WO2019136934A1 - 信道状态信息上报频带的配置方法及通信装置 - Google Patents

信道状态信息上报频带的配置方法及通信装置 Download PDF

Info

Publication number
WO2019136934A1
WO2019136934A1 PCT/CN2018/092169 CN2018092169W WO2019136934A1 WO 2019136934 A1 WO2019136934 A1 WO 2019136934A1 CN 2018092169 W CN2018092169 W CN 2018092169W WO 2019136934 A1 WO2019136934 A1 WO 2019136934A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel state
state information
subband
resource blocks
blocks included
Prior art date
Application number
PCT/CN2018/092169
Other languages
English (en)
French (fr)
Inventor
韩玮
刘永
葛士斌
金黄平
毕晓艳
任翔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880001005.2A priority Critical patent/CN110291826A/zh
Priority to EP18880033.8A priority patent/EP3537813B1/en
Priority to BR112019015450-7A priority patent/BR112019015450A2/pt
Priority to CA3045400A priority patent/CA3045400C/en
Priority to JP2019528711A priority patent/JP6977920B2/ja
Priority to US16/237,465 priority patent/US10511411B2/en
Publication of WO2019136934A1 publication Critical patent/WO2019136934A1/zh
Priority to US16/697,115 priority patent/US11239950B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • H04L1/0693Partial feedback, e.g. partial channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a channel measurement method, a transmitting end device, and a receiving end device.
  • CSI channel state information
  • the receiving device for example, a user equipment such as a smart phone
  • RS Reference Signal
  • the transmitting device processes the transmitted signal based on the CSI and sends it to the receiving device. It can be seen that the wireless transmission based on CSI is more compatible with the channel environment, so the transmission quality is better.
  • the CSI can be sent from the receiving end device to the transmitting end device through a Physical Uplink Shared Channel (PUSCH).
  • the CSI transmitted through the PUSCH may include a Wideband CSI, or may include multiple Subband CSIs, and may include both a wideband CSI and a plurality of subband CSIs.
  • Broadband CSI can be understood as CSI based on wideband calculation
  • subband CSI can be understood as CSI calculated based on subband.
  • the network device needs to indicate to the terminal that the sub-band included in the CSI reporting frequency band is performed, and the terminal performs CSI reporting on the indicated CSI reporting frequency band.
  • the size and number of subbands of the CSI reporting band need to be configured.
  • the number of subbands included in the CSI reporting frequency band is configured based on the system bandwidth.
  • the number of subbands included in the CSI reporting frequency band cannot be configured in this manner.
  • a method for configuring a CSI reporting band including:
  • BWP Bandwidth Part
  • a channel state information reporting frequency band based on a carrier bandwidth (CC) or a bandwidth portion BWP or a channel state information reference signal (CSI-RS) bandwidth, and a size of the channel state information subband The number of channel state information subbands included.
  • CC carrier bandwidth
  • BWP bandwidth portion
  • CSI-RS channel state information reference signal
  • the size of the channel state information subband is the maximum number of resource blocks included therein; and the maximum number of resource blocks of the channel state information subband is determined by the total number of resource blocks included in the bandwidth part BWP.
  • the method may be performed by a transmitting device, and the transmitting device may be a network device or a terminal.
  • the method flow of the first aspect provided by the application may be performed by the network device or may be performed by the terminal.
  • the network device may first configure the size, number, start and end positions of the sub-bands included in the CSI reporting frequency band, and then indicate to the terminal; the terminal may also configure the size of the sub-band included in the CSI reporting frequency band according to the method.
  • the number, the start and the end position are sent to the network device for configuration suggestions; and another implementation may be that the network device configures part of the information of the CSI reporting frequency band, and then sends the information to the terminal device, and the terminal device completes the subsequent configuration.
  • the method further includes:
  • the reporting sub-band configuration information indicating that each sub-band in the channel status information sub-band is a reporting sub-band or a non-reporting sub-band; in other words, the reporting sub-band configuration information is used to indicate channel status information reporting Which sub-bands in the frequency band are reported sub-bands, and which sub-bands are not reported sub-bands;
  • the reported subband configuration information is represented by information bits, and the number of bits of the information bits is the same as the number of channel state information subbands included in the channel status information reporting frequency band.
  • the reporting sub-band configuration information reporting sub-band configuration information indicates the number of the channel state information sub-band or further indicating a starting position or a channel state of the channel state information sub-band The starting and ending positions of the information subband.
  • the reported subband configuration information includes a first information bit, where the first information bit is used to indicate a reported subband or a non-reported subband in the channel state information subband in the reported frequency band, that is, a channel status information subband is indicated. Among them, which are the sub-sub-bands and those of the non-reporting sub-bands. That is, the reported subband configuration information is implemented by means of a bit map.
  • the channel state information subbands in the reporting frequency band may all be the reporting subband, or part of the reporting subband is a non-reporting subband, the reporting subband may be represented by the information bit 1, and the non-reporting subband uses the information bit.
  • the representation sub-band is represented by information bit 0, and the non-reported sub-band is represented by information bit 1.
  • the number of the first information bits is the same as the number of the actual information subbands, and the total number of bits of the first information bits is used to indicate the reported subband and the non-reported subband.
  • the number of the first information bits is the same as the maximum number of reported sub-bands allowed by the system, and all or part of the number of bits of the first information bit is used to indicate the reported sub-band and the non-reported sub-band.
  • the determining, based on the carrier bandwidth CC or the bandwidth portion BWP or the channel state information reference signal CSI-RS bandwidth, and the size of the channel state information subband, determining the channel state information reporting frequency band includes:
  • the channel state information subband in the channel state information reporting frequency band includes a first channel state information subband and a last channel state information subband, and a regular channel state information subband.
  • the first channel state information subband may be referred to as a start channel state information subband, or a start channel state information subband, which may be referred to herein as a start subband; the last channel state information subband may also be referred to as termination.
  • the channel state information subband or the end channel state information subband may be referred to herein as a terminating subband.
  • the sub-band of the channel state information sub-band except the first channel state information sub-band and the last channel state information sub-band may be referred to as a common channel state information sub-band. Can be referred to as an ordinary sub-band. I will not repeat them later.
  • the transmitting end device determines the actual number of resource blocks included in the first channel state information subband, and determines the resource blocks included in the last channel state information subband. The actual number is then sent to the terminal.
  • the transmitting device determines the actual number of resource blocks included in the first channel state information subband, including:
  • the actual number of resource blocks included in the first channel state information subband corresponding to the CSI-RS bandwidth in the channel status information reporting frequency band the actual number of resource blocks included in the normal channel state information subband Number-mod (the index number of the initial resource block of the CSI-RS, the actual number of resource blocks included in the subband of the regular channel state information);
  • the actual number of resource blocks included in the first channel state information subband is less than or equal to the actual number of resource blocks included in the regular channel state information subband.
  • the transmitting device determines the actual number of resource blocks included in the last channel state information subband, including:
  • the resource block remainder mod ((the index number of the initial resource block of the CC + the total number of resource blocks included in the CC bandwidth), the actual number of resource blocks included in the subband of the regular channel state information) or
  • the resource block remainder mod ((the index number of the initial resource block of the BWP + the total number of resource blocks included in the BWP), the actual number of resource blocks included in the subband of the regular channel state information) or
  • the resource block remainder mod ((the index number of the initial resource block of the CSI-RS + the total number of resource blocks included in the CSI-RS bandwidth), and the actual number of resource blocks included in the sub-band of the regular channel state information number);
  • the actual number of resource blocks included in the last channel state information subband is the actual number of resource blocks included in the regular channel state information subband.
  • the actual number of resource blocks included in the normal channel state information subband is equal to the maximum number of resource blocks included in the channel state information subband.
  • the transmitting device indicates the number of sub-bands of the channel state information of the terminal by using the reported sub-band configuration information, and the first device determines the first channel according to the size of the sub-band of the channel state information.
  • the receiving end device determines the actual number of resource blocks included in the first channel state information subband, and the manner of determining the actual number of resource blocks included in the last channel state information subband and the transmitting end device The same, no longer repeat here;
  • the transmitting end device further includes the resource block included in the first channel state information subband or the last channel state information subband in the reported subband configuration information sent to the receiving device. Actual number of;
  • the method further includes:
  • the reporting sub-band group configuration information sent by the network device to the terminal is used to indicate which sub-band groups in the reporting frequency band are the reporting sub-band groups, so that the terminal determines, according to the reporting sub-band group configuration information, at least one of the reported frequency bands. Subband group.
  • the reporting sub-band configuration information indicating the reporting or non-reporting status of the channel status information sub-band is further included:
  • the dynamic signaling includes a third information bit
  • the third information bit is used to indicate an index of the first information bit or the second information bit
  • the third information bit is used to indicate
  • the terminal selects a reporting subband and a non-reporting subband indicated by a first information bit according to the index indication of the third information bit; or selects a reporting subband group or a non-reporting subband group indicated by a second information bit.
  • the channel state information is one of the following information:
  • Channel quality indication precoding matrix indication, rank indication, and channel state information reference signal resource indication.
  • a transmitting end device including a processing module and an interface:
  • the processing module is configured to determine a size of a channel state information subband based on the bandwidth part BWP;
  • the processing module is further configured to determine, according to a carrier bandwidth CC or a bandwidth portion BWP or a channel state information reference signal CSI-RS bandwidth, and a size of the channel state information subband, a channel state information element included in a channel state information reporting frequency band. The number of belts.
  • the transmitting device further includes: a transceiver module, configured to send, to the receiving end, a reporting subband indicating that each subband in the channel state information subband is a reporting subband or a non-reporting subband
  • the configuration information in other words, the reported sub-band configuration information is used to indicate which sub-bands in the channel status information reporting frequency band are reported sub-bands, and which sub-bands are not reported sub-bands;
  • the reported sub-band configuration information is represented by information bits, and the number of bits of the information bits is the same as the number of sub-bands of the channel state information.
  • the reporting sub-band configuration information indicates the number of sub-bands of the channel state information or further indicates a starting position of a sub-band of channel state information or a sub-band of channel state information Start position and end position.
  • the reported subband configuration information includes a first information bit, where the first information bit is used to indicate a reported subband or a non-reported subband in the channel state information subband in the reported frequency band, that is, a channel status information subband is indicated. Among them, which are the sub-sub-bands and those of the non-reporting sub-bands. That is, the reported subband configuration information is implemented by means of a bit map.
  • the channel state information subband in the channel status information reporting frequency band may all be a reporting subband, or a part of the reporting subband is a non-reporting subband, and the reporting subband may be represented by information bit 1, and the non-reporting subband is used.
  • Information bit 0 indicates; or the reported sub-band is represented by information bit 0, and the non-reported sub-band is represented by information bit 1.
  • the number of the first information bits is the same as the number of the actual information subbands, and the total number of bits of the first information bits is used to indicate the reported subband and the non-reported subband.
  • the number of the first information bits is the same as the maximum number of reported sub-bands allowed by the system, and all or part of the number of bits of the first information bit is used to indicate the reported sub-band and the non-reported sub-band.
  • the size of the channel state information subband is the maximum number of resource blocks it contains; and the maximum number of resource blocks is determined by the total number of resource blocks included in the bandwidth part BWP.
  • the processing module is specifically configured to:
  • the channel state information subband includes a first channel state information subband and a last channel state information subband, and a regular channel state information subband.
  • the processing module of the transmitting end device determines the actual number of resource blocks included in the first channel state information subband, and determines that the last channel state information subband is included. The actual number of resource blocks is then sent by the transceiver to the receiving device.
  • the processing module determines the actual number of resource blocks included in the first channel state information subband, including:
  • the actual number - mod (the index number of the initial resource block of the CC, the actual number of resource blocks included in the subband of the regular channel state information); or
  • the actual number of blocks - mod (the index number of the initial resource block of the CSI-RS, the actual number of resource blocks included in the subband of the regular channel state information);
  • the actual number of resource blocks included in the first channel state information subband is less than or equal to the actual number of resource blocks included in the regular channel state information subband.
  • the processing module is further configured to determine an actual number of resource blocks included in the last channel state information subband, including:
  • the resource block remainder mod ((the index number of the initial resource block of the CC + the total number of resource blocks included in the CC bandwidth), the actual number of resource blocks included in the subband of the regular channel state information) or
  • the resource block remainder mod ((the index number of the initial resource block of the BWP + the total number of resource blocks included in the BWP), the actual number of resource blocks included in the subband of the regular channel state information) or
  • the resource block remainder mod ((the index number of the initial resource block of the CSI-RS + the total number of resource blocks included in the CSI-RS bandwidth), and the actual number of resource blocks included in the sub-band of the regular channel state information number);
  • the actual number of resource blocks included in the last channel state information subband is the actual number of resource blocks included in the regular channel state information subband.
  • the actual number of resource blocks included in the normal channel state information subband is equal to the maximum number of resource blocks included in the channel state information subband.
  • the transceiver module of the transmitting device indicates the number of sub-bands of the channel state information of the terminal by using the reported sub-band configuration information, and the receiving device determines the number according to the size of the sub-band of the channel state information.
  • the receiving end device determines the actual number of resource blocks included in the first channel state information subband, and the manner of determining the actual number of resource blocks included in the last channel state information subband and the transmitting end device The same, no longer repeat here;
  • the transmitting end device further includes the resource block included in the first channel state information subband or the last channel state information subband in the reported subband configuration information sent to the receiving device. Actual number of;
  • the reporting sub-band group configuration information sent by the transceiver module of the transmitting device to the terminal is further used to indicate which sub-band groups in the reporting frequency band are reported sub-band groups, so that the terminal according to the The reporting subband group configuration information determines at least one of the reported subband groups in the reported frequency band.
  • the transceiver module of the network device sends, by using the first information bit, the reporting sub-band configuration information indicating the reporting or non-reporting status of the channel status information sub-band to the terminal, and is further configured to send the dynamic message to the terminal.
  • the dynamic signaling includes a third information bit, where the third information bit is used to indicate an index of the first information bit or the second information bit; the third information bit is used to indicate that the terminal is according to the The index of the three information bits indicates that the uplink subband and the non-reported subband indicated by the first information bit are selected; or the reported subband group or the non-reported subband group indicated by the second information bit is selected.
  • the channel state information is one of the following information:
  • Channel quality indication precoding matrix indication, rank indication, and channel state information reference signal resource indication.
  • a method for configuring a channel status information reporting frequency band including:
  • the reporting subband configuration information indicating the subband of the channel state information, where the reporting subband configuration information indicates that the channel state information subband is a reporting subband or a non-reporting subband; the channel state information sub The band belongs to the channel status information reporting frequency band;
  • a method for configuring a channel status information reporting frequency band provided by the third aspect is performed by a receiving end device, and the specific receiving end device may be a terminal.
  • the reported sub-band configuration information is represented by information bits, and the number of bits of the information bits is the same as the number of channel state information sub-bands included in the channel status information reporting frequency band;
  • the receiving device After receiving the reported sub-band configuration information, the receiving device can learn the number of bits of the information bit, and further know the number of channel state information sub-bands included in the channel status information reporting frequency band.
  • the reported subband configuration information includes a size of a channel state information subband; after receiving the reported subband configuration information, the receiving device is based on a carrier bandwidth CC or a bandwidth portion BWP or a channel state. Determining, by the CSI-RS bandwidth of the information reference signal, and the size of the channel state information subband, determining the number of channel state information subbands included in the channel state information reporting frequency band; wherein the size of the channel state information subband is included The maximum number of resource blocks.
  • the determining, according to the carrier bandwidth CC or the bandwidth part BWP or the channel state information reference signal CSI-RS bandwidth, and the size of the channel state information subband, determining a channel state information subband included in the channel state information reporting frequency band Number including:
  • the above-mentioned channel state information subband includes a first channel state information subband and a last channel state information subband, and a regular channel state information subband.
  • the receiving end device determines, according to the actual number of resource blocks included in the first channel state information subband, and the resources included in the last channel state information subband. The actual number of blocks.
  • the determining the actual number of resource blocks included in the first channel state information subband includes:
  • the actual number of resource blocks included in the first channel state information subband corresponding to the CSI-RS bandwidth in the channel status information reporting frequency band the actual number of resource blocks included in the normal channel state information subband Number-mod (the index number of the initial resource block of the CSI-RS, the actual number of resource blocks included in the subband of the regular channel state information);
  • the actual number of resource blocks included in the first channel state information subband is less than or equal to the actual number of resource blocks included in the regular channel state information subband.
  • Determining the actual number of resource blocks included in the last channel state information subband including:
  • the resource block remainder mod ((the index number of the initial resource block of the CC + the total number of resource blocks included in the CC bandwidth), the actual number of resource blocks included in the subband of the regular channel state information) or
  • the resource block remainder mod ((the index number of the initial resource block of the BWP + the total number of resource blocks included in the BWP), the actual number of resource blocks included in the subband of the regular channel state information) or
  • the resource block remainder mod ((the index number of the initial resource block of the CSI-RS + the total number of resource blocks included in the CSI-RS bandwidth), and the actual number of resource blocks included in the sub-band of the regular channel state information number);
  • the actual number of resource blocks included in the last channel state information subband is the actual number of resource blocks included in the regular channel state information subband.
  • the reported subband configuration information received by the terminal from the network device further includes resources included in the first channel state information subband or the last channel state information subband.
  • the actual number of blocks; the terminal determines an index of the resource block of the first channel state information subband or the last channel state information subband according to the reported subband configuration information and the size of the channel state information subband number.
  • the actual number of resource blocks included in the normal channel state information subband is equal to the maximum number of resource blocks included in the channel state information subband.
  • the channel state information is one of the following information:
  • Channel quality indication precoding matrix indication, rank indication, and channel state information reference signal resource indication.
  • a receiving end device including:
  • the transceiver module is configured to receive, by the transmitting end device, the reporting subband configuration information indicating the subband of the channel state information, where the reporting subband configuration information indicates that each subband in the subband of the channel state information is a reporting subband or a non- Evaluating a subband; the channel state information subband belongs to the channel status information reporting frequency band;
  • the processing module is configured to determine, according to the reported subband configuration information, the number of channel state information subbands included in the channel status information reporting frequency band.
  • the reporting subband configuration information sent by the transceiver module is represented by information bits, and the number of bits of the information bits is equal to the number of channel state information subbands in the channel status information reporting frequency band.
  • the terminal receives the reported subband configuration information, and can obtain the number of bits of the information bit, and further knows the number of channel state information subbands included in the channel status information reporting frequency band.
  • the reported subband configuration information includes a size of a channel state information subband; after the receiving device receives the reported subband configuration information, the processing module of the receiving device is based on the carrier bandwidth CC or The bandwidth part BWP or the channel state information reference signal CSI-RS bandwidth and the size of the channel state information subband determine the number of channel state information subbands included in the channel state information reporting frequency band; wherein the channel state information subband The size is the maximum number of resource blocks it contains.
  • the processing module determines, according to the carrier bandwidth CC or the bandwidth part BWP or the channel state information reference signal CSI-RS bandwidth, and the size of the channel state information subband, the channel state information included in the channel status information reporting frequency band.
  • the number of belts including:
  • the processing module divides the total number of resource blocks included in the carrier bandwidth CC by the size of the channel state information subband, and rounds up to obtain a channel state information subband included in the channel state information reporting frequency band. Number; or
  • the processing module divides the total number of resource blocks included in the bandwidth portion BWP by the size of the channel state information subband, and rounds up to obtain a channel state information subband included in the channel state information reporting frequency band. Number; or
  • the processing module divides the total number of resource blocks included in the channel state information reference signal CSI-RS bandwidth by the size of the channel state information subband, and rounds up to obtain a channel included in the channel state information reporting frequency band.
  • the number of status information subbands are divided.
  • the above-mentioned channel state information subband includes a first channel state information subband and a last channel state information subband, and a regular channel state information subband.
  • the processing module of the terminal determines, according to the actual number of resource blocks included in the first channel state information subband, and the subband included in the last channel state information subband. The actual number of resource blocks.
  • the processing module of the terminal determines the actual number of resource blocks included in the first channel state information subband, including:
  • the actual number of blocks - mod (the index number of the initial resource block of the CSI-RS, the actual number of resource blocks included in the subband of the regular channel state information);
  • the actual number of resource blocks included in the first channel state information subband is less than or equal to the actual number of resource blocks included in the regular channel state information subband.
  • the processing module determines the actual number of resource blocks included in the last channel state information subband, including:
  • the resource block remainder mod ((the index number of the initial resource block of the CC + the total number of resource blocks included in the CC bandwidth), the actual number of resource blocks included in the subband of the regular channel state information) or
  • the resource block remainder mod ((the index number of the initial resource block of the BWP + the total number of resource blocks included in the BWP), the actual number of resource blocks included in the subband of the regular channel state information) or
  • the resource block remainder mod ((the index number of the initial resource block of the CSI-RS + the total number of resource blocks included in the CSI-RS bandwidth), and the actual number of resource blocks included in the sub-band of the regular channel state information number);
  • the actual number of resource blocks included in the last channel state information subband is the actual number of resource blocks included in the regular channel state information subband.
  • the reporting subband configuration information from the network device received by the transceiver module of the terminal further includes the first channel state information subband or the last channel state information subband.
  • the actual number of resource blocks included; the processing module of the terminal determines the first channel state information subband or the last channel state information according to the reported subband configuration information and the size of the channel state information subband The index number of the resource block with.
  • the actual number of resource blocks included in the normal channel state information subband is equal to the maximum number of resource blocks included in the channel state information subband.
  • the channel state information is one of the following information:
  • Channel quality indication precoding matrix indication, rank indication, and channel state information reference signal resource indication.
  • the channel state information is one of the following:
  • Channel quality indication precoding matrix indication, rank indication, and channel state information reference signal resource indication.
  • the processing module is a processor
  • the transceiver module is a transceiver
  • a processor for performing any of the foregoing methods, wherein the steps relating to transmitting and receiving are understood to be performed by a processor through a transceiver.
  • a processing apparatus including:
  • the memory may be a non-transitory memory, such as a read only memory (ROM), which may be integrated on the same chip as the processor, or may be separately disposed on different chips.
  • ROM read only memory
  • the type of the memory and the manner in which the memory and the processor are set are not limited.
