WO2018082319A1 - 一种预编码配置方法、设备及系统 - Google Patents

一种预编码配置方法、设备及系统 Download PDF

Info

Publication number
WO2018082319A1
WO2018082319A1 PCT/CN2017/090052 CN2017090052W WO2018082319A1 WO 2018082319 A1 WO2018082319 A1 WO 2018082319A1 CN 2017090052 W CN2017090052 W CN 2017090052W WO 2018082319 A1 WO2018082319 A1 WO 2018082319A1
Authority
WO
WIPO (PCT)
Prior art keywords
width
precoding
frequency band
configuration information
bandwidth
Prior art date
Application number
PCT/CN2017/090052
Other languages
English (en)
French (fr)
Inventor
戎璐
刘永
武露
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112019008726A priority Critical patent/BR112019008726A2/pt
Priority to EP17867269.7A priority patent/EP3528397B1/en
Publication of WO2018082319A1 publication Critical patent/WO2018082319A1/zh
Priority to US16/401,824 priority patent/US10972159B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0623Auxiliary parameters, e.g. power control [PCB] or not acknowledged commands [NACK], used as feedback information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0806Configuration setting for initial configuration or provisioning, e.g. plug-and-play
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a precoding configuration method, device, and system.
  • MIMO Multiple Input Multiple Output
  • system performance can be effectively improved by using multiple antenna precoding at the data transmitting end.
  • the transmitting end In order to support the receiving end to demodulate the data, the transmitting end usually needs to perform corresponding precoding on the demodulation reference signal (English: DeModulation Reference Signal; DMRS for short), so that the receiving end can channel the precoded equivalent channel. estimate.
  • the demodulation reference signal English: DeModulation Reference Signal; DMRS for short
  • OFDM Orthogonal Frequency Division Multiplexing
  • multiple DMRSs in the frequency domain will also adopt the same precoding to improve channel estimation performance and reduce channel state information (English: Channel State Information; CSI) feedback overhead.
  • the same precoded data and its corresponding DMRS are used, usually located in a continuous subcarrier.
  • a precoding resource block group (English: Precoding Resource Block Group; PRG) is used to indicate the width of a frequency band in which the same precoding is performed, and the same is performed.
  • the width of the precoded frequency band is determined only by the system bandwidth.
  • the user equipment (English: User Equipment; UE for short) can determine the width of the frequency band for performing the same precoding according to the convention of the LTE standard protocol.
  • the width of the frequency band performing the same precoding is determined only according to the system bandwidth, and there is no flexibility, and it is difficult to effectively optimize the system performance for different scene conditions.
  • the embodiment of the present invention provides a precoding configuration method, device, and system.
  • the technical solution is as follows:
  • a precoding configuration method comprising:
  • the receiving end device may determine the width of the frequency band for performing the same precoding according to the precoding configuration information.
  • the width of the frequency band of the same pre-coding is determined by the system bandwidth only.
  • the technical solution provided by the embodiment of the present invention can flexibly determine the width of the frequency band for performing the same pre-coding, and can satisfy various scenarios of the wireless communication system. Demand, effectively optimize system performance for different scenarios.
  • the precoding configuration information includes a bandwidth parameter, the width of the frequency band performing the same precoding being equal to the bandwidth parameter multiplied by a reference frequency bandwidth.
  • the reference frequency bandwidth is equal to the bandwidth of the resource unit.
  • the precoding configuration information includes a width value of a frequency band in which the same precoding is performed or The index of the width value.
  • the precoding configuration information includes an index of a width mapping rule in which a correspondence between a system bandwidth and a width of a frequency band performing the same precoding is recorded.
  • the precoding configuration information includes a width update parameter for updating a width of a frequency band that is currently performing the same precoding.
  • a precoding configuration method comprising:
  • the precoding configuration information being used to configure a width of a frequency band performing the same precoding
  • a width of a frequency band in which the same precoding is performed is determined according to the precoding configuration information.
  • the receiving end device may determine the width of the frequency band for performing the same precoding according to the precoding configuration information by receiving the precoding configuration information.
  • the width of the frequency band of the same pre-coding is determined by the system bandwidth only.
  • the technical solution provided by the embodiment of the present invention can flexibly determine the width of the frequency band for performing the same pre-coding, and can satisfy various scenarios of the wireless communication system. Demand, effectively optimize system performance for different scenarios.
  • the precoding configuration information includes a bandwidth parameter, and determining, according to the precoding configuration information, that a width of a frequency band performing the same precoding includes a width of the frequency band in which the same precoding is performed is equal to The bandwidth parameter is multiplied by the reference bandwidth.
  • the reference frequency bandwidth is equal to the bandwidth of the resource unit.
  • the precoding configuration information includes a width value of a frequency band performing the same precoding or an index of the width value
  • Determining, according to the precoding configuration information, a width of a frequency band for performing the same precoding includes determining a width value of the frequency band performing the same precoding as a width of the frequency band performing the same precoding; or
  • the width of the frequency band in which the same precoding is performed is determined according to the correspondence between the index of the width value of the frequency band in which the same precoding is performed and the width value of the frequency band.
  • the precoding configuration information includes an index of a width mapping rule, and a width mapping rule of the frequency band performing the same precoding is recorded between a system bandwidth and a width of a frequency band performing the same precoding.
  • Determining, according to the precoding configuration information, a width of a frequency band that performs the same precoding includes determining the width mapping rule according to an index of the width mapping rule, and determining, according to the width mapping rule and a system bandwidth, that performing the same pre The width of the encoded frequency band.
  • the precoding configuration information includes a width update parameter
  • the determining, according to the precoding configuration information, determining a width of a frequency band for performing the same precoding includes determining a width of the frequency band in which the same precoding is performed according to the width update parameter.
  • the third aspect provides a sending end device, where the sending end device includes:
  • a generating module configured to generate precoding configuration information, where the precoding configuration information is used to configure a width of a frequency band that performs the same precoding
  • a sending module configured to send the precoding configuration information.
  • the precoding configuration information includes a bandwidth parameter, the width of the frequency band performing the same precoding being equal to the bandwidth parameter multiplied by a reference frequency bandwidth.
  • the reference frequency bandwidth is equal to the bandwidth of the resource unit.
  • the precoding configuration information includes a width value of a frequency band in which the same precoding is performed or The index of the width value.
  • the precoding configuration information includes an index of a width mapping rule in which a correspondence between a system bandwidth and a width of a frequency band performing the same precoding is recorded.
  • the precoding configuration information includes a width update parameter for updating a width of a frequency band that is currently performing the same precoding.
  • a fourth aspect provides a receiving end device, where the receiving end device includes:
  • a receiving module configured to receive precoding configuration information, where the precoding configuration information is used to configure a width of a frequency band that performs the same precoding
  • a determining module configured to determine, according to the precoding configuration information, a width of a frequency band that performs the same precoding.
  • the precoding configuration information includes a bandwidth parameter, and determining, according to the precoding configuration information, that a width of a frequency band performing the same precoding includes a width of the frequency band in which the same precoding is performed is equal to The bandwidth parameter is multiplied by the reference bandwidth.
  • the reference frequency bandwidth is equal to the bandwidth of the resource unit.
  • the precoding configuration information includes a width value of a frequency band performing the same precoding or an index of the width value
  • Determining, according to the precoding configuration information, a width of a frequency band for performing the same precoding includes determining a width value of the frequency band performing the same precoding as a width of the frequency band performing the same precoding; or
  • the width of the frequency band in which the same precoding is performed is determined according to the correspondence between the index of the width value of the frequency band in which the same precoding is performed and the width value of the frequency band.
  • the precoding configuration information includes an index of a width mapping rule, and a width mapping rule of the frequency band performing the same precoding is recorded between a system bandwidth and a width of a frequency band performing the same precoding.
  • Determining, according to the precoding configuration information, a width of a frequency band that performs the same precoding includes determining the width mapping rule according to an index of the width mapping rule, and determining, according to the width mapping rule and a system bandwidth, that performing the same pre The width of the encoded frequency band.
  • the precoding configuration information includes a width update parameter indicating a frequency band in which the same precoding is performed
  • the determining, according to the precoding configuration information, determining a width of a frequency band for performing the same precoding includes determining a width of the frequency band in which the same precoding is performed according to the width update parameter.
  • a precoding configuration system is provided.
  • the precoding configuration system includes: a third device and a sender device provided in any possible design; and a fourth device and a receiver device provided in any possible design;
  • the precoding configuration method, device, and system provided by the embodiment of the present invention generate and transmit precoding configuration information by the source device, and the receiving device can determine the width of the frequency band for performing the same precoding according to the precoding configuration information.
  • the width of the frequency band in which the same precoding is performed is determined by the system bandwidth only.
  • the technical solution provided by the embodiment of the present invention can flexibly determine the width of the frequency band in which the same precoding is performed. Therefore, with the technical solution provided by the embodiment of the present invention, the transmitting end device can feed back the optimal frequency band of the same precoding to the receiving end device in different scenarios according to specific needs, and can satisfy the diversification of the wireless communication system. Scene demand, effective Optimize system performance for different scenarios.
  • FIG. 1 is an exemplary schematic diagram of a wireless communication network in accordance with an embodiment of the present invention
  • FIG. 2 is an exemplary schematic diagram of a precoding configuration method according to an embodiment of the invention.
  • FIG. 3 is an exemplary flowchart of a precoding configuration method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the logical structure of a device at a transmitting end according to an embodiment of the invention.
  • FIG. 5 is a schematic diagram showing the logical structure of a receiving end device according to an embodiment of the invention.
  • FIG. 6 is a schematic structural diagram of hardware of a transmitting end device according to an embodiment of the invention.
  • FIG. 7 is a schematic structural diagram of hardware of a receiving end device according to an embodiment of the invention.
  • FIG. 8 is a schematic structural diagram of a precoding configuration system according to an embodiment of the invention.
  • the receiving end may determine the width of the frequency band for performing the same precoding according to the precoding configuration information.
  • the width of the frequency band of the same pre-coding is determined by the system bandwidth only.
  • the technical solution provided by the embodiment of the present invention can flexibly determine the width of the frequency band for performing the same pre-coding, and can satisfy various scenarios of the wireless communication system. Demand, effectively optimize system performance for different scenarios.
  • the wireless communication network 100 includes base stations 102-106 and terminal devices 108-122, wherein the base stations 102-106 can pass backhaul links with each other (e.g., lines between base stations 102-106) Communication is shown, which may be a wired backhaul link (eg, fiber optic, copper) or a wireless backhaul link (eg, microwave).
  • the terminal devices 108-122 can communicate with the corresponding base stations 102-106 via a wireless link (as indicated by the broken line between the base stations 102-106 and the terminal devices 108-122).
  • the base stations 102-106 are configured to provide wireless access services for the terminal devices 108-122.
  • each base station corresponds to a service coverage area (also referred to as a cell, as shown in each ellipse area in FIG. 1), and the terminal device entering the area can communicate with the base station by using a wireless signal to receive the base station.
  • Wireless access service provided.
  • multiple base stations may use Coordinated Multipoint (CoMP) technology to provide services for terminal devices in the overlapping area.
  • CoMP Coordinated Multipoint
  • the base station 102 overlaps with the service coverage area of the base station 104, and the terminal device 112 is within the overlapping area, so the terminal device 112 can receive the wireless signals from the base station 102 and the base station 104.
  • Base station 102 and base station 104 can simultaneously provide services to terminal device 112.
  • the service coverage areas of the base station 102, the base station 104, and the base station 106 have a common overlapping area, and the terminal device 120 is within the overlapping area, so the terminal device 120 can receive the base station.
  • Radio signals 102, 104 and 106, base station 102, 104, and 106 can simultaneously provide services to the terminal device 120.
  • the base station may be referred to as a Node B (NodeB), an evolved Node B (eNodeB), and an Access Point (AP), etc., depending on the wireless communication technology used.
