WO2018082394A1 - 一种发送和获取参考信号的方法和装置 - Google Patents

一种发送和获取参考信号的方法和装置 Download PDF

Info

Publication number
WO2018082394A1
WO2018082394A1 PCT/CN2017/100415 CN2017100415W WO2018082394A1 WO 2018082394 A1 WO2018082394 A1 WO 2018082394A1 CN 2017100415 W CN2017100415 W CN 2017100415W WO 2018082394 A1 WO2018082394 A1 WO 2018082394A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
basic pattern
physical layer
transmission unit
layer transmission
Prior art date
Application number
PCT/CN2017/100415
Other languages
English (en)
French (fr)
Inventor
武露
刘永
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201611027749.0A external-priority patent/CN108023720B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17867917.1A priority Critical patent/EP3531606B1/en
Priority to BR112019008276A priority patent/BR112019008276A2/pt
Priority to EP21181933.9A priority patent/EP3958495A1/en
Publication of WO2018082394A1 publication Critical patent/WO2018082394A1/zh
Priority to US16/401,826 priority patent/US11374709B2/en
Priority to US17/833,478 priority patent/US11784770B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a method and apparatus for transmitting and acquiring reference signals.
  • the Reference Signal is also known as a Pilot or training sequence.
  • the reference signal is known.
  • the reference signal has multiple uses, and the reference signal can be divided into multiple types based on specific purposes, such as, but not limited to, a reference signal for obtaining Channel State Information Reference (CSI) for decoding the received signal.
  • CSI Channel State Information Reference
  • the adjusted reference signal and the reference signal used for beam management.
  • certain reference signals can serve multiple purposes.
  • the usage of the reference signal and the configuration of the resources carrying the reference signal may also be different for different purposes.
  • reference signals are typically arranged in accordance with a fixed resource distribution pattern.
  • 1 is an exemplary schematic diagram of a resource distribution pattern 100 employed by existing reference signals.
  • resource elements (REs) occupied by reference signals R corresponding to one antenna port are distributedly distributed in two resource blocks 104 and 106 included in a resource block pair 102, and Within the resource block pair 102, the location of the resource granule carrying the reference signal is fixed.
  • a method of acquiring a reference signal is provided to achieve flexible arrangement of reference signals.
  • a means for transmitting a reference signal is provided to achieve a flexible arrangement of reference signals.
  • a device for acquiring a reference signal is provided to achieve flexible arrangement of reference signals.
  • a method for transmitting a reference signal includes: a resource allocated for the reference signal in a basic pattern corresponding to the reference signal, and at least one of the basic pattern allocations in the physical layer transmission unit And determining, by the resource, a resource occupied by the reference signal in the physical layer transmission unit; and sending the reference signal by using the determined resource.
  • the base pattern occupies at least one OFDM symbol in the time domain and at least one subcarrier in the frequency domain.
  • the reference signal occupies at least one OFDM symbol in the time domain and at least one subcarrier in the frequency domain.
  • the reference signal has multiple at least one OFDM symbol occupied in the time domain. Continuous OFDM symbols.
  • the reference signal is used for at least one of the following: determining channel state information; performing beam management; and demodulating the received signal.
  • the basic pattern of the reference signal is known to the transmitting end device of the reference signal and the receiving end device of the reference signal.
  • the basic pattern of the reference signal can be defined in advance in the communication standard or the design specification of the communication system.
  • the method further includes the step of the transmitting end device notifying the receiving end device of the resources allocated to the at least one basic pattern in the physical layer transmission unit.
  • the transmitting end device may use physical layer signaling to notify the receiving end device of the resources allocated to the at least one basic pattern in the physical layer transmission unit.
  • the number of reference signals corresponding to the basic pattern carried in the physical layer transmission unit and the number and occupation of the basic pattern of each reference signal in the physical layer transmission unit may be set according to specific needs. Resources.
  • a physical layer transmission unit can carry a basic pattern of at least one reference signal.
  • the number of basic patterns of the same reference signal carried in one physical layer transmission unit may be one or plural.
  • resources occupied by each basic pattern of each reference signal in the physical layer transmission unit may be set according to specific needs.
  • the number of OFDM symbols occupied by the basic pattern of the reference signal in the time domain, the number of subcarriers occupied in the frequency domain, and the resources occupied by the reference signal in its basic pattern may be set according to specific needs.
  • the basic pattern of the reference signal may occupy at least one OFDM symbol in the time domain, at least one subcarrier may be occupied in the frequency domain, and the OFDM symbols may be continuous, and the foregoing subcarriers may also be continuous.
  • the reference signal may occupy at least one OFDM symbol in its base pattern and occupy at least one subcarrier in the frequency domain.
  • a method for acquiring a reference signal includes: a resource allocated for the reference signal according to a basic pattern corresponding to the reference signal, and at least one of the basic pattern allocations in the physical layer transmission unit And determining, by the resource, the resource occupied by the reference signal in the physical layer transmission unit; acquiring the reference signal by using the determined resource.
  • the base pattern occupies at least one OFDM symbol in the time domain and at least one subcarrier in the frequency domain.
  • the reference signal occupies at least one OFDM symbol in the time domain and at least one subcarrier in the frequency domain.
  • the reference signal occupies at least one OFDM symbol in the time domain as a plurality of consecutive OFDM symbols.
  • the reference signal is used for at least one of the following: determining channel state information; performing beam management; and demodulating the received signal.
  • the basic pattern of the reference signal is known to the transmitting end device of the reference signal and the receiving end device of the reference signal.
  • the basic pattern of the reference signal can be defined in advance in the communication standard or the design specification of the communication system.
  • the method further includes the step of the receiving end device acquiring the resources allocated in the physical layer transmission unit for the at least one basic pattern. Further, the information carrying the resources allocated to the at least one basic pattern in the physical layer transmission unit may be sent from the transmitting end device to the receiving end device through physical layer signaling.
  • the basic pattern carried in the physical layer transmission unit can be set according to specific needs.
  • a physical layer transmission unit can carry a basic pattern of at least one reference signal.
  • the number of basic patterns of the same reference signal carried in one physical layer transmission unit may be one or plural.
  • resources occupied by each basic pattern of each reference signal in the physical layer transmission unit may be set according to specific needs.
  • the number of OFDM symbols occupied by the basic pattern of the reference signal in the time domain, the number of subcarriers occupied in the frequency domain, and the resources occupied by the reference signal in its basic pattern may be set according to specific needs.
  • the basic pattern of the reference signal may occupy at least one OFDM symbol in the time domain, at least one subcarrier may be occupied in the frequency domain, and the OFDM symbols may be continuous, and the foregoing subcarriers may also be continuous.
  • the reference signal may occupy at least one OFDM symbol in its base pattern and occupy at least one subcarrier in the frequency domain.
  • an apparatus for transmitting a reference signal comprising: a determining module, configured to: at least one of a resource allocated for the reference signal in a basic pattern corresponding to the reference signal, and a physical layer transmission unit The resource allocated by the basic pattern determines a resource occupied by the reference signal in the physical layer transmission unit, and the sending module is configured to send the reference signal by using the determined resource.
  • the base pattern occupies at least one OFDM symbol in the time domain and at least one subcarrier in the frequency domain.
  • the reference signal occupies at least one OFDM symbol in the time domain and at least one subcarrier in the frequency domain.
  • the reference signal occupies at least one OFDM symbol in the time domain as a plurality of consecutive OFDM symbols.
  • the reference signal is used for at least one of the following: determining channel state information; performing beam management; and demodulating the received signal.
  • the basic pattern of the reference signal is known to the transmitting end device of the reference signal and the receiving end device of the reference signal.
  • the basic pattern of the reference signal can be defined in advance in the communication standard or the design specification of the communication system.
  • the sending module may be further configured to send information about resources allocated for at least one of the foregoing basic patterns in the physical layer transmission unit to the receiving end device. Furthermore, the above information can be carried by physical layer signaling.
  • the number of reference signals corresponding to the basic pattern carried in the physical layer transmission unit and the number and occupation of the basic pattern of each reference signal in the physical layer transmission unit may be set according to specific needs. Resources.
  • a physical layer transmission unit can carry a basic pattern of at least one reference signal.
  • the number of basic patterns of the same reference signal carried in one physical layer transmission unit may be one or plural.
  • resources occupied by each basic pattern of each reference signal in the physical layer transmission unit may be set according to specific needs.
  • the number of OFDM symbols occupied by the basic pattern of the reference signal in the time domain, the number of subcarriers occupied in the frequency domain, and the resources occupied by the reference signal in its basic pattern may be set according to specific needs.
  • the basic pattern of the reference signal may occupy at least one OFDM symbol in the time domain, at least one subcarrier may be occupied in the frequency domain, and the OFDM symbols may be continuous, and the foregoing subcarriers may also be continuous.
  • the reference signal may occupy at least one OFDM symbol in its base pattern and occupy at least one subcarrier in the frequency domain.
  • an apparatus for acquiring a reference signal where the determining module is configured to: according to a resource allocated for the reference signal in a basic pattern corresponding to the reference signal, and at least one of the physical layer transmission unit The resource allocated by the basic pattern determines a resource occupied by the reference signal in the physical layer transmission unit, and the acquiring module is configured to acquire the reference signal by using the determined resource.
  • the base pattern occupies at least one OFDM symbol in the time domain and at least one subcarrier in the frequency domain.
  • the reference signal occupies at least one OFDM symbol in the time domain and at least one subcarrier in the frequency domain.
  • the reference signal occupies at least one OFDM symbol in the time domain as a plurality of consecutive OFDM symbols.
  • the reference signal is used for at least one of the following: determining channel state information; performing beam management; and demodulating the received signal.
  • the basic pattern of the reference signal is known to the transmitting end device of the reference signal and the receiving end device of the reference signal.
  • the basic pattern of the reference signal can be defined in advance in the communication standard or the design specification of the communication system.
  • the determining module may be further configured to acquire information about resources allocated for at least one of the above basic patterns in the physical layer transmission unit. Furthermore, the above information can be carried by physical layer signaling.
  • the number of reference signals corresponding to the basic pattern carried in the physical layer transmission unit and the number and occupation of the basic pattern of each reference signal in the physical layer transmission unit may be set according to specific needs. Resources.
  • a physical layer transmission unit can carry a basic pattern of at least one reference signal.
  • the number of basic patterns of the same reference signal carried in one physical layer transmission unit may be one or plural.
  • resources occupied by each basic pattern of each reference signal in the physical layer transmission unit may be set according to specific needs.
  • the number of OFDM symbols occupied by the basic pattern of the reference signal in the time domain, the number of subcarriers occupied in the frequency domain, and the resources occupied by the reference signal in its basic pattern may be set according to specific needs.
  • the basic pattern of the reference signal may occupy at least one OFDM symbol in the time domain, at least one subcarrier may be occupied in the frequency domain, and the OFDM symbols may be continuous, and the foregoing subcarriers may also be continuous.
  • the reference signal may occupy at least one OFDM symbol in its base pattern and occupy at least one subcarrier in the frequency domain.
  • the reference signal carried by the basic pattern may be set.
  • the arrangement within the physical layer transport unit it can be seen that the technical solution provided by the embodiment of the present invention can flexibly set the arrangement of the reference signal in the physical layer transmission unit compared to the prior art fixed reference signal arrangement.
  • the transmitting end device according to specific needs, such as, but not limited to, the received signal quality of the receiving end device, the channel state, the moving speed, the number of spatially multiplexed data streams, and the processing
  • the capability, the number of simultaneously scheduled receiver devices, the relevant design parameters of the beam management, the system bandwidth, etc. adjust the number of basic patterns carried by the physical layer transmission unit, and the locations of the resources occupied by the basic patterns in the physical layer transmission unit. Therefore, the arrangement of the reference signals carried in the basic pattern in the physical layer transmission unit can be flexibly adjusted.
  • 1 is an exemplary schematic diagram of a resource distribution pattern used by a conventional reference signal
  • FIG. 2 is an exemplary schematic diagram of a wireless communication network in accordance with an embodiment of the present invention.
  • FIG. 3 is an exemplary flowchart of a method of transmitting a reference signal in accordance with an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing the logical structure of a physical layer transmission unit according to an embodiment of the present invention.
  • 4A is a schematic diagram showing the logical structure of a physical layer transmission unit according to another embodiment of the present invention.
  • FIG. 5 is an exemplary flowchart of a method of acquiring a reference signal according to an embodiment of the invention
  • FIG. 6 is a schematic diagram showing the logical structure of an apparatus for transmitting a reference signal according to an embodiment of the invention.
  • FIG. 7 is a schematic diagram showing the logical structure of an apparatus for acquiring a reference signal according to an embodiment of the invention.
  • FIG. 8 is a schematic structural diagram of hardware of an apparatus for transmitting a reference signal according to an embodiment of the invention.
  • FIG. 9 is a schematic diagram showing the hardware structure of an apparatus for acquiring a reference signal according to an embodiment of the invention.
  • the technical solution provided by the embodiment of the present invention sets a corresponding basic pattern for the reference signal, and by adjusting resources occupied by the at least one basic pattern in the physical layer transmission unit, the reference signal can be designed to be different in the physical layer transmission unit. Arrangement to meet the requirements of reference signals for different scenarios and different needs. It can be seen that, according to the technical solution provided by the embodiment of the present invention, the arrangement of the reference signals in the physical layer transmission unit can be flexibly designed.
  • the wireless communication network 200 includes base stations 202-206 and terminal devices 208-222, wherein the base stations 202-206 can pass backhaul links with each other (e.g., the base stations 202-206 are in line with each other). Communication is shown, which may be a wired backhaul link (eg, fiber optic, copper) or a wireless backhaul link (eg, microwave).
  • the terminal devices 208-222 can communicate with the corresponding base stations 202-206 via a wireless link (as indicated by the broken lines between the base stations 202-206 and the terminal devices 208-222).
  • the base stations 202-206 are configured to provide wireless access services for the terminal devices 208-222.
  • each base station corresponds to a service coverage area (also referred to as a cell, as shown in each ellipse area in FIG. 2), and the terminal device entering the area can communicate with the base station by using a wireless signal to receive the base station.
  • Wireless access service provided.
  • multiple base stations may use Coordinated Multipoint (CoMP) technology to provide services for terminal devices in the overlapping area.
  • CoMP Coordinated Multipoint
  • the base station 202 overlaps with the service coverage area of the base station 204, and the terminal device 212 is within the overlapping area, so the terminal device 212 can receive the wireless signals from the base station 202 and the base station 204.
  • Base station 202 and base station 204 can simultaneously provide services to terminal device 212.
  • the service coverage areas of the base station 202, the base station 204, and the base station 206 have a common overlapping area, and the terminal device 220 is within the overlapping area, so the terminal device 220 can receive the base station.
  • the wireless signals 202, 204, and 206, the base stations 202, 204, and 206 can simultaneously provide services to the terminal device 220.
  • the base station may be referred to as a Node B (NodeB), an evolved Node B (eNodeB), and an Access Point (AP), etc., depending on the wireless communication technology used.
  • NodeB Node B
  • eNodeB evolved Node B
  • AP Access Point
  • the base station can be further divided into a macro base station for providing a macro cell, a micro base station for providing a pico cell, and a femtocell for providing Femto cell) Femto base station.
  • future base stations can also use other names.