  • a chip including:
  • a computer readable storage medium comprising instructions which, when executed on a computer, cause the computer to perform any of the methods described above.
  • the computer readable storage medium is non-transitory.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform any of the methods described above.
  • the beneficial effects of the embodiments of the present invention are that the number of CSI reporting sub-bands can only be configured based on the system bandwidth, and the CSI configuration may be based on the carrier bandwidth CC or the bandwidth part BWP or the channel state information.
  • the reference signal CSI-RS bandwidth configures the number of channel state information subbands included in the channel state information reporting frequency band, and is more suitable for the needs of the new generation communication network.
  • FIG. 1 is a schematic diagram of frequency band division according to an embodiment of the present invention.
  • FIG. 2 is an exemplary schematic diagram of a wireless communication network in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing an exemplary logical structure of a communication device in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing an exemplary hardware structure of a communication device according to an embodiment of the present invention.
  • FIG. 5 is an exemplary flowchart of a method for configuring channel state information according to an embodiment of the invention.
  • FIG. 6 is an exemplary flowchart of a channel state information reporting method according to an embodiment of the invention.
  • FIG. 7 is a schematic diagram of channel state information configuration according to still another embodiment of the present invention.
  • FIG. 8 is a schematic diagram of channel state information configuration according to still another embodiment of the present invention.
  • FIG. 9 is a schematic diagram of channel state information configuration according to still another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of channel state information configuration according to still another embodiment of the present invention.
  • FIG. 11 is a schematic diagram of channel state information configuration according to still another embodiment of the present invention.
  • FIG. 12 is a schematic diagram of channel state information configuration according to still another embodiment of the present invention.
  • FIG. 13 is a schematic diagram of channel state information configuration according to still another embodiment of the present invention.
  • FIG. 14 is a schematic diagram of channel state information configuration according to still another embodiment of the present invention.
  • FIG. 15 is a schematic diagram of channel state information configuration according to still another embodiment of the present invention.
  • next-generation wireless communication system currently under development is also known as the New Radio (NR) system or the 5G system.
  • NR New Radio
  • 5G 5th Generation wireless communication
  • PUSCH Physical Uplink Shared Channel
  • PUSCH is primarily used to transmit data compared to the Physical Uplink Control Channel (PUCCH), which is primarily used to transmit control information. Therefore, when transmitting CSI, the PUSCH may also transmit data or not.
  • a PUSCH in an uplink subframe may transmit both CSI and data, or may only transmit CSI without transmitting data.
  • the CSI is usually included in Uplink Control Information (UCI), which is transmitted through the PUSCH.
  • UCI Uplink Control Information
  • the UCI may further comprise at least two parts, wherein the number of information bits included in the first part is fixed and the first part is used to indicate the number of information bits of the second part. At the same time, the first part has a higher priority than the second part. Further, the first part and the second part can be independently coded separately. Those skilled in the art will appreciate that the finalized next generation wireless communication standard may also change, which is different from the latest research progress described above.
  • the carrier bandwidth can be regarded as a kind of broadband, which further includes at least one bandwidth part.
  • Each bandwidth portion includes at least one contiguous sub-band, each sub-band further comprising a plurality of consecutive sub-carriers.
  • Each bandwidth portion may correspond to a set of system parameters including, but not limited to, Subcarrier spacing and Cyclic Prefix (CP), etc., and different bandwidth portions may correspond to different system parameters.
  • TTI Transmission Time Interval
  • only one bandwidth part may be available, and other bandwidth parts are unavailable.
  • a part or all of the sub-bands of the bandwidth part may be used as a CSI reporting band to report the CSI corresponding to the CSI reporting band.
  • the CSI reporting band is simply referred to as a reporting band. It is not difficult to understand that the reported frequency band refers to a piece of bandwidth, and the CSI corresponding to the bandwidth needs to be reported, and the bandwidth includes multiple sub-bands.
  • the reporting frequency band carries a reference signal for performing channel measurement sent by the transmitting end device, such as, but not limited to, a Cell-specific Reference Signal (CRS) and a Channel State Information Reference Signal (Channel State Information Reference Signal, CSI-RS) or Demodulation Reference Signal (DMRS).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DMRS Demodulation Reference Signal
  • the related technical content of the reference signal is not limited to the prior art.
  • the receiving device can measure the above reference signal to obtain the corresponding CSI.
  • the CSI When the CSI is reported, the CSI of the entire reported frequency band, that is, the wideband CSI of the reported frequency band, may be reported, or the CSI of at least one subband in the reported frequency band may be reported, or the two reporting methods may be used in combination, or other reporting manners may be used.
  • the reported frequency band includes a plurality of consecutive sub-bands. However, in a specific implementation process, the subbands included in the reported frequency band may be discontinuous.
  • subband 1 to subband 6 the reporting band may include subband 1 to subband 2, subband 4, and subband 6.
  • other modes or levels may also be used to divide the frequency band.
  • the number of subcarriers included in a subband may be different.
  • at least one level may be added or deleted between the band division levels shown in FIG.
  • the specific manner of the frequency band division is not limited in the embodiment of the present invention.
  • the receiving device When performing channel measurement, the receiving device obtains channel state information according to a reference signal (Reference Signal, RS) transmitted by the transmitting device, and feeds back the obtained CSI to the transmitting device.
  • the transmitting device can process the transmitted signal based on the CSI, and send the processed transmit signal to the receiving device.
  • the CSI may further include, for example but not limited to, at least one of the following information: a channel quality indicator (CQI), a precoding matrix indicator (PMI), and a CSI- RS-RS Resource Indicator (CRI) and Rank Indication (RI).
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • CRI CSI- RS-RS Resource Indicator
  • the transmitting device can directly apply the CSI fed back by the receiving device, and can also adjust the CSI fed back by the receiving device and use the adjusted CSI for processing. For example, in a specific implementation process, the transmitting device can reduce the RI fed back by the receiving device and process the reduced RI. For example, the transmitting device may further perform reconfiguration on the precoding matrix corresponding to the PMI fed back by the receiving device, and perform processing using the reconstructed PMI, where the reconfiguration process may be, for example but not limited to, The precoding matrix corresponding to the PMI fed back by the plurality of receiving end devices that are simultaneously scheduled is orthogonalized.
  • the method of scheduling multiple receiving devices for data transmission at the same time is also called Multi-User Multiple-Input and Multiple-Output (MIMO), MU-MIMO technology.
  • MIMO Multi-User Multiple-Input and Multiple-Output
  • the transmitting device can also reduce the CQI fed back by the receiving device and process it using the reduced CQI.
  • the transmitting end device may need to notify the receiving end device of the adjusted CSI, so that the receiving end device resumes transmitting from the received signal based on the adjusted CSI. signal.
  • the base station adjusts the RI or CQI
  • the base station needs to notify the receiving end device of the adjusted RI and CQI.
  • the specific manner of adjusting the CSI fed back by the receiving end device is not limited in the embodiment of the present invention.
  • each sub-band in the above-mentioned CSI reporting band is as shown in Tables 1 and 2, and the subband is configured based on the system bandwidth.
  • the range of system bandwidth corresponds to different subband sizes, so according to the subband size, the number of subbands under the corresponding system bandwidth can be derived.
  • BWP, CSI-RS frequency band and CSI reporting band can be flexibly configured into partial bandwidth or full bandwidth, which will result in channel state information.
  • the number of reported sub-bands of the channel state information contained in the reported frequency band is no longer determined by the system bandwidth.
  • How to determine the number of channel state information reporting sub-bands in a new radio (NR) system or a 5G system is a baseband solution.
  • the present application provides a method for configuring and reporting a channel status information reporting frequency band and a corresponding device, which can meet the requirements of network evolution.
  • the wireless communication network 200 includes base stations 202-206 and terminal devices 208-222, wherein the base stations 202-206 can pass backhaul links with each other (e.g., the base stations 202-206 are in line with each other). Communication is shown, which may be a wired backhaul link (eg, fiber optic, copper) or a wireless backhaul link (eg, microwave).
  • the terminal devices 208-222 can communicate with the corresponding base stations 202-206 via a wireless link (as indicated by the broken lines between the base stations 202-206 and the terminal devices 208-222).
  • the base stations 202-206 are typically used as access devices to provide wireless access services for the terminal devices 208-222 that are typically user equipment.
  • each base station corresponds to a service coverage area (also referred to as a cell, as shown in each ellipse area in FIG. 2), and the terminal device entering the area can communicate with the base station by using a wireless signal to receive the base station.
  • Wireless access service provided.
  • multiple base stations may use Coordinated Multipoint (CoMP) technology to provide services for terminal devices in the overlapping area.
  • CoMP Coordinated Multipoint
  • the base station 202 overlaps with the service coverage area of the base station 204, and the terminal device 222 is within the overlapping area, so the terminal device 222 can receive the wireless signals from the base station 202 and the base station 204.
  • the base station 202 and the base station 204 can cooperate with each other to provide services to the terminal device 222.
  • the service coverage areas of the base station 202, the base station 204, and the base station 206 have a common overlapping area, and the terminal device 220 is within the overlapping area, so the terminal device 220 can receive the base station.
  • the wireless signals 202, 204, and 206, the base stations 202, 204, and 206 can cooperate with each other to provide services to the terminal device 220.
  • the base station may be referred to as a Node B (NodeB), an evolved Node B (eNodeB), and an Access Point (AP), etc., depending on the wireless communication technology used.
  • NodeB Node B
  • eNodeB evolved Node B
  • AP Access Point
  • the base station can be further divided into a macro base station for providing a macro cell, a micro base station for providing a pico cell, and a femtocell for providing Femto cell) Femto base station, etc.
  • future base stations may use other names.
  • the terminal devices 208-222 may be various wireless communication devices having wireless communication functions, such as but not limited to mobile cellular phones, cordless phones, personal digital assistants (PDAs), smart phones, notebook computers, tablets, wireless devices.
  • IOT Internet of Things
  • the communication unit obtains a wireless communication function so that it can access the wireless communication network and accept remote control.
  • Such devices have wireless communication functions because they are equipped with wireless communication units, and therefore belong to the category of wireless communication devices.
  • the terminal devices 208-222 may also be referred to as mobile stations, mobile devices, mobile terminals, wireless terminals, handheld devices, clients, and the like.
  • the base stations 202-206 and the terminal devices 208-222 can be configured with multiple antennas to support MIMO (Multiple Input Multiple Output) technology. Further, the base stations 202-206 and the terminal devices 208-222 can support single-user MIMO (SU-MIMO) technology or multi-user MIMO (Multi-User MIMO, MU-MIMO). MU-MIMO can be implemented based on Space Division Multiple Access (SDMA) technology. The base station 202-206 and the terminal devices 208-222 can also flexibly support single input single output (SISO) technology, single input multiple output (SIMO) and multiple input.
  • SISO single input single output
  • SIMO single input multiple output
  • MISO Multiple Input Single Output
  • multiplexing technology to implement various diversity (such as but not limited to transmit diversity and receive diversity) and multiplexing techniques, where diversity techniques may include, for example, but not limited to, Transmit Diversity (TD) Technology and Receive Diversity (RD) technology
  • the multiplexing technology can be a spatial multiplexing (Spatial Multiplexing) technology.
  • TD Transmit Diversity
  • RD Receive Diversity
  • the foregoing various technologies may also include multiple implementations.
  • the transmit diversity technology may include, for example, but not limited to, Space-Time Transmit Diversity (STTD), Space-Frequency Transmit Diversity (Space-Frequency Transmit Diversity, SFTD), Time Switched Transmit Diversity (TSTD), Frequency Switching Transmit Diversity (FSTD), Orthogonal Transmit Diversity (OTD), Cyclic Delay Diversity (CDD)
  • STTD Space-Time Transmit Diversity
  • SFTD Space-Frequency Transmit Diversity
  • TSTD Time Switched Transmit Diversity
  • FSTD Frequency Switching Transmit Diversity
  • OFTD Orthogonal Transmit Diversity
  • CDD Cyclic Delay Diversity
  • the equal-diversity mode and the diversity methods obtained after deriving, evolving, and combining the various diversity methods described above.
  • the current LTE (Long Term Evolution) standard adopts a transmit diversity method such as Space Time Block Coding (STBC), Space Frequency Block Coding (SFBC), and CDD.
  • STBC Space Time Block Coding
  • SFBC Space
  • transmit diversity also includes other various implementations. Therefore, the above description should not be construed as limiting the technical solution of the present invention, and the technical solution of the present invention should be understood to be applicable to various possible transmit diversity schemes.
  • the base stations 202-206 and the terminal devices 208-222 can communicate using various wireless communication technologies, such as, but not limited to, Time Division Multiple Access (TDMA) technology, Frequency Division Multiple Access (Frequency Division Multiple Access, FDMA) technology, Code Division Multiple Access (CDMA) technology, Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), Orthogonal Frequency Division Multiple Access (OFDMA) Technology, Single Carrier FDMA (SC-FDMA) technology, Space Division Multiple Access (SDMA) technology, and evolution and derivative technologies of these technologies.
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier FDMA
  • SDMA Space Division Multiple Access
  • the above wireless communication technology is adopted as a radio access technology (RAT) by many wireless communication standards, thereby constructing various wireless communication systems (or networks) well known today, including but not limited to Global System for Mobile Communications (GSM), CDMA2000, Wideband CDMA (WCDMA), WiFi defined by the 802.22 series of standards, Worldwide Interoperability for Microwave Access (WiMAX), long-term Evolution (Long Term Evolution, LTE), LTE-Advanced (LTE-A), and evolution systems of these wireless communication systems.
  • GSM Global System for Mobile Communications
  • WCDMA Wideband CDMA
  • WiFi defined by the 802.22 series of standards
  • WiMAX Worldwide Interoperability for Microwave Access
  • LTE long-term Evolution
  • LTE-A LTE-Advanced
  • evolution systems of these wireless communication systems evolution systems of these wireless communication systems.
  • the wireless communication network 200 shown in FIG. 2 is for example only and is not intended to limit the technical solution of the present invention. It should be understood by those skilled in the art that in a specific implementation process, the wireless communication network 200 may also include other devices, and the number of base stations and terminal devices may also be configured according to specific needs.
  • the access devices as shown in FIG. 2, can be used as the transmitting device, and the user devices, such as the terminal devices 208-222 shown in FIG. 2, can be used as the receiving device.
  • FIG. 3 is a schematic diagram showing an exemplary logical structure of a communication device 300 in accordance with an embodiment of the present invention.
  • the communication device 300 can be used to implement both the receiving end device and the transmitting end device.
  • the communication device 300 includes a processing module 302 and a transceiver module 304, the specific functions of which will be described in detail below.
  • the processing module 304 may be implemented by the processor 402 in the communication device 400 to be described below, or by the processor 402 and the memory 408 in the communication device 400, although other implementations may be employed.
  • the transceiver module 304 can be implemented by the transceiver 404 in the communication device 400. Of course, other implementations can also be employed.
  • the communication device 400 can be used to implement both the receiving end device and the transmitting end device.
  • the communication device 400 includes a processor 402, a transceiver 404, a plurality of antennas 406, a memory 408, an I/O (Input/Output) interface 410, and a bus 412.
  • Memory 408 is further used to store instructions 4082 and data 4084.
  • processor 402, transceiver 404, memory 408, and I/O interface 410 are communicatively coupled to one another via a bus 412, and a plurality of antennas 406 are coupled to transceiver 404.
  • the processor 402, the transceiver 404, the memory 408, and the I/O interface 410 may also be communicatively coupled to each other by using other connections than the bus 412.
  • Processor 402 can be a general purpose processor, which can be a processor that performs specific steps and/or operations by reading and executing instructions (eg, instructions 4082) stored in a memory (eg, memory 408), the general purpose processor being Data (e.g., data 4084) stored in a memory (e.g., memory 408) may be used in performing the above steps and/or operations.
  • a general purpose processor may be, for example but not limited to, a Central Processing Unit (CPU).
  • processor 402 can also be a special purpose processor, which can be a processor specifically designed to perform particular steps and/or operations, such as, but not limited to, a digital signal processor (Digital Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), and Field Programmable Gate Array (FPGA). Moreover, processor 402 can also be a combination of multiple processors, such as a multi-core processor.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • processor 402 can also be a combination of multiple processors, such as a multi-core processor.
  • the transceiver 404 is configured to transmit and receive signals, and the specific process is performed by at least one of the plurality of antennas 406.
  • the memory 408 can be various types of storage media, such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • RAM random access memory
  • ROM read only memory
  • NVRAM non-volatile RAM
  • PROM Programmable ROM
  • EPROM Erasable PROM
  • EEPROM Electrically Erasable PROM
  • flash memory optical memory
  • registers such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • the memory 408 is specifically configured to store instructions 4082 and data 4084.
  • the processor 402 is a general purpose processor
  • the I/O interface 410 is for receiving instructions and/or data from peripheral devices and outputting instructions and/or data to peripheral devices.
  • the processor can be used to perform, for example, without limitation, baseband related processing
  • the transceiver can be used to perform, for example, without limitation, radio frequency transceiving.
  • the above devices may be respectively disposed on chips independent of each other, or may be disposed at least partially or entirely on the same chip.
  • the processor can be further divided into an analog baseband processor and a digital baseband processor, wherein the analog baseband processor can be integrated on the same chip as the transceiver, and the digital baseband processor can be disposed on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be combined with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) Integrated on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip can be referred to as a system on chip. Separate devices on different chips or integrated on one or more chips often depends on the specific needs of the product design. The specific implementation form of the above device is not limited in the embodiment of the present invention.
  • the communication device 400 may also include other hardware devices, which are not enumerated herein.
  • FIG. 5 is an exemplary flowchart of a method 500 of configuring a channel state information reporting frequency band according to an embodiment of the invention.
  • the method 500 may be performed by a transmitting end device or a receiving end device, which may be implemented by the communication device 300 shown in FIG. 3 and the communication device 400 shown in FIG. 4.
  • the device at the transmitting end may be a network device or a terminal.
  • the method process provided by the application may be performed by the network device or may be performed by the terminal.
  • the network device may first configure the size, number, start and end positions of the sub-bands included in the CSI reporting frequency band, and then indicate to the terminal; the terminal may also configure the size of the sub-band included in the CSI reporting frequency band according to the method. , number, start and end positions, sent to the network device for configuration suggestions.
  • Step 502 Determine a size of a channel state information subband based on a bandwidth part (BWP).
  • BWP bandwidth part
  • Step 504 Determine channel state information based on a carrier bandwidth (CC) or a bandwidth portion BWP or a channel state information reference signal (CSI-RS) bandwidth, and a size of the channel state information subband. The number of channel state information subbands included in the reported frequency band.
  • CC carrier bandwidth
  • BWP bandwidth portion
  • CSI-RS channel state information reference signal
  • steps 502 and 504 may be performed by processing module 302 and processor 402.
  • the size of the channel state information subband is the maximum number of resource blocks it contains; and the maximum number of resource blocks is determined by the total number of resource blocks included in the bandwidth part BWP.
  • the size of the channel state information subband is determined by Table 3 below:
  • the CSI does not divide the sub-band; when the total number of PRBs of the BWP is 24 to 72, the CSI sub-band The size is 4 or 8; when the total number of PRBs of BWP is 73 to 144, the size of CSI subband is 8 or 16; when the total number of PRBs of BWP is 145 to 275, CSI The size of the belt is 16 or 32.
  • PRBs resource blocks
  • the channel state information may be, for example but not limited to, one of CQI, PMI, RI, and CRI. It should be noted that, in a specific implementation process, the transmitting end device may configure multiple types of channel state information for the receiving end device, or the receiving end device may also configure multiple types of channel state information, wherein each type of channel state information is used. The method may be configured by referring to the method 500, and the receiving end device may feed back, to the transmitting end device, multiple types of channel state information of the channel state information subband.
  • the foregoing step 504 determines the number of channel state information subbands included in the channel state information reporting frequency band based on the carrier bandwidth CC or the bandwidth portion BWP or the channel state information reference signal CSI-RS bandwidth and the size of the channel state information subband. Specifically, including:
  • the channel state information subband includes a first channel state information subband and a last channel state information subband, and a conventional channel state information subband;
  • the first channel state information subband may be referred to as a start channel state information subband, or a start channel state information subband, which may be referred to herein as a start subband; the last channel state information subband may also be referred to as termination.
  • the channel state information subband or the end channel state information subband may be referred to herein as a terminating subband.
  • the normal channel state information subband is a subband other than the first channel state information subband and the last channel state information subband in the channel state information subband, and may also be referred to as a common channel state information subband. This article can be referred to as an ordinary sub-band. I will not repeat them later.
  • the transmitting end device or the receiving end device may determine the actual number of resource blocks included in the first channel state information subband, and the resource block included in the last channel state information subband. The actual number.
  • the transmitting end device determines the actual number of resource blocks included in the first channel state information subband, and the actual number of resource blocks included in the last channel state information subband, Then send it to the receiving device.
  • the actual number of resource blocks included in the first channel state information subband is determined, including:
  • the actual number of resource blocks included in the first channel state information subband corresponding to the CSI-RS bandwidth in the channel status information reporting frequency band the actual number of resource blocks included in the normal channel state information subband Number-mod (the index number of the initial resource block of the CSI-RS, the actual number of resource blocks included in the subband of the regular channel state information);
  • the actual number of resource blocks included in the first channel state information subband is less than or equal to the actual number of resource blocks included in the regular channel state information subband.
  • the method further includes: determining an actual number of resource blocks included in a last channel state information subband, specifically determining a last channel state information subband corresponding to a CC bandwidth in the channel status information reporting frequency band.
  • the resource block remainder mod ((the index number of the initial resource block of the CC + the total number of resource blocks included in the CC bandwidth), the actual number of resource blocks included in the subband of the regular channel state information)
  • the resource block remainder mod ((the index number of the initial resource block of the CC + the total number of resource blocks included in the CC bandwidth), the actual number of resource blocks included in the subband of the regular channel state information)
  • the actual number of resource blocks included in the last channel state information subband corresponding to the CC bandwidth in the channel state information reporting frequency band resources included in the conventional channel state information subband The actual number of blocks.
  • determining the actual number of resource blocks included in the last channel state information subband corresponding to the BWP in the channel status information reporting frequency band including:
  • the resource block remainder mod ((the index number of the initial resource block of the BWP + the total number of resource blocks included in the BWP), and the actual number of resource blocks included in the subband of the regular channel state information);
  • the actual number of resource blocks included in the last channel state information subband corresponding to the BWP in the channel state information reporting frequency band is the remaining number of resource blocks;
  • the actual number of resource blocks included in the last channel state information subband corresponding to the BWP in the channel state information reporting frequency band the resource block included in the regular channel state information subband The actual number.
  • determining the actual number of resource blocks included in the last channel state information subband corresponding to the CSI-RS bandwidth in the channel status information reporting frequency band including:
  • the resource block remainder mod ((the index number of the initial resource block of the CSI-RS + the total number of resource blocks included in the CSI-RS bandwidth), and the actual number of resource blocks included in the sub-band of the regular channel state information number);
  • the actual number of resource blocks included in the last channel state information subband corresponding to the CSI-RS bandwidth in the channel state information reporting frequency band is the remaining number of resource blocks;
  • the actual number of resource blocks included in the last channel state information subband corresponding to the CSI-RS bandwidth in the channel state information reporting frequency band is included in the conventional channel state information subband.
  • the method further includes: determining that the actual number of resource blocks included in the normal channel state information subband is equal to the maximum number of resource blocks included in the channel state information subband.
  • the channel state information subband related information included in the channel state information reporting frequency band for example, the number of the channel state information subbands described above, or further, the channel state information subband, the first channel state
  • the actual number of resource blocks included in the information subband or the actual number of resource blocks included in the last channel state information subband may be specified by the transmitting device and indicated to the receiving device.
  • the method 500 is performed by the transmitting device, and may further include:
  • Step 506 the transmitting end device sends, to the receiving end device, the reporting subband configuration information indicating that each subband in the channel state information subband is a reporting subband or a non-reporting subband; in other words, the reporting The subband configuration information is used to indicate which subbands in the channel status information reporting frequency band are reported subbands, and which subbands are not reported subbands;
  • the reported sub-band configuration information is represented by information bits, and the number of bits of the information bits is the same as the number of sub-bands of the channel state information.
  • the reporting subband configuration information reporting subband configuration information indicates the number of the channel state information subband or further indicating a starting position of the channel state information subband or a start of a channel state information subband Location and termination location.
  • the non-reported sub-band may also be referred to as a missing sub-band or a default sub-band or an ellipsis sub-band, which represents a sub-band that does not need to report channel state information.
