WO2019136818A1 - 一种喷墨打印的oled显示面板及其制备方法 - Google Patents

一种喷墨打印的oled显示面板及其制备方法 Download PDF

Info

Publication number
WO2019136818A1
WO2019136818A1 PCT/CN2018/078999 CN2018078999W WO2019136818A1 WO 2019136818 A1 WO2019136818 A1 WO 2019136818A1 CN 2018078999 W CN2018078999 W CN 2018078999W WO 2019136818 A1 WO2019136818 A1 WO 2019136818A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pair
anodes
thin film
display panel
Prior art date
Application number
PCT/CN2018/078999
Other languages
English (en)
French (fr)
Inventor
刘兆松
徐源竣
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/009,569 priority Critical patent/US10985226B2/en
Publication of WO2019136818A1 publication Critical patent/WO2019136818A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an inkjet printed OLED display panel and a method of fabricating the same.
  • an OLED display panel is prepared by an IJP (ink-jet printing) process, and the OLED display panel is called an inkjet printed OLED. Display panel.
  • IJP ink-jet printing
  • a 2inl pixel structure is designed. As shown in Fig. 1, one pixel 10' of the inkjet printed OLED display panel includes two sub-pixels 101'. On the one hand, this kind of design can make more efficient use of space and improve resolution; on the other hand, two sub-pixels can be produced by one printing, which can improve the preparation efficiency of sub-pixels.
  • an SiO process is introduced as an electrode isolation layer outside the array substrate process.
  • the two anodes 5' and the light-emitting layers 8' above the two anodes 5' together constitute two sub-pixels 101', and between the two anodes 5' are provided with electrode isolation layers 6', 9'
  • the cathodes, 1', 2', 3', 4', 7' are respectively a thin film transistor, a substrate, a passivation layer, a flat layer, and a pixel defining layer. It has been verified that the SiO process causes degradation of the thin film transistor device.
  • the present invention provides an inkjet printed OLED display panel and a preparation method thereof, which can improve the performance of a thin film transistor in an inkjet printed OLED display panel, without reducing the mobility of the thin film transistor, and can also be effective. Suppress threshold voltage drift.
  • the invention provides a method for preparing an inkjet printed OLED display panel, comprising the following steps:
  • a light emitting layer is formed over the at least one pair of anodes by inkjet printing, and the light emitting layer covers the electrode isolation layer.
  • the method further comprises the steps of:
  • the pixel defining layer is patterned with yellow light such that the electrode isolation layer and the at least one pair of anodes are exposed.
  • the pixel defining layer comprises at least one photoresist layer, and the pixel defining layer has a thickness ranging from 10,000 to 20,000 angstroms.
  • the method further comprises the steps of:
  • a cathode is prepared on the luminescent layer.
  • the passivation layer has a thickness ranging from 1000 to 5000 angstroms, and the passivation layer comprises at least one layer of SiOx and/or SiNx;
  • the thickness of the flat layer ranges from 10,000 to 20,000 angstroms, and the material of the flat layer is a photoresist material.
  • At least one pair of anodes are formed on the flat layer, specifically:
  • the conductive thin film material layer is patterned by yellow light to obtain the at least one pair of anodes.
  • an electrode isolation layer is prepared between the at least one pair of anodes by using Al 2 O 3 or an organic photoresist material, specifically:
  • the deposited Al2O3 or organic photoresist material is patterned by yellow light.
  • the invention also provides a method for preparing an inkjet printed OLED display panel, comprising the following steps:
  • a cathode is prepared on the luminescent layer.
  • the method further comprises the steps of:
  • the pixel defining layer is patterned with yellow light such that the electrode isolation layer and the at least one pair of anodes are exposed.
  • the pixel defining layer comprises at least one photoresist layer, and the pixel defining layer has a thickness ranging from 10,000 to 20,000 angstroms.
  • the passivation layer has a thickness ranging from 1000 to 5000 angstroms, and the passivation layer comprises at least one layer of SiOx and/or SiNx;
  • the thickness of the flat layer ranges from 10,000 to 20,000 angstroms, and the material of the flat layer is a photoresist material.
  • At least one pair of anodes are formed on the flat layer, specifically:
  • the conductive thin film material layer is patterned by yellow light to obtain the at least one pair of anodes.
  • an electrode isolation layer is prepared between the at least one pair of anodes by using Al 2 O 3 or an organic photoresist material, specifically:
  • the deposited Al2O3 or organic photoresist material is patterned by yellow light.
  • the present invention also provides an inkjet printed OLED display panel comprising: at least one pair of thin film transistors and a passivation layer and a planar layer overlying the at least one pair of thin film transistors and sequentially stacked, in the passivation layer and the
  • the planarization layer is provided with at least one pair of via holes, and the via holes on the passivation layer and the via holes on the planar layer are located above the at least one pair of thin film transistors;
  • An electrode isolation layer is disposed between the at least one pair of anodes, and the material of the electrode isolation layer is Al 2 O 3 or an organic photoresist material.
  • the flat layer is further formed with a pixel defining layer, the pixel defining layer is provided with a notch, and the notch is located above the at least one pair of anodes;
  • a cathode is disposed above the light emitting layer.
  • the pixel defining layer comprises at least one photoresist layer, and the pixel defining layer has a thickness ranging from 10,000 to 20,000 angstroms;
  • the passivation layer has a thickness ranging from 1000 to 5000 angstroms, and the passivation layer comprises at least one layer of SiOx and/or SiNx;
  • the thickness of the flat layer ranges from 10,000 to 20,000 angstroms, and the material of the flat layer is a photoresist material.
