WO2019095969A1 - 一种用户设备和接入设备 - Google Patents

一种用户设备和接入设备 Download PDF

Info

Publication number
WO2019095969A1
WO2019095969A1 PCT/CN2018/112255 CN2018112255W WO2019095969A1 WO 2019095969 A1 WO2019095969 A1 WO 2019095969A1 CN 2018112255 W CN2018112255 W CN 2018112255W WO 2019095969 A1 WO2019095969 A1 WO 2019095969A1
Authority
WO
WIPO (PCT)
Prior art keywords
size
prb binding
configuration information
prb
prg
Prior art date
Application number
PCT/CN2018/112255
Other languages
English (en)
French (fr)
Inventor
金黄平
刘永
吴晔
韩玮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880069956.3A priority Critical patent/CN111279651B/zh
Priority to EP18879126.3A priority patent/EP3703296A4/en
Publication of WO2019095969A1 publication Critical patent/WO2019095969A1/zh
Priority to US16/875,074 priority patent/US20200280963A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided

Definitions

  • the embodiments of the present invention relate to channel measurement technologies, and in particular, to a user equipment and an access device.
  • the transmission effect of wireless communication is closely related to the channel environment. Therefore, selecting a transmission parameter that is compatible with the channel environment is important for wireless communication. For example, when the channel environment is good, a more aggressive Modulation and Coding Scheme (MCS) can be selected to improve the transmission throughput. When the channel environment is poor, a more conservative MCS can be selected to improve Transmission robustness.
  • MCS Modulation and Coding Scheme
  • channel measurements can be used to determine the channel environment.
  • the downlink channel reference signal sent by an access device such as but not limited to a base station, etc.
  • the user equipment such as, but not limited to, a smart phone, etc.
  • the downlink channel environment is determined according to the downlink channel environment, and the access device is notified to connect Enter the device to select the appropriate transmission parameters.
  • the results of channel measurements can usually be represented by Channel State Information (CSI).
  • the CSI may include, for example, but not limited to, one or more of the following information: a channel quality indicator (CQI), a precoding matrix indicator (PMI), and a precoding type.
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • PTI Precoding Type Indicator
  • CRI CSI-RS Resource Indicator
  • RI Rank Indication
  • channel measurements need to be made according to a specific measurement mechanism.
  • the measurement mechanism is different, and the measurement process and measurement results are usually different.
  • Recent research advances indicate that next-generation wireless communication systems will introduce a measurement mechanism called semi-static measurement.
  • the semi-static measurement calculates the CQI of the CSI reporting band based on the Precoding Resource Block Group (PRG). Therefore, the PRG size is crucial for semi-static measurement.
  • the PRG size can be indicated by configuration.
  • an access device is provided to help reduce the signaling overhead caused by configuring the PRG size.
  • an access device is provided to help reduce the signaling overhead caused by configuring the PRG size.
  • a user equipment including:
  • the transceiver module is configured to receive configuration information, where the configuration information is used to configure at least one PRB binding size.
  • a processing module configured to determine a PRG size based on the at least one PRB binding size.
  • an access device including:
  • a processing module configured to generate configuration information, where the configuration information is used to configure a plurality of PRB binding sizes, wherein among the plurality of PRB binding sizes, a PRB binding size that is a preset position is used as a preset location PRG size;
  • transceiver module configured to send the configuration information.
  • an access device including:
  • a processing module configured to generate configuration information, where the configuration information is used to configure a plurality of PRB binding sizes, where the configuration information includes indication information, where the indication information is used to indicate a PRB used as a PRG size among multiple PRG binding sizes Binding size.
  • transceiver module configured to send the configuration information.
  • a user equipment including:
  • the transceiver is configured to receive configuration information, where the configuration information is used to configure at least one PRB binding size.
  • a processor configured to determine a PRG size based on the at least one PRB binding size.
  • an access device including:
  • a processor configured to generate configuration information, where the configuration information is used to configure a plurality of PRB binding sizes, wherein among the plurality of PRB binding sizes, a PRB binding size that is a preset position is used as a preset location.
  • transceiver configured to send the configuration information.
  • an access device including:
  • a processor configured to generate configuration information, where the configuration information is used to configure a plurality of PRB binding sizes, where the configuration information includes indication information, where the indication information is used to indicate a PRB used as a PRG size among multiple PRG binding sizes Binding size.
  • transceiver configured to send the configuration information.
  • the processor can be used to perform, for example, but not limited to, baseband related processing, and the transceiver can be used to perform, for example, without limitation, radio frequency transceiving.
  • the above devices may be respectively disposed on chips independent of each other, or may be disposed at least partially or entirely on the same chip.
  • the transceiver may be disposed on the transceiver chip.
  • the processor can be further divided into an analog baseband processor and a digital baseband processor, wherein the analog baseband processor can be integrated on the same chip as the transceiver, and the digital baseband processor can be disposed on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be combined with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) Integrated on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip can be referred to as a system on chip. Separate devices on different chips or integrated on one or more chips often depends on the specific needs of the product design. The specific implementation form of the above device is not limited in the embodiment of the present invention.
  • a configuration method including:
  • the configuration information is used to configure at least one PRB binding size.
  • a PRG size is determined based on the at least one PRB binding size.
  • a configuration method including:
  • the configuration information is used to configure a plurality of PRB binding sizes, wherein among the plurality of PRB binding sizes, the PRB binding size whose arrangement position is the preset position is used as the PRG size.
  • a configuration method including:
  • the configuration information is used to configure a plurality of PRB binding sizes, and the configuration information includes indication information, where the indication information is used to indicate a PRB binding size used as a PRG size among the plurality of PRG binding sizes.
  • a processor for performing the various methods described above.
  • the process of transmitting configuration information and receiving configuration information in the above method may be understood as a process of outputting configuration information by a processor, and a process of receiving input configuration information by a processor.
  • the processor when outputting the configuration information, the processor outputs the configuration information to the transceiver for transmission by the transceiver. Further, after the configuration information is output by the processor, other processing may be required before reaching the transceiver.
  • the processor receives the input configuration information
  • the transceiver receives the configuration information and inputs it to the processor. Further, after the transceiver receives the configuration information, the configuration information may need to be processed before being input to the processor.
  • the receiving configuration information mentioned in the foregoing method can be understood as the processor receiving the input configuration information.
  • transmitting configuration information can be understood as processor output configuration information.
  • the foregoing processor may be a processor dedicated to executing the methods, or may be a processor executing computer instructions in the memory to execute the methods, such as a general-purpose processor, in this case, a processor and a memory. It is attributed to a communication device, for example included in the communication device.
  • the above memory may be a non-transitory memory, such as a read only memory (ROM), which may be integrated on the same chip as the processor, or may be separately disposed on different chips.
  • ROM read only memory
  • the embodiment does not limit the type of the memory and the manner in which the memory and the processor are arranged.
  • a computer readable storage medium comprising instructions which, when executed on a computer, cause the computer to perform any of the methods described above.
  • the computer readable storage medium described above is non-transitory.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform any of the methods described above.
  • the at least one PRB binding size includes a PRB binding size
  • the PRG size is the PRB binding size
  • the at least one PRB binding size includes multiple PRB binding sizes, and the PRG size is determined by the multiple PRB binding sizes. Preset indicates the PRB binding size indicated by the rule.
  • the preset indication rule is one or a combination of the following rules:
  • the PRB binding size in which the arrangement position is the preset position among the plurality of PRB binding sizes is used as the PRG size.
  • the preset position is the first position or the last position.
  • the configuration information includes indication information, where the indication information is used to indicate a PRB binding used as a PRG size among the multiple PRB binding sizes. size.
  • the configuration information is sent by radio resource control RRC signaling.
  • the technical solution provided by the embodiment of the present invention configures the PRG size by configuring the PRB binding size, so that it is not necessary to set a dedicated signaling for configuring the PRG size, thereby helping to reduce the signaling overhead introduced by configuring the PRG size.
  • FIG. 1 is an exemplary schematic diagram of a wireless communication network in accordance with an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing an exemplary logical structure of a user equipment according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing an exemplary logical structure of an access device according to an embodiment of the invention.
  • FIG. 4 is a schematic diagram showing an exemplary logical structure of an access device according to an embodiment of the invention.
  • FIG. 5 is an exemplary flowchart of a configuration method according to an embodiment of the invention.
  • FIG. 6 is an exemplary flowchart of a configuration method in accordance with an embodiment of the present invention.
  • FIG. 7 is an exemplary flowchart of a configuration method according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing the hardware structure of a communication device according to an embodiment of the present invention.
  • the next-generation wireless communication system currently under development is also known as the New Radio (NR) system or the 5G system.
  • the measurement mechanism includes at least semi-open loop measurement and closed loop measurement, wherein the semi-open loop measurement can also be called semi-open loop feedback ( Semi-open loop feedback), closed loop measurement can also be called closed loop feedback.
  • semi-open loop feedback Semi-open loop feedback
  • closed loop measurement can also be called closed loop feedback.
  • the semi-open loop measurement can be used to perform channel measurement on the CSI reporting band.
  • the CSI reporting frequency band can be understood as a frequency band that needs to be reported by the CSI.
  • the CSI reporting frequency band may include multiple sub-bands, which may be continuous with each other, or may be discontinuous with each other, or at least a part of the sub-bands may be continuous, and the sub-bands of the embodiment of the present invention The continuity is not limited.
  • the sub-bands may belong to the same specific frequency band, and the specific frequency band may be set as needed.
  • the embodiment of the present invention does not limit the specific frequency band.
  • the specific frequency band described above may be a bandwidth part.
  • the bandwidth portion can be understood as a continuous frequency band, which includes at least one contiguous sub-band, each bandwidth portion can correspond to a set of system parameters including, for example but not limited to, Subcarrier spacing and cyclic prefix. (Cyclic Prefix, CP), etc., different bandwidth parts can correspond to different system parameters. Alternatively, within the same Transmission Time Interval (TTI), among the multiple bandwidth portions, only one bandwidth portion may be available, and other bandwidth portions may not be available. In addition to the above features, in the specific implementation process, a further limitation may be added to the definition of the CSI reporting frequency band.
  • TTI Transmission Time Interval
  • the fed back CSI may include the CSI of the entire CSI reporting band.
  • the CSI of the entire CSI reporting frequency band mentioned here may also be referred to as the wideband CSI of the CSI reporting frequency band.
  • This CSI refers to the CSI calculated by using the CSI reporting frequency band as a whole, instead of reporting the various parts of the frequency band to the CSI ( For example, but not limited to, each sub-band) a set of CSIs of respective portions obtained by performing half-open loop measurements, respectively.
  • the CQI of the entire CSI reporting frequency band may be adopted, for example, but not limited to, calculation in the following manner.