  • the reported subband configuration information includes a first information bit, where the first information bit is used to indicate a reported subband or a non-reported subband in the channel state information subband in the reported frequency band, that is, a channel status information subband is indicated. Among them, which are the sub-sub-bands and those of the non-reporting sub-bands. That is, the reported subband configuration information is implemented by means of a bit map.
  • the channel state information subbands in the reporting frequency band may all be the reporting subband, or part of the reporting subband is a non-reporting subband, the reporting subband may be represented by the information bit 1, and the non-reporting subband uses the information bit.
  • the representation sub-band is represented by information bit 0, and the non-reported sub-band is represented by information bit 1.
  • the number of the first information bits is the same as the number of the actual information subbands, and the total number of bits of the first information bits is used to indicate the reported subband and the non-reported subband.
  • the number of the first information bits is the same as the maximum number of reported sub-bands allowed by the system, and all or part of the number of bits of the first information bit is used to indicate the reported sub-band and the non-reported sub-band.
  • the reporting subband configuration information may further indicate, in a channel state information subband corresponding to the channel state information reference signal in the channel status information reporting band, the actual resource block included in the first channel state information subband.
  • step 506 can be performed by transceiver module 304 and transceiver 404.
  • the above-mentioned reported sub-band configuration information may also be directly pre-stored on the transmitting end device or the receiving end device, and the locally pre-stored sub-band configuration information is determined, and the at least one reported sub-band is determined according to the non-reported sub-band configuration information.
  • the steps may be performed by processing module 302 and processor 402. It should be noted that the above reported subband configuration process may be part of method 500 or method 500 may be part of the above process.
  • the reported sub-band configuration information may be replaced with the reported sub-band configuration information; and the reported sub-band configuration information is used to indicate the reporting.
  • Which sub-band groups in the frequency band are the reporting sub-band groups; the reporting sub-band configuration information or the reporting sub-band group indication information is used to indicate the at least one reporting sub-band or the reporting sub-band group, and may specifically indicate each reporting one by one.
  • the subband or the report subband group may also indicate the configuration scheme of reporting the subband or reporting the subband group. It is not difficult to understand that the former scheme is more flexible, but the indication overhead is larger. The latter scheme has a smaller indication overhead, but the indication manner is relatively fixed.
  • a plurality of reporting sub-bands or reporting sub-band group configuration schemes may be agreed in the communication standard, and may be written in advance before the receiving end device and the transmitting end device are shipped from the factory.
  • the reporting sub-band or the reporting sub-band group configuration scheme is used to indicate the reporting sub-band or the reporting sub-band group by transmitting an index of the reporting sub-band configuration scheme during the interaction between the receiving end device and the transmitting end setting.
  • the foregoing multiple non-reporting sub-band configuration schemes may also be configured by the transmitting end device for the receiving end device in the process of interacting between the transmitting end device and the receiving end device (for example, an initial access process).
  • the method 500 can further include:
  • each A reporting sub-band composed of a plurality of reported sub-bands or a reported sub-band group is recorded in the configuration scheme;
  • the step of receiving the reported sub-band configuration information from the transmitting end device may be performed by the transceiver module 304 and the transceiver 404, and determining, according to the reporting sub-band configuration information, the multiple reporting sub-band configuration schemes.
  • the steps may be performed by processing module 302 and processor 402. It should be noted that the above reported subband configuration process may be part of method 500 or method 500 may be part of the above process.
  • the foregoing reported subband configuration information or the reported subband configuration information may be sent by one of the following signaling:
  • the sending period of the sub-band configuration information or the reporting sub-band group configuration information is long. Therefore, the medium access control layer signaling or the radio resource control signaling may be preferably used to transmit the reported sub-band configuration information or the reported sub-band group. Configuration information.
  • the number of CSI reported sub-bands may be specified in advance in the communication standard. It is not difficult to understand that compared with the method of indicating the number of reported sub-bands, the pre-specified method in the communication standard helps to reduce the signaling overhead caused by the indication.
  • the above-mentioned reported sub-band configuration information or the reported sub-band configuration information may be transmitted through a message, or may be transmitted through multiple messages.
  • the specific transmission mode is not limited in the embodiment of the present invention.
  • a plurality of similar information (such as channel state information) may be included in the measurement report independently of each other, or may be included in the measurement report in an associative manner, or may be included in the measurement report in other manners.
  • the above related manner may be a differential method.
  • the embodiments of the present invention do not limit the specific manner of inclusion.
  • the physical layer signaling may be preferentially used to transmit the reported sub-band configuration information or the reported sub-band configuration information.
  • L1 signaling Physical layer signaling is also referred to as Layer 1 (L1) signaling, which can typically be carried by a control portion in a physical layer frame.
  • a typical example of L1 signaling is Downlink Control Information (DCI) carried in a physical downlink control channel (PDCCH) defined in the LTE standard.
  • DCI Downlink Control Information
  • PDCCH physical downlink control channel
  • L1 signaling may also be carried by the data portion of the physical layer frame. It is not difficult to see that the transmission period or signaling period of L1 signaling is usually the period of the physical layer frame. Therefore, such signaling is usually used to implement some dynamic control to transmit some frequently changing information, for example, through the physical layer. Signaling resource allocation information.
  • Media Access Control (MAC) layer signaling belongs to Layer 2 signaling, which can typically be carried by, for example, but not limited to, a frame header of a Layer 2 frame.
  • the foregoing frame header may also carry information such as, but not limited to, a source address and a destination address.
  • the second layer of frames usually also contains the frame body.
  • L2 signaling may also be carried by the frame body of the second layer frame.
  • a typical example of Layer 2 signaling is the signaling carried in the Frame Control field in the frame header of the MAC frame in the 802.11 series of standards, or the Control Entity (MAC-CE) defined in some protocols.
  • the second layer frame can usually be carried in the data portion of the physical layer frame.
  • the non-reported subband configuration information may also be sent through other Layer 2 signaling other than the medium access control layer signaling.
  • Radio Resource Control (RRC) signaling belongs to Layer 3 signaling, which is usually some control message, and L3 signaling can usually be carried in the frame body of the second layer frame.
  • the transmission period or control period of L3 signaling is usually long, and is suitable for transmitting information that does not change frequently.
  • L3 signaling is usually used to carry some configuration information.
  • the foregoing reported subband configuration information or the reported subband group configuration information may also be sent through other layer 3 signaling other than RRC signaling.
  • the receiving end device may also obtain channel state information of the non-reported sub-band through channel estimation, but still not sent to the transmitting end device.
  • the transmitting device can set the channel state information of the non-reporting subband. In other words, when the transmitting device sets the channel state information of the non-reporting subband, the actual channel environment can be ignored. It is not difficult to understand that this design can reduce the feedback overhead caused by channel measurement.
  • the transmitting device may further adjust the channel state information.
  • the content of the adjustment has been clearly described above, so I will not repeat them here.
  • the channel state information may be a CQI
  • the channel state information of each reported subband and the channel state information of each non-reported subband may be a PMI, or channel state information of each reported subband and channel state information of each non-reported subband. It can also be CQI.
  • the content related to this is a prior art, and details are not described herein again.
  • the channel related information is the channel state information of the frequency band to be measured, and the channel state information is the same as the channel state information of each reported subband and the channel state information of each non-reported subband, the channel in which the frequency band to be measured is reported is reported.
  • the status information and the channel status information of each subband can be reported in a differential manner. Specifically, the channel state information of the frequency band to be measured and the difference between the channel state information of each reported subband and the channel state information of the frequency band to be measured may be reported.
  • the specific content of the channel related information is not limited in the embodiment of the present invention.
  • FIG. 6 is an exemplary flow diagram of a channel measurement method 600 in accordance with an embodiment of the present invention.
  • method 600 can be performed by a receiving device that can be implemented by communication device 300 shown in FIG. 3 and communication device 400 shown in FIG.
  • the receiving end device may be a terminal, and the corresponding receiving end device is a network device.
  • Step 602 Receive reporting sub-band configuration information indicating a sub-band of the channel status information sent by the transmitting device, where the reporting sub-band configuration information indicates that the sub-band of the channel status information is a reporting sub-band or a non-reporting sub-band;
  • the status information subband belongs to the channel status information reporting frequency band.
  • step 602 can be performed by transceiver module 304 and transceiver 404.
  • Step 604 Determine, according to the reported subband configuration information, a size and a location of each of the channel state information subbands.
  • step 604 can be performed by processing module 302 and processor 402.
  • the reported sub-band configuration information is represented by information bits, and the receiving end device determines the number of channel state information sub-bands included in the channel status information reporting frequency band, including:
  • the receiving end device determines the number of channel state information subbands included in the channel status information reporting frequency band according to the number of bits of the information bits.
  • the receiving device receives the number of channel state information subbands included in the reporting band of the channel state information in the reported subband configuration information of the network device, and the receiving device is based on the carrier bandwidth CC or the bandwidth portion BWP. Or the channel state information reference signal CSI-RS bandwidth and the size of the channel state information subband, and determine the number of channel state information subbands included in the channel state information reporting frequency band;
  • the receiving end device receives the reported subband configuration information of the transmitting end device, where the reporting subband configuration information further includes the first channel state information subband or the last channel state information subband. The actual number of resource blocks included;
  • the channel state information subband includes a first channel state information subband and a last channel state information subband, and a conventional channel state information subband;
  • the receiving end device may further determine an actual number of resource blocks included in the first channel state information subband, and determine an actual number of resource blocks included in the last channel state information subband.
  • the actual number of resource blocks included in the first channel state information subband corresponding to the CSI-RS bandwidth in the channel status information reporting frequency band the actual number of resource blocks included in the normal channel state information subband Number-mod (the index number of the initial resource block of the CSI-RS, the actual number of resource blocks included in the subband of the regular channel state information);
  • the actual number of resource blocks included in the first channel state information subband is less than or equal to the actual number of resource blocks included in the regular channel state information subband.
  • Determining, by the receiving end device, the actual number of resource blocks included in the last channel state information subband, specifically determining the last channel state information subband corresponding to the CC bandwidth in the reported channel state information reporting frequency band The actual number of resource blocks:
  • the resource block remainder mod ((the index number of the initial resource block of the CC + the total number of resource blocks included in the CC bandwidth), the actual number of resource blocks included in the subband of the regular channel state information)
  • the resource block remainder mod ((the index number of the initial resource block of the CC + the total number of resource blocks included in the CC bandwidth), the actual number of resource blocks included in the subband of the regular channel state information)
  • the actual number of resource blocks included in the last channel state information subband corresponding to the CC bandwidth in the channel state information reporting frequency band resources included in the conventional channel state information subband The actual number of blocks.
  • the resource block remainder mod ((the index number of the initial resource block of the BWP + the total number of resource blocks included in the BWP), and the actual number of resource blocks included in the subband of the regular channel state information);
  • the actual number of resource blocks included in the last channel state information subband corresponding to the BWP in the channel state information reporting frequency band is the remaining number of resource blocks;
  • the actual number of resource blocks included in the last channel state information subband corresponding to the BWP in the channel state information reporting frequency band the resource block included in the regular channel state information subband The actual number.
  • the resource block remainder mod ((the index number of the initial resource block of the CSI-RS + the total number of resource blocks included in the CSI-RS bandwidth), and the actual number of resource blocks included in the sub-band of the regular channel state information number);
  • the actual number of resource blocks included in the last channel state information subband corresponding to the CSI-RS bandwidth in the channel state information reporting frequency band is the remaining number of resource blocks;
  • the actual number of resource blocks included in the last channel state information subband corresponding to the CSI-RS bandwidth in the channel state information reporting frequency band is included in the conventional channel state information subband.
  • the actual number of resource blocks included in the normal channel state information subband is equal to the maximum number of resource blocks included in the channel state information subband.
  • the transmitting end device further includes, in the reported subband configuration information sent to the receiving end device, the actual resource block included in the first channel state information subband or the last channel state information subband. Number
  • the reporting subband configuration information received by the receiving device from the transmitting device further includes resources included in the first channel state information subband or the last channel state information subband.
  • the actual number of the blocks; the receiving end device determines the initial resources of the first channel state information subband or the last channel state information subband according to the reported subband configuration information and the size of the channel state information subband The index number of the block.
  • This embodiment mainly describes a configuration indication method and a subband size calculation of a CC-based CSI reporting band.
  • the CSI subband included in the CSI reporting frequency band is divided based on the entire carrier bandwidth CC, and the first channel state information subband (first subband) needs to be separately determined, and the number of RBs included in the initial subband is also The last channel state information subband, also known as the number of RBs included in the last subband.
  • the channel size information subband size (Subband Size (PRBs)) is determined based on the carrier bandwidth part (BWP) of the carrier, as shown in Table 4:
  • the sub-band size of the CSI sub-band is determined according to the number of resource blocks (RBs) of the BW bandwidth BW BWP , for example, the number of PRBs, that is, the maximum number of RBs that can be included in one subband.
  • the subband size is X RB/subband.
  • BW BWP 32 RB
  • X 8 RB/subband
  • sub-band channel state information is set to a minimum number of BW BWP, thus obtained channel state information of the number of sub-bands will be a system allows The maximum value.
  • PRBs Subband Size
  • Step 2 Determine the number of CSI subbands according to the CC bandwidth.
  • the number of CSI subbands is determined according to the number of RBs of the CC bandwidth BW CC , that is, the maximum number of subbands that can be included in one CC bandwidth.
  • the number of subbands is N subbands.
  • the number of subbands corresponding to the CC bandwidth is:
  • the subband size X 8RB/subbad determined according to step one, and the corresponding number of subbands is
  • Step 3 Determine the CSI subband to include the number of RBs according to the CC bandwidth or the BWP or CSI-RS bandwidth and the frequency domain location.
  • the following is an example of determining the number of RBs included in the CSI sub-band according to the CSI-RS bandwidth.
  • the number of RBs included in the CSI sub-band is similar to that of the CC bandwidth or the BWP and the frequency domain, and is not described here.
  • the channel state information subband corresponding to the CSI-RS includes a first channel state information subband, also called a starting subband; and a last channel state information subband, also called a terminating subband, and a conventional The channel state information subband, also known as the ordinary subband.
  • the following subbands include RB numbers (subband size 4RB).
  • the channel status information reporting band can be indicated by using a bitmap.
  • the channel status information reporting frequency band is configured based on the CC, so the number of bits in the bitmap and the subband included in the CC bandwidth.
  • the number of sub-bands included in the CSI-RS bandwidth is 7 sub-bands corresponding to the tail of the CSI reporting band based on the CC bandwidth configuration are not configured as CSI-RS bandwidth, so the 2 sub-bands at the end of the CSI reporting band are set to 0; in the CSI reporting band, and CSI-
  • the CSI sub-band corresponding to the RS bandwidth is the first seven CSI sub-bands, and the corresponding bit is represented by x.
  • the x configuration is 1, representing the sub-band as the reporting sub-band, and the x configuration is 0, indicating that the sub-band is non-reported. Subband.
  • the third x can be set to 0, indicating that the third subband is not used as the reported subband.
  • bit is set to 0 to indicate the non-reported sub-band
  • bit is set to 1 to indicate the sub-band
  • the following subbands include RB numbers (subband size 8RB).
  • the channel status information reporting band can be indicated by using a bitmap.
  • the channel status information reporting frequency band is configured based on the CC, so the number of bits in the bitmap and the sub-bands included in the CC are used. The number is the same, specifically 5, because the initial RB index of the CSI-RS bandwidth is 0, and the total number of resource blocks is 28 RB, and the sub-band size of the CSI-RS bandwidth is 8 RB, so the sub-bands of the CSI-RS bandwidth are The number of four sub-bands corresponding to the tail of the CSI reporting band based on the CC bandwidth configuration is not configured as the CSI-RS bandwidth, so it is set to 0; and the CSI sub-band in the CSI reporting band corresponds to the CSI-RS bandwidth.
  • the band is the first four CSI subbands, the corresponding bit is represented by x, the x is set to 1, the subband is represented as the reported subband, and the x is configured to be 0, indicating that the subband is a non-reported subband.
  • bit is set to 0 to indicate the non-reported sub-band
  • bit is set to 1 to indicate the sub-band
  • the following subbands may be included in the number of RBs (subband size 8RB).
  • the channel status information reporting band can be indicated by using a bitmap.
  • the band is the first four CSI subbands, the corresponding bit is represented by x, the x is set to 1, the subband is represented as the reported subband, and the x is configured to be 0, indicating that the subband is a non-reported subband.
  • bit is set to 0 to indicate the non-reported sub-band
  • bit is set to 1 to indicate the sub-band
  • the beneficial effect of this method is to simplify terminal addressing (absolute addressing) complexity based on a uniform configuration of CC physical bandwidth.
  • This embodiment mainly describes a configuration indication method and a subband size calculation of a BSI-based CSI reporting band.
  • the CSI subband included in the CSI reporting frequency band is divided according to the bandwidth part BWP, and the first channel state information subband (first subband) in the CSI subband corresponding to the CSI-RS bandwidth needs to be separately determined, and The number of RBs included in the starting subband and the last subband of channel state information, also referred to as the number of RBs included in the last subband.
  • the channel bandwidth information subband size (Subband Size (PRBs)) is determined based on the carrier bandwidth part (BWP), as shown in Table 4 above:
  • the sub-band size of the CSI sub-band is determined according to the number of resource blocks (RBs) of the BW bandwidth BW BWP , for example, the number of PRBs, that is, the maximum number of RBs that can be included in one subband.
  • the subband size is X RB/subband.
  • BW BWP 32 RB
  • X 8 RB/subband
  • Step 2 Determine the number of CSI subbands according to the BWP
  • the number of CSI subbands is determined according to the number of RBs of the BW bandwidth BW BWP , that is, the maximum number of subbands that can be included in one BWP.
  • the number of subbands is N subbands.
  • Step 3 Determine the CSI subband to include the number of RBs according to the CC bandwidth or the BWP or CSI-RS bandwidth and the frequency domain location.
  • the following is an example of determining the number of RBs included in the CSI sub-band according to the CSI-RS bandwidth.
  • the number of RBs included in the CSI sub-band is similar to that of the CC bandwidth or the BWP and the frequency domain, and is not described here.
  • the channel state information subband corresponding to the CSI-RS bandwidth in the CSI reporting frequency band includes a first channel state information subband, also called a starting subband; and a last channel state information subband, also called a terminating subband, and a conventional The channel state information subband, also known as the ordinary subband.
  • the following subbands include RB numbers (subband size 4RB).
  • the channel status information reporting band may be indicated by a bitmap.
  • the channel status information reporting frequency band is configured based on the BWP, so the number of bits of the bitmap and the subbands included in the BWP are used.
  • the number is the same, specifically eight, because the initial RB index of the CSI-RS bandwidth is 0, and the total number of resource blocks is 28 RB, and the sub-band size of the CSI-RS bandwidth is 4 RB, so the sub-bands of the CSI-RS bandwidth are The number of seven sub-bands corresponding to the tail of the CSI reporting band configured based on the BWP bandwidth configuration is not configured as the CSI-RS bandwidth, so it is set to 0; and the CSI sub-band in the CSI reporting band corresponds to the CSI-RS bandwidth.
  • the band is the first 7 CSI sub-bands, the corresponding bit is represented by x, x is set to 1, the sub-band is represented as the reporting sub-band, and x is configured as 0, indicating that the sub-band is a non-reporting sub-band.
  • bit is set to 0 to indicate the non-reported sub-band
  • bit is set to 1 to indicate the sub-band
  • the following subbands include RB numbers (subband size 8RB).
  • the channel status information reporting band may be indicated by a bitmap.
  • the channel status information reporting frequency band is configured based on the BWP, so the number of bits of the bitmap and the subbands included in the BWP are used.
  • the number is the same, specifically 4, because the initial RB index of the CSI-RS bandwidth is 0, and the total number of resource blocks is 28 RB, and the sub-band size of the CSI-RS bandwidth is 8 RB, so the sub-bands of the CSI-RS bandwidth
  • the number is four, and the CSI-reported band corresponds to the CSI-RS bandwidth, which is four CSI sub-bands, and the corresponding bit is represented by x, x is set to 1, representing the sub-band as the reporting sub-band, and x is configured as 0. , representing the sub-band as a non-reported sub-band.
  • bit is set to 0 to indicate the non-reported sub-band
  • bit is set to 1 to indicate the sub-band
  • the following subbands may be included in the number of RBs (subband size 8RB).
  • the channel status information reporting band may be indicated by a bitmap.
  • the channel status information reporting frequency band is configured based on the BWP, so the number of bits of the bitmap and the subbands included in the BWP are used.
  • the number of the four CSI sub-bands corresponding to the CSI-RS bandwidth in the CSI reporting band is represented by x, the x configuration is 1, the sub-band is represented as the reporting sub-band, and the x configuration is 0. , representing the sub-band as a non-reported sub-band.
  • bit is set to 0 to indicate the non-reported sub-band
  • bit is set to 1 to indicate the sub-band
  • the beneficial effect of the second embodiment is based on the flexible configuration of the BWP bandwidth, and the number of bits less configured in the first embodiment is used for the configuration of the CSI subband.
  • This embodiment mainly describes a configuration indication method and a subband size calculation of a CSI-based CSI reporting band.
  • the CSI subband included in the CSI reporting frequency band is divided according to the bandwidth part BWP, and the first channel state information subband in the CSI subband corresponding to the CSI-RS bandwidth in the CSI reporting frequency band needs to be separately determined.
  • first subband also known as the number of RBs included in the starting subband
  • last channel state information subband also known as the number of RBs included in the last subband.
  • the channel bandwidth information subband size (Subband Size (PRBs)) is determined based on the carrier bandwidth part (BWP), as shown in Table 4 above:
  • the sub-band size of the CSI sub-band is determined according to the number of resource blocks (RBs) of the BW bandwidth BW BWP , for example, the number of PRBs, that is, the maximum number of RBs that can be included in one subband.
  • the subband size is X RB/subband.
  • BW BWP 32 RB
  • X 8 RB/subband
  • Step 2 Determine the number of CSI subbands according to the CSI-RS bandwidth
  • the number of subbands is N subbands.
  • Step 3 Determine the CSI subband to include the number of RBs according to the CC bandwidth or the BWP or CSI-RS bandwidth and the frequency domain location.
  • the following is an example of determining the number of RBs included in the CSI sub-band according to the CSI-RS bandwidth.
  • the number of RBs included in the CSI sub-band is similar to that of the CC bandwidth or the BWP and the frequency domain, and is not described here.
  • the CSI subband corresponding to the CSI-RS bandwidth includes a first channel state information subband, also called a starting subband; and a last channel state information subband, also called a terminating subband, and a regular channel.
  • the status information sub-band also known as the ordinary sub-band.
  • the following subbands include RB numbers (subband size 4RB).
  • the channel status information reporting band can be indicated by using a bitmap.
  • the channel status information reporting band is configured based on the CSI-RS bandwidth, so the number of bits of the bitmap and the CSI-RS bandwidth.
  • the number of subbands included is the same, specifically seven, and seven CSI subbands corresponding to the CSI-RS bandwidth in the CSI reporting frequency band, the corresponding bits are represented by x, and the x configuration is 1, representing the subband as The subband is reported, and x is configured to be 0, indicating that the subband is a non-reported subband.
  • bit is set to 0 to indicate the non-reported sub-band
  • bit is set to 1 to indicate the sub-band
  • the following subbands may be included in the number of RBs (subband size 8RB).
  • the channel status information reporting band can be indicated by using a bitmap.
  • the channel status information reporting band is configured based on the CSI-RS bandwidth, so the number of bits of the bitmap and the CSI-RS bandwidth.
  • the number of subbands included is the same, specifically four, and four CSI subbands corresponding to the CSI-RS bandwidth in the CSI reporting frequency band, the corresponding bits are represented by x, and the x configuration is 1, representing the subband as The subband is reported, and x is configured to be 0, indicating that the subband is a non-reported subband.
  • bit is set to 0 to indicate the non-reported sub-band
  • bit is set to 1 to indicate the sub-band
  • the following subbands may be included in the number of RBs (subband size 8RB).
  • the channel status information reporting band can be indicated by using a bitmap.
  • the channel status information reporting band is configured based on the CSI-RS bandwidth, so the number of bits of the bitmap and the CSI-RS bandwidth.
  • the number of subbands included is the same, specifically four, and four CSI subbands corresponding to the CSI-RS bandwidth in the CSI reporting frequency band, the corresponding bits are represented by x, and the x configuration is 1, representing the subband as The subband is reported, and x is configured to be 0, indicating that the subband is a non-reported subband.
  • bit is set to 0 to indicate the non-reported sub-band
  • bit is set to 1 to indicate the sub-band
  • the beneficial effect of the method is based on the flexible configuration of the CSI-RS bandwidth, and the number of bits configured in the second embodiment is used for the configuration of the CSI reporting band.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in whole in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信道状态信息上报频带的配置方法,上报方法和相应的装置,所述方法包括基于带宽部分BWP确定信道状态信息子带的大小;基于载波带宽CC或者带宽部分BWP或者信道状态信息参考信号CSI-RS带宽,以及所述信道状态信息子带的大小,确定信道状态信息上报频带所含的信道状态信息子带的个数;所述方法还包括确定信道状态信息子带中起始子带和终止子带所含的资源块的实际个数。实施本申请,配置CSI上报频带中各个子带的个数和子带的大小更加灵活,简化了终端寻址的复杂度。