  • NodeB Node B
  • eNodeB evolved Node B
  • AP Access Point
  • the base station can be further divided into a macro base station for providing a macro cell, a micro base station for providing a pico cell, and a femtocell for providing Femto cell) Femto base station.
  • future base stations may use other names.
  • the terminal devices 108-118 may be various wireless communication devices having wireless communication functions, such as but not limited to mobile cellular phones, cordless phones, personal digital assistants (PDAs), smart phones, notebook computers, tablets, wireless devices.
  • a data card a modem (Modulator demodulator, Modem), or a wearable device such as a smart watch.
  • IOT Internet of Things
  • the communication unit obtains a wireless communication function so that it can access the wireless communication network and accept remote control.
  • Such devices have wireless communication functions because they are equipped with wireless communication units, and therefore belong to the category of wireless communication devices.
  • the terminal devices 108-118 may also be referred to as mobile stations, mobile devices, mobile terminals, wireless terminals, handheld devices, clients, and the like.
  • the base stations 102-106 and the terminal devices 108-122 can be configured with multiple antennas to support MIMO (Multiple Input Multiple Output) technology. Further, the terminal devices 108-122 can support single-user MIMO (SU-MIMO) technology or multi-user MIMO (Multi-User MIMO, MU-MIMO), where MU-MIMO can be based on Implemented by Space Division Multiple Access (SDMA) technology. Due to the configuration of multiple antennas, the base stations 102-106 and the terminal devices 108-122 can also flexibly support Single Input Single Output (SISO) technology, Single Input Multiple Output (SIMO) and multiple input.
  • SISO Single Input Single Output
  • SIMO Single Input Multiple Output
  • MIMO Multiple Input Single Output
  • multiplexing technology can be a spatial multiplexing (Spatial Multiplexing) technology.
  • SC Multiple Input Single Output
  • currently used transmit diversity may include, for example, but not limited to, Space-Time Transmit Diversity (STTD), Space-Frequency Transmit Diversity (Space-Frequency Transmit).
  • STTD Space-Time Transmit Diversity
  • Space-Frequency Transmit Diversity Space-Frequency Transmit
  • the current LTE (Long Term Evolution) standard adopts a transmit diversity method such as Space Time Block Coding (STBC), Space Frequency Block Coding (SFBC), and CDD.
  • STBC Space Time Block Coding
  • SFBC Space Frequency Block Coding
  • CDD Cyclic Delay Diversity
  • the base station 102 and the terminal devices 104-110 can communicate using various wireless communication technologies, such as, but not limited to, Time Division Multiple Access (TDMA) technology, Frequency Division Multiple Access (FDMA). Technology, Code Division Multiple Access (CDMA) technology, Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), Orthogonal Frequency Division Multiple Access (OFDMA) technology Single carrier frequency division multiple access (Single Carrier FDMA, SC-FDMA) technology, Space Division Multiple Access (SDMA) technology, and evolution and derivative technologies of these technologies.
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • Single carrier frequency division multiple access Single Carrier FDMA
  • SC-FDMA Space Division Multiple Access
  • SDMA Space Division Multiple Access
  • the above wireless communication technology as a wireless access technology has been adopted by many wireless communication standards to build a variety of wireless communication systems (or networks) that are well known today, including but not limited to Global System for Mobile Communications (Global System for Mobile Communications, GSM), CDMA2000, Wideband CDMA (WCDMA), WiFi defined by the 802.11 series of standards, Worldwide Interoperability for Microwave Access (WiMAX), Long Term Evolution (LTE), LTE upgrade LTE-Advanced (LTE-A) and evolution systems of these wireless communication systems, and the like.
  • the wireless communication network shown in FIG. 1 may be any system or network in the above wireless communication system.
  • the technical solutions provided by the embodiments of the present invention are applicable to the above various wireless communication technologies and wireless communication systems, unless otherwise specified.
  • the terms "system” and “network” can be replaced with each other. .
  • the wireless communication network 100 shown in FIG. 1 is for example only and is not intended to limit the technical solution of the present invention. It should be understood by those skilled in the art that, in a specific implementation process, the wireless communication network 100 further includes other devices, such as but not limited to a base station controller (BSC), and the base station and the terminal device may also be configured according to specific needs. quantity.
  • BSC base station controller
  • FIG. 2 is an exemplary flow diagram of a precoding configuration method 200 in accordance with an embodiment of the present invention.
  • the method 200 may be performed by a source device, which may be, for example but not limited to, the terminal devices 108-122 in FIG. 1, or the base stations 102-106.
  • Step 202 Generate precoding configuration information, where the precoding configuration information is used to configure a width of a frequency band that performs the same precoding.
  • Step 204 Send the precoding configuration information.
  • the same precoding in the foregoing method 200 refers to the process of precoding using the same precoding matrix.
  • the width of the frequency band in which the same precoding is performed is indicated by the physical resource block group PRG in the system, and the width of the frequency band in which the same precoding is performed in the above method 200 is similar to that in the LTE system.
  • the precoding configuration information in the above method 200 may include a bandwidth parameter, in which case the width of the frequency band performing the same precoding indicated by the precoding configuration information is equal to the bandwidth parameter multiplied by the reference bandwidth.
  • the reference bandwidth is equal to a bandwidth of the resource unit
  • the resource unit may be a resource block (Resource Block; RB for short) in the LTE standard, or may be a redefined RB-like unit.
  • the bandwidth parameter may be a specific value.
  • the bandwidth parameter is a value of 3, and the resource unit is represented by an RB in the LTE standard, and the width of the frequency band for performing the same precoding indicated by the precoding configuration information is 3 RB.
  • the bandwidth of the frequency band is 540 kHz (3 ⁇ 12 ⁇ 15 kHz). It should be noted that in the specific implementation process, the above reference frequency bandwidth may also be other widths, such as but not limited to subcarrier spacing.
  • the precoding configuration information in the foregoing method 200 may further include an index of a width value of the same precoding frequency band or an index of the width value, where the width value or the index of the width value is used to determine a width of a frequency band that performs the same precoding.
  • the precoding configuration information generated by the source device carries a specific width value for indicating the width of the frequency band for performing the same precoding.
  • the width value may be 180 kHz, and the width value is 180 kHz, which is the transmitting end device to the receiving end. The width of the frequency band that the device indicates optimally performing the same precoding in a certain scenario.
  • the above mentioned scenarios may be a high frequency scene (carrier frequency greater than 6 GHz), a low frequency scene (carrier frequency less than 6 GHz), etc.
  • the scene can be set according to specific needs, which is not limited here.
  • the precoding configuration information generated by the source device carries an index indicating the width value of the frequency band for performing the same precoding. After receiving the index, the receiving device receives the pre-agreed value between the width value and the index. Correspondence can determine the sender The width of the frequency band to which the device is optimally performing the same precoding. Specifically, the correspondence between the width value and the index can be referred to Table 1 below.
  • index width 0 180kHz 1 360kHz 2 720kHz 3 1080kHz
  • the precoding configuration information in the foregoing method 200 may further include an index of a width mapping rule, where the width mapping rule records a correspondence between a system bandwidth and a width of a frequency band performing the same precoding, and the width mapping rule The index is used to indicate the width mapping rule, in which case the receiving device can determine the width of the same precoded frequency band according to the width mapping rule and the system bandwidth.
  • an index for indicating a width mapping rule is carried, and a width mapping rule is determined by using the index, and the mapping rule may be expressed in the form of a table, or may be in other forms. Said.
  • the index is represented by idx
  • the width of the frequency band for performing the same precoding is denoted by P
  • the unit of the bandwidth is the physics in the prior art.
  • the resource block PRB indicates that the correspondence between the system bandwidth and the width of the frequency band in which the same precoding is performed is determined according to the value of the index idx. For example, the value of idx is 0, the bandwidth of the system is 11-26 PRBs, and P is equal to 2 PRB, that is, 360 kHz.
  • the precoding configuration information in the foregoing method 200 may further include a width update parameter, where the width update parameter is used to update the width of the frequency band currently performing the same precoding.
  • a width update parameter is used, and the width update parameter is used to indicate that the update of the bandwidth of the current precoding is performed, and the specific update content may be calculated.
  • Form of representation, specific Referring to Table 3 below (for convenience of explanation, the width update parameter is represented by CASE, and the width of the frequency band in which the same precoding is currently performed is represented by P, and the width of the updated frequency band is represented by P*, and the unit of the bandwidth is used.
  • the width update parameter CASE the width of the frequency band for performing the same precoding after updating according to the corresponding system bandwidth (for example, the value of CASE is 0 or 1) is determined.
  • the sending end device sends the foregoing precoding configuration information to the receiving end device by using the determined resource, where the precoding configuration information may be sent by one of the following signaling:
  • L1 signaling Physical layer signaling is also referred to as Layer 1 (L1) signaling, which can typically be carried by a control portion in a physical layer frame.
  • a typical example of L1 signaling is Downlink Control Information (DCI) carried in a physical downlink control channel (PDCCH) defined in the LTE standard.
  • DCI Downlink Control Information
  • PDCCH physical downlink control channel
  • L1 signaling may also be carried by the data portion of the physical layer frame. It is not difficult to see that the transmission period or signaling period of L1 signaling is usually the period of the physical layer frame. Therefore, such signaling is usually used to implement some dynamic control to transmit some frequently changing information, for example, through the physical layer. Signaling resource allocation information.
  • Media Access Control (MAC) layer signaling belongs to Layer 2 signaling, which can typically be carried by, for example, but not limited to, a frame header of a Layer 2 frame.
  • the foregoing frame header may also carry information such as, but not limited to, a source address and a destination address.
  • the second layer of frames usually also contains the frame body.
  • L2 signaling may also be carried by the frame body of the second layer frame.
  • a typical example of Layer 2 signaling is the signaling carried in the Frame Control field in the frame header of the MAC frame in the 802.11 series of standards, or the MAC Control Entity (MAC) defined in some protocols.
  • the second layer frame can usually be carried in the data portion of the physical layer frame.
  • the foregoing precoding configuration information may also be sent through other Layer 2 signaling other than the medium access control layer signaling.
  • Radio Resource Control (RRC) signaling belongs to Layer 3 signaling, which is usually some control message, and L3 signaling can usually be carried in the frame body of the second layer frame.
  • the transmission period of L3 signaling or The control period is usually long and is suitable for sending information that does not change frequently.
  • L3 signaling is usually used to carry some configuration information.
  • the foregoing precoding configuration information may also be sent through other layer 3 signaling other than RRC signaling.
  • the receiving end can determine the width of the frequency band for performing the same precoding according to the precoding configuration information.
  • the width of the frequency band in which the same precoding is performed is determined by the system bandwidth only.
  • the technical solution provided by the embodiment of the present invention can flexibly determine the width of the frequency band in which the same precoding is performed. Therefore, with the technical solution provided by the embodiment of the present invention, the transmitting end device feeds back the optimal frequency band of the same precoding to the receiving end device in different scenarios according to specific needs, and can satisfy the diversification of the wireless communication system. Scene requirements effectively optimize system performance for different scenarios.
  • FIG. 3 is an exemplary flow diagram of a precoding configuration method 300 in accordance with an embodiment of the present invention.
  • the method 300 may be performed by a receiving device, which may be, for example but not limited to, the base stations 102-106 in FIG. 1, or the terminal devices 108-122.
  • Step 302 Receive precoding configuration information, where the precoding configuration information is used to configure a width of a frequency band that performs the same precoding.
  • Step 304 Determine, according to the precoding configuration information, a width of a frequency band that performs the same precoding.
  • the precoding configuration information may include a bandwidth parameter, and determining a width of a frequency band performing the same precoding according to the bandwidth parameter, wherein a width of the frequency band performing the same precoding is equal to the bandwidth parameter multiplied by
  • the specific determination process of the reference bandwidth is described in detail in the method 200, and details are not described herein again.
  • the precoding configuration information in the foregoing method 300 may further include: performing a width value of the frequency band of the same precoding or an index of the width value, and determining a width of the frequency band performing the same precoding according to the width value or an index of the width value.
  • the receiving end device receives a specific width value, for example, the width value may be 180 kHz. In this case, the width value of 180 kHz is the best that the transmitting end device indicates to the receiving end device in a certain scenario.
  • the above-mentioned scenario may be a high frequency scene (carrier frequency is greater than 6 GHz), a low frequency scene (carrier frequency is less than 6 GHz), etc., and the above scenario may be set according to specific needs, which is not limited herein. .
