WO2019076077A1 - 信道测量方法和用户设备 - Google Patents

信道测量方法和用户设备 Download PDF

Info

Publication number
WO2019076077A1
WO2019076077A1 PCT/CN2018/092312 CN2018092312W WO2019076077A1 WO 2019076077 A1 WO2019076077 A1 WO 2019076077A1 CN 2018092312 W CN2018092312 W CN 2018092312W WO 2019076077 A1 WO2019076077 A1 WO 2019076077A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
preset
rnti
transmission control
semi
Prior art date
Application number
PCT/CN2018/092312
Other languages
English (en)
French (fr)
Inventor
吴晔
金黄平
陈小波
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810061105.6A external-priority patent/CN109699082A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880011327.5A priority Critical patent/CN110574415B/zh
Priority to BR112019000819A priority patent/BR112019000819A2/pt
Priority to EP18788986.0A priority patent/EP3499950B1/en
Priority to JP2018567807A priority patent/JP6665324B2/ja
Priority to CA3025706A priority patent/CA3025706A1/en
Publication of WO2019076077A1 publication Critical patent/WO2019076077A1/zh
Priority to US16/410,180 priority patent/US20190268795A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present invention relate to channel measurement technologies, and in particular, to a channel measurement method and user equipment.
  • the transmission effect of wireless communication is closely related to the channel environment. Therefore, selecting a transmission parameter that is compatible with the channel environment is important for wireless communication. For example, when the channel environment is good, a more aggressive Modulation and Coding Scheme (MCS) can be selected to improve the transmission throughput. When the channel environment is poor, a more conservative MCS can be selected to improve Transmission robustness.
  • MCS Modulation and Coding Scheme
  • Channel State Information may include, for example but not limited to, one or more of the following information: a channel quality indicator (CQI), a precoding matrix indication (Precoding) Matrix Indicator (PMI), Precoding Type Indicator (PTI), CSI-RS Resource Indicator (CRI), and Rank Indication (RI).
  • CQI channel quality indicator
  • PMI precoding matrix indication
  • PMI Precoding matrix Indicator
  • PTI Precoding Type Indicator
  • CRI Rank Indication
  • FDD wireless communication systems typically use dynamic channel measurement to determine CSI.
  • the access device sends a CSI measurement indication to the user equipment, and after receiving the measurement indication, the user equipment performs channel measurement according to a reference signal (Reference Signal, RS) transmitted by the access device, obtains CSI, and obtains the CSI.
  • RS Reference Signal
  • the CSI is fed back to the access device.
  • Each dynamic channel measurement requires an access device trigger, so dynamic channel measurements can also be referred to as aperiodic measurements.
  • next-generation wireless communication standards are exploring the possibility of semi-persistent channel measurements.
  • the user equipment measures and feeds back CSI according to a preset period, so the semi-static channel measurement may also be referred to as periodic measurement. It is not difficult to imagine that semi-static channel measurements help to reduce the signaling overhead caused by channel measurements compared to dynamic channel measurements.
  • a channel measurement method which can realize notification of stopping semi-static channel measurement.
  • a user equipment which can realize notification of starting semi-static channel measurement.
  • a user equipment which can realize notification of stopping semi-static channel measurement.
  • a channel measurement method including:
  • the semi-static channel measurement is initiated when the first transmission control information satisfies the first preset condition, wherein the first preset condition includes at least one of the following conditions:
  • the first transmission control information is associated with a first preset type of wireless network temporary identifier RNTI;
  • the value of the first group of information in the first transmission control information conforms to a first preset rule.
  • the first preset type of RNTI is one of the following types of RNTIs:
  • the first group of information includes transmit power control TPC information, demodulation reference signal DMRS cyclic shift information, modulation and coding mode MCS information, and CSI request information.
  • the value of the first group of information in the first transmission control information conforming to the first preset rule includes:
  • the value of the TPC information is a first preset value
  • the value of the DMRS cyclic shift information is a second preset value
  • the value of the MCS information is in a third preset interval
  • the value of the CSI request information is a fourth preset value.
  • a channel measurement method including:
  • the second preset condition includes at least one of the following conditions:
  • the second transmission control information is associated with a second preset type of wireless network temporary identifier RNTI;
  • the value of the second group of information in the second transmission control information conforms to a second preset rule.
  • the second preset type of RNTI is one of the following types of RNTIs:
  • the second transmission control information includes transmit power control TPC information, demodulation reference signal DMRS cyclic shift information, modulation and coding mode MCS information, and resource allocation information.
  • the value of the second group of information in the second transmission control information conforms to the second preset rule includes:
  • the value of the TPC information is a fifth preset value
  • the value of the DMRS cyclic shift information is a sixth preset value
  • the value of the MCS information is in a seventh preset interval
  • the value of the resource allocation information is the eighth preset value.
  • a channel measurement method including:
  • the first transmission control information is associated with the first preset type of radio network temporary identifier RNTI; the value of the first group of information in the first transmission control information conforms to the first preset rule.
  • a channel measurement method including:
  • the second transmission control information is associated with the second preset type of the wireless network temporary identifier RNTI; and the value of the second group of the second transmission control information meets the second preset rule.
  • a configuration method including:
  • the semi-static channel measurement RNTI is configured according to the configuration information.
  • a configuration method including:
  • a user equipment including:
  • a transceiver module configured to receive first transmission control information
  • a processing module configured to start semi-static channel measurement when the first transmission control information meets the first preset condition, where the first preset condition includes at least one of the following conditions:
  • the first transmission control information is associated with a first preset type of wireless network temporary identifier RNTI;
  • the value of the first group of information in the first transmission control information conforms to a first preset rule.
  • a user equipment including:
  • a transceiver module configured to receive second transmission control information
  • a processing module configured to stop the second semi-static channel measurement when the second transmission control information meets the second preset condition, where the second preset condition includes at least one of the following conditions:
  • the second transmission control information is associated with a second preset type of wireless network temporary identifier RNTI;
  • the value of the second group of information in the second transmission control information conforms to a second preset rule.
  • an access device including:
  • a processing module configured to generate first transmission control information
  • a transceiver module configured to send first transmission control information, where the first transmission control information meets a first preset condition for initiating a semi-static channel measurement, where the first preset condition includes at least one of the following conditions
  • the first transmission control information is associated with a first preset type of radio network temporary identifier RNTI; and the value of the first group of information in the first transmission control information is consistent with a first preset rule.
  • an access device including:
  • a processing module configured to generate second transmission control information
  • a transceiver module configured to send second transmission control information, where the second transmission control information meets a second preset condition, so as to stop semi-static channel measurement, where the second preset condition includes at least one of the following conditions
  • the second transmission control information is associated with a second preset type of radio network temporary identifier RNTI; and the second group of information of the second transmission control information meets a second preset rule.
  • a user equipment including:
  • a transceiver module configured to receive configuration information, where the configuration information is used to configure a semi-static channel measurement RNTI;
  • a processing module configured to configure a semi-static channel measurement RNTI according to the configuration information.
  • an access device including:
  • a processing module configured to generate configuration information, where the configuration information is used to configure a semi-static channel measurement RNTI;
  • transceiver module configured to send the configuration information.
  • a user equipment including:
  • a transceiver configured to receive first transmission control information
  • a processor configured to start semi-static channel measurement when the first transmission control information meets the first preset condition, where the first preset condition includes at least one of the following conditions:
  • the first transmission control information is associated with a first preset type of wireless network temporary identifier RNTI;
  • the value of the first group of information in the first transmission control information conforms to a first preset rule.
  • a user equipment including:
  • a transceiver configured to receive second transmission control information
  • the processor is configured to stop the second semi-static channel measurement when the second transmission control information meets the second preset condition, where the second preset condition includes at least one of the following conditions:
  • the second transmission control information is associated with a second preset type of wireless network temporary identifier RNTI;
  • the value of the second group of information in the second transmission control information conforms to a second preset rule.
  • an access device including:
  • a processor configured to generate first transmission control information
  • a transceiver configured to send first transmission control information, where the first transmission control information meets a first preset condition for initiating semi-static channel measurement, wherein the first preset condition includes at least one of the following conditions
  • the first transmission control information is associated with a first preset type of radio network temporary identifier RNTI; and the value of the first group of information in the first transmission control information is consistent with a first preset rule.
  • an access device including:
  • a processor configured to generate second transmission control information
  • a transceiver configured to send second transmission control information, where the second transmission control information meets a second preset condition for stopping semi-static channel measurement, wherein the second preset condition includes at least one of the following conditions
  • the second transmission control information is associated with a second preset type of radio network temporary identifier RNTI; and the second group of information of the second transmission control information meets a second preset rule.
  • a user equipment including:
  • a transceiver configured to receive configuration information, where the configuration information is used to configure a semi-static channel measurement RNTI;
  • a processor configured to configure a semi-static channel measurement RNTI according to the configuration information.
  • an access device including:
  • a processor configured to generate configuration information, where the configuration information is used to configure a semi-static channel measurement RNTI;
  • transceiver configured to send the configuration information.
  • the processor can be used to perform, for example, without limitation, baseband related processing
  • the transceiver can be used to perform, for example, without limitation, radio frequency transceiving.
  • the above devices may be respectively disposed on chips independent of each other, or may be disposed at least partially or entirely on the same chip.
  • the processor can be further divided into an analog baseband processor and a digital baseband processor, wherein the analog baseband processor can be integrated on the same chip as the transceiver, and the digital baseband processor can be disposed on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be combined with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) Integrated on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip can be referred to as a system on chip. Separate devices on different chips or integrated on one or more chips often depends on the specific needs of the product design. The specific implementation form of the above device is not limited in the embodiment of the present invention.
  • a processor for performing the various methods described above.
  • the process of transmitting the above information and receiving the above information in the above method may be understood as a process of outputting the above information by the processor, and a process of receiving the input information by the processor.
  • the processor when outputting the above information, the processor outputs the above information to the transceiver for transmission by the transceiver. Further, after the above information is output by the processor, other processing may be required before reaching the transceiver.
  • the processor receives the above input information
  • the transceiver receives the above information and inputs it to the processor. Further, after the transceiver receives the above information, the above information may need to be processed before being input to the processor.
  • receiving the first transmission control information mentioned in the foregoing method may be understood as the first transmission control information that the processor receives the input.
  • transmitting the first transmission control information may be understood as the processor outputting the first transmission control information.
  • the above-mentioned processors may be processors dedicated to performing the methods, or may be processors executing computer instructions in the memory to perform the methods, such as a general purpose processor.
  • the above memory may be a non-transitory memory, such as a read only memory (ROM), which may be integrated on the same chip as the processor, or may be separately disposed on different chips.
  • ROM read only memory
  • the embodiment does not limit the type of the memory and the manner in which the memory and the processor are arranged.
  • a computer readable storage medium comprising instructions which, when executed on a computer, cause the computer to perform the various methods described above. Still further, the computer readable storage medium is a non-transitory computer readable storage medium.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the various methods described above.
  • the embodiment of the present invention provides a technical solution, which can notify the user equipment to start and/or stop semi-static channel measurement.
  • FIG. 1 is an exemplary schematic diagram of a wireless communication network in accordance with an embodiment of the present invention
  • FIG. 2 is an exemplary flowchart of a channel measurement method in accordance with an embodiment of the present invention
  • FIG. 3 is an exemplary flowchart of a channel measurement method according to an embodiment of the present invention.
  • FIG. 4 is an exemplary flowchart of a channel measurement method according to an embodiment of the present invention.
  • FIG. 5 is an exemplary flowchart of a channel measurement method according to an embodiment of the present invention.
  • FIG. 6 is an exemplary flowchart of a channel measurement method according to an embodiment of the present invention.
  • FIG. 7 is an exemplary flowchart of a configuration method according to an embodiment of the present invention.
  • FIG. 8 is an exemplary flowchart of a configuration method according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing an exemplary logical structure of a communication device according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing an exemplary hardware structure of a communication device according to an embodiment of the present invention.
  • next-generation wireless communication system currently under development is also known as the New Radio (NR) system or the 5G system.
  • NR New Radio
  • 5G 5th Generation
  • PUSCH Physical Uplink Shared Channel
  • the wireless communication network 100 includes base stations 102-106 and terminal devices 108-122, wherein the base stations 102-106 can pass backhaul links with each other (e.g., lines between base stations 102-106) Communication is shown, which may be a wired backhaul link (eg, fiber optic, copper) or a wireless backhaul link (eg, microwave).
  • the terminal devices 108-122 can communicate with the corresponding base stations 102-106 via a wireless link (as indicated by the broken line between the base stations 102-106 and the terminal devices 108-122).
  • the base stations 102-106 typically serve as access devices to provide wireless access services for the terminal devices 108-122 that are typically user equipment.
  • each base station corresponds to a service coverage area (also referred to as a cell, as shown in each ellipse area in FIG. 1), and the terminal device entering the area can communicate with the base station by using a wireless signal to receive the base station.
  • Wireless access service provided.
  • multiple base stations may use Coordinated Multipoint (CoMP) technology to provide services for terminal devices in the overlapping area.
  • CoMP Coordinated Multipoint
  • the base station 102 overlaps with the service coverage area of the base station 104, and the terminal device 112 is within the overlapping area, so the terminal device 112 can receive the wireless signals from the base station 102 and the base station 104.
  • the base station 102 and the base station 104 can cooperate with each other to provide services to the terminal device 112.
  • the service coverage areas of the base station 102, the base station 104, and the base station 106 have a common overlapping area, and the terminal device 120 is within the overlapping area, so the terminal device 120 can receive the base station.
  • the wireless signals 102, 104, and 106, the base stations 102, 104, and 106 can cooperate with each other to provide services to the terminal device 120.
  • the base station may be referred to as a Node B (NodeB), an evolved Node B (eNodeB), and an Access Point (AP), etc., depending on the wireless communication technology used.
  • NodeB Node B
  • eNodeB evolved Node B
  • AP Access Point
  • the base station can be further divided into a macro base station for providing a macro cell, a micro base station for providing a pico cell, and a femtocell for providing Femto cell) Femto base station, etc.
  • future base stations can use other names.
  • the terminal devices 108-122 may be various wireless communication devices having wireless communication functions, such as but not limited to mobile cellular phones, cordless phones, personal digital assistants (PDAs), smart phones, notebook computers, tablets, wireless devices.
  • a data card a modem (Modulator demodulator, Modem), or a wearable device such as a smart watch.
  • IOT Internet of Things
  • V2X vehicle-to-everything
