WO2017193878A1 - 指令的发送、接收方法、装置及存储介质 - Google Patents

指令的发送、接收方法、装置及存储介质 Download PDF

Info

Publication number
WO2017193878A1
WO2017193878A1 PCT/CN2017/083277 CN2017083277W WO2017193878A1 WO 2017193878 A1 WO2017193878 A1 WO 2017193878A1 CN 2017083277 W CN2017083277 W CN 2017083277W WO 2017193878 A1 WO2017193878 A1 WO 2017193878A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
precoding
binding
instruction
domain granularity
Prior art date
Application number
PCT/CN2017/083277
Other languages
English (en)
French (fr)
Inventor
肖华华
李儒岳
陈艺戬
鲁照华
吴昊
蔡剑兴
李永
王瑜新
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017193878A1 publication Critical patent/WO2017193878A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for transmitting and receiving an instruction, and a storage medium.
  • Binding refers to a pilot with the same precoding (Channel State Information Reference Signal (CSI-RS)/Demodulation Reference Signal (DMRS)) in a certain frequency domain.
  • CSI-RS Channel State Information Reference Signal
  • DMRS Demodulation Reference Signal
  • the base station can configure parameters such as bundling, bundling granularity, etc. for the pilot.
  • the DMRS and the Physical Downlink Shared Channel (PDSCH) use the same set of signaling to notify parameters such as bundling status and bundling granularity.
  • This resource bonding technology can well support the case where DMRS and PDSCH use the same precoding, but it does not support the case where DMRS and PDSCH use different precoding. If DMRS and PDSCH use different precoding granularities, it will not be realized. Resource binding does not well support the situation where more resources in future wireless communication systems use different precoding binding parameters.
  • the embodiments of the present invention are to provide a method for transmitting and receiving an instruction, a device, and a storage medium, so as to at least solve the technical problem that resource binding cannot be implemented due to different precoding granularity of DMRS and PDSCH in the related art. .
  • An embodiment of the present invention provides a method for sending an instruction, where the method includes: acquiring resource binding parameter information corresponding to multiple resources; and transmitting an instruction carrying resource binding parameter information.
  • the multiple resources include the first resource, and further include the second resource and/or the third resource, where the first resource is a time-frequency resource for transmitting data-related pilots, and the second resource is a time-frequency for transmitting data.
  • the third resource is a time-frequency resource for transmitting pre-coded downlink control information.
  • the resource binding parameter information includes at least one of the following: a pre-coded frequency domain granularity, a pre-coded time domain granularity, a resource binding state, and a precoding set.
  • the pre-coded frequency domain granularity refers to the number M of frequency domain units using the same pre-coding, wherein the frequency domain unit includes one of a sub-carrier, a sub-carrier group, and a sub-carrier set, and the sub-carrier group A plurality of subcarriers are included, and the set of subcarriers includes a plurality of subcarrier groups.
  • the frequency domain granularity of the precoding corresponding to the first resource is M1
  • the frequency domain granularity corresponding to the precoding of the second resource is M2 and/ Or the frequency domain corresponding to the third resource is M3, where M1, M2, and M3 are positive integers, and M1 is greater than M2, and the relationship between M1, M2, and M3 is satisfied: M1>M2 ⁇ 1, or M1>M3 ⁇ 1, or M1>M3 ⁇ M2 ⁇ 1, or M1>M2 ⁇ M3 ⁇ 1.
  • the pre-coded time domain granularity refers to the number N of time-domain units using the same pre-coding, wherein the time domain unit includes one of a symbol symbol, a symbol group, and a symbol set, and the symbol group includes multiple A symbol, a set of symbols includes a plurality of symbol groups.
  • the resource binding parameter information includes the pre-coded time domain granularity
  • the pre-coded time domain granularity corresponding to the first resource is N1
  • the pre-coded time domain granularity corresponding to the second resource is N2 and/ Or the time domain granularity of the precoding corresponding to the third resource is N3, where N1 and N2 are And N3 is a positive integer, and N1 is greater than N2, and the relationship between N1, N2, and N3 satisfies: N1>N2 ⁇ 1, or N1>N3 ⁇ 1, or N1>N3 ⁇ N2 ⁇ 1, or N1>N2 ⁇ N3 ⁇ 1.
  • the resource binding state includes a binding enabling state and a binding de-enabled state.
  • the binding state of the first resource is a binding enable state
  • the binding state of the second resource is a binding enabling state or a binding de-enabled state
  • the binding state of the third resource is binding Can state or bind to enable state.
  • the precoding set includes a first precoding set, and further includes a second precoding set and/or a third precoding set, where the first precoding set is used to provide the first precoding required for the first resource, a second precoding set is used to provide a second precoding for the second resource, and a third precoding set is used to provide a third precoding required for the third resource, wherein the first precoding and the second precoding
  • the encoding is a different precoding, and the first precoding and the third precoding are different precodings.
  • the first precoding includes the value in the first dimension
  • the second precoding includes the value in the first dimension and the second dimension
  • the third precoding includes the first dimension and the second dimension. The value in the dimension, wherein the first dimension and the second dimension are different dimensions.
  • the precoding set includes a first precoding set, and further includes a second precoding set and/or a third precoding set, where the first precoding set is used to provide the first precoding required for the first resource, The first precoding set and the second precoding set are used to provide a second precoding required for the second resource, and the first precoding set and the third precoding set are used to provide the third preamble required for the third resource Encoding, wherein the first precoding and the second precoding are different precodings, the first precoding and the third precoding being different precodings.
  • the first precoding includes a value in a first dimension
  • the second precoding includes a value in a second dimension
  • the third precoding includes a value in a second dimension, where the first The dimension and the second dimension are different dimensions.
  • the instruction includes a first instruction, and further includes a second instruction and/or a third instruction, where the first instruction is used to indicate downlink signaling configured for the first resource, and the second instruction is used to indicate that The downlink signaling of the second resource configuration, where the third instruction is used to indicate downlink signaling configured for the third resource.
  • the embodiment of the present invention further provides an apparatus for transmitting an instruction, where the apparatus includes: an acquiring unit configured to acquire resource binding parameter information corresponding to multiple resources; and a sending unit configured to send information carrying resource binding parameter information instruction.
  • An embodiment of the present invention further provides a method for receiving an instruction, where the method includes: receiving an instruction sent by a base station; and acquiring resource binding parameter information corresponding to multiple resources from the instruction.
  • the multiple resources include the first resource, and further include the second resource and/or the third resource, where the first resource is a time-frequency resource for transmitting data-related pilots, and the second resource is a time-frequency for transmitting data.
  • the third resource is a time-frequency resource for transmitting pre-coded downlink control information.
  • the resource binding parameter information includes at least one of the following: a pre-coded frequency domain granularity, a pre-coded time domain granularity, a resource binding state, and a precoding set.
  • the pre-coded frequency domain granularity refers to the number M of frequency domain units using the same pre-coding, wherein the frequency domain unit includes one of a sub-carrier, a sub-carrier group, and a sub-carrier set, and the sub-carrier group A plurality of subcarriers are included, and the set of subcarriers includes a plurality of subcarrier groups.
  • the frequency domain granularity of the precoding corresponding to the first resource is M1
  • the frequency domain granularity corresponding to the precoding of the second resource is M2 and/ Or the frequency domain corresponding to the third resource is M3, where M1, M2, and M3 are positive integers, and M1 is greater than M2, and the relationship between M1, M2, and M3 is satisfied: M1>M2 ⁇ 1, or M1>M3 ⁇ 1, or M1>M3 ⁇ M2 ⁇ 1, or M1>M2 ⁇ M3 ⁇ 1.
  • the pre-coded time domain granularity refers to the number N of time-domain units using the same pre-coding, wherein the time domain unit includes one of a symbol symbol, a symbol group, and a symbol set, and the symbol group includes multiple A symbol, a set of symbols includes a plurality of symbol groups.
  • the resource binding parameter information includes the pre-coded time domain granularity
  • the pre-coded time domain granularity corresponding to the first resource is N1
  • the pre-coded time domain granularity corresponding to the second resource is N2 and/ Or the time domain granularity of the precoding corresponding to the third resource is N3, where N1 and N2 are And N3 is a positive integer, and N1 is greater than N2, and the relationship between N1, N2, and N3 satisfies: N1>N2 ⁇ 1, or N1>N3 ⁇ 1, or N1>N3 ⁇ N2 ⁇ 1, or N1>N2 ⁇ N3 ⁇ 1.
  • the embodiment of the present invention further provides an apparatus for receiving an instruction, where the apparatus includes: a receiving unit configured to receive an instruction sent by the base station; and a processing unit configured to acquire resource binding parameter information corresponding to the plurality of resources from the instruction.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores a computer program, and the computer program is configured to execute the sending method of the foregoing instruction in the embodiment of the present invention.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores a computer program configured to execute the method for receiving the above instruction according to the embodiment of the present invention.
  • the resource binding parameter information corresponding to the multiple resources is obtained; the instruction carrying the resource binding parameter information is sent, and the resource binding parameter information can be used to implement configuration of multiple resources, and the related technology is solved. Due to the technical problem that the DMRS and the PDSCH use different precoding granularity to achieve resource binding, the stability of the system is improved.
  • FIG. 1 is a schematic flowchart of a method for transmitting an instruction according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for receiving an instruction according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a device for transmitting an instruction according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a device for receiving an instruction according to an embodiment of the present invention.
  • the channel information is accurately estimated, the channel state information (CSI) is calculated by using the estimated channel information, and the calculated CSI is fed back, and the base station performs user scheduling according to the CSI fed back by the user, and transmits the data.
  • the CSI includes: Channel Quality Indication (CQI), Precoding Matrix Indicator (PMI), and Rank Indicator (RI).
  • CQI Channel Quality Indication
  • PMI Precoding Matrix Indicator
  • RI Rank Indicator
  • the estimated channel is used to estimate the channel of the transmitted data region, which facilitates demodulation and detection of the data.
  • the terminal In the early version of the Long Term Evolution (LTE), such as the Release 8 (Rel-8) version, the terminal usually uses the Common Reference Signal (CRS) for CSI estimation, and the terminal also estimates the PDSCH based on the CRS. Channel information and demodulation of the transmitted data.
  • CRS Common Reference Signal
  • LTE-A Long Term Evolution-Advanced
  • CSI-RS the newly introduced CSI-RS is a reference signal transmitted by the base station and used for channel measurement.
  • the terminal performs CSI estimation based on the pilot symbols transmitted by the base station, and obtains different transmit and receive antennas at different time-frequency resource locations.
  • the information of the channel matrix H can then be CSI quantized and fed back based on the channel matrix H.
  • the DMRS is introduced to estimate the downlink shared channel and demodulate the transmitted data.
  • the DMRS and PDSCH use the same precoding, so that the base station does not need to notify the terminal of the Rel-8 version of the base station.
  • Precoding saves downlink signaling overhead, and can better support multi-input and multi-output of multiple users.
  • a wireless communication system In order to facilitate scheduling and description, a wireless communication system generally divides time-frequency resources into physical resource blocks (such as physical resource blocks (PRBs) in LTE/LTE-A), and each physical resource block includes multiple Time domain symbols, resource elements of subcarriers in multiple frequency domains (also called time-frequency resources, such as the concept of Resource Element (RE) introduced in LTE and LTE A).
  • PRBs physical resource blocks
  • each physical resource block includes multiple Time domain symbols, resource elements of subcarriers in multiple frequency domains (also called time-frequency resources, such as the concept of Resource Element (RE) introduced in LTE and LTE A).
  • RE Resource Element
  • a resource unit for transmitting data-related pilots such as DMRS RE in LTE/LTE-A, referred to herein as a first resource unit
  • a resource unit for transmitting data-related pilots such as DMRS RE in LTE/LTE-A, referred to herein as a first resource unit
  • a resource unit for transmitting data a resource unit such as a PDSCH RE in LTE/LTE-A, referred to herein as a second resource unit
  • a resource element of a precoded downlink control channel such as an enhanced downlink control channel in LTE/LTE-A) Enhance Physical Downlink Control Channel, ePDCCH
  • ePDCCH Enhance Physical Downlink Control Channel
  • the target signal is affected by interference and noise, and the resource unit signals on the multiple time domains and/or the frequency domain are combined to estimate the channel when performing channel estimation, so that the performance of the channel estimation can be improved.
  • the RE performing joint channel estimation must use the same precoding information, otherwise joint channel estimation cannot be performed.
  • multiple physical resource blocks using the same precoding may be bound. These physical resource blocks using the same precoding binding are called a precoding resource group (Precoding Resource Block Groups).
  • PRGs precoding Resource Block Groups
  • its size P' is related to factors such as system bandwidth, as shown in Table 1 is a case in LTE/LTE-A.
  • the pre-coded frequency domain granularity used by the first resource and the second resource herein is P′ PRBs.
  • P′ PRBs the pre-coded frequency domain granularity used by the first resource and the second resource herein.
  • DMRS and PDSCH use different precoding granularities, resource binding will not be possible.
  • FIG. 1 is a schematic flowchart of a method for sending an instruction according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S102 Obtain resource binding parameter information corresponding to multiple resources.
  • the foregoing multiple resources include a first resource, and further include a second resource and/or a third resource, where the first resource is a time-frequency resource for transmitting a data-related pilot, and the second resource is a time-frequency resource for transmitting data,
  • the third resource is a time-frequency resource for transmitting pre-coded downlink control information;
  • the resource binding parameter information includes at least one of the following: pre-coded frequency domain granularity, pre-coded time domain granularity, resource binding state, and precoding set.
  • Step S104 Send an instruction carrying resource binding parameter information.
  • the instructions include a first instruction, and a second instruction and/or a third instruction, where the first instruction is used to indicate downlink signaling configured for the first resource, and the second instruction is used to indicate that the second resource is configured Downlink signaling, the third instruction is used to indicate downlink signaling configured for the third resource.
  • the resource binding parameter information corresponding to the multiple resources is obtained; the instruction carrying the resource binding parameter information is sent, and the resource binding parameter information can be used to implement configuration of multiple resources, and the related technology is solved due to the DMRS.
  • the technical problem of resource binding cannot be realized by using different precoding granularity with PDSCH, which improves the stability and compatibility of the system.
  • the execution body of the foregoing steps may be a base station, but is not limited thereto.
  • the foregoing base stations include, but are not limited to, various wireless communication devices such as a macro base station, a micro base station, and a wireless access point; the receiving terminals of the command include but are not limited to: a data card, a mobile phone, a notebook computer, a personal computer, a tablet computer, and a personal digital device.
  • Various terminals such as assistants, Bluetooth, and various wireless communication devices such as relays, remote devices, and wireless access points.
  • the frequency domain granularity of the precoding refers to the number M of frequency domain units using the same precoding, wherein the frequency domain unit includes one of a subcarrier, a subcarrier group, and a subcarrier set.
  • the carrier group includes a plurality of subcarriers, and the set of subcarriers includes a plurality of subcarrier groups.