  • the invention has the following beneficial effects: when preparing an inkjet printed OLED display panel, an electrode isolation layer is prepared by using Al 2 O 3 or an organic photoresist material between two anodes in the same pixel, Al. 2 O 3 or organic photoresist materials will not affect the use of inkjet printing technology to spread the light-emitting layer. Since Al 2 O 3 and organic photoresist materials do not contain hydrogen bonds and hydrogen ions, they will not reduce the mobility of thin film transistors. The threshold voltage drift can be effectively suppressed, and the thin film transistor in the inkjet printed OLED display panel is not deteriorated, and the service life of the inkjet printed OLED display panel is prolonged.
  • FIG. 1 is a schematic view showing the structure of a pixel in an inkjet printed OLED display panel provided by the present invention.
  • FIG. 2 is a cross-sectional view of a pixel provided by the present invention.
  • FIG 3 is a schematic view showing formation of a passivation layer and a planarization layer on a thin film transistor provided by the present invention.
  • FIG. 4 is a schematic view showing the formation of an anode and an electrode isolation layer on a flat layer provided by the present invention.
  • FIG. 5 is a schematic diagram of forming a pixel defining layer on a flat layer provided by the present invention.
  • Figure 6 is a schematic illustration of the preparation of a luminescent layer provided by the present invention.
  • Figure 7 is a schematic illustration of the preparation of a cathode provided by the present invention.
  • FIG. 8 is a schematic view showing the preparation of a light shielding layer, a buffer layer, and a semiconductor layer on a glass substrate provided by the present invention.
  • FIG. 9 is a schematic view of a gate insulating layer, a gate metal layer, and a photoresist layer provided by the present invention.
  • Figure 10 is a schematic illustration of an interlayer insulating layer provided by the present invention.
  • Figure 11 is a structural view of a thin film transistor provided by the present invention.
  • the invention provides a method for preparing an inkjet printed OLED display panel, the method comprising the following steps:
  • a passivation layer 3 and a planarization layer 4 are sequentially formed over the carrier substrate 2 on which at least one pair of thin film transistors 1 are prepared, and the passivation layer 3 covers at least one pair of thin film transistors 1;
  • At least one pair of anodes 5 are formed on the flat layer 4, and at least one pair of anodes 5 pass through the via holes 41 on the flat layer 4 and the via holes on the passivation layer 3, respectively, and at least one pair of thin film transistors 1 Electrical connection
  • an electrode isolation layer 6 between at least one pair of anodes 5 Preparing an electrode isolation layer 6 between at least one pair of anodes 5 using Al 2 O 3 (aluminum oxide) or an organic photoresist material;
  • the light-emitting layer 8 is formed over at least one pair of anodes 5 by inkjet printing, and the light-emitting layer 8 covers the electrode isolation layer 6.
  • a pixel defining layer 7 is formed on the flat layer 4, and the flat layer 4 covers at least one pair of anodes 5;
  • the pixel defining layer 7 is patterned with yellow light such that the electrode isolation layer 6 and at least one pair of anodes 5 are exposed.
  • the pixel defining layer 7 includes at least one photoresist layer, and the pixel defining layer 7 has a thickness ranging from 10,000 to 20,000 angstroms.
  • a light-emitting layer 8, 81 is formed as a liquid of an anode material by inkjet printing over at least one pair of anodes 5.
  • the method of preparing an inkjet printed OLED display panel further comprises the step of preparing a cathode 9 on the light-emitting layer 8 as shown in FIG.
  • the thickness of the passivation layer 3 ranges from 1000 to 5000 angstroms, and the passivation layer 3 comprises at least one layer of SiOx and/or SiNx; the thickness of the planar layer 4 ranges from 10,000 to 20,000 angstroms, and the flat layer 4
  • the material is a photoresist material.
  • At least one pair of anodes 5 are formed on the flat layer 4, specifically:
  • At least one pair of anodes 5 is obtained by patterning the conductive film material layer with yellow light.
  • the electrode isolation layer 6 is prepared between at least one pair of anodes 5 by using Al 2 O 3 or an organic photoresist material, specifically:
  • the deposited Al2O3 or organic photoresist material is patterned by yellow light.
  • the yellow light patterned film layer is generally coated with a photoresist on the film layer, and then exposed and developed by yellow light, and then used as a barrier by exposure and development of the photoresist layer. Layer, the patterned film layer is etched.
  • the present invention also provides an inkjet printed OLED display panel, as shown in FIG. 7, the panel includes: at least one pair of thin film transistors 1 and a passivation layer 3 and a flat layer which are sequentially stacked over at least one pair of thin film transistors 1 4, at least a pair of via holes are provided on the passivation layer 3 and the flat layer 4, and the via holes on the passivation layer 3 and the via holes on the flat layer 4 are located above the at least one pair of thin film transistors 1;
  • At least one pair of anodes 5 are disposed on the flat layer 4, and at least one pair of anodes 5 are electrically connected to at least one pair of thin film transistors 1 through via holes on the passivation layer 3 and via holes on the flat layer 4, respectively;
  • An electrode isolation layer 6 is disposed between at least one pair of anodes 5, and the material of the electrode isolation layer 6 is Al 2 O 3 or an organic photoresist material.
  • a pixel defining layer 7 is further formed on the flat layer 4, and the pixel defining layer 7 is provided with a notch 71 as shown in FIG. 5, and the notch 71 is located above at least one pair of anodes 5.
  • a light-emitting layer 8 is disposed in the notch 71 of the pixel defining layer 7, and the light-emitting layer 8 covers the electrode isolation layer 6; a cathode 9 is disposed above the light-emitting layer 8.
  • the pixel defining layer 7 comprises at least one photoresist layer, and the pixel defining layer 7 has a thickness ranging from 10,000 to 20,000 angstroms; the passivation layer 3 has a thickness ranging from 1000 to 5000 angstroms, and the passivation layer 3 comprises At least one layer of SiOx and/or SiNx; the thickness of the flat layer 4 ranges from 10,000 to 20,000 angstroms, and the material of the flat layer 4 is a photoresist material.