  • the terminal devices 208-218 may be various wireless communication devices having wireless communication functions, such as but not limited to mobile cellular phones, cordless phones, personal digital assistants (PDAs), smart phones, notebook computers, tablets, wireless devices.
  • a data card a modem (Modulator demodulator, Modem), or a wearable device such as a smart watch.
  • IOT Internet of Things
  • the communication unit obtains a wireless communication function so that it can access the wireless communication network and accept remote control.
  • Such devices have wireless communication functions because they are equipped with wireless communication units, and therefore belong to the category of wireless communication devices.
  • the terminal devices 208-218 may also be referred to as mobile stations, mobile devices, mobile terminals, wireless terminals, handheld devices, clients, and the like.
  • the base stations 202-206 and the terminal devices 208-222 can be configured with multiple antennas to support MIMO (Multiple Input Multiple Output) technology. Further, the terminal devices 208-222 can support single-user MIMO (SU-MIMO) technology or multi-user MIMO (Multi-User MIMO), where MU-MIMO can be based on Implemented by Space Division Multiple Access (SDMA) technology.
  • the base station 202-206 and the terminal devices 208-222 can also flexibly support single input single output (SISO) technology, single input multiple output (SIMO) and multiple input.
  • SISO single input single output
  • SIMO single input multiple output
  • MIMO Multiple Input Single Output
  • multiplexing technology can be a spatial multiplexing (Spatial Multiplexing) technology.
  • SC Multiple Input Single Output
  • currently used transmit diversity may include, for example, but not limited to, Space-Time Transmit Diversity (STTD), Space-Frequency Transmit Diversity (Space-Frequency Transmit).
  • STTD Space-Time Transmit Diversity
  • Space-Frequency Transmit Diversity Space-Frequency Transmit
  • the current LTE (Long Term Evolution) standard adopts a transmit diversity method such as Space Time Block Coding (STBC), Space Frequency Block Coding (SFBC), and CDD.
  • STBC Space Time Block Coding
  • SFBC Space Frequency Block Coding
  • CDD Cyclic Delay Diversity
  • the base station 202 and the terminal devices 204-210 can communicate using various wireless communication technologies, such as, but not limited to, Time Division Multiple Access (TDMA) technology, Frequency Division Multiple Access (FDMA). Technology, Code Division Multiple Access (CDMA) technology, Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), Orthogonal Frequency Division Multiple Access (OFDMA) technology Single carrier frequency division multiple access (Single Carrier FDMA, SC-FDMA) technology, Space Division Multiple Access (SDMA) technology, and evolution and derivative technologies of these technologies.
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • Single carrier frequency division multiple access Single Carrier FDMA
  • SC-FDMA Space Division Multiple Access
  • SDMA Space Division Multiple Access
  • the above wireless communication technology is adopted as a radio access technology (RAT) by many wireless communication standards, thereby constructing various wireless communication systems (or networks) well known today, including but not limited to Global System for Mobile Communications (GSM), CDMA2000, Wideband CDMA (WCDMA), WiFi as defined by the 802.11 family of standards, Worldwide Interoperability for Microwave Access, WiMAX), Long Term Evolution (LTE), LTE-Advanced (LTE-A), and evolution systems of these wireless communication systems.
  • the wireless communication network shown in FIG. 2 may be any system or network in the above wireless communication system.
  • the technical solutions provided by the embodiments of the present invention are applicable to the above various wireless communication technologies and wireless communication systems, unless otherwise specified.
  • the terms “system” and “network” can be replaced with each other. .
  • the wireless communication network 200 shown in FIG. 2 is for example only and is not intended to limit the technical solution of the present invention. It should be understood by those skilled in the art that, in a specific implementation process, the wireless communication network 200 further includes other devices, such as but not limited to a base station controller (BSC), and the base station and the terminal device may also be configured according to specific needs. quantity.
  • BSC base station controller
  • FIG. 3 is an exemplary flow diagram of a method 300 of transmitting a reference signal in accordance with an embodiment of the present invention.
  • the method 300 may be performed by a transmitting device, which may be, for example, but not limited to, the base stations 202-206 in FIG. 2, or the terminal devices 208-222.
  • Step 302 Determine, according to the resource allocated for the reference signal in the basic pattern corresponding to the reference signal, and the resource allocated to the at least one basic pattern in the physical layer transmission unit, the resource occupied by the reference signal in the physical layer transmission unit.
  • Step 304 Send the reference signal by using the determined resource.
  • the basic pattern may occupy at least one OFDM symbol in the time domain and occupy at least one subcarrier in the frequency domain.
  • the reference signal may occupy at least one OFDM symbol in the time domain and may occupy at least one subcarrier in the frequency domain.
  • the resource allocated for the reference signal in the basic pattern corresponding to the reference signal may include at least one OFDM symbol in the time domain and at least one subcarrier in the frequency domain.
  • the at least one OFDM symbol occupied by the reference signal in the time domain may be a plurality of consecutive OFDM symbols.
  • the foregoing OFDM symbol may also be replaced with other forms of time units or time domain resources, and the foregoing subcarriers may also be replaced with other forms of frequency units or frequency domain resources.
  • the above reference signal is used for at least one of the following purposes:
  • the received signal is demodulated.
  • a typical example of a reference signal for determining channel state information is a Channel State Information Reference Signal (CSI-RS) employed by the LTE standard.
  • CSI-RS Channel State Information Reference Signal
  • a typical procedure for determining CSI based on CSI-RS is that the base station transmits a CSI-RS, which is received by the terminal device after being propagated through the channel.
  • the terminal device compares the received CSI-RS with the CSI-RS transmitted by the base station (the CSI-RS transmitted by the base station is known to the terminal device), thereby performing channel estimation and obtaining channel information, such as a channel matrix. .
  • the terminal device may further determine channel state information, including, but not limited to, a Precoding Matrix Indicator (PMI), a Channel Quality Indicator (CQI), and a rank. Indication (Rank Indication, RI).
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • RI rank Indication
  • a typical example of a reference signal used for demodulating a received signal is a Demodulation Reference Signal (DMRS) used by the LTE standard.
  • DMRS Demodulation Reference Signal
  • the DMRS and the data are precoded by the same precoding matrix, so the channel estimation based on the DMRS can be performed on the precoded channel (also called the equivalent channel).
  • the data is demodulated by the channel estimation result.
  • the 5G wireless communication system currently in the design stage will transmit data by means of high frequency wireless signals.
  • High-frequency wireless signals fading faster, so it is necessary to improve the received signal quality by means of beamforming techniques such as, but not limited to, digital beamforming, analog beamforming, hybrid beamforming, and the like.
  • many links such as, but not limited to, beam scanning, beam selection, and beam tracking, etc., require a reference signal.
  • the reference signals that the above-mentioned links depend on in the implementation process may be referred to as reference signals for beam management, and related functions of such reference signals are prior art, such as, but not limited to, those submitted by industry vendors at standard organization meetings. The proposal has been clearly described, so this article will not go into details.
  • the same reference signal may also have multiple different uses at the same time.
  • a typical example of such a reference signal is a Cell-specific Reference Signal (CRS) used by the LTE standard.
  • CRS Cell-specific Reference Signal
  • the CRS is a common reference signal, and the user equipment in the cell can use the CRS of the cell.
  • the CRS can be used to obtain both channel state information and demodulation of the received signal.
  • a reference signal is also introduced, which can be used for determining channel state information and for beam management. .
  • reference may be made to the above related proposals, and therefore will not be further described herein.
  • reference signal involved in the technical solution provided by the embodiment of the present invention may also be a reference signal for other purposes.
  • different basic patterns can be designed for different reference signals. Different basic patterns can not only contain different resources, but the resources occupied by one reference signal in its basic pattern can also be different from the resources occupied by another reference signal in its basic pattern. It should be noted that different reference signals may be reference signals applied to different purposes or different reference signals applied to the same purpose. In short, different reference signals can be understood as reference signals corresponding to different antenna ports. In addition, the same basic pattern may also correspond to multiple reference signals, and the reference signals may share resources included in the basic pattern by means of time division multiplexing, frequency division multiplexing, or code division multiplexing. Furthermore, the basic pattern of the reference signal should be known to the transmitting device of the reference signal and the receiving device of the reference signal.
  • the basic pattern of the reference signal can be defined in advance in the communication standard or the design specification of the communication system.
  • the basic pattern of the reference signal may be stored in the device in advance in the manufacturing process of the transmitting device and the receiving device, or the basic configuration of the reference signal may be configured to the device in the process of deploying the device.
  • the pattern can also dynamically configure the basic pattern of the reference signal through various communication messages during the process of accessing the communication network by the above device.
  • the physical layer transmission unit may be, for example, but not limited to, a physical layer frame, a time slot, a resource unit, and a combination of multiple resource units.
  • the number of time-frequency resources included in the transmission unit may refer to the existing LTE standard. Provisions.
  • the physical layer frame may refer to a subframe or a frame in the LTE standard, and the time slot may refer to the time in the LTE standard.
  • the resource unit may refer to a resource block in the LTE standard, and the combination of multiple resource units may refer to a resource block pair or a resource block group in the LTE standard.
  • the foregoing physical layer transmission unit may also be adjusted based on the above-mentioned units described in the existing LTE standard, or may be re-set according to the needs of the system design.
  • the basic pattern can be expressed in various forms such as a formula or a lookup table, and the specific expression form can refer to the prior art, and therefore will not be described herein.
  • the transmitting end device sends the foregoing reference signal to the receiving end device by using the determined resource.
  • the method 300 may further include the transmitting end device notifying the receiving end of the resource allocated to the at least one basic pattern in the physical layer transmission unit.
  • the transmitting end device may use various signaling to notify the foregoing information, such as, but not limited to, physical layer signaling, media access control (MAC) layer signaling, and radio resource control (Radio Resource). Control, RRC) signaling.
  • the foregoing information may be carried, such as, but not limited to, an index of a basic pattern, a number of basic patterns, a position of a time-frequency resource occupied by each basic pattern in a physical layer transmission unit, and the like.
  • L1 signaling may also be referred to as Layer 1, L1 signaling, which may typically be carried by a control portion in a physical layer transport unit (eg, a physical layer frame).
  • a typical example of L1 signaling is Downlink Control Information (DCI) carried in a physical downlink control channel (PDCCH) defined in the LTE standard.
  • DCI Downlink Control Information
  • PDCCH physical downlink control channel
  • L1 signaling may also be carried by the data portion of the physical layer frame. It is not difficult to see that the transmission period or signaling period of L1 signaling is usually the period of the physical layer frame, so this signaling is usually used to implement some dynamic control.
  • the Media Access Control layer signaling belongs to Layer 2 signaling, which can typically be carried by, for example, but not limited to, a frame header of a Layer 2 frame.
  • the foregoing frame header may also carry information such as, but not limited to, a source address and a destination address.
  • the second layer of frames usually also contains the frame body.
  • L2 signaling may also be carried by the frame body of the second layer frame.
  • a typical example of Layer 2 signaling is the signaling carried in the Frame Control field in the frame header of the MAC frame in the 802.11 series of standards, or the MAC Control Entity (MAC) defined in some protocols.
  • the second layer frame can usually be carried in the data portion of the physical layer frame.
  • the above information may also be sent through other Layer 2 signaling other than media access control layer signaling.
  • the radio resource control signaling belongs to Layer 3 signaling, which is usually some control message, and the L3 signaling can usually be carried in the frame body of the second layer frame.
  • the transmission period or control period of the L3 signaling is usually long, and is suitable for transmitting information that does not change frequently.
  • L3 signaling is usually used to carry some configuration information.
  • the above information may also be sent through other layer 3 signaling other than RRC signaling.
  • the foregoing information transmitted by using the foregoing signaling may specifically include the number of basic patterns of reference signals in the physical layer transmission unit and resources occupied by each basic pattern.
  • the reference signal carried by the basic pattern can be set in the physical layer transmission unit. Arrange. It can be seen that the technical solution provided by the embodiment of the present invention can flexibly set the arrangement of the reference signal in the physical layer transmission unit compared to the prior art fixed reference signal arrangement.
  • the transmitting end device according to specific needs, such as, but not limited to, the received signal quality of the receiving end device, Channel state, moving speed, number of spatially multiplexed data streams, processing capability, number of simultaneously scheduled receiving devices, beam management related design parameters, system bandwidth, etc., adjusting the basic pattern carried by the physical layer transmission unit The quantity, and the location of the resources occupied by the basic patterns in the physical layer transmission unit, thereby flexibly adjusting the arrangement of the reference signals carried in the basic pattern in the physical layer transmission unit.
  • FIG. 4 is a schematic diagram showing the logical structure of a physical layer transmission unit 400 according to an embodiment of the invention.
  • the physical layer transmission unit 400 carries a basic pattern corresponding to four reference signals, which are a basic pattern 402 corresponding to the reference signal R1, a basic pattern 404 corresponding to the reference signal R2, and a basic pattern 406 corresponding to the reference signal R3.
  • the reference signal R1 corresponds to the antenna port 1
  • the reference signal R2 corresponds to the antenna port 2
  • the reference signal R3 corresponds to the antenna port 3
  • the reference signal R4 corresponds to the antenna port 4.
  • the basic pattern 402 can also be referred to as the basic pattern of the antenna port 1, and the basic pattern 404 can also be referred to as the basic pattern of the antenna port 2.
  • the basic pattern 406 can also be referred to as the basic pattern of the antenna port 3.
  • the basic pattern 408 can also be called Is the basic pattern of antenna port 4.
  • reference signals such as CSI-RS, CRS, and DMRS respectively correspond to different antenna ports, and these reference signals and these antenna ports can usually be referred to or replaced with each other.
  • the relationship between the antenna port and the reference signal has been clearly described in the prior art, and therefore will not be described herein.
  • the physical layer transmission unit 400 carries two basic patterns of the reference signal; for the reference signal R2, the physical layer transmission unit 400 carries a basic pattern of the reference signal; for the reference signal R3
  • the physical layer transmission unit 400 carries two basic patterns of the reference signal; for the reference signal R4, the physical layer transmission unit 400 carries a basic pattern of the reference signal.
  • the two basic patterns 402 of the reference signal R1 are not continuous in the time domain, that is, the OFDM symbols in which the two basic patterns 402 are located are not continuous in the time domain.
  • the two basic patterns 406 of the reference signal R3 are continuous in the frequency domain, that is, the subcarriers in which the two basic patterns 406 are respectively located are continuous in the frequency domain.
  • the physical layer transmission unit 400 shown in FIG. 4 is only used to describe the carrying manner of the basic pattern of the reference signal in the physical layer transmission unit by way of example, and is not intended to be limiting. The scope of protection of the embodiments of the present invention.
  • the number of reference signals corresponding to the basic pattern carried in the physical layer transmission unit, and the number of basic patterns of each reference signal in the physical layer transmission unit and the occupied resources may be set according to specific needs.
  • a physical layer transmission unit may carry a basic pattern of at least one reference signal. Meanwhile, the number of basic patterns of the same reference signal carried in one physical layer transmission unit may be one or plural.
  • each basic pattern of each reference signal in the physical layer transmission unit may be set according to specific needs, that is, each basic pattern of each reference signal may be set in the physical layer transmission unit according to specific needs. s position.
  • the two basic patterns 402 of the reference signal R1 may also be continuously placed in the time domain, and on the other hand, the two basic patterns 406 of the reference signal R3 may also be discontinuously placed in the frequency domain.