  • Such devices have wireless communication functions because they are equipped with wireless communication units, and therefore belong to the category of wireless communication devices.
  • the terminal devices 108-122 may also be referred to as mobile stations, mobile devices, mobile terminals, wireless terminals, handheld devices, clients, and the like.
  • the base stations 102-106 and the terminal devices 108-122 can be configured with multiple antennas to support MIMO (Multiple Input Multiple Output) technology. Further, the base stations 102-106 and the terminal devices 108-122 can support single-user MIMO (SU-MIMO) technology or multi-user MIMO (Multi-User MIMO, MU-MIMO). MU-MIMO can be implemented based on Space Division Multiple Access (SDMA) technology. Due to the configuration of multiple antennas, the base stations 102-106 and the terminal devices 108-122 can also flexibly support Single Input Single Output (SISO) technology, Single Input Multiple Output (SIMO) and multiple input.
  • SISO Single Input Single Output
  • SIMO Single Input Multiple Output
  • MISO Multiple Input Single Output
  • multiplexing technology to implement various diversity (such as but not limited to transmit diversity and receive diversity) and multiplexing techniques, where diversity techniques may include, for example, but not limited to, Transmit Diversity (TD) Technology and Receive Diversity (RD) technology
  • the multiplexing technology can be a spatial multiplexing (Spatial Multiplexing) technology.
  • TD Transmit Diversity
  • RD Receive Diversity
  • the foregoing various technologies may also include multiple implementations.
  • the transmit diversity technology may include, for example, but not limited to, Space-Time Transmit Diversity (STTD), Space-Frequency Transmit Diversity (Space-Frequency Transmit Diversity, SFTD), Time Switched Transmit Diversity (TSTD), Frequency Switching Transmit Diversity (FSTD), Orthogonal Transmit Diversity (OTD), Cyclic Delay Diversity (CDD)
  • STTD Space-Time Transmit Diversity
  • SFTD Space-Frequency Transmit Diversity
  • TSTD Time Switched Transmit Diversity
  • FSTD Frequency Switching Transmit Diversity
  • OFTD Orthogonal Transmit Diversity
  • CDD Cyclic Delay Diversity
  • the equal-diversity mode and the diversity methods obtained after deriving, evolving, and combining the various diversity methods described above.
  • the current LTE (Long Term Evolution) standard adopts a transmit diversity method such as Space Time Block Coding (STBC), Space Frequency Block Coding (SFBC), and CDD.
  • STBC Space Time Block Coding
  • SFBC Space
  • transmit diversity also includes other various implementations. Therefore, the above description should not be construed as limiting the technical solution of the present invention, and the technical solution of the present invention should be understood to be applicable to various possible transmit diversity schemes.
  • the base stations 102-106 and the terminal devices 108-122 can communicate using various wireless communication technologies, such as, but not limited to, Time Division Multiple Access (TDMA) technology, Frequency Division Multiple Access (Frequency Division Multiple Access, FDMA) technology, Code Division Multiple Access (CDMA) technology, Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), Orthogonal Frequency Division Multiple Access (OFDMA) Technology, Single Carrier FDMA (SC-FDMA) technology, Space Division Multiple Access (SDMA) technology, and evolution and derivative technologies of these technologies.
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier FDMA
  • SDMA Space Division Multiple Access
  • the above wireless communication technology is adopted as a radio access technology (RAT) by many wireless communication standards, thereby constructing various wireless communication systems (or networks) well known today, including but not limited to Global System for Mobile Communications (GSM), CDMA2000, Wideband CDMA (WCDMA), WiFi defined by the 802.22 series of standards, Worldwide Interoperability for Microwave Access (WiMAX), long-term Evolution (Long Term Evolution, LTE), LTE-Advanced (LTE-A), and evolution systems of these wireless communication systems.
  • GSM Global System for Mobile Communications
  • WCDMA Wideband CDMA
  • WiFi defined by the 802.22 series of standards
  • WiMAX Worldwide Interoperability for Microwave Access
  • LTE long-term Evolution
  • LTE-A LTE-Advanced
  • evolution systems of these wireless communication systems evolution systems of these wireless communication systems.
  • the wireless communication network 100 shown in FIG. 1 is for example only and is not intended to limit the technical solution of the present invention. It should be understood by those skilled in the art that in a specific implementation process, the wireless communication network 100 may also include other devices, and the number of base stations and terminal devices may also be configured according to specific needs.
  • FIG. 2 is an exemplary flow diagram of a channel measurement method 200 in accordance with an embodiment of the present invention. As shown in FIG. 2, the method 200 is performed by the access device and the user equipment.
  • the access device may be the base stations 102-106 shown in FIG. 1, and the user equipment may be the terminal device 108 shown in FIG. ⁇ 122.
  • Step 202 The access device generates first transmission control information.
  • the first transmission control information may be, for example but not limited to, Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • Step 204 The access device sends the first transmission control information, where the first transmission control information meets a first preset condition, so as to be used for starting a semi-static channel measurement, where the first preset condition includes at least one of the following conditions: One:
  • the first transmission control information is associated with a first preset type of Radio Network Temporary Identifier (RNTI);
  • RNTI Radio Network Temporary Identifier
  • the value of the first group of information in the first transmission control information conforms to the first preset rule.
  • the first preset condition may be any one of the above conditions. Further, the above-described first preset condition may also be a combination of the above conditions, in other words, satisfying the first preset condition means that it is necessary to simultaneously satisfy the above respective conditions.
  • the first preset condition may also include other conditions.
  • the first transmission control information is DCI
  • the above other conditions may include, for example, the format of the DCI being a preset format.
  • the format is different, and the functions of the DCI are also different.
  • the DCI used for scheduling the PUSCH has a specific format.
  • the preset format may be an existing format, and may be a new format.
  • the first condition above is related to RNTI.
  • the transmission control information is associated with an RNTI, and the RNTI is used to indicate the user equipment to which the transmission control information is directed, that is, the transmission control information should be received by the user equipment.
  • the RNTI can be transmitted in a variety of ways.
  • the RNTI can be directly carried in the transmission control information as an information field.
  • the access device may use the RNTI to scramble the DCC's Cyclic Redundancy Check (CRC) field to transmit the RNTI through the CRC field.
  • CRC Cyclic Redundancy Check
  • the specific transmission mode of the RNTI is not limited in the embodiment of the present invention.
  • the RNTI includes, for example, but not limited to, paging RNTI (Paging RNTI, P-RNTI), System Information RNTI (SI-RNTI), and Random Access RNTI (Random Access RNTI). , RA-RNTI), Cell RNTI (Cell RNTI, C-RNTI), Semi-Persistent Scheduling C-RNTI (SPS-C-RNTI), and Uplink Semi Persistent Scheduling V2X RNTI, UL-SPS-V-RNTI), etc.
  • Paging RNTI Paging RNTI
  • SI-RNTI System Information RNTI
  • Random Access RNTI Random Access RNTI
  • RA-RNTI paging RNTI
  • Cell RNTI Cell RNTI
  • C-RNTI C-RNTI
  • SPS-C-RNTI Semi-Persistent Scheduling C-RNTI
  • V2X RNTI Uplink Semi Persistent Scheduling V2X RNTI
  • the RNTI of the first preset type may be one of the following types of RNTIs:
  • the semi-static channel measurement RNTI is a new type of RNTI introduced in the embodiment of the present invention.
  • Such an RNTI can be allocated by the access device for the user equipment, and the specific allocation process will be described in detail below.
  • such an RNTI may also be obtained by the user equipment according to other user identifiers that may be used to identify the user equipment, such as, but not limited to, other types of RNTIs. It is not difficult to understand that a correspondence table between the semi-static channel measurement RNTI and the other user identifiers described above may be constructed, so that the user equipment searches for the semi-static channel measurement RNTI according to other user identifiers.
  • the user equipment may also generate a semi-static channel measurement RNTI according to other user identifiers according to a preset generation rule.
  • different semi-static channel measurement RNTIs can be set for starting semi-static channel measurement and stopping semi-static channel measurement, for example, starting semi-static channel measurement RNTI, and stopping semi-static channel measurement RNTI.
  • the first preset type of RNTI used is the start semi-static channel measurement RNTI
  • the first preset type of RNTI used is the stop half. Static channel measurement RNTI.
  • the second condition is related to the value of the first group of information in the first transmission control information.
  • the value of the information needs to comply with the first preset rule.
  • the first group information may include the transmission power control. Transmit Power Control (TPC) information, Demodulation Reference Signal (DMRS) cyclic shift information, MCS information, and CSI request information.
  • TPC Transmit Power Control
  • DMRS Demodulation Reference Signal
  • MCS Mobility Control
  • CSI request information CSI request information.
  • the value of the information is consistent with the first preset rule
  • the value of the transmit power control information is a first preset value
  • the value of the cyclically shifted information of the demodulation reference signal is a second preset value
  • the MCS information of the modulation and coding mode is modulated.
  • the value is in the third preset interval
  • the value of the CSI request information is the fourth preset value.
  • the first group information may include at least one of the following information, New Data Indicator (NDI) information, TPC information, Redundancy Version information, and hybrid automatic weight.
  • NDI New Data Indicator
  • TPC Transmission Control Protocol
  • HARQ Hybrid Automatic Repeat reQuest
  • the value of the foregoing information is consistent with the first preset rule, and the value of the NDI information is a thirty-first preset value (for example, all bits of the information are set to 0), and the value of the TPC information is a thirty-second preset value.
  • the value of the redundancy version is the thirty-third preset value (for example, all bits of the information are set to 0)
  • the value of the HARQ information is the thirty-fourth preset value. (For example, all bits of this information are set to 0).
  • the TPC information may refer to TPC command for scheduled PUSCH information in the LTE standard
  • the DMRS cyclic shift information may refer to the LTE standard.
  • Cyclic shift DMRS information the MCS information can refer to the Modulation and Coding Scheme and Redundancy Version information in the LTE standard
  • the CSI request information can refer to the CSI request in the LTE standard ( CSI request) information.
  • the functions and meanings of the first group of information, the second group of information, and other related information mentioned herein may be referred to the LTE standard or the latest NR related standard or related definitions in the proposal, and will not be described one by one.
  • the first transmission control information may include other information in addition to the first group of information, and the information content included in the first transmission control information is not limited in the embodiment of the present invention.
  • the data carried by the transmission unit (for example, but not limited to, a subframe) in which the first transmission control information is located may only include the data transmitted for the first time, and does not include the data that is retransmitted. In other words, the transmission unit in which the first transmission control information is located is used only for the first transmission and is not used for retransmission.
  • the foregoing transmission unit only carries uplink scheduling information, and does not carry downlink scheduling information.
  • the foregoing transmission unit does not carry Hybrid Automatic Repeat reQuest (HARQ) information.
  • HARQ Hybrid Automatic Repeat reQuest
  • the first set of information described above may comprise at least one type of information. It is not difficult to understand that at least one new piece of information can be introduced to achieve the above purpose.
  • the first group of information may use the existing information, or the newly introduced information, or a combination of the two.
  • the first preset rule may be set to take the information to take a preset value. For example, if the information contains 2 bits, the first preset rule may be set such that when the 2 bits are 01, semi-static channel measurement is initiated.
  • a specific example of the first preset condition is as follows:
  • the first preset condition limits the values of the above four types of information, and limits the DCI format to format 0.
  • one or more semi-static channel measurements may be initiated during a particular implementation.
  • the semi-static channel measurement to be initiated may also be indicated, such as an indication indicating the semi-static channel measurement.
  • This identifier can be a newly designed identifier or other identifier associated with the semi-static channel measurement to be initiated. For example, channel measurements need to be made based on some basic measurement information, which can be used to indicate the semi-static channel measurements to be initiated by means of an indication of these basic measurement information.
  • channel measurement needs to be performed based on related channel measurement resources, and channel state related information that needs to be measured and reported may be defined by related measurement report settings, and the measurement object may be channel measurement or interference measurement, so Associate channel analysis resources, measurement report settings, measurement properties, and other related content to build related information groups.
  • the semi-static channel measurement to be initiated can be referred to by means of an indication of this packet.
  • an identification can be set for the above information group, in which case the semi-static channel measurement to be initiated can be referred to based on the identification.
  • the above-mentioned group of information can be set to a Trigger State, or can be set as a Measurement Link, so that the trigger state or measurement can be adopted.
  • the indication of the link indicates the semi-static channel measurement to be initiated, for example, during the indication process, the identity of the trigger status may be indicated, or the identity of the link may be measured.
  • the first transmission control information may also contain an indication of the semi-static channel measurement to be initiated.
  • the indication may be specifically an indication of information associated with the semi-static channel measurement to be initiated, such as, but not limited to, an indication of at least one basic measurement information, such as but not limited to the trigger status described above. Or measure links, etc. Further, the above indication may be included in the CSI request information.
  • Step 206 The user equipment receives the first transmission control information.
  • Step 208 The user equipment starts semi-static channel measurement when the transmission control information meets the first preset condition.
  • steps 202-208 are the starting procedures for semi-static channel measurement.
  • Step 210 The user equipment feeds back the CSI to the access device according to the preset period, and the access device receives the CSI of the user equipment based on the preset periodic feedback.
  • the user equipment measures the CSI according to a preset period and feeds it back to the access device.
  • the foregoing preset period may be specified in the communication protocol and written in advance before the user equipment and the access device are shipped from the factory, or may be in the interaction process between the access device and the user equipment.
  • the access device is configured to the user device.
  • the access device may also configure a plurality of preset periods for the user equipment in advance, and indicate to the user equipment a preset period that should be used during the interaction.
  • the specific setting method of the foregoing cycle is not limited in the embodiment of the present invention.
  • the user equipment may also perform dynamic channel measurement according to the indication of the access device.
  • the access device When the user equipment reports the CSI obtained based on the dynamic channel measurement together when reporting the CSI obtained based on the semi-static channel measurement, the access device will receive the two CSIs. In this case, the access device may select one of the two CSIs (for example, preferentially select CSI based on dynamic channel measurement), or may combine the two CSIs to determine the final used CSI, for example, calculate two CSIs.
  • the average value and the like, the embodiment of the present invention does not determine the specific manner of determining the CSI to be finally used in combination with the two CSIs.
  • the access device may stop the semi-static channel measurement.
  • the stop flow of the semi-static channel measurement to be described below may be adopted, or the CSI of the subsequent feedback of the user equipment may be ignored.
  • the specific operation of the access device to stop semi-static channel measurement in this case is not limited in this embodiment of the present invention.
  • the above number of times may be one or more times, and the specific number of times may be preset in the communication protocol.
  • the access device may also configure the value to the user equipment, such as but not limited to physical layer signaling, media access control layer signaling, or radio resource control signaling as will be described below.
  • Step 210 may be referred to as a measurement flow of semi-static channel measurement. In a specific implementation process, step 210 may be performed at least once.
  • Step 212 The access device generates second transmission control information.
  • the second transmission control information may also be, for example but not limited to, DCI.
  • Step 214 The access device sends second transmission control information, where the second transmission control information meets a second preset condition, so as to stop semi-static channel measurement, where the second preset condition includes the following conditions. At least one:
  • the second transmission control information is associated with a second preset type of wireless network temporary identifier RNTI;
  • the value of the second group of information in the second transmission control information conforms to a second preset rule.
  • the second preset condition may be any one of the above conditions. Further, the above second preset condition may also be a combination of the above conditions, in other words, satisfying the second preset condition means that it is necessary to simultaneously satisfy the above respective conditions. At the same time, the second preset condition may also include other conditions. For example, if the second transmission control information is DCI, the above other conditions may include, for example, the format of the DCI as a preset format. Further, the preset format may be an existing format, and may be a new format.
  • the RNTI of the second preset type may be one of the following types of RNTIs:
  • the RNTI in the first transmission control information and the RNTI in the second transmission control information may be the same RNTI or different RNTIs. Those skilled in the art should understand that multiple RNTIs can be allocated for the same user equipment, and the types of these RNTIs are different.
  • the second group information may include TPC information, DMRS cyclic shift information, MCS information, and resource allocation information.
  • the information is in accordance with the second preset rule, and the value of the TPC information is a fifth preset value, the value of the DMRS cyclic shift information is a sixth preset value, and the value of the MCS information is in a seventh preset interval, and the resource is The value of the allocation information is the eighth preset value.
  • the second group information may include at least one of the following information: NDI information, TPC information, redundancy version information, HARQ process number information, and frequency domain resource assignment information.
  • Time domain resource assignment information modulation and coding mode information, and antenna port information (Antenna ports), wherein the antenna port information is used to indicate a used DMRS antenna port.
  • the information meets the second preset rule, and the value of the NDI information is a thirty-fifth preset value (for example, all bits of the information are set to 0), and the value of the TPC information is a thirty-sixth preset value (for example, All bits of the information are set to 0), the value of the redundancy version information is the thirty-seventh preset value (for example, all bits of the information are set to 0), and the value of the HARQ process number information is the thirty-eighth preset value.
  • the value of the frequency domain resource allocation information is a thirty-ninth preset value (for example, all bits of the information are set to 1), and the value of the time domain resource allocation information is forty.
  • the preset value for example, all bits of the information is set to 1
  • the value of the modulation and coding mode information is a forty-first preset value (for example, all bits of the information are set to 1)
  • the value of the antenna port information is forty.
  • Two preset values for example, all bits of the information are set to 1).
  • the second group of information may further include additional information, such as but not limited to at least one of the following information, a virtual resource block (VRB) to a physical resource block (PRB) mapping.
  • additional information such as but not limited to at least one of the following information, a virtual resource block (VRB) to a physical resource block (PRB) mapping.
  • VRB-to-PRB mapping Information (VRB-to-PRB mapping), frequency hopping flag information, precoding information and number of layers information, Code Block Group (CBG) transmission information (CBG) Transmission information), DMRS sequence initialization information, code rate relationship information, and CSI request information.
  • the foregoing information conforms to the second preset rule, and may further include that the value of the virtual resource block to physical resource block mapping information is a forty-third preset value (for example, all bits of the information).
  • the value of the frequency hopping flag information is a forty-fourth preset value (for example, all bits of the information are set to 1)
  • the values of the precoding information and the layer number information are forty-fifth preset values (for example, All bits of the information are set to 1)
  • the value of the CBG transmission information is the forty-sixth preset value (for example, all bits of the information are set to 1)
  • the value of the DMRS sequence initialization information is the forty-seventh preset value ( For example, all bits of the information are set to 1)
  • the value of the rate-rate relationship information is a forty-eighth preset value (for example, all bits of the information are set to 1)
  • the value of the CSI request information is a forty-ninth preset value. (For example, all bits of this information are set to 0).
  • one or more semi-static channel measurements may be stopped during a particular implementation.
  • the indication of the semi-static channel measurement that needs to be stopped reference may be made to the above indication of the semi-static channel measurement that needs to be initiated, for example, the indication of the semi-static channel measurement that needs to be stopped, and may be adopted with the above-mentioned semi-static channel measurement that needs to be activated. Indicates the same indication. Therefore, the second transmission control information may also contain an indication of the semi-static channel measurement to be stopped.
  • the indication may be an indication of information associated with the semi-static channel measurement to be stopped, such as, but not limited to, an indication of at least one basic measurement information, such as but not limited to the trigger status described above or Measure links, etc. Further, the above indication may be included in the CSI request information.
  • the resource allocation information may be referred to the Resource Block Assignment and Hopping Resource Allocation information in the LTE standard, and the technical content of the information has been clearly described in the prior art. No longer.
  • the functions and meanings of the first group of information, the second group of information, and other related information mentioned herein may be referred to the LTE standard or the latest NR related standard or related definitions in the proposal, and will not be described one by one.
  • the code rate relationship information may refer to a beta offset indicator (beta_offset indicator) in the prior art, which is used to describe a code rate relationship between Uplink Control Information (UCI) and PUSCH.
  • beta_offset indicator used to describe a code rate relationship between Uplink Control Information (UCI) and PUSCH.
  • UCI Uplink Control Information
  • PUSCH Uplink Control Information
  • the TPC information, the DMRS cyclic shift information, the MCS information, the CSI request, and the resource allocation information mentioned above may refer to the existing LTE standard.
  • attributes such as a specific meaning, a name, and an information length of the foregoing information may be changed.
  • the technical solution provided by the embodiment of the present invention may also apply the changed information.
  • the second set of information described above may contain at least one type of information. It is not difficult to understand that at least one new piece of information can be introduced to achieve the above purpose.
  • the second group of information may use existing information, or newly introduced information, or a combination of the two.
  • the first preset rule may be set to take the information to take a preset value. For example, if the information contains 2 bits, the first preset rule may be set such that when the 2 bits are 01, semi-static channel measurement is initiated.
  • the second group of information may also include the information, and the second preset rule may be set such that the information takes another preset value. For example, when the 2 bits are 11, the semi-static channel measurement is stopped.
  • the first type information of the foregoing first transmission control information is the same type information as the second group information of the second transmission control information (eg, TPC information, DMRS cyclic shift information, and MCS).
  • the information may have the same value in the first transmission control information as the value in the second transmission control information, or may be different.
  • the first preset value is the same as or different from the fifth preset value
  • the second preset value is the same as or different from the sixth preset value
  • the third preset interval is the same as the seventh preset interval or different.
  • each of the plurality of preset values for example, a first preset value, a second preset value, a fourth preset value, a fifth preset value, and a sixth
  • the preset value or the eighth preset value may have more than one specific preset value.
  • there may be a plurality of first preset values in which case the value of the TPC information may be one of the plurality of first preset values.
  • each of the plurality of preset intervals for example, the third preset interval or the seventh preset interval, may have more than one specific preset interval.
  • there may be a plurality of third preset intervals in which case the value of the MCS information may be in one of the third preset intervals.
  • the second preset condition limits the values of the above four types of information, and limits the DCI format to format 0.
  • Step 216 The user equipment receives the second transmission control information.
  • Step 218 Stop the semi-static channel measurement when the second transmission control information satisfies the second preset condition.
  • steps 212-218 are the stopping flow of semi-static channel measurement.
  • the method shown in FIG. 2 specifies the startup flow and the stop flow of the semi-static channel measurement, respectively.
  • the stopping process may not be specified, and the starting process is regarded as stopping the current semi-static channel measurement while starting a new semi-static channel measurement, wherein the current semi-static channel measurement refers to The semi-static channel measurement being performed at the time of receiving the first transmission control information and before the time.
  • the semi-static channel measurement is started, which is specifically implemented to start a new one when the first transmission control information meets the first preset condition.
  • the semi-static channel measures and stops the current semi-static channel measurement.
  • the embodiment of the present invention provides a technical solution, which can notify the user equipment to start and/or stop semi-static channel measurement.
  • FIG. 3 is an exemplary flow diagram of a channel measurement method 300 in accordance with an embodiment of the present invention.
  • method 300 can be performed by a user equipment.
  • Step 302 Receive first transmission control information.
  • Step 304 Start semi-static channel measurement when the first transmission control information meets the first preset condition, where the first preset condition includes at least one of the following conditions:
  • the first transmission control information is associated with a first preset type of wireless network temporary identifier RNTI;
  • the value of the first group of information in the first transmission control information conforms to a first preset rule.
  • method 400 is an exemplary flow diagram of a channel measurement method 400 in accordance with an embodiment of the present invention.
  • method 400 can be performed by a user equipment.
  • Step 402 Receive second transmission control information.
  • Step 404 Stop semi-static channel measurement when the second transmission control information meets the second preset condition, where the second preset condition includes at least one of the following conditions:
  • the second transmission control information is associated with a second preset type of wireless network temporary identifier RNTI;
  • the value of the second group of information in the second transmission control information conforms to a second preset rule.
  • FIG. 5 is an exemplary flow diagram of a channel measurement method 500 in accordance with an embodiment of the present invention.
  • method 500 can be performed by an access device.
  • Step 502 Generate first transmission control information.
  • Step 504 Send first transmission control information, where the first transmission control information meets a first preset condition, so as to be used to initiate semi-static channel measurement, where the first preset condition includes at least one of the following conditions :
  • the first transmission control information is associated with a first preset type of wireless network temporary identifier RNTI;
  • the value of the first group of information in the first transmission control information conforms to a first preset rule.
  • FIG. 6 is an exemplary flow diagram of a channel measurement method 600 in accordance with an embodiment of the present invention.
  • method 600 can be performed by an access device.
  • Step 602 Generate second transmission control information.
  • Step 604 Send second transmission control information, where the second transmission control information meets a second preset condition for stopping semi-static channel measurement, wherein the second preset condition includes at least one of the following conditions :
  • the second transmission control information is associated with a second preset type of wireless network temporary identifier RNTI;
  • the value of the second group of information in the second transmission control information conforms to a second preset rule.
  • the embodiment of the present invention further provides a method for configuring a semi-static channel measurement RNTI, which is described below in conjunction with FIG. 7 and FIG. 8.
  • FIG. 7 is an exemplary flow diagram of a configuration method 700 in accordance with an embodiment of the present invention.
  • method 700 can be performed by a user equipment.
  • Step 702 receiving configuration information, where the configuration information is used to configure a semi-static channel measurement RNTI;
  • Step 704 Configure a semi-static channel measurement RNTI according to the configuration information.
  • the configuration information may be sent by, for example, but not limited to, one of the following signaling:
  • L1 signaling is also referred to as Layer 1 (L1) signaling, which can typically be carried by a control portion in a physical layer frame.
  • L1 signaling is the Downlink Control Information (DCI) and the Physical Uplink Control Channel (PUCCH) carried in the physical downlink control channel (PDCCH) defined in the LTE standard.
  • Uplink Control Information (UCI) carried in the middle.
  • the L1 signaling may also be carried by a data part in a physical layer frame.
  • the UCI may also be carried by a Physical Uplink Shared Channel (PUSCH). It is not difficult to see that the transmission period or signaling period of L1 signaling is usually the period of the physical layer frame. Therefore, such signaling is usually used to implement some dynamic control to transmit some frequently changing information, for example, through the physical layer. Signaling resource allocation information.
  • Media Access Control (MAC) layer signaling belongs to Layer 2 signaling, which can typically be carried by, for example, but not limited to, a frame header of a Layer 2 frame.
  • the foregoing frame header may also carry information such as, but not limited to, a source address and a destination address.
  • the second layer of frames usually also contains the frame body.
  • L2 signaling may also be carried by the frame body of the second layer frame.
  • a typical example of Layer 2 signaling is the signaling carried in the Frame Control field in the frame header of the MAC frame in the 802.11 series of standards, or the Control Entity (MAC-CE) defined in some protocols.
  • the second layer frame can usually be carried in the data portion of the physical layer frame.
  • the above configuration information may also be sent through other Layer 2 signaling other than media access control layer signaling.
  • Radio Resource Control (RRC) signaling belongs to Layer 3 signaling, which is usually some control message, and L3 signaling can usually be carried in the frame body of the second layer frame.
  • the transmission period or control period of the L3 signaling is usually long, and is suitable for transmitting information that does not change frequently.
  • L3 signaling is usually used to carry some configuration information.
  • the above configuration information may also be sent through other layer 3 signaling other than RRC signaling.
  • FIG. 8 is an exemplary flow diagram of a configuration method 800 in accordance with an embodiment of the present invention.
  • method 800 can be performed by an access device.
  • Step 802 generating configuration information, where the configuration information is used to configure a semi-static channel measurement RNTI;
  • Step 804 sending the configuration information.
  • the embodiment of the present invention further provides a communication device, which may be the user equipment mentioned above, or the access device mentioned above, and the communication device is as follows with reference to FIG. 9 and FIG. The structure is described.
  • FIG. 9 is a schematic diagram showing an exemplary logical structure of a communication device 900 in accordance with an embodiment of the present invention.
  • the communication device 900 may be the access device described above, or the user device described above.
  • the communication device 900 includes a transceiver module 902 and a processing module 904.
  • the transceiver module 902 can be used to perform the above steps 302, 402 and 702, and the processing module 904 is configured to perform the above steps 304, 404 and 704.
  • the transceiver module 902 can be used to perform the above steps 504, 604 and 804, and the processing module 904 is configured to perform the above steps 502, 602 and 802.
  • FIG. 10 is a block diagram showing an exemplary hardware structure of a communication device 1000 in accordance with an embodiment of the present invention.
  • the communication device 1000 may be the access device described above, or the user device described above.
  • the communication device 1000 includes a processor 1002, a transceiver 1004, a plurality of antennas 1006, a memory 1008, an I/O (Input/Output) interface 1010, and a bus 1012.
  • Memory 1008 is further used to store instructions 10082 and data 10084.
  • the processor 1002, the transceiver 1004, the memory 1008, and the I/O interface 1010 are communicably connected to each other through a bus 1012, and the plurality of antennas 1006 are connected to the transceiver 1004.
  • the processor 1002, the transceiver 1004, the memory 1008, and the I/O interface 1010 may also be communicatively coupled to each other by using other connections than the bus 1012.
  • the processor 1002 may be a general-purpose processor, such as, but not limited to, a central processing unit (CPU), or may be a dedicated processor such as, but not limited to, a digital signal processor (DSP), an application. Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA). Moreover, processor 1002 can also be a combination of multiple processors.
  • the processor 1002 may be a processor specifically designed to perform particular steps and/or operations, or may be a processor that performs the steps and/or operations described above by reading and executing the instructions 10082 stored in the memory 1008, the processor 1002 may require the use of data 10084 in performing the specific steps and/or operations described above.
  • the processor 1002 is configured to perform the operations performed by the processing module 904.
  • the transceiver 1004 transmits signals through at least one of the plurality of antennas 1006 and receives signals through at least one of the plurality of antennas 1006. In particular, transceiver 1004 is operative to perform the operations performed by transceiver module 902.
  • the memory 1008 may be various types of storage media, such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • RAM random access memory
  • ROM read only memory
  • NVRAM non-volatile RAM
  • PROM Programmable ROM
  • EPROM Erasable PROM
  • EEPROM Electrically Erasable PROM
  • flash memory optical memory, and registers.
  • the memory 1008 is specifically configured to store instructions 10082 and data 10084, and the processor 1002 can perform specific steps and/or operations by reading and executing the instructions 10082 stored in the memory 1008, in performing the specific operations and/or steps described above.
  • Data 10084 may be required.
  • the I/O interface 1010 is for receiving instructions and/or data from a peripheral device and outputting instructions and/or data to the peripheral device.
  • the communication device 1000 may also include other hardware devices, which are not enumerated herein.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种信道测量方法,包括接收第一传输控制信息;在该第一传输控制信息满足第一预设条件时,启动半静态信道测量,其中所述第一预设条件包含下列条件之中的至少一种:所述第一传输控制信息关联第一预设类型的无线网络临时标识RNTI;所述第一传输控制信息中的第一组信息的值符合第一预设规则。本发明实施例还提供了一种用户设备。本发明实施例提供的技术方案可以实现对启动半静态信道测量的通知。