  • a method of fabricating an inkjet printed OLED display panel includes the following steps:
  • (1) Cleaning the glass substrate 2, as shown in FIG. 8, and depositing a metal having a thickness of 500-2000 ⁇ on the glass substrate 2 as the light shielding layer 11 of the thin film transistor 1, and the metal of the light shielding layer 11 may be Mo, Al. , Cu, Ti, etc., or an alloy of these metals, for example, one of a molybdenum alloy, an aluminum alloy, a copper alloy, and a titanium alloy, and patterned using yellow light.
  • a metal oxide semiconductor material As the semiconductor layer 13, which may be IGZO (indium gallium zinc oxide), IZTO (indium zinc tin oxide), IGZTO (indium gallium zinc oxide), etc. It has a thickness of between 100 and 1000 angstroms and uses yellow light to make graphics.
  • IGZO indium gallium zinc oxide
  • IZTO indium zinc tin oxide
  • IGZTO indium gallium zinc oxide
  • a SiOx film is deposited as the gate insulating layer 14 having a thickness of between 1,000 and 3,000 angstroms.
  • a photoresist layer is formed on the gate metal layer 15, and a patterned photoresist layer 10 is obtained by using a yellow light, and the photoresist layer 10 is used as a barrier layer to etch the gate metal layer 15
  • the pattern is further self-aligned by using the gate metal pattern 16 in FIG. 10, and the gate insulating layer 14 is etched. Only under the film layer having the gate metal pattern 16, the gate insulating layer 14 is present, and the rest is present. The gate insulating layer 14 is etched away.
  • an interlayer insulating layer 17 may be deposited, which may be a sandwich structure of SiOx, SiNx or SiOx and SiNx, and the thickness of the interlayer insulating layer 17 is between 3,000 and 10,000 angstroms, and Source and drain contact region openings 171 are made.
  • a layer of metal is deposited as a source drain metal layer, which may be Mo, Al, Cu, Cu, or an alloy of these metals, having a thickness between 2000 and 8000 angstroms, and then A pattern is defined to form source 18 and drain 19.
  • a SiOx film is deposited as the passivation layer 3 in Fig. 3, having a thickness of between 1000 and 5000 angstroms, and etching via holes.
  • a flat layer 4 (PLN layer) is produced, which may be a photoresist layer of different composition, having a thickness of between 10,000 and 20,000 angstroms, and a via hole is formed by yellow light.
  • the anode 5 in Fig. 4 is deposited, and a transparent oxide such as ITO (Indium Tin Oxide) may be used, and the thickness is between 500 and 1000 ⁇ , and the pattern is made using yellow light.
  • a transparent oxide such as ITO (Indium Tin Oxide) may be used, and the thickness is between 500 and 1000 ⁇ , and the pattern is made using yellow light.
  • a layer of electrode isolation layer 6 is formed, which may have various options, but cannot introduce H (hydrogen bond, hydrogen ion, etc.).
  • a layer of Al 2 O 3 may be deposited by an atomic layer deposition method (ALD), and then patterned by yellow light; or a different type of organic photoresist may be directly coated to form a pattern by yellow light.