  • the basic pattern 402 of the reference signal R1 occupies one OFDM symbol in the time domain and occupies a plurality of consecutive subcarriers in the frequency domain; the basic pattern 404 of the reference signal R2 occupies two consecutive OFDM symbols in the time domain, Multiple consecutive subcarriers are occupied in the frequency domain; the basic pattern 406 of the reference signal R3 occupies multiple times in the time domain The continuous OFDM symbols occupy one subcarrier in the frequency domain; the basic pattern 408 of the reference signal R4 occupies a plurality of consecutive OFDM symbols in the time domain, occupying three consecutive subcarriers in the frequency domain.
  • the basic pattern of each reference signal shown in FIG. 4 is only used to describe the resources occupied by the basic pattern of the reference signal by way of example, and is not intended to limit the embodiments of the present invention. The scope of protection.
  • the number of OFDM symbols occupied by the basic pattern of the reference signal in the time domain, the number of subcarriers occupied in the frequency domain, and the resources occupied by the reference signal in the basic pattern may be set according to specific needs.
  • the basic pattern of the reference signal may occupy at least one OFDM symbol in the time domain, at least one subcarrier may be occupied in the frequency domain, and the OFDM symbol may be continuous, and the foregoing subcarrier It can also be continuous.
  • the reference signal may occupy at least one OFDM symbol in its base pattern and occupy at least one subcarrier in the frequency domain.
  • the basic pattern of the reference signal can be set according to specific needs. For example, the basic pattern of the reference signal occupies the number of OFDM symbols in the time domain, the number of subcarriers occupied in the frequency domain, and the reference signal occupyes in its basic pattern. Resources can be set according to specific needs.
  • FIG. 4A is a schematic diagram showing the logical structure of a physical layer transmission unit 400' according to another embodiment of the present invention.
  • the physical layer transmission unit 400' carries a basic pattern 402' carrying reference signals R5, R6, R7 and R8, which are associated with reference signals R5, R6, R7 and R8. correspond.
  • the reference signal R5 corresponds to the antenna port 5
  • the reference signal R6 corresponds to the antenna port 6
  • the reference signal R7 corresponds to the antenna port 7
  • the reference signal R8 corresponds to the antenna port 8.
  • the reference signals R5, R6, R7, and R8 occupy different time-frequency resources, for example, occupying different resource particles.
  • different reference signals may also occupy the same time-frequency resource by using, for example, but not limited to, code division multiplexing.
  • the physical layer transmission unit 400' shown in FIG. 4A is only used to describe the carrying manner of the foregoing basic pattern in the physical layer transmission unit by way of example, and is not intended to limit the present.
  • the scope of protection of the embodiments of the invention In a specific implementation process, the number and occupied resources of the foregoing basic pattern in the physical layer transmission unit may be set according to specific needs.
  • a physical layer transmission unit may carry at least one of the foregoing basic patterns.
  • the resources occupied by the above basic pattern in the physical layer transmission unit may be set according to specific needs.
  • the reference signal R5 occupies four consecutive OFDM symbols in the time domain, occupies one subcarrier in the frequency domain; the reference signal R6 occupies two non-contiguous OFDM symbols in the time domain, One subcarrier is occupied in the frequency domain; the reference signal R7 occupies one OFDM symbol in the time domain, and occupies two non-contiguous subcarriers in the frequency domain; the reference signal R8 occupies one OFDM symbol in the time domain, and occupies two consecutive channels in the frequency domain. Subcarrier.
  • the basic pattern 402' shown in FIG. 4A is only used to describe the resources occupied by the basic pattern and the resources occupied by the reference signals in the basic pattern by way of example, instead of It is used to limit the scope of protection of the embodiments of the present invention.
  • the number of OFDM symbols occupied by the basic pattern in the time domain, the number of subcarriers occupied in the frequency domain, and the resources occupied by the reference signals in the basic pattern may be set according to specific requirements.
  • the basic pattern may occupy at least one OFDM symbol in the time domain, at least one subcarrier may be occupied in the frequency domain, and the OFDM symbol may be continuous, and the foregoing subcarrier may also be continuously.
  • Each reference signal may occupy at least one OFDM symbol in the basic pattern, occupy at least one subcarrier in the frequency domain, and occupy the OFDM symbol and the subcarrier may be consecutive It can also be non-continuous.
  • the basic pattern can be set according to specific needs. For example, the number of OFDM symbols occupied by the basic pattern in the time domain, the number of subcarriers occupied in the frequency domain, and the resources occupied by the reference signals in the basic pattern can be The specific needs to be set.
  • FIG. 5 is an exemplary flow diagram of a method 500 of acquiring a reference signal in accordance with an embodiment of the present invention.
  • the method 500 may be performed by a receiving device, which may be, for example but not limited to, the terminal devices 208-222 in FIG. 2, or the base stations 202-206.
  • Step 502 Determine resources occupied by the reference signal in the physical layer transmission unit according to resources allocated for the reference signal in the basic pattern corresponding to the reference signal, and resources allocated for at least one of the basic patterns in the physical layer transmission unit.
  • Step 504 Acquire the reference signal by using the determined resource.
  • the basic pattern may occupy at least one OFDM symbol in the time domain and occupy at least one subcarrier in the frequency domain.
  • the reference signal may occupy at least one OFDM symbol in the time domain and may occupy at least one subcarrier in the frequency domain.
  • the resource allocated for the reference signal in the basic pattern corresponding to the reference signal may include at least one OFDM symbol in the time domain and at least one subcarrier in the frequency domain.
  • the at least one OFDM symbol occupied by the reference signal in the time domain may be a plurality of consecutive OFDM symbols.
  • the above reference signal is used for at least one of the following purposes:
  • the received signal is demodulated.
  • the transmitting end device may further notify the receiving end of the resources allocated to the at least one basic pattern in the physical layer transmission unit. device. Therefore, the method 500 may further include the step of the receiving end device acquiring the resources allocated in the physical layer transmission unit for the at least one basic pattern.
  • the transmitting end device notifying the receiving end device of the resources allocated to at least one of the above basic patterns in the physical layer transmission unit have been described in detail above in connection with the method 300, and therefore will not be described herein.
  • the method 500 for acquiring a reference signal shown in FIG. 5 is a receiving side method corresponding to the method 300 of transmitting a reference signal shown in FIG. 3.
  • the related technical features involved in the method 500 have been described above with reference to the accompanying drawings, for example, but not For the sake of limitation, FIG. 3 and FIG. 4 and the like are described in detail, and thus will not be described again here.
  • FIG. 6 is a schematic diagram showing the logical structure of an apparatus 600 for transmitting a reference signal according to an embodiment of the invention.
  • the device 600 may be a transmitting device, which may be, for example, but not limited to, the base stations 202-206 in FIG. 2, or the terminal devices 208-222.
  • device 600 includes a determination module 602 and a transmission module 604.
  • the determining module 602 is configured to determine, according to the resource allocated for the reference signal in the basic pattern corresponding to the reference signal, and the resource allocated to the at least one basic pattern in the physical layer transmission unit, determining that the reference signal is occupied by the physical layer transmission unit. Resources.
  • the sending module 604 is configured to send the reference signal by using the determined resource.
  • the basic pattern may occupy at least one OFDM symbol in the time domain and occupy at least one subcarrier in the frequency domain.
  • the reference signal may occupy at least one OFDM symbol in the time domain.
  • the number can occupy at least one subcarrier in the frequency domain.
  • the resource allocated for the reference signal in the basic pattern corresponding to the reference signal may include at least one OFDM symbol in the time domain and at least one subcarrier in the frequency domain.
  • the at least one OFDM symbol occupied by the reference signal in the time domain may be a plurality of consecutive OFDM symbols.
  • the above reference signal is used for at least one of the following purposes:
  • the received signal is demodulated.
  • the transmitting end device sends the foregoing reference signal to the receiving end device by using the determined resource.
  • the transmitting end device may further notify the receiving end device of the resources allocated in the physical layer transmission unit for the at least one basic pattern. This operation may be performed by the transmitting module 604 during a particular implementation.
  • Related technical details regarding the transmitting end device notifying the receiving end device of the resources allocated to at least one of the above basic patterns in the physical layer transmission unit have been described in detail above in connection with the method 300, and therefore will not be described herein.
  • Apparatus 600 is for performing method 300 shown in FIG.
  • the related technical features related to the device 600 have been described in detail above with reference to the accompanying drawings, such as, but not limited to, FIG. 3 and FIG. 4 and the like, and thus are not described herein again.
  • FIG. 7 is a schematic diagram showing the logical structure of an apparatus 700 for acquiring a reference signal according to an embodiment of the invention.
  • the device 700 may be a receiving end device, and the receiving end device may be, for example, but not limited to, the terminal devices 208-222 in FIG. 2, or the base stations 202-206.
  • device 700 includes a determination module 702 and an acquisition module 704.
  • the determining module 702 is configured to determine, according to the resource allocated for the reference signal in the basic pattern corresponding to the reference signal, and the resource allocated to the at least one basic pattern in the physical layer transmission unit, to determine the occupied by the reference signal in the physical layer transmission unit.
  • the obtaining module 704 is configured to acquire the reference signal by using the determined resource.
  • the basic pattern may occupy at least one OFDM symbol in the time domain and occupy at least one subcarrier in the frequency domain.
  • the reference signal may occupy at least one OFDM symbol in the time domain and may occupy at least one subcarrier in the frequency domain.
  • the resource allocated for the reference signal in the basic pattern corresponding to the reference signal may include at least one OFDM symbol in the time domain and at least one subcarrier in the frequency domain.
  • the at least one OFDM symbol occupied by the reference signal in the time domain may be a plurality of consecutive OFDM symbols.
  • the above reference signal is used for at least one of the following purposes:
  • the received signal is demodulated.
  • the transmitting end device sends the foregoing reference signal to the receiving end device by using the determined resource.
  • the transmitting end device may further notify the receiving end device of the resources allocated in the physical layer transmission unit for the at least one basic pattern.
  • the determining module 702 may obtain the resources allocated to the at least one basic pattern in the physical layer transmission unit, and may also acquire, by a receiving module (not shown), at least one of the physical layer transmission units. The resources allocated by the base pattern.
  • the device 700 is a receiving side device corresponding to the device 600 for performing the method 500 shown in FIG.
  • the related technical features related to the device 700 have been described in detail above with reference to the accompanying drawings, such as, but not limited to, FIG. 3 and FIG. 4 and the like, and thus are not described herein again.
  • FIG. 8 is a schematic diagram showing the hardware structure of an apparatus 800 for transmitting a reference signal according to an embodiment of the invention.
  • device 800 includes a processor 802, a transceiver 804, a plurality of antennas 806, a memory 808, an I/O (Input/Output) interface 810, and a bus 812.
  • the transceiver 804 further includes a transmitter 8042 and a receiver 8044 that is further configured to store instructions 8082 and data 8084.
  • the processor 802, the transceiver 804, the memory 808, and the I/O interface 810 are communicatively coupled to one another via a bus 812, and the plurality of antennas 806 are coupled to the transceiver 804.
  • the processor 802 can be a general-purpose processor, such as, but not limited to, a central processing unit (CPU), or a dedicated processor such as, but not limited to, a digital signal processor (DSP), an application. Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA). Moreover, processor 802 can also be a combination of multiple processors. In particular, in the technical solution provided by the embodiment of the present invention, the processor 802 may be configured to perform, for example, step 302 in the method 300 of transmitting a reference signal shown in FIG. 3, and transmitting the reference signal shown in FIG. The operations performed by module 602 are determined in device 600.
  • a general-purpose processor such as, but not limited to, a central processing unit (CPU), or a dedicated processor such as, but not limited to, a digital signal processor (DSP), an application. Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA).
  • processor 802 can also be a combination of multiple processors.
  • Processor 802 may be a processor specifically designed to perform the steps and/or operations described above, or may be a processor that performs the steps and/or operations described above by reading and executing instructions 8082 stored in memory 808, processor 802 Data 8084 may be required during the execution of the above steps and/or operations.
  • the transceiver 804 includes a transmitter 8042 and a receiver 8044, wherein the transmitter 8042 is configured to transmit signals through at least one of the plurality of antennas 806.
  • the receiver 8044 is configured to receive a signal through at least one of the plurality of antennas 806.
  • the transmitter 8042 may be specifically configured to be executed by at least one of the plurality of antennas 806, for example, in the method 300 of transmitting the reference signal shown in FIG. Step 304 and the step of notifying the receiving end device of the resources allocated to the at least one of the above basic patterns in the physical layer transmission unit, and the operations performed by the transmitting module 604 in the apparatus 600 for transmitting the reference signal shown in FIG.
  • the memory 808 can be various types of storage media, such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • RAM random access memory
  • ROM read only memory
  • NVRAM non-volatile RAM
  • PROM Programmable ROM
  • EPROM Erasable PROM
  • EEPROM Electrically Erasable PROM
  • flash memory optical memory
  • registers such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • the memory 808 is specifically configured to store instructions 8082 and data 8084, and the processor 802 can perform the steps and/or
  • the I/O interface 810 is configured to receive instructions and/or data from peripheral devices and to output instructions and/or data to peripheral devices.
  • the device 800 may also include other hardware devices in a specific implementation process, which are not enumerated herein.
  • FIG. 9 is a schematic diagram showing the hardware structure of an apparatus 900 for acquiring a reference signal according to an embodiment of the invention.
  • the device 900 includes a processor 902, a transceiver 904, a plurality of antennas 906, a memory 908, and an I/O (input/output). Out, Input/Output) interface 910 and bus 912.
  • the transceiver 904 further includes a transmitter 9042 and a receiver 9044 that is further used to store instructions 9082 and data 9084.
  • the processor 902, the transceiver 904, the memory 908, and the I/O interface 910 are communicatively coupled to one another via a bus 912, and a plurality of antennas 906 are coupled to the transceiver 904.
  • the processor 902 can be a general-purpose processor, such as, but not limited to, a central processing unit (CPU), or a dedicated processor such as, but not limited to, a digital signal processor (DSP), an application. Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA). Moreover, processor 902 can also be a combination of multiple processors. In particular, in the technical solution provided by the embodiment of the present invention, the processor 902 is configured to perform, for example, the step 502, the step 504, and the acquiring the physical layer transmission unit in the method 500 for acquiring the reference signal shown in FIG.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • Processor 902 may be a processor specifically designed to perform the steps and/or operations described above, or may be a processor that performs the steps and/or operations described above by reading and executing instructions 9082 stored in memory 908, processor 902 Data 9084 may be required during the execution of the above steps and/or operations.
  • the transceiver 904 includes a transmitter 9042 and a receiver 9044, wherein the transmitter 9042 is configured to transmit signals through at least one of the plurality of antennas 906.
  • Receiver 9044 is configured to receive signals through at least one of the plurality of antennas 906.
  • the receiver 9044 can be used to perform the operations performed by the receiving module in the device 700 shown in FIG. 7.
  • the memory 908 can be various types of storage media, such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • RAM random access memory
  • ROM read only memory
  • NVRAM non-volatile RAM
  • PROM Programmable ROM
  • EPROM Erasable PROM
  • EEPROM Electrically Erasable PROM
  • flash memory optical memory
  • registers such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • the memory 908 is specifically configured to store instructions 9082 and data 9084, and the processor 902 can perform the steps and/or
  • the I/O interface 910 is for receiving instructions and/or data from peripheral devices and outputting instructions and/or data to peripheral devices.
  • the device 900 may also include other hardware devices in a specific implementation process, which are not enumerated herein.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种发送和获取参考信号的方法和装置。发送参考信号的方法包括根据参考信号对应的基本图样中为该参考信号分配的资源,和物理层传输单元中为至少一个所述基本图样分配的资源,确定物理层传输单元中所述参考信号占用的资源;通过确定的资源发送所述参考信号。本发明实施例还提供了一种获取参考信号的方法,发送参考信号的装置和获取参考信号的装置。通过调整物理层传输单元所承载的基本图样的数量,以及各个基本图样在物理层传输单元内所占资源的位置,可以设置基本图样所携带的参考信号在物理层传输单元内的排布。由此可见,本发明实施例提供的技术方案可以灵活的设置参考信号在物理层传输单元内的排布。