  • the subcarrier groups and the subcarrier sets have different concepts in different wireless communication systems.
  • the subcarrier group includes PRBs and subcarriers.
  • LTE/LTE-A including the concept of physical resource block group and subband, but other concepts may exist in other systems or future systems.
  • the domain granularity refers to the number N of time domain units using the same precoding, wherein the time domain unit includes one of a symbol symbol, a symbol group, and a symbol set.
  • a symbol group includes a plurality of symbols
  • the symbol set includes a plurality of symbol groups.
  • Symbols are time concepts in wireless communication systems and have different descriptions in different systems. For example, in LTE/LTE-A, Orthogonal Frequency Division Multiple Access (OFDMA), positive Orthogonal Frequency Division Multiplexing (OFDM), the symbol group is in the LTE/LTE-A system, including slot slots (including 5-7 symbols) and subframe subframes (including two slot slots).
  • the symbol set includes a system frame, such as 10 subframes, in the LTE/LTE A system, but there may be other concepts in other systems or future systems, which is not limited in this application.
  • the resource binding parameter information includes the pre-coded frequency domain granularity
  • the pre-coded frequency domain granularity corresponding to the first resource is M1
  • the pre-coded frequency domain granularity corresponding to the second resource is M2 and/or the third resource.
  • the corresponding frequency domain granularity is M3, where M1, M2, and M3 are positive integers, and M1 is greater than M2, and the relationship between M1, M2, and M3 satisfies: M1>M2 ⁇ 1, or M1>M3 ⁇ 1, or M1 >M3 ⁇ M2 ⁇ 1, or M1>M2 ⁇ M3 ⁇ 1.
  • the pre-coded time domain granularity corresponding to the first resource is N1
  • the pre-coded time domain granularity corresponding to the second resource is N2 and/or the third resource.
  • the time domain granularity of the corresponding precoding is N3, where N1, N2, and N3 are positive integers, and N1 is greater than N2, and the relationship between N1, N2, and N3 is satisfied: N1>N2 ⁇ 1, or N1>N3 ⁇ 1, or N1>N3 ⁇ N2 ⁇ 1, or N1>N2 ⁇ N3 ⁇ 1.
  • the resource binding state includes a binding enabling state and a binding de-enabled state.
  • the binding state of the first resource is the binding enable state
  • the binding state of the second resource is the binding enable state or the binding disable state
  • the binding state of the third resource is the binding enable state or the binding state. Go to enable state.
  • the precoding set comprises a first precoding set, further comprising a second precoding set and/or a third precoding set, the first precoding set being used to provide the required content for the first resource a first precoding, the second precoding set is used to provide a second precoding required for the second resource, and the third precoding set is used to provide a third precoding required for the third resource, where the first precoding The encoding and the second precoding are different precodings, and the first precoding and the third precoding are different precodings.
  • the first precoding includes the value in the first dimension
  • the second precoding includes the value in the first dimension and the second dimension
  • the third precoding includes the first dimension and the second dimension.
  • the value of the first dimension and the second dimension are different dimensions.
  • the first precoding set may include multiple precodings that take values in a first dimension
  • the second precoding set includes a plurality of precodings that take values in the first dimension and the second dimension
  • the third precoding The set includes a plurality of precodings that take values in the first dimension and the second dimension.
  • the first dimension may be a horizontal dimension
  • the precoding of the first dimension is used to represent an angle with the horizontal plane
  • the second dimension may be a vertical dimension
  • the precoding of the second dimension is used for representing The angle between the perpendiculars perpendicular to the horizontal plane.
  • the precoding set comprises a first precoding set, further comprising a second precoding set and/or a third precoding set, the first precoding set being used to provide the first resource with the required First precoding, the first precoding set and the second precoding set are used to provide a second precoding required for the second resource, the first precoding set and the third precoding set are used to provide the third resource a third precoding required, wherein the first precoding and the second precoding are different precoding The code, the first precoding and the third precoding are different precodings.
  • the foregoing first precoding set includes precoding that takes values in a first dimension
  • the second precoding set includes precoding that takes values in a second dimension
  • the third precoding set includes precoding that takes values in a second dimension.
  • the first resource is a resource unit for transmitting data-related pilots, for example, demodulation-related pilots are mainly used for channel estimation and demodulation of data, which may be in LTE/LTE-A.
  • the DMRS corresponds to the RE, and if the measurement pilot CSI-RS is precoded, it can also be grouped into such resources, such as for transmission Multiple-Input Multiple-Output (eMIMO).
  • eMIMO Multiple-Input Multiple-Output
  • the CSI-RS pilot of Class B of Type B may also be a time-frequency resource similar to the reference pilot signal used for transmitting data demodulation in other wireless systems, and the second resource is used for resource unit for transmitting data, such as LTE/
  • the PDSCH RE in the LTE-A may also be a time-frequency resource similar to that used for transmitting data in other wireless systems.
  • the solution may further include a third resource, a resource unit for transmitting pre-coded downlink control information, such as LTE/ The enhanced downlink control channel in LTE-A, the third resource may also be a time-frequency resource similar to that used to transmit the pre-coded control channel in other wireless systems, and the first resource is described as DMRS for convenience of description.
  • the second resource is described as PDSCH
  • the third resource is described as ePDCCH.
  • the frequency domain granularity of the precoding described above refers to the number M of frequency domain units of the same precoding, and the frequency domain unit may include one of a subcarrier, a physical resource block, a subcarrier group, and a physical resource block group, where Subcarrier, such as the subcarrier concept in LTE/LTE-A, the subcarrier group is a group of subcarriers including more than 1 subcarrier, and the physical resource block is a physical transmission including several time domain symbols and several frequency domain subcarriers.
  • a block such as a PRB of LTE/LTE-A
  • a physical resource block group is a group of physical resource blocks including more than one physical resource block, such as a PRG subband concept in LTE/LTE-A, and of course, other representations may also be included.
  • the concept of frequency domain granularity is a group of physical resource blocks including more than one physical resource block, such as a PRG subband concept in LTE/LTE-A, and of course, other representations may also be included.
  • the pre-coded time domain granularity refers to the number N of time-domain units of the same pre-encoding, where
  • the time domain unit includes symbol symbol, orthogonal frequency division multiple access (OFDMA) symbols, slotted slot, subframe subframe, system frame, and of course other concepts representing granularity in the time domain.
  • OFDMA orthogonal frequency division multiple access
  • the solution described in this embodiment is a case where the parameter of the resource binding of the base station includes (that is, the resource binding parameter information described above) the frequency domain granularity of the precoding, and the base station determines the frequency domain granularity and the second resource of the first resource precoding. And a frequency domain granularity of the precoding of the third resource.
  • the base station can use a semi-static open-loop multiple-output (MIMO) system based on DMRS.
  • MIMO semi-static open-loop multiple-output
  • the so-called semi-static open-loop MIMO refers to information that the base station will feed back part of the codebook, such as the first codebook.
  • W1 CSI-RS resource indicator (CRI).
  • the base station uses precoding W1 used on the CSI-RS corresponding to the precoding W1 or CRI on the DMRS.
  • precoding W W is W1*W2
  • W2 is taken in a codebook subset S, and S includes L codewords.
  • the base station polls on the PRB or subcarrier group using L W2 code words.
  • the same precoding is used within the PRG group of each DMRS, while different PRMS groups of different DMRSs may use different precoding.
  • the frequency domain granularity of the precoding of the PDSCH REG is 1 PRB, and each PRB can use different precoding.
  • "ceil” means a function that is rounded up, M1>1.
  • the same precoding is used within the PRG group of each DMRS, while different PRMS groups of different DMRSs may use different precoding.
  • the PDSCH REG precoding has a frequency domain granularity of 2 PRBs, and the entire system bandwidth can be divided into different precodings for each PRB. PDSCH PRG.
  • the same precoding is used in each PDSCH PRG group, and different PDSCH PRG groups may use different precoding.
  • M2 can also take a positive integer greater than 2, and M2 is smaller than M1.
  • the DMRS is bound together with the M1 PRBs, and the same first precoding is used, and the user can perform joint channel estimation in the domain range of the M1 PRBs.
  • the PDSCH is bound together within M2 PRBs, using the same second precoding.
  • the base station transmits the resource binding parameter information of the DMRS REG, such as the pre-coded frequency domain granularity M1 of the DMRS PRG, and the second instruction transmits the resource binding parameter information of the PDSCH REG, such as the pre-coded frequency domain of the PDG of the PDSCH. Particle size M2.
  • the terminal receives the first instruction and the second instruction sent by the base station. Determining the frequency domain granularity M1 of the precoding of the DMRS PRG by the first instruction, and determining the PDSCH PRG by the second instruction Precoded frequency domain granularity M2.
  • the base station may only send one fourth instruction (that is, the foregoing instruction information set for indicating each resource separately is sent in one instruction), and is used for jointly indicating resource binding parameter information of the DMRS and the PDSCH.
  • M1>1 indicates that the DMRS is a binding enabled state.
  • the binding state of the DMRS is transmitted to the terminal by the first instruction
  • the binding state of the PDSCH is transmitted to the terminal by the second instruction, or jointly transmitted on the fourth instruction.
  • the PDSCH resource may be replaced with the ePDCCH of the third resource, and the implementation process is similar to that of the PDSCH.
  • the base station determines that the frequency domain binding granularity of the PDCCH is M3, and the frequency domain granularity M1 of the DMRS is greater than M3. Yes, and when M3 is 1, the resource binding is disabled by default. I won't go into details here.
  • the PDSCH resource may also be replaced by the case where the PDSCH and the ePDCCH of the third resource coexist, and the implementation process is similar to that of the PDSCH.
  • the base station determines that the frequency domain binding granularity of the ePDCCH is M3, and satisfies the frequency of the DMRS.
  • the domain granularity M1 is greater than M3, and M1>M2.
  • the relationship between M3 and M2 may be equal or unequal, that is, M3>M2, or M2>M3, and the default is resource when M3 is 1. It is bound to enable. I won't go into details here.
  • the binding state of the ePDCCH may also be transmitted through the third instruction or the fourth instruction.
  • the solution described in this embodiment is a case where the parameter of the base station configuration resource binding includes (that is, the resource binding parameter information described above) the time domain granularity of the precoding, and the base station determines the frequency domain granularity and the second resource of the first resource precoding. And the time domain granularity of the precoding of the third resource.
  • the base station may use semi-static open-loop MIMO based on DMRS.
  • the so-called semi-static open-loop MIMO refers to information that the base station will feed back part of the codebook, such as the first codebook W1, CRI.
  • the base station uses precoding W1 used on the CSI-RS corresponding to the precoding W1 or CRI on the DMRS.
  • precoding W W is W1*W2
  • W2 is taken in a codebook subset S, and S includes L codewords.
  • the base station uses L W2 code words on the OFDMA symbol or on the slot or on the TTI (Transmission Time Interval), or on the subframe, on the frame.
  • the TTI index is taken as an example.
  • Mode 2 The precoding time domain granularity of the PDSCH is N2>1, and the precoding time domain granularity of the DMRS is N1>N2.
  • the DMRS is bound together in N1 subframes, and the same first precoding is used, and the user can perform joint channel estimation in the time domain range corresponding to the subframe.
  • the PDSCH is bundled together in N2 subframes, using the same second precoding.
  • the base station transmits the binding parameter configuration of the DMRS REG by using the first instruction, such as the precoding time domain granularity N1 of the DMRS, and the second instruction transmits the binding parameter configuration of the PDSCH, such as the precoding time domain granularity N2 of the PDSCH.
  • the first instruction such as the precoding time domain granularity N1 of the DMRS
  • the second instruction transmits the binding parameter configuration of the PDSCH, such as the precoding time domain granularity N2 of the PDSCH.
  • the terminal receives the first instruction and the second instruction sent by the base station.
  • the precoding time domain granularity N1 of the DMRS is determined by the first instruction
  • the time domain granularity N2 of the precoding of the PDSCH is determined by the second instruction.
  • N1>1 indicates that the DMRS is a binding enabled state.
  • the PDSCH resource may also be replaced with the ePDCCH of the third resource, and the implementation process is similar to that of the PDSCH.
  • the base station determines that the precoding time domain granularity of the PDCCH is N3, and the precoding time domain granularity N1 that satisfies the DMRS is greater than The requirement of N3 is OK, and when N3 is 1, the default is that the resource is bound to enable. I won't go into details here.
  • the PDSCH resource may also be replaced by a case where the PDSCH and the ePDCCH of the third resource coexist, and the implementation process is similar to that of the PDSCH, and the base station determines that the precoding time domain granularity of the ePDCCH is N3, and the DMRS is satisfied.
  • the coded time domain granularity N1 is greater than N3, and N1>N2.
  • the relationship between N3 and N2 may be equal or unequal, that is, N3>N2, or N2>N3, and the default is when N3 is 1. Disable resource binding. I won't go into details here.
  • the implementation of the frequency domain granularity is as described in Embodiment 2.
  • the resource binding parameters of the DMRS, the PDSCH, and the ePDCCH can also be transmitted to the terminal through a fourth command, which is not repeated here.
  • the parameters of the base station configuration resource binding include a precoding granularity and a precoding set, and the base station determines the frequency domain granularity of the first resource precoding, and the precoding of the second resource and/or the third resource.
  • Frequency domain granularity, and precoding values in each bound precoding resource group PRG of the first resource, precoding in each bound precoding resource group PRG of the second resource and/or the third resource The value of the code.
  • the base station may use semi-static open-loop MIMO based on DMRS.
  • the so-called semi-static open-loop MIMO refers to information that the base station will feed back part of the codebook, such as the first codebook W1, CRI.
  • the base station uses precoding W1 used on the CSI-RS corresponding to the precoding W1 or CRI on the DMRS.
  • W2 takes a value in a codebook subset S, where S includes L codewords.
  • the base station polls the PR on the PRB or subcarrier group.
  • the codewords before the Release 12 version are for 1D antennas (that is, antennas with one dimension) and belong to the 1D codeword.
  • the codebook The dimension has become bigger.
  • the topology of the antenna is also generally planar, that is, there are two dimensionally oriented antennas (such as horizontal and vertical dimensions), so that 2D codewords are designed.
  • each beam in the first codebook W1 has a 2-dimensional form Where v m and u n are Discrete Fourier Transform (DFT) of the first dimension and the second dimension, respectively.
  • DFT Discrete Fourier Transform
  • PMI11 and PMI12 indexes there are P1 W2 code words, and each W2 code word is to select a 2-dimensional beam from W1.
  • the CSI feedback class is Class B.
  • K the base station configures K sets of CSI-RS resources (that is, CSI-RS resources).
  • Each CSI-RS resource has an independently configured number of ports, RE pattern, and guide. Frequency sequence, precoding direction.
  • Each CSI-RS resource corresponds to an index, and correspondingly corresponds to a precoding vector in one direction.
  • the index corresponding to the CSI-RS resource is CRI.
  • the feedback CRI knows the precoding used by the CRI. The user performs CSI calculation feedback on the CSI-RS resource corresponding to the selected CRI.
  • the same precoding is used within the PRG group of each DMRS, while different PRMS groups of different DMRSs may use different precoding.
  • the frequency domain granularity of the precoding of the PDSCH REG is 1 PRB, and each PRB can use different precoding.
  • ceil represents a function that is rounded up, M1>1.
  • the same precoding is used within the PRG group of each DMRS, while different PRMS groups of different DMRSs may use different precoding.
  • the PDSCH REG precoding has a frequency domain granularity of 2 PRBs, and the entire system bandwidth can be divided into different precodings for each PRB. PDSCH PRG.