  • ALD atomic layer deposition method
  • the pixel defining layer 7 (PDL layer) in FIG. 5 is formed, and may comprise a photoresist layer of different composition, the thickness of which is between 10,000 and 20,000 angstroms, and the illuminating region is defined by yellow light to complete the backplane fabrication.
  • the light-emitting layer 8 of Fig. 6 was produced by an ink jet printing technique.
  • the metal of the cathode 9 in FIG. 7 is further formed on the light-emitting layer 8, that is, the fabrication of the OLED display panel is completed.
  • an electrode isolation layer, Al 2 O 3 or Al 2 O 3 or Al 2 O 3 or an organic photoresist material is used between two anodes in the same pixel.
  • the organic photoresist material does not affect the use of inkjet printing technology to spread the light-emitting layer. Since Al 2 O 3 and the organic photoresist material do not contain hydrogen bonds and hydrogen ions, the mobility of the thin film transistor is not lowered, and the threshold can be effectively suppressed. The voltage drift does not cause deterioration of the thin film transistor in the inkjet printed OLED display panel, and prolongs the service life of the inkjet printed OLED display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种喷墨打印的OLED显示面板及其制备方法,该方法包括下述步骤:在制备有至少一对薄膜晶体管(1)的承载基板(2)上方依次形成钝化层(3)和平坦层(4),且钝化层(3)覆盖至少一对薄膜晶体管(1);在钝化层(3)和所述平坦层(4)上形成至少一对过孔(41);在平坦层(4)上形成至少一对阳极(5),且至少一对阳极(5)通过所述平坦层(4)和钝化层(3)上的过孔(41)分别与至少一对薄膜晶体管(1)电性连接;利用Al 2O 3或有机光阻材料在至少一对阳极(5)之间制备电极隔离层(6);通过喷墨打印的方式在至少一对阳极(5)上方形成发光层(8),且发光层(8)覆盖电极隔离层(6)。通过上述方法,可以改善喷墨打印的OLED显示面板中薄膜晶体管(1)的性能,不会降低薄膜晶体管(1)的迁移率,还可以有效抑制阈值电压漂移。

Description

一种喷墨打印的OLED显示面板及其制备方法
本申请要求于2018年1月9日提交中国专利局、申请号为201810020262.2、发明名称为“一种喷墨打印的OLED显示面板及其制备方法”的中国专利申请的优先权,上述专利的全部内容通过引用结合在本申请中。
技术领域
本发明涉及显示技术领域,尤其涉及一种喷墨打印的OLED显示面板及其制备方法。
背景技术
在制备OLED(Organic Light-Emitting Diode,有机发光二极管)显示面板时,采用IJP(ink-jet printing,喷墨打印)工艺制备OLED显示面板的像素,该种OLED显示面板称为喷墨打印的OLED显示面板。为了降低IJP工艺的难度,设计了一种2inl的像素结构,该种像素结构如图1所示,喷墨打印的OLED显示面板的一个像素10’包含2个亚像素101’。该种设计一方面可以更有效的利用空间,提高解析度;另一方面,采用一次打印可以完成2个亚像素的制作,可以提高亚像素的制备效率。
为了实现一次打印两个亚像素,在阵列基板制程之外引入了一道SiO制程作为电极隔离层。如图2所示,两个阳极5’以及两个阳极5’上方的发光层8’共同构成两个亚像素101’,两个阳极5’之间设置有电极隔离层6’,9’为阴极,1’、2’、3’、4’、7’分别为薄膜晶体管、基板、钝化层、平坦层、像素界定层。经过验证,SiO制程会造成薄膜晶体管器件的劣化。
发明内容
为解决上述技术问题,本发明提供一种喷墨打印的OLED显示面板及其制备方法,可以改善喷墨打印的OLED显示面板中薄膜晶体管的性能,不会降低薄膜晶体管的迁移率,还可以有效抑制阈值电压漂移。
本发明提供的一种喷墨打印的OLED显示面板的制备方法,包括下述步骤:
在制备有至少一对薄膜晶体管的承载基板上方依次形成钝化层和平坦层,且所述钝化层覆盖所述至少一对薄膜晶体管;
在所述钝化层和所述平坦层上形成至少一对过孔;
在所述平坦层上形成至少一对阳极,且所述至少一对阳极通过所述平坦层上的过孔以及所述钝化层上的过孔分别与所述至少一对薄膜晶体管电性连接;
利用Al 2O 3或有机光阻材料在所述至少一对阳极之间制备电极隔离层;
通过喷墨打印的方式在所述至少一对阳极上方形成发光层,且所述发光层覆盖所述电极隔离层。
优选地,在所述至少一对阳极上方形成发光层之前,还包括下述步骤:
在所述平坦层上形成像素界定层,且所述平坦层覆盖所述至少一对阳极;
采用黄光图形化所述像素界定层,使得所述电极隔离层以及所述至少一对阳极露出。
优选地,所述像素界定层包含至少一层光阻层,且所述像素界定层的厚度范围为10000~20000埃米。
优选地,还包括下述步骤:
在所述发光层上制备阴极。
优选地,所述钝化层的厚度范围为1000~5000埃米,且所述钝化层包含至少一层SiOx和/或SiNx;
所述平坦层的厚度范围为10000~20000埃米,且所述平坦层的材料为光阻材料。
优选地,在所述平坦层上形成至少一对阳极,具体为:
在所述平坦层上形成一层导电薄膜材料层,且所述导电薄膜材料层的厚度范围为500~1000埃米;
采用黄光图形化所述导电薄膜材料层,得到所述至少一对阳极。