Description

一种发送和获取参考信号的方法和装置
本申请要求于2016年11月03日提交中国专利局、申请号为201610953606.6、发明名称为“一种发送和获取参考信号的方法和装置”的中国专利申请的优先权,以及2016年11月17日提交中国专利局、申请号为201611027749.0、发明名称为“一种发送和获取参考信号的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术,尤其涉及一种发送和获取参考信号的方法和装置。
背景技术
参考信号(Reference Signal,RS)又称为导频(Pilot)或者训练序列,对于发射端设备和接收端设备设备而言,参考信号是已知的。参考信号具有多种用途,基于具体用途可以将参考信号划分为多种类型,例如但不限于,用于获得信道状态信息(Channel State Information Reference,CSI)的参考信号,用于对接收信号进行解调的参考信号,以及用于进行波束管理(Beam management)的参考信号。特别的,某些参考信号可以兼具多种用途。用途不同,参考信号的发射方式和承载参考信号的资源的配置也可以不同。
在现有技术中,参考信号通常是依照固定的资源分布图样进行排布的。图1是现有参考信号所采用的资源分布图样100的示范性示意图。如图1所示,一个天线端口对应的参考信号R所占据的资源粒(Resource Element,RE)分散分布在资源块(Resource Block)对102所包含的两个资源块104和106内,并且在资源块对102内,承载参考信号的资源粒所在的位置是固定的。
不难看出,这种依照固定的资源分布图样排布参考信号的方式很不灵活,无法满足不同场景的需要。
发明内容
有鉴于此,实有必要提供一种发送参考信号的方法,以实现参考信号的灵活排布。
同时,提供一种获取参考信号的方法,以实现参考信号的灵活排布。
同时,提供一种发送参考信号的装置,以实现参考信号的灵活排布。
同时,提供一种获取参考信号的装置,以实现参考信号的灵活排布。
根据本发明实施例的第一方面,提供一种发送参考信号的方法,包括根据参考信号对应的基本图样中为该参考信号分配的资源,和物理层传输单元中为至少一个所述基本图样分配的资源,确定物理层传输单元中所述参考信号占用的资源;通过确定的资源发送所述参考信号。
在一种可能的设计中,所述基本图样在时域内占用至少一个OFDM符号,在频域内占用至少一个子载波。同时,在一种可能的设计中,在所述基本图样中,所述参考信号在时域内占用至少一个OFDM符号,在频域内占用至少一个子载波。此外,在一种可能的设计中,在所述基本图样中,所述参考信号在时域内占用的至少一个OFDM符号为多个 连续的OFDM符号。另外,在一种可能的设计中,所述参考信号用于下列目的之中的至少一种:确定信道状态信息;进行波束管理;和对接收信号进行解调。
此外,在一种可能的设计中,参考信号的基本图样对于参考信号的发射端设备和该参考信号的接收端设备而言是已知的。在具体实现过程中,可以在通信标准或者通信系统的设计规范中提前定义参考信号的基本图样。
同时,在一种可能的设计中,上述方法还包括发射端设备将物理层传输单元中为至少一个上述基本图样分配的资源通知接收端设备的步骤。更进一步的说,发射端设备可以采用物理层信令来将物理层传输单元中为至少一个上述基本图样分配的资源通知接收端设备。
在一种可能的设计中,可以根据具体的需要设置物理层传输单元内携带的基本图样所对应的参考信号的数量,以及每一参考信号的基本图样在物理层传输单元内的数量和占用的资源。同时,一个物理层传输单元可以携带至少一个参考信号的基本图样。同时,携带在一个物理层传输单元内的同一参考信号的基本图样的数量可以是一个,也可以是多个。此外,可以根据具体的需要设置每一参考信号的每一基本图样在物理层传输单元内占用的资源。
在一种可能的设计中,可以根据具体的需要设置参考信号的基本图样在时域内占用的OFDM符号数,在频域内占用的子载波数,以及参考信号在其基本图样内占用的资源。更进一步的说,参考信号的基本图样在时域内可以占用至少一个OFDM符号,在频域内可以占用至少一个子载波,且上述OFDM符号可以是连续的,上述子载波也可以是连续的。参考信号在其基本图样内可以占用至少一个OFDM符号,在频域内占用至少一个子载波。
根据本发明实施例的另一方面,提供一种获取参考信号的方法,包括根据参考信号对应的基本图样中为该参考信号分配的资源,和物理层传输单元中为至少一个所述基本图样分配的资源,确定物理层传输单元中所述参考信号占用的资源;通过确定的资源获取所述参考信号。
在一种可能的设计中,所述基本图样在时域内占用至少一个OFDM符号,在频域内占用至少一个子载波。同时,在一种可能的设计中,在所述基本图样中,所述参考信号在时域内占用至少一个OFDM符号,在频域内占用至少一个子载波。此外,在一种可能的设计中,在所述基本图样中,所述参考信号在时域内占用的至少一个OFDM符号为多个连续的OFDM符号。另外,在一种可能的设计中,所述参考信号用于下列目的之中的至少一种:确定信道状态信息;进行波束管理;和对接收信号进行解调。
此外,在一种可能的设计中,参考信号的基本图样对于参考信号的发射端设备和该参考信号的接收端设备而言是已知的。在具体实现过程中,可以在通信标准或者通信系统的设计规范中提前定义参考信号的基本图样。
同时,在一种可能的设计中,上述方法还包括还可以包含接收端设备获取物理层传输单元中为至少一个上述基本图样分配的资源的步骤。更进一步的说,承载物理层传输单元中为至少一个上述基本图样分配的资源的信息可以通过物理层信令来从发射端设备发往接收端设备。
在一种可能的设计中,可以根据具体的需要设置物理层传输单元内携带的基本图样所 对应的参考信号的数量,以及每一参考信号的基本图样在物理层传输单元内的数量和占用的资源。同时,一个物理层传输单元可以携带至少一个参考信号的基本图样。同时,携带在一个物理层传输单元内的同一参考信号的基本图样的数量可以是一个,也可以是多个。此外,可以根据具体的需要设置每一参考信号的每一基本图样在物理层传输单元内占用的资源。
在一种可能的设计中,可以根据具体的需要设置参考信号的基本图样在时域内占用的OFDM符号数,在频域内占用的子载波数,以及参考信号在其基本图样内占用的资源。更进一步的说,参考信号的基本图样在时域内可以占用至少一个OFDM符号,在频域内可以占用至少一个子载波,且上述OFDM符号可以是连续的,上述子载波也可以是连续的。参考信号在其基本图样内可以占用至少一个OFDM符号,在频域内占用至少一个子载波。
根据本发明实施例的又一方面,提供一种发送参考信号的装置,包括确定模块,用于根据参考信号对应的基本图样中为该参考信号分配的资源,和物理层传输单元中为至少一个所述基本图样分配的资源,确定物理层传输单元中所述参考信号占用的资源;发送模块,用于通过确定的资源发送所述参考信号。
在一种可能的设计中,所述基本图样在时域内占用至少一个OFDM符号,在频域内占用至少一个子载波。同时,在一种可能的设计中,在所述基本图样中,所述参考信号在时域内占用至少一个OFDM符号,在频域内占用至少一个子载波。此外,在一种可能的设计中,在所述基本图样中,所述参考信号在时域内占用的至少一个OFDM符号为多个连续的OFDM符号。另外,在一种可能的设计中,所述参考信号用于下列目的之中的至少一种:确定信道状态信息;进行波束管理;和对接收信号进行解调。
此外,在一种可能的设计中,参考信号的基本图样对于参考信号的发射端设备和该参考信号的接收端设备而言是已知的。在具体实现过程中,可以在通信标准或者通信系统的设计规范中提前定义参考信号的基本图样。
同时,在一种可能的设计中,发送模块还可以用于将有关物理层传输单元中为至少一个上述基本图样分配的资源的信息发往接收端设备。更进一步的说,上述信息可以通过物理层信令来承载。
在一种可能的设计中,可以根据具体的需要设置物理层传输单元内携带的基本图样所对应的参考信号的数量,以及每一参考信号的基本图样在物理层传输单元内的数量和占用的资源。同时,一个物理层传输单元可以携带至少一个参考信号的基本图样。同时,携带在一个物理层传输单元内的同一参考信号的基本图样的数量可以是一个,也可以是多个。此外,可以根据具体的需要设置每一参考信号的每一基本图样在物理层传输单元内占用的资源。
在一种可能的设计中,可以根据具体的需要设置参考信号的基本图样在时域内占用的OFDM符号数,在频域内占用的子载波数,以及参考信号在其基本图样内占用的资源。更进一步的说,参考信号的基本图样在时域内可以占用至少一个OFDM符号,在频域内可以占用至少一个子载波,且上述OFDM符号可以是连续的,上述子载波也可以是连续的。参考信号在其基本图样内可以占用至少一个OFDM符号,在频域内占用至少一个子载波。
根据本发明实施例的再一方面,提供一种获取参考信号的装置,包括确定模块,用于根据参考信号对应的基本图样中为该参考信号分配的资源,和物理层传输单元中为至少一个所述基本图样分配的资源,确定物理层传输单元中所述参考信号占用的资源;获取模块,用于通过确定的资源获取所述参考信号。
在一种可能的设计中,所述基本图样在时域内占用至少一个OFDM符号,在频域内占用至少一个子载波。同时,在一种可能的设计中,在所述基本图样中,所述参考信号在时域内占用至少一个OFDM符号,在频域内占用至少一个子载波。此外,在一种可能的设计中,在所述基本图样中,所述参考信号在时域内占用的至少一个OFDM符号为多个连续的OFDM符号。另外,在一种可能的设计中,所述参考信号用于下列目的之中的至少一种:确定信道状态信息;进行波束管理;和对接收信号进行解调。
此外,在一种可能的设计中,参考信号的基本图样对于参考信号的发射端设备和该参考信号的接收端设备而言是已知的。在具体实现过程中,可以在通信标准或者通信系统的设计规范中提前定义参考信号的基本图样。
同时,在一种可能的设计中,确定模块还可以用于获取有关物理层传输单元中为至少一个上述基本图样分配的资源的信息。更进一步的说,上述信息可以通过物理层信令来承载。
在一种可能的设计中,可以根据具体的需要设置物理层传输单元内携带的基本图样所对应的参考信号的数量,以及每一参考信号的基本图样在物理层传输单元内的数量和占用的资源。同时,一个物理层传输单元可以携带至少一个参考信号的基本图样。同时,携带在一个物理层传输单元内的同一参考信号的基本图样的数量可以是一个,也可以是多个。此外,可以根据具体的需要设置每一参考信号的每一基本图样在物理层传输单元内占用的资源。
在一种可能的设计中,可以根据具体的需要设置参考信号的基本图样在时域内占用的OFDM符号数,在频域内占用的子载波数,以及参考信号在其基本图样内占用的资源。更进一步的说,参考信号的基本图样在时域内可以占用至少一个OFDM符号,在频域内可以占用至少一个子载波,且上述OFDM符号可以是连续的,上述子载波也可以是连续的。参考信号在其基本图样内可以占用至少一个OFDM符号,在频域内占用至少一个子载波。
依照本发明实施例提供的技术方案,通过调整物理层传输单元所承载的基本图样的数量,以及各个基本图样在物理层传输单元内所占资源的位置,可以设置基本图样所携带的参考信号在物理层传输单元内的排布。由此可见,相比现有技术固定的参考信号排布方式,本发明实施例提供的技术方案可以灵活的设置参考信号在物理层传输单元内的排布。
此外,借助本发明实施例提供的技术方案,发射端设备根据具体的需要,例如但不限于,接收端设备的接收信号质量、信道状态、移动速度、进行空间复用的数据流的数量、处理能力、同时调度的接收端设备的数量、波束管理的相关设计参数、系统带宽等,调整物理层传输单元所承载的基本图样的数量,以及各个基本图样在物理层传输单元内所占资源的位置,从而灵活的调整基本图样所携带的参考信号在物理层传输单元内的排布。
附图说明
图1是现有参考信号所采用的资源分布图样的示范性示意图;
图2是依照本发明一实施例的无线通信网络的示范性示意图;
图3是依照本发明一实施例的发送参考信号的方法的示范性流程图;
图4是依照本发明一实施例的物理层传输单元的逻辑结构示意图;
图4A是依照本发明另一实施例的物理层传输单元的逻辑结构示意图;
图5是依照本发明一实施例的获取参考信号的方法的示范性流程图;
图6是依照本发明一实施例的发送参考信号的装置的逻辑结构示意图;
图7是依照本发明一实施例的获取参考信号的装置的逻辑结构示意图;
图8是依照本发明一实施例的发送参考信号的装置的硬件结构示意图;
图9是依照本发明一实施例的获取参考信号的装置的硬件结构示意图。
具体实施方式
本发明实施例提供的技术方案为参考信号设定了对应的基本图样,通过调整至少一个基本图样在物理层传输单元内占用的资源,可以设计出参考信号在物理层传输单元中多种不同的排布方式,以满足不同场景和不同需求对参考信号提出的要求。由此可见,依照本发明实施例提供的技术方案,可以十分灵活的设计参考信号在物理层传输单元中的排布。下面就结合相应的附图对本发明实施例提供的技术方案进行详细的描述。
图2是依照本发明一实施例的无线通信网络200的示范性示意图。如图2所示,无线通信网络200包括基站202~206和终端设备208~222,其中,基站202~206彼此之间可通过回程(backhaul)链路(如基站202~206彼此之间的直线所示)进行通信,该回程链路可以是有线回程链路(例如光纤、铜缆),也可以是无线回程链路(例如微波)。终端设备208~222可通过无线链路(如基站202~206与终端设备208~222之间的折线所示)与对应的基站202~206通信。