  • a precoding matrix is randomly selected in the codebook, where the codebook may be a codebook indicated by Codebook Subset Restriction signaling, the codebook It is usually determined based on channel statistics, so the trend of the channel environment can be adapted to some extent. Multiplying the channel matrix corresponding to the PRG by the precoding matrix to obtain an equivalent channel matrix of the PRG, and determining a Signal to Interference plus Noise Ratio (SINR) of the equivalent channel matrix.
  • SINR Signal to Interference plus Noise Ratio
  • the average value of the SINRs of all the PRGs included in the CSI reporting frequency band or other values of the overall SINR of the CSI reporting frequency band may be calculated, and the corresponding CQI may be determined according to the value as the CQI of the entire CSI reporting frequency band.
  • Closed loop measurements can be used to make channel measurements for CSI reporting bands, subbands or subband groups.
  • the precoding matrix may be selected from the codebook based on the principle of channel capacity maximization or throughput maximization, and the precoding matrix is reported by the PMI.
  • the channel matrix of the subband and the precoding matrix can be multiplied to obtain an equivalent channel matrix of the subband.
  • the corresponding CQI can be determined according to the SINR.
  • the CQI corresponding to the subband group can also be obtained by referring to the method for calculating the SINR average value used in the semi-static measurement. It should be understood by those skilled in the art that in the specific implementation process, the CQI may be calculated by other methods, and the embodiment of the present invention does not limit the specific calculation method.
  • the channel measurement process occurs before the data transmission, so the CSI determined during the channel measurement process may change during data transmission.
  • the channel environment does not change rapidly, so when data transmission is performed, the change in CSI that was previously determined during the channel measurement process is usually not very large.
  • the CSI determined in the closed-loop measurement is determined based on the channel environment, the CSI is more compatible with the channel environment, so the data transmission effect is better.
  • the channel environment changes rapidly. When data transmission is performed, the CSI determined in the channel measurement process is likely to undergo a large change, thereby causing the CSI obtained by the previous measurement to be outdated, thereby failing to communicate with the channel.
  • the environment matches.
  • the CSI determined by the semi-open loop measurement tends to achieve a better effect.
  • the precoding matrix involved in the semi-open loop measurement is selected from a specific codebook which is determined based on channel statistical information and can adapt to a certain trend of the channel environment to some extent. Therefore, even if randomly selected, there is a certain degree of matching with the channel environment.
  • the CQI determined by the semi-open loop measurement is determined based on a plurality of precoding matrices randomly selected in units of PRG, and the effect of diversity transmission is introduced to some extent, so the transmission effect is more robust.
  • the above process of calculating CSI is usually performed by a user equipment.
  • the user equipment determines the CSI and reports it to the access device.
  • the PRG size can be generally understood as the bandwidth of the PRG.
  • the PRG includes multiple Resource Blocks (RBs). Therefore, the PRG size may be specifically the number of RBs included in the PRG.
  • the PRG size can be indicated by configuration. However, it is not difficult to understand that configuring the PRG size necessarily introduces signaling overhead, thereby affecting transmission efficiency.
  • Precoding technology is one of the core technologies of MIMO technology.
  • the technology processes the transmitted signal by means of a precoding matrix matched with the channel attributes, so that the precoded signal to be transmitted is adapted to the channel, so the transmission process is optimized.
  • the received signal quality eg, SINR
  • precoding technology has been adopted by various wireless communication standards, such as but not limited to Long Term Evolution (LTE).
  • the width of the frequency band pre-coded based on the same precoding matrix which is usually indicated by a physical resource block bundling size (PRB (Physical RB) bundling size).
  • PRB Physical resource block bundling size
  • each randomly selected precoding matrix is used to precode one PRG, so the width of the frequency band to which the randomly selected precoding matrix is applied is The bandwidth of the PRG, that is, the PRG size.
  • the PRG size involved in the semi-static measurement process is similar to the PRB binding size involved in the precoding process for data transmission. Therefore, you can try to set the PRG size to be equal to the PRB binding size. In this way, the PRG size associated with the channel measurement can be indicated by indicating the PRB binding size, and the signaling overhead introduced by configuring the PRG size can be reduced.
  • the access device configures multiple PRB binding sizes for the user equipment in advance through configuration signaling, and the PRB binding size used in the precoding process is connected.
  • the ingress device selects from the plurality of PRB binding sizes and indicates to the user equipment.
  • the access device configures multiple PRB binding sizes for the user equipment by using Radio Resource Control (RRC) signaling or other signaling.
  • RRC Radio Resource Control
  • the access device passes the Downlink Control Information (DCI) or other signaling specifically indicates the PRB binding size used in the precoding process.
  • DCI Downlink Control Information
  • the next-generation wireless communication system will use the configuration + indication to notify the PRB binding size, wherein the configuration process is used to configure multiple PRB binding sizes, and the indication process is used in multiple PRB binding sizes configured. Indicates the PRB binding size used in the precoding process. It should be noted that the manner of notifying the PRB binding size may not be unique. In the next generation wireless communication standard, other ways of notifying the PRB binding size may also be defined. For example, only one PRB binding size can be configured in the process of configuring the PRB binding size. In this case, the process of notifying the PRB binding size only includes the configuration process, and does not need to include the indication process.
  • the indication may be performed in various manners, such as, but not limited to, directly indicating the information to be indicated, such as the information to be indicated itself or An index or the like of the to-be-instructed information; the information to be instructed may be indirectly indicated by indicating other information, wherein the other information has an association relationship with the information to be indicated; and only a part of the information to be indicated may be indicated, and the information to be indicated is Other parts are known or agreed in advance; in addition, the specific indication manner may also be various combinations of the above indication methods and the like. In the specific implementation process, the required indication manner may be selected according to specific needs.
  • the embodiment of the present invention does not limit the indication manner of the selection. Therefore, the indication manner involved in the embodiment of the present invention should be understood to cover
  • the indicator party learns various methods of the information to be instructed. At the same time, the information to be instructed may be sent together as a whole, or may be separately transmitted into multiple sub-information, and the transmission period and/or the transmission timing of the sub-information may be the same or different.
  • the specific transmission method reference may be made to the prior art, which is not limited by the present invention.
  • the PRG size can be set to be the same as the PRB binding configured by RRC signaling or other signaling, so that the PRB binding size associated with the channel measurement can be indicated by configuring the PRB binding size.
  • the embodiment of the present invention provides a technical solution, which may determine, according to a preset indication rule, a PRG size according to multiple PRB binding sizes configured.
  • the wireless communication network 100 includes base stations 102-106 and terminal devices 108-122, wherein the base stations 102-106 can pass backhaul links with each other (e.g., lines between base stations 102-106) Communication is shown, which may be a wired backhaul link (eg, fiber optic, copper) or a wireless backhaul link (eg, microwave).
  • the terminal devices 108-122 can communicate with the corresponding base stations 102-106 via a wireless link (as indicated by the broken line between the base stations 102-106 and the terminal devices 108-122).
  • the base stations 102-106 typically serve as access devices to provide wireless access services for the terminal devices 108-122 that are typically user equipment.
  • each base station corresponds to a service coverage area (also referred to as a cell, as shown in each ellipse area in FIG. 1), and the terminal device entering the area can communicate with the base station by using a wireless signal to receive the base station.
  • Wireless access service provided.
  • multiple base stations may use Coordinated Multipoint (CoMP) technology to provide services for terminal devices in the overlapping area.
  • CoMP Coordinated Multipoint
  • the base station 102 overlaps with the service coverage area of the base station 104, and the terminal device 112 is within the overlapping area, so the terminal device 112 can receive the wireless signals from the base station 102 and the base station 104.
  • the base station 102 and the base station 104 can cooperate with each other to provide services to the terminal device 112.
  • the service coverage areas of the base station 102, the base station 104, and the base station 106 have a common overlapping area, and the terminal device 120 is within the overlapping area, so the terminal device 120 can receive the base station.
  • the wireless signals 102, 104, and 106, the base stations 102, 104, and 106 can cooperate with each other to provide services to the terminal device 120.
  • the base station may be referred to as a Node B (NodeB), an evolved Node B (eNodeB), and an Access Point (AP), etc., depending on the wireless communication technology used.
  • NodeB Node B
  • eNodeB evolved Node B
  • AP Access Point
  • the base station can be further divided into a macro base station for providing a macro cell, a micro base station for providing a pico cell, and a femtocell for providing Femto cell) Femto base station, etc.
  • future base stations may use other names.
  • the terminal devices 108-122 may be various wireless communication devices having wireless communication functions, such as but not limited to mobile cellular phones, cordless phones, personal digital assistants (PDAs), smart phones, notebook computers, tablets, wireless devices.
  • a data card a modem (Modulator demodulator, Modem), or a wearable device such as a smart watch.
  • IOT Internet of Things
  • V2X vehicle-to-everything
  • Such devices have wireless communication functions because they are equipped with wireless communication units, and therefore belong to the category of wireless communication devices.
  • the terminal devices 108-122 may also be referred to as mobile stations, mobile devices, mobile terminals, wireless terminals, handheld devices, clients, and the like.
  • the base stations 102-106 and the terminal devices 108-122 can be configured with multiple antennas to support MIMO (Multiple Input Multiple Output) technology. Further, the base stations 102-106 and the terminal devices 108-122 can support single-user MIMO (SU-MIMO) technology or multi-user MIMO (Multi-User MIMO, MU-MIMO). MU-MIMO can be implemented based on Space Division Multiple Access (SDMA) technology. Due to the configuration of multiple antennas, the base stations 102-106 and the terminal devices 108-122 can also flexibly support Single Input Single Output (SISO) technology, Single Input Multiple Output (SIMO) and multiple input.
  • SISO Single Input Single Output
  • SIMO Single Input Multiple Output
  • the multiplexing technology can be a spatial multiplexing (Spatial Multiplexing) technology.
  • the transmit diversity technology may include: Space-Time Transmit Diversity (STTD), Space-Frequency Transmit Diversity (SFTD), and time switching. Time Switched Transmit Diversity (TSTD), Frequency Switching Transmit Diversity (FSTD), Orthogonal Transmit Diversity (OTD), Cyclic Delay Diversity (CDD), etc.
  • the current LTE (Long Term Evolution) standard adopts a transmit diversity method such as Space Time Block Coding (STBC), Space Frequency Block Coding (SFBC), and CDD.
  • STBC Space Time Block Coding
  • SFBC Space Frequency Block Coding
  • CDD Code Division Multiple Access
  • the base stations 102-106 and the terminal devices 108-122 can communicate using various wireless communication technologies, such as, but not limited to, Time Division Multiple Access (TDMA) technology, Frequency Division Multiple Access (Frequency Division Multiple Access, FDMA) technology, Code Division Multiple Access (CDMA) technology, Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), Orthogonal Frequency Division Multiple Access (OFDMA) Technology, Single Carrier FDMA (SC-FDMA) technology, Space Division Multiple Access (SDMA) technology, and evolution and derivative technologies of these technologies.
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier FDMA
  • SDMA Space Division Multiple Access
  • the above wireless communication technology is adopted as a radio access technology (RAT) by many wireless communication standards, thereby constructing various wireless communication systems (or networks) well known today, including but not limited to Global System for Mobile Communications (GSM), CDMA2000, Wideband CDMA (WCDMA), WiFi defined by the 802.11 family of standards, Worldwide Interoperability for Microwave Access (WiMAX), Long Term Evolution (Long Term Evolution, LTE), LTE-Advanced (LTE-A), and an evolution system of these wireless communication systems.