  • the same precoding is used in each PDSCH PRG group, and different PDSCH PRG groups may use different precoding.
  • M2 can also take a positive integer greater than 2, and M2 is smaller than M1.
  • W1j may include only one dimension of the codeword information, such as information on the first codeword dimension v m, the form of which is Form, I2 is the identity matrix, and its dimensions make the matrix The number of columns is the same as the number of rows in W2i.
  • the code information u n of the second dimension is in the form of Form
  • I1 is the identity matrix
  • the number of columns is the same as the number of rows in W2i.
  • the base station transmits the binding parameter configuration of the DMRS REG by using the first instruction, such as the pre-coded frequency domain granularity M1 of the DMRS PRG, and the second instruction transmits the binding parameter configuration of the PDSCH REG, such as the pre-coded frequency domain granularity M2 of the PRSCH of the PUSCH. .
  • the terminal receives the first instruction and the second instruction sent by the base station.
  • the pre-coded frequency domain granularity M1 of the DMRS PRG is determined by the first instruction
  • the pre-coded frequency domain granularity M2 of the PDSCH PRG is determined by the second instruction.
  • the terminal after determining the precoding granularity M1 of the DMRS PRG, the terminal performs joint channel on the channel by using all the DMRS ports in the M1 PRBs for the j1 bound DMRS PRGs and the M1 PRBs included therein. Estimate, thereby improving the estimation accuracy of the channel.
  • the PRB is used as the frequency domain unit granularity, and of course, other, such as the PRB group, the subband, the subcarrier, and the subcarrier group are the frequency domain unit granularity, and the process is similar, which is not mentioned here.
  • the precoding of the PDSCH is from the second set of codewords, the second set of codewords includes the codewords in the form of W1*W2, and the precoding of the DMRSs is from the first set of codewords, the first set of codewords The included codeword is in the form of W1.
  • the precoding of the PDSCH is from the second set codeword and the first codebook set
  • the second set codeword includes the codeword in the form of W2
  • the precoding of the DMRS is from the first set codeword
  • a set of codewords includes a codeword in the form of W1. That is, the PDSCH takes the codeword W1 in the first codebook set and W2 in the second codebook set to form the used codeword W1*W2.
  • the PDSCH resource may also be replaced with the ePDCCH of the third resource, and the implementation process is similar to the PDSCH.
  • the PDSCH resource may also be replaced by a case where the PDSCH and the ePDCCH of the third resource coexist, and the implementation process is similar to that of the PDSCH, and the base station determines the precoding granularity M3 and the precoding W′ of the ePDCCH, and at the M3.
  • the precoding values of the ePDCCH and the PDSCH may be the same or different. I won't go into details here.
  • the example here is the case of using precoding in the frequency domain, and the precoding can also be used for polling in the time domain, for example, in different N1 TTIs (the same can be time domain symbols, subframes, system frames). , slot, etc.)
  • the upper DMRS uses precoding W1
  • the resource binding parameter information corresponding to the PDSCH, ePDCCH, and DMRS may also be transmitted through only one fourth instruction.
  • FIG. 2 is a flowchart of a method for receiving an instruction according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 receiving an instruction sent by the base station.
  • the instructions include a first instruction, and a second instruction and/or a third instruction, where the first instruction is used to indicate downlink signaling configured for the first resource, and the second instruction is used to indicate that the second resource is configured Downlink signaling, the third instruction is used to indicate downlink signaling configured for the third resource.
  • Step S204 Obtain resource binding parameter information corresponding to multiple resources from the instruction.
  • the foregoing multiple resources include a first resource, and further include a second resource and/or a third resource, where the first resource is a time-frequency resource for transmitting a data-related pilot, and the second resource is a time-frequency resource for transmitting data,
  • the third resource is a time-frequency resource for transmitting pre-coded downlink control information;
  • the resource binding parameter information includes at least one of the following: pre-coded frequency domain granularity, pre-coded time domain granularity, resource binding state, and precoding set.
  • the instruction sent by the base station is received, and the resource binding parameter information corresponding to the multiple resources is obtained from the instruction, which solves the unrealizable resource caused by using different precoding granularity of the demodulation reference signal DMRS and the PDSCH in the related art.
  • the technical problems of binding improve the stability of the system.
  • the execution body of the foregoing steps may be a terminal, but is not limited thereto, and the terminal
  • the implementation of the related configuration after receiving the command has been described in detail in the previous embodiment, and details are not described herein again.
  • the above terminals include, but are not limited to, various wireless communication devices such as data cards, mobile phones, notebook computers, personal computers, tablet computers, personal digital assistants, Bluetooth, and the like, as well as relay, remote devices, and wireless access points.
  • various wireless communication devices such as data cards, mobile phones, notebook computers, personal computers, tablet computers, personal digital assistants, Bluetooth, and the like, as well as relay, remote devices, and wireless access points.
  • the frequency domain granularity of the precoding refers to the number M of frequency domain units using the same precoding, wherein the frequency domain unit includes one of a subcarrier, a subcarrier group, and a subcarrier set.
  • the carrier group includes a plurality of subcarriers
  • the subcarrier set includes a plurality of subcarrier groups
  • the subcarrier group and the subcarrier set have different concepts in different wireless communication systems.
  • the subcarrier group includes a PRB, a subcarrier group.
  • Carrier set in LTE/LTE-A, including the concept of physical resource block group, sub-band, etc., but there may be other concepts in other systems or future systems, which is not limited in this application; pre-coded time domain granularity It refers to the number N of time domain units using the same precoding, wherein the time domain unit includes one of a symbol symbol, a symbol group, and a symbol set.
  • a symbol group includes a plurality of symbols
  • the symbol set includes a plurality of symbol groups.
  • Symbols are time concepts in wireless communication systems and have different descriptions in different systems, such as in LTE/LTE-A, for OFDMA symbols, OFDM symbol groups in LTE/LTE-A systems, including slot slots.
  • the symbol set includes system frames (eg, 10 subframes) in the LTE/LTE-A system, but in other systems or future systems There may be other concepts as well, and this application does not limit this.
  • the resource binding parameter information includes the pre-coded frequency domain granularity
  • the pre-coded frequency domain granularity corresponding to the first resource is M1
  • the pre-coded frequency domain granularity corresponding to the second resource is M2 and/or the third resource.
  • the corresponding frequency domain granularity is M3, where M1, M2, and M3 are positive integers, and M1 is greater than M2, and the relationship between M1, M2, and M3 satisfies: M1>M2 ⁇ 1, or M1>M3 ⁇ 1, or M1 >M3 ⁇ M2 ⁇ 1, or M1>M2 ⁇ M3 ⁇ 1.
  • the first resource corresponds to The precoding time domain granularity is N1
  • the second resource corresponding precoding time domain granularity is N2
  • the third resource corresponding precoding time domain granularity is N3, where N1, N2, and N3 are positive integers.
  • N1 is greater than N2, and the relationship between N1, N2, and N3 satisfies: N1>N2 ⁇ 1, or N1>N3 ⁇ 1, or N1>N3 ⁇ N2 ⁇ 1, or N1>N2 ⁇ N3 ⁇ 1.
  • the resource binding state includes a binding enabling state and a binding de-enabled state.
  • the binding state of the first resource is the binding enable state
  • the binding state of the second resource is the binding enable state or the binding disable state
  • the binding state of the third resource is the binding enable state or the binding state. Go to enable state.
  • the precoding set comprises a first precoding set, further comprising a second precoding set and/or a third precoding set, the first precoding set being used to provide the required content for the first resource a first precoding, the second precoding set is used to provide a second precoding required for the second resource, and the third precoding set is used to provide a third precoding required for the third resource, where the first precoding The encoding and the second precoding are different precodings, and the first precoding and the third precoding are different precodings.
  • the first precoding includes the value in the first dimension
  • the second precoding includes the value in the first dimension and the second dimension
  • the third precoding includes the first dimension and the second dimension.
  • the value of the first dimension and the second dimension are different dimensions.
  • the first precoding set may include multiple precodings that take values in a first dimension
  • the second precoding set includes a plurality of precodings that take values in the first dimension and the second dimension
  • the third precoding The set includes a plurality of precodings that take values in the first dimension and the second dimension.
  • the first dimension may be a horizontal dimension
  • the precoding of the first dimension is used to represent an angle with the horizontal plane
  • the second dimension may be a vertical dimension
  • the precoding of the second dimension is used for representing The angle between the perpendiculars perpendicular to the horizontal plane.
  • the precoding set includes a first precoding set, and further includes a second precoding set and/or a third precoding set, where the first precoding set is used to provide the first resource
  • the first precoding set and the second precoding set are used to provide the required second precoding for the second resource
  • the first precoding set and the third precoding set are used for
  • the three resources provide a required third precoding, wherein the first precoding and the second precoding are different precodings, and the first precoding and the third precoding are different precodings.
  • the foregoing first precoding set includes precoding that takes values in a first dimension
  • the second precoding set includes precoding that takes values in a second dimension
  • the third precoding set includes precoding that takes values in a second dimension.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as a read only memory (Only Memory, ROM)/Random-Access Memory (RAM), disk, and optical disk, including instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform various implementations of the present invention The method described in the example.
  • a storage medium such as a read only memory (Only Memory, ROM)/Random-Access Memory (RAM), disk, and optical disk, including instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform various implementations of the present invention The method described in the example.
  • an apparatus for transmitting an instruction is also provided, and the apparatus is configured to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 3 is a structural block diagram of an apparatus for transmitting an instruction according to an embodiment of the present invention. As shown in FIG. 3, the apparatus includes: an obtaining unit 31 and a transmitting unit 33.
  • the obtaining unit 31 is configured to acquire resource binding parameter information corresponding to multiple resources.
  • the foregoing multiple resources include a first resource, and further include a second resource and/or a third resource, where the first resource is a time-frequency resource for transmitting a data-related pilot, and the second resource is a time-frequency resource for transmitting data,
  • the third resource is a time-frequency resource for transmitting pre-coded downlink control information;
  • the resource binding parameter information includes at least one of the following: pre-coded frequency domain granularity, pre-coded time domain granularity, resource binding state, and precoding set.
  • the sending unit 33 is configured to send an instruction carrying the resource binding parameter information.
  • the instructions include a first instruction, and a second instruction and/or a third instruction, where the first instruction is used to indicate downlink signaling configured for the first resource, and the second instruction is used to indicate that the second resource is configured Downlink signaling, the third instruction is used to indicate downlink signaling configured for the third resource.
  • the acquiring unit acquires resource binding parameter information corresponding to multiple resources; the sending unit sends an instruction carrying the resource binding parameter information, and the resource binding parameter information can implement configuration of multiple resources, and the related information is solved.
  • the technical problems of resource binding cannot be realized due to different precoding granularity of DMRS and PDSCH, and the stability and compatibility of the system are improved.
  • FIG. 4 is a structural block diagram of an apparatus for receiving an instruction according to an embodiment of the present invention. As shown in FIG. 4, the apparatus includes: a receiving unit 41 and a processing unit 43.
  • the receiving unit 41 is configured to receive an instruction sent by the base station.
  • the instructions include a first instruction, and a second instruction and/or a third instruction, where the first instruction is used to indicate downlink signaling configured for the first resource, and the second instruction is used to indicate that the second resource is configured Downlink signaling, the third instruction is used to indicate downlink signaling configured for the third resource.
  • the processing unit 43 is configured to acquire resource binding parameter information corresponding to the plurality of resources from the instruction.
  • the foregoing multiple resources include a first resource, and further include a second resource and/or a third resource, where the first resource is a time-frequency resource for transmitting data-related pilots, and the second resource is a time-frequency for transmitting data.
  • the third resource is a time-frequency resource for transmitting pre-coded downlink control information; the resource binding parameter information includes at least one of the following: a pre-coded frequency domain granularity, a pre-coded time domain granularity, a resource binding state, and Precoding set.
  • the receiving unit receives the instruction sent by the base station, and the processing unit acquires the resource binding parameter information corresponding to the multiple resources from the instruction, which solves the related technology that the demodulation reference signals DMRS and the PDSCH use different precoding granularities.
  • the technical problem of resource binding cannot be realized, and the stability of the system is improved.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present invention also provide a storage medium.
  • the storage medium may be configured to store program code for performing the following steps:
  • the storage medium is further configured to store program code for performing the following steps:
  • the foregoing storage medium may include, but is not limited to, a U disk, a ROM, a RAM, a mobile hard disk, a magnetic disk, or an optical disk, and the like, which can store program codes.
  • the processor performs: acquiring resource binding parameter information corresponding to the plurality of resources according to the stored program code in the storage medium; and transmitting an instruction carrying the resource binding parameter information.
  • the processor performs: receiving, according to the stored program code in the storage medium, an instruction sent by the base station; and acquiring resource binding parameter information corresponding to the plurality of resources from the instruction.
  • the method for transmitting and receiving the above instructions is implemented in the form of a software function module, and is sold or used as a separate product, it may also be stored in a computer readable storage medium.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a magnetic disk, or an optical disk.
  • embodiments of the invention are not limited to any specific combination of hardware and software.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores a computer program, and the computer program is used to execute the sending method of the foregoing instruction in the embodiment of the present invention.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores a computer program, and the computer program is used to execute the method for receiving the instruction according to the embodiment of the present invention.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices.
  • they may be implemented by program code executable by the computing device, such that they may be stored in the storage device for execution by the computing device, and in some cases may be performed in a different order than that illustrated herein.
  • the steps described, or They are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the embodiment of the present invention obtains resource binding parameter information corresponding to multiple resources, and sends an instruction that carries resource binding parameter information, and can implement configuration of multiple resources by using resource binding parameter information, and solves the related technology in the DMRS.
  • the technical problem that resource binding cannot be realized due to different precoding granularity with PDSCH improves the stability of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种指令的发送、接收方法,其中,指令的发送方法包括:获取与多种资源对应的资源绑定参数信息;发送携带有资源绑定参数信息的指令。通过本发明,解决了相关技术中由于解调参考信号(DMRS)和下行共享信道(PDSCH)使用不同的预编码粒度造成的无法实现资源绑定的技术问题。本发明还同时公开了一种指令的发送、接收装置及存储介质。