基站202~206用于为终端设备208~222提供无线接入服务。具体来说,每个基站都对应一个服务覆盖区域(又可称为蜂窝,如图2中各椭圆区域所示),进入该区域的终端设备可通过无线信号与基站通信,以此来接受基站提供的无线接入服务。基站的服务覆盖区域之间可能存在交叠,处于交叠区域内的终端设备可收到来自多个基站的无线信号,因此可以同时由多个基站为该终端设备提供服务。例如,多个基站可以采用多点协作(Coordinated multipoint,CoMP)技术为处于上述交叠区域的终端设备提供服务。例如,如图2所示,基站202与基站204的服务覆盖区域存在交叠,终端设备212便处于该交叠区域之内,因此终端设备212可以收到来自基站202和基站204的无线信号,基站202和基站204可以同时为终端设备212提供服务。又例如,如图2所示,基站202、基站204和基站206的服务覆盖区域存在一个共同的交叠区域,终端设备220便处于该交叠区域之内,因此终端设备220可以收到来自基站202、204和206的无线信号,基站202、204和206可以同时为终端设备220提供服务。
依赖于所使用的无线通信技术,基站又可称为节点B(NodeB),演进节点B(evolved NodeB,eNodeB)以及接入点(Access Point,AP)等。此外,根据所提供的服务覆盖区域的大小,基站又可分为用于提供宏蜂窝(Macro cell)的宏基站、用于提供微蜂窝(Pico cell)的微基站和用于提供毫微微蜂窝(Femto cell)的毫微微基站。随着无线通信技术的 不断演进,未来的基站也可以采用其他的名称。
终端设备208~218可以是具备无线通信功能的各种无线通信设备,例如但不限于移动蜂窝电话、无绳电话、个人数字助理(Personal Digital Assistant,PDA)、智能电话、笔记本电脑、平板电脑、无线数据卡、无线调制解调器(Modulator demodulator,Modem)或者可穿戴设备如智能手表等。随着物联网(Internet of Things,IOT)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。此外,终端设备208~218还可以称为移动台、移动设备、移动终端、无线终端、手持设备、客户端等。
基站202~206,和终端设备208~222均可配置有多根天线,以支持MIMO(多入多出,Multiple Input Multiple Output)技术。进一步的说,终端设备208~222既可以支持单用户MIMO(Single-User MIMO,SU-MIMO)技术,也可以支持多用户MIMO(Multi-User MIMO,MU-MIMO),其中MU-MIMO可以基于空分多址(Space Division Multiple Access,SDMA)技术来实现。由于配置有多根天线,基站202~206和终端设备208~222还可灵活支持单入单出(Single Input Single Output,SISO)技术、单入多出(Single Input Multiple Output,SIMO)和多入单出(Multiple Input Single Output,MISO)技术,以实现各种分集(例如但不限于发射分集和接收分集)和复用技术,其中分集技术可以包括例如但不限于(Transmit Diversity,TD)技术和接收分集(Receive Diversity,RD)技术,复用技术可以是空间复用(Spatial Multiplexing)技术。而且上述各种技术还可以包括多种实现方案,例如目前常用的发射分集可以包括,例如但不限于,空时发射分集(Space-Time Transmit Diversity,STTD)、空频发射分集(Space-Frequency Transmit Diversity,SFTD)、时间切换发射分集(Time Switched Transmit Diversity,TSTD)、频率切换发射分集(Frequency Switch Transmit Diversity,FSTD)、正交发射分集(Orthogonal Transmit Diversity,OTD)、循环延迟分集(Cyclic Delay Diversity,CDD)等分集方式,以及上述各种分集方式经过衍生、演进以及组合后获得的分集方式。例如,目前LTE(长期演进,Long Term Evolution)标准便采用了空时块编码(Space Time Block Coding,STBC)、空频块编码(Space Frequency Block Coding,SFBC)和CDD等发射分集方式。
此外,基站202与终端设备204~210可采用各种无线通信技术进行通信,例如但不限于,时分多址(Time Division Multiple Access,TDMA)技术、频分多址(Frequency Division Multiple Access,FDMA)技术、码分多址(Code Division Multiple Access,CDMA)技术、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、正交频分多址(Orthogonal FDMA,OFDMA)技术、单载波频分多址(Single Carrier FDMA,SC-FDMA)技术、空分多址(Space Division Multiple Access,SDMA)技术以及这些技术的演进及衍生技术等。上述无线通信技术作为无线接入技术(Radio Access Technology,RAT)被众多无线通信标准所采纳,从而构建出了在今天广为人们所熟知的各种无线通信系统(或者网络),包括但不限于全球移动通信系统(Global System for Mobile Communications,GSM)、CDMA2000、宽带CDMA(Wideband CDMA,WCDMA)、由802.11系列标准中定义的WiFi、全球互通微波存取(Worldwide Interoperability for  Microwave Access,WiMAX)、长期演进(Long Term Evolution,LTE)、LTE升级版(LTE-Advanced,LTE-A)以及这些无线通信系统的演进系统等。图2所示的无线通信网络便可以是上述无线通信系统中的任意系统或者网络。如无特别说明,本发明实施例提供的技术方案可应用于上述各种无线通信技术和无线通信系统。此外,术语“系统”和“网络”可以相互替换。。
应注意,图2所示的无线通信网络200仅用于举例,并非用于限制本发明的技术方案。本领域的技术人员应当明白,在具体实现过程中,无线通信网络200还包括其他设备,例如但不限于基站控制器(Base Station Controller,BSC),同时也可根据具体需要来配置基站和终端设备的数量。
图3是依照本发明一实施例的发送参考信号的方法300的示范性流程图。在具体实现过程中,方法300可以由发射端设备来执行,该发射端设备可以是,例如但不限于,图2中的基站202~206,或者终端设备208~222。
步骤302,根据参考信号对应的基本图样中为该参考信号分配的资源,和物理层传输单元中为至少一个上述基本图样分配的资源,确定物理层传输单元中上述参考信号占用的资源。
步骤304,通过确定的资源发送上述参考信号。
在上述方法300中,上述基本图样在时域内可以占用至少一个OFDM符号,在频域内可以占用至少一个子载波。此外,在上述基本图样中,上述参考信号在时域内可以占用至少一个OFDM符号,在频域内可以占用至少一个子载波。换句话说,参考信号对应的基本图样中为该参考信号分配的资源,在时域内可以包括至少一个OFDM符号,在频域内可以包括至少一个子载波。更为具体的说,在上述基本图样中,上述参考信号在时域内占用的至少一个OFDM符号可以为多个连续的OFDM符号。
应注意,在具体实现过程中,上述OFDM符号还可以替换为其他形式的时间单位或者时域资源,上述子载波还可以替换为其他形式的频率单位或者频域资源。
上述参考信号用于下列目的之中的至少一种:
确定信道状态信息;
进行波束管理;
对接收信号进行解调。
用于确定信道状态信息的参考信号的典型例子是LTE标准所采用的信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)。基于CSI-RS确定CSI的典型过程为,基站发射CSI-RS,该CSI-RS经过信道传播后被终端设备接收。终端设备将接收到的CSI-RS与基站发射的CSI-RS(基站发射的CSI-RS对终端设备而言是已知的)进行比较,以此来进行信道估计,获得信道信息,例如信道矩阵。基于信道信息和码本等其他信息,终端设备便可以进一步确定信道状态信息,包括例如但不限于,预编码矩阵指示(Precoding Matrix Indicator,PMI)、信道质量指示(Channel Quality Indicator,CQI)和秩指示(Rank Indication,RI)。
用于对接收信号进行解调的参考信号的典型例子是LTE标准所采用的解调参考信号(Demodulation Reference Signal,DMRS)。DMRS与数据通过相同的预编码矩阵进行预编码,因此基于DMRS可以对预编码后的信道(又称为等效信道)进行信道估计,并基 于信道估计结果对数据进行解调。
目前处于设计阶段的5G无线通信系统将借助高频无线信号进行数据传输。高频无线信号衰落较快,因此需要借助波束赋形(Beamforming)技术,例如但不限于,数字波束赋形,模拟波束赋形,混合波束赋形等,来提高接收信号质量。在基于波束来进行的数据传输过程中,许多环节,例如但不限于,波束扫描、波束选择和波束跟踪等,都需要用到参考信号。而上述环节在实现过程中所依赖的参考信号,可以称为用于波束管理的参考信号,此类参考信号的相关功能在现有技术,例如但不限于,业界厂商在标准组织会议上提交的提案中,已经进行了清楚的描述,因此本文不再赘述。
在具体实现过程中,同一种参考信号还可能同时具备多种不同的用途,这种参考信号的典型例子是LTE标准所采用的小区专用参考信号(Cell-specific Reference Signal,CRS)。CRS是一种公共参考信号,小区内的用户设备均可以使用该小区的CRS。CRS既可以用于获得信道状态信息,也可以用于对接收信号进行解调。类似的,在现有技术,例如但不限于,业界厂商在标准组织会议上提交的提案中,也介绍了一种参考信号,其既可以用于确定信道状态信息,又可以用于进行波束管理。有关这种参考信号的具体细节可以参考上述相关提案,因此本文不再赘述。
应注意,上文描述各种参考信号的具体实例以及各种具体过程的目的,是以举例的方式,对上述参考信号的功能,以及实现上述功能的具体过程,进行原理性的描述,而并非是用于限制本发明的保护范围。事实上,本领域的技术人员应当明白,除上文描述的具体实例和具体过程之外,相应功能的参考信号还可以是已有的或者重新设计的其他参考信号,相应的过程还可以是现有的或者重新设计的其他过程。因此,本发明实施例的保护范围应当理解为包含具备上述功能的所有参考信号和实现上述功能的所有过程。
此外,本领域的技术人员应当明白,除上述目的之外,本发明实施例提供的技术方案中涉及的参考信号还可以是用于其他目的的参考信号。
不难理解,针对不同的参考信号可以设计不同的基本图样。不同的基本图样不仅可以包含不同的资源,一个参考信号在其基本图样中占用的资源也可以不同于另一个参考信号在其基本图样中占用的资源。应注意,不同的参考信号既可以是应用于不同目的的参考信号,也可以是应用于同一目的的不同参考信号。简单的说,不同的参考信号可以理解为不同天线端口对应的参考信号。此外,同一基本图样也可以与多种参考信号相对应,这些参考信号可以通过时分复用、频分复用或者码分复用等方式,共享该基本图样所包含的资源。此外,参考信号的基本图样对于参考信号的发射端设备和该参考信号的接收端设备而言应当是已知的。在具体实现过程中,可以在通信标准或者通信系统的设计规范中提前定义参考信号的基本图样。在这种情况下,可以在发射端设备和接收端设备的生产制造过程中提前在上述设备中存储参考信号的基本图样,也可以在部署上述设备的过程中,向上述设备配置参考信号的基本图样,还可以上述设备接入通信网络的过程中,通过各种通信消息动态的配置参考信号的基本图样。为发射端设备和接收端设备配置各种通信参数的相关技术方案可以参考现有技术,本文不再一一赘述。
上述物理层传输单元可以是,例如但不限于,物理层帧、时隙、资源单元以及多个资源单元的组合等,这些传输单元所包含的时频资源的数量可以参考现有LTE标准中的规定。例如,物理层帧可以参考LTE标准中的子帧或者帧,时隙可以参考LTE标准中的时 隙,资源单元可以参考LTE标准中的资源块,多个资源单元的组合可以参考LTE标准中的资源块对或者资源块组。此外,上述物理层传输单元还可以在现有LTE标准所描述的上述单位的基础上进行调整,也可以根据系统设计的需要重新进行设置。
在具体实现过程中,基本图样可以表现为公式或者查找表等多种形式,其具体表现形式可以参考现有技术,因此本文不再赘述。
在具体实现过程中,在步骤304中,发射端设备通过确定的资源向接收端设备发送上述参考信号。而为了使得接收端设备获知物理层传输单元中为至少一个上述基本图样分配的资源,在方法300中还可以包含发射端设备将物理层传输单元中为至少一个上述基本图样分配的资源通知接收端设备的步骤。在具体实现过程中,发射端设备可以采用各种信令来通知上述信息,例如但不限于,物理层信令、媒体访问控制(Media Access Control,MAC)层信令和无线资源控制(Radio Resource Control,RRC)信令。上述信息可以携带,例如但不限于,基本图样的索引、基本图样的数量、每一基本图样所占用的时频资源在物理层传输单元内的位置等。
物理层信令也可以称为第一层(Layer 1,L1)信令,其通常可以由物理层传输单元(例如物理层帧)中的控制部分来承载。L1信令的典型例子是LTE标准中定义的物理下行控制信道(Physical Downlink Control Channel,PDCCH)中承载的下行控制信息(Downlink Control Information,DCI)。在一些情况下,L1信令也可以由物理层帧中的数据部分来承载。不难看出,L1信令的发送周期或者信令周期通常为物理层帧的周期,因此这种信令通常用于实现一些动态的控制。