  • the receiving end device receives an index indicating a width value of a frequency band for performing the same precoding, in which case, after receiving the index, the receiving end device follows the pre-agreed value between the width value and the index. The correspondence can determine the width of the optimal frequency band for performing the same precoding to which the transmitting device indicates.
  • the correspondence between the width value and the index may refer to Table 1 in the method 200, for example, the index is equal to 1, and the corresponding width value is 360 kHz, that is, the optimal direction indicated by the sending end device to the receiving end device is the same.
  • the precoded frequency band has a width of 360 kHz.
  • the precoding configuration information in the foregoing method 300 may further include an index of a width mapping rule, where the width mapping rule records a correspondence between a system bandwidth and a width of a frequency band performing the same precoding, and the width mapping rule
  • the index is used to indicate the width mapping rule, in which case the receiving device can be based on the width
  • the degree mapping rule and system bandwidth determine the width of the frequency band in which the same precoding is performed.
  • the receiving device receives an index for indicating a width mapping rule, and determines a width mapping rule by using the index.
  • the mapping rule may be expressed in the form of a table, or may be represented by other forms.
  • the index is represented by idx
  • the width of the frequency band for performing the same precoding is denoted by P
  • the unit of the bandwidth is used in the prior art.
  • the physical resource block (PRB) indicates that the correspondence between the system bandwidth and the width of the frequency band in which the same precoding is performed is determined according to the value of the index idx. For example, if the value of idx is 0 and the system bandwidth is 11-26 PRBs, the width of the frequency band performing the same precoding is equal to 2 PRB, that is, 360 kHz. In other words, the width of the frequency band for performing the same precoding indicated by the transmitting device to the receiving device at this time is 360 kHz.
  • the precoding configuration information in the foregoing method 300 may further include a width update parameter, and determining a width of a frequency band for performing the same precoding according to the width update parameter.
  • the receiving end device receives a width update parameter, and the width update parameter is used to indicate an update of the width of the frequency band that is currently performing the same pre-coding.
  • the specific update content may be expressed in the form of a calculation formula. Table 3 in 200 (for convenience of explanation, the width update parameter is represented by CASE, and the width of the frequency band in which the same precoding is currently performed is represented by P, and the width of the updated frequency band is represented by P*, and the unit of the bandwidth is used.
  • the receiving end device can determine the width of the frequency band for performing the same precoding according to the precoding configuration information sent by the sending end device.
  • the width of the frequency band in which the same precoding is performed is determined by the system bandwidth only.
  • the technical solution provided by the embodiment of the present invention can flexibly determine the width of the frequency band in which the same precoding is performed. Therefore, with the technical solution provided by the embodiment of the present invention, the receiving end device can determine the width of the frequency band for performing the same precoding by receiving the precoding configuration information sent by the sending end device according to different scenarios, and can satisfy the diversification of the wireless communication system. Scene requirements effectively optimize system performance for different scenarios.
  • FIG. 4 is a schematic diagram showing the logical structure of a transmitting device 400 according to an embodiment of the invention.
  • the source device may be, for example, but not limited to, the terminal devices 108-122 in FIG. 1, or the base stations 102-106.
  • device 400 includes a generation module 402 and a transmission module 404.
  • the generating module 402 is configured to generate precoding configuration information, where the precoding configuration information is used to configure a width of a frequency band that performs the same precoding;
  • the sending module 404 is configured to send the precoding configuration information.
  • the precoding configuration information may include a bandwidth parameter, wherein a width of the frequency band for performing the same precoding is equal to a bandwidth parameter multiplied by a reference bandwidth, which is equal to a bandwidth of the resource unit.
  • the precoding configuration information may further include an index of a width value of the same precoding frequency band or an index of the width value, and the width value or an index of the width value is used to determine a width of a frequency band in which the same precoding is performed.
  • the foregoing precoding configuration information may further include an index of a width mapping rule, wherein the width mapping rule records a correspondence between a system bandwidth and a width of a frequency band that performs the same precoding, and the index of the width mapping rule is used. Determine the width mapping rules.
  • the foregoing precoding configuration information may further include a width update parameter, where the width update parameter is used for The width of the frequency band in which the same precoding is performed is updated.
  • Apparatus 400 is for performing method 200 shown in FIG.
  • the related technical features related to the device 400 have been described in detail above with reference to the accompanying drawings, such as but not limited to FIG. 2, and thus are not described herein again.
  • FIG. 5 is a schematic diagram showing the logical structure of a receiving end device 500 according to an embodiment of the invention.
  • the receiving device may be, for example, but not limited to, the base stations 102-106 in FIG. 1, or the terminal devices 108-122.
  • device 500 includes a receiving module 502 and a determining module 504.
  • the receiving module 502 is configured to receive precoding configuration information, where the precoding configuration information is used to configure a width of a frequency band that performs the same precoding;
  • the determining module 504 is configured to determine a frequency bandwidth for performing the same precoding according to the precoding configuration information.
  • the precoding configuration information may include a bandwidth parameter, and determining a width of a frequency band for performing the same precoding according to the bandwidth parameter, wherein a width of the frequency band performing the same precoding is equal to a bandwidth parameter multiplied by a reference frequency bandwidth,
  • the reference frequency bandwidth is equal to the bandwidth of the resource unit.
  • the precoding configuration information may further include an index of a width value of the same precoding frequency band or an index of the width value, and the width value or an index of the width value is used to determine a width of a frequency band in which the same precoding is performed.
  • the foregoing precoding configuration information may further include an index of a width mapping rule, wherein the width mapping rule records a correspondence between a system bandwidth and a width of a frequency band performing the same precoding, according to the width mapping rule and The system bandwidth determines the width of the frequency band in which the same precoding is performed.
  • the foregoing precoding configuration information may further include a width update parameter, and determining a width of a frequency band for performing the same precoding according to the width update parameter.
  • the device 500 is a receiving side device corresponding to the device 400 for performing the method 300 shown in FIG.
  • Related technical features related to the device 500 have been described in detail above with reference to the accompanying drawings, such as but not limited to FIG. 3, and thus are not described herein again.
  • FIG. 6 is a schematic structural diagram of hardware of a transmitting device 600 according to an embodiment of the invention.
  • device 600 includes a processor 602, a transceiver 604, a plurality of antennas 606, a memory 608, an I/O (Input/Output) interface 610, and a bus 612.
  • the transceiver 604 further includes a transmitter 6042 and a receiver 6044, the memory 608 further for storing instructions 6082 and data 6084.
  • processor 602, transceiver 604, memory 608, and I/O interface 610 are communicatively coupled to each other via bus 612, and a plurality of antennas 606 are coupled to transceiver 604.
  • the processor 602 can be a general-purpose processor, such as, but not limited to, a central processing unit (CPU), or a dedicated processor such as, but not limited to, a digital signal processor (DSP), an application. Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA). Moreover, processor 602 can also be a combination of multiple processors. In particular, in the technical solution provided by the embodiment of the present invention, the processor 602 can be used to perform, for example, step 202 in the precoding configuration method 200 shown in FIG. 2, and in the transmitting device 400 shown in FIG. The operations performed by module 402 are generated.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • Processor 602 may be a processor specifically designed to perform the steps and/or operations described above, or may be a processor that performs the steps and/or operations described above by reading and executing instructions 6062 stored in memory 608, processor 602 Data 6084 may be required during the execution of the above steps and/or operations.
  • the transceiver 604 includes a transmitter 6042 and a receiver 6044, wherein the transmitter 6042 is configured to transmit signals through at least one of the plurality of antennas 606.
  • Receiver 6044 is configured to receive signals through at least one of the plurality of antennas 606.
  • the transmitter 6042 may be specifically configured to be executed by at least one of the plurality of antennas 606. For example, the method 200 of the precoding configuration shown in FIG. Step 204 in the process, and the operation performed by the transmitting module 404 in the transmitting device 400 shown in FIG.
  • the memory 608 can be various types of storage media, such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • RAM random access memory
  • ROM read only memory
  • NVRAM non-volatile RAM
  • PROM Programmable ROM
  • EPROM Erasable PROM
  • EEPROM Electrically Erasable PROM
  • flash memory optical memory, and registers.
  • the memory 608 is specifically configured to store instructions 6082 and data 6084, and the processor 602 can perform the steps and/or operations described above by reading and executing the instructions 6082 stored in the memory 608, performing the steps and/or operations described above.
  • Data 6084 may be required during the process.
  • the I/O interface 610 is configured to receive instructions and/or data from peripheral devices and to output instructions and/or data to peripheral devices.
  • the device 600 may also include other hardware devices, which are not enumerated herein.
  • FIG. 7 is a schematic structural diagram of hardware of a receiving end device 700 according to an embodiment of the invention.
  • device 700 includes a processor 702, a transceiver 704, a plurality of antennas 706, a memory 708, an I/O (Input/Output) interface 710, and a bus 712.
  • the transceiver 704 further includes a transmitter 7042 and a receiver 7044 that is further configured to store instructions 7082 and data 7084.
  • the processor 702, the transceiver 704, the memory 708, and the I/O interface 710 are communicatively coupled to one another via a bus 712, and the plurality of antennas 706 are coupled to the transceiver 704.
  • the processor 702 can be a general-purpose processor, such as, but not limited to, a central processing unit (CPU), or a dedicated processor, such as, but not limited to, a digital signal processor (DSP), an application. Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA). Moreover, processor 702 can also be a combination of multiple processors. In particular, in the technical solution provided by the embodiment of the present invention, the processor 702 is configured to perform, for example, step 304 in the method 300 for receiving precoding configuration information shown in FIG. 3, and receiving precoding in FIG. The operations performed by module 504 are determined in device 500 that configures information.
  • a general-purpose processor such as, but not limited to, a central processing unit (CPU), or a dedicated processor, such as, but not limited to, a digital signal processor (DSP), an application. Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA).
  • processor 702 can also be a combination of multiple processors.
  • the processor 702 may be a processor specifically designed to perform the steps and/or operations described above, or may be a processor that performs the steps and/or operations described above by reading and executing the instructions 7082 stored in the memory 708, the processor 702 Data 7084 may be required during the execution of the above steps and/or operations.
  • the transceiver 704 includes a transmitter 7042 and a receiver 7044, wherein the transmitter 7042 is configured to transmit signals through at least one of the plurality of antennas 706.
  • Receiver 7044 is configured to receive signals through at least one of the plurality of antennas 706.
  • the receiver 7044 may be specifically configured to be executed by at least one of the plurality of antennas 706, for example, in the method 300 of the precoding configuration shown in FIG. Step 302, and the operation performed by the receiving module 502 in the receiving device 500 shown in FIG.
  • the memory 708 can be various types of storage media, such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • RAM random access memory
  • ROM read only memory
  • NVRAM non-volatile RAM
  • PROM Programmable ROM
  • EPROM Erasable PROM
  • EEPROM Electrically Erasable PROM
  • flash memory optical memory, and registers.
  • the memory 708 is specifically configured to store instructions 7082 and data 7084, and the processor 702 can perform the steps and/or operations described above by reading and executing the instructions 7082 stored in the memory 708, performing the steps and/or operations described above. The process may require the use of data 7084.
  • the I/O interface 710 is for receiving instructions and/or data from peripheral devices and outputting instructions and/or data to peripheral devices.
  • the device 700 may also include other hardware devices, which are not enumerated herein.
  • FIG. 8 is a schematic structural diagram of a precoding configuration system 800 according to an embodiment of the invention.
  • the precoding configuration system 800 may include: a transmitting end device 810 and a receiving end device 820.
  • the transmitting device 810 is the transmitting device 400 shown in FIG. 4;
  • the receiving device 820 is the receiving device 500 shown in FIG. 5;
  • the sender device 810 is the sender device 600 shown in FIG. 6; the receiver device 820 is the receiver device 700 shown in FIG. 7.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention is essentially or Portions contributing to the prior art or portions of the technical solution may be embodied in the form of a software product stored in a storage medium, including instructions for causing a computer device (which may be a personal computer) , server, or network device, etc.) perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本发明实施例公开了一种预编码配置方法、设备及系统。预编码配置方法包括:生成预编码配置信息,所述预编码配置信息用于配置进行相同预编码的频带的宽度;发送所述预编码配置信息。本发明实施例还提供了一种发送端设备、一种接收端设备以及一种预编码配置系统。本发明实施例提供的预编码配置方法,通过生成并发送预编码配置信息,接收端可以根据该预编码配置信息确定进行相同预编码的频带的宽度。相比现有技术,进行相同预编码的频带的宽度仅仅由系统带宽确定,本发明实施例提供的技术方案可以灵活地确定进行相同预编码的频带的宽度,能够满足无线通信系统多样化的场景需求,有效针对不同场景来优化系统性能。