Description

指令的发送、接收方法、装置及存储介质
相关申请的交叉引用
本申请基于申请号为201610322459.2、申请日为2016年05月13日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及通信领域,尤其涉及一种指令的发送、接收方法、装置及存储介质。
背景技术
绑定(bundling)是指将有相同预编码的导频(信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)/解调参考信号(Demodulation Reference Signal,DMRS))以一定的频域粒度或者时域窗口进行绑定,在这个频域粒度里可以进行相应的联合信道估计,或者联合干扰测量估计。基站可以为导频配置是否bundling,bundling粒度等参数。DMRS和物理下行共享信道(Physical Downlink Shared Channel,PDSCH)使用同一套信令来通知bundling的状态和bundling粒度等参数。这种资源绑定技术能很好支持DMRS和PDSCH使用相同预编码的情况,但不能很好支持DMRS和PDSCH使用不同预编码的情况,如果DMRS和PDSCH使用了不同的预编码粒度,将无法实现资源绑定,也不能很好地支持未来无线通信系统中更多资源使用不同预编码绑定参数的情形。
针对相关技术中由于DMRS和PDSCH使用不同的预编码粒度造成的无法实现资源绑定的技术问题,目前尚未提出有效的解决方案。
发明内容
有鉴于此,本发明实施例期望提供一种指令的发送、接收方法、装置及存储介质,以至少解决相关技术中由于DMRS和PDSCH使用不同的预编码粒度造成的无法实现资源绑定的技术问题。
本发明实施例提供了一种指令的发送方法,该方法包括:获取与多种资源对应的资源绑定参数信息;发送携带有资源绑定参数信息的指令。
上述方案中,多种资源包括第一资源,还包括第二资源和/或第三资源,其中,第一资源为传输数据相关的导频的时频资源,第二资源为传输数据的时频资源,第三资源为传输预编码的下行控制信息的时频资源。
上述方案中,资源绑定参数信息包括下述的至少之一:预编码的频域粒度、预编码的时域粒度、资源绑定状态以及预编码集合。
上述方案中,预编码的频域粒度是指使用同一个预编码的频域单元的个数M,其中,频域单元包括子载波、子载波组、子载波集合中的之一,子载波组包括多个子载波,子载波集合包括多个子载波组。
上述方案中,在资源绑定参数信息包括预编码的频域粒度的情况下,第一资源对应的预编码的频域粒度为M1,第二资源对应的预编码的频域粒度为M2和/或第三资源对应的频域粒度为M3,其中,M1、M2以及M3为正整数,且M1大于M2,M1、M2及M3之间的关系满足:M1>M2≥1,或M1>M3≥1,或M1>M3≥M2≥1,或M1>M2≥M3≥1。
上述方案中,预编码的时域粒度是指使用同一个预编码的时域单元的个数N,其中,时域单元包括符号symbol、符号组、符号集合中的之一,符号组包括多个符号,符号集合包括多个符号组。
上述方案中,在资源绑定参数信息包括预编码的时域粒度的情况下,第一资源对应的预编码的时域粒度为N1,第二资源对应的预编码的时域粒度为N2和/或第三资源对应的预编码的时域粒度为N3,其中,N1、N2以 及N3为正整数,且N1大于N2,N1、N2以及N3之间的关系满足:N1>N2≥1,或N1>N3≥1,或N1>N3≥N2≥1,或N1>N2≥N3≥1。
上述方案中,资源绑定状态包括绑定使能状态和绑定去使能状态。
上述方案中,第一资源的绑定状态为绑定使能状态,第二资源的绑定状态为绑定使能状态或绑定去使能状态,第三资源的绑定状态为绑定使能状态或绑定去使能状态。
上述方案中,预编码集合包括第一预编码集合,还包括第二预编码集合和/或第三预编码集合,第一预编码集合用于为第一资源提供所需的第一预编码,第二预编码集合用于为第二资源提供所需的第二预编码,第三预编码集合用于为第三资源提供所需的第三预编码,其中,第一预编码和第二预编码为不同的预编码,第一预编码和第三预编码为不同的预编码。
上述方案中,第一预编码包括在第一维度上的取值,第二预编码包括在第一维度上和第二维度上的取值,第三预编码包括在第一维度上和第二维度上的取值,其中,第一维度和第二维度为不同的维度。
上述方案中,预编码集合包括第一预编码集合,还包括第二预编码集合和/或第三预编码集合,第一预编码集合用于为第一资源提供所需的第一预编码,第一预编码集合和第二预编码集合用于为第二资源提供所需的第二预编码,第一预编码集合和第三预编码集合用于为第三资源提供所需的第三预编码,其中,第一预编码和第二预编码为不同的预编码,第一预编码和第三预编码为不同的预编码。
上述方案中,第一预编码包括在第一维度上的取值,第二预编码包括在第二维度上的取值,第三预编码包括在第二维度上的取值,其中,第一维度和第二维度为不同的维度。
上述方案中,指令包括第一指令,还包括第二指令和/或第三指令,其中,第一指令用于指示为第一资源配置的下行信令,第二指令用于指示为 第二资源配置的下行信令,第三指令用于指示为第三资源配置的下行信令。
本发明实施例还提供了一种指令的发送装置,该装置包括:获取单元,配置为获取与多种资源对应的资源绑定参数信息;发送单元,配置为发送携带有资源绑定参数信息的指令。
本发明实施例还提供了一种指令的接收方法,该方法包括:接收基站发送的指令;从指令中获取与多种资源对应的资源绑定参数信息。
上述方案中,多种资源包括第一资源,还包括第二资源和/或第三资源,其中,第一资源为传输数据相关的导频的时频资源,第二资源为传输数据的时频资源,第三资源为传输预编码的下行控制信息的时频资源。
上述方案中,资源绑定参数信息包括下述的至少之一:预编码的频域粒度、预编码的时域粒度、资源绑定状态以及预编码集合。
上述方案中,预编码的频域粒度是指使用同一个预编码的频域单元的个数M,其中,频域单元包括子载波、子载波组、子载波集合中的之一,子载波组包括多个子载波,子载波集合包括多个子载波组。
上述方案中,在资源绑定参数信息包括预编码的频域粒度的情况下,第一资源对应的预编码的频域粒度为M1,第二资源对应的预编码的频域粒度为M2和/或第三资源对应的频域粒度为M3,其中,M1、M2以及M3为正整数,且M1大于M2,M1、M2及M3之间的关系满足:M1>M2≥1,或M1>M3≥1,或M1>M3≥M2≥1,或M1>M2≥M3≥1。
上述方案中,预编码的时域粒度是指使用同一个预编码的时域单元的个数N,其中,时域单元包括符号symbol、符号组、符号集合中的之一,符号组包括多个符号,符号集合包括多个符号组。
上述方案中,在资源绑定参数信息包括预编码的时域粒度的情况下,第一资源对应的预编码的时域粒度为N1,第二资源对应的预编码的时域粒度为N2和/或第三资源对应的预编码的时域粒度为N3,其中,N1、N2以 及N3为正整数,且N1大于N2,N1、N2以及N3之间的关系满足:N1>N2≥1,或N1>N3≥1,或N1>N3≥N2≥1,或N1>N2≥N3≥1。
本发明实施例还提供了一种指令的接收装置,该装置包括:接收单元,配置为接收基站发送的指令;处理单元,配置为从指令中获取与多种资源对应的资源绑定参数信息。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质存储有计算机程序,该计算机程序配置为执行本发明实施例的上述指令的发送方法。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质存储有计算机程序,该计算机程序配置为执行本发明实施例的上述指令的接收方法。
通过本发明实施例,获取与多种资源对应的资源绑定参数信息;发送携带有资源绑定参数信息的指令,通过资源绑定参数信息可以实现对多种资源的配置,解决了相关技术中由于DMRS和PDSCH使用不同的预编码粒度造成的无法实现资源绑定的技术问题,提高了系统的稳定性。
附图说明
图1为本发明实施例的指令的发送方法的流程示意图;
图2为本发明实施例的指令的接收方法的流程示意图;
图3为本发明实施例的指令的发送装置的组成结构示意图;
图4为本发明实施例的指令的接收装置的组成结构示意图。
具体实施方式
发明人在研究过程中发现,在实际的无线通信系统中,由于基站与终端之间的无线传播路径容易受到环境的影响,无线信道具有很大的随机性。因此,为了能够在终端准确的恢复基站发送的信号,必须对基站和用户间 的信道信息进行较为准确的估计,利用估计的信道信息计算信道状态信息(Channel State Information,CSI),并反馈计算的CSI,基站根据用户反馈的CSI进行用户的调度,并传输数据。其中,CSI包括:信道质量指示信息(Channel quality indication,CQI)、预编码矩阵指示符(Precoding Matrix Indicator,PMI)和秩指示符(Rank Indicator,RI)。而另外一方面,用估计的信道对传输的数据区域的信道进行估计,便于对数据进行解调和检测。
在早期的长期演进(Long Term Evolution,LTE)版本,如Release 8(Rel-8)版本中,终端通常采用公共参考信号(Common Reference Signal,CRS)进行CSI估计,并且终端也基于CRS估计PDSCH的信道信息,并对传输的数据进行解调。在长期演进增强(Long Term Evolution-Advanced,LTE-A)的Rel-10版本中,为了使得终端可以对多达8个的天线端口进行估计和反馈更大带宽的CSI,引入了新的RS,即CSI-RS,新引进的CSI-RS是由基站发送的,专门用于进行信道测量的参考信号,终端基于基站发送的导频符号进行CSI估计,获得不同收发天线在不同时频资源位置的信道矩阵H的信息,继而可以基于信道矩阵H进行CSI量化及反馈。并且引入了DMRS用于估计下行共享信道,并对传输的数据进行解调。与早期版本中的CRS既用于CSI估计又用于信号解调不同,这里DMRS和PDSCH使用了相同的预编码,从而基站不需要再向Rel-8版本的基站一样需要通知终端其所使用的预编码,一方面节省了下行信令开销,也能更好地支持多用户的多输入多输出。
为了便于调度和描述,无线通信系统通常将时频资源划分成一个个的物理资源块(比如LTE/LTE-A里的物理资源块(Physical Resource Block,PRB)),每个物理资源块包括多个时域符号、多个频域上的子载波的资源单元(也可叫时频资源,比如,LTE和LTE A中引入的资源单元(Resource Element,RE)的概念)。并且根据物理资源块中的资源单元传输的信号不 同,对物理资源块中的资源单元进行分类,比如用于传输数据相关的导频的资源单元(比如LTE/LTE-A里的DMRS RE,这里称为第一资源单元),用于传输数据的资源单元(比如LTE/LTE-A里的PDSCH RE,这里称为第二资源单元),用于传输预编码的下行控制信道的资源单元(比如LTE/LTE-A里的增强下行控制信道(enhance Physical Downlink Control Channel,ePDCCH),这里称为第三资源)。
在无线传输过程中,目标信号会受到干扰和噪声的影响,在进行信道估计时联合多个时域上的和/或频域上的资源单元信号来估计信道,从而可以提高信道估计的性能。但进行联合信道估计的RE必须是使用相同的预编码信息,否则就不能进行联合信道估计。为了便于终端知道联合区域的大小,可以将使用了相同预编码的多个物理资源块进行绑定,这些使用相同预编码绑定的物理资源块被称为一个预编码资源组(Precoding Resource block Groups,PRGs),它的大小P′跟系统带宽等因素有关,如表1示出的为LTE/LTE-A中的一种情况。
表1
Figure PCTCN2017083277-appb-000001
在PRGs中的P′个PRB里,这里第一资源和第二资源使用的预编码的频域粒度都是P′个PRB。然而,如果DMRS和PDSCH使用了不同的预编码粒度,将无法实现资源绑定。
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