Description

信道状态信息上报频带的配置方法及通信装置
本申请要求于2018年1月12日提交中国专利局、申请号为201810032711.5、申请名称为“信道状态信息上报频带的配置方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明实施例涉及通信技术,尤其涉及一种信道测量方法,发射端设备以及接收端设备。
背景技术
通过信道测量来获得信道状态信息(Channel State Information,CSI)对提升无线通信的传输质量至关重要。在进行信道测量时,接收端设备(例如智能手机等用户设备)根据发射端设备(例如基站等接入设备)发射的参考信号(Reference Signal,RS)获得信道状态信息,并将获得的CSI反馈给发射端设备。发射端设备便基于该CSI对发射信号进行处理并发往接收端设备。由此可见,基于CSI来进行的无线传输与信道环境更加契合,因此传输质量更好。
CSI通常可以通过物理上行共享信道(Physical Uplink Shared Channel,PUSCH),从接收端设备发往发射端设备。通过PUSCH传输的CSI可以包含宽带(Wideband)CSI,也可以包含多个子带(Subband)CSI,还可以既包含宽带CSI也包含多个子带CSI。宽带CSI可以理解为基于宽带计算得到的CSI,子带CSI可以理解为基于子带计算得到的CSI。
通常,网络设备需要向终端指示进行CSI上报频带所含的子带,终端会在指示的CSI上报频带上进行CSI上报。CSI上报频带的子带的大小和个数需要进行配置。
现有技术中是基于系统带宽来配置CSI上报频带所含的子带个数,但随着网络的演进,这种方式已经不能配置CSI上报频带所含的子带的个数。
发明内容
有鉴于此,实有必要提供一种信道状态信息上报频带的配置和上报方法以及对应的装置,可以满足网络演进的需求。
根据本发明实施例的第一方面,提供一种信道状态信息上报频带(CSI reporting band)的配置方法,包括:
基于带宽部分(Bandwidth Part,BWP)确定信道状态信息子带的大小;
基于载波带宽(Carrier Bandwidth,CC)或者带宽部分BWP或者信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)带宽,以及所述信道状态信息子带 的大小,确定信道状态信息上报频带所含的信道状态信息子带的个数。
其中,所述信道状态信息子带的大小为其包含的资源块的最大个数;且信道状态信息子带的资源块的最大个数由带宽部分BWP所含的资源块的总个数确定。
该方法可以由发射端设备执行,该发射端设备可以是网络设备,也可以是终端,换言之,本申请提供的第一方面的方法流程,可以由网络设备执行,或者可以由终端执行。网络设备可以先配置好CSI上报频带所含子带的大小,个数,起始和终止位置等等,然后再指示给终端;终端也可以据此方法自己配置CSI上报频带所含子带的大小,个数,起始和终止位置,发送给网络设备做配置建议;还有一种实现的可能是网络设备配置CSI上报频带的部分信息,然后发送给终端设备,由终端设备完成后续的配置。
在第一种可能的设计中,确定信道状态信息上报频带所含的信道状态信息子带的个数之后,所述方法还包括:
向接收端设备发送指示信道状态信息子带中的各个子带是上报子带或非上报子带的上报子带配置信息;换句话说,所述上报子带配置信息用于指示信道状态信息上报频带中哪些子带为上报子带,哪些子带不是上报子带;
所述上报子带配置信息用信息比特表示,所述信息比特的比特个数与所述信道状态信息上报频带所含的信道状态信息子带的个数相同。
在第一种可能的设计中的实现方式中,所述上报子带配置信息上报子带配置信息指示所述信道状态信息子带个数或进一步指示信道状态信息子带的起始位置或者信道状态信息子带的起始位置和终止位置。
所述上报子带配置信息包括第一信息比特,该第一信息比特用于表示所述上报频带中信道状态信息子带中的上报子带或非上报子带,也即指示信道状态信息子带中,哪些是上报子带,哪些是非上报子带。也即,所述上报子带配置信息用比特位图(bitmap)的方式实现。
可选的,该上报频带中信道状态信息子带可以全部是上报子带,或者一部分是上报子带一部分是非上报子带,上报子带可以用信息比特1表示,非上报子带用信息比特0表示;或者上报子带用信息比特0表示,非上报子带用信息比特1表示。
可选的,所述第一信息比特的个数与实际上报子带的个数相同,该第一信息比特的全部比特数用于指示上报子带和非上报子带;
或所述第一信息比特的个数与系统允许的最大上报子带的个数相同,该第一信息比特的全部或者部分比特数用于指示上报子带和非上报子带。
在第二种可能的设计中,所述基于载波带宽CC或者带宽部分BWP或者信道状态信息参考信号CSI-RS带宽,以及所述信道状态信息子带的大小,确定信道状态信息上报频带所含的信道状态信息子带的个数,具体包括:
将所述载波带宽CC所含的资源块的总个数除以所述信道状态信息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数;或
将所述带宽部分BWP所含的资源块的总个数除以所述信道状态信息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数;或
将所述信道状态信息参考信号CSI-RS带宽所含资源块的总个数除以所述信道状态信 息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数。
所述信道状态信息上报频带中的信道状态信息子带包括第一个信道状态信息子带和最后一个信道状态信息子带,以及常规信道状态信息子带。
第一个信道状态信息子带又可以称为起始信道状态信息子带,或开始信道状态信息子带,本文中可以简称为起始子带;最后一个信道状态信息子带又可以称为终止信道状态信息子带或结束信道状态信息子带,本文中可以简称为终止子带。常规信道状态信息子带所述信道状态信息子带中除第一个信道状态信息子带和最后一个信道状态信息子带之外的子带,又可以称为普通信道状态信息子带,本文中可以简称为普通子带。后续不再赘述。
在第三种可能的设计中,由发射端设备确定所述第一个信道状态信息子带所含的资源块的实际个数,和确定所述最后一个信道状态信息子带所含的资源块的实际个数,然后发送给终端。
具体的,发射端设备确定所述第一个信道状态信息子带所含的资源块的实际个数,包括:
确定所述信道状态信息上报频带中与CC带宽对应的第一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(CC的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);或
确定所述信道状态信息上报频带中与BWP对应的第一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(BWP的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);或
确定所述信道状态信息上报频带中与CSI-RS带宽对应的第一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(CSI-RS的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);
其中,所述第一个信道状态信息子带所含的资源块的实际个数小于等于所述常规信道状态信息子带所含的资源块的实际个数。
发射端设备确定所述最后一个信道状态信息子带所含的资源块的实际个数,包括:
确定资源块余数,该资源块余数=mod((CC的初始资源块的索引号+CC带宽所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数)或
确定资源块余数,该资源块余数=mod((BWP的初始资源块的索引号+BWP所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数)或
确定资源块余数,该资源块余数=mod((CSI-RS的初始资源块的索引号+CSI-RS带宽所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数);
所述资源块余数大于零时,所述最后一个信道状态信息子带所含的资源块的实际个数=资源块余数;
所述资源块余数等于零时,所述最后一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数。
其中,所述常规信道状态信息子带所含的资源块的实际个数等于所述信道状态信息子带所含的资源块的最大个数。
在第四种可能的设计中,发射端设备通过上述上报子带配置信息指示终端信道状态信息子带的个数,由接收端设备根据信道状态信息子带的大小,确定所述第一个信道状态信 息子带所含的资源块的实际个数,和确定所述最后一个信道状态信息子带所含的资源块的实际个数。接收端设备确定所述第一个信道状态信息子带所含的资源块的实际个数,和确定所述最后一个信道状态信息子带所含的资源块的实际个数的方式与发射端设备相同,在此不再赘述;
在第五种可能的设计中,发射端设备在发送给接收端设备的上报子带配置信息中还包括所述第一个信道状态信息子带或最后一个信道状态信息子带所含的资源块的实际个数;
所述接收端设备根据所述第一个信道状态信息子带或最后一个信道状态信息子带所含的资源块的实际个数,所述信道状态信息子带的大小,确定所述第一个信道状态信息子带或最后一个信道状态信息子带的资源块的索引号。
在第六种可能的设计中,所述方法还包括:
网络设备向终端发送的上报子带组配置信息用于指示上报频带中哪些子带组为上报子带组,以使终端根据所述上报子带组配置信息确定所述上报频带中的至少一个上报子带组。
在第七种可能的设计中,通过第一信息比特向终端发送指示信道状态信息子带的上报或非上报状态的上报子带配置信息之后,还包括:
向终端发送动态信令,其中,该动态信令包括第三信息比特,所述第三信息比特用于表示所述第一信息比特或第二信息比特的索引;该第三信息比特用于指示终端根据所述第三信息比特的索引指示,选择一个第一信息比特所指示上报子带和非上报子带;或选择一个第二信息比特所指示的上报子带组或非上报子带组。
在上述七种可能的设计中,所述信道状态信息为以下信息之中的一种:
信道质量指示、预编码矩阵指示、秩指示和信道状态信息参考信号资源指示。
根据本发明实施例的第二方面,提供一种发射端设备,包括处理模块和接口:
所述处理模块,用于基于带宽部分BWP确定信道状态信息子带的大小;
所述处理模块还用于基于载波带宽CC或者带宽部分BWP或者信道状态信息参考信号CSI-RS带宽,以及所述信道状态信息子带的大小,确定信道状态信息上报频带所含的信道状态信息子带的个数。
在第一种可能的设计中,所述发射端设备还包括:收发模块,用于向接收端发送指示信道状态信息子带中的各个子带是上报子带或非上报子带的上报子带配置信息;换句话说,所述上报子带配置信息用于指示信道状态信息上报频带中哪些子带为上报子带,哪些子带不是上报子带;
所述上报子带配置信息用信息比特表示,所述信息比特的比特个数与所述信道状态信息子带的个数相同。
在第一种可能的设计中的实现方式中,所述上报子带配置信息指示所述信道状态信息子带个数或进一步指示信道状态信息子带的起始位置或者信道状态信息子带的起始位置和终止位置。
所述上报子带配置信息包括第一信息比特,该第一信息比特用于表示所述上报频带中信道状态信息子带中的上报子带或非上报子带,也即指示信道状态信息子带中,哪些是上 报子带,哪些是非上报子带。也即,所述上报子带配置信息用比特位图(bitmap)的方式实现。
可选的,该信道状态信息上报频带中信道状态信息子带可以全部是上报子带,或者一部分是上报子带一部分是非上报子带,上报子带可以用信息比特1表示,非上报子带用信息比特0表示;或者上报子带用信息比特0表示,非上报子带用信息比特1表示。
可选的,所述第一信息比特的个数与实际上报子带的个数相同,该第一信息比特的全部比特数用于指示上报子带和非上报子带;
或所述第一信息比特的个数与系统允许的最大上报子带的个数相同,该第一信息比特的全部或者部分比特数用于指示上报子带和非上报子带。
其中,所述信道状态信息子带的大小为其包含的资源块的最大个数;且该资源块的最大个数由带宽部分BWP所含的资源块的总个数确定。
在第二种可能的设计中,所述处理模块具体用于:
将所述载波带宽CC所含的资源块的总个数除以所述信道状态信息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数;或
将所述带宽部分BWP所含的资源块的总个数除以所述信道状态信息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数;或
将所述信道状态信息参考信号CSI-RS带宽所含资源块的总个数除以所述信道状态信息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数。
所述信道状态信息子带包括第一个信道状态信息子带和最后一个信道状态信息子带,以及常规信道状态信息子带。
在第三种可能的设计中,由发射端设备的处理模块确定所述第一个信道状态信息子带所含的资源块的实际个数,和确定所述最后一个信道状态信息子带所含的资源块的实际个数,然后由所述收发器发送给接收端设备。
具体的,所述处理模块确定所述第一个信道状态信息子带所含的资源块的实际个数,包括:
所述处理模块确定所述信道状态信息上报频带中与CC带宽对应的第一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(CC的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);或
所述处理器确定所述信道状态信息上报频带中与BWP对应的第一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(BWP的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);或
所述处理器确定所述信道状态信息上报频带中与CSI-RS带宽对应的第一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(CSI-RS的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);
其中,所述第一个信道状态信息子带所含的资源块的实际个数小于等于所述常规信道状态信息子带所含的资源块的实际个数。
所述处理模块还用于确定所述最后一个信道状态信息子带所含的资源块的实际个数,包括:
确定资源块余数,该资源块余数=mod((CC的初始资源块的索引号+CC带宽所 含资源块的总数),常规信道状态信息子带所含的资源块的实际个数)或
确定资源块余数,该资源块余数=mod((BWP的初始资源块的索引号+BWP所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数)或
确定资源块余数,该资源块余数=mod((CSI-RS的初始资源块的索引号+CSI-RS带宽所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数);
所述资源块余数大于零时,所述最后一个信道状态信息子带所含的资源块的实际个数=资源块余数;
所述资源块余数等于零时,所述最后一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数。
其中,所述常规信道状态信息子带所含的资源块的实际个数等于所述信道状态信息子带所含的资源块的最大个数。
在第四种可能的设计中,发射端设备的收发模块通过上述上报子带配置信息指示终端信道状态信息子带的个数,由接收端设备根据信道状态信息子带的大小,确定所述第一个信道状态信息子带所含的资源块的实际个数,和确定所述最后一个信道状态信息子带所含的资源块的实际个数。
接收端设备确定所述第一个信道状态信息子带所含的资源块的实际个数,和确定所述最后一个信道状态信息子带所含的资源块的实际个数的方式与发射端设备相同,在此不再赘述;
在第五种可能的设计中,发射端设备在发送给接收端设备的上报子带配置信息中还包括所述第一个信道状态信息子带或最后一个信道状态信息子带所含的资源块的实际个数;
所述接收端设备根据所述第一个信道状态信息子带或最后一个信道状态信息子带所含的资源块的实际个数,所述信道状态信息子带的大小,确定所述第一个信道状态信息子带或最后一个信道状态信息子带的资源块的索引号。
在第六种可能的设计中,所述发射端设备的收发模块向终端发送的上报子带组配置信息还用于指示上报频带中哪些子带组为上报子带组,以使终端根据所述上报子带组配置信息确定所述上报频带中的至少一个上报子带组。
在第七种可能的设计中,网络设备的收发模块通过第一信息比特向终端发送指示信道状态信息子带的上报或非上报状态的上报子带配置信息之后,还用于向终端发送动态信令,其中,该动态信令包括第三信息比特,所述第三信息比特用于表示所述第一信息比特或第二信息比特的索引;该第三信息比特用于指示终端根据所述第三信息比特的索引指示,选择一个第一信息比特所指示上报子带和非上报子带;或选择一个第二信息比特所指示的上报子带组或非上报子带组。
上述七种可能的设计中,所述信道状态信息为以下信息之中的一种:
信道质量指示、预编码矩阵指示、秩指示和信道状态信息参考信号资源指示。
根据本发明实施例的第三方面,提供一种信道状态信息上报频带的配置方法,包括:
接收发射端设备发送的指示信道状态信息子带的上报子带配置信息,所述上报子 带配置信息指示所述信道状态信息子带是上报子带或非上报子带;所述信道状态信息子带属于所述信道状态信息上报频带;
根据所述上报子带配置信息,确定各个所述信道状态信息子带的个数。
第三方面提供的一种信道状态信息上报频带的配置方法由接收端设备执行,具体的该接收端设备可以是终端。
第一种可能的设计方式中,所述上报子带配置信息用信息比特表示,所述信息比特的比特个数与所述信道状态信息上报频带所含的信道状态信息子带的个数相同;
接收端设备接收到所述上报子带配置信息,即可获知所述信息比特的比特个数,进而获知所述信道状态信息上报频带所含的信道状态信息子带的个数。
第二种可能的设计方式中,所述上报子带配置信息中包括信道状态信息子带的大小;接收端设备接收到该上报子带配置信息后,基于载波带宽CC或者带宽部分BWP或者信道状态信息参考信号CSI-RS带宽,以及信道状态信息子带的大小,确定信道状态信息上报频带所含的信道状态信息子带的个数;其中,所述信道状态信息子带的大小为其包含的资源块的最大个数。
具体的,所述基于载波带宽CC或者带宽部分BWP或者信道状态信息参考信号CSI-RS带宽,以及所述信道状态信息子带的大小,确定信道状态信息上报频带所含的信道状态信息子带的个数,包括:
将所述载波带宽CC所含的资源块的总个数除以所述信道状态信息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数;或
将所述带宽部分BWP所含的资源块的总个数除以所述信道状态信息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数;或
将所述信道状态信息参考信号CSI-RS带宽所含资源块的总个数除以所述信道状态信息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数。
上述的信道状态信息子带包括第一个信道状态信息子带和最后一个信道状态信息子带,以及常规信道状态信息子带。
在第三种可能的设计方式中,所述接收端设备根据确定所述第一个信道状态信息子带所含的资源块的实际个数和所述最后一个信道状态信息子带所含的资源块的实际个数。
具体的,所述确定所述第一个信道状态信息子带所含的资源块的实际个数,包括:
确定所述信道状态信息上报频带中与CC带宽对应的第一个信道状态信息子带所含的资源块的个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(CC的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);或
确定所述信道状态信息上报频带中与BWP对应的第一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(BWP的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);或
确定所述信道状态信息上报频带中与CSI-RS带宽对应的第一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(CSI-RS的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);
其中,所述第一个信道状态信息子带所含的资源块的实际个数小于等于所述常规信道状态信息子带所含的资源块的实际个数。
所述确定所述最后一个信道状态信息子带所含的资源块的实际个数,包括:
确定资源块余数,该资源块余数=mod((CC的初始资源块的索引号+CC带宽所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数)或
确定资源块余数,该资源块余数=mod((BWP的初始资源块的索引号+BWP所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数)或
确定资源块余数,该资源块余数=mod((CSI-RS的初始资源块的索引号+CSI-RS带宽所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数);
所述资源块余数大于零时,所述最后一个信道状态信息子带所含的资源块的实际个数=资源块余数;
所述资源块余数等于零时,所述最后一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数。
在第四种可能的设计方式中,所述终端接收到的来自网络设备的上报子带配置信息中还包括所述第一个信道状态信息子带或最后一个信道状态信息子带所含的资源块的实际个数;所述终端根据上报子带配置信息以及所述信道状态信息子带的大小,确定所述第一个信道状态信息子带或最后一个信道状态信息子带的资源块的索引号。
上述五种可能的设计中,所述常规信道状态信息子带所含的资源块的实际个数等于所述信道状态信息子带所含的资源块的最大个数。
上述五种可能的设计中,所述信道状态信息为以下信息之中的一种:
信道质量指示、预编码矩阵指示、秩指示和信道状态信息参考信号资源指示。
根据本发明实施例的第四方面,提供一种接收端设备,包括:
收发模块,用于接收发射端设备发送的指示信道状态信息子带的上报子带配置信息,所述上报子带配置信息指示所述信道状态信息子带中的各个子带是上报子带或非上报子带;所述信道状态信息子带属于所述信道状态信息上报频带;
处理模块,用于根据所述上报子带配置信息,确定所述信道状态信息上报频带所含的信道状态信息子带的个数。
第一种可能的设计方式中,所述收发模块发送的上报子带配置信息用信息比特表示,所述信息比特的比特个数等于所述信道状态信息上报频带中信道状态信息子带的个数;终端接收到所述上报子带配置信息,即可获知所述信息比特的比特个数,进而获知所述信道状态信息上报频带所含的信道状态信息子带的个数。
第二种可能的设计方式中,所述上报子带配置信息中包括信道状态信息子带的大小;接收端设备接收到该上报子带配置信息后,接收端设备的处理模块基于载波带宽CC或者带宽部分BWP或者信道状态信息参考信号CSI-RS带宽,以及信道状态信息子带的大小,确定信道状态信息上报频带所含的信道状态信息子带的个数;其中,所述信道状态信息子带的大小为其包含的资源块的最大个数。
具体的,所述处理模块基于载波带宽CC或者带宽部分BWP或者信道状态信息参考信号CSI-RS带宽,以及所述信道状态信息子带的大小,确定信道状态信息上报频带所含的信道状态信息子带的个数,包括:
所述处理模块将所述载波带宽CC所含的资源块的总个数除以所述信道状态信息子带 的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数;或
所述处理模块将所述带宽部分BWP所含的资源块的总个数除以所述信道状态信息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数;或
所述处理模块将所述信道状态信息参考信号CSI-RS带宽所含资源块的总个数除以所述信道状态信息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数。
上述的信道状态信息子带包括第一个信道状态信息子带和最后一个信道状态信息子带,以及常规信道状态信息子带。
在第三种可能的设计方式中,所述终端的处理模块根据确定所述第一个信道状态信息子带所含的资源块的实际个数和所述最后一个信道状态信息子带所含的资源块的实际个数。
具体的,所述终端的处理模块确定所述第一个信道状态信息子带所含的资源块的实际个数,包括:
所述处理模块确定所述信道状态信息上报频带中与CC带宽对应的第一个信道状态信息子带所含的资源块的个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(CC的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);或
所述处理模块确定所述信道状态信息上报频带中与BWP对应的第一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(BWP的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);或
所述处理模块确定所述信道状态信息上报频带中与CSI-RS带宽对应的第一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(CSI-RS的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);
其中,所述第一个信道状态信息子带所含的资源块的实际个数小于等于所述常规信道状态信息子带所含的资源块的实际个数。
所述处理模块确定所述最后一个信道状态信息子带所含的资源块的实际个数,包括:
确定资源块余数,该资源块余数=mod((CC的初始资源块的索引号+CC带宽所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数)或
确定资源块余数,该资源块余数=mod((BWP的初始资源块的索引号+BWP所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数)或
确定资源块余数,该资源块余数=mod((CSI-RS的初始资源块的索引号+CSI-RS带宽所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数);
所述资源块余数大于零时,所述最后一个信道状态信息子带所含的资源块的实际个数=资源块余数;
所述资源块余数等于零时,所述最后一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数。
在第四种可能的设计方式中,所述终端的收发模块接收到的来自网络设备的上报子带配置信息中还包括所述第一个信道状态信息子带或最后一个信道状态信息子带所含的资源块的实际个数;所述终端的处理模块根据上报子带配置信息以及所述信道状态信息子带的大小,确定所述第一个信道状态信息子带或最后一个信道状态信息子带的资源块的索引 号。
上述五种可能的设计中,所述常规信道状态信息子带所含的资源块的实际个数等于所述信道状态信息子带所含的资源块的最大个数。
上述五种可能的设计中,所述信道状态信息为以下信息之中的一种:
信道质量指示、预编码矩阵指示、秩指示和信道状态信息参考信号资源指示。
在一种可能的设计中,所述信道状态信息为以下信息之中的一种:
信道质量指示、预编码矩阵指示、秩指示和信道状态信息参考信号资源指示。
在一种可能的设计中,所述处理模块为处理器,所述收发模块为收发器。
根据本发明实施例的第五方面,提供一种处理器,该处理器用于执行前述任一方法,其中涉及发射和接收的步骤应理解为处理器通过收发器来执行的。
根据本发明实施例的第六方面,提供一种处理装置,包括:
存储器;
处理器,用于读取存储器中存储的指令,执行前述任一方法,其中涉及发射和接收的步骤应理解为处理器通过收发器来执行的。
存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本发明实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
根据本发明实施例的第七方面,提供一种芯片,包括:
处理器,用于读取存储器中存储的指令,执行前述任一方法,其中涉及发射和接收的步骤应理解为处理器通过收发器来执行的。
根据本发明实施例的第八方面,提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行前述任一方法。
计算机可读存储介质为非瞬时性(non-transitory)。
根据本发明实施例的第九方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行前述任一方法。
本发明实施例的有益效果在于,相比于现有技术只能基于系统带宽进行CSI上报子带个数的配置,在进行CSI配置的时候,可以基于载波带宽CC或者带宽部分BWP或者信道状态信息参考信号CSI-RS带宽配置信道状态信息上报频带所含的信道状态信息子带的个数,更能适应新一代通信网络的需求。
附图说明
图1是依照本发明一实施例的频带划分示意图;
图2是依照本发明一实施例的无线通信网络的示范性示意图;
图3是依照本发明一实施例的通信设备的示范性逻辑结构示意图;
图4是依照本发明一实施例的通信设备的示范性硬件结构示意图;
图5是依照本发明一实施例的信道状态信息配置方法的示范性流程图;
图6是依照本发明一实施例的信道状态信息上报方法的示范性流程图;
图7是依照本发明又一实施例的信道状态信息配置示意图;
图8是依照本发明又一实施例的信道状态信息配置示意图;
图9是依照本发明又一实施例的信道状态信息配置示意图;
图10是依照本发明又一实施例的信道状态信息配置示意图;
图11是依照本发明又一实施例的信道状态信息配置示意图;
图12是依照本发明又一实施例的信道状态信息配置示意图;
图13是依照本发明又一实施例的信道状态信息配置示意图;
图14是依照本发明又一实施例的信道状态信息配置示意图;
图15是依照本发明又一实施例的信道状态信息配置示意图。
具体实施方式
目前正处于研发阶段的下一代无线通信系统又可称为新无线(New Radio,NR)系统或者5G系统。下一代无线通信标准的最新研究进展表明,CSI可以通过物理上行共享信道(Physical Uplink Shared Channel,PUSCH),从接收端设备发往发射端设备。本领域的技术人员应当明白,相比于主要用于传输控制信息的物理上行控制信道(Physical Uplink Control Channel,PUCCH),PUSCH主要用于传输数据。因此,在传输CSI时,PUSCH还可以传输数据,也可以不传输数据。例如,一上行子帧(Subframe)中的PUSCH可以既传输CSI也传输数据,也可以仅传输CSI而不传输数据。CSI通常包含在上行控制信息(Uplink Control Information,UCI)中,该UCI通过PUSCH进行传输。UCI可以进一步包含至少两个部分,其中,第一部分所包含的信息比特的数量是固定的,且第一部分用于指示第二部分的信息比特的数量。同时,第一部分的优先级高于第二部分。更进一步的,第一部分和第二部分可以分别独立编码。本领域的技术人员应当明白,最终确定的下一代无线通信标准,也可能发生变化,从而与上述最新研究进展不同。