  • GSM Global System for Mobile Communications
  • WCDMA Wideband CDMA
  • WiFi defined by the 802.11 family of standards
  • WiMAX Worldwide Interoperability for Microwave Access
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • the wireless communication network 100 shown in FIG. 1 is for example only and is not intended to limit the technical solution of the present invention. It should be understood by those skilled in the art that in a specific implementation process, the wireless communication network 100 may also include other devices, and the number of base stations and terminal devices may also be configured according to specific needs.
  • the user equipment 200 includes a transceiver module 202 and a processing module 204.
  • the transceiver module 202 is configured to receive configuration information, where the configuration information is used to configure at least one PRB binding size.
  • the processing module 204 is configured to determine a PRG size based on the at least one PRB binding size.
  • the PRG size is a PRG size associated with the channel measurement, and the PRG size may be the same as or different from the PRG size in the data transmission process, where the foregoing data transmission may be, for example, but not limited to, physical downlink sharing.
  • Data transmission by channel Physical Downlink Shared Channel, PDSCH).
  • the technical solution provided by the embodiment of the present invention configures the PRG size by configuring the PRB binding size, so that it is not necessary to set a dedicated signaling for configuring the PRG size, thereby helping to reduce the signaling overhead introduced by configuring the PRG size.
  • the configuration information is from an access device, and the configuration information may be sent by, for example, but not limited to, one of the following signaling:
  • L1 signaling is also referred to as Layer 1 (L1) signaling, which can typically be carried by a control portion in a physical layer frame.
  • L1 signaling is the DCI carried in the Physical Downlink Control Channel (PDCCH) defined in the LTE standard and the uplink control information carried in the Physical Uplink Control Channel (PUCCH) (Uplink Control). Information, UCI).
  • the L1 signaling may also be carried by a data part in a physical layer frame.
  • the UCI may also be carried by a Physical Uplink Shared Channel (PUSCH). It is not difficult to see that the transmission period or signaling period of L1 signaling is usually the period of the physical layer frame. Therefore, such signaling is usually used to implement some dynamic control to transmit some frequently changing information, for example, through the physical layer. Signaling resource allocation information.
  • Media Access Control (MAC) layer signaling belongs to Layer 2 signaling, which can typically be carried by, for example, but not limited to, a frame header of a Layer 2 frame.
  • the foregoing frame header may also carry information such as, but not limited to, a source address and a destination address.
  • the second layer of frames usually also contains the frame body.
  • L2 signaling may also be carried by the frame body of the second layer frame.
  • a typical example of Layer 2 signaling is the signaling carried in the Frame Control field in the frame header of the MAC frame in the 802.11 series of standards, or the Control Entity (MAC-CE) defined in some protocols.
  • the second layer frame can usually be carried in the data portion of the physical layer frame.
  • the above configuration information may also be sent through other Layer 2 signaling other than media access control layer signaling.
  • the RRC signaling belongs to Layer 3 signaling, which is usually some control message, and the L3 signaling can usually be carried in the frame body of the second layer frame.
  • the transmission period or control period of the L3 signaling is usually long, and is suitable for transmitting information that does not change frequently.
  • L3 signaling is usually used to carry some configuration information.
  • the above configuration information may also be sent through other layer 3 signaling other than RRC signaling.
  • configuration information may be preferentially transmitted through Layer 3 signaling, such as but not limited to RRC signaling, because multiple PRB binding sizes configured through configuration information generally do not change frequently.
  • the at least one PRB binding size may include only one PRB binding size, in which case the processing module 204 may use the PRB binding size as the PRG size.
  • the PRB binding size configured by RRC signaling or other signaling can be forcibly set to one, in which case the set PRB binding size is used as the PRG size.
  • this approach inevitably results in a PRB binding size that is not flexible enough.
  • the at least one PRB binding size may also include multiple PRB binding sizes.
  • the PRG size is a PRB binding size indicated by a preset indication rule among multiple PRB binding sizes.
  • the indication rule may be, for example but not limited to, one or a combination of the following rules.
  • the PRB binding size in which the positions of the plurality of PRB binding sizes are preset positions is used as the PRG size. Further, for example, the above preset position may be set to the first position or the last position.
  • the PRB binding sizes are usually arranged in the configuration information in a certain order. In this way, the PRB binding size used as the PRG size can be determined according to the above rule 3.
  • the configuration information further includes indication information, where the indication information is used to indicate a PRB binding size used as a PRG size among the multiple PRB binding sizes.
  • the indication information may indicate an index of a PRB binding size, or the indication information may also indicate how to select a PRB binding size used as a PRG size among the plurality of PRB binding sizes.
  • the indication information may indicate one of the above rules or a combination of several rules.
  • the configuration information includes three PRB binding sizes, which are sequentially arranged, 2, 4, and 8, and their indexes are 1, 2, and 3, respectively.
  • the determined PRG size is 8.
  • the determined PRG size is 2.
  • the above indication rule is rule 3 and the preset position in the above rule 3 is position 1, the determined PRG size is 2.
  • the indication information in the configuration information further indicates that the PRG size is a PRB binding size of the arrangement position of 2, that is, 4.
  • the indication information further indicates that the PRG size is a PRB binding size with an index of 3, that is, 8.
  • FIG. 3 is a schematic diagram showing an exemplary logical structure of an access device 300 according to an embodiment of the invention.
  • the access device 300 includes a processing module 302 and a transceiver module 304.
  • the processing module 302 is configured to generate configuration information, where the configuration information is used to configure a plurality of PRB binding sizes, wherein among the multiple PRB binding sizes, a PRB binding size that is a preset position is used as a preset location. PRG size.
  • the transceiver module 304 is configured to send the configuration information.
  • the configuration information is sent to the user equipment.
  • the configuration information can be used to configure multiple PRB binding sizes.
  • the PRG size is the PRB binding size indicated by the preset indication rule among the multiple PRB binding sizes.
  • the preset indication rule may be that the PRB binding size in which the arrangement position of the plurality of PRB binding sizes configured by the configuration information is the preset position is used as the PRG size.
  • the preset position may be set to the first position or the last position.
  • the access device in order to facilitate the user equipment to determine the PRB binding size used as the PRG size in multiple PRB binding sizes according to the foregoing preset rule, when the configuration information is generated, the access device needs to use the PRB as the PRG size.
  • the binding size is arranged in a preset position among a plurality of PRB binding sizes configured by the configuration information.
  • the access device 400 includes a processing module 402 and a transceiver module 404.
  • the processing module 402 is configured to generate configuration information, where the configuration information is used to configure a plurality of PRB binding sizes, where the configuration information includes indication information, where the indication information is used to indicate a PRB used as a PRG size among multiple PRG binding sizes. Binding size.
  • the transceiver module 404 is configured to send the configuration information.
  • the configuration information is sent to the user equipment.
  • FIG. 5 is an exemplary flow diagram of a configuration method 500 in accordance with an embodiment of the present invention.
  • method 500 can be performed by a user equipment.
  • Step 502 Receive configuration information, where the configuration information is used to configure at least one PRB binding size.
  • Step 504 Determine a PRG size based on the at least one PRB binding size.
  • FIG. 6 is an exemplary flow diagram of a configuration method 600 in accordance with an embodiment of the present invention.
  • method 500 can be performed by an access device.
  • Step 602 generating configuration information, where the configuration information is used to configure a plurality of PRB binding sizes, wherein among the plurality of PRB binding sizes, a PRB binding size whose arrangement position is a preset position is used as a PRG size. .
  • Step 604 sending the configuration information.
  • FIG. 7 is an exemplary flow diagram of a configuration method 700 in accordance with an embodiment of the present invention.
  • method 700 can be performed by an access device.
  • Step 702 Generate configuration information, where the configuration information is used to configure a plurality of PRB binding sizes, where the configuration information includes indication information, where the indication information is used to indicate a PRB binding used as a PRG size among multiple PRG binding sizes. size.
  • Step 704 Send the configuration information.
  • the method 500-700 corresponds to the user equipment 200, the receiving device 300, and the receiving device 400, and the above operation of the above device is the above method.
  • the related technical solutions have been described in detail above in connection with the user equipment 200, the receiving device 300, and the receiving device 400, and thus are not described herein again.
  • FIG. 8 is a schematic diagram showing the hardware structure of a communication device 800 according to an embodiment of the present invention.
  • the communication device 800 can be used to implement a user device, such as the user device 200, and can also be used to implement an access device, such as the access device 300 and the access device 400.
  • communication device 800 includes a processor 802, a transceiver 804, a plurality of antennas 806, a memory 808, an I/O (Input/Output) interface 810, and a bus 812.
  • Memory 808 is further used to store instructions 8082 and data 8084.
  • the processor 802, the transceiver 804, the memory 808, and the I/O interface 810 are communicatively coupled to one another via a bus 812, and the plurality of antennas 806 are coupled to the transceiver 804.
  • the processor 802, the transceiver 804, the memory 808, and the I/O interface 810 may also be in communication with each other by using other connections than the bus 812.
  • the processor 802 can be a general-purpose processor, such as, but not limited to, a central processing unit (CPU), or a dedicated processor such as, but not limited to, a digital signal processor (DSP), an application. Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA). Moreover, processor 802 can also be a combination of multiple processors. In particular, in the technical solution provided by the embodiment of the present invention, when the communication device 800 is used to implement the user equipment, the processor 802 may be configured to perform the operations performed by the processing module 204 in the user equipment 200 above. When the communication device 800 is used to implement an access device, the processor 802 can be configured to perform the operations performed by the processing modules 302 and 402 in the access device 300 and the access device 400 above. The processor 802 may be a processor specifically designed to perform the above operations, or may be a processor that performs the above operations by reading and executing the instructions 8082 stored in the memory 808, and the processor 802 may perform the above operations. Need to use data 8084.
  • the transceiver 804 is configured to transmit signals through at least one of the plurality of antennas 806 and to receive signals through at least one of the plurality of antennas 806.
  • the processor 802 when the communication device 800 is used to implement the user equipment, the processor 802 may be configured to perform the operations performed by the transceiver module 202 in the user equipment 200 above.
  • the processor 802 can be configured to perform the operations performed by the transceiver modules 304 and 404 in the access device 300 and the access device 400 above.
  • the memory 808 can be various types of storage media, such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • RAM random access memory
  • ROM read only memory
  • NVRAM non-volatile RAM
  • PROM Programmable ROM
  • EPROM Erasable PROM
  • EEPROM Electrically Erasable PROM
  • flash memory optical memory
  • registers such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • the memory 808 is specifically configured to store the instructions 8082 and the data 8084.
  • the processor 802 can perform the operations
  • the I/O interface 810 is configured to receive instructions and/or data from peripheral devices and to output instructions and/or data to peripheral devices.
  • the communication device 800 may also include other hardware devices, which are not enumerated herein.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种用户设备,包括收发模块,用于接收配置信息,所述配置信息用于配置至少一个PRB绑定大小;处理模块,用于基于所述至少一个PRB绑定大小确定PRG大小。本发明实施例还提供了一种接入设备。本发明实施例提供的技术方案通过配置PRB绑定大小来配置PRG大小,这样一来便无需为配置PRG大小设置专用的信令,因此有助于降低配置PRG大小而引入的信令开销。