Description

一种预编码配置方法、设备及系统 技术领域
本发明涉及通信技术领域,特别涉及一种预编码配置方法、设备及系统。
背景技术
在多输入多输出(英文:Multiple Input Multiple Output;简称:MIMO)系统中,通过在数据发送端采用多天线预编码,可以有效地提升系统性能。为了支持接收端对数据进行解调,发送端通常需要对解调参考信号(英文:DeModulation Reference Signal;简称:DMRS)进行相应的预编码,以便接收端能够对预编码后的等效信道进行信道估计。
在基于正交频分复用(英文:Orthogonal Frequency Division Multiplexing;简称:OFDM)的系统中,数据在频域的多个子载波上传输。为了避免消耗过多资源,DMRS不会在所有传输数据的子载波上传输,而是在与之相应的一部分子载波上传输。因此,多个连续子载波上的数据,会共用一个相应的DMRS预编码。
通常频域邻近的多个DMRS,也会采用相同的预编码,以提升信道估计性能,降低信道状态信息(英文:Channel State Information;简称:CSI)反馈开销。采用相同预编码的数据及其相应的DMRS,通常位于一段连续的子载波。
在现有的长期演进(英文:Long Term Evolution;简称:LTE)系统中,预编码资源块组(英文:Precoding Resource block Group;简称PRG)用于指示进行相同预编码的频带的宽度,进行相同预编码的频带的宽度仅决定于系统带宽,只要确定了系统带宽,用户设备(英文:User Equipment;简称:UE)就可以根据LTE标准协议的约定,确定该进行相同预编码的频带的宽度。
在5G多场景条件下,仅仅根据系统带宽来确定进行相同预编码的频带的宽度,缺乏灵活性,难以有效地针对不同的场景条件来优化系统性能。
发明内容
为了灵活地确定进行相同预编码的频带的宽度,有效地针对不同场景条件来优化系统性能,本发明实施例提供了一种预编码配置方法、设备及系统。所述技术方案如下:
第一方面,提供一种预编码配置方法,该方法包括:
生成预编码配置信息,所述预编码配置信息用于配置进行相同预编码的频带的宽度;
发送所述预编码配置信息。
本发明实施例提供的预编码配置方法,通过生成并发送预编码配置信息,接收端设备可以根据该预编码配置信息确定进行相同预编码的频带的宽度。相比现有技术,进行相同预编码的频带的宽度仅仅由系统带宽确定,本发明实施例提供的技术方案可以灵活地确定进行相同预编码的频带的宽度,能够满足无线通信系统多样化的场景需求,有效针对不同场景来优化系统性能。
在一种可能的设计中,所述预编码配置信息包括频带宽度参数,所述进行相同预编码的频带的宽度等于所述频带宽度参数乘以基准频带宽度。
其中,基准频带宽度等于资源单元的频带宽度。
在一种可能的设计中,所述预编码配置信息包括进行相同预编码的频带的宽度值或 该宽度值的索引。
在一种可能的设计中,所述预编码配置信息包括宽度映射规则的索引,所述宽度映射规则中记录有系统带宽与进行相同预编码的频带的宽度之间的对应关系。
在一种可能的设计中,所述预编码配置信息包括宽度更新参数,所述宽度更新参数用于对当前进行相同预编码的频带的宽度进行更新。
第二方面,提供一种预编码配置方法,该方法包括:
接收预编码配置信息,所述预编码配置信息用于配置进行相同预编码的频带的宽度;
根据所述预编码配置信息确定进行相同预编码的频带的宽度。
本发明实施例提供的预编码配置方法,通过接收预编码配置信息,接收端设备可以根据该预编码配置信息确定进行相同预编码的频带的宽度。相比现有技术,进行相同预编码的频带的宽度仅仅由系统带宽确定,本发明实施例提供的技术方案可以灵活地确定进行相同预编码的频带的宽度,能够满足无线通信系统多样化的场景需求,有效针对不同场景来优化系统性能。
在一种可能的设计中,所述预编码配置信息包括频带宽度参数;所述根据所述预编码配置信息确定进行相同预编码的频带的宽度包括所述进行相同预编码的频带的宽度等于所述频带宽度参数乘以基准频带宽度。
其中,基准频带宽度等于资源单元的频带宽度。
在一种可能的设计中,所述预编码配置信息包括进行相同预编码的频带的宽度值或该宽度值的索引;
所述根据所述预编码配置信息确定进行相同预编码的频带的宽度包括将所述进行相同预编码的频带的宽度值确定为所述进行相同预编码的频带的宽度;或,
根据所述进行相同预编码的频带的宽度值的索引与频带的宽度值的对应关系确定所述进行相同预编码的频带的宽度。
在一种可能的设计中,所述预编码配置信息包括宽度映射规则的索引,所述进行相同预编码的频带的宽度映射规则中记录有系统带宽与进行相同预编码的频带的宽度之间的对应关系;
所述根据所述预编码配置信息确定进行相同预编码的频带的宽度包括根据所述宽度映射规则的索引确定所述宽度映射规则,再根据所述宽度映射规则和系统带宽确定所述进行相同预编码的频带的宽度。
在一种可能的设计中,所述预编码配置信息包括宽度更新参数;
所述根据所述预编码配置信息确定进行相同预编码的频带的宽度包括根据所述宽度更新参数确定所述进行相同预编码的频带的宽度。
第三方面,提供一种发送端设备,该发送端设备包括:
生成模块,用于生成预编码配置信息,所述预编码配置信息用于配置进行相同预编码的频带的宽度;
发送模块,用于发送所述预编码配置信息。
在一种可能的设计中,所述预编码配置信息包括频带宽度参数,所述进行相同预编码的频带的宽度等于所述频带宽度参数乘以基准频带宽度。
其中,基准频带宽度等于资源单元的频带宽度。
在一种可能的设计中,所述预编码配置信息包括进行相同预编码的频带的宽度值或 该宽度值的索引。
在一种可能的设计中,所述预编码配置信息包括宽度映射规则的索引,所述宽度映射规则中记录有系统带宽与进行相同预编码的频带的宽度之间的对应关系。
在一种可能的设计中,所述预编码配置信息包括宽度更新参数,所述宽度更新参数用于对当前进行相同预编码的频带的宽度进行更新。
第四方面,提供一种接收端设备,该接收端设备包括:
接收模块,用于接收预编码配置信息,所述预编码配置信息用于配置进行相同预编码的频带的宽度;
确定模块,用于根据所述预编码配置信息确定进行相同预编码的频带的宽度。
在一种可能的设计中,所述预编码配置信息包括频带宽度参数;所述根据所述预编码配置信息确定进行相同预编码的频带的宽度包括所述进行相同预编码的频带的宽度等于所述频带宽度参数乘以基准频带宽度。
其中,基准频带宽度等于资源单元的频带宽度。
在一种可能的设计中,所述预编码配置信息包括进行相同预编码的频带的宽度值或该宽度值的索引;
所述根据所述预编码配置信息确定进行相同预编码的频带的宽度包括将所述进行相同预编码的频带的宽度值确定为所述进行相同预编码的频带的宽度;或,
根据所述进行相同预编码的频带的宽度值的索引与频带的宽度值的对应关系确定所述进行相同预编码的频带的宽度。
在一种可能的设计中,所述预编码配置信息包括宽度映射规则的索引,所述进行相同预编码的频带的宽度映射规则中记录有系统带宽与进行相同预编码的频带的宽度之间的对应关系;
所述根据所述预编码配置信息确定进行相同预编码的频带的宽度包括根据所述宽度映射规则的索引确定所述宽度映射规则,再根据所述宽度映射规则和系统带宽确定所述进行相同预编码的频带的宽度。
在一种可能的设计中,所述预编码配置信息包括指示进行相同预编码的频带的宽度更新参数;
所述根据所述预编码配置信息确定进行相同预编码的频带的宽度包括根据所述宽度更新参数确定所述进行相同预编码的频带的宽度。
第五方面,提供一种预编码配置系统,
在一种可能的实现方式中,该预编码配置系统包括:第三方面及其任一可能设计中提供的发送端设备;和,第四方面及其任一可能设计中提供的接收端设备;
本发明实施例提供的技术方案带来的有益效果是:
本发明实施例提供的预编码配置方法、设备及系统,通过发送端设备生成并发送预编码配置信息,接收端设备可以根据该预编码配置信息确定进行相同预编码的频带的宽度。相比现有技术,进行相同预编码的频带的宽度仅仅由系统带宽确定,本发明实施例提供的技术方案可以灵活地确定进行相同预编码的频带的宽度。因此,借助本发明实施例提供的技术方案,发送端设备可以根据具体需要,在不同的场景下给接收端设备反馈最优的进行相同预编码的频带的宽度,能够满足无线通信系统多样化的场景需求,有效 针对不同场景来优化系统性能。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是依照本发明一实施例的无线通信网络的示范性示意图;
图2是依照本发明一实施例的预编码配置方法的示范性示意图;
图3是依照本发明一实施例的预编码配置方法的示范性流程图;
图4是依照本发明一实施例的发送端设备的逻辑结构示意图;
图5是依照本发明一实施例的接收端设备的逻辑结构示意图;
图6是依照本发明一实施例的发送端设备的硬件结构示意图;
图7是依照本发明一实施例的接收端设备的硬件结构示意图;
图8是依照本发明一实施例的预编码配置系统的结构示意图。
具体实施方式
本发明实施例提供的技术方案通过发送预编码配置信息,接收端可以根据该预编码配置信息确定进行相同预编码的频带的宽度。相比现有技术,进行相同预编码的频带的宽度仅仅由系统带宽确定,本发明实施例提供的技术方案可以灵活地确定进行相同预编码的频带的宽度,能够满足无线通信系统多样化的场景需求,有效针对不同场景来优化系统性能。
下面就结合相应的附图对本发明实施例提供的技术方案进行详细的描述。
图1是依照本发明一实施例的无线通信网络100的示范性示意图。如图1所示,无线通信网络100包括基站102~106和终端设备108~122,其中,基站102~106彼此之间可通过回程(backhaul)链路(如基站102~106彼此之间的直线所示)进行通信,该回程链路可以是有线回程链路(例如光纤、铜缆),也可以是无线回程链路(例如微波)。终端设备108~122可通过无线链路(如基站102~106与终端设备108~122之间的折线所示)与对应的基站102~106通信。
基站102~106用于为终端设备108~122提供无线接入服务。具体来说,每个基站都对应一个服务覆盖区域(又可称为蜂窝,如图1中各椭圆区域所示),进入该区域的终端设备可通过无线信号与基站通信,以此来接受基站提供的无线接入服务。基站的服务覆盖区域之间可能存在交叠,处于交叠区域内的终端设备可收到来自多个基站的无线信号,因此可以同时由多个基站为该终端设备提供服务。例如,多个基站可以采用多点协作(Coordinated multipoint,CoMP)技术为处于上述交叠区域的终端设备提供服务。例如,如图1所示,基站102与基站104的服务覆盖区域存在交叠,终端设备112便处于该交叠区域之内,因此终端设备112可以收到来自基站102和基站104的无线信号,基站102和基站104可以同时为终端设备112提供服务。又例如,如图1所示,基站102、基站104和基站106的服务覆盖区域存在一个共同的交叠区域,终端设备120便处于该交叠区域之内,因此终端设备120可以收到来自基站102、104和106的无线信号,基站 102、104和106可以同时为终端设备120提供服务。