Description

信道测量方法和用户设备
本申请要求于2017年10月20日提交中国专利局、申请号为201710987133.6、发明名称为“信道测量方法和用户设备”的中国专利申请的优先权,以及2018年01月22日提交中国专利局、申请号为201810061105.6、发明名称为“信道测量方法和用户设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及信道测量技术,尤其涉及一种信道测量方法和用户设备。
背景技术
无线通信的传输效果与信道环境密切相关,因此,选择与信道环境相适配的传输参数对于无线通信而言至观重要。举例来说,在信道环境较好时,可以选用较为激进的调制编码方式(Modulation and Coding Scheme,MCS),以提高传输吞吐量;在信道环境较差时,可以选用较为保守的MCS,以提高传输鲁棒性。
现有无线通信系统通常使用,例如但不限于,信道状态信息(Channel State Information,CSI)来表征信道环境。举例来说,信道状态信息(Channel State Information,CSI)可以包括,例如但不限于,以下信息之中的一种或者几种:信道质量指示(Channel Quality Indicator,CQI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)、预编码类型指示(Precoding Type Indicator,PTI)、CSI参考信号资源指示(CSI-RS Resource Indicator,CRI)和秩指示(Rank Indication,RI)。
现有的频分双工(Frequency-Division Duplexing,FDD)无线通信系统通常采用动态信道测量方式确定CSI。依照动态信道测量,接入设备向用户设备发送CSI测量指示,在收到该测量指示后,用户设备根据接入设备发射的参考信号(Reference Signal,RS)进行信道测量,获得CSI,并将该CSI反馈给接入设备。每一次动态信道测量都需要接入设备触发,因此动态信道测量也可以称为非周期测量。
为适应未来的通信需求,下一代无线通信标准正在探索半静态(Semi Persistent)信道测量的可能性。区别于动态信道测量,在半静态信道测量中,用户设备根据预设的周期测量并反馈CSI,因此半静态信道测量也可以称为周期测量。不难想象,相比动态信道测量,半静态信道测量有助于降低信道测量所带来的信令开销。
然而,半静态信道测量尚处于研发阶段,诸多细节有待明确。举例来说,通过何种方式告知用户设备采用半静态信道测量,就是当前急需解决的问题。
发明内容
有鉴于此,实有必要提供一种信道测量方法,可以实现对启动半静态信道测量的通知。
同时,提供一种信道测量方法,可以实现对停止半静态信道测量的通知。
同时,提供一种用户设备,可以实现对启动半静态信道测量的通知。
同时,提供一种用户设备,可以实现对停止半静态信道测量的通知。
根据本发明实施例的第一方面,提供一种信道测量方法,包括:
接收第一传输控制信息;
在该第一传输控制信息满足第一预设条件时,启动半静态信道测量,其中所述第一预设条件包含下列条件之中的至少一种:
所述第一传输控制信息关联第一预设类型的无线网络临时标识RNTI;
所述第一传输控制信息中的第一组信息的值符合第一预设规则。
在一种可能的设计中,所述第一预设类型的RNTI为下列类型的RNTI之中之一:
小区RNTI;
半静态调度小区RNTI;
上行半静态调度车联网RNTI;
半静态信道测量RNTI。
在一种可能的设计中,所述第一组信息包括发射功率控制TPC信息、解调参考信号DMRS循环移位信息、调制编码方式MCS信息和CSI请求信息。在一种可能的设计中,所述第一传输控制信息中的第一组信息的值符合第一预设规则包括:
TPC信息的值为第一预设值;
DMRS循环移位信息的值为第二预设值;
MCS信息的值处于第三预设区间;
CSI请求信息的值为第四预设值。
根据本发明实施例的第二方面,提供一种信道测量方法,包括:
接收第二传输控制信息;
在该第二传输控制信息满足第二预设条件时,停止第二半静态信道测量,其中所述第二预设条件包含下列条件之中的至少一种:
所述第二传输控制信息关联第二预设类型的无线网络临时标识RNTI;
所述第二传输控制信息中的第二组信息的值符合第二预设规则。
在一种可能的设计中,所述第二预设类型的RNTI为下列类型的RNTI之中之一:
小区RNTI;
半静态调度小区RNTI;
上行半静态调度车联网RNTI;
半静态信道测量RNTI。
在一种可能的设计中,所述第二传输控制信息包括发射功率控制TPC信息、解调参考信号DMRS循环移位信息、调制编码方式MCS信息和资源分配信息。
在一种可能的设计中,所述第二传输控制信息中的第二组信息的值符合第二预设规则包括:
TPC信息的值为第五预设值;
DMRS循环移位信息的值为第六预设值;
MCS信息的值处于第七预设区间;
资源分配信息的值为第八预设值。
根据本发明实施例的第三方面,提供一种信道测量方法,包括:
生成第一传输控制信息;
发送第一传输控制信息,其中,第一传输控制信息满足第一预设条件,以便用于启动半静态信道测量,其中所述第一预设条件包含下列条件之中的至少一种:所述第一传输控制信息关联第一预设类型的无线网络临时标识RNTI;所述第一传输控制信息中的第一组信息的值符合第一预设规则。
相关技术特征可参考上文描述。
根据本发明实施例的第四方面,提供一种信道测量方法,包括:
生成第二传输控制信息;
发送第二传输控制信息,其中,第二传输控制信息满足第二预设条件,以便用于停止半静态信道测量,其中所述第二预设条件包含下列条件之中的至少一种:所述第二传输控制信息关联第二预设类型的无线网络临时标识RNTI;所述第二传输控制信息中的第二组信息的值符合第二预设规则。
相关技术特征可参考上文描述。
根据本发明实施例的第五方面,提供一种配置方法,包括:
接收配置信息,其中所述配置信息用于配置半静态信道测量RNTI;
根据所述配置信息配置半静态信道测量RNTI。
根据本发明实施例的第六方面,提供一种配置方法,包括:
生成配置信息,其中所述配置信息用于配置半静态信道测量RNTI;
发送所述配置信息。
根据本发明实施例的第七方面,提供一种用户设备,包括:
收发模块,用于接收第一传输控制信息;
处理模块,用于在该第一传输控制信息满足第一预设条件时,启动半静态信道测量,其中所述第一预设条件包含下列条件之中的至少一种:
所述第一传输控制信息关联第一预设类型的无线网络临时标识RNTI;
所述第一传输控制信息中的第一组信息的值符合第一预设规则。
根据本发明实施例的第八方面,提供一种用户设备,包括:
收发模块,用于接收第二传输控制信息;
处理模块,用于在该第二传输控制信息满足第二预设条件时,停止第二半静态信道测量,其中所述第二预设条件包含下列条件之中的至少一种:
所述第二传输控制信息关联第二预设类型的无线网络临时标识RNTI;
所述第二传输控制信息中的第二组信息的值符合第二预设规则。
根据本发明实施例的第九方面,提供一种接入设备,包括:
处理模块,用于生成第一传输控制信息;
收发模块,用于发送第一传输控制信息,其中,第一传输控制信息满足第一预设条件,以便用于启动半静态信道测量,其中所述第一预设条件包含下列条件之中的至少一种:所述第一传输控制信息关联第一预设类型的无线网络临时标识RNTI;所述第一传输控制信息中的第一组信息的值符合第一预设规则。
根据本发明实施例的第十方面,提供一种接入设备,包括:
处理模块,用于生成第二传输控制信息;
收发模块,用于发送第二传输控制信息,其中,第二传输控制信息满足第二预设条件, 以便用于停止半静态信道测量,其中所述第二预设条件包含下列条件之中的至少一种:所述第二传输控制信息关联第二预设类型的无线网络临时标识RNTI;所述第二传输控制信息中的第二组信息的值符合第二预设规则。
根据本发明实施例的第十一方面,提供一种用户设备,包括:
收发模块,用于接收配置信息,其中所述配置信息用于配置半静态信道测量RNTI;
处理模块,用于根据所述配置信息配置半静态信道测量RNTI。
根据本发明实施例的第十二方面,提供一种接入设备,包括:
处理模块,用于生成配置信息,其中所述配置信息用于配置半静态信道测量RNTI;
收发模块,用于发送所述配置信息。
根据本发明实施例的第十三方面,提供一种用户设备,包括:
收发器,用于接收第一传输控制信息;
处理器,用于在该第一传输控制信息满足第一预设条件时,启动半静态信道测量,其中所述第一预设条件包含下列条件之中的至少一种:
所述第一传输控制信息关联第一预设类型的无线网络临时标识RNTI;
所述第一传输控制信息中的第一组信息的值符合第一预设规则。
根据本发明实施例的第十四方面,提供一种用户设备,包括:
收发器,用于接收第二传输控制信息;
处理器,用于在该第二传输控制信息满足第二预设条件时,停止第二半静态信道测量,其中所述第二预设条件包含下列条件之中的至少一种:
所述第二传输控制信息关联第二预设类型的无线网络临时标识RNTI;
所述第二传输控制信息中的第二组信息的值符合第二预设规则。
根据本发明实施例的第十五方面,提供一种接入设备,包括:
处理器,用于生成第一传输控制信息;
收发器,用于发送第一传输控制信息,其中,第一传输控制信息满足第一预设条件,以便用于启动半静态信道测量,其中所述第一预设条件包含下列条件之中的至少一种:所述第一传输控制信息关联第一预设类型的无线网络临时标识RNTI;所述第一传输控制信息中的第一组信息的值符合第一预设规则。
根据本发明实施例的第十六方面,提供一种接入设备,包括:
处理器,用于生成第二传输控制信息;
收发器,用于发送第二传输控制信息,其中,第二传输控制信息满足第二预设条件,以便用于停止半静态信道测量,其中所述第二预设条件包含下列条件之中的至少一种:所述第二传输控制信息关联第二预设类型的无线网络临时标识RNTI;所述第二传输控制信息中的第二组信息的值符合第二预设规则。
根据本发明实施例的第十七方面,提供一种用户设备,包括:
收发器,用于接收配置信息,其中所述配置信息用于配置半静态信道测量RNTI;
处理器,用于根据所述配置信息配置半静态信道测量RNTI。
根据本发明实施例的第十八方面,提供一种接入设备,包括:
处理器,用于生成配置信息,其中所述配置信息用于配置半静态信道测量RNTI;
收发器,用于发送所述配置信息。
在具体实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器,其中模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(System on Chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本发明实施例对上述器件的具体实现形式不做限定。
根据本发明实施例的第十九方面,提供一种处理器,用于执行上述各种方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息过程。具体来说,在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。更进一步的,该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
基于上述原理,举例来说,前述方法中提及的接收第一传输控制信息可以理解为处理器接收输入的第一传输控制信息。又例如,发送第一传输控制信息可以理解为处理器输出第一传输控制信息。
如此一来,对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在具体实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本发明实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
根据本发明实施例的第二十方面,提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述各种方法。更进一步的,计算机可读存储介质为非瞬时性的计算机可读存储介质。
根据本发明实施例的第二十一方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各种方法。
由此可见,针对半静态信道测量,本发明实施例提供了一种技术方案,可以通知用户设备启动和/或停止半静态信道测量。
附图说明
图1是依照本发明一实施例的无线通信网络的示范性示意图;
图2是依照本发明一实施例的信道测量方法的示范性流程图;
图3是依照本发明一实施例的信道测量方法的示范性流程图;
图4是依照本发明一实施例的信道测量方法的示范性流程图;
图5是依照本发明一实施例的信道测量方法的示范性流程图;
图6是依照本发明一实施例的信道测量方法的示范性流程图;
图7是依照本发明一实施例的配置方法的示范性流程图;
图8是依照本发明一实施例的配置方法的示范性流程图;
图9是依照本发明一实施例的通信设备的示范性逻辑结构示意图;
图10是依照本发明一实施例的通信设备的示范性硬件结构示意图。
具体实施方式
目前正处于研发阶段的下一代无线通信系统又可称为新无线(New Radio,NR)系统或者5G系统。最新研究进展显示,下一代无线通信标准支持半静态信道测量,并且半静态信道测量得到的CSI可以通过物理上行共享信道(Physical Uplink Shared Channel,PUSCH)进行传送。在支持半静态信道测量时,首先需要解决的一个问题便是如何通知用户设备启动和停止半静态信道测量。本发明实施例提供了一种技术方案,有助于解决上述问题。下文就结合附图和具体实施例来对本发明实施例提供的技术方案进行描述。
图1是依照本发明一实施例的无线通信网络100的示范性示意图。如图1所示,无线通信网络100包括基站102~106和终端设备108~122,其中,基站102~106彼此之间可通过回程(backhaul)链路(如基站102~106彼此之间的直线所示)进行通信,该回程链路可以是有线回程链路(例如光纤、铜缆),也可以是无线回程链路(例如微波)。终端设备108~122可通过无线链路(如基站102~106与终端设备108~122之间的折线所示)与对应的基站102~106通信。
基站102~106通常作为接入设备来为通常作为用户设备的终端设备108~122提供无线接入服务。具体来说,每个基站都对应一个服务覆盖区域(又可称为蜂窝,如图1中各椭圆区域所示),进入该区域的终端设备可通过无线信号与基站通信,以此来接受基站提供的无线接入服务。基站的服务覆盖区域之间可能存在交叠,处于交叠区域内的终端设备可收到来自多个基站的无线信号,因此这些基站可以进行相互协同,以此来为该终端设备提供服务。例如,多个基站可以采用多点协作(Coordinated multipoint,CoMP)技术为处于上述交叠区域的终端设备提供服务。例如,如图1所示,基站102与基站104的服务覆盖区域存在交叠,终端设备112便处于该交叠区域之内,因此终端设备112可以收到来自基站102和基站104的无线信号,基站102和基站104可以进行相互协同,来为终端设备112提供服务。又例如,如图1所示,基站102、基站104和基站106的服务覆盖区域存在一个共同的交叠区域,终端设备120便处于该交叠区域之内,因此终端设备120可以收到来自基站102、104和106的无线信号,基站102、104和106可以进行相互协同,来为终端设备120提供服务。
依赖于所使用的无线通信技术,基站又可称为节点B(NodeB),演进节点B(evolved NodeB,eNodeB)以及接入点(Access Point,AP)等。此外,根据所提供的服务覆盖区域的大小,基站又可分为用于提供宏蜂窝(Macro cell)的宏基站、用于提供微蜂窝(Pico cell)的微基站和用于提供毫微微蜂窝(Femto cell)的毫微微基站等。随着无线通信技术 的不断演进,未来的基站也可以采用其他的名称。
终端设备108~122可以是具备无线通信功能的各种无线通信设备,例如但不限于移动蜂窝电话、无绳电话、个人数字助理(Personal Digital Assistant,PDA)、智能电话、笔记本电脑、平板电脑、无线数据卡、无线调制解调器(Modulator demodulator,Modem)或者可穿戴设备如智能手表等。随着物联网(Internet of Things,IOT)技术和车联网(Vehicle-to-everything,V2X)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。此外,终端设备108~122还可以称为移动台、移动设备、移动终端、无线终端、手持设备、客户端等。