优选地,利用Al2O3或有机光阻材料在所述至少一对阳极之间制备电极隔离层,具体为:
利用原子层沉积技术在所述至少一对阳极之间沉积Al 2O 3或者涂布至少一种有机光阻材料;
通过黄光图形化沉积的Al2O3或者有机光阻材料。
本发明还提供一种喷墨打印的OLED显示面板的制备方法,包括下述步骤:
在制备有至少一对薄膜晶体管的承载基板上方依次形成钝化层和平坦层,且所述钝化层覆盖所述至少一对薄膜晶体管;
在所述钝化层和所述平坦层上形成至少一对过孔;
在所述平坦层上形成至少一对阳极,且所述至少一对阳极通过所述平坦层上的过孔以及所述钝化层上的过孔分别与所述至少一对薄膜晶体管电性连接;
利用Al 2O 3或有机光阻材料在所述至少一对阳极之间制备电极隔离层;
通过喷墨打印的方式在所述至少一对阳极上方形成发光层,且所述发光层覆盖所述电极隔离层;
在所述发光层上制备阴极。
优选地,在所述至少一对阳极上方形成发光层之前,还包括下述步骤:
在所述平坦层上形成像素界定层,且所述平坦层覆盖所述至少一对阳极;
采用黄光图形化所述像素界定层,使得所述电极隔离层以及所述至少一对阳极露出。
优选地,所述像素界定层包含至少一层光阻层,且所述像素界定层的厚度范围为10000~20000埃米。
优选地,所述钝化层的厚度范围为1000~5000埃米,且所述钝化层包含至少一层SiOx和/或SiNx;
所述平坦层的厚度范围为10000~20000埃米,且所述平坦层的材料为光阻材料。
优选地,在所述平坦层上形成至少一对阳极,具体为:
在所述平坦层上形成一层导电薄膜材料层,且所述导电薄膜材料层的厚度范围为500~1000埃米;
采用黄光图形化所述导电薄膜材料层,得到所述至少一对阳极。
优选地,利用Al2O3或有机光阻材料在所述至少一对阳极之间制备电极隔离层,具体为:
利用原子层沉积技术在所述至少一对阳极之间沉积Al 2O 3或者涂布至少一种有机光阻材料;
通过黄光图形化沉积的Al2O3或者有机光阻材料。
本发明还提供一种喷墨打印的OLED显示面板,包括:至少一对薄膜晶体管以及位于所述至少一对薄膜晶体管上方且依次层叠的钝化层和平坦层,在所述钝化层和所述平坦层上均设置有至少一对过孔,且所述钝化层上的过孔以及所述平坦层上的过孔均位于所述至少一对薄膜晶体管的上方;
在所述平坦层上设置有至少一对阳极,且所述至少一对阳极分别通过所述钝化层上的过孔以及所述平坦层上的过孔与所述至少一对薄膜晶体管电性连接;
在所述至少一对阳极之间设置有电极隔离层,且所述电极隔离层的材料为Al 2O 3或有机光阻材料。
优选地,所述平坦层上还形成有像素界定层,所述像素界定层上设置有缺口,且所述缺口位于所述至少一对阳极上方;
在所述像素界定层的缺口中设置有发光层,且所述发光层覆盖所述电极隔离层;
在所述发光层的上方设置有阴极。
优选地,所述像素界定层包含至少一层光阻层,且所述像素界定层的厚度范围为10000~20000埃米;
所述钝化层的厚度范围为1000~5000埃米,且所述钝化层包含至少一层SiOx和/或SiNx;
所述平坦层的厚度范围为10000~20000埃米,且所述平坦层的材料为光阻材料。
实施本发明,具有如下有益效果:本发明在制备喷墨打印的OLED显示 面板时,在同一个像素中的两个阳极之间,采用Al 2O 3或者有机光阻材料制备电极隔离层,Al 2O 3或者有机光阻材料不会影响采用喷墨打印技术铺展发光层,由于Al 2O 3以及有机光阻材料中不包含有氢键以及氢离子,不会降低薄膜晶体管的迁移率,还可以有效抑制阈值电压漂移,不会造成喷墨打印的OLED显示面板中薄膜晶体管的劣化,延长了喷墨打印的OLED显示面板的使用寿命。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的喷墨打印的OLED显示面板中的像素结构示意图。
图2是本发明提供的像素的剖面图。
图3是本发明提供的薄膜晶体管上形成钝化层和平坦层的示意图。
图4是本发明提供的平坦层上形成阳极和电极隔离层的示意图。
图5是本发明提供的平坦层上形成像素界定层的示意图。
图6是本发明提供的制备发光层的示意图。
图7是本发明提供的制备阴极的示意图。
图8是本发明提供的玻璃基板上制备遮光层、缓冲层以及半导体层的示意图。
图9是本发明提供的栅极绝缘层、栅极金属层以及光阻层的示意图。
图10是本发明提供的层间绝缘层的示意图。
图11是本发明提供的薄膜晶体管的结构图。
具体实施方式
本发明提供一种喷墨打印的OLED显示面板的制备方法,该方法包括下述步骤:
如图3所示,在制备有至少一对薄膜晶体管1的承载基板2上方依次形成钝化层3和平坦层4,且钝化层3覆盖至少一对薄膜晶体管1;
在钝化层3和平坦层4上形成至少一对过孔41;
如图4所示,在平坦层4上形成至少一对阳极5,且至少一对阳极5通过平坦层4上的过孔41以及钝化层3上的过孔分别与至少一对薄膜晶体管1电性连接;
利用Al 2O 3(三氧化二铝)或有机光阻材料在至少一对阳极5之间制备电极隔离层6;
通过喷墨打印的方式在至少一对阳极5上方形成发光层8,且发光层8覆盖电极隔离层6。
进一步地,在至少一对阳极5上方形成发光层8之前,还包括下述步骤:
如图5所示,在平坦层4上形成像素界定层7,且平坦层4覆盖至少一对阳极5;
采用黄光图形化像素界定层7,使得电极隔离层6以及至少一对阳极5露出。
其中,像素界定层7包含至少一层光阻层,且像素界定层7的厚度范围为10000~20000埃米。
如图6所示,通过喷墨打印的方式在至少一对阳极5上方形成发光层8,81为阳极材料的液体。
进一步地,喷墨打印的OLED显示面板的制备方法还包括下述步骤:如图7所示,在发光层8上制备阴极9。
进一步地,钝化层3的厚度范围为1000~5000埃米,且钝化层3包含至少一层SiOx和/或SiNx;平坦层4的厚度范围为10000~20000埃米,且平坦层4的材料为光阻材料。
进一步地,在平坦层4上形成至少一对阳极5,具体为:
在平坦层4上形成一层导电薄膜材料层,且导电薄膜材料层的厚度范围为500~1000埃米;
采用黄光图形化导电薄膜材料层,得到至少一对阳极5。
进一步地,利用Al2O3或有机光阻材料在至少一对阳极5之间制备电极隔离层6,具体为:
利用原子层沉积技术在至少一对阳极5之间沉积Al 2O 3或者涂布至少一种有机光阻材料;
通过黄光图形化沉积的Al2O3或者有机光阻材料。
需要说明的是,采用黄光图形化膜层,一般而言,是先在膜层上涂布光阻,再采用黄光进行曝光及显影处理,再利用曝光及显影处理的光阻层作为阻挡层,对待图形化的膜层进行刻蚀。
本发明还提供一种喷墨打印的OLED显示面板,如图7所示,该面板包括:至少一对薄膜晶体管1以及位于至少一对薄膜晶体管1上方且依次层叠的钝化层3和平坦层4,在钝化层3和平坦层4上均设置有至少一对过孔,且钝化层3上的过孔以及平坦层4上的过孔均位于至少一对薄膜晶体管1的上方;
在平坦层4上设置有至少一对阳极5,且至少一对阳极5分别通过钝化层3上的过孔以及平坦层4上的过孔与至少一对薄膜晶体管1电性连接;
在至少一对阳极5之间设置有电极隔离层6,且电极隔离层6的材料为Al 2O 3或有机光阻材料。
进一步地,平坦层4上还形成有像素界定层7,像素界定层7上设置有图5中所示的缺口71,且缺口71位于至少一对阳极5上方。