Description

一种用户设备和接入设备
本申请要求于2017年11月17日提交中国国家知识产权局、申请号为201711148365.9、发明名称为“一种用户设备和接入设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及信道测量技术,尤其涉及一种用户设备和接入设备。
背景技术
无线通信的传输效果与信道环境密切相关,因此,选择与信道环境相适配的传输参数对于无线通信而言至观重要。举例来说,在信道环境较好时,可以选用较为激进的调制编码方式(Modulation and Coding Scheme,MCS),以提高传输吞吐量;在信道环境较差时,可以选用较为保守的MCS,以提高传输鲁棒性。
一般来说,可以借助信道测量来确定信道环境。以下行信道测量为例,用户设备(例如但不限于智能手机等)接收接入设备(例如但不限于基站等)发出的下行参考信号,据此确定下行信道环境并告知接入设备,以便接入设备选择合适的传输参数。
信道测量的结果通常可以通过信道状态信息(Channel State Information,CSI)来表示。举例来说,CSI可以包括,例如但不限于,以下信息之中的一种或者几种:信道质量指示(Channel Quality Indicator,CQI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)、预编码类型指示(Precoding Type Indicator,PTI)、CSI参考信号资源指示(CSI-RS Resource Indicator,CRI)、秩指示(Rank Indication,RI)和其他信息等。
通常来说,信道测量需要根据特定的测量机制来进行,测量机制不同,测量过程和测量结果通常不同。最新研究进展表明,下一代无线通信系统将引入一种称为半静态测量的测量机制。半静态测量以预编码资源块组(Precoding Resource block Group,PRG)为基本单位来计算CSI上报频带(CSI reporting band)的CQI,因此PRG大小(PRG size)对于半静态测量至关重要。为使得PRG大小可以根据具体需要进行灵活变更,可以通过配置的方式来指示PRG大小。
然而,不难理解,通过专用配置信令来配置PRG大小必然引入信令开销,从而影响传输效率。因此,尚缺少一种机制,可以降低配置PRG大小所带来的信令开销。
发明内容
有鉴于此,实有必要提供一种用户设备,有助于降低配置PRG大小所带来的信令开销。
同时,提供一种接入设备,有助于降低配置PRG大小所带来的信令开销。
同时,提供一种接入设备,有助于降低配置PRG大小所带来的信令开销。
根据本发明实施例的第一方面,提供一种用户设备,包括:
收发模块,用于接收配置信息,所述配置信息用于配置至少一个PRB绑定大小。
处理模块,用于基于所述至少一个PRB绑定大小确定PRG大小。
根据本发明实施例的第二方面,提供一种接入设备,包括:
处理模块,用于生成配置信息,所述配置信息用于配置多个PRB绑定大小,其中,在所述多个PRB绑定大小之中,排列位置为预设位置的PRB绑定大小用作PRG大小;
收发模块,用于发送所述配置信息。
根据本发明实施例的第三方面,提供一种接入设备,包括:
处理模块,用于生成配置信息,所述配置信息用于配置多个PRB绑定大小,该配置信息包含指示信息,该指示信息用于指示多个PRG绑定大小之中用作PRG大小的PRB绑定大小。
收发模块,用于发送所述配置信息。
根据本发明实施例的第四方面,提供一种用户设备,包括:
收发器,用于接收配置信息,所述配置信息用于配置至少一个PRB绑定大小。
处理器,用于基于所述至少一个PRB绑定大小确定PRG大小。
根据本发明实施例的第五方面,提供一种接入设备,包括:
处理器,用于生成配置信息,所述配置信息用于配置多个PRB绑定大小,其中,在所述多个PRB绑定大小之中,排列位置为预设位置的PRB绑定大小用作PRG大小;
收发器,用于发送所述配置信息。
根据本发明实施例的第六方面,提供一种接入设备,包括:
处理器,用于生成配置信息,所述配置信息用于配置多个PRB绑定大小,该配置信息包含指示信息,该指示信息用于指示多个PRG绑定大小之中用作PRG大小的PRB绑定大小。
收发器,用于发送所述配置信息。
在具体实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可以用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上,例如,收发器可以设置在收发器芯片上。又例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器,其中模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(System on Chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本发明实施例对上述器件的具体实现形式不做限定。
根据本发明实施例的第七方面,提供一种配置方法,包括:
接收配置信息,所述配置信息用于配置至少一个PRB绑定大小。
基于所述至少一个PRB绑定大小确定PRG大小。
根据本发明实施例的第八方面,提供一种配置方法,包括:
生成配置信息,所述配置信息用于配置多个PRB绑定大小,其中,在所述多个PRB绑定大小之中,排列位置为预设位置的PRB绑定大小用作PRG大小。
发送所述配置信息。
根据本发明实施例的第九方面,提供一种配置方法,包括:
生成配置信息,所述配置信息用于配置多个PRB绑定大小,该配置信息包含指示信息,该指示信息用于指示多个PRG绑定大小之中用作PRG大小的PRB绑定大小。
发送所述配置信息。
根据本发明实施例的第十方面,提供一种处理器,用于执行上述各种方法。在执行这些方法的过程中,上述方法中有关发送配置信息和接收配置信息的过程,可以理解为由处理器输出配置信息的过程,以及处理器接收输入的配置信息过程。具体来说,在输出配置信息时,处理器将该配置信息输出给收发器,以便由收发器进行发射。更进一步的,该配置信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的配置信息时,收发器接收该配置信息,并将其输入处理器。更进一步的, 在收发器收到该配置信息之后,该配置信息可能需要进行其他的处理,然后才输入处理器。
基于上述原理,举例来说,前述方法中提及的接收配置信息可以理解为处理器接收输入的配置信息。又例如,发送配置信息可以理解为处理器输出配置信息。
如此一来,对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在具体实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器,此时,处理器和存储器归属于一通信设备,例如包含在该通信设备中。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本发明实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
根据本发明实施例的第十一方面,提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述任意方法。
上述计算机可读存储介质为非瞬时性的。
根据本发明实施例的第十二方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任意方法。
根据本发明实施例的上述各个方面,在一种可能的设计中,所述至少一个PRB绑定大小包括一个PRB绑定大小,所述PRG大小为该PRB绑定大小。
根据本发明实施例的上述各个方面,在一种可能的设计中,所述至少一个PRB绑定大小包括多个PRB绑定大小,所述PRG大小为所述多个PRB绑定大小之中由预设指示规则所指示的PRB绑定大小。
根据本发明实施例的上述各个方面,在一种可能的设计中,所述预设指示规则为下列规则之中的一种或者几种的组合:
规则1,将所述多个PRB绑定大小之中的最大值用作所述PRG大小;
规则2,将所述多个PRB绑定大小之中的最小值用作所述PRG大小;
规则3,将所述多个PRB绑定大小之中排列位置为预设位置的PRB绑定大小,用作所述PRG大小。
根据本发明实施例的上述各个方面,在一种可能的设计中,所述预设位置为第一个位置或者最后一个位置。
根据本发明实施例的上述各个方面,在一种可能的设计中,所述配置信息包含指示信息,该指示信息用于指示所述多个PRB绑定大小之中用作PRG大小的PRB绑定大小。
根据本发明实施例的上述各个方面,在一种可能的设计中,所述配置信息通过无线资源控制RRC信令发送。
本发明实施例提供的技术方案通过配置PRB绑定大小来配置PRG大小,这样一来便无需为配置PRG大小设置专用的信令,因此有助于降低配置PRG大小而引入的信令开销。
附图说明
图1是依照本发明一实施例的无线通信网络的示范性示意图;
图2是依照本发明一实施例的用户设备的示范性逻辑结构示意图;
图3是依照本发明一实施例的接入设备的示范性逻辑结构示意图;
图4是依照本发明一实施例的接入设备的示范性逻辑结构示意图;
图5是依照本发明一实施例的配置方法的示范性流程图;
图6是依照本发明一实施例的配置方法的示范性流程图;
图7是依照本发明一实施例的配置方法的示范性流程图;
图8是依照本发明一实施例的通信设备的硬件结构示意图。
具体实施方式
目前正处于研发阶段的下一代无线通信系统又可称为新无线(New Radio,NR)系统或者5G系统。最新研究进展显示,在下一代无线通信系统中,测量机制至少包括半开环(Semi-open loop)测量和闭环(Close loop)测量,其中,半开环测量又可称为半开环反馈(Semi-open loop feedback),闭环测量又可称为闭环反馈(Close loop feedback)。
半开环测量可以用于对CSI上报频带进行信道测量。CSI上报频带可以理解为一种需要进行CSI上报的频带。进一步的,CSI上报频带可以包含多个子带(Subband),这些子带可以是相互连续的,也可以是相互不连续的,还可以至少一部分子带是连续的,本发明实施例对这些子带的连续性不做限定。更进一步的,这些子带可以同属于同一个特定频带,该特定频带可以根据需要进行设定,本发明实施例对于该特定频带不做限定。举例来说,上述特定频带可以是带宽部分(Bandwidth part)。带宽部分可以理解为一段连续的频带,该频带包含至少一个连续的子带,每个带宽部分可以对应一组系统参数(numerology),包括例如但不限于,子载波间隔(Subcarrier spacing)和循环前缀(Cyclic Prefix,CP)等,不同带宽部分可以对应不同的系统参数。作为可选的,在同一个传输时间间隔(Transmission Time Interval,TTI)内,在多个带宽部分之中,可以仅有一个带宽部分可用,其他带宽部分不可用。除上述特征外,在具体实现过程中,还可以对CSI上报频带的定义添加进一步的限定。