图1是依照本发明一实施例的频带划分示意图。如图1所示,载波带宽(Carrier Bandwidth)可以视为一种宽带,其进一步包含至少一个带宽部分(Bandwidth Part)。每个带宽部分包含至少一个连续的子带,每个子带进一步包含多个连续的子载波。
每一带宽部分可以对应一组系统参数(numerology),包括例如但不限于,子载波间隔(Subcarrier spacing)和循环前缀(Cyclic Prefix,CP)等,不同带宽部分可以对应不同的系统参数。可选的,在同一个传输时间间隔(Transmission Time Interval,TTI)内,在多个带宽部分之中,可以仅有一个带宽部分可用,其他带宽部分不可用。
在上报CSI时,可以划分带宽部分的一部分或者全部子带用作CSI上报频带(CSI reporting band),以便上报该CSI上报频带所对应的CSI。为便于描述,下文将CSI上报频带简称为上报频带。不难理解,上报频带是指一段带宽,且需要上报该带宽对应的CSI,该带宽包含多个子带。上报频带内承载有发射端设备发出的用于进行信道测量的参考信号,例如但不限于,小区专用参考信号(Cell-specific Reference Signal,CRS)、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)或者解调参考信号(Demodulation Reference Signal,DMRS)。上述参考信号的相关技术内容属于现有技术,本发明实施例不做限定。接收端设备可以对上述参考信号进 行测量,获得对应的CSI。在上报CSI时,可以上报该上报频带整体的CSI,即上报频带的宽带CSI,也可以上报该上报频带内至少一个子带的CSI,还可以结合使用上述两种上报方式,或者采用其他上报方式。如图1所示,上报频带包含多个连续的子带。然而,在具体实现过程中,上报频带所包含的子带可以不连续。例如,对于一带宽部分中连续的6个子带,子带1~子带6,上报频带可以包含子带1~子带2、子带4和子带6。在具体实现过程中,也可以采用其他方式或者层级来对频带进行划分。例如,在不同的划分方式中,子带所包含的子载波的数量可以不同。又例如,在图1所示的频带划分层级之间也可以增加或者删除至少一个层级。本发明实施例对频带划分的具体方式不做限定。
在进行信道测量时,接收端设备根据发射端设备发射的参考信号(Reference Signal,RS)获得信道状态信息,并将获得的CSI反馈给发射端设备。发射端设备可基于该CSI对发射信号进行处理,并将处理后的发射信号发往接收端设备。在具体实现过程中,CSI可以进一步包括,例如但不限于,下列信息之中的至少一种:信道质量指示(Channel Quality Indicator,CQI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)、CSI-RS资源指示(CSI-RS Resource Indicator,CRI)和秩指示(Rank Indication,RI)。在对发射信号进行处理时,发射端设备可以直接应用接收端设备反馈的CSI进行处理,也可以对接收端设备反馈的CSI进行调整,并使用调整后的CSI进行处理。例如,在具体实现过程中,发射端设备可以降低接收端设备反馈的RI,并使用降低后的RI进行处理。又例如,发射端设备还可以对接收端设备反馈的PMI所对应的预编码矩阵进行重构,并使用重构后的PMI进行处理,其中,该重构过程可以是,例如但不限于,对同时调度的多个接收端设备反馈的PMI所对应的预编码矩阵进行正交化处理。同时调度多个接收端设备进行数据传输的方法也称为多用户多输入多输出(Multi-User Multiple-Input and Multiple-Output(MIMO),MU-MIMO)技术。再例如,发射端设备还可以降低接收端设备反馈的CQI,并使用降低的CQI进行处理。应注意,若发射端设备对接收端设备反馈的CSI进行调整,则发射端设备有可能需要将调整后的CSI通知接收端设备,以便接收端设备基于调整后的CSI,从接收信号中恢复发射信号。例如,若基站调整RI或者CQI,则基站需要将调整后的RI和CQI通知接收端设备。在具体实现过程中,本发明实施例对发射端设备调整接收端设备反馈的CSI的具体方式不做限定。
在LTE中,对于上述的信道状态信息上报频带(CSI reporting band)中的各个子带(subband)的配置如下表1和2所示,该subband基于系统带宽(system bandwidth)来进行配置,不同的system bandwidth的范围对应不同的子带大小(subband size),因此根据子带大小,可以推导出相应的system bandwidth下的子带个数。
表1:子带大小和系统带宽(Subband Size(k)vs.System Bandwidth)
Figure PCTCN2018092169-appb-000001
表2:下行链路系统带宽中的子带大小和子带个数
(Subband Size(k)and Number of Subbands(M)in S vs.Downlink System Bandwidth)
Figure PCTCN2018092169-appb-000002
但是,如上所述,新无线(New Radio,NR)系统或者5G系统中,BWP,CSI-RS frequency band和CSI reporting band都是可以灵活配置成部分带宽或全带宽的,这将导致信道状态信息上报频带所含的信道状态信息上报子带的个数不再由系统带宽所确定,新无线(New Radio,NR)系统或者5G系统中如何确定信道状态信息上报子带的个数是一个基带解决的技术问题,本申请基于此,提供了一种信道状态信息上报频带的配置和上报方法以及对应的装置,可以满足网络演进的需求。
下面就结合附图和具体实施例来对本发明实施例提供的技术方案进行详细描述。
图2是依照本发明一实施例的无线通信网络200的示范性示意图。如图2所示,无线通信网络200包括基站202~206和终端设备208~222,其中,基站202~206彼此之间可通过回程(backhaul)链路(如基站202~206彼此之间的直线所示)进行通信,该回程链路可以是有线回程链路(例如光纤、铜缆),也可以是无线回程链路(例如微波)。终端设备208~222可通过无线链路(如基站202~206与终端设备208~222之间的折线所示)与对应的基站202~206通信。
基站202~206通常作为接入设备来为通常作为用户设备的终端设备208~222提供无线接入服务。具体来说,每个基站都对应一个服务覆盖区域(又可称为蜂窝,如图2中各椭圆区域所示),进入该区域的终端设备可通过无线信号与基站通信,以此来接受基站提供的无线接入服务。基站的服务覆盖区域之间可能存在交叠,处于交叠区域内的终端设备可收到来自多个基站的无线信号,因此这些基站可以进行相互协同,以此来为该终端设备提供服务。例如,多个基站可以采用多点协作(Coordinated  multipoint,CoMP)技术为处于上述交叠区域的终端设备提供服务。例如,如图2所示,基站202与基站204的服务覆盖区域存在交叠,终端设备222便处于该交叠区域之内,因此终端设备222可以收到来自基站202和基站204的无线信号,基站202和基站204可以进行相互协同,来为终端设备222提供服务。又例如,如图2所示,基站202、基站204和基站206的服务覆盖区域存在一个共同的交叠区域,终端设备220便处于该交叠区域之内,因此终端设备220可以收到来自基站202、204和206的无线信号,基站202、204和206可以进行相互协同,来为终端设备220提供服务。
依赖于所使用的无线通信技术,基站又可称为节点B(NodeB),演进节点B(evolved NodeB,eNodeB)以及接入点(Access Point,AP)等。此外,根据所提供的服务覆盖区域的大小,基站又可分为用于提供宏蜂窝(Macro cell)的宏基站、用于提供微蜂窝(Pico cell)的微基站和用于提供毫微微蜂窝(Femto cell)的毫微微基站等。随着无线通信技术的不断演进,未来的基站也可以采用其他的名称。
终端设备208~222可以是具备无线通信功能的各种无线通信设备,例如但不限于移动蜂窝电话、无绳电话、个人数字助理(Personal Digital Assistant,PDA)、智能电话、笔记本电脑、平板电脑、无线数据卡、无线调制解调器(Modulator demodulator,Modem)或者可穿戴设备如智能手表等。随着物联网(Internet of Things,IOT)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。此外,终端设备208~222还可以称为移动台、移动设备、移动终端、无线终端、手持设备、客户端等。
基站202~206,和终端设备208~222均可配置有多根天线,以支持MIMO(多入多出,Multiple Input Multiple Output)技术。进一步的说,基站202~206和终端设备208~222既可以支持单用户MIMO(Single-User MIMO,SU-MIMO)技术,也可以支持多用户MIMO(Multi-User MIMO,MU-MIMO),其中MU-MIMO可以基于空分多址(Space Division Multiple Access,SDMA)技术来实现。由于配置有多根天线,基站202~206和终端设备208~222还可灵活支持单入单出(Single Input Single Output,SISO)技术、单入多出(Single Input Multiple Output,SIMO)和多入单出(Multiple Input Single Output,MISO)技术,以实现各种分集(例如但不限于发射分集和接收分集)和复用技术,其中分集技术可以包括例如但不限于发射分集(Transmit Diversity,TD)技术和接收分集(Receive Diversity,RD)技术,复用技术可以是空间复用(Spatial Multiplexing)技术。而且上述各种技术还可以包括多种实现方案,例如发射分集技术可以包括,例如但不限于,空时发射分集(Space-Time Transmit Diversity,STTD)、空频发射分集(Space-Frequency Transmit Diversity,SFTD)、时间切换发射分集(Time Switched Transmit Diversity,TSTD)、频率切换发射分集(Frequency Switch Transmit Diversity,FSTD)、正交发射分集(Orthogonal Transmit Diversity,OTD)、循环延迟分集(Cyclic Delay Diversity,CDD)等分集方式,以及上述各种分集方式经过衍生、演进以及组合后获得的分集方式。例如,目前LTE(长期演进,Long Term Evolution)标准便采用了空时块编码(Space Time Block Coding,STBC)、空频块编码(Space  Frequency Block Coding,SFBC)和CDD等发射分集方式。上文以举例的方式对发射分集进行了的概括性的描述。本领域技术人员应当明白,除上述实例外,发射分集还包括其他多种实现方式。因此,上述介绍不应理解为对本发明技术方案的限制,本发明技术方案应理解为适用于各种可能的发射分集方案。
此外,基站202~206和终端设备208~222可采用各种无线通信技术进行通信,例如但不限于,时分多址(Time Division Multiple Access,TDMA)技术、频分多址(Frequency Division Multiple Access,FDMA)技术、码分多址(Code Division Multiple Access,CDMA)技术、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、正交频分多址(Orthogonal FDMA,OFDMA)技术、单载波频分多址(Single Carrier FDMA,SC-FDMA)技术、空分多址(Space Division Multiple Access,SDMA)技术以及这些技术的演进及衍生技术等。上述无线通信技术作为无线接入技术(Radio Access Technology,RAT)被众多无线通信标准所采纳,从而构建出了在今天广为人们所熟知的各种无线通信系统(或者网络),包括但不限于全球移动通信系统(Global System for Mobile Communications,GSM)、CDMA2000、宽带CDMA(Wideband CDMA,WCDMA)、由802.22系列标准中定义的WiFi、全球互通微波存取(Worldwide Interoperability for Microwave Access,WiMAX)、长期演进(Long Term Evolution,LTE)、LTE升级版(LTE-Advanced,LTE-A)以及这些无线通信系统的演进系统等。如无特别说明,本发明实施例提供的技术方案可应用于上述各种无线通信技术和无线通信系统。此外,术语“系统”和“网络”可以相互替换。
应注意,图2所示的无线通信网络200仅用于举例,并非用于限制本发明的技术方案。本领域的技术人员应当明白,在具体实现过程中,无线通信网络200还可能包括其他设备,同时也可根据具体需要来配置基站和终端设备的数量。
在具体实现过程中,接入设备如图2所示的基站202~206可用作发射端设备,用户设备如图2所示的终端设备208~222可用作接收端设备。
图3是依照本发明一实施例的通信设备300的示范性逻辑结构示意图。该通信设备300既可以用于实现接收端设备,也可以用于实现发射端设备。如图3所示,通信设备300包含处理模块302和收发模块304,这些模块的具体功能将在下文进行详细的描述。在具体实现过程中,处理模块304可以通过下文将要描述的通信设备400中的处理器402来实现,或者通过通信设备400中的处理器402和存储器408来实现,当然也可以采用其他实现方式。同理,收发模块304可以通过通信设备400中的收发器404来实现,当然也可以采用其他实现方式。
图4是依照本发明一实施例的通信设备400的示范性硬件结构示意图。该通信设备400既可以用于实现接收端设备,也可以用于实现发射端设备。如图4所示,通信设备400包括处理器402、收发器404、多根天线406,存储器408、I/O(输入/输出,Input/Output)接口410和总线412。存储器408进一步用于存储指令4082和数据4084。此外,处理器402、收发器404、存储器408和I/O接口410通过总线412彼此通信连接,多根天线406与收发器404相连。在具体实现过程中,处理器402、收发器404、存储器408和I/O接口410也可以采用总线412之外的其他连接方式彼此通信连接。
处理器402可以是通用处理器,通用处理器可以是通过读取并执行存储器(例如存储器408)中存储的指令(例如指令4082)来执行特定步骤和/或操作的处理器,通用处理器在执行上述步骤和/或操作的过程中可能用到存储在存储器(例如存储器408)中的数据(例如数据4084)。通用处理器可以是,例如但不限于,中央处理器(Central Processing Unit,CPU)。此外,处理器402也可以是专用处理器,专用处理器可以是专门设计用于执行特定步骤和/或操作的处理器,该专用处理器可以是,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器402还可以是多个处理器的组合,例如多核处理器。
收发器404用于收发信号,其具体过程是通过多根天线406之中的至少一根天线来进行的。
存储器408可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器408具体用于存储指令4082和数据4084,当处理器402为通用处理器时,处理器402可以通过读取并执行存储器408中存储的指令4082,来执行特定步骤和/或操作,在执行上述步骤和/或操作的过程中可能需要用到数据4084。
I/O接口410用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
在具体实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器,其中模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(System on Chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本发明实施例对上述器件的具体实现形式不做限定。
应注意,在具体实现过程中,通信设备400还可以包括其他硬件器件,本文不再一一列举。
通信设备400中硬件器件的具体作用将在下文进行详细的描述。
图5是依照本发明一实施例的信道状态信息上报频带的配置方法500的示范性流程图。在具体实现过程中,方法500可由发射端设备或接收端设备来执行,该发射端设备或接收端设备可以由图3所示的通信设备300和图4所示的通信设备400来实现。
本实施例提供的方法500中,该发射端设备可以是网络设备,也可以是终端,换言之,本申请提供的方法流程,可以由网络设备执行,或者可以由终端执行。网络设备可以先配 置好CSI上报频带所含子带的大小,个数,起始和终止位置等等,然后再指示给终端;终端也可以据此方法自己配置CSI上报频带所含子带的大小,个数,起始和终止位置,发送给网络设备做配置建议。
步骤502,基于带宽部分(Bandwidth Part,BWP)确定信道状态信息子带的大小;
步骤504,基于载波带宽(Carrier Bandwidth,CC)或者带宽部分BWP或者信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)带宽,以及所述信道状态信息子带的大小,确定信道状态信息上报频带所含的信道状态信息子带的个数。
在具体实现过程中,步骤502和步骤504可由处理模块302和处理器402来执行。
其中,所述信道状态信息子带的大小为其包含的资源块的最大个数;且该资源块的最大个数由带宽部分BWP所含的资源块的总个数确定。
具体的,信道状态信息子带的大小由下表3确定:
表3
Figure PCTCN2018092169-appb-000003
例如,当载波的带宽部分,简称带宽部分BWP的资源块(PRBs)总个数小于等于24时,CSI不划分子带;当BWP的PRBs总个数为24到72个时,CSI子带的大小为4个或者8个;当BWP的PRBs总个数为73到144个时,CSI子带的大小为8个或者16个;当BWP的PRBs总个数为145到275个时,CSI子带的大小为16个或者32个。
在上述方法500中,信道状态信息可以是,例如但不限于,CQI、PMI、RI和CRI之中的一种。应注意,在具体实现过程中,发射端设备可以为接收端设备配置多种类型的信道状态信息,或者接收端设备也可以自己配置多种类型的信道状态信息其中每种类型的信道状态信息都可以参考方法500进行配置,接收端设备可以向发射端设备反馈信道状态信息子带的多种类型的信道状态信息。
上述步骤504基于载波带宽CC或者带宽部分BWP或者信道状态信息参考信号CSI-RS带宽,以及所述信道状态信息子带的大小,确定信道状态信息上报频带所含的信道状态信息子带的个数,具体包括:
将所述载波带宽CC所含的资源块的总个数除以所述信道状态信息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数;或
将所述带宽部分BWP所含的资源块的总个数除以所述信道状态信息子带的大小, 向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数;或
将所述信道状态信息参考信号CSI-RS带宽所含资源块的总个数除以所述信道状态信息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数。
所述信道状态信息子带包括第一个信道状态信息子带和最后一个信道状态信息子带,以及常规信道状态信息子带;
第一个信道状态信息子带又可以称为起始信道状态信息子带,或开始信道状态信息子带,本文中可以简称为起始子带;最后一个信道状态信息子带又可以称为终止信道状态信息子带或结束信道状态信息子带,本文中可以简称为终止子带。常规信道状态信息子带为与所述信道状态信息子带中除第一个信道状态信息子带和最后一个信道状态信息子带之外的子带,又可以称为普通信道状态信息子带,本文中可以简称为普通子带。后续不再赘述。
在一种实现方式中,发射端设备或接收端设备都可以确定所述第一个信道状态信息子带所含的资源块的实际个数,以及最后一个信道状态信息子带所含的资源块的实际个数。
另一种实现方式中,由发射端设备确定所述第一个信道状态信息子带所含的资源块的实际个数,以及最后一个信道状态信息子带所含的资源块的实际个数,再发送给接收端设备。
其中,确定所述第一个信道状态信息子带所含的资源块的实际个数,包括:
确定所述信道状态信息上报频带中与CC带宽对应的第一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(CC的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);或
确定所述信道状态信息上报频带中与BWP对应的第一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(BWP的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);或
确定所述信道状态信息上报频带中与CSI-RS带宽对应的第一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(CSI-RS的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);
其中,所述第一个信道状态信息子带所含的资源块的实际个数小于等于所述常规信道状态信息子带所含的资源块的实际个数。
其中,所述方法还包括:确定最后一个信道状态信息子带所含的资源块的实际个数,具体为确定所述信道状态信息上报频带中与CC带宽对应的最后一个信道状态信息子带所含的资源块的实际个数:
确定资源块余数,该资源块余数=mod((CC的初始资源块的索引号+CC带宽所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数)所述资源块余数大于零时,所述信道状态信息上报频带中与CC带宽对应的最后一个信道状态信息 子带所含的资源块的实际个数=资源块余数;
所述资源块余数等于零时,所述信道状态信息上报频带中与CC带宽对应的最后一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数。
或者确定所述信道状态信息上报频带中与BWP对应的最后一个信道状态信息子带所含的资源块的实际个数,包括:
确定资源块余数,该资源块余数=mod((BWP的初始资源块的索引号+BWP所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数);
所述资源块余数大于零时,所述信道状态信息上报频带中与BWP对应的最后一个信道状态信息子带所含的资源块的实际个数=资源块余数;
所述资源块余数等于零时,所述信道状态信息上报频带中与BWP对应的最后一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数。
或者确定所述信道状态信息上报频带中与CSI-RS带宽对应的最后一个信道状态信息子带所含的资源块的实际个数,包括:
确定资源块余数,该资源块余数=mod((CSI-RS的初始资源块的索引号+CSI-RS带宽所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数);
所述资源块余数大于零时,所述信道状态信息上报频带中与CSI-RS带宽对应的最后一个信道状态信息子带所含的资源块的实际个数=资源块余数;
所述资源块余数等于零时,所述信道状态信息上报频带中与CSI-RS带宽对应的最后一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数。
另外,所述方法还包括:确定所述常规信道状态信息子带所含的资源块的实际个数等于所述信道状态信息子带所含的资源块的最大个数。
另一方面,上述的信道状态信息上报频带所含的信道状态信息子带相关信息,例如上述的信道状态信息子带的个数,或进一步的,信道状态信息子带中,第一个信道状态信息子带所含的资源块的实际个数或最后一个信道状态信息子带所含的资源块的实际个数,都可以由发射端设备指定,并指示给接收端设备。在这种情况下,方法500由发射端设备执行,可以进一步包括:
步骤506(图未示意):发射端设备向接收端设备发送指示信道状态信息子带中的各个子带是上报子带或非上报子带的上报子带配置信息;换句话说,所述上报子带配置信息用于指示信道状态信息上报频带中哪些子带为上报子带,哪些子带不是上报子带;
所述上报子带配置信息用信息比特表示,所述信息比特的比特个数与所述信道状态信息子带的个数相同。
在一种实现方式中,所述上报子带配置信息上报子带配置信息指示所述信道状态信息子带个数或进一步指示信道状态信息子带的起始位置或者信道状态信息子带的起始位置和终止位置。
在本发明所有实施例中,非上报子带又可以称为缺失子带或者缺省子带或省略子带,其表示不需要上报信道状态信息的子带。
所述上报子带配置信息包括第一信息比特,该第一信息比特用于表示所述上报频带中信道状态信息子带中的上报子带或非上报子带,也即指示信道状态信息子带中,哪些是上报子带,哪些是非上报子带。也即,所述上报子带配置信息用比特位图(bitmap)的方式实现。
可选的,该上报频带中信道状态信息子带可以全部是上报子带,或者一部分是上报子带一部分是非上报子带,上报子带可以用信息比特1表示,非上报子带用信息比特0表示;或者上报子带用信息比特0表示,非上报子带用信息比特1表示。
可选的,所述第一信息比特的个数与实际上报子带的个数相同,该第一信息比特的全部比特数用于指示上报子带和非上报子带;
或所述第一信息比特的个数与系统允许的最大上报子带的个数相同,该第一信息比特的全部或者部分比特数用于指示上报子带和非上报子带。
可选的,所述上报子带配置信息还可以指示信道状态信息上报频带中与信道状态信息参考信号对应的信道状态信息子带中,第一个信道状态信息子带所含的资源块的实际个数或最后一个信道状态信息子带所含的资源块的实际个数。
在具体实现过程中,步骤506可由收发模块304和收发器404来执行。
当然,上述的上报子带配置信息也可以直接预存在发射端设备或接收端设备本地,查找本地预存的上报子带配置信息并根据所述非上报子带配置信息确定所述至少一个上报子带的步骤可由处理模块302和处理器402来执行。应注意,上述上报子带配置过程可以作为方法500的一部分,或者将方法500作为上述过程的一部分。
若上述的上报频带中的多个子带被划分为多个组,则在具体的时候中,上述上报子带配置信息可以替换为上报子带组配置信息;上报子带组配置信息用于指示上报频带中哪些子带组为上报子带组;所述上报子带配置信息或者上报子带组指示信息用于指示所述至少一个上报子带或者上报子带组,可以具体为逐一指示每个上报子带或上报子带组,也可以指示上报子带或上报子带组的配置方案。不难理解,前一种方案指示方式更加灵活,但指示开销较大,后一种方案的指示开销较小,但指示方式相对固定。在采用上报子带或上报子带组配置方案的情况下,可以在通信标准中约定多种上报子带或上报子带组配置方案,并且在可以在接收端设备和发射端设备出厂前提前写入这些上报子带或上报子带组配置方案,以便在接收端设备与发射端设置进行交互的过程中通过传递上报子带配置方案的索引来指示上报子带或上报子带组。此外,上述多种非上报子带配置方案也可以是在发射端设备与接收端设备交互过程(例如初始接入过程)中,由发射端设备为接收端设备配置的。在这种情况下,方法500还可以进一步包括:
接收来自发射端设备的上报子带配置信息或上报子带组配置信息,其中所述上报子带配置信息或上报子带组配置信息包含多种上报子带或上报子带组配置方案,每种配置方案中记录有多个上报子带或上报子带组构成的上报子带;
根据所述上报子带配置信息或上报子带组配置信息确定所述多种上报子带配置方案。
在具体实现过程中,上述接收来自发射端设备的上报子带配置信息的步骤可由收发模块304和收发器404来执行,上述根据所述上报子带配置信息确定所述多种上报 子带配置方案的步骤可由处理模块302和处理器402来执行。应注意,上述上报子带配置过程可以作为方法500的一部分,或者将方法500作为上述过程的一部分。
在具体实现过程中,上述上报子带配置信息或上报子带组配置信息可通过如下信令之中的一种进行发送:
物理层信令;
媒体访问控制层信令;
无线资源控制信令。
通常情况下,上报子带配置信息或上报子带组配置信息的发送周期较长,因此可以优选使用媒体访问控制层信令或者无线资源控制信令来传送上报子带配置信息或上报子带组配置信息。
又一方面,也可以在通信标准中预先指定CSI上报子带的个数。不难理解,相比指示上报子带的个数的做法,采用在通信标准中预先指定的方式,有助于降低指示所带来的信令开销。
上述上报子带配置信息或上报子带组配置信息可以通过一条消息进行传送,也可以通过多条消息进行传送,本发明实施例对具体传送方式不做限定。此外,多种同类信息(例如信道状态信息)可以彼此独立的包含在测量报告之中,也可以采用相互关联的方式包含在测量报告之中,还可以采用其他方式包含在测量报告之中。举例来说,上述相互关联的方式可以是差分方式。例如,本发明实施例对具体的包含方式不做限定。
如果需要频繁或者动态指示上报子带,则可以优先使用物理层信令来传送上报子带配置信息或上报子带组配置信息。
物理层信令也称为第一层(Layer 1,L1)信令,其通常可以由物理层帧中的控制部分来承载。L1信令的典型例子是LTE标准中定义的物理下行控制信道(Physical Downlink Control Channel,PDCCH)中承载的下行控制信息(Downlink Control Information,DCI)。在一些情况下,L1信令也可以由物理层帧中的数据部分来承载。不难看出,L1信令的发送周期或者信令周期通常为物理层帧的周期,因此这种信令通常用于实现一些动态的控制,以传递一些变化频繁的信息,例如,可以通过物理层信令传送资源分配信息。
媒体访问控制(Media Access Control,MAC)层信令属于第二层(Layer 2)信令,其通常可以由,例如但不限于,第二层帧的帧头来承载。上述帧头中还可能携带,例如但不限于,源地址和目的地址等信息。除帧头外,第二层帧通常还包含帧体。在一些情况下,L2信令也可以由第二层帧的帧体来承载。第二层信令的典型例子是802.11系列标准中MAC帧的帧头中的帧控制(Frame Control)字段中携带的信令,或者一些协议中定义的MAC控制实体(Control Entity,MAC-CE)。第二层帧通常可以携带在物理层帧的数据部分。上述非上报子带配置信息也可以通过媒体访问控制层信令之外的其他第二层信令发送。
无线资源控制(Radio Resource Control,RRC)信令属于第三层(Layer 3)信令,其通常是一些控制消息,L3信令通常可以携带在第二层帧的帧体中。L3信令的发送周期或者控制周期通常较长,适用于发送一些不会频繁发生变化的信息,例如,在现 有的一些通信标准中,L3信令通常用于承载一些配置信息。上述上报子带配置信息或上报子带组配置信息也可以通过RRC信令之外的其他第三层信令发送。
上文所述仅为物理层信令、MAC层信令、RRC信令、第一层信令、第二层信令和第三层信令的原理性描述,有关三种信令的具体细节可以参考现有技术,因此本文不再赘述。