基站102~106,和终端设备108~122均可配置有多根天线,以支持MIMO(多入多出,Multiple Input Multiple Output)技术。进一步的说,基站102~106和终端设备108~122既可以支持单用户MIMO(Single-User MIMO,SU-MIMO)技术,也可以支持多用户MIMO(Multi-User MIMO,MU-MIMO),其中MU-MIMO可以基于空分多址(Space Division Multiple Access,SDMA)技术来实现。由于配置有多根天线,基站102~106和终端设备108~122还可灵活支持单入单出(Single Input Single Output,SISO)技术、单入多出(Single Input Multiple Output,SIMO)和多入单出(Multiple Input Single Output,MISO)技术,以实现各种分集(例如但不限于发射分集和接收分集)和复用技术,其中分集技术可以包括例如但不限于发射分集(Transmit Diversity,TD)技术和接收分集(Receive Diversity,RD)技术,复用技术可以是空间复用(Spatial Multiplexing)技术。而且上述各种技术还可以包括多种实现方案,例如发射分集技术可以包括,例如但不限于,空时发射分集(Space-Time Transmit Diversity,STTD)、空频发射分集(Space-Frequency Transmit Diversity,SFTD)、时间切换发射分集(Time Switched Transmit Diversity,TSTD)、频率切换发射分集(Frequency Switch Transmit Diversity,FSTD)、正交发射分集(Orthogonal Transmit Diversity,OTD)、循环延迟分集(Cyclic Delay Diversity,CDD)等分集方式,以及上述各种分集方式经过衍生、演进以及组合后获得的分集方式。例如,目前LTE(长期演进,Long Term Evolution)标准便采用了空时块编码(Space Time Block Coding,STBC)、空频块编码(Space Frequency Block Coding,SFBC)和CDD等发射分集方式。上文以举例的方式对发射分集进行了的概括性的描述。本领域技术人员应当明白,除上述实例外,发射分集还包括其他多种实现方式。因此,上述介绍不应理解为对本发明技术方案的限制,本发明技术方案应理解为适用于各种可能的发射分集方案。
此外,基站102~106和终端设备108~122可采用各种无线通信技术进行通信,例如但不限于,时分多址(Time Division Multiple Access,TDMA)技术、频分多址(Frequency Division Multiple Access,FDMA)技术、码分多址(Code Division Multiple Access,CDMA)技术、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、正交频分多址(Orthogonal FDMA,OFDMA)技术、单载波频分多址(Single Carrier FDMA,SC-FDMA)技术、空分多址(Space Division Multiple Access,SDMA)技术以及这些技术的演进及衍生技术等。上述无线通信技术作为无线接入技术(Radio Access Technology,RAT)被众多无线通信标准所采纳,从而构建出了在今天广为人们所 熟知的各种无线通信系统(或者网络),包括但不限于全球移动通信系统(Global System for Mobile Communications,GSM)、CDMA2000、宽带CDMA(Wideband CDMA,WCDMA)、由802.22系列标准中定义的WiFi、全球互通微波存取(Worldwide Interoperability for Microwave Access,WiMAX)、长期演进(Long Term Evolution,LTE)、LTE升级版(LTE-Advanced,LTE-A)以及这些无线通信系统的演进系统等。如无特别说明,本发明实施例提供的技术方案可应用于上述各种无线通信技术和无线通信系统。此外,术语“系统”和“网络”可以相互替换。
应注意,图1所示的无线通信网络100仅用于举例,并非用于限制本发明的技术方案。本领域的技术人员应当明白,在具体实现过程中,无线通信网络100还可能包括其他设备,同时也可根据具体需要来配置基站和终端设备的数量。
图2是依照本发明一实施例的信道测量方法200的示范性流程图。如图2所示,方法200由接入设备和用户设备配合执行,在具体实现过程中,接入设备可以是图1所示的基站102~106,用户设备可以图1所示的终端设备108~122。
步骤202,接入设备生成第一传输控制信息。
具体来说,该第一传输控制信息可以是,例如但不限于,下行控制信息(Downlink Control Information,DCI)。
步骤204,接入设备发送第一传输控制信息,其中,该第一传输控制信息满足第一预设条件,以便用于启动半静态信道测量,上述第一预设条件包含下列条件之中的至少一种:
第一传输控制信息关联第一预设类型的无线网络临时标识(Radio Network Temporary Identifier,RNTI);
第一传输控制信息中的第一组信息的值符合第一预设规则。
在具体实现过程中,第一预设条件可以是上述条件之中的任一条件。此外,上述第一预设条件也可以是上述条件的组合,换句话说,满足第一预设条件意味着需要同时满足上述各个条件。同时,第一预设条件还可以包含其他条件。举例来说,如果第一传输控制信息为DCI,则上述其他条件可以包含例如DCI的格式为预设格式。通常来说,存在多种格式的DCI,格式不同,DCI的功能也不同,例如,用于对PUSCH进行调度的DCI具有特定的格式。更进一步的,上述预设格式可以是已有格式,有可以是一种新格式。
上述第一个条件与RNTI有关。通常来说,传输控制信息与一个RNTI相关联,该RNTI用于指示该传输控制信息所指向的用户设备,即该传输控制信息应由该用户设备接收。RNTI可以采用各种方式进行传送。例如,该RNTI可以作为一个信息字段直接携带在传输控制信息之中。又例如,在长期演进(Long Term Evolution,LTE)标准中,接入设备可以使用RNTI对DCI的循环冗余校验(Cyclic Redundancy Check,CRC)字段进行加扰,从而通过CRC字段来传送RNTI。相关技术内容可以参考现有技术,在此不再赘述。本发明实施例对RNTI的具体传送方式不做限定。
一般来说,存在多种类型的RNTI,不同类型的RNTI具有不同的功能。举例来说,在LTE标准中,RNTI包括,例如但不限于,寻呼RNTI(Paging RNTI,P-RNTI)、系统信息RNTI(System Information RNTI,SI-RNTI)、随机接入RNTI(Random Access RNTI,RA-RNTI)、小区RNTI(Cell RNTI,C-RNTI)、半静态调度小区RNTI(Semi Persistent Scheduling C-RNTI,SPS-C-RNTI)和上行半静态调度车联网RNTI(UpLink Semi Persistent  Scheduling V2X RNTI,UL-SPS-V-RNTI)等。同时,可以为同一用户设备分配多个RNTI,这些RNTI的类型彼此不同。
在本发明实施例提供的技术方案中,上述第一预设类型的RNTI可以是以下类型的RNTI其中之一:
C-RNTI;
SPS-C-RNTI;
UL-SPS-V-RNTI;
半静态信道测量RNTI。
其中,半静态信道测量RNTI是本发明实施例引入的一种新型RNTI。这种RNTI可以由接入设备为用户设备分配,具体的分配流程会在下文进行详细描述。此外,这种RNTI也可以由用户设备根据可用于标识该用户设备的其他用户标识来获得,其中上述其他用户标识可以是,例如但不限于,其他类型的RNTI。不难理解,可以构建半静态信道测量RNTI与上述其他用户标识的对应表,以便用户设备根据其他用户标识查找半静态信道测量RNTI。此外,用户设备也可以基于预设的生成规则,根据其他用户标识生成半静态信道测量RNTI。同时,还可以为启动半静态信道测量和停止半静态信道测量设置不同的半静态信道测量RNTI,例如启动半静态信道测量RNTI,和停止半静态信道测量RNTI。在这种情况下,在启动半静态信道测量时,使用的第一预设类型的RNTI为启动半静态信道测量RNTI,在停止半静态测量时,使用的第一预设类型的RNTI为停止半静态信道测量RNTI。
上述第二个条件与第一传输控制信息中的第一组信息的值有关,具体来说,这些信息的值需要符合第一预设规则,例如,上述第一组信息可以包括发射功率控制(Transmit Power Control,TPC)信息、解调参考信号(Demodulation Reference Signal,DMRS)循环移位信息、MCS信息和CSI请求信息。上述信息的值符合第一预设规则,可以是,发射功率控制信息的值为第一预设值,解调参考信号循环移位信息的值为第二预设值,调制编码方式MCS信息的值处于第三预设区间,且CSI请求信息的值为第四预设值。
作为替代的,又例如,上述第一组信息可以包括下列信息之中的至少一种,新数据指示(New Data Indicator,NDI)信息、TPC信息、冗余版本(Redundancy Version)信息和混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)进程号信息。上述信息的值符合第一预设规则,可以是,NDI信息的值为第三十一预设值(例如该信息的所有比特设置为0),TPC信息的值为第三十二预设值(例如该信息的所有比特设置为0),冗余版本的值为第三十三预设值(例如该信息的所有比特设置为0),且HARQ信息的值为第三十四预设值(例如该信息的所有比特设置为0)。
有关上述信息的技术内容可以参考现有技术,具体来说,TPC信息可以参考LTE标准中的用于被调度PUSCH的TPC命令(TPC command for scheduled PUSCH)信息,DMRS循环移位信息可以参考LTE标准中的循环移位(Cyclic shift DMRS)信息,MCS信息可以参考LTE标准中的调制编码方式和冗余版本(Modulation and Coding Scheme and Redundancy Version)信息,CSI请求信息可以参考LTE标准中的CSI请求(CSI request)信息。本文提到的第一组信息、第二组信息以及其他相关信息的功能和含义可以参考LTE标准或者最新的NR相关标准或者提案中的有关定义,在此不再一一描述。上述信息的技术内容已经在现有技术中进行了清楚的描述,本发明实施例对此不再赘述。应注意,本领 域的技术人员应当明白,除上述第一组信息之外,第一传输控制信息还可以包含其他信息,本发明实施例对第一传输控制信息所包含的信息内容不做限定。此外,第一传输控制信息所在的传输单元(例如但不限于子帧)所承载的数据可以只包含首次发送的数据,而不包含重传的数据。换句话说,第一传输控制信息所在的传输单元仅用于进行首次传输,而不用于进行重传。此外,上述传输单元只承载上行调度信息,不承载下行调度信息。再例如,上述传输单元不承载混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)信息。第一传输控制信息的上述特性与现有的DCI format 0相似,因此可以参考现有的DCI format 0来了解第一传输控制信息所包含的信息内容。
此外,上述第一组信息可以包含至少一种信息。不难理解,还可以引入至少一种新的信息来实现上述目的。在这种情况下,上述第一组信息可以沿用已有的信息,也可以使用新引入的信息,或者上述二者的组合。例如,当上述第一组信息包含一个信息,该信息为新引入的信息,则上述第一预设规则可以设置成该信息取预设值。例如,如果该信息包含2比特,则上述第一预设规则可以设置成,当该2比特为01时,启动半静态信道测量。
第一预设条件的一个具体实例如下:
Figure PCTCN2018092312-appb-000001
Figure PCTCN2018092312-appb-000002
表1
由上例可知,第一预设条件对上述四种信息的取值进行了限定,同时将DCI格式限定为格式0。
应注意,在具体实现过程中,可以启动一个或多个半静态信道测量。在这种情况下,在启动半静态信道测量时,还可以对所要启动的半静态信道测量进行指示,例如指示该半静态信道测量的标识。这个标识可以是全新设计的标识,也可以是与所要启动的半静态信道测量相关联的其他标识。例如,信道测量需要基于一些基础测量信息来进行,可以借助对这些基础测量信息的指示,来指示所要启动的半静态信道测量。举例来说,信道测量需要基于相关的信道测量资源来进行,需要测量和报告的信道状态相关信息可以由相关测量报告设置来定义,测量对象可以是信道测量,也可以是干扰测量,因此可以预先将信道测量资源、测量报告设置、测量属性以及可能相关的其他内容关联起来,构建相关的信息组。在这种情况下,可以借助对这个信息组的指示来指代所要启动的半静态信道测量。举例来说,可以对上述信息组设置一个标识,在这种情况下,便可以根据该标识来指代所要启动的半静态信道测量。例如,根据NR标准的最新研究进展,上述关联在一起的一组信息可以设置成一个触发状态(Trigger State),也可以设置成一个测量链接(Measurement Link),因此可以通过对该触发状态或者测量链接的指示来指示所要启动的半静态信道测量,例如,在指示过程中,可以指示该触发状态的标识,或者测量链接的标识。因此,第一传输控制信息还可以包含对所要启动的半静态信道测量的指示。更进一步的,该指示可以具体为对所要启动的半静态信道测量相关联的信息的指示,例如但不限于,对至少一项基础测量信息的指示,例如但不限于上文所述的触发状态或者测量链接等。更进一步的,上述指示可以包含在CSI请求信息中。
步骤206,用户设备接收第一传输控制信息。
步骤208,用户设备在该传输控制信息满足上述第一预设条件时,启动半静态信道测量。
不难理解,步骤202~208为半静态信道测量的启动流程。
步骤210,用户设备基于预设的周期向接入设备反馈CSI,接入设备接收用户设备基于预设的周期反馈的CSI。
具体来说,在启动半静态信道测量之后,用户设备根据预设的周期测量CSI并将其反馈给接入设备。在具体实现过程中,上述预设的周期可以是通信协议中规定并在用户设备和接入设备出厂前提前写入这些设备的,也可以是在接入设备与用户设备的交互过程中,由接入设备配置给用户设备的。此外,接入设备也可以提前为用户设备配置多个预设的周期,并且在交互过程中向用户设备指示应该使用的预设的周期。本发明实施例对上述周期的具体设置方法不做限定。
应注意,用户设备在进行半静态信道测量期间,也可以根据接入设备的指示进行动态信道测量。当用户设备在上报基于半静态信道测量获得的CSI时一同上报基于动态信道测量获得的CSI时,接入设备将收到这两种CSI。在这种情况下,接入设备可以根据在两种CSI之中选择一种(例如优先选择基于动态信道测量获得的CSI),也可以结合两种CSI确定最终使用的CSI,例如计算两种CSI的平均值等,本发明实施例对结合两种CSI确定最终使用的CSI的具体方式不做确定。
此外,在进行半静态信道测量过程中,如果接入设备接连若干次未接收到用户设备上报的CSI,则接入设备可以停止半静态信道测量。在停止半静态信道测量时,可以采用下面将要描述的半静态信道测量的停止流程,也可以忽略用户设备后续反馈的CSI。本发明实施例对这种情况下接入设备停止半静态信道测量的具体操作不做限定。其中,上述若干次可以是一次或者多次,具体次数可以在通信协议中预先设置。此外,接入设备也可以将该值配置给用户设备,例如但不限于下文将要描述的物理层信令、媒体访问控制层信令或者无线资源控制信令。
步骤210可以称为半静态信道测量的测量流程,在具体实现过程中,步骤210可以执行至少一次。
步骤212,接入设备生成第二传输控制信息。
具体来说,与第一传输控制信息类似,该第二传输控制信息也可以是,例如但不限于,DCI。
步骤214,接入设备发送第二传输控制信息,其中,该第二传输控制信息满足第二预设条件,以便用于停止半静态信道测量,所述第二预设条件包含下列条件之中的至少一种:
所述第二传输控制信息关联第二预设类型的无线网络临时标识RNTI;
所述第二传输控制信息中的第二组信息的值符合第二预设规则。
类似于第一预设条件,在具体实现过程中,第二预设条件可以是上述条件之中的任一条件。此外,上述第二预设条件也可以是上述条件的组合,换句话说,满足第二预设条件意味着需要同时满足上述各个条件。同时,第二预设条件还可以包含其他条件。举例来说,如果第二传输控制信息为DCI,则上述其他条件可以包含例如DCI的格式(format)为预设格式。更进一步的,上述预设格式可以是已有格式,有可以是一种新格式。
此外,类似于第一预设类型的RNTI,在本发明实施例提供的技术方案中,上述第二预设类型的RNTI可以是以下类型的RNTI其中之一:
C-RNTI;
SPS-C-RNTI;
UL-SPS-V-RNTI;
半静态信道测量RNTI。