在对CSI上报频带进行半开环测量时,反馈的CSI可以包括整个CSI上报频带的CSI。这里所说的整个CSI上报频带的CSI,也可以称为CSI上报频带的宽带CSI,这种CSI是指将CSI上报频带作为一个整体而计算得到的CSI,而不是对CSI上报频带的各个部分(例如但不限于各个子带)分别进行半开环测量而获得的各个部分的CSI的集合。举例来说,整个CSI上报频带的CQI可以采用,例如但不限于,如下方式进行计算。对于CSI上报频带所包含的每个PRG,在码本中随机选择一个预编码矩阵,其中,上述码本可以是码本子集限制(Codebook Subset Restriction)信令所指示的码本,该码本通常是基于信道统计信息确定的,因此在一定程度上可以适配信道环境的变化趋势。将该PRG对应的信道矩阵与该预编码矩阵相乘,获得该PRG的等效信道矩阵,并确定该等效信道矩阵的信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR)。计算CSI上报频带所包含所有PRG的SINR的平均值或者可以反映CSI上报频带整体SINR的其他值,并根据该值确定对应的CQI,作为整个CSI上报频带的CQI。
闭环测量可以用于对CSI上报频带、子带或者子带组等进行信道测量。例如,在对子带在进行闭环测量时,可基于信道容量最大化或者吞吐量最大化等原则,从码本中选择预编码矩阵,并通过PMI上报该预编码矩阵。同时,还可以将子带的信道矩阵和上述预编码矩阵相乘,获得该子带的等效信道矩阵。在算得该等效信道矩阵的SINR之后,便可根据该SINR确定对应的CQI。在计算子带组的CQI时,也可以参考半静态测量时采用的计算SINR平均值的方法,获得子带组对应的CQI。本领域的技术人员应该明白,在具体实现过程中,上述CQI还可以采用其他方法进行计算,本发明实施例对具体计算方法不做限制。
信道测量过程发生在数据传输之前,因此在进行数据传输时,信道测量过程中确定的CSI可能会发生改变。在低速场景下,信道环境变化不快,因此在进行数据传输时,之前在信道测量过程中确定的CSI发生的变化通常不会很大。在这种情况下,由于闭环测量 中确定的CSI是基于信道环境确定的,该CSI与信道环境更加契合,因此数据传输效果更好。然而,在高速场景下,信道环境变化很快,在进行数据传输时,之前在信道测量过程中确定的CSI很可能发生较大的变化,由此导致之前测量获得的CSI过时,从而无法与信道环境相匹配。在这种情况下,半开环测量所确定的CSI往往能够取得更加良好的效果。如上文所述,半开环测量涉及的预编码矩阵选自特定的码本,该码本是基于信道统计信息确定的,在一定程度上可以适配信道环境的变化趋势。因此,即使随机选择,也与信道环境存在一定程度的匹配。另一方面,半开环测量所确定的CQI是以PRG为单位基于随机选择的多个预编码矩阵确定的,在一定程度上引入了分集传输的效果,因此传输效果更加鲁棒。
在进行下行信道测量时,上述计算CSI的过程通常由用户设备执行。用户设备确定CSI,并将其上报给接入设备。
有关半开环测量和闭环测量的更进一步的细节可以参考现有技术,例如但不限于下一代无线通信系统相关技术标准和提案。随着研究的深入进行,在下一代无线通信系统中,半开环测量和闭环测量的操作细节也有可能发生变化,然而,本领域的技术人员在了解本发明实施例提供的技术方案之后应当明白,本发明实施例提供的技术方案也适用于变化后的半开环测量和闭环测量。
由上文描述可知,在半开环测量在计算CQI的过程中需要以PRG为基本单位计算SINR,因此PRG大小对于半开环测量而言至关重要。,PRG大小通常可以理解为PRG的频带宽度,一般来说,PRG包含多个资源块(Resource Block,RB),因此PRG大小可以具体为PRG所包含RB的数量。为使得PRG大小可以根据具体需要进行灵活变更,可以通过配置的方式来指示PRG大小。然而,不难理解,配置PRG大小必然引入信令开销,从而影响传输效率。
预编码技术是MIMO技术的核心技术之一,该技术借助与信道属性相匹配的预编码矩阵来对待发射信号进行处理,使得经过预编码的待发射信号与信道相适配,因此传输过程得到优化,接收信号质量(例如SINR)得以提升。目前,预编码技术已经被多种无线通信标准采纳,例如但不限于长期演进(Long Term Evolution,LTE)。
在对数据传输进行预编码的过程中,通常需要确定基于同一预编码矩阵进行预编码的频带的宽度,该频带宽度通常通过物理资源块绑定大小(PRB(Physical RB)bundling size)来指示。相比而言,如上文所述,在基于半静态测量计算CQI时,每个随机选择的预编码矩阵用于对一个PRG进行预编码,因此该随机选择的预编码矩阵所适用频带的宽度是该PRG的频带宽度,即PRG大小。由此可见,半静态测量过程中涉及的PRG大小与在对数据传输进行预编码过程中涉及的PRB绑定大小存在相似之处。因此,可以尝试将PRG大小设置成与PRB绑定大小相等。如此一来,便可以通过指示PRB绑定大小来指示与信道测量相关联的PRG大小,降低配置PRG大小而引入的信令开销。
最新研究进展显示,在下一代无线通信系统中,接入设备会通过配置信令为用户设备事先配置多个PRB绑定大小,而预编码过程中具体使用的PRB绑定大小,则是由接入设备从上述多个PRB绑定大小之中选择并指示给用户设备的。具体来说,在配置过程中,接入设备通过无线资源控制(Radio Resource Control,RRC)信令或者其他信令为用户设备配置多个PRB绑定大小,在预编码过程中,接入设备通过下行控制信息(Downlink Control Information,DCI)或者其他信令具体指示预编码过程中具体使用的PRB绑定大小。由此可见,下一代无线通信系统将采用配置+指示的方式来通知PRB绑定大小,其中配置过程用于配置多个PRB绑定大小,指示过程用于在配置的多个PRB绑定大小中指示预编码过程中采用的PRB绑定大小。应注意,上述通知PRB绑定大小的方式可以不是唯一的,在下一代无线通信标准中,也可以定义通知PRB绑定大小的其他方式。举例来说,也可以在配置PRB绑定大小的过程中仅仅配置一个PRB绑定大小,在这种情况下,通知 PRB绑定大小的过程仅包含配置过程即可,而无需包含指示过程。
此外,在指示多个PRB绑定大小中在预编码过程中采用的PRB绑定大小时候,可以采用多种方式进行指示,例如但不限于,可以直接指示待指示信息,例如待指示信息本身或者该待指示信息的索引等;也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系;还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的;此外,具体的指示方式还可以是上述指示方法的各种组合等。在具体实现过程中,可以根据具体的需要选择所需的指示方式,本发明实施例对选择的指示方式不做限定,如此一来,本发明实施例涉及的指示方式应理解为涵盖可以使得待指示方获知待指示信息的各种方法。同时,待指示信息可以做为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法可以参考现有技术,本发明对此不做限定。
更进一步的,最新研究进展显示,在下一代无线通信系统中,建议通过RRC信令或者其他信令来指示PRG大小。换句话说,将不会采用类似于通知PRB绑定大小过程中采用的配置+指示的方式通知PRG大小。因此,可以将PRG大小设置成与通过RRC信令或者其他信令配置的PRB绑定大小相同,如此一来便可以通过配置PRB绑定大小来指示与信道测量相关联的PRG大小。
然而,如上文所述,在通过RRC信令或者其他信令配置PRB绑定大小的过程中,配置的PRB绑定大小往往有多个。在这种情况下,将多个PRB绑定大小之中的哪一个PRB绑定大小作为PRG大小,便成了亟待解决的问题。
上述问题的一种解决方案,是将通过RRC信令或者其他信令配置的PRB绑定大小强制设置成一个,然而这样必然导致PRB绑定大小不够灵活。
本发明实施例提供了一种技术方案,可以基于预设的指示规则,根据配置的多个PRB绑定大小确定确定PRG大小。下面就结合附图和具体实施例来对本发明实施例提供的技术方案进行详细描述。
图1是依照本发明一实施例的无线通信网络100的示范性示意图。如图1所示,无线通信网络100包括基站102~106和终端设备108~122,其中,基站102~106彼此之间可通过回程(backhaul)链路(如基站102~106彼此之间的直线所示)进行通信,该回程链路可以是有线回程链路(例如光纤、铜缆),也可以是无线回程链路(例如微波)。终端设备108~122可通过无线链路(如基站102~106与终端设备108~122之间的折线所示)与对应的基站102~106通信。
基站102~106通常作为接入设备来为通常作为用户设备的终端设备108~122提供无线接入服务。具体来说,每个基站都对应一个服务覆盖区域(又可称为蜂窝,如图1中各椭圆区域所示),进入该区域的终端设备可通过无线信号与基站通信,以此来接受基站提供的无线接入服务。基站的服务覆盖区域之间可能存在交叠,处于交叠区域内的终端设备可收到来自多个基站的无线信号,因此这些基站可以进行相互协同,以此来为该终端设备提供服务。例如,多个基站可以采用多点协作(Coordinated multipoint,CoMP)技术为处于上述交叠区域的终端设备提供服务。例如,如图1所示,基站102与基站104的服务覆盖区域存在交叠,终端设备112便处于该交叠区域之内,因此终端设备112可以收到来自基站102和基站104的无线信号,基站102和基站104可以进行相互协同,来为终端设备112提供服务。又例如,如图1所示,基站102、基站104和基站106的服务覆盖区域存在一个共同的交叠区域,终端设备120便处于该交叠区域之内,因此终端设备120可以收到来自基站102、104和106的无线信号,基站102、104和106可以进行相互协同,来为终端设备120提供服务。
依赖于所使用的无线通信技术,基站又可称为节点B(NodeB),演进节点B(evolved NodeB,eNodeB)以及接入点(Access Point,AP)等。此外,根据所提供的服务覆盖区 域的大小,基站又可分为用于提供宏蜂窝(Macro cell)的宏基站、用于提供微蜂窝(Pico cell)的微基站和用于提供毫微微蜂窝(Femto cell)的毫微微基站等。随着无线通信技术的不断演进,未来的基站也可以采用其他的名称。