对子带进行分组情况下,对于每一非上报子带,接收端设备也可以通过信道估计得到该非上报子带的信道状态信息,但仍然不会发往发射端设备。同时,发射端设备可以自行设置非上报子带的信道状态信息,换句话说,发射端设备在设置非上报子带的信道状态信息时,可以不考虑实际的信道环境。不难理解,这种设计方案可以降低信道测量带来的反馈开销。
在获得非上报子带的信道状态信息后,发射端设备还可以对该信道状态信息进行调整。有关调整的内容已经在上文进行了清楚的描述,因此此处不再赘述。
上述信道状态信息可以是CQI,各个上报子带的信道状态信息和各个非上报子带的信道状态信息可以是PMI,或者,各个上报子带的信道状态信息和各个非上报子带的信道状态信息也可以是CQI。与此有关的内容属于现有技术,本发明实施例不再赘述。若上述信道相关信息为待测量频带的信道状态信息,且该信道状态信息与各个上报子带的信道状态信息和各个非上报子带的信道状态信息的类型相同,则在上报待测量频带的信道状态信息和每个上报子带的信道状态信息时,可以采用差分方式进行上报。具体来说,可以上报待测量频带的信道状态信息,以及每个上报子带的信道状态信息与待测量频带的信道状态信息之间的差值。
在具体实现过程中,本发明实施例对信道相关信息的具体内容不做限定。
图6是依照本发明一实施例的信道测量方法600的示范性流程图。在具体实现过程中,方法600可由于接收端设备来执行,该接收端设备可以由图3所示的通信设备300和图4所示的通信设备400来实现。特别的,该接收端设备可以为终端,对应的接收端设备是网络设备。
步骤602,接收发射端设备发送的指示信道状态信息子带的上报子带配置信息,所述上报子带配置信息指示所述信道状态信息子带是上报子带或非上报子带;所述信道状态信息子带属于所述信道状态信息上报频带。
在具体实现过程中,步骤602可由收发模块304和收发器404来执行。
步骤604,根据所述上报子带配置信息,确定各个所述信道状态信息子带的大小和位置。
在具体实现过程中,步骤604可由处理模块302和处理器402来执行。
一种方式是,所述上报子带配置信息用信息比特表示,接收端设备确定所述信道状态信息上报频带所含的信道状态信息子带的个数,包括:
接收端设备根据所述信息比特的比特个数,确定所述信道状态信息上报频带所含的信道状态信息子带的个数。
一种实现方式是,接收端设备接收网络设备的上报子带配置信息中未含有信道状态信息上报频带所含的信道状态信息子带的个数,则接收端设备基于载波带宽CC或 者带宽部分BWP或者信道状态信息参考信号CSI-RS带宽,以及信道状态信息子带的大小,确定信道状态信息上报频带所含的信道状态信息子带的个数;具体的:
将所述载波带宽CC所含的资源块的总个数除以所述信道状态信息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数;或
将所述带宽部分BWP所含的资源块的总个数除以所述信道状态信息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数;或
将所述信道状态信息参考信号CSI-RS带宽所含资源块的总个数除以所述信道状态信息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数。
另一种实现方式是,接收端设备接收发射端设备的上报子带配置信息,该上报子带配置信息中还包括中所述第一个信道状态信息子带或最后一个信道状态信息子带所含的资源块的实际个数;
所述接收端设备根据所述第一个信道状态信息子带或最后一个信道状态信息子带所含的资源块的实际个数,所述信道状态信息子带的大小,确定所述第一个信道状态信息子带或最后一个信道状态信息子带的资源块的索引号。
所述信道状态信息子带包括第一个信道状态信息子带和最后一个信道状态信息子带,以及常规信道状态信息子带;
所述接收端设备还可以确定所述第一个信道状态信息子带所含的资源块的实际个数,和确定所述最后一个信道状态信息子带所含的资源块的实际个数。
确定所述信道状态信息上报频带中与CC带宽对应的第一个信道状态信息子带所含的资源块的个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(CC的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);或
确定所述信道状态信息上报频带中与BWP对应的第一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(BWP的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);或
确定所述信道状态信息上报频带中与CSI-RS带宽对应的第一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(CSI-RS的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);
其中,所述第一个信道状态信息子带所含的资源块的实际个数小于等于所述常规信道状态信息子带所含的资源块的实际个数。
所述接收端设备确定所述最后一个信道状态信息子带所含的资源块的实际个数,具体为确定所述信道状态信息上报频带中与CC带宽对应的最后一个信道状态信息子带所含的资源块的实际个数:
确定资源块余数,该资源块余数=mod((CC的初始资源块的索引号+CC带宽所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数)所述资源块余 数大于零时,所述信道状态信息上报频带中与CC带宽对应的最后一个信道状态信息子带所含的资源块的实际个数=资源块余数;
所述资源块余数等于零时,所述信道状态信息上报频带中与CC带宽对应的最后一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数。
确定所述信道状态信息上报频带中与BWP对应的最后一个信道状态信息子带所含的资源块的实际个数,包括:
确定资源块余数,该资源块余数=mod((BWP的初始资源块的索引号+BWP所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数);
所述资源块余数大于零时,所述信道状态信息上报频带中与BWP对应的最后一个信道状态信息子带所含的资源块的实际个数=资源块余数;
所述资源块余数等于零时,所述信道状态信息上报频带中与BWP对应的最后一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数。
确定所述信道状态信息上报频带中与CSI-RS带宽对应的最后一个信道状态信息子带所含的资源块的实际个数,包括:
确定资源块余数,该资源块余数=mod((CSI-RS的初始资源块的索引号+CSI-RS带宽所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数);
所述资源块余数大于零时,所述信道状态信息上报频带中与CSI-RS带宽对应的最后一个信道状态信息子带所含的资源块的实际个数=资源块余数;
所述资源块余数等于零时,所述信道状态信息上报频带中与CSI-RS带宽对应的最后一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数。
其中,所述常规信道状态信息子带所含的资源块的实际个数等于所述信道状态信息子带所含的资源块的最大个数。
另一种实现方式中,发射端设备在发送给接收端设备的上报子带配置信息中还包括所述第一个信道状态信息子带或最后一个信道状态信息子带所含的资源块的实际个数;
所述接收端设备根据所述第一个信道状态信息子带或最后一个信道状态信息子带所含的资源块的实际个数,所述信道状态信息子带的大小,确定所述第一个信道状态信息子带或最后一个信道状态信息子带的资源块的索引号。
又一种实现方式中,所述接收端设备接收到的来自发射端设备的上报子带配置信息中还包括所述第一个信道状态信息子带或最后一个信道状态信息子带所含的资源块的实际个数;所述接收端设备根据上报子带配置信息以及所述信道状态信息子带的大小,确定所述第一个信道状态信息子带或最后一个信道状态信息子带的初始资源块的索引号。
下面将结合实际例子,进一步说明本发明的实现过程:
实施例一
本实施例主要描述基于CC的CSI reporting band的配置指示方法和subband size计算。
本实施例中,CSI上报频带所含的CSI子带是基于整个载波带宽CC划分的,需要分别确定第一个信道状态信息子带(first subband),又称起始子带包含的RB数和最后一个信道状态信息子带,又称终止子带(last subband)包含的RB数。
首先基于载波的带宽部分BWP(Carrier bandwidth part(PRBs))确定信道状态信息子带的大小(Subband Size(PRBs)),如表4所示:
表4
Figure PCTCN2018092169-appb-000004
根据BWP带宽BW BWP的资源块(RB)个数,例如PRB个数,确定CSI子带的大小(subband size),即一个subband中最多可以包含的RB个数。该subband size为X RB/subband。
例如,
BWP带宽为BW BWP=32RB,其相应的subband size为X=4RB/subband;
或BWP带宽为BW BWP=32RB,其相应的subband size为X=8RB/subband.
另一种实现方式中,也有可能将信道状态信息子带的大小(Subband Size(PRBs))设置为BW BWP的最小个数,因此得到的信道状态信息子带的个数将会是一个系统允许的最大值。
步骤二:根据CC带宽确定CSI子带的个数;
根据CC带宽BW CC的RB个数,确定CSI子带(subband)的个数,即一个CC带宽中最多可以包含的subband个数。该subband个数为N subbands。
Figure PCTCN2018092169-appb-000005
例如图7,
CC带宽为BW CC=35RB,根据步骤一确定的subband size X=4RB/subband,CC 带宽相应的subband个数为:
Figure PCTCN2018092169-appb-000006
或如图8,根据步骤一确定的subband size X=8RB/subbad,其相应的subband个数为
Figure PCTCN2018092169-appb-000007
步骤三:根据CC带宽或BWP或CSI-RS带宽及频域位置确定CSI子带包含RB数。以下以根据CSI-RS带宽确定CSI子带包含RB数为例进行说明,以CC带宽或BWP及频域位置确定CSI子带包含RB数与之类似,不再赘述。
CSI上报频带中,与CSI-RS对应的信道状态信息子带包括第一个信道状态信息子带,又称起始子带;和最后一个信道状态信息子带,又称终止子带,以及常规信道状态信息子带,又称普通子带。
关于起始和终止子带的RB数确定方法:
If(RS BW>=1legacy subband size)//如果RS的带宽大于等于1个常规子带大小
//determine the starting subband size//确定起始子带大小(即起始子带所含的资源块的实际个数)
starting subband size=legacy subband size-mod(initial RB index,legacy subband size)//起始子带大小=常规子带大小(即常规CSI子带所含的资源块的实际个数)-mod(CSI-RS带宽的初始资源块的索引号,常规子带大小)
//determine the ending subband size//确定终止子带的大小(即终止子带所含的资源块的实际个数)
remainder=mod((initial RB index+BW),legacy subband size)//资源块余数=mod((CSI-RS带宽的初始资源块的索引号+CSI-RS带宽所含的资源块的总个数),常规信道状态信息子带大小;
if(remainder>0)//资源块余数大于零时
ending subband size=remainder//终止子带的大小(及终止子带所含的资源块的实际个数)=资源块余数;
else//否则
ending subband size=legacy subband size//终止子带的大小(及终止子带所含的资源块的实际个数)=常规信道状态信息子带大小
end//终止
Else//或
……
End//终止
例如图7,
CSI-RS频带配置为(initial RB index=0,CSI-RS BW=28),则根据上述计算方法,可得如下subband包含RB个数(subband size 4RB)
起始subband:4RB-mod(0,4)=4RB
普通subband:4RB
终止subband:mod((0+28),4)=4RB
本实施例中,可以用bitmap来指示信道状态信息上报频带(reporting band),本实施例中信道状态信息上报频带是基于CC配置的,因此该bitmap的比特个数与CC带宽所含的子带个数相同,具体为9个,由于CSI-RS带宽的initial RB index=0,且总的资源块个数为28RB,CSI子带大小为4RB,因此CSI-RS带宽所含的子带个数为7个;相当于基于CC带宽配置的CSI上报频带的尾部的2个子带未被配置为CSI-RS带宽,因此CSI上报频带尾部的2个子带设置为0;CSI上报频带中,与CSI-RS带宽对应的CSI子带为前7个CSI子带,其对应的比特用x来表示,x配置为1,代表该子带作为上报子带,x配置为0,代表该子带为非上报子带。例如,第3个x可以置为0,表示第3个子带不作为上报子带。
当然,比特设置为0表示非上报子带,比特设置为1表示上报子带,这只是其中的一种实现方式,本领域技术人员还可以据此作出变形,都在本申请保护范围之内。
或者如图8,
CSI-RS频带配置为(initial RB index=0,CSI-RS BW=28),则根据上述计算方法,可得如下subband包含RB个数(subband size 8RB)
起始subband:8RB-mod(0,8)=8RB
普通subband:8RB
终止subband:mod((0+28),8)=4RB
本实施例中,可以用bitmap来指示信道状态信息上报频带(Reporting band),本实施例中信道状态信息上报频带是基于CC配置的,因此该bitmap的比特个数与CC所含的子带个数相同,具体为5个,由于CSI-RS带宽的initial RB index=0,且总的资源块个数为28RB,CSI-RS带宽的子带大小为8RB,因此CSI-RS带宽的子带个数为4个,相当于基于CC带宽配置的CSI上报频带的尾部的1个子带未被配置为CSI-RS带宽,因此设置为0;而CSI上报频带中,与CSI-RS带宽对应的CSI子带为前4个CSI子带,其对应的比特用x来表示,x配置为1,代表该子带作为上报子带,x配置为0,代表该子带为非上报子带。
当然,比特设置为0表示非上报子带,比特设置为1表示上报子带,这只是其中的一种实现方式,本领域技术人员还可以据此作出变形,都在本申请保护范围之内。
或者如图9,
CSI-RS频带配置为(initial RB index=4,CSI-RS BW=28),则根据上述计算方法,可得如下subband包含RB个数(subband size 8RB)
起始subband:8RB-mod(4,8)=4RB
普通subband:8RB
终止subband:8RB
本实施例中,可以用bitmap来指示信道状态信息上报频带(Reporting band),本实施例中信道状态信息上报频带是基于CC配置的,因此该bitmap的比特个数与CC所含的子带个数相同,具体为5个,由于CSI-RS带宽的initial RB index=4,且总的资源块个数为28RB,CSI-RS带宽的子带大小为8RB,因此CSI-RS带宽的子带个数为4个,相当于基于CC带宽配置的CSI上报频带的尾部的1个子带未被配置为CSI-RS带宽,因此设置为0;而CSI上报频带中,与CSI-RS带宽对应的CSI子带为前4个CSI子带,其对应的比特用x来表示,x配置为1,代表该子带作为上报子带,x配置为0,代表该子带为非上报子带。
当然,比特设置为0表示非上报子带,比特设置为1表示上报子带,这只是其中的一种实现方式,本领域技术人员还可以据此作出变形,都在本申请保护范围之内。
该方法的有益效果是基于CC物理带宽的统一配置,简化终端寻址(绝对寻址)复杂度。
实施例二
本实施例主要描述基于BWP的CSI reporting band的配置指示方法和subband size计算。
本实施例中,CSI上报频带所含的CSI子带是基于带宽部分BWP划分的,需要分别确定与CSI-RS带宽对应的CSI子带中第一个信道状态信息子带(first subband),又称起始子带包含的RB数和最后一个信道状态信息子带,又称终止子带(last subband)包含的RB数。
首先基于载波的带宽部分BWP(Carrier bandwidth part(PRBs))确定信道状态信息子带的大小(Subband Size(PRBs)),如上表4所示:
根据BWP带宽BW BWP的资源块(RB)个数,例如PRB个数,确定CSI子带的大小(subband size),即一个subband中最多可以包含的RB个数。该subband size为X RB/subband。
例如,
BWP带宽为BW BWP=32RB,其相应的subband size为X=4RB/subband;
或BWP带宽为BW BWP=32RB,其相应的subband size为X=8RB/subband.
步骤二:根据BWP确定CSI子带的个数;
根据BWP带宽BW BWP的RB个数,确定CSI子带(subband)的个数,即一个BWP中最多可以包含的subband个数。该subband个数为N subbands。
Figure PCTCN2018092169-appb-000008
例如图10,
CC带宽为BW BWP=32RB,根据步骤一确定的subband size X=4RB/subband,其相应的subband个数为:
Figure PCTCN2018092169-appb-000009
或如图11,
根据步骤一确定的subband size X=8RB/subbad,其相应的subband个数为
Figure PCTCN2018092169-appb-000010
步骤三:根据CC带宽或BWP或CSI-RS带宽及频域位置确定CSI子带包含RB数。以下以根据CSI-RS带宽确定CSI子带包含RB数为例进行说明,以CC带宽或BWP及频域位置确定CSI子带包含RB数与之类似,不再赘述。CSI上报频带中与CSI-RS带宽对应的信道状态信息子带包括第一个信道状态信息子带,又称起始子带;和最后一个信道状态信息子带,又称终止子带,以及常规信道状态信息子带,又称普通子带。
关于起始和终止子带的RB数确定方法:
If(RS BW>=1legacy subband size)//如果RS的带宽大于等于1个常规子带大小
//determine the starting subband size//确定起始子带大小(即起始子带所含的资源块的实际个数)
starting subband size=legacy subband size-mod(initial RB index,legacy subband size)//起始子带大小=常规子带大小(即常规CSI子带所含的资源块的实际个数)-mod(CSI-RS带宽的初始资源块的索引号,常规子带大小)
//determine the ending subband size//确定终止子带的大小(即终止子带所含的资源块的实际个数)
remainder=mod((initial RB index+BW),legacy subband size)//资源块余数=mod((CSI-RS带宽的初始资源块的索引号+CSI-RS带宽所含的资源块的总个数),常规信道状态信息子带大小;
if(remainder>0)//资源块余数大于零时
ending subband size=remainder//终止子带的大小(及终止子带所含的资源块的实际个数)=资源块余数;
else//否则
ending subband size=legacy subband size//终止子带的大小(及终止子带所含的资源块的实际个数)=常规信道状态信息子带大小
end//终止
Else//或
……
End//终止
例如图10,
CSI-RS频带配置为(initial RB index=0,CSI-RS BW=28),则根据上述计算方法,可得如下subband包含RB个数(subband size 4RB)
起始subband:4RB-mod(0,4)=4RB
普通subband:4RB
终止subband:mod((0+28),4)=4RB
本实施例中,可以用bitmap来指示信道状态信息上报频带(Reporting band),本实施例中信道状态信息上报频带是基于BWP配置的,因此该bitmap的比特个数与BWP所含的子带个数相同,具体为8个,由于CSI-RS带宽的initial RB index=0,且总的资源块个数为28RB,CSI-RS带宽的子带大小为4RB,因此CSI-RS带宽的子带个数为7个,相当于基于BWP带宽配置的CSI上报频带的尾部的1个子带未被配置为CSI-RS带宽,因此设置为0;而CSI上报频带中,与CSI-RS带宽对应的CSI子带为前7个CSI子带,其对应的比特用x来表示,x配置为1,代表该子带作为上报子带,x配置为0,代表该子带为非上报子带。
当然,比特设置为0表示非上报子带,比特设置为1表示上报子带,这只是其中的一种实现方式,本领域技术人员还可以据此作出变形,都在本申请保护范围之内。
或者如图11,
CSI-RS频带配置为(initial RB index=0,CSI-RS BW=28),则根据上述计算方法,可得如下subband包含RB个数(subband size 8RB)
起始subband:8RB-mod(0,8)=8RB
普通subband:8RB
终止subband:mod((0+28),8)=4RB
本实施例中,可以用bitmap来指示信道状态信息上报频带(Reporting band),本实施例中信道状态信息上报频带是基于BWP配置的,因此该bitmap的比特个数与BWP所含的子带个数相同,具体为4个,由于CSI-RS带宽的initial RB index=0,且总的资源块个数为28RB,CSI-RS带宽的子带大小为8RB,因此CSI-RS带宽的子带个数为4个,CSI上报频带中与CSI-RS带宽对应的为4个CSI子带,其对应的比特用x来表示,x配置为1,代表该子带作为上报子带,x配置为0,代表该子带为非上报子带。
当然,比特设置为0表示非上报子带,比特设置为1表示上报子带,这只是其中的一种实现方式,本领域技术人员还可以据此作出变形,都在本申请保护范围之内。
或者如图12,
CSI-RS频带配置为(initial RB index=4,CSI-RS BW=28),则根据上述计算方法,可得如下subband包含RB个数(subband size 8RB)
起始subband:8RB-mod(4,8)=4RB
普通subband:8RB
终止subband:8RB
本实施例中,可以用bitmap来指示信道状态信息上报频带(Reporting band),本实施例中信道状态信息上报频带是基于BWP配置的,因此该bitmap的比特个数与BWP所含的子带个数相同,具体为4个,由于CSI-RS带宽的initial RB index=4,且总的资源块个数为28RB,CSI-RS带宽的子带大小为8RB,因此CSI-RS带宽的子带个数为4个,该CSI上报频带中与CSI-RS带宽对应的4个CSI子带,其对应的比特用x来表示,x配置为1,代表该子带作为上报子带,x配置为0,代表该子带为非上报子带。
当然,比特设置为0表示非上报子带,比特设置为1表示上报子带,这只是其中的一种实现方式,本领域技术人员还可以据此作出变形,都在本申请保护范围之内。
本实施例二的有益效果是基于BWP带宽的灵活配置,较实施例一配置较少的bit数用于CSI子带的配置。
实施例三
本实施例主要描述基于CSI-RS的CSI reporting band的配置指示方法和subband size计算。
本实施例中,CSI上报频带所含的CSI子带是基于带宽部分BWP划分的,需要分别确定CSI上报频带中,与CSI-RS带宽对应的CSI子带中,第一个信道状态信息子带(first subband),又称起始子带包含的RB数和最后一个信道状态信息子带,又称终止子带(last subband)包含的RB数。
首先基于载波的带宽部分BWP(Carrier bandwidth part(PRBs))确定信道状态信 息子带的大小(Subband Size(PRBs)),如上表4所示:
根据BWP带宽BW BWP的资源块(RB)个数,例如PRB个数,确定CSI子带的大小(subband size),即一个subband中最多可以包含的RB个数。该subband size为X RB/subband。
例如,
BWP带宽为BW BWP=32RB,其相应的subband size为X=4RB/subband;
或BWP带宽为BW BWP=32RB,其相应的subband size为X=8RB/subband.
步骤二:根据CSI-RS带宽确定CSI子带的个数;
根据CSI-RS带宽BW CSI-RS的RB个数,确定CSI子带(subband)的个数,即一个CSI=RS带宽中最多可以包含的subband个数。该subband个数为N subbands。
Figure PCTCN2018092169-appb-000011
例如图13,
CC带宽为BW BWP=28RB,根据步骤一确定的subband size X=4RB/subband,其相应的subband个数为:
Figure PCTCN2018092169-appb-000012
或如图14,
根据步骤一确定的subband size X=8RB/subbad,其相应的subband个数为
Figure PCTCN2018092169-appb-000013
步骤三:根据CC带宽或BWP或CSI-RS带宽及频域位置确定CSI子带包含RB数。以下以根据CSI-RS带宽确定CSI子带包含RB数为例进行说明,以CC带宽或BWP及频域位置确定CSI子带包含RB数与之类似,不再赘述。
CSI上报频带中,与CSI-RS带宽对应的CSI子带包括第一个信道状态信息子带,又称起始子带;和最后一个信道状态信息子带,又称终止子带,以及常规信道状态信息子带,又称普通子带。
关于起始和终止子带的RB数确定方法:
If(RS BW>=1legacy subband size)//如果RS的带宽大于等于1个常规子带大小
//determine the starting subband size//确定起始子带大小(即起始子带所含的资源块的实际个数)
starting subband size=legacy subband size-mod(initial RB index,legacy  subband size)//起始子带大小=常规子带大小(即常规CSI子带所含的资源块的实际个数)-mod(CSI-RS带宽的初始资源块的索引号,常规子带大小)
//determine the ending subband size//确定终止子带的大小(即终止子带所含的资源块的实际个数)
remainder=mod((initial RB index+BW),legacy subband size)//资源块余数=mod((CSI-RS带宽的初始资源块的索引号+CSI-RS带宽的资源块的总个数),常规信道状态信息子带大小;
if(remainder>0)//资源块余数大于零时
ending subband size=remainder//终止子带的大小(及终止子带所含的资源块的实际个数)=资源块余数;
else//否则
ending subband size=legacy subband size//终止子带的大小(及终止子带所含的资源块的实际个数)=常规信道状态信息子带大小
end//终止
Else//或
……
End//终止
例如图13,
CSI-RS频带配置为(initial RB index=0,CSI-RS BW=28),则根据上述计算方法,可得如下subband包含RB个数(subband size 4RB)
起始subband:4RB-mod(0,4)=4RB
普通subband:4RB
终止subband:mod((0+28),4)=4RB
本实施例中,可以用bitmap来指示信道状态信息上报频带(Reporting band),本实施例中信道状态信息上报频带是基于CSI-RS带宽配置的,因此该bitmap的比特个数与CSI-RS带宽所含的子带个数相同,具体为7个,CSI上报频带中与CSI-RS带宽对应的7个CSI子带,其对应的比特用x来表示,x配置为1,代表该子带作为上报子带,x配置为0,代表该子带为非上报子带。
当然,比特设置为0表示非上报子带,比特设置为1表示上报子带,这只是其中的一种实现方式,本领域技术人员还可以据此作出变形,都在本申请保护范围之内。
或者如图14,
CSI-RS频带配置为(initial RB index=0,CSI-RS BW=28),则根据上述计算方法, 可得如下subband包含RB个数(subband size 8RB)
起始subband:8RB-mod(0,8)=8RB
普通subband:8RB
终止subband:mod((0+28),8)=4RB
本实施例中,可以用bitmap来指示信道状态信息上报频带(Reporting band),本实施例中信道状态信息上报频带是基于CSI-RS带宽配置的,因此该bitmap的比特个数与CSI-RS带宽所含的子带个数相同,具体为4个,CSI上报频带中与CSI-RS带宽对应的4个CSI子带,其对应的比特用x来表示,x配置为1,代表该子带作为上报子带,x配置为0,代表该子带为非上报子带。
当然,比特设置为0表示非上报子带,比特设置为1表示上报子带,这只是其中的一种实现方式,本领域技术人员还可以据此作出变形,都在本申请保护范围之内。
或者如图15,
CSI-RS频带配置为(initial RB index=4,CSI-RS BW=28),则根据上述计算方法,可得如下subband包含RB个数(subband size 8RB)
起始subband:8RB-mod(4,8)=4RB
普通subband:8RB
终止subband:8RB
本实施例中,可以用bitmap来指示信道状态信息上报频带(Reporting band),本实施例中信道状态信息上报频带是基于CSI-RS带宽配置的,因此该bitmap的比特个数与CSI-RS带宽所含的子带个数相同,具体为4个,CSI上报频带中与CSI-RS带宽对应的4个CSI子带,其对应的比特用x来表示,x配置为1,代表该子带作为上报子带,x配置为0,代表该子带为非上报子带。
当然,比特设置为0表示非上报子带,比特设置为1表示上报子带,这只是其中的一种实现方式,本领域技术人员还可以据此作出变形,都在本申请保护范围之内。
该方法的有益效果是基于CSI-RS带宽的灵活配置,较实施例二配置较少的bit数用于CSI reporting band的配置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读 存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
综上所述,以上仅为本发明的实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (27)