依赖于所使用的无线通信技术,基站又可称为节点B(NodeB),演进节点B(evolved NodeB,eNodeB)以及接入点(Access Point,AP)等。此外,根据所提供的服务覆盖区域的大小,基站又可分为用于提供宏蜂窝(Macro cell)的宏基站、用于提供微蜂窝(Pico cell)的微基站和用于提供毫微微蜂窝(Femto cell)的毫微微基站。随着无线通信技术的不断演进,未来的基站也可以采用其他的名称。
终端设备108~118可以是具备无线通信功能的各种无线通信设备,例如但不限于移动蜂窝电话、无绳电话、个人数字助理(Personal Digital Assistant,PDA)、智能电话、笔记本电脑、平板电脑、无线数据卡、无线调制解调器(Modulator demodulator,Modem)或者可穿戴设备如智能手表等。随着物联网(Internet of Things,IOT)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。此外,终端设备108~118还可以称为移动台、移动设备、移动终端、无线终端、手持设备、客户端等。
基站102~106,和终端设备108~122均可配置有多根天线,以支持MIMO(多入多出,Multiple Input Multiple Output)技术。进一步的说,终端设备108~122既可以支持单用户MIMO(Single-User MIMO,SU-MIMO)技术,也可以支持多用户MIMO(Multi-User MIMO,MU-MIMO),其中MU-MIMO可以基于空分多址(Space Division Multiple Access,SDMA)技术来实现。由于配置有多根天线,基站102~106和终端设备108~122还可灵活支持单入单出(Single Input Single Output,SISO)技术、单入多出(Single Input Multiple Output,SIMO)和多入单出(Multiple Input Single Output,MISO)技术,以实现各种分集(例如但不限于发射分集和接收分集)和复用技术,其中分集技术可以包括例如但不限于(Transmit Diversity,TD)技术和接收分集(Receive Diversity,RD)技术,复用技术可以是空间复用(Spatial Multiplexing)技术。而且上述各种技术还可以包括多种实现方案,例如目前常用的发射分集可以包括,例如但不限于,空时发射分集(Space-Time Transmit Diversity,STTD)、空频发射分集(Space-Frequency Transmit Diversity,SFTD)、时间切换发射分集(Time Switched Transmit Diversity,TSTD)、频率切换发射分集(Frequency Switch Transmit Diversity,FSTD)、正交发射分集(Orthogonal Transmit Diversity,OTD)、循环延迟分集(Cyclic Delay Diversity,CDD)等分集方式,以及上述各种分集方式经过衍生、演进以及组合后获得的分集方式。例如,目前LTE(长期演进,Long Term Evolution)标准便采用了空时块编码(Space Time Block Coding,STBC)、空频块编码(Space Frequency Block Coding,SFBC)和CDD等发射分集方式。
此外,基站102与终端设备104~110可采用各种无线通信技术进行通信,例如但不限于,时分多址(Time Division Multiple Access,TDMA)技术、频分多址(Frequency Division Multiple Access,FDMA)技术、码分多址(Code Division Multiple Access,CDMA)技术、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、正交频分多址(Orthogonal FDMA,OFDMA)技术、单载波频分多址(Single Carrier FDMA,SC-FDMA)技术、空分多址(Space Division Multiple Access,SDMA)技术以及这些技术的演进及衍生技术等。上述无线通信技术作为无线接入技术(Radio  Access Technology,RAT)被众多无线通信标准所采纳,从而构建出了在今天广为人们所熟知的各种无线通信系统(或者网络),包括但不限于全球移动通信系统(Global System for Mobile Communications,GSM)、CDMA2000、宽带CDMA(Wideband CDMA,WCDMA)、由802.11系列标准中定义的WiFi、全球互通微波存取(Worldwide Interoperability for Microwave Access,WiMAX)、长期演进(Long Term Evolution,LTE)、LTE升级版(LTE-Advanced,LTE-A)以及这些无线通信系统的演进系统等。图1所示的无线通信网络便可以是上述无线通信系统中的任意系统或者网络。如无特别说明,本发明实施例提供的技术方案可应用于上述各种无线通信技术和无线通信系统。此外,术语“系统”和“网络”可以相互替换。。
应注意,图1所示的无线通信网络100仅用于举例,并非用于限制本发明的技术方案。本领域的技术人员应当明白,在具体实现过程中,无线通信网络100还包括其他设备,例如但不限于基站控制器(Base Station Controller,BSC),同时也可根据具体需要来配置基站和终端设备的数量。
图2是依照本发明一实施例的预编码配置方法200的示范性流程图。在具体实现过程中,方法200可以由发送端设备来执行,该发送端设备可以是,例如但不限于,图1中的终端设备108~122,或者基站102~106。
步骤202、生成预编码配置信息,所述预编码配置信息用于配置进行相同预编码的频带的宽度。
步骤204、发送所述预编码配置信息。
上述方法200中进行相同预编码是指采用相同预编码矩阵进行预编码的过程,为了方便理解进行相同预编码的频带的宽度,我们以现有LTE标准为例对这一概念进行介绍,在LTE系统中以物理资源块组PRG来指示进行相同预编码的频带的宽度,上述方法200中进行相同预编码的频带的宽度与LTE系统中的类似。
上述方法200中预编码配置信息可以包括频带宽度参数,在这种情况下,预编码配置信息所指示的进行相同预编码的频带的宽度等于频带宽度参数乘以基准频带宽度。可选的,该基准频带宽度等于资源单元的频带宽度,该资源单元可以是LTE标准中的资源块(Resource Block;简称:RB),也可以是重新定义的类似于RB的单元。此外,该频带宽度参数可以是一个具体的数值,例如频带宽度参数是数值3,资源单元用LTE标准中的RB表示,那么预编码配置信息所指示的进行相同预编码的频带的宽度就为3RB的频带宽度,即进行相同预编码的频带的宽度为540kHz(3×12×15kHz)。应注意,在具体实现过程中,上述基准频带宽度还可以是其他宽度,例如但不限于子载波间隔。
优选的,上述方法200中预编码配置信息还可以包括进行相同预编码的频带的宽度值或该宽度值的索引,该宽度值或者该宽度值的索引用于确定进行相同预编码的频带的宽度。例如在发送端设备生成的预编码配置信息中携带一个用于指示进行相同预编码的频带的宽度的具体宽度值,例如上述宽度值可以是180kHz,该宽度值180kHz即为发送端设备向接收端设备指示的其在某一种场景下最优的进行相同预编码的频带的宽度,上述提到的场景可以是高频场景(载波频率大于6GHz)、低频场景(载波频率小于6GHz)等,上述场景可以根据具体需要进行设置,在此不作限定。又例如在发送端设备生成的预编码配置信息中携带一个用于指示进行相同预编码的频带的宽度值的索引,接收端设备接收到该索引之后,按照预先约定的该宽度值与索引之间的对应关系即可确定发送端 设备向其指示的最优的进行相同预编码的频带的宽度。具体地,该宽度值和索引之间的对应关系可以参照下表1。
索引 宽度
0 180kHz
1 360kHz
2 720kHz
3 1080kHz
表1
优选的,上述方法200中预编码配置信息还可以包括宽度映射规则的索引,其中,该宽度映射规则中记录有系统带宽与进行相同预编码的频带的宽度之间的对应关系,该宽度映射规则的索引用于指示宽度映射规则,在这种情况下,接收端设备可以根据该宽度映射规则和系统带宽确定进行相同预编码的频带的宽度。例如在发送端设备生成的预编码配置信息中,携带一个用于指示宽度映射规则的索引,通过该索引确定宽度映射规则,该映射规则可以采用表格的形式来表示,也可以通过其他的形式来表示。以LTE标准为例,采用表格的形式可以参照下表2(为了便于说明,该索引用idx表示,进行相同预编码的频带的宽度用P表示,该频带宽度的单位用现有技术中的物理资源块PRB表示),根据该索引idx的取值,确定系统带宽与进行相同预编码的频带的宽度的对应关系。例如idx的取值为0,系统带宽为11-26个PRB,P等于2PRB,即360kHz。
Figure PCTCN2017090052-appb-000001
表2
优选的,上述方法200中预编码配置信息还可以包括宽度更新参数,该宽度更新参数用于对当前进行相同预编码的频带的宽度进行更新。例如在发送端设备生成的预编码配置信息中,携带一个宽度更新参数,该宽度更新参数用于指示需要对当前进行相同预编码的频带的宽度所做的更新,具体的更新内容可以采用计算公式的形式表示,具体可 以参照下表3(为了便于说明,该宽度更新参数用CASE表示,当前进行相同预编码的频带的宽度用P表示,更新后的该频带的宽度用P*表示,该频带宽度的单位用现有技术中的物理资源块PRB表示),根据该宽度更新参数CASE的取值,确定在相应系统带宽下更新后的进行相同预编码的频带的宽度(例如CASE的取值为0或者1)。
Figure PCTCN2017090052-appb-000002
表3
在具体实现过程中,在步骤204中,发送端设备通过确定的资源向接收端设备发送上述预编码配置信息,所述预编码配置信息可以通过如下信令之中的一种进行发送:
物理层信令;
媒体访问控制层信令;
无线资源控制信令。
物理层信令也称为第一层(Layer 1,L1)信令,其通常可以由物理层帧中的控制部分来承载。L1信令的典型例子是LTE标准中定义的物理下行控制信道(Physical Downlink Control Channel,PDCCH)中承载的下行控制信息(Downlink Control Information,DCI)。在一些情况下,L1信令也可以由物理层帧中的数据部分来承载。不难看出,L1信令的发送周期或者信令周期通常为物理层帧的周期,因此这种信令通常用于实现一些动态的控制,以传递一些变化频繁的信息,例如,可以通过物理层信令传送资源分配信息。