媒体访问控制层信令属于第二层(Layer 2)信令,其通常可以由,例如但不限于,第二层帧的帧头来承载。上述帧头中还可能携带,例如但不限于,源地址和目的地址等信息。除帧头外,第二层帧通常还包含帧体。在一些情况下,L2信令也可以由第二层帧的帧体来承载。第二层信令的典型例子是802.11系列标准中MAC帧的帧头中的帧控制(Frame Control)字段中携带的信令,或者一些协议中定义的MAC控制实体(Control Entity,MAC)。第二层帧通常可以携带在物理层帧的数据部分。上述信息也可以通过媒体访问控制层信令之外的其他第二层信令发送。
无线资源控制信令属于第三层(Layer 3)信令,其通常是一些控制消息,L3信令通常可以携带在第二层帧的帧体中。L3信令的发送周期或者控制周期通常较长,适用于发送一些不会频繁发生变化的信息,例如,在现有的一些通信标准中,L3信令通常用于承载一些配置信息。上述信息也可以通过RRC信令之外的其他第三层信令发送。
上文所述仅为物理层信令、MAC层信令、RRC信令、第一层信令、第二层信令和第三层信令的原理性描述,有关三种信令的具体细节可以参考现有技术,因此本文不再赘述。
此外,在具体实现过程中,通过上述信令传递的上述信息具体可以包含物理层传输单元中参考信号的基本图样的数量和每个基本图样占用的资源。
不难看出,通过调整物理层传输单元所承载的基本图样的数量,以及各个基本图样在物理层传输单元内所占资源的位置,可以设置基本图样所携带的参考信号在物理层传输单元内的排布。由此可见,相比现有技术固定的参考信号排布方式,本发明实施例提供的技术方案可以灵活的设置参考信号在物理层传输单元内的排布。因此,借助本发明实施例提供的技术方案,发射端设备根据具体的需要,例如但不限于,接收端设备的接收信号质量、 信道状态、移动速度、进行空间复用的数据流的数量、处理能力、同时调度的接收端设备的数量、波束管理的相关设计参数、系统带宽等,调整物理层传输单元所承载的基本图样的数量,以及各个基本图样在物理层传输单元内所占资源的位置,从而灵活的调整基本图样所携带的参考信号在物理层传输单元内的排布。
以下结合图4对本发明实施例提供的基本图样进行描述。
图4是依照本发明一实施例的物理层传输单元400的逻辑结构示意图。如图4所示,物理层传输单元400携带有四个参考信号对应的基本图样,分别为参考信号R1对应的基本图样402,参考信号R2对应的基本图样404,参考信号R3对应的基本图样406和参考信号R4对应的基本图样408。此外,参考信号R1对应天线端口1,参考信号R2对应天线端口2,参考信号R3对应天线端口3,参考信号R4对应天线端口4。因此,基本图样402也可以称为天线端口1的基本图样,基本图样404也可以称为天线端口2的基本图样,基本图样406也可以称为天线端口3的基本图样,基本图样408也可以称为天线端口4的基本图样。事实上,天线端口与参考信号之间往往具有一一对应的关系,二者可以互相指代,因此天线端口与参考信号可以相互替换使用。例如,在现有LTE标准中,CSI-RS、CRS、DMRS等参考信号分别对应不同的天线端口,这些参考信号与这些天线端口之间通常可以相互指代或者替换。有关天线端口与参考信号之间的关系在现有技术中已经进行了清楚的描述,因此此处不再赘述。
同时,对于参考信号R1来说,物理层传输单元400携带该参考信号的两个基本图样;对于参考信号R2来说,物理层传输单元400携带该参考信号的一个基本图样;对于参考信号R3来说,物理层传输单元400携带该参考信号的两个基本图样;对于参考信号R4来说,物理层传输单元400携带该参考信号的一个基本图样。在物理层传输单元400内,参考信号R1的两个基本图样402在时域内并不连续,即这两个基本图样402各自所在的OFDM符号在时域内并不连续。另一方面,在物理层传输单元400内,参考信号R3的两个基本图样406在频域内是连续的,即这两个基本图样406各自所在的子载波在频域内是连续的。
应注意,本领域的技术人员应当明白,图4所示的物理层传输单元400,仅仅用于以举例的方式描述参考信号的基本图样在物理层传输单元内的携带方式,而并非用于限制本发明实施例的保护范围。在具体实现过程中,可以根据具体的需要设置物理层传输单元内携带的基本图样所对应的参考信号的数量,以及每一参考信号的基本图样在物理层传输单元内的数量和占用的资源。事实上,依照本发明实施例提供的技术方案,一个物理层传输单元可以携带至少一个参考信号的基本图样。同时,携带在一个物理层传输单元内的同一参考信号的基本图样的数量可以是一个,也可以是多个。此外,可以根据具体的需要设置每一参考信号的每一基本图样在物理层传输单元内占用的资源,即,可以根据具体的需要设置每一参考信号的每一基本图样在物理层传输单元内的位置。例如,在物理层传输单元400内,参考信号R1的两个基本图样402在时域内也可以连续放置,而另一方面,参考信号R3的两个基本图样406在频域内也可以不连续放置。
如图4所示,参考信号R1的基本图样402在时域内占用一个OFDM符号,在频域内占用多个连续的子载波;参考信号R2的基本图样404在时域内占用两个连续的OFDM符号,在频域内占用多个连续的子载波;参考信号R3的基本图样406在时域内占用多个 连续的OFDM符号,在频域内占用一个子载波;参考信号R4的基本图样408在时域内占用多个连续的OFDM符号,在频域内占用三个连续的子载波。
应注意,本领域的技术人员应当明白,图4所示的各个参考信号的基本图样,仅仅用于以举例的方式描述参考信号的基本图样所占用的资源,而并非用于限制本发明实施例的保护范围。在具体实现过程中,可以根据具体的需要设置参考信号的基本图样在时域内占用的OFDM符号数,在频域内占用的子载波数,以及参考信号在其基本图样内占用的资源。事实上,依照本发明实施例提供的技术方案,参考信号的基本图样在时域内可以占用至少一个OFDM符号,在频域内可以占用至少一个子载波,且上述OFDM符号可以是连续的,上述子载波也可以是连续的。参考信号在其基本图样内可以占用至少一个OFDM符号,在频域内占用至少一个子载波。简单的说,参考信号的基本图样可以根据具体的需要进行设置,例如,参考信号的基本图样在时域内占用的OFDM符号数、在频域内占用的子载波数以及参考信号在其基本图样内占用的资源,均可以根据具体的需要进行设置。
图4A是依照本发明另一实施例的物理层传输单元400'的逻辑结构示意图。如图4A所示,物理层传输单元400'携带有一基本图样402',该基本图样402'携带有参考信号R5、R6、R7和R8,该基本图样与参考信号R5、R6、R7和R8相对应。参考信号R5对应天线端口5,参考信号R6对应天线端口6,参考信号R7对应天线端口7,参考信号R8对应天线端口8。
如图4A所示,在基本图样402'中,参考信号R5、R6、R7和R8分别占用不同的时频资源,例如,占用不同的资源粒。然而,本领域的技术人员应当明白,在具体实现过程中,不同的参考信号也可以采用例如但不限于码分复用的方式,占用相同的时频资源。
应注意,本领域的技术人员应当明白,图4A所示的物理层传输单元400',仅仅用于以举例的方式描述上述基本图样在物理层传输单元内的携带方式,而并非用于限制本发明实施例的保护范围。在具体实现过程中,可以根据具体的需要设置上述基本图样在物理层传输单元内的数量和占用的资源。事实上,依照本发明实施例提供的技术方案,一个物理层传输单元可以携带至少一个上述基本图样。同时,可以根据具体的需要设置上述基本图样在物理层传输单元内占用的资源。
如图4A所示,在基本图样402'中,参考信号R5在时域内占用四个连续的OFDM符号,在频域内占用一个子载波;参考信号R6在时域内占用两个非连续的OFDM符号,在频域内占用一个子载波;参考信号R7在时域内占用一个OFDM符号,在频域内占用两个非连续的子载波;参考信号R8在时域内占用一个OFDM符号,在频域内占用两个连续的子载波。
应注意,本领域的技术人员应当明白,图4A所示的基本图样402',仅仅用于以举例的方式描述基本图样所占用的资源以及各参考信号在该基本图样内占用的资源,而并非用于限制本发明实施例的保护范围。在具体实现过程中,可以根据具体的需要设置基本图样在时域内占用的OFDM符号数,在频域内占用的子载波数,以及各参考信号在上述基本图样内占用的资源。事实上,依照本发明实施例提供的技术方案,基本图样在时域内可以占用至少一个OFDM符号,在频域内可以占用至少一个子载波,且上述OFDM符号可以是连续的,上述子载波也可以是连续的。各参考信号在基本图样内可以占用至少一个OFDM符号,在频域内占用至少一个子载波,所占用的OFDM符号和子载波可以是连续 的,也可以是非连续的。简单的说,基本图样可以根据具体的需要进行设置,例如,基本图样在时域内占用的OFDM符号数、在频域内占用的子载波数以及各参考信号在基本图样内占用的资源,均可以根据具体的需要进行设置。
图5是依照本发明一实施例的获取参考信号的方法500的示范性流程图。在具体实现过程中,方法500可以由接收端设备来执行,该接收端设备可以是,例如但不限于,图2中的终端设备208~222,或者基站202~206。
步骤502,根据参考信号对应的基本图样中为该参考信号分配的资源,和物理层传输单元中为至少一个所述基本图样分配的资源,确定物理层传输单元中所述参考信号占用的资源;
步骤504,通过确定的资源获取所述参考信号。
在上述方法500中,上述基本图样在时域内可以占用至少一个OFDM符号,在频域内可以占用至少一个子载波。此外,在上述基本图样中,上述参考信号在时域内可以占用至少一个OFDM符号,在频域内可以占用至少一个子载波。换句话说,参考信号对应的基本图样中为该参考信号分配的资源,在时域内可以包括至少一个OFDM符号,在频域内可以包括至少一个子载波。更为具体的说,在上述基本图样中,上述参考信号在时域内占用的至少一个OFDM符号可以为多个连续的OFDM符号。
上述参考信号用于下列目的之中的至少一种:
确定信道状态信息;
进行波束管理;
对接收信号进行解调。
在具体实现过程中,为了使得接收端设备获知物理层传输单元中为至少一个上述基本图样分配的资源,发射端设备还可以将物理层传输单元中为至少一个上述基本图样分配的资源通知接收端设备。因此,方法500还可以包含接收端设备获取物理层传输单元中为至少一个上述基本图样分配的资源的步骤。有关发射端设备将物理层传输单元中为至少一个上述基本图样分配的资源通知接收端设备的相关技术细节已经在上文结合方法300进行了详细的描述,因此此处不再赘述。
图5所示的获取参考信号的方法500是与图3所示的发送参考信号的方法300相对应的接收侧方法,方法500中涉及的相关技术特征已经在上文结合附图,例如但不限于,图3和图4等,进行了详细的描述,因此此处不再赘述。
图6是依照本发明一实施例的发送参考信号的装置600的逻辑结构示意图。在具体实现过程中,装置600可以为发射端设备,该发射端设备可以是,例如但不限于,图2中的基站202~206,或者终端设备208~222。如图6所示,装置600包括确定模块602和发送模块604。
确定模块602用于根据参考信号对应的基本图样中为该参考信号分配的资源,和物理层传输单元中为至少一个所述基本图样分配的资源,确定物理层传输单元中所述参考信号占用的资源。
发送模块604用于通过确定的资源发送所述参考信号。
上述基本图样在时域内可以占用至少一个OFDM符号,在频域内可以占用至少一个子载波。此外,在上述基本图样中,上述参考信号在时域内可以占用至少一个OFDM符 号,在频域内可以占用至少一个子载波。换句话说,参考信号对应的基本图样中为该参考信号分配的资源,在时域内可以包括至少一个OFDM符号,在频域内可以包括至少一个子载波。更为具体的说,在上述基本图样中,上述参考信号在时域内占用的至少一个OFDM符号可以为多个连续的OFDM符号。
上述参考信号用于下列目的之中的至少一种:
确定信道状态信息;
进行波束管理;
对接收信号进行解调。
在具体实现过程中,发射端设备通过确定的资源向接收端设备发送上述参考信号。而为了使得接收端设备获知物理层传输单元中为至少一个上述基本图样分配的资源,发射端设备还可以将物理层传输单元中为至少一个上述基本图样分配的资源通知接收端设备。在具体实现过程中,这一操作可以由发送模块604来执行。有关发射端设备将物理层传输单元中为至少一个上述基本图样分配的资源通知接收端设备的相关技术细节已经在上文结合方法300进行了详细的描述,因此此处不再赘述。
装置600用于执行图3所示的方法300。装置600涉及的相关技术特征已经在上文结合附图,例如但不限于,图3和图4等,进行了详细的描述,因此此处不再赘述。
图7是依照本发明一实施例的获取参考信号的装置700的逻辑结构示意图。在具体实现过程中,装置700可以为接收端设备,该接收端设备可以是,例如但不限于,图2中的终端设备208~222,或者基站202~206。如图7所示,装置700包括确定模块702和获取模块704。
确定模块702用于根据参考信号对应的基本图样中为该参考信号分配的资源,和物理层传输单元中为至少一个所述基本图样分配的资源,确定物理层传输单元中所述参考信号占用的资源;
获取模块704用于通过确定的资源获取所述参考信号。
上述基本图样在时域内可以占用至少一个OFDM符号,在频域内可以占用至少一个子载波。此外,在上述基本图样中,上述参考信号在时域内可以占用至少一个OFDM符号,在频域内可以占用至少一个子载波。换句话说,参考信号对应的基本图样中为该参考信号分配的资源,在时域内可以包括至少一个OFDM符号,在频域内可以包括至少一个子载波。更为具体的说,在上述基本图样中,上述参考信号在时域内占用的至少一个OFDM符号可以为多个连续的OFDM符号。
上述参考信号用于下列目的之中的至少一种:
确定信道状态信息;
进行波束管理;
对接收信号进行解调。