终端设备108~122可以是具备无线通信功能的各种无线通信设备,例如但不限于移动蜂窝电话、无绳电话、个人数字助理(Personal Digital Assistant,PDA)、智能电话、笔记本电脑、平板电脑、无线数据卡、无线调制解调器(Modulator demodulator,Modem)或者可穿戴设备如智能手表等。随着物联网(Internet of Things,IOT)技术和车联网(Vehicle-to-everything,V2X)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。此外,终端设备108~122还可以称为移动台、移动设备、移动终端、无线终端、手持设备、客户端等。
基站102~106,和终端设备108~122均可配置有多根天线,以支持MIMO(多入多出,Multiple Input Multiple Output)技术。进一步的说,基站102~106和终端设备108~122既可以支持单用户MIMO(Single-User MIMO,SU-MIMO)技术,也可以支持多用户MIMO(Multi-User MIMO,MU-MIMO),其中MU-MIMO可以基于空分多址(Space Division Multiple Access,SDMA)技术来实现。由于配置有多根天线,基站102~106和终端设备108~122还可灵活支持单入单出(Single Input Single Output,SISO)技术、单入多出(Single Input Multiple Output,SIMO)和多入单出(Multiple Input Single Output,MISO)技术,以实现各种分集(例如但不限于发射分集和接收分集)和复用技术,其中分集技术可以包括例如但不限于发射分集(Transmit Diversity,TD)技术和接收分集(Receive Diversity,RD)技术,复用技术可以是空间复用(Spatial Multiplexing)技术。而且上述各种技术还可以包括多种实现方案,例如发射分集技术可以包括,空时发射分集(Space-Time Transmit Diversity,STTD)、空频发射分集(Space-Frequency Transmit Diversity,SFTD)、时间切换发射分集(Time Switched Transmit Diversity,TSTD)、频率切换发射分集(Frequency Switch Transmit Diversity,FSTD)、正交发射分集(Orthogonal Transmit Diversity,OTD)、循环延迟分集(Cyclic Delay Diversity,CDD)等分集方式,以及上述各种分集方式经过衍生、演进以及组合后获得的分集方式。例如,目前LTE(长期演进,Long Term Evolution)标准便采用了空时块编码(Space Time Block Coding,STBC)、空频块编码(Space Frequency Block Coding,SFBC)和CDD等发射分集方式。上文以举例的方式对发射分集进行了的概括性的描述。本领域技术人员应当明白,除上述实例外,发射分集还包括其他多种实现方式。因此,上述介绍不应理解为对本发明技术方案的限制,本发明技术方案应理解为适用于各种可能的发射分集方案。
此外,基站102~106和终端设备108~122可采用各种无线通信技术进行通信,例如但不限于,时分多址(Time Division Multiple Access,TDMA)技术、频分多址(Frequency Division Multiple Access,FDMA)技术、码分多址(Code Division Multiple Access,CDMA)技术、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、正交频分多址(Orthogonal FDMA,OFDMA)技术、单载波频分多址(Single Carrier FDMA,SC-FDMA)技术、空分多址(Space Division Multiple Access,SDMA)技术以及这些技术的演进及衍生技术等。上述无线通信技术作为无线接入技术(Radio Access Technology,RAT)被众多无线通信标准所采纳,从而构建出了在今天广为人们所熟知的各种无线通信系统(或者网络),包括但不限于全球移动通信系统(Global System for Mobile Communications,GSM)、CDMA2000、宽带CDMA(Wideband CDMA,WCDMA)、由802.11系列标准定义的WiFi、全球互通微波存取(Worldwide Interoperability for Microwave Access,WiMAX)、长期演进(Long Term Evolution,LTE)、LTE升级版 (LTE-Advanced,LTE-A)以及这些无线通信系统的演进系统等。如无特别说明,本发明实施例提供的技术方案可应用于上述各种无线通信技术和无线通信系统。此外,术语“系统”和“网络”可以相互替换。
应注意,图1所示的无线通信网络100仅用于举例,并非用于限制本发明的技术方案。本领域的技术人员应当明白,在具体实现过程中,无线通信网络100还可能包括其他设备,同时也可根据具体需要来配置基站和终端设备的数量。
图2是依照本发明一实施例的用户设备200的示范性逻辑结构示意图。如图2所示,用户设备200包括收发模块202和处理模块204。
收发模块202用于接收配置信息,所述配置信息用于配置至少一个PRB绑定大小。
处理模块204用于基于所述至少一个PRB绑定大小确定PRG大小。
具体来说,该PRG大小为与信道测量相关联的PRG大小,该PRG大小可以与数据传输过程中的PRG大小相同或者不同,其中,上述数据传输可以是,例如但不限于,通过物理下行共享信道(Physical Downlink Shared Channel,PDSCH)所进行的数据传输。
本发明实施例提供的技术方案通过配置PRB绑定大小来配置PRG大小,这样一来便无需为配置PRG大小设置专用的信令,因此有助于降低配置PRG大小而引入的信令开销。
在具体实现过程中,所述配置信息来自接入设备,该配置信息可以通过例如但不限于如下信令其中之一进行发送:
物理层信令;
媒体访问控制层信令;
无线资源控制信令。
物理层信令也称为第一层(Layer 1,L1)信令,其通常可以由物理层帧中的控制部分来承载。L1信令的典型例子是LTE标准中定义的物理下行控制信道(Physical Downlink Control Channel,PDCCH)中承载的DCI和物理上行控制信道(Physical Uplink Control Channel,PUCCH)中承载的上行控制信息(Uplink Control Information,UCI)。在一些情况下,L1信令也可以由物理层帧中的数据部分来承载,例如,UCI有时也可以通过物理上行共享信道(Physical Uplink Shared Channel,PUSCH)来承载。不难看出,L1信令的发送周期或者信令周期通常为物理层帧的周期,因此这种信令通常用于实现一些动态的控制,以传递一些变化频繁的信息,例如,可以通过物理层信令传送资源分配信息。
媒体访问控制(Media Access Control,MAC)层信令属于第二层(Layer 2)信令,其通常可以由,例如但不限于,第二层帧的帧头来承载。上述帧头中还可能携带,例如但不限于,源地址和目的地址等信息。除帧头外,第二层帧通常还包含帧体。在一些情况下,L2信令也可以由第二层帧的帧体来承载。第二层信令的典型例子是802.11系列标准中MAC帧的帧头中的帧控制(Frame Control)字段中携带的信令,或者一些协议中定义的MAC控制实体(Control Entity,MAC-CE)。第二层帧通常可以携带在物理层帧的数据部分。上述配置信息也可以通过媒体访问控制层信令之外的其他第二层信令发送。
RRC信令属于第三层(Layer 3)信令,其通常是一些控制消息,L3信令通常可以携带在第二层帧的帧体中。L3信令的发送周期或者控制周期通常较长,适用于发送一些不会频繁发生变化的信息,例如,在现有的一些通信标准中,L3信令通常用于承载一些配置信息。上述配置信息也可以通过RRC信令之外的其他第三层信令发送。
上文所述仅为物理层信令、MAC层信令、RRC信令、第一层信令、第二层信令和第三层信令的原理性描述,有关三种信令的具体细节可以参考现有技术,因此本文不再赘述。
在具体实现过程中,可以优先通过第三层信令,例如但不限于RRC信令,来传送配置信息,这是因为通过配置信息来配置的多个PRB绑定大小通常不会频繁变化。
有关PRB绑定大小的相关技术内容可以参考现有技术,本发明实施例对此不再赘述。
上述至少一个PRB绑定大小可以仅包含一个PRB绑定大小,在这种情况下,处理模 块204可以将该PRB绑定大小用作PRG大小。如上文所述,可以将通过RRC信令或者其他信令配置的PRB绑定大小强制设置成一个,在这种情况下,设置的PRB绑定大小便用作PRG大小。然而,如上文所述,这种方法这样必然导致PRB绑定大小不够灵活。
上述至少一个PRB绑定大小也可以包含多个PRB绑定大小,在这种情况下,PRG大小为多个PRB绑定大小之中由预设指示规则所指示的PRB绑定大小。具体来说,所述指示规则可以为,例如但不限于,下列规则之中的一种或者几种的组合。
规则1,将多个PRB绑定大小之中的最大值用作PRG大小。
规则2,将多个PRB绑定大小之中的最小值用作PRG大小。
规则3,将多个PRB绑定大小之中排列位置为预设位置的PRB绑定大小用作PRG大小。更进一步的,例如,可以将上述预设位置设置为第一个位置或者最后一个位置。
通常来说,当配置信息包含多个PRB绑定大小时,这些PRB绑定大小通常按照一定的顺序排列在配置信息内。如此一来,便可以按照上述规则3来确定用作PRG大小的PRB绑定大小。
在另一种实现方案中,所述配置信息进一步包含指示信息,所述指示信息用于指示所述多个PRB绑定大小之中用作PRG大小的PRB绑定大小。具体来说,该指示信息可以指示PRB绑定大小的索引,或者,该指示信息也可以指示如何在上述多个PRB绑定大小之中选择用作PRG大小的PRB绑定大小。例如,所述指示信息可以指示上述一种规则或者几种规则的组合。