图1是本发明实施例的指令的发送方法的流程示意图,如图1所示,该流程包括如下步骤:
步骤S102,获取与多种资源对应的资源绑定参数信息。
上述的多种资源包括第一资源,还包括第二资源和/或第三资源,其中,第一资源为传输数据相关的导频的时频资源,第二资源为传输数据的时频资源,第三资源为传输预编码的下行控制信息的时频资源;资源绑定参数信息包括下述的至少之一:预编码的频域粒度、预编码的时域粒度、资源绑定状态以及预编码集合。
步骤S104,发送携带有资源绑定参数信息的指令。
上述的指令包括第一指令,还包括第二指令和/或第三指令,其中,第一指令用于指示为第一资源配置的下行信令,第二指令用于指示为第二资源配置的下行信令,第三指令用于指示为第三资源配置的下行信令。
通过上述步骤,获取与多种资源对应的资源绑定参数信息;发送携带有资源绑定参数信息的指令,通过资源绑定参数信息可以实现对多种资源的配置,解决了相关技术中由于DMRS和PDSCH使用不同的预编码粒度造成的无法实现资源绑定的技术问题,提高了系统的稳定性和兼容性。
在一实施例中,上述步骤的执行主体可以为基站,但不限于此。
上述的基站包括但不限于:宏基站、微基站、无线接入点等各种无线通信设备;指令的接收终端包括但不限于:数据卡、手机、笔记本电脑、个人电脑、平板电脑、个人数字助理、蓝牙等各种终端以及中继、拉远设备、无线接入点等各种无线通信设备。
在上述实施例中,预编码的频域粒度是指使用同一个预编码的频域单元的个数M,其中,频域单元包括子载波、子载波组、子载波集合中的之一,子载波组包括多个子载波,子载波集合包括多个子载波组,子载波组和子载波集合在不同的无线通信系统中有不同的概念,比如在LTE/LTE A中,子载波组包括PRB、子载波集合;在LTE/LTE-A中,包括物理资源块组,子带(subband)等概念,但在其它系统或者未来系统中可能也有其它的概念,本申请对此不做限定;预编码的时域粒度是指使用同一个预编码的时域单元的个数N,其中,时域单元包括符号symbol、符号组、符号集合中的之一。符号组包括多个符号,符号集合包括多个符号组。符号是在无线通信系统中的时间概念,在不同的系统中有不同的描述,比如在LTE/LTE-A中,为正交频分多址接入(Orthogonal Frequency Division Multiple Access,OFDMA)、正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM),符号组在LTE/LTE-A系统中,包括时隙slot(包括5~7个符号)、子帧subframe(包括两个时隙slot),符号集合在LTE/LTE A系统中包括系统帧(system frame),如10个子帧,但在其它系统或者未来系统中可能也有其它的概念,本申请对此不做限定。
在资源绑定参数信息包括预编码的频域粒度的情况下,第一资源对应的预编码的频域粒度为M1,第二资源对应的预编码的频域粒度为M2和/或第三资源对应的频域粒度为M3,其中,M1、M2以及M3为正整数,且M1大于M2,M1、M2及M3之间的关系满足:M1>M2≥1,或M1>M3≥1,或M1>M3≥M2≥1,或M1>M2≥M3≥1。
在资源绑定参数信息包括预编码的时域粒度的情况下,第一资源对应的预编码的时域粒度为N1,第二资源对应的预编码的时域粒度为N2和/或第三资源对应的预编码的时域粒度为N3,其中,N1、N2以及N3为正整数,且N1大于N2,N1、N2以及N3之间的关系满足:N1>N2≥1,或N1>N3 ≥1,或N1>N3≥N2≥1,或N1>N2≥N3≥1。
需要说明的是,资源绑定状态包括绑定使能状态和绑定去使能状态。第一资源的绑定状态为绑定使能状态,第二资源的绑定状态为绑定使能状态或绑定去使能状态,第三资源的绑定状态为绑定使能状态或绑定去使能状态。
在一个可选的实施例中,预编码集合包括第一预编码集合,还包括第二预编码集合和/或第三预编码集合,第一预编码集合用于为第一资源提供所需的第一预编码,第二预编码集合用于为第二资源提供所需的第二预编码,第三预编码集合用于为第三资源提供所需的第三预编码,其中,第一预编码和第二预编码为不同的预编码,第一预编码和第三预编码为不同的预编码。
上述的第一预编码包括在第一维度上的取值,第二预编码包括在第一维度上和第二维度上的取值,第三预编码包括在第一维度上和第二维度上的取值,其中,第一维度和第二维度为不同的维度。
在实际实施时,第一预编码集合可以包括多个取值于第一维度的预编码,第二预编码集合包括多个取值于第一维度和第二维度的预编码,第三预编码集合包括多个取值于第一维度和第二维度的预编码。第一维度可以为水平维度,取值于第一维度的预编码用于表示与水平平面之间的夹角,第二维度可以为垂直维度,取值于第二维度的预编码用于表示与垂直于水平平面的垂线之间的夹角。
在另一个可选的实施例中,预编码集合包括第一预编码集合,还包括第二预编码集合和/或第三预编码集合,第一预编码集合用于为第一资源提供所需的第一预编码,第一预编码集合和第二预编码集合用于为第二资源提供所需的第二预编码,第一预编码集合和第三预编码集合用于为第三资源提供所需的第三预编码,其中,第一预编码和第二预编码为不同的预编 码,第一预编码和第三预编码为不同的预编码。
上述的第一预编码集合包括取值于第一维度的预编码,第二预编码集合包括取值于第二维度的预编码,第三预编码集合包括取值于第二维度的预编码。
以下述的实施方式为例详述本申请的方法。
在下面的实施方式中,第一资源为用于传输数据相关的导频的资源单元,比如解调相关的导频主要用于数据的信道估计和解调,它可以是LTE/LTE-A里的DMRS对应的RE,并且,如果测量导频CSI-RS经过了预编码,也可以归集为此类资源,比如用于传输增强型多入多出(enhance Multiple-Input Multiple-Output,eMIMO)类型B的Class B的CSI-RS导频,也可以是其它无线系统中类似用于传输数据解调的参考导频信号的时频资源,第二资源用于传输数据的资源单元,比如LTE/LTE-A里的PDSCH RE,也可以是其它无线系统中类似用于传输数据的时频资源,本方案还可以包括第三资源,用于传输预编码的下行控制信息的资源单元,比如LTE/LTE-A里的增强下行控制信道,第三资源也可以是,其它无线系统中类似用于传输经过预编码的控制信道的时频资源,这里为了描述的方便将第一资源描述为DMRS,把第二资源描述为PDSCH,第三资源描述为ePDCCH。
上述的预编码的频域粒度是指同一个预编码作用的频域单元的个数M,频域单元可包括子载波,物理资源块,子载波组,物理资源块组中的之一,这里,子载波,比如LTE/LTE-A里的子载波概念,子载波组是包括大于1个子载波的一组子载波,物理资源块是包括若干时域符号和若干频域子载波的一个物理传输块,比如LTE/LTE-A的PRB,物理资源块组是包括大于1个物理资源块的一组物理资源块,比如LTE/LTE-A里的PRG子带概念,当然,也可包括其它表示频域粒度的概念。
预编码的时域粒度是指同一个预编码作用的时域单元的个数N,其中, 时域单元包括符号symbol,正交频分多址接入OFDMA符号,时隙slot,子帧subframe,系统帧system frame,当然也包括其它的表示时域上的粒度的概念。
下面结合具体的场景详述本申请的实施例:
实施方式1
本实施例中描述的方案是基站配置资源绑定的参数包括(即上述的资源绑定参数信息)预编码的频域粒度的情况,基站确定第一资源预编码的频域粒度、第二资源以及第三资源的预编码的频域粒度。
基站可使用基于DMRS的半静态的开环多入多出技术(Multiple-Input Multiple-Output,MIMO),所谓半静态的开环MIMO是指基站会反馈部分码本的信息,比如第一码本W1,CSI-RS资源索引(CSI-RS resource indicator,CRI)。基站在DMRS上使用预编码W1或者CRI对应的CSI-RS上使用的预编码W1。而PDSCH上使用预编码W(W为W1*W2),W2取值于一个码本子集合S,S包括L个码字。基站在PRB或子载波组上轮询使用L个W2码字。比如,第i个PRB或者子载波组使用集合S中的第j个码字,其中,j=mod(i,L),实际配置中,不局限于这种j和i的关系配置,但让也可以基于子载波组,子载波来轮询,这里不一一例举,只举例说明基于PRB来轮询的方式,上述的“mod(,)”为求余函数。
这样可能导致DMRS和PDSCH的预编码粒度不同,从而需要独立地配置绑定参数。包括但不限于如下方式。
方式1:PDSCH REG的预编码的频域粒度为M2=1,而DMRS REG的预编码的频域粒度为
Figure PCTCN2017083277-appb-000002
其中,
Figure PCTCN2017083277-appb-000003
为系统带宽。即DMRS REG在整个带宽内使用相同的预编码,绑定粒度为整个系统带宽,而PDSCH REG的预编码的频域粒度为1个PRB,每个PRB都可以使用不同的预编码。
方式2:PDSCH REG的预编码的频域粒度为M2=1,而DMRS REG的 预编码的频域粒度为
Figure PCTCN2017083277-appb-000004
其中,
Figure PCTCN2017083277-appb-000005
为系统带宽。即DMRS REG的频域粒度为M1,把整个系统带宽分成
Figure PCTCN2017083277-appb-000006
个DMRS预编码资源组PRG。每个DMRS的PRG组内使用相同的预编码,而不同DMRS的PRG组可能使用不同的预编码。而PDSCH REG的预编码的频域粒度为1个PRB,每个PRB都可以使用不同的预编码。这里,“ceil”表示上取整的函数,M1>1。
方式3:PDSCH REG的预编码的频域粒度为M2=2,而DMRS REG的预编码的频域粒度为
Figure PCTCN2017083277-appb-000007
其中,
Figure PCTCN2017083277-appb-000008
为系统带宽。即DMRS REG的频域粒度为M1,把整个系统带宽分成
Figure PCTCN2017083277-appb-000009
个DMRS预编码资源组PRG。每个DMRS的PRG组内使用相同的预编码,而不同DMRS的PRG组可能使用不同的预编码。而PDSCH REG的预编码的频域粒度为2个PRB,把整个系统带宽分成了每个PRB都可以使用不同的预编码。
Figure PCTCN2017083277-appb-000010
Figure PCTCN2017083277-appb-000011
个PDSCH PRG。每个PDSCH PRG组内使用相同的预编码,而不同PDSCH PRG组可能使用不同的预编码,这里,ceil表示上取整的函数,M1>M2=2。且这里M2也可以取大于2的正整数,M2小于M1。
当然,可以配置其它的M1和M2的关系,只要满足M1>M2就可以。
即将DMRS与M1个PRB绑定一起,使用了相同的第一预编码,用户可以在这M1个PRB的域范围进行联合信道估计。PDSCH在M2个PRB内是绑定在一起的,使用了相同的第二预编码。
基站通过第一指令传输DMRS REG的资源绑定参数信息,比如DMRS PRG的预编码的频域粒度M1,第二指令传输PDSCH REG的资源绑定参数信息,比如PDSCH的PRG的预编码的频域粒度M2。
终端接收基站发送的第一指令和第二指令。通过第一指令确定了DMRS PRG的预编码的频域粒度M1,通过第二指令确定了PDSCH PRG的 预编码的频域粒度M2。
需要说明的是,也可以基站只发送一个第四指令(即将上述的用于分别指示各个资源的指令信息集合在一个指令中发送),用于联合指示DMRS和PDSCH的资源绑定参数信息。终端接收的第四指令,从而获得DMRS和PDSCH的资源绑定参数信息。
另外,在本实施例中,M1>1表示DMRS是绑定使能状态。M2>1表示PDSCH是绑定使能状态,M1=1表示PDSCH是绑定去使能状态,这相当于跟预编码的频域粒度进行绑定。
在一实施例中,DMRS的绑定状态由第一指令传输给终端,PDSCH的绑定状态由第二指令传输给终端,或者在第四指令上联合传输。