在具体实现过程中,发射端设备通过确定的资源向接收端设备发送上述参考信号。而为了使得接收端设备获知物理层传输单元中为至少一个上述基本图样分配的资源,发射端设备还可以将物理层传输单元中为至少一个上述基本图样分配的资源通知接收端设备。在具体实现过程中,可由确定模块702获取物理层传输单元中为至少一个上述基本图样分配的资源,当然也可以由一接收模块(未示出),来获取物理层传输单元中为至少一个上述 基本图样分配的资源。有关发射端设备将物理层传输单元中为至少一个上述基本图样分配的资源通知接收端设备的相关技术细节已经在上文结合方法300进行了详细的描述,因此此处不再赘述。
装置700是与装置600相对应的接收侧装置,用于执行图5所示的方法500。装置700涉及的相关技术特征已经在上文结合附图,例如但不限于,图3和图4等,进行了详细的描述,因此此处不再赘述。
图8是依照本发明一实施例的发送参考信号的装置800的硬件结构示意图。如图8所示,装置800包括处理器802、收发器804、多根天线806,存储器808、I/O(输入/输出,Input/Output)接口810和总线812。收发器804进一步包括发射器8042和接收器8044,存储器808进一步用于存储指令8082和数据8084。此外,处理器802、收发器804、存储器808和I/O接口810通过总线812彼此通信连接,多根天线806与收发器804相连。
处理器802可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器802还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,处理器802可以用于执行,例如,图3所示的发送参考信号的方法300中的步骤302,和图6所示的发送参考信号的装置600中确定模块602所执行的操作。处理器802可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器808中存储的指令8082来执行上述步骤和/或操作的处理器,处理器802在执行上述步骤和/或操作的过程中可能需要用到数据8084。
收发器804包括发射器8042和接收器8044,其中,发射器8042用于通过多根天线806之中的至少一根天线发送信号。接收器8044用于通过多根天线806之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,发射器8042具体可以用于通过多根天线806之中的至少一根天线执行,例如,图3所示的发送参考信号的方法300中的步骤304和将物理层传输单元中为至少一个上述基本图样分配的资源通知接收端设备的步骤,以及图6所示的发送参考信号的装置600中发送模块604所执行的操作。
存储器808可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器808具体用于存储指令8082和数据8084,处理器802可以通过读取并执行存储器808中存储的指令8082,来执行上文所述的步骤和/或操作,在执行上述步骤和/或操作的过程中可能需要用到数据8084。
I/O接口810用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
应注意,在具体实现过程中,装置800还可以包括其他硬件器件,本文不再一一列举。
图9是依照本发明一实施例的获取参考信号的装置900的硬件结构示意图。如图9所示,装置900包括处理器902、收发器904、多根天线906,存储器908、I/O(输入/输 出,Input/Output)接口910和总线912。收发器904进一步包括发射器9042和接收器9044,存储器908进一步用于存储指令9082和数据9084。此外,处理器902、收发器904、存储器908和I/O接口910通过总线912彼此通信连接,多根天线906与收发器904相连。
处理器902可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器902还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,处理器902用于执行,例如,图5所示的获取参考信号的方法500中的步骤502、步骤504和获取物理层传输单元中为至少一个上述基本图样分配的资源的步骤,以及图7所示的获取参考信号的装置700中确定模块702和获取模块704所执行的操作。处理器902可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器908中存储的指令9082来执行上述步骤和/或操作的处理器,处理器902在执行上述步骤和/或操作的过程中可能需要用到数据9084。
收发器904包括发射器9042和接收器9044,其中,发射器9042用于通过多根天线906之中的至少一根天线发送信号。接收器9044用于通过多根天线906之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,接收器9044可用于执行图7所示的装置700中接收模块所执行的操作。
存储器908可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器908具体用于存储指令9082和数据9084,处理器902可以通过读取并执行存储器908中存储的指令9082,来执行上文所述的步骤和/或操作,在执行上述步骤和/或操作的过程中可能需要用到数据9084。
I/O接口910用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
应注意,在具体实现过程中,装置900还可以包括其他硬件器件,本文不再一一列举。
以上所述仅为本发明的较佳实施例,并不用以限制本发明的范围,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。例如,在本发明实施例提供的各方法的步骤之前、之间和/或之后添加其他的处理步骤,在本发明实施例提供的各装置中添加其他的处理模块以完成额外的处理,将本发明实施例提供的技术方案应用在特定场景或者特定条件下,均应视为在本发明实施例提供的技术方案基础上所做的进一步的改进,因此均落入本发明的范围之内。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以 硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种发送参考信号的方法,其特征在于,包括:
    根据参考信号对应的基本图样中为该参考信号分配的资源,和物理层传输单元中为至少一个所述基本图样分配的资源,确定物理层传输单元中所述参考信号占用的资源;
    通过确定的资源发送所述参考信号。
  2. 如权利要求1所述的方法,其特征在于,所述基本图样在时域内占用至少一个OFDM符号,在频域内占用至少一个子载波。
  3. 如权利要求1或者2所述的方法,其特征在于,在所述基本图样中,所述参考信号在时域内占用至少一个OFDM符号,在频域内占用至少一个子载波。
  4. 如权利要求3所述的方法,其特征在于,在所述基本图样中,所述参考信号在时域内占用的至少一个OFDM符号为多个连续的OFDM符号。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述参考信号用于下列目的之中的至少一种:
    确定信道状态信息;
    进行波束管理;
    对接收信号进行解调。
  6. 一种获取参考信号的方法,其特征在于,包括:
    根据参考信号对应的基本图样中为该参考信号分配的资源,和物理层传输单元中为至少一个所述基本图样分配的资源,确定物理层传输单元中所述参考信号占用的资源;
    通过确定的资源获取所述参考信号。
  7. 如权利要求6所述的方法,其特征在于,所述基本图样在时域内占用至少一个OFDM符号,在频域内占用至少一个子载波。
  8. 如权利要求6或者7所述的方法,其特征在于,在所述基本图样中,所述参考信号在时域内占用至少一个OFDM符号,在频域内占用至少一个子载波。
  9. 如权利要求8所述的方法,其特征在于,在所述基本图样中,所述参考信号在时域内占用的至少一个OFDM符号为多个连续的OFDM符号。
  10. 如权利要求6至9中任一项所述的方法,其特征在于,所述参考信号用于下列目的之中的至少一种:
    确定信道状态信息;
    进行波束管理;
    对接收信号进行解调。
  11. 一种发送参考信号的装置,其特征在于,包括:
    确定模块,用于根据参考信号对应的基本图样中为该参考信号分配的资源,和物理层传输单元中为至少一个所述基本图样分配的资源,确定物理层传输单元中所述参考信号占用的资源;
    发送模块,用于通过确定的资源发送所述参考信号。
  12. 如权利要求11所述的装置,其特征在于,所述基本图样在时域内占用至少一个OFDM符号,在频域内占用至少一个子载波。
  13. 如权利要求11或者12所述的装置,其特征在于,在所述基本图样中,所述参考 信号在时域内占用至少一个OFDM符号,在频域内占用至少一个子载波。
  14. 如权利要求13所述的装置,其特征在于,在所述基本图样中,所述参考信号在时域内占用的至少一个OFDM符号为多个连续的OFDM符号。
  15. 如权利要求11至14中任一项所述的装置,其特征在于,所述参考信号用于下列目的之中的至少一种:
    确定信道状态信息;
    进行波束管理;
    对接收信号进行解调。
  16. 一种获取参考信号的装置,其特征在于,包括:
    确定模块,用于根据参考信号对应的基本图样中为该参考信号分配的资源,和物理层传输单元中为至少一个所述基本图样分配的资源,确定物理层传输单元中所述参考信号占用的资源;
    获取模块,用于通过确定的资源获取所述参考信号。
  17. 如权利要求16所述的装置,其特征在于,所述基本图样在时域内占用至少一个OFDM符号,在频域内占用至少一个子载波。
  18. 如权利要求16或者17所述的装置,其特征在于,在所述基本图样中,所述参考信号在时域内占用至少一个OFDM符号,在频域内占用至少一个子载波。
  19. 如权利要求18所述的装置,其特征在于,在所述基本图样中,所述参考信号在时域内占用的至少一个OFDM符号为多个连续的OFDM符号。
  20. 如权利要求16至19中任一项所述的装置,其特征在于,所述参考信号用于下列目的之中的至少一种:
    确定信道状态信息;
    进行波束管理;
    对接收信号进行解调。
PCT/CN2017/100415 2016-11-03 2017-09-04 一种发送和获取参考信号的方法和装置 WO2018082394A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17867917.1A EP3531606B1 (en) 2016-11-03 2017-09-04 Methods and devices for transmitting and acquiring reference signal
BR112019008276A BR112019008276A2 (pt) 2016-11-03 2017-09-04 método e dispositivos e meio de armazenamento de computador e produto de programa de computador para enviar sinal de referência, e método e dispositivos e meio de armazenamento de computador e produto de programa de computador para obter sinal de referência
EP21181933.9A EP3958495A1 (en) 2016-11-03 2017-09-04 Method and apparatus for sending reference signal, and method and apparatus for obtaining reference signal
US16/401,826 US11374709B2 (en) 2016-11-03 2019-05-02 Method and apparatus for sending reference signal, and method and apparatus for obtaining reference signal
US17/833,478 US11784770B2 (en) 2016-11-03 2022-06-06 Method and apparatus for sending reference signal, and method and apparatus for obtaining reference signal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610953606 2016-11-03
CN201610953606.6 2016-11-03
CN201611027749.0 2016-11-17
CN201611027749.0A CN108023720B (zh) 2016-11-03 2016-11-17 一种发送和获取参考信号的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/401,826 Continuation US11374709B2 (en) 2016-11-03 2019-05-02 Method and apparatus for sending reference signal, and method and apparatus for obtaining reference signal