不难理解,无论是第一传输控制信息,还是第二传输控制信息,均指向用户设备。第一传输控制信息中的RNTI与第二传输控制信息中的RNTI可以是相同的RNTI,也可以不同的RNTI。本领域的技术人员应当明白,可以为同一用户设备分配多个RNTI,这些RNTI的类型不同。
上述第二组信息可以包括TPC信息、DMRS循环移位信息、MCS信息和资源分配信息。上述信息符合第二预设规则,可以是,TPC信息的值为第五预设值,DMRS循环移 位信息的值为第六预设值,MCS信息的值处于第七预设区间,且资源分配信息的值为第八预设值。
作为替代的,又例如,上述第二组信息可以包括下列信息之中的至少一种,NDI信息、TPC信息、冗余版本信息、HARQ进程号信息、频域资源分配(Frequency domain resource assignment)信息、时域资源分配(Time domain resource assignment)信息、调制编码方式信息和天线端口信息(Antenna ports),其中,该天线端口信息用于指示使用的DMRS天线端口。上述信息符合第二预设规则,可以是,NDI信息的值为第三十五预设值(例如该信息的所有比特设置为0),TPC信息的值为第三十六预设值(例如该信息的所有比特设置为0),冗余版本信息的值为第三十七预设值(例如该信息的所有比特设置为0),HARQ进程号信息的值为第三十八预设值(例如该信息的所有比特设置为0),频域资源分配信息的值为第三十九预设值(例如该信息的所有比特设置为1),时域资源分配信息的值为第四十预设值(例如该信息的所有比特设置为1),调制编码方式信息的值为第四十一预设值(例如该信息的所有比特设置为1),天线端口信息的值为第四十二预设值(例如该信息的所有比特设置为1)。在上述信息(即NDI信息、TPC信息、冗余版本信息、HARQ进程号信息、频域资源分配信息、时域资源分配信息、调制编码方式信息和天线端口信息之中的至少一种)的基础上,上述第二组信息还可以进一步包括额外的信息,例如但不限于下列信息之中的至少一项,虚拟资源块(Virtual Resource Block,VRB)到物理资源块(Physical Resource Block,PRB)映射信息(VRB-to-PRB mapping)、跳频标志(Frequency hopping flag)信息、预编码信息和层数(Precoding information and number of layers)信息、码块组(Code Block Group,CBG)传输信息(CBG transmission information)、DMRS序列初始化(DMRS sequence initialization)信息、码率关系信息和CSI请求信息。应注意,这些额外信息之中的部分或者全部信息可以并不总是出现在传输控制信息(例如第二传输控制信息)之中,其存在与否可以通过其他信息来指示。在包含上述额外的信息的基础上,上述信息符合第二预设规则,还可以额外包括,虚拟资源块到物理资源块映射信息的值为第四十三预设值(例如该信息的所有比特设置为1),跳频标志信息的值为第四十四预设值(例如该信息的所有比特设置为1),预编码信息和层数信息的值为第四十五预设值(例如该信息的所有比特设置为1),CBG传输信息的值为第四十六预设值(例如该信息的所有比特设置为1),DMRS序列初始化信息的值为第四十七预设值(例如该信息的所有比特设置为1),码率关系信息的值为第四十八预设值(例如该信息的所有比特设置为1),CSI请求信息的值为第四十九预设值(例如该信息的所有比特设置为0)。
应注意,在具体实现过程中,可以停止一个或多个半静态信道测量。对需要停止的半静态信道测量的指示可以参考上文对需要启动的半静态信道测量的指示,例如需要停止的半静态信道测量的指示,可以采用与上文对需要启动的半静态信道测量的指示相同的指示方式。因此,第二传输控制信息还可以包含对所要停止的半静态信道测量的指示。更进一步的,该指示可以是对所要停止的半静态信道测量相关联的信息的指示,例如但不限于,对至少一项基础测量信息的指示,例如但不限于上文所述的触发状态或者测量链接等。更进一步的,上述指示可以包含在CSI请求信息中。
TPC信息、DMRS循环移位信息和MCS信息的相关内容已经在上文进行了详细的描 述,因此此处不再赘述。资源分配信息可以参考LTE标准中的资源块分配和调频资源分配(Resource Block Assignment and Hopping Resource Allocation)信息,该信息的技术内容已经在现有技术中进行了清楚的描述,本发明实施例对此不再赘述。本文提到的第一组信息、第二组信息以及其他相关信息的功能和含义可以参考LTE标准或者最新的NR相关标准或者提案中的有关定义,在此不再一一描述。例如,码率关系信息可以参考现有技术中的beta偏移量指示符(beta_offset indicator),其用于描述上行控制信息(Uplink Control Information,UCI)与PUSCH之间的码率关系。应注意,本领域的技术人员应当明白,除上述第二组信息之外,第二传输控制信息还可以包含其他信息,本发明实施例对第二传输控制信息所包含的信息内容不做限定。
上文提及的TPC信息、DMRS循环移位信息、MCS信息、CSI请求和资源分配信息可以参考现有LTE标准。在下一代无线通信标准中,上述信息的具体含义、名称和信息长度等属性可能发生变化,本发明实施例提供的技术方案也可应用变化后的上述信息。
此外,上述第二组信息可以包含至少一种信息。不难理解,还可以引入至少一种新的信息来实现上述目的。在这种情况下,上述第二组信息可以沿用已有的信息,也可以使用新引入的信息,或者上述二者的组合。如上文所述,例如,当上述第一组信息包含一个信息,该信息为新引入的信息,则上述第一预设规则可以设置成该信息取预设值。例如,如果该信息包含2比特,则上述第一预设规则可以设置成,当该2比特为01时,启动半静态信道测量。在这种情况下,第二组信息也可以包含该信息,且上述第二预设规则可以设置成,该信息取另一预设值。例如,当该2比特为11时,停止半静态信道测量。
应注意,在具体实现过程中,上述第一传输控制信息的第一组信息中与上述第二传输控制信息的第二组信息中类型相同的信息(例如TPC信息、DMRS循环移位信息和MCS信息),其在第一传输控制信息中的取值与其在第二传输控制信息中的取值可以相同,也可以不同。换句话说,上述第一预设值与第五预设值相同或者不同,上述第二预设值与第六预设值相同或者不同,上述第三预设区间与第七预设区间相同或者不同。
此外,在具体实现过程中,上述多个预设值之中的每一个预设值,例如第一预设值、第二预设值、第四预设值、第五预设值、第六预设值或者第八预设值,其对应的具体预设值可能不止一个。例如,可能存在多个第一预设值,在这种情况下,TPC信息的值只要是这些多个第一预设值之中的一个即可。同理,上述多个预设区间之中的每一个预设区间,例如第三预设区间或者第七预设区间,其对应的具体预设区间也可能不止一个。例如,可能存在多个第三预设区间,在这种情况下,MCS信息的值处于这些第三预设区间之中的一个即可。
第二预设条件的一个具体实例如下:
Figure PCTCN2018092312-appb-000003
Figure PCTCN2018092312-appb-000004
表2
由上例可知,第二预设条件对上述四种信息的取值进行了限定,同时将DCI格式限定为格式0。
步骤216,用户设备接收第二传输控制信息;
步骤218,在该第二传输控制信息满足第二预设条件时,停止半静态信道测量。
不难理解,步骤212~218为半静态信道测量的停止流程。
应注意,图2所示的方法分别规定了半静态信道测量的启动流程和停止流程。然而,在具体实现过程中,也可以不规定停止流程,并将启动流程视为在启动新的半静态信道测量的同时停止当前的半静态信道测量,其中,当前的半静态信道测量,是指在接收到第一传输控制信息的时刻以及该时刻之前正在进行的半静态信道测量。如此一来,上文描述的在第一传输控制信息满足第一预设条件时,启动半静态信道测量,便具体实现为,在第一传输控制信息满足第一预设条件时,启动新的半静态信道测量并且停止当前的半静态信道测量。
由此可见,针对半静态信道测量,本发明实施例提供了一种技术方案,可以通知用户设备启动和/或停止半静态信道测量。
为便于理解用户设备在启动和/或停止半静态信道测量过程中执行的操作,下面结合图3和图4对用户设备的具体操作进行描述。
图3是依照本发明一实施例的信道测量方法300的示范性流程图。在具体实现过程中,方法300可由用户设备执行。
步骤302,接收第一传输控制信息;
步骤304,在第一传输控制信息满足第一预设条件时,启动半静态信道测量,其中所述第一预设条件包含下列条件之中的至少一种:
所述第一传输控制信息关联第一预设类型的无线网络临时标识RNTI;
所述第一传输控制信息中的第一组信息的值符合第一预设规则。
方法300中涉及的技术细节已经在上文结合方法200进行了详细的描述,因此此处不再赘述。
图4是依照本发明一实施例的信道测量方法400的示范性流程图。在具体实现过程中,方法400可由用户设备执行。
步骤402,接收第二传输控制信息;
步骤404,在第二传输控制信息满足第二预设条件时,停止半静态信道测量,其中所述第二预设条件包含下列条件之中的至少一种:
所述第二传输控制信息关联第二预设类型的无线网络临时标识RNTI;
所述第二传输控制信息中的第二组信息的值符合第二预设规则。
方法400中涉及的技术细节已经在上文结合方法200进行了详细的描述,因此此处不再赘述。
为便于理解接入设备在启动和/或停止半静态信道测量过程中执行的操作,下面结合图5和图6对接入设备的具体操作进行描述。
图5是依照本发明一实施例的信道测量方法500的示范性流程图。在具体实现过程中,方法500可由接入设备执行。
步骤502,生成第一传输控制信息;
步骤504,发送第一传输控制信息,其中,第一传输控制信息满足第一预设条件,以便用于启动半静态信道测量,其中所述第一预设条件包含下列条件之中的至少一种:
所述第一传输控制信息关联第一预设类型的无线网络临时标识RNTI;
所述第一传输控制信息中的第一组信息的值符合第一预设规则。
方法500中涉及的技术细节已经在上文结合方法200进行了详细的描述,因此此处不再赘述。
图6是依照本发明一实施例的信道测量方法600的示范性流程图。在具体实现过程中,方法600可由接入设备执行。
步骤602,生成第二传输控制信息;
步骤604,发送第二传输控制信息,其中,第二传输控制信息满足第二预设条件,以便用于停止半静态信道测量,其中所述第二预设条件包含下列条件之中的至少一种:
所述第二传输控制信息关联第二预设类型的无线网络临时标识RNTI;
所述第二传输控制信息中的第二组信息的值符合第二预设规则。
方法600中涉及的技术细节已经在上文结合方法200进行了详细的描述,因此此处不再赘述。
本发明实施例还提供了一种配置半静态信道测量RNTI的方法,下面就结合图7和图8对该方法进行描述。
图7是依照本发明一实施例的配置方法700的示范性流程图。在具体实现过程中,方法700可由用户设备执行。
步骤702,接收配置信息,其中所述配置信息用于配置半静态信道测量RNTI;
步骤704,根据所述配置信息配置半静态信道测量RNTI。
所述配置信息可以通过,例如但不限于,如下信令之中的一种进行发送:
物理层信令;
媒体访问控制层信令;
无线资源控制信令。
物理层信令也称为第一层(Layer 1,L1)信令,其通常可以由物理层帧中的控制部分来承载。L1信令的典型例子是LTE标准中定义的物理下行控制信道(Physical Downlink  Control Channel,PDCCH)中承载的下行控制信息(Downlink Control Information,DCI)和物理上行控制信道(Physical Uplink Control Channel,PUCCH)中承载的上行控制信息(Uplink Control Information,UCI)。在一些情况下,L1信令也可以由物理层帧中的数据部分来承载,例如,UCI有时也可以通过物理上行共享信道(Physical Uplink Shared Channel,PUSCH)来承载。不难看出,L1信令的发送周期或者信令周期通常为物理层帧的周期,因此这种信令通常用于实现一些动态的控制,以传递一些变化频繁的信息,例如,可以通过物理层信令传送资源分配信息。
媒体访问控制(Media Access Control,MAC)层信令属于第二层(Layer 2)信令,其通常可以由,例如但不限于,第二层帧的帧头来承载。上述帧头中还可能携带,例如但不限于,源地址和目的地址等信息。除帧头外,第二层帧通常还包含帧体。在一些情况下,L2信令也可以由第二层帧的帧体来承载。第二层信令的典型例子是802.11系列标准中MAC帧的帧头中的帧控制(Frame Control)字段中携带的信令,或者一些协议中定义的MAC控制实体(Control Entity,MAC-CE)。第二层帧通常可以携带在物理层帧的数据部分。上述配置信息也可以通过媒体访问控制层信令之外的其他第二层信令发送。
无线资源控制(Radio Resource Control,RRC)信令属于第三层(Layer 3)信令,其通常是一些控制消息,L3信令通常可以携带在第二层帧的帧体中。L3信令的发送周期或者控制周期通常较长,适用于发送一些不会频繁发生变化的信息,例如,在现有的一些通信标准中,L3信令通常用于承载一些配置信息。上述配置信息也可以通过RRC信令之外的其他第三层信令发送。
上文所述仅为物理层信令、MAC层信令、RRC信令、第一层信令、第二层信令和第三层信令的原理性描述,有关三种信令的具体细节可以参考现有技术,因此本文不再赘述。
图8是依照本发明一实施例的配置方法800的示范性流程图。在具体实现过程中,方法800可由接入设备执行。
步骤802,生成配置信息,其中所述配置信息用于配置半静态信道测量RNTI;
步骤804,发送所述配置信息。
有关配置信息和其他特征的相关内容已经在上文进行了详细的描述,因此此处不再赘述。
本发明实施例还提供了一种通信设备,该通信设备可以是上文提到的用户设备,也可以是上文提到的接入设备,下面就结合图9和图10对该通信设备的结构进行描述。
图9是依照本发明一实施例的通信设备900的示范性逻辑结构示意图。在具体实现过程中,通信设备900可以是上文所述的接入设备,也可以上文所述的用户设备。如图9所示,通信设备900包括收发模块902和处理模块904。
当通信设备900为用户设备时,收发模块902可用于执行上述步骤302、402和702,处理模块904用于执行上述步骤304、404和704。
当通信设备900为接入设备时,收发模块902可用于执行上述步骤504、604和804,处理模块904用于执行上述步骤502、602和802。
图10是依照本发明一实施例的通信设备1000的示范性硬件结构示意图。在具体实现过程中,通信设备1000可以是上文所述的接入设备,也可以上文所述的用户设备。如图10所示,通信设备1000包括处理器1002、收发器1004、多根天线1006,存储器1008、 I/O(输入/输出,Input/Output)接口1010和总线1012。存储器1008进一步用于存储指令10082和数据10084。此外,处理器1002、收发器1004、存储器1008和I/O接口1010通过总线1012彼此通信连接,多根天线1006与收发器1004相连。在具体实现过程中,处理器1002、收发器1004、存储器1008和I/O接口1010也可以采用总线1012之外的其他连接方式彼此通信连接。
处理器1002可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器1002还可以是多个处理器的组合。处理器1002可以是专门设计用于执行特定步骤和/或操作的处理器,也可以是通过读取并执行存储器1008中存储的指令10082来执行上述特定步骤和/或操作的处理器,处理器1002在执行上述特定步骤和/或操作的过程中可能需要用到数据10084。特别的,处理器1002用于执行处理模块904所执行的操作。
收发器1004通过多根天线1006之中的至少一根天线发送信号,以及通过多根天线1006之中的至少一根天线接收信号。特别的,收发器1004用于执行收发模块902所执行的操作。
存储器1008可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器1008具体用于存储指令10082和数据10084,处理器1002可以通过读取并执行存储器1008中存储的指令10082,来执行特定步骤和/或操作,在执行上述特定操作和/或步骤的过程中可能需要用到数据10084。
I/O接口1010用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
应注意,在具体实现过程中,通信设备1000还可以包括其他硬件器件,本文不再一一列举。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
综上所述,以上仅为本发明的实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (96)