以下以具体实例来对上述规则和方案进行详细描述。
假设配置信息所包含的具体信息如下列表1所示:
索引 PRB绑定大小
1 2
2 4
3 8
表1
由表1可知,配置信息包含顺序排列的3个PRB绑定大小,分别为2、4和8,其索引分别为1、2和3。当上述指示规则为规则1时,则确定的PRG大小为8。当上述指示规则为规则2时,则确定的PRG大小为2。当上述指示规则为规则3且上述规则3中的预设位置为位置1时,则确定的PRG大小为2。
又例如,配置信息中的指示信息进一步指示PRG大小为排列位置为2的PRB绑定大小,即4。又例如,该指示信息进一步指示PRG大小为索引为3的PRB绑定大小,即8。
图3是依照本发明一实施例的接入设备300的示范性逻辑结构示意图。如图3所示,接入设备300包括处理模块302和收发模块304。
处理模块302用于生成配置信息,所述配置信息用于配置多个PRB绑定大小,其中,在所述多个PRB绑定大小之中,排列位置为预设位置的PRB绑定大小用作PRG大小。
收发模块304用于发送所述配置信息。
具体来说,该配置信息发往用户设备。
如上文所述,配置信息可以用于配置多个PRB绑定大小,在这种情况下,PRG大小为多个PRB绑定大小之中由预设指示规则所指示的PRB绑定大小。更进一步的,该预设指示规则可以是将配置信息所配置的多个PRB绑定大小之中排列位置为预设位置的PRB绑定大小用作PRG大小。在具体实现过程中,可以将上述预设位置设置为第一个位置或者最后一个位置。
在这种情况下,为便于用户设备根据上述预设规则在多个PRB绑定大小确定用作PRG大小的PRB绑定大小,在生成配置信息时,接入设备需要将用作PRG大小的PRB绑定大小排列在通过该配置信息配置的多个PRB绑定大小之中的预设位置。
接入设备300所涉及的各种技术细节已经在上文结合用户设备200进行了详细的描述,因此此处不再赘述。
图4是依照本发明一实施例的接入设备400的示范性逻辑结构示意图。如图4所示,接入设备400包括处理模块402和收发模块404。
处理模块402用于生成配置信息,所述配置信息用于配置多个PRB绑定大小,该配置信息包含指示信息,该指示信息用于指示多个PRG绑定大小之中用作PRG大小的PRB绑定大小。
收发模块404用于发送所述配置信息。
具体来说,该配置信息发往用户设备。
接入设备400所涉及的各种技术细节已经在上文结合用户设备200进行了详细的描述,因此此处不再赘述。
图5是依照本发明一实施例的配置方法500的示范性流程图。在具体实现过程中,方法500可由用户设备执行。
步骤502,接收配置信息,所述配置信息用于配置至少一个PRB绑定大小。
步骤504,基于所述至少一个PRB绑定大小确定PRG大小。
方法500中涉及的相关技术细节已经在上文进行了详细的描述,因此此处不再赘述。
图6是依照本发明一实施例的配置方法600的示范性流程图。在具体实现过程中,方法500可由接入设备执行。
步骤602,生成配置信息,所述配置信息用于配置多个PRB绑定大小,其中,在所述多个PRB绑定大小之中,排列位置为预设位置的PRB绑定大小用作PRG大小。
步骤604,发送所述配置信息。
方法600中涉及的相关技术细节已经在上文进行了详细的描述,因此此处不再赘述。
图7是依照本发明一实施例的配置方法700的示范性流程图。在具体实现过程中,方法700可由接入设备执行。
步骤702,生成配置信息,所述配置信息用于配置多个PRB绑定大小,该配置信息包含指示信息,该指示信息用于指示多个PRG绑定大小之中用作PRG大小的PRB绑定大小。
步骤704,发送所述配置信息。
方法700中涉及的相关技术细节已经在上文进行了详细的描述,因此此处不再赘述。
不难看出,方法500-700与用户设备200、接收设备300和接收设备400相对应,上述设备的上述操作即为上述方法。相关技术方案已经在上文结合用户设备200、接收设备300和接收设备400进行了详细的描述,因此此处不再赘述。
图8是依照本发明一实施例的通信设备800的硬件结构示意图。在具体实现过程中,通信设备800可以用于实现用户设备,例如用户设备200,也可以用于实现接入设备,例如接入设备300和接入设备400。
如图8所示,通信设备800包括处理器802、收发器804、多根天线806,存储器808、I/O(输入/输出,Input/Output)接口810和总线812。存储器808进一步用于存储指令8082和数据8084。此外,处理器802、收发器804、存储器808和I/O接口810通过总线812彼此通信连接,多根天线806与收发器804相连。在具体实现过程中,处理器802、收发器804、存储器808和I/O接口810也可以采用总线812之外的其他连接方式彼此通信连接。
处理器802可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit, CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器802还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,当通信设备800用于实现用户设备时,处理器802可以用于执行上文用户设备200中处理模块204所执行的操作。当通信设备800用于实现接入设备时,处理器802可以用于执行上文接入设备300和接入设备400中处理模块302和402所执行的操作。处理器802可以是专门设计用于执行上述操作的处理器,也可以是通过读取并执行存储器808中存储的指令8082来执行上述操作的处理器,处理器802在执行上述操作的过程中可能需要用到数据8084。
收发器804用于通过多根天线806之中的至少一根天线发送信号,以及通过多根天线806之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,当通信设备800用于实现用户设备时,处理器802可以用于执行上文用户设备200中收发模块202所执行的操作。当通信设备800用于实现接入设备时,处理器802可以用于执行上文接入设备300和接入设备400中收发模块304和404所执行的操作。
存储器808可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器808具体用于存储指令8082和数据8084,处理器802可以通过读取并执行存储器808中存储的指令8082,来执行上文所述的操作,在执行上述操作的过程中可能需要用到数据8084。
I/O接口810用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
应注意,在具体实现过程中,通信设备800还可以包括其他硬件器件,本文不再一一列举。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
综上所述,以上仅为本发明的实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种用户设备,其特征在于,包括:
    收发模块,用于接收配置信息,所述配置信息用于配置至少一个PRB绑定大小。
    处理模块,用于基于所述至少一个PRB绑定大小确定PRG大小。
  2. 如权利要求1所述的用户设备,其特征在于,所述至少一个PRB绑定大小包括一个PRB绑定大小,所述PRG大小为该PRB绑定大小。
  3. 如权利要求1或者2所述的用户设备,其特征在于,所述至少一个PRB绑定大小包括多个PRB绑定大小,所述PRG大小为所述多个PRB绑定大小之中由预设指示规则所指示的PRB绑定大小。
  4. 如权利要求3所述的用户设备,其特征在于,所述预设指示规则为下列规则之中的一种或者几种的组合:
    规则1,将所述多个PRB绑定大小之中的最大值用作所述PRG大小;
    规则2,将所述多个PRB绑定大小之中的最小值用作所述PRG大小;
    规则3,将所述多个PRB绑定大小之中排列位置为预设位置的PRB绑定大小,用作所述PRG大小。
  5. 如权利要求4所述的用户设备,其特征在于,所述预设位置为第一个位置或者最后一个位置。
  6. 如权利要求3至4中任一项所述的用户设备,其特征在于,所述配置信息包含指示信息,该指示信息用于指示所述多个PRB绑定大小之中用作PRG大小的PRB绑定大小。
  7. 如权利要求1至6中任一项所述的用户设备,其特征在于,所述配置信息通过无线资源控制RRC信令发送。
  8. 一种接入设备,其特征在于,包括:
    处理模块,用于生成配置信息,所述配置信息用于配置多个PRB绑定大小,其中,在所述多个PRB绑定大小之中,排列位置为预设位置的PRB绑定大小用作PRG大小;
    收发模块,用于发送所述配置信息。
  9. 如权利要求8所述的接入设备,其特征在于,所述预设位置为第一个位置或者最后一个位置。
  10. 一种接入设备,其特征在于,包括:
    处理模块,用于生成配置信息,所述配置信息用于配置多个PRB绑定大小,该配置信息包含指示信息,该指示信息用于指示多个PRG绑定大小之中用作PRG大小的PRB绑定大小;
    收发模块,用于发送所述配置信息。
PCT/CN2018/112255 2017-11-17 2018-10-27 一种用户设备和接入设备 WO2019095969A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880069956.3A CN111279651B (zh) 2017-11-17 2018-10-27 一种用户设备和接入设备
EP18879126.3A EP3703296A4 (en) 2017-11-17 2018-10-27 USER DEVICE AND ACCESS DEVICE
US16/875,074 US20200280963A1 (en) 2017-11-17 2020-05-15 User equipment and access device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711148365.9A CN109802802B (zh) 2017-11-17 2017-11-17 一种用户设备和接入设备
CN201711148365.9 2017-11-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/875,074 Continuation US20200280963A1 (en) 2017-11-17 2020-05-15 User equipment and access device