在本实施列中,PDSCH资源也可以替换成第三资源的ePDCCH,其实现过程和PDSCH的类似,也是基站确定PDCCH的频域绑定粒度为M3,并且满足DMRS的频域粒度M1大于M3就可以,且在M3为1时默认为资源绑定去使能的。这里不再赘述。
在本实施列中,PDSCH资源也可以替换成PDSCH和第三资源的ePDCCH共同存在的情况,其实现过程和PDSCH的类似,也是基站确定ePDCCH的频域绑定粒度为M3,并且满足DMRS的频域粒度M1大于M3就可以,M1>M2,这里,M3和M2的关系可以是相等的,也可以是不相等的,即M3>M2,或M2>M3,且在M3为1时默认为资源是绑定去使能的。这里不再赘述。ePDCCH的绑定状态也可以通过第三指令或者第四指令进行传输。
实施方式2
本实施例中描述的方案是基站配置资源绑定的参数包括(即上述的资源绑定参数信息)预编码的时域粒度的情况,基站确定第一资源预编码的频域粒度、第二资源以及第三资源的预编码的时域粒度。
在本实施例中,基站可使用基于DMRS的半静态的开环MIMO,所谓半静态的开环MIMO是指基站会反馈部分码本的信息,比如第一码本W1,CRI。基站在DMRS上使用预编码W1或者CRI对应的CSI-RS上使用的预编码W1。而PDSCH上使用预编码W(W为W1*W2),W2取值于一个码本子集合S,S包括L个码字。基站在OFDMA符号上或slot上或者TTI(Transmission Time Interval,即传输时间间隔)上,或者子帧,帧上上轮询使用L个W2码字。这里以TTI索引为例说明,比如,第i个TTI使用集合S中的第j个码字,其中,j=mod(i,L),实际配置中,不局限于这种和i的关系配置。
这样可能导致DMRS和PDSCH的预编码时域粒度不同,从而需要独立地配置绑定参数。包括但不限于如下方式。
方式1:PDSCH预编码时域粒度为N2=1,而DMRS预编码时域粒度为N1>1。
方式2:PDSCH的预编码时域粒度为N2>1,而DMRS的预编码时域粒度为N1>N2。
即将DMRS在N1个子帧绑定一起,使用了相同的第一预编码,用户可以在这子帧对应的时域范围进行联合信道估计。PDSCH在N2个子帧内是绑定在一起的,使用了相同的第二预编码。
基站通过第一指令传输DMRS REG的绑定参数配置,比如DMRS的预编码的时域粒度N1,第二指令传输PDSCH的绑定参数配置,比如PDSCH的预编码时域粒度N2。
终端接收基站发送的第一指令和第二指令。通过第一指令确定了DMRS的预编码时域粒度N1,通过第二指令确定了PDSCH的预编码的时域粒度N2。
另外,在本实施例中,N1>1表示DMRS是绑定使能状态。N2>1表示 PDSCH是绑定使能状态,N1=1表示PDSCH是绑定去使能状态。
在本实施列中,PDSCH资源也可以替换成第三资源的ePDCCH,其实现过程和PDSCH的类似,也是基站确定PDCCH的预编码时域粒度为N3,并且满足DMRS的预编码时域粒度N1大于N3的要求就可以,且在N3为1时,默认为资源是绑定去使能的。这里不再赘述。
在本实施列中,PDSCH资源也可以替换成PDSCH和第三资源的ePDCCH共同存在的情况,其实现过程和PDSCH的类似,也是基站确定ePDCCH的预编码时域粒度为N3,并且满足DMRS的预编码时域粒度N1大于N3就可以,N1>N2,这里,N3和N2的关系可以是相等的,也可以是不相等的,即N3>N2,或N2>N3,且在N3为1时默认为资源绑定去使能的。这里不再赘述。
类似频域粒度的实施方式如实施方式2所描述的,DMRS,PDSCH,ePDCCH的资源绑定参数也可以通过一个第四指令传输给终端,这里不再重复。
实施方式3
本实施例中描述的方案是基站配置资源绑定的参数包括预编码粒度和预编码集合的情况,基站确定第一资源预编码的频域粒度,第二资源和/或第三资源的预编码的频域粒度,以及第一资源的每个绑定的预编码资源组PRG内的预编码取值,第二资源和/或第三资源的每个绑定的预编码资源组PRG中的预编码取值。
在本实施例中,基站可使用基于DMRS的半静态的开环MIMO,所谓半静态的开环MIMO是指基站会反馈部分码本的信息,比如第一码本W1,CRI。基站在DMRS上使用预编码W1或者CRI对应的CSI-RS上使用的预编码W1。而PDSCH上使用预编码W(W=W1*W2),W2取值于一个码本子集合S,其中S包括L个码字。基站在PRB或子载波组上轮询使用L个 W2码字。比如,第i个PRB或者子载波组使用集合S中的第j个码字,其中,j=mod(i,L),实际配置中,不局限于这种j和i的关系配置。
需要说明的是,在LTE/LTE A的版本Release 8和Release 9中,4天线的码本和2天线的码本是单码字的形式,只有一个PMI,其值表示为i=1,…,N11,N11为码字的个数。在Release 10的8天线码本和Release 12版本的4天线码本中,是双码本反馈的形式,即码字可以写成W=W1*W2的形式,而W1是长期反馈的码本,称为第一码本,一般有N11个组,每个组包括了P1个备选波束,用户选择N11个组的一个组索引反馈给基站,这个反馈一般用PMI1来量化和反馈,其值一般用i1=1,…,N11表示,N11为上述W1的个数;W2表示一个短期反馈的码本,称为第二码本,它的作用是在W1码字里选择P1个备选波束里的一个,并为同一个数据层的每个极化方向选择的波束选择极化相位Co-phasing,W2里的每个码字用PMI2量化和反馈,其值为i2=1,…,P1,P1为W2的个数。
在Release 12版本以前的码字都是针对1D天线(即具有一个维度的天线)阵列的,属于1D的码字,在Release 13版本的码本里,由于使用了更多的天线,码本的维度变得更大了。天线的拓扑一般也是平面阵列的,即有两个维度方向的天线(如水平维度和垂直维度),从而设计了2D的码字。从而第一码本W1里的每个波束具有2维的形式
Figure PCTCN2017083277-appb-000012
其中,vm和un分别为第一维度和第二维度的离散傅里叶矢量(Discrete Fourier Transform,DFT),
Figure PCTCN2017083277-appb-000013
表示vm和un的kronecker乘积(即克罗内克积),m=1,2,…,B1,n=1,2,…,B2。第一码本的第一维度码本用PMI11表示,其值为i11=1,…,N11,第一码本的第二维度的码本用PMI12表示,其值为i12=1,…,N12。对于上述的每一个PMI11和PMI12的索引,都有P1个W2码字,每个W2码字就是为了从W1里选择2维波束
Figure PCTCN2017083277-appb-000014
以及不同极化方向的Co-phasing,对应的码字索引为PMI2,用i2=1,…,P1表示。
而在CSI反馈类别为Class B,在K>1时,基站会配置K套CSI-RS resource(即CSI-RS资源),每个CSI-RS resource有独立配置的端口个数,RE图样,导频序列,预编码方向。每个CSI-RS resource对应一个索引,相应的对应了一个方向的预编码向量。这个CSI-RS resource对应的索引为CRI,反馈CRI就知道其使用的预编码了,用户在基于选择的CRI对应的CSI-RS resource上进行CSI计算反馈。
这样可能导致DMRS和PDSCH的预编码粒度不同了,从而需要独立地配置绑定参数。包括但不限于如下方式。
方式1:PDSCH REG的预编码的频域粒度为M2=1,而DMRS REG的预编码的频域粒度为
Figure PCTCN2017083277-appb-000015
其中,
Figure PCTCN2017083277-appb-000016
为系统带宽。即DMRS REG在整个带宽内使用相同的预编码,绑定粒度为整个系统带宽,而PDSCH REG的预编码的频域粒度为1个PRB,每个PRB都可以使用不同的预编码。
方式2:PDSCH REG的预编码的频域粒度为M2=1,而DMRS REG的预编码的频域粒度为
Figure PCTCN2017083277-appb-000017
其中,
Figure PCTCN2017083277-appb-000018
为系统带宽。即DMRS REG的频域粒度为M1,把整个系统带宽分成
Figure PCTCN2017083277-appb-000019
个DMRS预编码资源组PRG。每个DMRS的PRG组内使用相同的预编码,而不同DMRS的PRG组可能使用不同的预编码。而PDSCH REG的预编码的频域粒度为1个PRB,每个PRB都可以使用不同的预编码。这里,ceil表示向上取整的函数,M1>1。
方式3:PDSCH REG的预编码的频域粒度为M2=2,而DMRS REG的预编码的频域粒度为
Figure PCTCN2017083277-appb-000020
其中,
Figure PCTCN2017083277-appb-000021
为系统带宽。即DMRS REG的频域粒度为M1,把整个系统带宽分成
Figure PCTCN2017083277-appb-000022
个DMRS预编码资源组PRG。每个DMRS的PRG组内使用相同的预编码,而不同DMRS的PRG组可能使用不同的预编码。而PDSCH REG的预编码的频域粒度为2 个PRB,把整个系统带宽分成了每个PRB都可以使用不同的预编码。
Figure PCTCN2017083277-appb-000023
Figure PCTCN2017083277-appb-000024
个PDSCH PRG。每个PDSCH PRG组内使用相同的预编码,而不同PDSCH PRG组可能使用不同的预编码,这里,ceil表示上取整的函数,M1>M2=2。且这里M2也可以取大于2的正整数,M2小于M1。
基站对于L1个DMRS REG里的第j个PRG中使用预编码W1j,假设PRG中的PRB索引J为取值于集合S1={(j-1)*M+1≤J≤j*M},对于L2个PDSCH REG里的第i个PRG中使用预编码W2i,假设PRG中的PRB索引I为取值于集合S2={(i-1)*N+1≤I≤j*N}。如果S2属于S1,那么集合S2里索引对应的PRB中PDSCH使用的预编码为W1jW2i。其中W1j也可以只是包括一个维度的码字信息,比如第一维度的码字信息vm,其的形式为
Figure PCTCN2017083277-appb-000025
的形式,I2为单位矩阵,其维度使得矩阵
Figure PCTCN2017083277-appb-000026
的列数与W2i的行数相同。比如第二维度的码字信息un,其的形式为
Figure PCTCN2017083277-appb-000027
的形式,I1为单位矩阵,其维度使得矩阵
Figure PCTCN2017083277-appb-000028
的列数与W2i的行数相同。这里,j=1,…,L1,i=1,…,L2。
基站通过第一指令传输DMRS REG的绑定参数配置,比如DMRS PRG的预编码的频域粒度M1,第二指令传输PDSCH REG的绑定参数配置,比如PUSCH的PRG的预编码的频域粒度M2。
终端接收基站发送的第一指令和第二指令。通过第一指令确定了DMRS PRG的预编码的频域粒度M1,通过第二指令确定了PDSCH PRG的预编码的频域粒度M2。
在一实施例中,终端在确定DMRS PRG的预编码粒度M1后,对于第j个绑定的DMRS PRG,对其中包括的M1个PRB,利用M1个PRB里的所有DMRS端口对信道进行联合信道估计,从而提高信道的估计准确性。这里,假设估计的M1个PRB的信道为H1。它是基站到用户的信道H经过预编码W1j后的等效信道,j=1,…,L1。
在一实施例中,终端在确定PDSCH PRG的预编码粒度M2后,对于i个绑定的PDSCH PRG,对其中包括的M2个PRB,并根据PRB的索引知道M2个PRB使用的W2i信息。从而,将DMRS PRG中估计的信道H1乘以W2的到M2个PRB里的PDSCH上的信道估计H2,利用H2对M2个PRB的PDSCH进行数据检测和解调,i=1,…,L2。
这里只是以PRB为频域单元粒度,当然也可以是其它的,比如PRB组,子带,子载波,子载波组为频域单元粒度,其过程类似,这里不一一例举。