媒体访问控制(Media Access Control,MAC)层信令属于第二层(Layer 2)信令,其通常可以由,例如但不限于,第二层帧的帧头来承载。上述帧头中还可能携带,例如但不限于,源地址和目的地址等信息。除帧头外,第二层帧通常还包含帧体。在一些情况下,L2信令也可以由第二层帧的帧体来承载。第二层信令的典型例子是802.11系列标准中MAC帧的帧头中的帧控制(Frame Control)字段中携带的信令,或者一些协议中定义的MAC控制实体(Control Entity,MAC)。第二层帧通常可以携带在物理层帧的数据部分。上述预编码配置信息也可以通过媒体访问控制层信令之外的其他第二层信令发送。
无线资源控制(Radio Resource Control,RRC)信令属于第三层(Layer 3)信令,其通常是一些控制消息,L3信令通常可以携带在第二层帧的帧体中。L3信令的发送周期或 者控制周期通常较长,适用于发送一些不会频繁发生变化的信息,例如,在现有的一些通信标准中,L3信令通常用于承载一些配置信息。上述预编码配置信息也可以通过RRC信令之外的其他第三层信令发送。
上文所述仅为物理层信令、MAC层信令、RRC信令、第一层信令、第二层信令和第三层信令的原理性描述,有关三种信令的具体细节可以参考现有技术,因此本文不再赘述。
不难看出,通过信令发送预编码配置信息,接收端可以根据该预编码配置信息确定进行相同预编码的频带的宽度。相比现有技术,进行相同预编码的频带的宽度仅仅由系统带宽确定,本发明实施例提供的技术方案可以灵活地确定进行相同预编码的频带的宽度。因此,借助本发明实施例提供的技术方案,发送端设备根据具体的需要,在不同的场景下给接收端设备反馈最优的进行相同预编码的频带的宽度,能够满足无线通信系统多样化的场景需求,有效针对不同场景来优化系统性能。
图3是依照本发明一实施例的预编码配置方法300的示范性流程图。在具体实现过程中,方法300可以由接收端设备来执行,该接收端设备可以是,例如但不限于,图1中的基站102~106,或者终端设备108~122。
步骤302、接收预编码配置信息,所述预编码配置信息用于配置进行相同预编码的频带的宽度;
步骤304、根据所述预编码配置信息确定进行相同预编码的频带的宽度。
进行相同预编码的频带的宽度和资源单元的频带宽度的概念以及其他相关的特征在方法200中已有详细描述,在此不再赘述。
在上述方法300中,预编码配置信息可以包括频带宽度参数,根据所述频带宽度参数确定进行相同预编码的频带的宽度,所述进行相同预编码的频带的宽度等于所述频带宽度参数乘以基准频带宽度,其具体确定过程在方法200中已有详细描述,在此不再赘述。
优选的,上述方法300中预编码配置信息还可以包括进行相同预编码的频带的宽度值或该宽度值的索引,根据该宽度值或者该宽度值的索引来确定进行相同预编码的频带的宽度。例如接收端设备接收到一个具体的宽度值,例如上述宽度值可以是180kHz,在这种情况下,该宽度值180kHz即为发送端设备向接收端设备指示的其在某一种场景下最优的进行相同预编码的频带的宽度,上述提到的场景可以是高频场景(载波频率大于6GHz)、低频场景(载波频率小于6GHz)等,上述场景可以根据具体需要进行设置,在此不作限定。又例如接收端设备接收到一个用于指示进行相同预编码的频带的宽度值的索引,在这种情况下,接收端设备接收到该索引之后,按照预先约定的该宽度值与索引之间的对应关系即可确定发送端设备向其指示的最优的进行相同预编码的频带的宽度。具体地,该宽度值和索引之间的对应关系可以参照方法200中的表1,例如索引等于1,其对应的宽度值为360kHz,即发送端设备向接收端设备指示的最优的进行相同预编码的频带的宽度为360kHz。
优选的,上述方法300中预编码配置信息还可以包括宽度映射规则的索引,其中,该宽度映射规则中记录有系统带宽与进行相同预编码的频带的宽度之间的对应关系,该宽度映射规则的索引用于指示宽度映射规则,在这种情况下,接收端设备可以根据该宽 度映射规则和系统带宽确定进行相同预编码的频带的宽度。例如接收端设备接收到一个用于指示宽度映射规则的索引,通过该索引确定宽度映射规则,该映射规则可以采用表格的形式来表示,也可以通过其他的形式来表示。以LTE标准为例,采用表格的形式可以参照方法200中的表2(为了便于说明,该索引用idx表示,进行相同预编码的频带的宽度用P表示,该频带宽度的单位用现有技术中的物理资源块PRB表示),根据该索引idx的取值,确定系统带宽与进行相同预编码的频带的宽度的对应关系。例如idx的取值为0,系统带宽为11-26个PRB,则进行相同预编码的频带的宽度等于2PRB,即360kHz。换句话说,此时发送端设备向接收端设备指示的进行相同预编码的频带的宽度为360kHz。
优选的,上述方法300中预编码配置信息还可以包括宽度更新参数,根据所述宽度更新参数确定进行相同预编码的频带的宽度。例如接收端设备接收到一个宽度更新参数,该宽度更新参数用于指示需要对当前进行相同预编码的频带的宽度所做的更新,具体的更新内容可以采用计算公式的形式表示,具体可以参照方法200中的表3(为了便于说明,该宽度更新参数用CASE表示,当前进行相同预编码的频带的宽度用P表示,更新后的该频带的宽度用P*表示,该频带宽度的单位用现有技术中的物理资源块PRB表示),根据该宽度更新参数CASE的取值,确定在相应系统带宽下更新后的进行相同预编码的频带的宽度。例如CASE的取值为0,系统带宽的取值为27-63个PRB时,则更新内容采用的计算公式为P*=Px2,即当前进行相同预编码的频带宽度为2个PRB时,接收端设备更新后的进行相同预编码的频带的宽度为4个PRB;例如CASE取值为1,系统带宽为64-110个PRB时,则更新内容采用的计算公式为P*=P,即当前进行相同预编码的频带宽度为2个PRB时,接收端设备更新后的进行相同预编码的频带的宽度也为2个PRB。
可以看出,接收端设备可以根据发送端设备发送的预编码配置信息确定进行相同预编码的频带的宽度。相比现有技术,进行相同预编码的频带的宽度仅仅由系统带宽确定,本发明实施例提供的技术方案可以灵活地确定进行相同预编码的频带的宽度。因此,借助本发明实施例提供的技术方案,接收端设备通过接收发送端设备根据不同的场景发送的预编码配置信息,进而确定进行相同预编码的频带的宽度,能够满足无线通信系统多样化的场景需求,有效针对不同场景来优化系统性能。
图4是依照本发明一实施例的发送端设备400的逻辑结构示意图。在具体实现过程中,该发送端设备可以是,例如但不限于,图1中的终端设备108~122,或者基站102~106。如图4所示,设备400包括生成模块402和发送模块404。
生成模块402用于生成预编码配置信息,所述预编码配置信息用于配置进行相同预编码的频带的宽度;
发送模块404用于发送所述预编码配置信息。
上述预编码配置信息可以包括频带宽度参数,其中,上述进行相同预编码的频带的宽度等于频带宽度参数乘以基准频带宽度,该基准频带宽度等于资源单元的频带宽度。
优选的,上述预编码配置信息还可以包括进行相同预编码的频带的宽度值或该宽度值的索引,该宽度值或者该宽度值的索引用于确定进行相同预编码的频带的宽度。
优选的,上述预编码配置信息还可以包括宽度映射规则的索引,其中,该宽度映射规则中记录有系统带宽与进行相同预编码的频带的宽度之间的对应关系,该宽度映射规则的索引用于确定宽度映射规则。
优选的,上述预编码配置信息还可以包括宽度更新参数,该宽度更新参数用于对当 前进行相同预编码的频带的宽度进行更新。
设备400用于执行图2所示的方法200。设备400涉及的相关技术特征已经在上文结合附图,例如但不限于图2,进行了详细的描述,因此此处不再赘述。
图5是依照本发明一实施例的接收端设备500的逻辑结构示意图。在具体实现过程中,该接收端设备可以是,例如但不限于,图1中的基站102~106,或者终端设备108~122。如图5所示,设备500包括接收模块502和确定模块504。
接收模块502用于接收预编码配置信息,所述预编码配置信息用于配置进行相同预编码的频带的宽度;
确定模块504用于根据所述预编码配置信息确定进行相同预编码的频带宽度。
上述预编码配置信息可以包括频带宽度参数,根据所述频带宽度参数确定进行相同预编码的频带的宽度,其中,所述进行相同预编码的频带的宽度等于频带宽度参数乘以基准频带宽度,该基准频带宽度等于资源单元的频带宽度。
优选的,上述预编码配置信息还可以包括进行相同预编码的频带的宽度值或该宽度值的索引,该宽度值或者该宽度值的索引用于确定进行相同预编码的频带的宽度。
优选的,上述预编码配置信息还可以包括宽度映射规则的索引,其中,该宽度映射规则中记录有系统带宽与进行相同预编码的频带的宽度之间的对应关系,根据所述宽度映射规则和系统带宽确定进行相同预编码的频带的宽度。
优选的,上述预编码配置信息还可以包括宽度更新参数,根据所述宽度更新参数确定进行相同预编码的频带的宽度。
设备500是与设备400相对应的接收侧设备,用于执行图3所示的方法300。设备500涉及的相关技术特征已经在上文结合附图,例如但不限于图3,进行了详细的描述,因此此处不再赘述。
图6是依照本发明一实施例的发送端设备600的硬件结构示意图。如图6所示,设备600包括处理器602、收发器604、多根天线606,存储器608、I/O(输入/输出,Input/Output)接口610和总线612。收发器604进一步包括发射器6042和接收器6044,存储器608进一步用于存储指令6082和数据6084。此外,处理器602、收发器604、存储器608和I/O接口610通过总线612彼此通信连接,多根天线606与收发器604相连。
处理器602可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器602还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,处理器602可以用于执行,例如,图2所示的预编码配置方法200中的步骤202,和图4所示的发送端设备400中生成模块402所执行的操作。处理器602可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器608中存储的指令6062来执行上述步骤和/或操作的处理器,处理器602在执行上述步骤和/或操作的过程中可能需要用到数据6084。
收发器604包括发射器6042和接收器6044,其中,发射器6042用于通过多根天线606之中的至少一根天线发送信号。接收器6044用于通过多根天线606之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,发射器6042具体可以用于通过多根天线606之中的至少一根天线执行,例如,图2所示的预编码配置的方法200 中的步骤204,以及图4所示的发送端设备400中发送模块404所执行的操作。
存储器608可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器608具体用于存储指令6082和数据6084,处理器602可以通过读取并执行存储器608中存储的指令6082,来执行上文所述的步骤和/或操作,在执行上述步骤和/或操作的过程中可能需要用到数据6084。
I/O接口610用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
应注意,在具体实现过程中,设备600还可以包括其他硬件器件,本文不再一一列举。