  1. 一种信道状态信息上报频带的配置方法,其特征在于,包括:
    基于带宽部分BWP确定信道状态信息子带的大小;
    基于载波带宽CC或者带宽部分BWP或者信道状态信息参考信号CSI-RS带宽,以及所述信道状态信息子带的大小,确定信道状态信息上报频带所含的信道状态信息子带的个数。
  2. 一种发射端设备,其特征在于,包括处理器和接口:
    所述处理器,用于基于带宽部分BWP确定信道状态信息子带的大小;
    所述处理器还用于基于载波带宽CC或者带宽部分BWP或者信道状态信息参考信号CSI-RS带宽,以及所述信道状态信息子带的大小,确定信道状态信息上报频带所含的信道状态信息子带的个数。
  3. 一种发射端设备,其特征在于,包括处理器和接口:
    所述处理单元,用于基于带宽部分BWP确定信道状态信息子带的大小;
    所述处理单元还用于基于载波带宽CC或者带宽部分BWP或者信道状态信息参考信号CSI-RS带宽,以及所述信道状态信息子带的大小,确定信道状态信息上报频带所含的信道状态信息子带的个数。
  4. 如权利要求1所述的方法或权利要求2或3所述的发射端设备,其特征在于,所述确定信道状态信息上报频带所含的信道状态信息子带的个数之后,包括:
    向接收端设备发送指示信道状态信息子带中的上报子带或非上报子带的上报子带配置信息;所述上报子带配置信息用信息比特表示,所述信息比特的比特个数与所述信息比特的比特个数与所述信道状态信息上报频带所含的信道状态信息子带的个数相同。
  5. 如权利要求1所述的方法或权利要求2或3所述的发射端设备,其特征在于,所述信道状态信息子带的大小为其包含的资源块的最大个数。
  6. 如权利要求5所述的方法或发射端设备,其特征在于,所述基于载波带宽CC或者带宽部分BWP或者信道状态信息参考信号CSI-RS带宽,以及所述信道状态信息子带的大小,确定信道状态信息上报频带所含的信道状态信息子带的个数,包括:
    将所述载波带宽CC所含的资源块的总个数除以所述信道状态信息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数;或
    将所述带宽部分BWP所含的资源块的总个数除以所述信道状态信息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数;或
    将所述信道状态信息参考信号CSI-RS带宽所含资源块的总个数除以所述信道状 态信息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数。
  7. 如权利要求5所述的方法或发射端设备,其特征在于,所述信道状态信息子带包括第一个信道状态信息子带和最后一个信道状态信息子带,以及常规信道状态信息子带;
    所述方法还包括,确定所述第一个信道状态信息子带所含的资源块的实际个数和最后一个信道状态信息子带所含的资源块的实际个数。
  8. 如权利要求7所述的方法或发射端设备,其特征在于,确定所述第一个信道状态信息子带所含的资源块的实际个数,包括:
    确定所述第一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(CC的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);或
    确定所述第一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(BWP的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);或
    确定所述第一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(CSI-RS的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);
    其中,所述第一个信道状态信息子带所含的资源块的实际个数小于等于所述常规信道状态信息子带所含的资源块的实际个数。
  9. 如权利要求7所述的方法或发射端设备,其特征在于,所述确定所述最后一个信道状态信息子带所含的资源块的实际个数,包括:
    确定资源块余数,该资源块余数=mod((CC的初始资源块的索引号+CC带宽所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数)或
    确定资源块余数,该资源块余数=mod((BWP的初始资源块的索引号+BWP所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数)或
    确定资源块余数,该资源块余数=mod((CSI-RS的初始资源块的索引号+CSI-RS带宽所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数);
    所述资源块余数大于零时,所述最后一个信道状态信息子带所含的资源块的实际个数=资源块余数;
    所述资源块余数等于零时,所述最后一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数。
  10. 如权利要求8或9所述的方法或发射端设备,其特征在于,还包括:将所述第一个信道状态信息子带所含的资源块的实际个数和最后一个信道状态信息子带所含的资源块的实际个数通过指示信息发送出去。
  11. 如权利要求7至10中任一项所述的方法或发射端设备,其特征在于,还包括确定所述常规信道状态信息子带所含的资源块的实际个数等于所述信道状态信息子带所含的资源块的最大个数。
  12. 一种信道状态信息上报频带的配置方法,其特征在于,包括:
    接收发射端设备发送的指示信道状态信息子带的上报子带配置信息,所述上报子带配置信息指示所述信道状态信息子带是上报子带或非上报子带;所述信道状态信息子带属于所述信道状态信息上报频带;
    根据所述上报子带配置信息,确定各个所述信道状态信息子带的个数。
  13. 一种接收端设备,其特征在于,包括:
    收发器,用于接收网络设备发送的指示信道状态信息子带的上报子带配置信息,所述上报子带配置信息指示所述信道状态信息子带中的各个子带是上报子带或非上报子带;所述信道状态信息子带属于所述信道状态信息上报频带;
    处理器,用于根据所述上报子带配置信息,确定所述信道状态信息上报频带所含的信道状态信息子带的个数。
  14. 一种接收端设备,其特征在于,包括:
    收发单元,用于接收网络设备发送的指示信道状态信息子带的上报子带配置信息,所述上报子带配置信息指示所述信道状态信息子带中的各个子带是上报子带或非上报子带;所述信道状态信息子带属于所述信道状态信息上报频带;
    处理单元,用于根据所述上报子带配置信息,确定所述信道状态信息上报频带所含的信道状态信息子带的个数。
  15. 如权利要求12所述的方法或权利要求13或14所述的接收端设备,其特征在于,所述上报子带配置信息用信息比特表示,所述信息比特的比特个数与所述信道状态信息上报频带所含的信道状态信息子带的个数相同;
    根据所述上报子带配置信息,所述确定所述信道状态信息上报频带所含的信道状态信息子带的个数,包括:
    根据所述信息比特的比特个数,确定所述信道状态信息上报频带所含的信道状态信息子带的个数。
  16. 如权利要求12所述的方法或权利要求13或14所述的接收端设备,其特征在于,所述上报子带配置信息中包括信道状态信息子带的大小;
    根据所述上报子带配置信息,确定所述信道状态信息上报频带所含的信道状态信息子带的个数,包括:
    基于载波带宽CC或者带宽部分BWP或者信道状态信息参考信号CSI-RS带宽,以及信道状态信息子带的大小,确定信道状态信息上报频带所含的信道状态信息子带的个数。
  17. 如权利要求16所述的方法或接收端设备,其特征在于,所述信道状态信息子带的大小为其包含的资源块的最大个数。
  18. 如权利要求17所述的方法或接收端设备,其特征在于,所述基于载波带宽CC或者带宽部分BWP或者信道状态信息参考信号CSI-RS带宽,以及所述信道状态信息子带的大小,确定信道状态信息上报频带所含的信道状态信息子带的个数,包括:
    将所述载波带宽CC所含的资源块的总个数除以所述信道状态信息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数;或
    将所述带宽部分BWP所含的资源块的总个数除以所述信道状态信息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数;或
    将所述信道状态信息参考信号CSI-RS带宽所含资源块的总个数除以所述信道状态信息子带的大小,向上取整,得到信道状态信息上报频带所含的信道状态信息子带的个数。
  19. 如权利要求15或16所述的方法或接收端设备,其特征在于,所述信道状态信息子带包括第一个信道状态信息子带和最后一个信道状态信息子带,以及常规信道状态信息子带;
    所述方法还包括,确定所述第一个信道状态信息子带所含的资源块的实际个数,和确定所述最后一个信道状态信息子带所含的资源块的实际个数。
  20. 如权利要求19所述的方法或接收端设备,其特征在于,所述确定所述第一个信道状态信息子带所含的资源块的实际个数,包括:
    确定所述第一个信道状态信息子带所含的资源块的个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(CC的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);或
    确定所述第一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(BWP的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);或
    确定所述第一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数-mod(CSI-RS的初始资源块的索引号,常规信道状态信息子带所含的资源块的实际个数);
    其中,所述第一个信道状态信息子带所含的资源块的实际个数小于等于所述常规信道状态信息子带所含的资源块的实际个数。
  21. 如权利要求19所述的方法或接收端设备,其特征在于,所述确定所述最后一个信道状态信息子带所含的资源块的实际个数,包括:
    确定资源块余数,该资源块余数=mod((CC的初始资源块的索引号+CC带宽所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数)或
    确定资源块余数,该资源块余数=mod((BWP的初始资源块的索引号+BWP所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数)或
    确定资源块余数,该资源块余数=mod((CSI-RS的初始资源块的索引号+CSI-RS带宽所含资源块的总数),常规信道状态信息子带所含的资源块的实际个数);
    所述资源块余数大于零时,所述最后一个信道状态信息子带所含的资源块的实际 个数=资源块余数;
    所述资源块余数等于零时,所述最后一个信道状态信息子带所含的资源块的实际个数=所述常规信道状态信息子带所含的资源块的实际个数。
  22. 如权利要求19所述的方法或接收端设备,其特征在于,所述上报子带配置信息中还包括所述第一个信道状态信息子带或最后一个信道状态信息子带所含的资源块的实际个数;
    所述终端根据所述第一个信道状态信息子带或最后一个信道状态信息子带所含的资源块的实际个数,所述信道状态信息子带的大小,确定所述第一个信道状态信息子带或最后一个信道状态信息子带的资源块的索引号。
  23. 如权利要求19至22中任一项所述的方法或接收端设备,其特征在于,所述常规信道状态信息子带所含的资源块的实际个数等于所述信道状态信息子带所含的资源块的最大个数。
  24. 一种芯片,其特征在于,包括:
    处理器,用于从存储器调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1、4-11、12、15-23中任意一项所述的方法。
  25. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,当所述计算机程序被计算机执行时,使得所述计算机实现如权利要求1、4-11、12、15-23中任意一项所述的方法。
  26. 一种计算机程序产品,所述计算机程序产品中包含指令,其特征在于,当所述指令在计算机上运行时,使得计算机实现如权利要求1、4-11、12、15-23中任意一项所述的方法。
  27. 一种通信系统,其特征在于,所述通信系统包括如权利要求2至11中任一项所述的发射端设备,以及如权利要求13~23中任一项所述的接收端设备。
PCT/CN2018/092169 2018-01-12 2018-06-21 信道状态信息上报频带的配置方法及通信装置 WO2019136934A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201880001005.2A CN110291826A (zh) 2018-01-12 2018-06-21 信道状态信息上报频带的配置方法及通信装置
EP18880033.8A EP3537813B1 (en) 2018-01-12 2018-06-21 Method for configuring frequency band for reporting channel state information and communication device
BR112019015450-7A BR112019015450A2 (pt) 2018-01-12 2018-06-21 Método para configurar banda de relatório de informação de estado de canal e aparelho de comunicações
CA3045400A CA3045400C (en) 2018-01-12 2018-06-21 Method for configuring channel state information reporting band and communications apparatus
JP2019528711A JP6977920B2 (ja) 2018-01-12 2018-06-21 チャネル状態情報報告バンドの設定方法及び通信装置
US16/237,465 US10511411B2 (en) 2018-01-12 2018-12-31 Method for configuring channel state information reporting band and communications apparatus
US16/697,115 US11239950B2 (en) 2018-01-12 2019-11-26 Method for configuring channel state information reporting band and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810032711.5A CN110035530A (zh) 2018-01-12 2018-01-12 信道状态信息上报频带的配置方法及通信装置
CN201810032711.5 2018-01-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/237,465 Continuation US10511411B2 (en) 2018-01-12 2018-12-31 Method for configuring channel state information reporting band and communications apparatus