在本实施例中,PDSCH的预编码来自第二集合码字,第二集合码字包括的码字的形式为W1*W2,而DMRS的预编码来自第一集合码字,第一集合码字包括的码字的形式为W1。
在本实施例中,PDSCH的预编码来自第二集合码字和第一码本集合,第二集合码字包括的码字的形式为W2,而DMRS的预编码来自第一集合码字,第一集合码字包括的码字的形式为W1。即PDSCH取第一码本集合中的码字W1和第二码本集合的W2构成使用的码字W1*W2。
在本实施列中,PDSCH资源也可以替换成第三资源的ePDCCH,其实现过程和PDSCH的类似,也是基站确定ePDCCH的预编码粒度M3和预编码W’,并且在M3个PRB里使用预编码W’=W1*W2,它在M3个PRB内保持不变,它的取值来自第三预编码集合(其中的码字的形式为W1*W2),或者第三预编码集合只有码字形式W2,而ePDCCH取值于第一码本集合的W1和第三码本集合的W2,形成自己的码字。这里不再赘述。
在本实施列中,PDSCH资源也可以替换成PDSCH和第三资源的ePDCCH共同存在的情况,其实现过程和PDSCH的类似,也是基站确定ePDCCH的预编码粒度M3和预编码W’,并且在M3个PRB里使用预编码W’=W1*W2,它在M3个PRB内保持不变,其中ePDCCH和PDSCH的预编码取值可以是相同的,也可以不同。这里不再赘述。
需要说明的时,这里举例说明的是频域上使用预编码的情况,预编码同样可以在时域上轮询使用,比如在不同N1个TTI(同样可以是时域符号,子帧,系统帧,slot等)上DMRS使用预编码W1,而在N2个TTI内,PDSCH使用相同的预编码W=W1*W2,在而在N3个TTI内ePDCCH使用预编码W’=W1’*W2’,其中W和W’可以相同也可以不同。
同样地,PDSCH,ePDCCH,DMRS对应的资源绑定参数信息也可以只通过一个第四指令进行传输。
实施例2
图2是根据本发明实施例的指令的接收方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,接收基站发送的指令。
上述的指令包括第一指令,还包括第二指令和/或第三指令,其中,第一指令用于指示为第一资源配置的下行信令,第二指令用于指示为第二资源配置的下行信令,第三指令用于指示为第三资源配置的下行信令。
步骤S204,从指令中获取与多种资源对应的资源绑定参数信息。
上述的多种资源包括第一资源,还包括第二资源和/或第三资源,其中,第一资源为传输数据相关的导频的时频资源,第二资源为传输数据的时频资源,第三资源为传输预编码的下行控制信息的时频资源;资源绑定参数信息包括下述的至少之一:预编码的频域粒度、预编码的时域粒度、资源绑定状态以及预编码集合。
通过上述步骤,接收基站发送的指令,从指令中获取与多种资源对应的资源绑定参数信息,解决了相关技术中由于解调参考信号DMRS和PDSCH使用不同的预编码粒度造成的无法实现资源绑定的技术问题,提高了系统的稳定性。
在一实施例中,上述步骤的执行主体可以为终端,但不限于此,终端 接收到指令后进行相关配置的实现方式已在前一实施例中详述,在此不再赘述。
上述的终端包括但不限于:数据卡、手机、笔记本电脑、个人电脑、平板电脑、个人数字助理、蓝牙等各种终端以及中继、拉远设备、无线接入点等各种无线通信设备。
在上述实施例中,预编码的频域粒度是指使用同一个预编码的频域单元的个数M,其中,频域单元包括子载波、子载波组、子载波集合中的之一,子载波组包括多个子载波,子载波集合包括多个子载波组,子载波组和子载波集合在不同的无线通信系统中有不同的概念,比如在LTE/LTE-A中,子载波组包括PRB、子载波集合;在LTE/LTE-A中,包括物理资源块组,子带等概念,但在其它系统或者未来系统中可能也有其它的概念,本申请对此不做限定;预编码的时域粒度是指使用同一个预编码的时域单元的个数N,其中,时域单元包括符号symbol、符号组、符号集合中的之一。符号组包括多个符号,符号集合包括多个符号组。符号是在无线通信系统中的时间概念,在不同的系统中有不同的描述,比如在LTE/LTE-A中,为OFDMA符号、OFDM符号组在LTE/LTE-A系统中,包括时隙slot(包括5~7个符号)、子帧subframe(包括两个时隙slot),符号集合在LTE/LTE-A系统中包括系统帧(如,10个子帧),但在其它系统或者未来系统中可能也有其它的概念,本申请对此不做限定。
在资源绑定参数信息包括预编码的频域粒度的情况下,第一资源对应的预编码的频域粒度为M1,第二资源对应的预编码的频域粒度为M2和/或第三资源对应的频域粒度为M3,其中,M1、M2以及M3为正整数,且M1大于M2,M1、M2及M3之间的关系满足:M1>M2≥1,或M1>M3≥1,或M1>M3≥M2≥1,或M1>M2≥M3≥1。
在资源绑定参数信息包括预编码的时域粒度的情况下,第一资源对应 的预编码的时域粒度为N1,第二资源对应的预编码的时域粒度为N2和/或第三资源对应的预编码的时域粒度为N3,其中,N1、N2以及N3为正整数,且N1大于N2,N1、N2以及N3之间的关系满足:N1>N2≥1,或N1>N3≥1,或N1>N3≥N2≥1,或N1>N2≥N3≥1。
需要说明的是,资源绑定状态包括绑定使能状态和绑定去使能状态。第一资源的绑定状态为绑定使能状态,第二资源的绑定状态为绑定使能状态或绑定去使能状态,第三资源的绑定状态为绑定使能状态或绑定去使能状态。
在一个可选的实施例中,预编码集合包括第一预编码集合,还包括第二预编码集合和/或第三预编码集合,第一预编码集合用于为第一资源提供所需的第一预编码,第二预编码集合用于为第二资源提供所需的第二预编码,第三预编码集合用于为第三资源提供所需的第三预编码,其中,第一预编码和第二预编码为不同的预编码,第一预编码和第三预编码为不同的预编码。
上述的第一预编码包括在第一维度上的取值,第二预编码包括在第一维度上和第二维度上的取值,第三预编码包括在第一维度上和第二维度上的取值,其中,第一维度和第二维度为不同的维度。
在实际实施时,第一预编码集合可以包括多个取值于第一维度的预编码,第二预编码集合包括多个取值于第一维度和第二维度的预编码,第三预编码集合包括多个取值于第一维度和第二维度的预编码。第一维度可以为水平维度,取值于第一维度的预编码用于表示与水平平面之间的夹角,第二维度可以为垂直维度,取值于第二维度的预编码用于表示与垂直于水平平面的垂线之间的夹角。
在另一个可选的实施例中,预编码集合包括第一预编码集合,还包括第二预编码集合和/或第三预编码集合,第一预编码集合用于为第一资源提 供所需的第一预编码,第一预编码集合和第二预编码集合用于为第二资源提供所需的第二预编码,第一预编码集合和第三预编码集合用于为第三资源提供所需的第三预编码,其中,第一预编码和第二预编码为不同的预编码,第一预编码和第三预编码为不同的预编码。
上述的第一预编码集合包括取值于第一维度的预编码,第二预编码集合包括取值于第二维度的预编码,第三预编码集合包括取值于第二维度的预编码。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器(Only Memory,ROM)/随机存储器(Random-Access Memory,RAM)、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例3
在本实施例中还提供了一种指令的发送装置,该装置配置为实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本发明实施例的指令的发送装置的结构框图,如图3所示,该装置包括:获取单元31和发送单元33。
获取单元31,配置为获取与多种资源对应的资源绑定参数信息。
上述的多种资源包括第一资源,还包括第二资源和/或第三资源,其中,第一资源为传输数据相关的导频的时频资源,第二资源为传输数据的时频资源,第三资源为传输预编码的下行控制信息的时频资源;资源绑定参数信息包括下述的至少之一:预编码的频域粒度、预编码的时域粒度、资源绑定状态以及预编码集合。
发送单元33,配置为发送携带有资源绑定参数信息的指令。
上述的指令包括第一指令,还包括第二指令和/或第三指令,其中,第一指令用于指示为第一资源配置的下行信令,第二指令用于指示为第二资源配置的下行信令,第三指令用于指示为第三资源配置的下行信令。
通过上述步骤,获取单元获取与多种资源对应的资源绑定参数信息;发送单元发送携带有资源绑定参数信息的指令,通过资源绑定参数信息可以实现对多种资源的配置,解决了相关技术中由于DMRS和PDSCH使用不同的预编码粒度造成的无法实现资源绑定的技术问题,提高了系统的稳定性和兼容性。
实施例4
图4是根据本发明实施例的指令的接收装置的结构框图,如图4所示,该装置包括:接收单元41和处理单元43。
接收单元41,配置为接收基站发送的指令。
上述的指令包括第一指令,还包括第二指令和/或第三指令,其中,第一指令用于指示为第一资源配置的下行信令,第二指令用于指示为第二资源配置的下行信令,第三指令用于指示为第三资源配置的下行信令。
处理单元43,配置为从指令中获取与多种资源对应的资源绑定参数信息。
上述的多种资源包括第一资源,还包括第二资源和/或第三资源,其中,第一资源为传输数据相关的导频的时频资源,第二资源为传输数据的时频 资源,第三资源为传输预编码的下行控制信息的时频资源;资源绑定参数信息包括下述的至少之一:预编码的频域粒度、预编码的时域粒度、资源绑定状态以及预编码集合。
通过上述步骤,接收单元接收基站发送的指令,处理单元从指令中获取与多种资源对应的资源绑定参数信息,解决了相关技术中由于解调参考信号DMRS和PDSCH使用不同的预编码粒度造成的无法实现资源绑定的技术问题,提高了系统的稳定性。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例5
本发明的实施例还提供了一种存储介质。在一实施例中,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,获取与多种资源对应的资源绑定参数信息;
S2,发送携带有资源绑定参数信息的指令。
在一实施例中,存储介质还被设置为存储用于执行以下步骤的程序代码:
S3,接收基站发送的指令;
S4,从指令中获取与多种资源对应的资源绑定参数信息。
在一实施例中,在本实施例中,上述存储介质可以包括但不限于:U盘、ROM、RAM、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:获取与多种资源对应的资源绑定参数信息;发送携带有资源绑定参数信息的指令。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:接收基站发送的指令;从指令中获取与多种资源对应的资源绑定参数信息。
在一实施例中,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
本发明实施例中,如果以软件功能模块的形式实现上述指令的发送、接收方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、ROM、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
相应地,本发明实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机程序,该计算机程序用于执行本发明实施例的上述指令的发送方法。
本发明实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机程序,该计算机程序用于执行本发明实施例的上述指令的接收方法。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或 者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例获取与多种资源对应的资源绑定参数信息;发送携带有资源绑定参数信息的指令,通过资源绑定参数信息可以实现对多种资源的配置,解决了相关技术中由于DMRS和PDSCH使用不同的预编码粒度造成的无法实现资源绑定的技术问题,提高了系统的稳定性。