  1. 一种信道测量方法,其特征在于,包括:
    接收第一传输控制信息;
    在该第一传输控制信息满足第一预设条件时,启动半静态信道测量,其中所述第一预设条件包含下列条件之中的至少一种:
    所述第一传输控制信息关联第一预设类型的无线网络临时标识RNTI;
    所述第一传输控制信息中的第一组信息的值符合第一预设规则。
  2. 如权利要求1所述的方法,其特征在于,所述第一预设类型的RNTI为下列类型的RNTI之中之一:
    小区RNTI;
    半静态调度小区RNTI;
    上行半静态调度车联网RNTI;
    半静态信道测量RNTI。
  3. 如权利要求1或者2所述的方法,其特征在于,所述第一组信息包括冗余版本RV和混合自动重传请求HARQ进程号。
  4. 如权利要求3所述的方法,其特征在于,所述第一传输控制信息中的第一组信息的值符合第一预设规则包括:
    冗余版本RV的值为第三十三预设值;
    混合自动重传请求HARQ进程号的值为第三十四预设值。
  5. 如权利要求4所述的方法,其特征在于,所述第三十三预设值为所有比特为0,所述第三十四预设值为所有比特为0。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述半静态信道测量为一个或者多个。
  7. 一种信道测量方法,其特征在于,包括:
    接收第二传输控制信息;
    在该第二传输控制信息满足第二预设条件时,停止第二半静态信道测量,其中所述第二预设条件包含下列条件之中的至少一种:
    所述第二传输控制信息关联第二预设类型的无线网络临时标识RNTI;
    所述第二传输控制信息中的第二组信息的值符合第二预设规则。
  8. 如权利要求7所述的方法,其特征在于,所述第二预设类型的RNTI为下列类型的RNTI之中之一:
    小区RNTI;
    半静态调度小区RNTI;
    上行半静态调度车联网RNTI;
    半静态信道测量RNTI。
  9. 如权利要求7或者8所述的方法,其特征在于,所述第二组信息包括冗余版本RV、HARQ进程号和调制编码方式MCS。
  10. 如权利要求9所述的方法,其特征在于,所述第二传输控制信息中的第二组信息的值符合第二预设规则包括:
    冗余版本RV的值为第三十七预设值;
    HARQ进程号的值为第三十八预设值;
    调制编码方式的值为第四十一预设值。
  11. 如权利要求10所述的方法,其特征在于,所述第三十七预设值为所有比特为0,所述第三十八预设值为所有比特为0,所述第四十一预设值为所有比特为1。
  12. 一种信道测量方法,其特征在于,包括:
    生成第一传输控制信息;
    发送第一传输控制信息,其中,第一传输控制信息满足第一预设条件,以便用于启动半静态信道测量,其中所述第一预设条件包含下列条件之中的至少一种:所述第一传输控制信息关联第一预设类型的无线网络临时标识RNTI;所述第一传输控制信息中的第一组信息的值符合第一预设规则。
  13. 如权利要求12所述的方法,其特征在于,所述第一预设类型的RNTI为下列类型的RNTI之中之一:
    小区RNTI;
    半静态调度小区RNTI;
    上行半静态调度车联网RNTI;
    半静态信道测量RNTI。
  14. 如权利要求12或者13所述的方法,其特征在于,所述第一组信息包括冗余版本RV和混合自动重传请求HARQ进程号。
  15. 如权利要求14所述的方法,其特征在于,所述第一传输控制信息中的第一组信息的值符合第一预设规则包括:
    冗余版本RV的值为第三十三预设值;
    混合自动重传请求HARQ进程号的值为第三十四预设值。
  16. 如权利要求15所述的方法,其特征在于,所述第三十三预设值为所有比特为0,所述第三十四预设值为所有比特为0。
  17. 如权利要求12至16中任一项所述的方法,其特征在于,所述半静态信道测量为一个或者多个。
  18. 一种信道测量方法,其特征在于,包括:
    生成第二传输控制信息;
    发送第二传输控制信息,其中,第二传输控制信息满足第二预设条件,以便用于停止半静态信道测量,其中所述第二预设条件包含下列条件之中的至少一种:所述第二传输控制信息关联第二预设类型的无线网络临时标识RNTI;所述第二传输控制信息中的第二组信息的值符合第二预设规则。
  19. 如权利要求18所述的方法,其特征在于,所述第二预设类型的RNTI为下列类型的RNTI之中之一:
    小区RNTI;
    半静态调度小区RNTI;
    上行半静态调度车联网RNTI;
    半静态信道测量RNTI。
  20. 如权利要求18或者19所述的方法,其特征在于,所述第二组信息包括冗余版本RV、HARQ进程号和调制编码方式MCS。
  21. 如权利要求20所述的方法,其特征在于,所述第二传输控制信息中的第二组信息的值符合第二预设规则包括:
    冗余版本RV的值为第三十七预设值;
    HARQ进程号的值为第三十八预设值;
    调制编码方式的值为第四十一预设值。
  22. 如权利要求21所述的方法,其特征在于,所述第三十七预设值为所有比特为0,所述第三十八预设值为所有比特为0,所述第四十一预设值为所有比特为1。
  23. 一种用户设备,其特征在于,包括:
    收发模块,用于接收第一传输控制信息;
    处理模块,用于在该第一传输控制信息满足第一预设条件时,启动半静态信道测量,其中所述第一预设条件包含下列条件之中的至少一种:
    所述第一传输控制信息关联第一预设类型的无线网络临时标识RNTI;
    所述第一传输控制信息中的第一组信息的值符合第一预设规则。
  24. 如权利要求23所述的设备,其特征在于,所述第一预设类型的RNTI为下列类型的RNTI之中之一:
    小区RNTI;
    半静态调度小区RNTI;
    上行半静态调度车联网RNTI;
    半静态信道测量RNTI。
  25. 如权利要求23或者24所述的设备,其特征在于,所述第一组信息包括冗余版本RV和混合自动重传请求HARQ进程号。
  26. 如权利要求25所述的设备,其特征在于,所述第一传输控制信息中的第一组信息的值符合第一预设规则包括:
    冗余版本RV的值为第三十三预设值;
    混合自动重传请求HARQ进程号的值为第三十四预设值。
  27. 如权利要求26所述的用户设备,其特征在于,所述第三十三预设值为所有比特为0,所述第三十四预设值为所有比特为0。
  28. 如权利要求23至27中任一项所述的设备,其特征在于,所述半静态信道测量为一个或者多个。
  29. 一种用户设备,其特征在于,包括:
    收发模块,用于接收第二传输控制信息;
    处理模块,用于在该第二传输控制信息满足第二预设条件时,停止第二半静态信道测量,其中所述第二预设条件包含下列条件之中的至少一种:
    所述第二传输控制信息关联第二预设类型的无线网络临时标识RNTI;
    所述第二传输控制信息中的第二组信息的值符合第二预设规则。
  30. 如权利要求29所述的设备,其特征在于,所述第二预设类型的RNTI为下列类型的RNTI之中之一:
    小区RNTI;
    半静态调度小区RNTI;
    上行半静态调度车联网RNTI;
    半静态信道测量RNTI。
  31. 如权利要求29或者30所述的设备,其特征在于,所述第二组信息包括冗余版本RV、HARQ进程号和调制编码方式MCS。
  32. 如权利要求31所述的设备,其特征在于,所述第二传输控制信息中的第二组信息的值符合第二预设规则包括:
    冗余版本RV的值为第三十七预设值;
    HARQ进程号的值为第三十八预设值;
    调制编码方式的值为第四十一预设值。
  33. 如权利要求32所述的设备,其特征在于,所述第三十七预设值为所有比特为0,所述第三十八预设值为所有比特为0,所述第四十一预设值为所有比特为1。
  34. 一种接入设备,其特征在于,包括:
    处理模块,用于生成第一传输控制信息;
    收发模块,用于发送第一传输控制信息,其中,第一传输控制信息满足第一预设条件,以便用于启动半静态信道测量,其中所述第一预设条件包含下列条件之中的至少一种:所述第一传输控制信息关联第一预设类型的无线网络临时标识RNTI;所述第一传输控制信息中的第一组信息的值符合第一预设规则。
  35. 如权利要求34所述的设备,其特征在于,所述第一预设类型的RNTI为下列类型的RNTI之中之一:
    小区RNTI;
    半静态调度小区RNTI;
    上行半静态调度车联网RNTI;
    半静态信道测量RNTI。
  36. 如权利要求34或者35所述的设备,其特征在于,所述第一组信息包括冗余版本RV和混合自动重传请求HARQ进程号。
  37. 如权利要求36所述的设备,其特征在于,所述第一传输控制信息中的第一组信息的值符合第一预设规则包括:
    冗余版本RV的值为第三十三预设值;
    混合自动重传请求HARQ进程号的值为第三十四预设值。
  38. 如权利要求37所述的设备,其特征在于,所述第三十三预设值为所有比特为0,所述第三十四预设值为所有比特为0。
  39. 如权利要求34至38中任一项所述的设备,其特征在于,所述半静态信道测量为一个或者多个。
  40. 一种接入设备,其特征在于,包括:
    处理模块,用于生成第二传输控制信息;
    收发模块,用于发送第二传输控制信息,其中,第二传输控制信息满足第二预设条件,以便用于停止半静态信道测量,其中所述第二预设条件包含下列条件之中的至少一种:所 述第二传输控制信息关联第二预设类型的无线网络临时标识RNTI;所述第二传输控制信息中的第二组信息的值符合第二预设规则。
  41. 如权利要求40所述的设备,其特征在于,所述第二预设类型的RNTI为下列类型的RNTI之中之一:
    小区RNTI;
    半静态调度小区RNTI;
    上行半静态调度车联网RNTI;
    半静态信道测量RNTI。
  42. 如权利要求40或者41所述的设备,其特征在于,所述第二组信息包括冗余版本RV、HARQ进程号和调制编码方式MCS。
  43. 如权利要求42所述的设备,其特征在于,所述第二传输控制信息中的第二组信息的值符合第二预设规则包括:
    冗余版本RV的值为第三十七预设值;
    HARQ进程号的值为第三十八预设值;
    调制编码方式的值为第四十一预设值。
  44. 如权利要求43所述的设备,其特征在于,所述第三十七预设值为所有比特为0,所述第三十八预设值为所有比特为0,所述第四十一预设值为所有比特为1。
  45. 一种用户设备,其特征在于,包括:
    收发器,用于接收第一传输控制信息;
    处理器,用于在该第一传输控制信息满足第一预设条件时,启动半静态信道测量,其中所述第一预设条件包含下列条件之中的至少一种:
    所述第一传输控制信息关联第一预设类型的无线网络临时标识RNTI;
    所述第一传输控制信息中的第一组信息的值符合第一预设规则。
  46. 如权利要求45所述的设备,其特征在于,所述第一预设类型的RNTI为下列类型的RNTI之中之一:
    小区RNTI;
    半静态调度小区RNTI;
    上行半静态调度车联网RNTI;
    半静态信道测量RNTI。
  47. 如权利要求45或者46所述的设备,其特征在于,所述第一组信息包括冗余版本RV和混合自动重传请求HARQ进程号。
  48. 如权利要求47所述的设备,其特征在于,所述第一传输控制信息中的第一组信息的值符合第一预设规则包括:
    冗余版本RV的值为第三十三预设值;
    混合自动重传请求HARQ进程号的值为第三十四预设值。
  49. 如权利要求48所述的用户设备,其特征在于,所述第三十三预设值为所有比特为0,所述第三十四预设值为所有比特为0。
  50. 如权利要求45至49中任一项所述的设备,其特征在于,所述半静态信道测量为一个或者多个。
  51. 一种用户设备,其特征在于,包括:
    收发器,用于接收第二传输控制信息;
    处理器,用于在该第二传输控制信息满足第二预设条件时,停止第二半静态信道测量,其中所述第二预设条件包含下列条件之中的至少一种:
    所述第二传输控制信息关联第二预设类型的无线网络临时标识RNTI;
    所述第二传输控制信息中的第二组信息的值符合第二预设规则。
  52. 如权利要求51所述的设备,其特征在于,所述第二预设类型的RNTI为下列类型的RNTI之中之一:
    小区RNTI;
    半静态调度小区RNTI;
    上行半静态调度车联网RNTI;
    半静态信道测量RNTI。
  53. 如权利要求51或者52所述的设备,其特征在于,所述第二组信息包括冗余版本RV、HARQ进程号和调制编码方式MCS。
  54. 如权利要求53所述的设备,其特征在于,所述第二传输控制信息中的第二组信息的值符合第二预设规则包括:
    冗余版本RV的值为第三十七预设值;
    HARQ进程号的值为第三十八预设值;
    调制编码方式的值为第四十一预设值。
  55. 如权利要求54所述的设备,其特征在于,所述第三十七预设值为所有比特为0,所述第三十八预设值为所有比特为0,所述第四十一预设值为所有比特为1。
  56. 一种接入设备,其特征在于,包括:
    处理器,用于生成第一传输控制信息;
    收发器,用于发送第一传输控制信息,其中,第一传输控制信息满足第一预设条件,以便用于启动半静态信道测量,其中所述第一预设条件包含下列条件之中的至少一种:所述第一传输控制信息关联第一预设类型的无线网络临时标识RNTI;所述第一传输控制信息中的第一组信息的值符合第一预设规则。
  57. 如权利要求56所述的设备,其特征在于,所述第一预设类型的RNTI为下列类型的RNTI之中之一:
    小区RNTI;
    半静态调度小区RNTI;
    上行半静态调度车联网RNTI;
    半静态信道测量RNTI。
  58. 如权利要求56或者57所述的设备,其特征在于,所述第一组信息包括冗余版本RV和混合自动重传请求HARQ进程号。
  59. 如权利要求58所述的设备,其特征在于,所述第一传输控制信息中的第一组信息的值符合第一预设规则包括:
    冗余版本RV的值为第三十三预设值;
    混合自动重传请求HARQ进程号的值为第三十四预设值。
  60. 如权利要求59所述的设备,其特征在于,所述第三十三预设值为所有比特为0,所述第三十四预设值为所有比特为0。
  61. 如权利要求56至60中任一项所述的设备,其特征在于,所述半静态信道测量为一个或者多个。
  62. 一种接入设备,其特征在于,包括:
    处理器,用于生成第二传输控制信息;
    收发器,用于发送第二传输控制信息,其中,第二传输控制信息满足第二预设条件,以便用于停止半静态信道测量,其中所述第二预设条件包含下列条件之中的至少一种:所述第二传输控制信息关联第二预设类型的无线网络临时标识RNTI;所述第二传输控制信息中的第二组信息的值符合第二预设规则。
  63. 如权利要求62所述的设备,其特征在于,所述第二预设类型的RNTI为下列类型的RNTI之中之一:
    小区RNTI;
    半静态调度小区RNTI;
    上行半静态调度车联网RNTI;
    半静态信道测量RNTI。
  64. 如权利要求62或者63所述的设备,其特征在于,所述第二组信息包括冗余版本RV、HARQ进程号和调制编码方式MCS。
  65. 如权利要求64所述的设备,其特征在于,所述第二传输控制信息中的第二组信息的值符合第二预设规则包括:
    冗余版本RV的值为第三十七预设值;
    HARQ进程号的值为第三十八预设值;
    调制编码方式的值为第四十一预设值。
  66. 如权利要求65所述的设备,其特征在于,所述第三十七预设值为所有比特为0,所述第三十八预设值为所有比特为0,所述第四十一预设值为所有比特为1。
  67. 一种处理器,其特征在于,所述处理器用于执行权利要求1至6中任一项所述的方法。
  68. 一种处理器,其特征在于,所述处理器用于执行权利要求7至11中任一项所述的方法。
  69. 一种处理器,其特征在于,所述处理器用于执行权利要求12至17中任一项所述的方法。
  70. 一种处理器,其特征在于,所述处理器用于执行权利要求18至22中任一项所述的方法。
  71. 一种通信设备,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述处理器用于执行权利要求1至6中任一项所述的方法。
  72. 一种通信设备,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述处理器用于执行权利要求7至11中任一项所述的方法。
  73. 一种通信设备,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述处理器用于执行权利要求12至17中任一项所述的方法。
  74. 一种通信设备,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述处理器用于执行权利要求18至22中任一项所述的方法。
  75. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当其在计算机上运行时,使得计算机执行权利要求1至6中任一项所述的方法。
  76. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当其在计算机上运行时,使得计算机执行权利要求7至11中任一项所述的方法。
  77. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当其在计算机上运行时,使得计算机执行权利要求12至17中任一项所述的方法。
  78. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当其在计算机上运行时,使得计算机执行权利要求18至22中任一项所述的方法。
  79. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行权利要求1至6中任一项所述的方法。
  80. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行权利要求7至11中任一项所述的方法。
  81. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行权利要求12至17中任一项所述的方法。
  82. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行权利要求18至22中任一项所述的方法。
  83. 一种配置方法,其特征在于,包括:
    接收配置信息,其中所述配置信息用于配置半静态信道测量RNTI;
    根据所述配置信息配置半静态信道测量RNTI。
  84. 一种配置方法,其特征在于,包括:
    生成配置信息,其中所述配置信息用于配置半静态信道测量RNTI;
    发送所述配置信息。
  85. 一种用户设备,其特征在于,包括:
    收发模块,用于接收配置信息,其中所述配置信息用于配置半静态信道测量RNTI;
    处理模块,用于根据所述配置信息配置半静态信道测量RNTI。
  86. 一种接入设备,其特征在于,包括:
    处理模块,用于生成配置信息,其中所述配置信息用于配置半静态信道测量RNTI;
    收发模块,用于发送所述配置信息。
  87. 一种用户设备,其特征在于,包括:
    收发器,用于接收配置信息,其中所述配置信息用于配置半静态信道测量RNTI;
    处理器,用于根据所述配置信息配置半静态信道测量RNTI。
  88. 一种接入设备,其特征在于,包括:
    处理器,用于生成配置信息,其中所述配置信息用于配置半静态信道测量RNTI;
    收发器,用于发送所述配置信息。
  89. 一种处理器,其特征在于,所述处理器用于执行权利要求83所述的方法。
  90. 一种处理器,其特征在于,所述处理器用于执行权利要求84所述的方法。
  91. 一种通信设备,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述处理器用于执行权利要求83所述的方法。
  92. 一种通信设备,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述处理器用于执行权利要求84所述的方法。
  93. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当其在计算机上运行时,使得计算机执行权利要求83所述的方法。
  94. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当其在计算机上运行时,使得计算机执行权利要求84所述的方法。
  95. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行权利要求83所述的方法。
  96. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行权利要求84所述的方法。
PCT/CN2018/092312 2017-10-20 2018-06-22 信道测量方法和用户设备 WO2019076077A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880011327.5A CN110574415B (zh) 2017-10-20 2018-06-22 信道测量方法和用户设备
BR112019000819A BR112019000819A2 (pt) 2017-10-20 2018-06-22 método de medição de canal, método de configuração, equipamento de usuário, dispositivo de acesso, processador, dispositivo de comunicação, meio de armazenamento legível por computador e produto de programa de computador
EP18788986.0A EP3499950B1 (en) 2017-10-20 2018-06-22 Channel measurement method and user equipment
JP2018567807A JP6665324B2 (ja) 2017-10-20 2018-06-22 チャネル測定方法およびユーザ機器
CA3025706A CA3025706A1 (en) 2017-10-20 2018-06-22 Channel measurement method and user equipment
US16/410,180 US20190268795A1 (en) 2017-10-20 2019-05-13 Channel Measurement Method and User Equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710987133.6 2017-10-20
CN201710987133 2017-10-20
CN201810061105.6 2018-01-22
CN201810061105.6A CN109699082A (zh) 2017-10-20 2018-01-22 信道测量方法和用户设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/410,180 Continuation US20190268795A1 (en) 2017-10-20 2019-05-13 Channel Measurement Method and User Equipment