图7是依照本发明一实施例的接收端设备700的硬件结构示意图。如图7所示,设备700包括处理器702、收发器704、多根天线706,存储器708、I/O(输入/输出,Input/Output)接口710和总线712。收发器704进一步包括发射器7042和接收器7044,存储器708进一步用于存储指令7082和数据7084。此外,处理器702、收发器704、存储器708和I/O接口710通过总线712彼此通信连接,多根天线706与收发器704相连。
处理器702可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器702还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,处理器702用于执行,例如,图3所示的接收预编码配置信息的方法300中的步骤304,以及图5所示的接收预编码配置信息的设备500中确定模块504所执行的操作。处理器702可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器708中存储的指令7082来执行上述步骤和/或操作的处理器,处理器702在执行上述步骤和/或操作的过程中可能需要用到数据7084。
收发器704包括发射器7042和接收器7044,其中,发射器7042用于通过多根天线706之中的至少一根天线发送信号。接收器7044用于通过多根天线706之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,接收器7044具体可以用于通过多根天线706之中的至少一根天线执行,例如,图3所示的预编码配置的方法300中的步骤302,以及图5所示的接收端设备500中接收模块502所执行的操作。
存储器708可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器708具体用于存储指令7082和数据7084,处理器702可以通过读取并执行存储器708中存储的指令7082,来执行上文所述的步骤和/或操作,在执行上述步骤和/或操作的过程中可能需要用到数据7084。
I/O接口710用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
应注意,在具体实现过程中,设备700还可以包括其他硬件器件,本文不再一一列举。
图8是依照本发明一实施例的预编码配置系统800的结构示意图。在具体实现过程中,如图8所示,该预编码配置系统800可以包括:发送端设备810和接收端设备820。
在一种可能的实现方式中,发送端设备810为图4所示的发送端设备400;接收端设备820为图5所示的接收端设备500;
在另一种可能的实现方式中,发送端设备810为图6所示的发送端设备600;接收端设备820为图7所示的接收端设备700。
以上所述仅为本发明的较佳实施例,并不用以限制本发明的范围,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。例如,在本发明实施例提供的各方法的步骤之前、之间和/或之后添加其他的处理步骤,在本发明实施例提供的各装置中添加其他的处理模块以完成额外的处理,将本发明实施例提供的技术方案应用在特定场景或者特定条件下,均应视为在本发明实施例提供的技术方案基础上所做的进一步的改进,因此均落入本发明的范围之内。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说 对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种预编码配置方法,其特征在于,所述方法包括:
    生成预编码配置信息,所述预编码配置信息用于配置进行相同预编码的频带的宽度;
    发送所述预编码配置信息。
  2. 如权利要求1所述的方法,其特征在于,所述预编码配置信息包括频带宽度参数,所述进行相同预编码的频带的宽度等于所述频带宽度参数乘以基准频带宽度。
  3. 如权利要求2所述的方法,其特征在于,所述基准频带宽度等于资源单元的频带宽度。
  4. 如权利要求1所述的方法,其特征在于,所述预编码配置信息包括进行相同预编码的频带的宽度值或该宽度值的索引。
  5. 如权利要求1所述的方法,其特征在于,所述预编码配置信息包括宽度映射规则的索引,所述宽度映射规则中记录有系统带宽与进行相同预编码的频带的宽度之间的对应关系。
  6. 如权利要求1所述的方法,其特征在于,所述预编码配置信息包括宽度更新参数,所述宽度更新参数用于对当前进行相同预编码的频带的宽度进行更新。
  7. 一种预编码配置方法,其特征在于,所述方法包括:
    接收预编码配置信息,所述预编码配置信息用于配置进行相同预编码的频带的宽度;
    根据所述预编码配置信息确定进行相同预编码的频带的宽度。
  8. 如权利要求7所述的方法,其特征在于,所述预编码配置信息包括频带宽度参数;
    所述根据所述预编码配置信息确定进行相同预编码的频带的宽度包括所述进行相同预编码的频带的宽度等于所述频带宽度参数乘以基准频带宽度。
  9. 如权利要求8所述的方法,其特征在于,所述基准频带宽度等于资源单元的频带宽度。
  10. 如权利要求7所述的方法,其特征在于,所述预编码配置信息包括进行相同预编码的频带的宽度值或该宽度值的索引;
    所述根据所述预编码配置信息确定进行相同预编码的频带的宽度包括将所述进行相同预编码的频带的宽度值确定为所述进行相同预编码的频带的宽度;或,
    根据所述进行相同预编码的频带的宽度值的索引与频带的宽度值的对应关系确定所述进行相同预编码的频带的宽度。
  11. 如权利要求7所述的方法,其特征在于,所述预编码配置信息包括宽度映射规则的索引,所述宽度映射规则中记录有系统带宽与进行相同预编码的频带的宽度之间的对应关系;
    所述根据所述预编码配置信息确定进行相同预编码的频带的宽度包括根据所述宽度映射规则的索引确定所述宽度映射规则,再根据所述宽度映射规则和系统带宽确定所述进行相同预编码的频带的宽度。
  12. 如权利要求7所述的方法,其特征在于,所述预编码配置信息包括宽度更新参数;
    所述根据所述预编码配置信息确定进行相同预编码的频带的宽度包括根据所述宽度 更新参数确定所述进行相同预编码的频带的宽度。
  13. 一种发送端设备,其特征在于,所述发送端设备包括:
    生成模块,用于生成预编码配置信息,所述预编码配置信息用于配置进行相同预编码的频带的宽度;
    发送模块,用于发送所述预编码配置信息。
  14. 如权利要求13所述的发送端设备,其特征在于,所述预编码配置信息包括频带宽度参数,所述进行相同预编码的频带的宽度等于所述频带宽度参数乘以基准频带宽度。
  15. 如权利要求14所述的方法,其特征在于,所述基准频带宽度等于资源单元的频带宽度。
  16. 如权利要求13所述的发送端设备,其特征在于,所述预编码配置信息包括进行相同预编码的频带的宽度值或该宽度值的索引。
  17. 如权利要求13所述的发送端设备,其特征在于,所述预编码配置信息包括宽度映射规则的索引,所述宽度映射规则中记录有系统带宽与进行相同预编码的频带的宽度之间的对应关系。
  18. 如权利要求13所述的发送端设备,其特征在于,所述预编码配置信息包括宽度更新参数,所述宽度更新参数用于对当前进行相同预编码的频带的宽度进行更新。
  19. 一种接收端设备,其特征在于,所述接收端设备包括:
    接收模块,用于接收预编码配置信息,所述预编码配置信息用于配置进行相同预编码的频带的宽度;
    确定模块,用于根据所述预编码配置信息确定进行相同预编码的频带的宽度。
  20. 如权利要求19所述的接收端设备,其特征在于,所述预编码配置信息包括频带宽度参数;
    所述根据所述预编码配置信息确定进行相同预编码的频带的宽度包括所述进行相同预编码的频带的宽度等于所述频带宽度参数乘以基准频带宽度。
  21. 如权利要求20所述的接收端设备,其特征在于,所述基准频带宽度等于资源单元的频带宽度。
  22. 如权利要求20所述的接收端设备,其特征在于,所述预编码配置信息包括进行相同预编码的频带的宽度值或该宽度值的索引;
    所述根据所述预编码配置信息确定进行相同预编码的频带的宽度包括将所述进行相同预编码的频带的宽度值确定为所述进行相同预编码的频带的宽度;或,
    根据所述进行相同预编码的频带的宽度值的索引与频带的宽度值的对应关系确定所述进行相同预编码的频带的宽度。
  23. 如权利要求20所述的接收端设备,其特征在于,所述预编码配置信息包括宽度映射规则的索引,所述宽度映射规则中记录有系统带宽与进行相同预编码的频带的宽度之间的对应关系;
    所述根据所述预编码配置信息确定进行相同预编码的频带的宽度包括根据所述宽度映射规则的索引确定所述宽度映射规则,再根据所述宽度映射规则和系统带宽确定进行相同预编码的频带的宽度。
  24. 如权利要求20所述的接收端设备,其特征在于,所述预编码配置信息包括宽度更新参数;
    所述根据所述预编码配置信息确定进行相同预编码的频带的宽度包括根据所述宽度更新参数确定所述进行相同预编码的频带的宽度。
  25. 一种预编码配置系统,其特征在于,所述预编码配置系统包括:
    权利要求13至18任一所述的发送端设备;和,
    权利要求19至24任一所述的接收端设备。
PCT/CN2017/090052 2016-11-03 2017-06-26 一种预编码配置方法、设备及系统 WO2018082319A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112019008726A BR112019008726A2 (pt) 2016-11-03 2017-06-26 método de configuração de pré-codificação, dispositivo, e sistema
EP17867269.7A EP3528397B1 (en) 2016-11-03 2017-06-26 Precoding configuration method, device and system
US16/401,824 US10972159B2 (en) 2016-11-03 2019-05-02 Precoding configuration method, device, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610974339.0 2016-11-03
CN201610974339.0A CN108023619B (zh) 2016-11-03 2016-11-03 一种预编码配置方法、设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/401,824 Continuation US10972159B2 (en) 2016-11-03 2019-05-02 Precoding configuration method, device, and system