在像素界定层7的缺口71中设置有发光层8,且发光层8覆盖电极隔离层6;在发光层8的上方设置有阴极9。
进一步地,像素界定层7包含至少一层光阻层,且像素界定层7的厚度范围为10000~20000埃米;钝化层3的厚度范围为1000~5000埃米,且钝化层3包含至少一层SiOx和/或SiNx;平坦层4的厚度范围为10000~20000埃米,且平坦层4的材料为光阻材料。
在本发明提供的另一实施例中,喷墨打印的OLED显示面板的制备方法包括下述步骤:
(1)清洗玻璃基板2,如图8所示,并在玻璃基板2上沉积一层500-2000埃米厚度的金属作为薄膜晶体管1的遮光层11,遮光层11的金属可以是Mo,Al,Cu,Ti等,或者是这些金属的合金,例如是钼合金、铝合金、铜合金、钛合金中的一种,并利用黄光做出图形。
(2)沉积一层SiOx薄膜,作为缓冲层12,其厚度在1000-5000埃米之间。
(3)沉积一层金属氧化物半导体材料(Oxide)作为半导体层13,可以是 IGZO(铟镓锌氧化物),IZTO(铟锌锡氧化物),IGZTO(铟镓锌锡氧化物)等等,其厚度在100-1000埃米之间,并利用黄光做出图形。
(4)如图9所示,沉积一层SiOx薄膜,作为栅极绝缘层14,其厚度在1000-3000埃米之间。
(5)沉积一层金属作为栅极金属层15,可以是Mo、Al、Cu,Cu,或者是这些金属的合金,其厚度在2000-8000埃米之间。
(6)在栅极金属层15上形成有光阻层,利用一道黄光,得到图9中图形化的光阻层10,再利用光阻层10作为阻挡层,蚀刻出栅极金属层15的图形,再利用图10中的栅极金属图形16为自对准,蚀刻栅极绝缘层14,只在有栅极金属图形16的膜层下方,才有栅极绝缘层14存在,其余地方栅极绝缘层14均被蚀刻掉。
(7)进行整面的等离子体(Plasma)处理,使上方没有栅极绝缘层14和栅极金属图形16保护的金属氧化物半导体材料的电阻明显降低,形成N+导体层131,作为源极和漏极接触;栅极绝缘层14下方的金属氧化物半导体材料没有被处理到,保持半导体特性,作为薄膜晶体管1的沟道。
(8)如图10所示,沉积层间绝缘层17(ILD层),可以是SiOx、SiNx或SiOx和SiNx的夹层结构,层间绝缘层17的厚度在3000-10000埃米之间,并且做出源极和漏极接触区开孔171。
(9)如图11所示,沉积一层金属作为源极漏极金属层,可以是Mo、Al、Cu,Cu,或者是这些金属的合金,其厚度在2000-8000埃米之间,然后定义出图形,形成源极18和漏极19。
(10)沉积SiOx薄膜作为图3中的钝化层3,其厚度在1000-5000埃米之间,并蚀刻出过孔。
(11)制作平坦层4(PLN层),其可以是不同成分的光阻层,厚度在10000-20000埃米之间,通过黄光做出过孔。
(12)沉积图4中的阳极5,可以采用ITO(铟锡氧化物)等透明氧化物,厚度在500-1000埃米之间,并利用黄光做出图形。
(13)制作一层电极隔离层6,该层可以有多种选择,但不能引入H(氢键、氢离子等)。例如可以是利用原子层沉积方法(ALD)沉积一层Al 2O 3,再通过 黄光做出图形;也可以是直接涂布不同种类的有机光阻,通过黄光做出图形。
(14)制作图5中的像素界定层7(PDL层),可以包含不同成分的光阻层,其厚度在10000-20000埃米之间,通过黄光定义发光区,完成背板制作。
(15)利用喷墨打印技术制作图6中的发光层8。
(16)再在发光层8上制作图7中的阴极9金属,即完成OLED显示面板的制作。
综上所述,本发明在制备喷墨打印的OLED显示面板时,在同一个像素中的两个阳极之间,采用Al 2O 3或者有机光阻材料制备电极隔离层,Al 2O 3或者有机光阻材料不会影响采用喷墨打印技术铺展发光层,由于Al 2O 3以及有机光阻材料中不包含有氢键以及氢离子,不会降低薄膜晶体管的迁移率,还可以有效抑制阈值电压漂移,不会造成喷墨打印的OLED显示面板中薄膜晶体管的劣化,延长了喷墨打印的OLED显示面板的使用寿命。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (16)

  1. 一种喷墨打印的OLED显示面板的制备方法,其中,包括下述步骤:
    在制备有至少一对薄膜晶体管的承载基板上方依次形成钝化层和平坦层,且所述钝化层覆盖所述至少一对薄膜晶体管;
    在所述钝化层和所述平坦层上形成至少一对过孔;
    在所述平坦层上形成至少一对阳极,且所述至少一对阳极通过所述平坦层上的过孔以及所述钝化层上的过孔分别与所述至少一对薄膜晶体管电性连接;
    利用Al 2O 3或有机光阻材料在所述至少一对阳极之间制备电极隔离层;
    通过喷墨打印的方式在所述至少一对阳极上方形成发光层,且所述发光层覆盖所述电极隔离层。
  2. 根据权利要求1所述的喷墨打印的OLED显示面板的制备方法,其中,在所述至少一对阳极上方形成发光层之前,还包括下述步骤:
    在所述平坦层上形成像素界定层,且所述平坦层覆盖所述至少一对阳极;
    采用黄光图形化所述像素界定层,使得所述电极隔离层以及所述至少一对阳极露出。
  3. 根据权利要求2所述的喷墨打印的OLED显示面板的制备方法,其中,
    所述像素界定层包含至少一层光阻层,且所述像素界定层的厚度范围为10000~20000埃米。
  4. 根据权利要求1所述的喷墨打印的OLED显示面板的制备方法,其中,还包括下述步骤:
    在所述发光层上制备阴极。
  5. 根据权利要求1所述的喷墨打印的OLED显示面板的制备方法,其中,
    所述钝化层的厚度范围为1000~5000埃米,且所述钝化层包含至少一层SiOx和/或SiNx;
    所述平坦层的厚度范围为10000~20000埃米,且所述平坦层的材料为光阻材料。
  6. 根据权利要求1所述的喷墨打印的OLED显示面板的制备方法,其中,在所述平坦层上形成至少一对阳极,具体为:
    在所述平坦层上形成一层导电薄膜材料层,且所述导电薄膜材料层的厚度范围为500~1000埃米;
    采用黄光图形化所述导电薄膜材料层,得到所述至少一对阳极。
  7. 根据权利要求1所述的喷墨打印的OLED显示面板的制备方法,其中,利用Al2O3或有机光阻材料在所述至少一对阳极之间制备电极隔离层,具体为:
    利用原子层沉积技术在所述至少一对阳极之间沉积Al 2O 3或者涂布至少一种有机光阻材料;
    通过黄光图形化沉积的Al2O3或者有机光阻材料。
  8. 一种喷墨打印的OLED显示面板的制备方法,其中,包括下述步骤:
    在制备有至少一对薄膜晶体管的承载基板上方依次形成钝化层和平坦层,且所述钝化层覆盖所述至少一对薄膜晶体管;
    在所述钝化层和所述平坦层上形成至少一对过孔;
    在所述平坦层上形成至少一对阳极,且所述至少一对阳极通过所述平坦层上的过孔以及所述钝化层上的过孔分别与所述至少一对薄膜晶体管电性连接;
    利用Al 2O 3或有机光阻材料在所述至少一对阳极之间制备电极隔离层;
    通过喷墨打印的方式在所述至少一对阳极上方形成发光层,且所述发光层覆盖所述电极隔离层;