Publications (1)

Publication Number Publication Date
WO2019076077A1 true WO2019076077A1 (zh) 2019-04-25

Family

ID=63761149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092312 WO2019076077A1 (zh) 2017-10-20 2018-06-22 信道测量方法和用户设备

Country Status (2)

Country Link
CN (2) CN108650711B (zh)
WO (1) WO2019076077A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111436154B (zh) * 2019-02-15 2021-09-07 维沃移动通信有限公司 一种非授权频段的上行传输方法、终端及网络设备
WO2020200176A1 (zh) * 2019-03-30 2020-10-08 华为技术有限公司 确定传输资源的方法及装置
CN111770577B (zh) * 2019-03-30 2023-12-08 华为技术有限公司 确定传输资源的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188816A (zh) * 2006-11-15 2008-05-28 华为技术有限公司 中继方法和中继系统以及中继设备
WO2013020483A1 (zh) * 2011-08-05 2013-02-14 北京新岸线无线技术有限公司 用于信道切换的方法及装置
WO2013166709A1 (zh) * 2012-05-11 2013-11-14 华为技术有限公司 测量上报的方法、网络设备和用户设备
CN106817722A (zh) * 2015-11-30 2017-06-09 展讯通信(上海)有限公司 用户设备及其信道测量方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291751B (zh) * 2010-06-18 2016-01-20 中兴通讯股份有限公司 路测测量结果上报的优化方法、路测系统及路测终端
CN102412941B (zh) * 2010-09-21 2014-04-02 华为技术有限公司 周期信道状态信息的传输配置和传输方法及装置
CN102595596B (zh) * 2011-01-10 2015-06-17 华为技术有限公司 一种csi的传输方法和装置
CN103875201B (zh) * 2011-09-30 2017-02-15 Lg电子株式会社 在无线通信系统中传送信道状态信息的方法和设备
CN103391575B (zh) * 2012-05-11 2018-09-25 中兴通讯股份有限公司 传输节点信息的配置及上报方法、网络侧设备及终端设备
US9456358B2 (en) * 2012-08-13 2016-09-27 Qualcomm Incorporated Method and apparatus for indicating active channel state information reference signal (CSI-RS) configurations
CN107211412B (zh) * 2015-01-23 2022-05-31 株式会社Ntt都科摩 终端、基站以及无线通信方法
CN106376029B (zh) * 2015-07-21 2019-07-05 普天信息技术有限公司 一种d2d中继测量的触发方法及用户设备、基站
CN112492640B (zh) * 2015-12-31 2022-08-09 华为技术有限公司 信道测量信息的反馈方法、用户设备及基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188816A (zh) * 2006-11-15 2008-05-28 华为技术有限公司 中继方法和中继系统以及中继设备
WO2013020483A1 (zh) * 2011-08-05 2013-02-14 北京新岸线无线技术有限公司 用于信道切换的方法及装置
WO2013166709A1 (zh) * 2012-05-11 2013-11-14 华为技术有限公司 测量上报的方法、网络设备和用户设备
CN106817722A (zh) * 2015-11-30 2017-06-09 展讯通信(上海)有限公司 用户设备及其信道测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3499950A4 *

Also Published As

Publication number Publication date
CN108650711A (zh) 2018-10-12
CN108901071B (zh) 2020-04-14
CN108650711B (zh) 2020-02-14
CN108901071A (zh) 2018-11-27

Similar Documents

Publication Publication Date Title
US11239950B2 (en) Method for configuring channel state information reporting band and communications apparatus
CN107409267B (zh) 用于辅助授权接入的系统及方法
US10511411B2 (en) Method for configuring channel state information reporting band and communications apparatus
WO2020031352A1 (ja) ユーザ端末及び無線通信方法
WO2020207369A1 (zh) 一种信道测量方法和通信装置
US11445396B2 (en) Channel measurement method and apparatus
WO2018171655A1 (zh) 参考信号发送方法、信道测量方法、无线基站及用户终端
WO2020057375A1 (zh) 一种资源配置方法及通信装置
US11290906B2 (en) Channel measurement method
WO2019076077A1 (zh) 信道测量方法和用户设备
WO2022206504A1 (zh) Csi反馈方法、相关设备及可读存储介质
WO2018202058A1 (zh) 一种混合信道质量测量方法和用户设备
CN110574415B (zh) 信道测量方法和用户设备
WO2022082775A1 (zh) 一种信道状态信息上报方法及装置
WO2019037693A1 (zh) 频带指示方法、频带确定方法、发射端设备和接收端设备
WO2019085637A1 (zh) 一种信道测量方法和用户设备
WO2019095969A1 (zh) 一种用户设备和接入设备
CN109842474B (zh) 传输指示方法、设备及系统、存储介质
WO2024169869A1 (zh) 信道测量方法及装置
WO2023226833A1 (zh) 探测参考信号传输的方法和通信装置
WO2018082319A1 (zh) 一种预编码配置方法、设备及系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018567807

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018788986

Country of ref document: EP

Effective date: 20181030

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019000819

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019000819

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190115

NENP Non-entry into the national phase

Ref country code: DE