Publications (1)

Publication Number Publication Date
WO2018082319A1 true WO2018082319A1 (zh) 2018-05-11

Family

ID=62075671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090052 WO2018082319A1 (zh) 2016-11-03 2017-06-26 一种预编码配置方法、设备及系统

Country Status (5)

Country Link
US (1) US10972159B2 (zh)
EP (1) EP3528397B1 (zh)
CN (1) CN108023619B (zh)
BR (1) BR112019008726A2 (zh)
WO (1) WO2018082319A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102379091A (zh) * 2009-03-30 2012-03-14 Lg电子株式会社 用于在无线通信系统中发送信号的方法和装置
US20150263798A1 (en) * 2007-03-12 2015-09-17 Lg Electronics Inc. Method for transmitting control information in multiple antenna system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100981514B1 (ko) * 2004-12-30 2010-09-10 삼성전자주식회사 직교 주파수 분할 다중 접속 통신 시스템에서 부분 채널 정보 피드백을 이용한 적응 부채널 및 비트 할당 방법
WO2007073093A2 (en) * 2005-12-20 2007-06-28 Lg Electronics Inc. Method of generating code sequence and method of transmitting signal using the same
US8830983B2 (en) * 2005-12-20 2014-09-09 Lg Electronics Inc. Method of generating code sequence and method of transmitting signal using the same
US20110222629A1 (en) * 2008-11-20 2011-09-15 Nokia Corporation Pre-coding for downlink control channel
KR101588731B1 (ko) * 2009-02-20 2016-01-26 엘지전자 주식회사 Sc-fdma가 적용된 상향링크 mimo 시스템에 있어서, pmi 통지 방법
EP2465210A1 (en) * 2009-08-10 2012-06-20 Nokia Siemens Networks OY Apparatus and method for n0n-c0debook based precoding
JP2011142538A (ja) * 2010-01-08 2011-07-21 Sharp Corp 基地局装置、移動局装置、無線通信システム、基地局装置の制御プログラム、移動局装置の制御プログラムおよび集積回路
EP2378703A1 (en) * 2010-04-13 2011-10-19 Panasonic Corporation Mapping of control information to control channel elements
US20130155992A1 (en) * 2010-08-24 2013-06-20 Pantech Co., Ltd. Method and device for transmitting and receiving reference signals in accordance with mimo operation mode
TWI468063B (zh) * 2011-01-07 2015-01-01 Inst Information Industry 基地台以及無線裝置
US9401748B2 (en) * 2012-03-27 2016-07-26 Texas Instruments Incorporated Method and apparatus for channel state information feedback in a coordinated multi-point communication system
EP3116155A4 (en) * 2014-04-03 2017-03-22 Huawei Technologies Co., Ltd. Csi report method and equipment
US20150305049A1 (en) * 2014-04-21 2015-10-22 Collision Communications, Inc. Method And System For Improving Efficiency In A Cellular Communications Network
CN105245310B (zh) * 2014-07-09 2020-01-14 中兴通讯股份有限公司 一种下行导频信号的处理方法及系统
CN107113274B (zh) * 2015-01-29 2021-02-02 苹果公司 较宽系统带宽内的用于减少直流dc干扰的演进节点b的设备和机器型通信mtc的设备
CN105992343B (zh) * 2015-01-30 2020-05-26 电信科学技术研究院 一种信号发送方法、接收方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150263798A1 (en) * 2007-03-12 2015-09-17 Lg Electronics Inc. Method for transmitting control information in multiple antenna system
CN102379091A (zh) * 2009-03-30 2012-03-14 Lg电子株式会社 用于在无线通信系统中发送信号的方法和装置

Also Published As

Publication number Publication date
CN108023619B (zh) 2023-09-01
US20190260437A1 (en) 2019-08-22
US10972159B2 (en) 2021-04-06
EP3528397A4 (en) 2019-09-11
EP3528397A1 (en) 2019-08-21
EP3528397B1 (en) 2021-01-20
BR112019008726A2 (pt) 2019-07-16
CN108023619A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
US11239950B2 (en) Method for configuring channel state information reporting band and communications apparatus
US10511411B2 (en) Method for configuring channel state information reporting band and communications apparatus
KR102200645B1 (ko) 리소스 구성 방법 및 장치
CN110831198A (zh) 带宽资源切换方法、指示带宽资源切换方法、终端和网络设备
US11784770B2 (en) Method and apparatus for sending reference signal, and method and apparatus for obtaining reference signal
WO2018126944A1 (zh) 信道状态信息测量的配置方法及相关设备
WO2018082696A1 (zh) 基于码本的信道状态信息反馈方法及设备
US20200128547A1 (en) Frequency Band Indication Method, Frequency Band Determining Method, Transmit End Device, And Receive End Device
US10924168B2 (en) Reference signal sending and receiving methods and related device
WO2019095969A1 (zh) 一种用户设备和接入设备
WO2019085637A1 (zh) 一种信道测量方法和用户设备
CN110574415A (zh) 信道测量方法和用户设备
WO2018082319A1 (zh) 一种预编码配置方法、设备及系统
WO2018082394A1 (zh) 一种发送和获取参考信号的方法和装置
WO2018082380A1 (zh) 一种能力上报及确定方法、终端设备和接入设备
WO2018166340A1 (zh) 一种信息传输方法、终端设备及基站
WO2019095973A1 (zh) 一种用户设备和信道测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019008726

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017867269

Country of ref document: EP

Effective date: 20190513

ENP Entry into the national phase

Ref document number: 112019008726

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190429