Publications (1)

Publication Number Publication Date
WO2019095969A1 true WO2019095969A1 (zh) 2019-05-23

Family

ID=66540045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112255 WO2019095969A1 (zh) 2017-11-17 2018-10-27 一种用户设备和接入设备

Country Status (4)

Country Link
US (1) US20200280963A1 (zh)
EP (1) EP3703296A4 (zh)
CN (2) CN109802802B (zh)
WO (1) WO2019095969A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802802B (zh) * 2017-11-17 2021-12-21 华为技术有限公司 一种用户设备和接入设备
US11128429B2 (en) * 2018-10-05 2021-09-21 Lenovo (Singapore) Pte. Ltd. Method and apparatus for generating a CSI report

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102685038A (zh) * 2011-03-17 2012-09-19 中兴通讯股份有限公司 一种解调导频物理资源块绑定解调的方法及系统
CN103262459A (zh) * 2010-10-22 2013-08-21 诺基亚西门子网络公司 增强的网络接入节点间调度协调和对于高级接收机算法的信令支持
US20150117350A1 (en) * 2012-05-07 2015-04-30 Lg Electronics Inc. Method and user device for receiving downlink data, and method and base station for transmitting downlink data
WO2017193878A1 (zh) * 2016-05-13 2017-11-16 中兴通讯股份有限公司 指令的发送、接收方法、装置及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103974427B (zh) * 2013-01-31 2018-01-16 华为技术有限公司 一种资源分配的方法、装置和一种通信系统
CN104104472B (zh) * 2013-04-10 2019-05-21 中兴通讯股份有限公司 一种保证预编码后信道连续性的方法、基站和ue
US20160373229A1 (en) * 2013-06-26 2016-12-22 Lg Electronics Inc. Operational Method for MTC Device
WO2017091033A1 (ko) * 2015-11-25 2017-06-01 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널 수신 방법 및 이를 위한 장치
CN109802802B (zh) * 2017-11-17 2021-12-21 华为技术有限公司 一种用户设备和接入设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103262459A (zh) * 2010-10-22 2013-08-21 诺基亚西门子网络公司 增强的网络接入节点间调度协调和对于高级接收机算法的信令支持
CN102685038A (zh) * 2011-03-17 2012-09-19 中兴通讯股份有限公司 一种解调导频物理资源块绑定解调的方法及系统
US20150117350A1 (en) * 2012-05-07 2015-04-30 Lg Electronics Inc. Method and user device for receiving downlink data, and method and base station for transmitting downlink data
WO2017193878A1 (zh) * 2016-05-13 2017-11-16 中兴通讯股份有限公司 指令的发送、接收方法、装置及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3703296A4

Also Published As

Publication number Publication date
CN111279651A (zh) 2020-06-12
CN109802802B (zh) 2021-12-21
EP3703296A4 (en) 2020-12-16
CN111279651B (zh) 2021-05-11
EP3703296A1 (en) 2020-09-02
US20200280963A1 (en) 2020-09-03
CN109802802A (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
US11239950B2 (en) Method for configuring channel state information reporting band and communications apparatus
CN113346935B (zh) 用于码本设计和信令的方法和装置
US10511411B2 (en) Method for configuring channel state information reporting band and communications apparatus
US11445396B2 (en) Channel measurement method and apparatus
US10911122B2 (en) Reference signal sending method, reference signal receiving method, network device, and terminal device
KR20200063208A (ko) 데이터 전송 방법, 단말 장치 및 네트워크 장치
EP4044445A1 (en) Channel measurement method and user equipment
US11784770B2 (en) Method and apparatus for sending reference signal, and method and apparatus for obtaining reference signal
US20200280963A1 (en) User equipment and access device
US11290906B2 (en) Channel measurement method
US20200128547A1 (en) Frequency Band Indication Method, Frequency Band Determining Method, Transmit End Device, And Receive End Device
WO2019085637A1 (zh) 一种信道测量方法和用户设备
WO2019109570A1 (zh) 信道测量方法和用户设备
CN109842474B (zh) 传输指示方法、设备及系统、存储介质
WO2019095970A1 (zh) 一种用户设备、接入设备和预编码方法
WO2019095973A1 (zh) 一种用户设备和信道测量方法
WO2018082319A1 (zh) 一种预编码配置方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018879126

Country of ref document: EP

Effective date: 20200528