    在所述发光层上制备阴极。
  9. 根据权利要求8所述的喷墨打印的OLED显示面板的制备方法,其中,在所述至少一对阳极上方形成发光层之前,还包括下述步骤:
    在所述平坦层上形成像素界定层,且所述平坦层覆盖所述至少一对阳极;
    采用黄光图形化所述像素界定层,使得所述电极隔离层以及所述至少一 对阳极露出。
  10. 根据权利要求9所述的喷墨打印的OLED显示面板的制备方法,其中,
    所述像素界定层包含至少一层光阻层,且所述像素界定层的厚度范围为10000~20000埃米。
  11. 根据权利要求8所述的喷墨打印的OLED显示面板的制备方法,其中,
    所述钝化层的厚度范围为1000~5000埃米,且所述钝化层包含至少一层SiOx和/或SiNx;
    所述平坦层的厚度范围为10000~20000埃米,且所述平坦层的材料为光阻材料。
  12. 根据权利要求8所述的喷墨打印的OLED显示面板的制备方法,其中,在所述平坦层上形成至少一对阳极,具体为:
    在所述平坦层上形成一层导电薄膜材料层,且所述导电薄膜材料层的厚度范围为500~1000埃米;
    采用黄光图形化所述导电薄膜材料层,得到所述至少一对阳极。
  13. 根据权利要求8所述的喷墨打印的OLED显示面板的制备方法,其中,利用Al2O3或有机光阻材料在所述至少一对阳极之间制备电极隔离层,具体为:
    利用原子层沉积技术在所述至少一对阳极之间沉积Al 2O 3或者涂布至少一种有机光阻材料;
    通过黄光图形化沉积的Al2O3或者有机光阻材料。
  14. 一种喷墨打印的OLED显示面板,其中,包括:至少一对薄膜晶体管以及位于所述至少一对薄膜晶体管上方且依次层叠的钝化层和平坦层,在所述钝化层和所述平坦层上均设置有至少一对过孔,且所述钝化层上的过孔以及所述平坦层上的过孔均位于所述至少一对薄膜晶体管的上方;
    在所述平坦层上设置有至少一对阳极,且所述至少一对阳极分别通过所述钝化层上的过孔以及所述平坦层上的过孔与所述至少一对薄膜晶体管电性连接;
    在所述至少一对阳极之间设置有电极隔离层,且所述电极隔离层的材料为Al 2O 3或有机光阻材料。
  15. 根据权利要求14所述的喷墨打印的OLED显示面板,其中,所述平坦层上还形成有像素界定层,所述像素界定层上设置有缺口,且所述缺口位于所述至少一对阳极上方;
    在所述像素界定层的缺口中设置有发光层,且所述发光层覆盖所述电极隔离层;
    在所述发光层的上方设置有阴极。
  16. 根据权利要求14所述的喷墨打印的OLED显示面板,其中,所述像素界定层包含至少一层光阻层,且所述像素界定层的厚度范围为10000~20000埃米;
    所述钝化层的厚度范围为1000~5000埃米,且所述钝化层包含至少一层SiOx和/或SiNx;
    所述平坦层的厚度范围为10000~20000埃米,且所述平坦层的材料为光阻材料。
PCT/CN2018/078999 2018-01-09 2018-03-14 一种喷墨打印的oled显示面板及其制备方法 WO2019136818A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/009,569 US10985226B2 (en) 2018-01-09 2018-06-15 Ink jet printing organic light emitting diode display panel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810020262.2 2018-01-09
CN201810020262.2A CN108336110A (zh) 2018-01-09 2018-01-09 一种喷墨打印的oled显示面板及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/009,569 Continuation US10985226B2 (en) 2018-01-09 2018-06-15 Ink jet printing organic light emitting diode display panel and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2019136818A1 true WO2019136818A1 (zh) 2019-07-18

Family

ID=62924863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078999 WO2019136818A1 (zh) 2018-01-09 2018-03-14 一种喷墨打印的oled显示面板及其制备方法

Country Status (2)

Country Link
CN (1) CN108336110A (zh)
WO (1) WO2019136818A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969025A (zh) * 2020-08-28 2020-11-20 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931525B (zh) * 2019-11-22 2023-01-10 京东方科技集团股份有限公司 一种oled阵列基板及其制备方法和显示装置
CN110890409B (zh) * 2019-11-29 2022-11-04 京东方科技集团股份有限公司 显示装置及其oled面板、oled面板的制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010035714A1 (en) * 2000-04-26 2001-11-01 Tien-Rong Lu Method for forming a photosensitive pixel-defining layer on an OLED panel
US20030170493A1 (en) * 2002-03-08 2003-09-11 Industrial Technology Research Institute Photosensitive insulating film of organic light emitting diode (OLED)
CN105206651A (zh) * 2015-10-12 2015-12-30 深圳市华星光电技术有限公司 一种oled显示面板及其制作方法
US20160079332A1 (en) * 2014-09-16 2016-03-17 Samsung Display Co., Ltd. Organic light emitting display device
CN105449127A (zh) * 2016-01-04 2016-03-30 京东方科技集团股份有限公司 发光二极管显示基板及其制作方法、显示装置