Claims (27)

  1. 一种指令的发送方法,包括:
    获取与多种资源对应的资源绑定参数信息;
    发送携带有所述资源绑定参数信息的指令。
  2. 根据权利要求1所述的方法,其中,所述多种资源包括第一资源,还包括第二资源和/或第三资源,其中,所述第一资源为传输数据相关的导频的时频资源,所述第二资源为传输数据的时频资源,所述第三资源为传输预编码的下行控制信息的时频资源。
  3. 根据权利要求2所述的方法,其中,所述资源绑定参数信息包括下述的至少之一:预编码的频域粒度、预编码的时域粒度、资源绑定状态以及预编码集合。
  4. 根据权利要求3所述的方法,其中,在所述资源绑定参数信息包括所述预编码的频域粒度的情况下,所述第一资源对应的预编码的频域粒度为M1,所述第二资源对应的预编码的频域粒度为M2和/或所述第三资源对应的频域粒度为M3;
    其中,M1、M2以及M3为正整数,且M1大于M2,M1、M2;
    M3之间的关系满足:M1>M2≥1,或M1>M3≥1,或M1>M3≥M2≥1,或M1>M2≥M3≥1。
  5. 根据权利要求3或4所述的方法,其中,所述预编码的频域粒度是指使用同一个预编码的频域单元的个数M,其中,所述频域单元包括子载波、子载波组、子载波集合中的之一,所述子载波组包括多个子载波,所述子载波集合包括多个子载波组。
  6. 根据权利要求3所述的方法,其中,在所述资源绑定参数信息包括所述预编码的时域粒度的情况下,所述第一资源对应的预编码的时域粒度为N1,所述第二资源对应的预编码的时域粒度为N2和/或所述第三资源对 应的预编码的时域粒度为N3;
    其中,N1、N2以及N3为正整数,且N1大于N2;
    N1、N2以及N3之间的关系满足:N1>N2≥1,或N1>N3≥1,或N1>N3≥N2≥1,或N1>N2≥N3≥1。
  7. 根据权利要求3或6所述的方法,其中,所述预编码的时域粒度是指使用同一个预编码的时域单元的个数N,其中,所述时域单元包括符号symbol、符号组、符号集合中的之一,所述符号组包括多个符号,所述符号集合包括多个符号组。
  8. 根据权利要求3所述的方法,其中,所述资源绑定状态包括绑定使能状态和绑定去使能状态。
  9. 根据权利要求8所述的方法,其中,所述第一资源的绑定状态为绑定使能状态,所述第二资源的绑定状态为绑定使能状态或绑定去使能状态,所述第三资源的绑定状态为绑定使能状态或绑定去使能状态。
  10. 根据权利要求3所述的方法,其中,所述预编码集合包括第一预编码集合,还包括第二预编码集合和/或第三预编码集合;
    所述第一预编码集合用于为所述第一资源提供所需的第一预编码,所述第二预编码集合用于为所述第二资源提供所需的第二预编码,所述第三预编码集合用于为所述第三资源提供所需的第三预编码;
    其中,所述第一预编码和所述第二预编码为不同的预编码,所述第一预编码和所述第三预编码为不同的预编码。
  11. 根据权利要求10所述的方法,其中,所述第一预编码包括在第一维度上的取值,所述第二预编码包括在所述第一维度上和第二维度上的取值,所述第三预编码包括在所述第一维度上和所述第二维度上的取值,其中,所述第一维度和所述第二维度为不同的维度。
  12. 根据权利要求3所述的方法,其中,所述预编码集合包括第一预 编码集合,还包括第二预编码集合和/或第三预编码集合;
    所述第一预编码集合用于为所述第一资源提供所需的第一预编码,所述第一预编码集合和所述第二预编码集合用于为所述第二资源提供所需的第二预编码,所述第一预编码集合和所述第三预编码集合用于为所述第三资源提供所需的第三预编码;
    其中,所述第一预编码和所述第二预编码为不同的预编码,所述第一预编码和所述第三预编码为不同的预编码。
  13. 根据权利要求12所述的方法,其中,所述第一预编码包括在第一维度上的取值,所述第二预编码包括在第二维度上的取值,所述第三预编码包括在所述第二维度上的取值,其中,所述第一维度和所述第二维度为不同的维度。
  14. 根据权利要求2所述的方法,其中,所述指令包括第一指令,还包括第二指令和/或第三指令;
    其中,所述第一指令用携带所述第一资源的资源绑定参数信息,所述第二指令用于携带所述第二资源的资源绑定参数信息,所述第三指令用于携带所述第三资源的资源绑定参数信息。
  15. 一种指令的接收方法,包括:
    接收基站发送的指令;
    从所述指令中获取与多种资源对应的资源绑定参数信息。
  16. 根据权利要求15所述的方法,其中,所述多种资源包括第一资源,还包括第二资源和/或第三资源,其中,所述第一资源为传输数据相关的导频的时频资源,所述第二资源为传输数据的时频资源,所述第三资源为传输预编码的下行控制信息的时频资源。
  17. 根据权利要求16所述的方法,其中,所述资源绑定参数信息包括下述的至少之一:预编码的频域粒度、预编码的时域粒度、资源绑定状态 以及预编码集合。
  18. 根据权利要求17所述的方法,其中,在所述资源绑定参数信息包括所述预编码的频域粒度的情况下,所述第一资源对应的预编码的频域粒度为M1,所述第二资源对应的预编码的频域粒度为M2和/或所述第三资源对应的频域粒度为M3;
    其中,M1、M2以及M3为正整数,且M1大于M2;
    M1、M2及M3之间的关系满足:M1>M2≥1,或M1>M3≥1,或M1>M3≥M2≥1,或M1>M2≥M3≥1。
  19. 根据权利要求17或18所述的方法,其中,所述预编码的频域粒度是指使用同一个预编码的频域单元的个数M,其中,所述频域单元包括子载波、子载波组、子载波集合中的之一,所述子载波组包括多个子载波,所述子载波集合包括多个子载波组。
  20. 根据权利要求17所述的方法,其中,在所述资源绑定参数信息包括所述预编码的时域粒度的情况下,所述第一资源对应的预编码的时域粒度为N1,所述第二资源对应的预编码的时域粒度为N2和/或所述第三资源对应的预编码的时域粒度为N3;
    其中,N1、N2以及N3为正整数,且N1大于N2;
    N1、N2以及N3之间的关系满足:N1>N2≥1,或N1>N3≥1,或N1>N3≥N2≥1,或N1>N2≥N3≥1。
  21. 根据权利要求17或20所述的方法,其中,所述预编码的时域粒度是指使用同一个预编码的时域单元的个数N,其中,所述时域单元包括符号symbol、符号组、符号集合中的之一,所述符号组包括多个符号,所述符号集合包括多个符号组。
  22. 一种指令的发送装置,包括:
    获取单元,配置为获取与多种资源对应的资源绑定参数信息;
    发送单元,配置为发送携带有所述资源绑定参数信息的指令。
  23. 一种指令的接收装置,包括:
    接收单元,配置为接收基站发送的指令;
    处理单元,配置为从所述指令中获取与多种资源对应的资源绑定参数信息。
  24. 一种指令的发送装置,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器;其中,
    所述处理器用于运行所述计算机程序时,执行权利要求1至14任一项所述的指令的发送方法。
  25. 一种指令的接收装置,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器;其中,
    所述处理器用于运行所述计算机程序时,执行权利要求15至21任一项所述的指令的接收方法。
  26. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行权利要求1至14任一项所述的指令的发送方法。
  27. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行权利要求15至21任一项所述的指令的接收方法。
PCT/CN2017/083277 2016-05-13 2017-05-05 指令的发送、接收方法、装置及存储介质 WO2017193878A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610322459.2 2016-05-13
CN201610322459.2A CN107371250B (zh) 2016-05-13 2016-05-13 指令的发送方法及装置、指令的接收方法及装置

Publications (1)

Publication Number Publication Date
WO2017193878A1 true WO2017193878A1 (zh) 2017-11-16

Family

ID=60266321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083277 WO2017193878A1 (zh) 2016-05-13 2017-05-05 指令的发送、接收方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN107371250B (zh)
WO (1) WO2017193878A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019095969A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 一种用户设备和接入设备
WO2020164114A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 一种通信方法和装置
CN112821995A (zh) * 2019-11-15 2021-05-18 大唐移动通信设备有限公司 一种信道状态信息的反馈方法、基站及终端
WO2022241742A1 (zh) * 2021-05-20 2022-11-24 北京小米移动软件有限公司 参数配置方法及装置、电子设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020103010A1 (en) * 2018-11-21 2020-05-28 Qualcomm Incorporated Configuring channel state information reference signal subband precoding resource block groups
CN111082910A (zh) * 2019-09-30 2020-04-28 中兴通讯股份有限公司 多点协作传输的参数确定方法及装置
CN114826512B (zh) * 2021-01-18 2023-10-10 大唐移动通信设备有限公司 一种dmrs绑定窗口确定方法、装置及存储介质
WO2023077469A1 (en) * 2021-11-05 2023-05-11 Huizhou Tcl Cloud Internet Corporation Technology Co.Ltd Uplink configuration method, user equipment, and base station

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379635A (zh) * 2012-04-25 2013-10-30 中兴通讯股份有限公司 数据传输方法及装置
CN103699428A (zh) * 2013-12-20 2014-04-02 华为技术有限公司 一种虚拟网卡中断亲和性绑定的方法和计算机设备
CN104717576A (zh) * 2013-12-13 2015-06-17 中国电信股份有限公司 无源光纤网络接入的部署方法和管理系统
WO2016073303A1 (en) * 2014-11-07 2016-05-12 Qualcomm Incorporated Pucch for mtc devices

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515747B (zh) * 2007-04-27 2019-04-19 华为技术有限公司 资源请求指示信息的时频资源分配方法、装置及基站
CN102014099B (zh) * 2009-11-02 2013-04-24 电信科学技术研究院 一种下行导频的传输方法、装置及系统
CN101902298B (zh) * 2010-07-22 2014-03-05 华为技术有限公司 信道质量指示补偿方法、系统及基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379635A (zh) * 2012-04-25 2013-10-30 中兴通讯股份有限公司 数据传输方法及装置
CN104717576A (zh) * 2013-12-13 2015-06-17 中国电信股份有限公司 无源光纤网络接入的部署方法和管理系统
CN103699428A (zh) * 2013-12-20 2014-04-02 华为技术有限公司 一种虚拟网卡中断亲和性绑定的方法和计算机设备
WO2016073303A1 (en) * 2014-11-07 2016-05-12 Qualcomm Incorporated Pucch for mtc devices

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019095969A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 一种用户设备和接入设备
CN109802802A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 一种用户设备和接入设备
CN111279651A (zh) * 2017-11-17 2020-06-12 华为技术有限公司 一种用户设备和接入设备
CN111279651B (zh) * 2017-11-17 2021-05-11 华为技术有限公司 一种用户设备和接入设备
CN109802802B (zh) * 2017-11-17 2021-12-21 华为技术有限公司 一种用户设备和接入设备
WO2020164114A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 一种通信方法和装置
CN112821995A (zh) * 2019-11-15 2021-05-18 大唐移动通信设备有限公司 一种信道状态信息的反馈方法、基站及终端
WO2022241742A1 (zh) * 2021-05-20 2022-11-24 北京小米移动软件有限公司 参数配置方法及装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN107371250B (zh) 2023-07-14
CN107371250A (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
JP7520448B2 (ja) ダウンリンク及びアップリンクチャネル状態情報を獲得するための方法及び装置
US11082097B2 (en) Method and apparatus for enabling uplink MIMO
WO2017193878A1 (zh) 指令的发送、接收方法、装置及存储介质
US10411868B2 (en) Method and apparatus for channel state information (CSI) reporting
US20240162949A1 (en) Codebook subset restriction for full-dimension mimo
CN107431515B (zh) 用于码本设计和信令的方法和装置
US10164747B2 (en) Method and apparatus for operating MIMO measurement reference signals and feedback
CN107113039B (zh) 用于全维度多输入多输出的信道状态信息反馈方案
CN107113040B (zh) 用于预编码信道状态信息参考信号的方法和装置
CN111342873B (zh) 一种信道测量方法和通信装置
EP3332487A1 (en) Methods and systems for csi-rs port selection for csi-reporting
CN113037347A (zh) 用于带有极化有源天线阵列的mimo无线通信系统的csi反馈
WO2017167156A1 (zh) Dmrs的发送方法及装置
KR20220156098A (ko) 업링크 mimo를 가능하게 하기 위한 방법 및 장치
CN111342913B (zh) 一种信道测量方法和通信装置
US20190296815A1 (en) Method and apparatus for high capacity access

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795496

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795496

Country of ref document: EP

Kind code of ref document: A1