja) 複素環化合物及びこれを含む有機発光素子
CN114195813A (zh) 含硼稠环化合物及电子器件
KR102657637B1 (ko) 안트라센계 화합물, 이를 포함하는 코팅조성물 및 유기 발광 소자
CN114621181B (zh) 一种星型四胺衍生物及其有机电致发光器件
CN112105614A (zh) 化合物和包含其的有机发光器件
CN114751888A (zh) 一种电子传输材料及其制备方法、发光器件、发光装置
CN114907217A (zh) 一种三胺类化合物及其有机电致发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19738484

Country of ref document: EP

Kind code of ref document: A1