Publications (1)

Publication Number Publication Date
WO2018082394A1 true WO2018082394A1 (zh) 2018-05-11

Family

ID=62076615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100415 WO2018082394A1 (zh) 2016-11-03 2017-09-04 一种发送和获取参考信号的方法和装置

Country Status (1)

Country Link
WO (1) WO2018082394A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021008188A1 (zh) * 2019-07-16 2021-01-21 北京紫光展锐通信技术有限公司 参考信号信息的确定方法及装置、存储介质、终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932073A (zh) * 2009-06-22 2010-12-29 北京三星通信技术研究有限公司 发送和接收专用参考信号的方法、基站和用户终端
CN102469059A (zh) * 2010-11-15 2012-05-23 中兴通讯股份有限公司 解调参考信号承载方法及装置
CN103944685A (zh) * 2013-01-18 2014-07-23 华为技术有限公司 扩展参考信号的方法、设备和通信系统
CN104581835A (zh) * 2013-10-29 2015-04-29 华为技术有限公司 映射下行参考信号的装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932073A (zh) * 2009-06-22 2010-12-29 北京三星通信技术研究有限公司 发送和接收专用参考信号的方法、基站和用户终端
CN102469059A (zh) * 2010-11-15 2012-05-23 中兴通讯股份有限公司 解调参考信号承载方法及装置
CN103944685A (zh) * 2013-01-18 2014-07-23 华为技术有限公司 扩展参考信号的方法、设备和通信系统
CN104581835A (zh) * 2013-10-29 2015-04-29 华为技术有限公司 映射下行参考信号的装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ETRI: "CSI-RS Design for 12 and 16 Ports", 3GPP TSG RAN WG1 MEETING #82BISRL-155836, 9 October 2015 (2015-10-09), pages 1 - 4, XP051039760 *
See also references of EP3531606A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021008188A1 (zh) * 2019-07-16 2021-01-21 北京紫光展锐通信技术有限公司 参考信号信息的确定方法及装置、存储介质、终端

Similar Documents

Publication Publication Date Title
EP3780476B1 (en) Method and apparatus for measurement reference signal in wireless communication system
WO2019136934A1 (zh) 信道状态信息上报频带的配置方法及通信装置
RU2638524C2 (ru) Способ сигнализации конкретных типов элементов ресурсов в системе беспроводной связи
US11005625B2 (en) Reference signal indication method and apparatus to improve spectrum efficiency
JP2019522396A (ja) 低減密度csi−rsのための機構
US20220173865A1 (en) Methods and Apparatus for Signaling Control Information
US11121837B2 (en) User equipment and method of SRS transmission
US20190253211A1 (en) Wireless communication method
US11190321B2 (en) Reference signal transmission method, network side apparatus, and user equipment
US11101957B2 (en) Reference signal sending method and apparatus
US11784770B2 (en) Method and apparatus for sending reference signal, and method and apparatus for obtaining reference signal
CN111903073B (zh) 无线通信系统中大容量接入的装置和方法
KR20230144029A (ko) 다른 셀 간 빔 관리의 인디케이션 방법 및 장치
WO2019037693A1 (zh) 频带指示方法、频带确定方法、发射端设备和接收端设备
WO2010063713A1 (en) Method and device for data processing in a mobile communication network
WO2018082394A1 (zh) 一种发送和获取参考信号的方法和装置
CN109842474B (zh) 传输指示方法、设备及系统、存储介质
WO2018082319A1 (zh) 一种预编码配置方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019008276

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017867917

Country of ref document: EP

Effective date: 20190524

ENP Entry into the national phase

Ref document number: 112019008276

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190424