CN105590957A (zh) * 2016-03-03 2016-05-18 深圳市华星光电技术有限公司 一种基于喷墨打印技术的有机发光显示装置及其制造方法
CN206250196U (zh) * 2016-11-09 2017-06-13 昆山国显光电有限公司 Oled触控显示面板及触控显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100699997B1 (ko) * 2004-09-21 2007-03-26 삼성에스디아이 주식회사 다수개의 구동 트랜지스터와 다수개의 애노드 또는캐소드전극을 갖는 유기 전계 발광 표시장치
JP4650495B2 (ja) * 2008-02-05 2011-03-16 セイコーエプソン株式会社 発光装置及び電子機器
EP2242334B1 (en) * 2008-06-06 2014-04-30 Panasonic Corporation Organic el display panel and manufacturing method thereof
CN110120469A (zh) * 2013-01-17 2019-08-13 科迪华公司 高分辨率有机发光二极管器件
US9490446B2 (en) * 2014-06-16 2016-11-08 Apple Inc. Organic light-emitting diode display with split anodes
CN105206643A (zh) * 2015-08-21 2015-12-30 Tcl集团股份有限公司 一种像素界定层结构及其制作方法、显示面板及显示装置
CN107195796B (zh) * 2017-06-19 2019-01-01 深圳市华星光电技术有限公司 基于喷墨打印技术的像素结构及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010035714A1 (en) * 2000-04-26 2001-11-01 Tien-Rong Lu Method for forming a photosensitive pixel-defining layer on an OLED panel
US20030170493A1 (en) * 2002-03-08 2003-09-11 Industrial Technology Research Institute Photosensitive insulating film of organic light emitting diode (OLED)
US20160079332A1 (en) * 2014-09-16 2016-03-17 Samsung Display Co., Ltd. Organic light emitting display device
CN105206651A (zh) * 2015-10-12 2015-12-30 深圳市华星光电技术有限公司 一种oled显示面板及其制作方法
CN105449127A (zh) * 2016-01-04 2016-03-30 京东方科技集团股份有限公司 发光二极管显示基板及其制作方法、显示装置
CN105590957A (zh) * 2016-03-03 2016-05-18 深圳市华星光电技术有限公司 一种基于喷墨打印技术的有机发光显示装置及其制造方法
CN206250196U (zh) * 2016-11-09 2017-06-13 昆山国显光电有限公司 Oled触控显示面板及触控显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969025A (zh) * 2020-08-28 2020-11-20 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置
CN111969025B (zh) * 2020-08-28 2023-08-01 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置

Also Published As

Publication number Publication date
CN108336110A (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
KR102284344B1 (ko) Tft기판과 그의 제조방법, 및 oled패널의 제조방법
WO2018149171A1 (zh) 阵列基板及其制备方法、显示装置
WO2016176886A1 (zh) 柔性oled及其制作方法
WO2020238384A1 (zh) 阵列基板的制作方法、阵列基板、显示面板及显示装置
WO2016000342A1 (zh) 阵列基板及其制作方法、显示装置
KR20120042029A (ko) 표시 장치 및 그 제조 방법
CN110660839B (zh) 一种显示面板及其制备方法
WO2019136818A1 (zh) 一种喷墨打印的oled显示面板及其制备方法
US10985226B2 (en) Ink jet printing organic light emitting diode display panel and manufacturing method thereof
WO2022116313A1 (zh) 一种阵列基板、显示面板及其制备方法
KR20150101487A (ko) 박막 트랜지스터 및 그의 제조방법
WO2016123979A1 (zh) 薄膜晶体管及其制备方法、阵列基板和显示装置
WO2021159566A1 (zh) 显示面板及其制作方法
CN111293153A (zh) 一种显示面板及显示面板制程方法
CN108565357B (zh) 一种喷墨打印的oled显示面板及其制备方法
KR20160109647A (ko) 박막 트랜지스터 기판 및 그 제조방법
WO2021082093A1 (zh) 显示面板及其制备方法
JP4532892B2 (ja) 有機el素子及び有機el表示装置
JP4617749B2 (ja) 表示装置の製造方法
WO2020206719A1 (zh) 显示面板及其制备方法
JP4603780B2 (ja) 発光素子の製造方法
JP4975137B2 (ja) 有機el素子および表示装置
US20160322507A1 (en) Thin film transistor array panel and method of manufacturing the same
JP4603775B2 (ja) 有機el発光素子の製造方法、有機el素子を用いる表示装置の製造方法
KR20210004356A (ko) 산화물 반도체 패턴을 포함하는 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18900007

Country of ref document: EP

Kind code of ref document: A1