Publications (1)

Publication Number Publication Date
WO2019136934A1 true WO2019136934A1 (zh) 2019-07-18

Family

ID=63623995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092169 WO2019136934A1 (zh) 2018-01-12 2018-06-21 信道状态信息上报频带的配置方法及通信装置

Country Status (7)

Country Link
US (1) US11239950B2 (zh)
EP (1) EP3537813B1 (zh)
JP (1) JP6977920B2 (zh)
CN (5) CN110430615B (zh)
BR (1) BR112019015450A2 (zh)
CA (1) CA3045400C (zh)
WO (1) WO2019136934A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112600773A (zh) * 2020-12-18 2021-04-02 展讯通信(上海)有限公司 信道估计方法及装置、计算机可读存储介质、终端
US20210376897A1 (en) * 2018-09-21 2021-12-02 Lg Electronics Inc. Method for reporting channel state information in wireless communication system, and device for same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600193B (zh) 2017-09-30 2021-10-26 华为技术有限公司 一种信道测量方法
WO2020051922A1 (en) * 2018-09-15 2020-03-19 Qualcomm Incorporated Csi for non-coherent joint transmission
WO2020056708A1 (en) * 2018-09-21 2020-03-26 Qualcomm Incorporated Csi report configuration for multi-trp transmission
US11985082B2 (en) * 2018-09-21 2024-05-14 Lg Electronics Inc. Method for reporting channel state information according to DRX mode operation in wireless communication system, and device for same
CN110233654B (zh) * 2018-09-28 2020-07-14 华为技术有限公司 一种信道状态信息反馈的方法、设备及系统
CN111565453B (zh) * 2019-02-13 2023-05-09 中国移动通信有限公司研究院 Csi的测量上报方法、配置方法、终端及网络侧设备
CN109660288B (zh) * 2019-03-05 2022-01-25 武汉虹信科技发展有限责任公司 一种信息上报方法及装置
KR20210139396A (ko) * 2019-03-21 2021-11-22 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 무선 통신 방법, 단말 디바이스 및 네트워크 디바이스
CN114465648A (zh) * 2019-03-27 2022-05-10 华为技术有限公司 通信方法和通信装置
CN111082841A (zh) * 2019-08-14 2020-04-28 中兴通讯股份有限公司 信道状态信息的处理、接收方法及装置
CN110535509A (zh) * 2019-08-16 2019-12-03 中兴通讯股份有限公司 一种信息反馈和接收方法、装置和存储介质
CN115242365A (zh) * 2020-01-14 2022-10-25 北京紫光展锐通信技术有限公司 探测参考信号传输方法及相关产品
CN113271191B (zh) * 2020-02-14 2022-08-26 展讯通信(上海)有限公司 Ue的上行探测发送方法及相关设备
US20230042538A1 (en) * 2020-04-08 2023-02-09 Apple Inc. New radio (nr) multi-input multi-output (mimo) channel state information (csi) design for small bandwidth part (bwp)
US11405087B1 (en) * 2020-05-26 2022-08-02 T-Mobile Innovations Llc Systems and methods for dynamically adjusting reporting periodicity
CN112865843A (zh) * 2021-01-14 2021-05-28 中兴通讯股份有限公司 信道状态信息传输方法、装置、电子设备和存储介质
US20230067545A1 (en) * 2021-08-30 2023-03-02 Apple Inc. Subband channel state information reporting
WO2023150994A1 (en) * 2022-02-11 2023-08-17 Zte Corporation Bandwidth configuration for narrowband communications

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255685A (zh) * 2010-05-17 2011-11-23 华为技术有限公司 反馈和获取csi的方法、ue及基站
US20110305161A1 (en) * 2010-06-15 2011-12-15 Anthony Edet Ekpenyong CSI Reporting on PUSCH for Carrier Aggregation

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448653B1 (ko) * 2007-10-01 2014-10-15 엘지전자 주식회사 주파수 호핑 패턴 및 이를 이용한 상향링크 신호 전송 방법
CN101567714A (zh) * 2008-04-24 2009-10-28 夏普株式会社 用于信息反馈的子带判决方法、基站、用户设备以及通信系统
US20100214937A1 (en) * 2009-01-09 2010-08-26 Texas Instruments Incorporated Rank Indicator Offset for Periodic CQI Reporting with Periodicity of One
CN102158874B (zh) * 2010-02-12 2014-04-30 华为技术有限公司 信道测量的方法和装置
CN102237958B (zh) * 2010-05-07 2013-10-16 电信科学技术研究院 一种基于pucch上报csi的方法及装置
KR101763598B1 (ko) * 2010-07-02 2017-08-01 엘지전자 주식회사 다중 안테나 지원 무선 통신 시스템에서 코드북을 이용한 신호 전송 방법 및 장치
KR101863927B1 (ko) * 2010-09-26 2018-07-05 엘지전자 주식회사 다중 안테나 지원 무선 통신 시스템에서 효율적인 피드백 방법 및 장치
US8681627B2 (en) * 2010-12-07 2014-03-25 Sharp Kabushiki Kaisha Prioritizing multiple channel state information (CSI) reporting with carrier aggregation
CN102263583A (zh) * 2011-08-19 2011-11-30 电信科学技术研究院 一种发送和接收csi的方法、系统及设备
CN102307081A (zh) * 2011-08-19 2012-01-04 电信科学技术研究院 一种发送和接收csi的方法、系统及设备
CN103178929A (zh) * 2011-12-23 2013-06-26 中兴通讯股份有限公司 信道状态信息的反馈方法及装置
WO2013170420A1 (zh) 2012-05-14 2013-11-21 华为技术有限公司 信道状态信息上报方法及终端、基站
WO2013184613A2 (en) * 2012-06-04 2013-12-12 Interdigital Patent Holdings, Inc. Communicating channel state information (csi) of multiple transmission points
CN103582137B (zh) 2012-07-19 2018-01-02 华为技术有限公司 Wlan的信道资源分配方法和设备、无线局域网通信系统
CN102801498B (zh) 2012-07-25 2016-03-02 电信科学技术研究院 一种终端设备选择子带反馈的上报及确定方法和设备
EP2930968B1 (en) 2012-12-09 2019-02-27 LG Electronics Inc. Method for feeding back channel status information in wireless communication system supporting multiple antennas, and apparatus therefor
CN110351869B (zh) * 2013-12-31 2023-06-06 华为技术有限公司 用于测量信道状态信息的方法及装置
US9571251B2 (en) * 2014-01-30 2017-02-14 Intel Corporation Periodic channel status information (CSI) reporting for enhanced interference management and traffic adaptation (EIMTA) systems with CSI subframe sets
JP6224852B2 (ja) * 2014-03-28 2017-11-08 エルジー エレクトロニクス インコーポレイティド 機械タイプ通信を支援する無線接続システムにおいてチャネル状態情報送信方法及び装置
WO2015149333A1 (zh) 2014-04-03 2015-10-08 华为技术有限公司 一种csi报告方法和设备
WO2016019494A1 (zh) * 2014-08-04 2016-02-11 华为技术有限公司 信道质量上报方法及装置
CN105429683B (zh) * 2014-09-17 2019-08-20 上海朗帛通信技术有限公司 一种3d mimo传输方法和装置
JP2017228813A (ja) * 2014-11-06 2017-12-28 シャープ株式会社 基地局装置、端末装置および通信方法
SG10201807216PA (en) 2015-04-08 2018-09-27 Interdigital Patent Holdings Inc Method and device of multi-subband based transmission for a wireless transmit/receive unit (wtru) with reduced capability and coverage enhancement
CN106411377A (zh) 2015-07-31 2017-02-15 电信科学技术研究院 一种信息反馈方法、装置、终端及基站
US10582524B2 (en) 2015-08-21 2020-03-03 Lg Electronics Inc. Method for transmitting and receiving channel state information in wireless communication system and apparatus therefor
CN106507486B (zh) * 2015-09-08 2020-04-28 华为技术有限公司 用于上行数据传输的方法、网络设备和终端设备
CN106559109A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 一种信道状态信息测量反馈方法和装置
US10462739B2 (en) * 2016-06-21 2019-10-29 Samsung Electronics Co., Ltd. Transmissions of physical downlink control channels in a communication system
KR20190105227A (ko) * 2017-02-03 2019-09-16 주식회사 윌러스표준기술연구소 무선 통신 시스템에서 레퍼런스 신호 및 데이터 채널의 송수신 방법, 장치, 및 시스템

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255685A (zh) * 2010-05-17 2011-11-23 华为技术有限公司 反馈和获取csi的方法、ue及基站
US20110305161A1 (en) * 2010-06-15 2011-12-15 Anthony Edet Ekpenyong CSI Reporting on PUSCH for Carrier Aggregation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On CSI Subband Size", 3GPP TSG-RAN WG1 #91; R1-1720723, 18 November 2017 (2017-11-18), XP051370179 *
ERICSSON: "On Remaining Details of CSI Reporting", 3GPP TSG-RAN WG1 #91; R1-1720734, 18 November 2017 (2017-11-18), XP051370191 *
ERICSSON: "Partial Band CSI Reporting", 3GPP TSG-RAN WG1 NR AD HOC #3; R1-1716360, 17 September 2017 (2017-09-17), XP051339815 *
See also references of EP3537813A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210376897A1 (en) * 2018-09-21 2021-12-02 Lg Electronics Inc. Method for reporting channel state information in wireless communication system, and device for same
US11956043B2 (en) * 2018-09-21 2024-04-09 Lg Electronics Inc. Method for reporting channel state information in wireless communication system, and device for same
CN112600773A (zh) * 2020-12-18 2021-04-02 展讯通信(上海)有限公司 信道估计方法及装置、计算机可读存储介质、终端
WO2022127489A1 (zh) * 2020-12-18 2022-06-23 展讯通信(上海)有限公司 信道估计方法及装置、计算机可读存储介质、终端
CN112600773B (zh) * 2020-12-18 2023-01-10 展讯通信(上海)有限公司 信道估计方法及装置、计算机可读存储介质、终端

Also Published As

Publication number Publication date
CA3045400C (en) 2022-06-21
CN110291826A (zh) 2019-09-27
CA3045400A1 (en) 2019-07-12
CN108601084B (zh) 2019-04-19
CN110035530A (zh) 2019-07-19
CN109041231B (zh) 2019-07-09
US11239950B2 (en) 2022-02-01
JP2020507225A (ja) 2020-03-05
EP3537813A1 (en) 2019-09-11
CN110430615A (zh) 2019-11-08
EP3537813A4 (en) 2020-01-08
CN108601084A (zh) 2018-09-28
US20200099473A1 (en) 2020-03-26
CN110430615B (zh) 2020-08-21
EP3537813B1 (en) 2022-01-12
CN109041231A (zh) 2018-12-18
JP6977920B2 (ja) 2021-12-08
BR112019015450A2 (pt) 2020-03-24

Similar Documents

Publication Publication Date Title
WO2019136934A1 (zh) 信道状态信息上报频带的配置方法及通信装置
US10285170B2 (en) Method and apparatus for frame structure for advanced communication systems
US11736170B2 (en) Data transmission method, terminal device, and network device
US10511411B2 (en) Method for configuring channel state information reporting band and communications apparatus
US20220173865A1 (en) Methods and Apparatus for Signaling Control Information
GB2499786A (en) Indication of a preferred duplex operating mode
US11445396B2 (en) Channel measurement method and apparatus
JPWO2020031352A1 (ja) ユーザ端末及び無線通信方法
US20200119794A1 (en) Reference signal sending method, reference signal receiving method, network device, and terminal device
US11290906B2 (en) Channel measurement method
WO2019076077A1 (zh) 信道测量方法和用户设备
CN111279651B (zh) 一种用户设备和接入设备
WO2019085637A1 (zh) 一种信道测量方法和用户设备
CN109842474B (zh) 传输指示方法、设备及系统、存储介质
WO2018082394A1 (zh) 一种发送和获取参考信号的方法和装置
WO2019095973A1 (zh) 一种用户设备和信道测量方法
WO2018082319A1 (zh) 一种预编码配置方法、设备及系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019528711

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018880033

Country of ref document: EP

Effective date: 20190527

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019015450

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019015450

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190726

NENP Non-entry into the national phase

Ref country code: DE