WO2019132574A1 - 열가소성 수지 조성물 및 이로부터 형성된 성형품 - Google Patents

열가소성 수지 조성물 및 이로부터 형성된 성형품 Download PDF

Info

Publication number
WO2019132574A1
WO2019132574A1 PCT/KR2018/016838 KR2018016838W WO2019132574A1 WO 2019132574 A1 WO2019132574 A1 WO 2019132574A1 KR 2018016838 W KR2018016838 W KR 2018016838W WO 2019132574 A1 WO2019132574 A1 WO 2019132574A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermoplastic resin
weight
aromatic vinyl
composition according
Prior art date
Application number
PCT/KR2018/016838
Other languages
English (en)
French (fr)
Inventor
김수지
김필호
신승식
Original Assignee
롯데첨단소재(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데첨단소재(주) filed Critical 롯데첨단소재(주)
Priority to US16/767,354 priority Critical patent/US11352492B2/en
Priority to CN201880081125.8A priority patent/CN111527149B/zh
Publication of WO2019132574A1 publication Critical patent/WO2019132574A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a thermoplastic resin composition and a molded article formed therefrom. More specifically, the present invention relates to a thermoplastic resin composition excellent in flame retardance, transparency and the like, and a molded article formed therefrom.
  • Polycarbonate resin has excellent mechanical strength, heat resistance and transparency and is used in various fields such as office automation equipment, electric / electronic products, and building materials. Among them, high flame retardancy, transparency, mechanical properties, and the like are required for use as transparent sheathing materials for electric / electronic products. Particularly, a diffusion polycarbonate material used for illumination requires a high transmittance with high flame retardancy.
  • thermoplastic resin composition containing a polycarbonate resin should be applied with additives such as a dripping inhibitor and a filler in addition to a polycarbonate resin.
  • additives such as a dripping inhibitor and a filler in addition to a polycarbonate resin.
  • thermoplastic resin composition that is excellent in all of flame retardance, transparency, balance of physical properties thereof, and the like has been demanded.
  • An object of the present invention is to provide a thermoplastic resin composition excellent in flame retardance, transparency and the like.
  • Another object of the present invention is to provide a molded article formed from the thermoplastic resin composition.
  • thermoplastic resin composition comprises about 100 parts by weight of a polycarbonate resin; About 0.01 to about 2 parts by weight of a modified aromatic vinyl-based copolymer resin; From about 0.01 to about 1 part by weight of an aliphatic sulfonic acid metal salt; And about 0.01 to about 2 parts by weight of a fluorinated olefin-based resin, wherein the modified aromatic vinyl-based copolymer resin is a polymer of a monomer mixture comprising an aromatic vinyl monomer and glycidyl (meth) acrylate do.
  • the polycarbonate resin may have a weight average molecular weight (Mw) of from about 10,000 to about 200,000 g / mol.
  • the polycarbonate resin may be a polycarbonate resin having a branched chain.
  • modified aromatic vinyl-based copolymer resin according to any one of 1 to 3 above, which comprises about 60 to about 90% by weight of an aromatic vinyl-based monomer and about 10 to about 40% by weight of the glycidyl (meth) Polymer of the monomer mixture.
  • the modified aromatic vinyl-based copolymer resin may have a weight average molecular weight (Mw) of about 20,000 to about 40,000 g / mol.
  • the aliphatic sulfonic acid metal salt may be represented by the following Formula 1:
  • M is lithium (Li), sodium (Na), or potassium (K), and n is an integer of 1 to 10 carbon atoms.
  • the weight ratio of the modified aromatic vinyl copolymer resin to the aliphatic sulfonic acid metal salt may be about 1: about 1: about 3: about 1.
  • the weight ratio of the metal salt of an aliphatic sulfonic acid and the fluorinated olefin resin may be about 1: about 2: about 1: about 4.
  • thermoplastic resin composition according to any one of the above 1 to 8, wherein the flame retardancy of the 1.0 mm thick specimen measured by the UL-94 vertical test method is higher than V-0.
  • thermoplastic resin composition may have a transmittance of about 80% or more of a 1.0 mm thick specimen measured according to ASTM D1003.
  • Another aspect of the present invention relates to a molded article formed from the thermoplastic resin composition according to any one of 1 to 10 above.
  • the present invention has the effect of providing a thermoplastic resin composition excellent in flame retardance, transparency and the like and a molded article formed from the composition.
  • thermoplastic resin composition according to the present invention comprises (A) a polycarbonate resin; (B) a modified aromatic vinyl-based copolymer resin; (C) an aliphatic sulfonic acid metal salt; And (D) a fluorinated olefin based resin.
  • thermoplastic polycarbonate resins can be used without limitation.
  • an aromatic polycarbonate resin prepared by reacting at least one diphenol (aromatic dihydroxy compound) with a carbonate precursor such as phosgene, halogen formate, or carbonic acid diester can be used.
  • diphenols include 4,4'-biphenol, 2,2-bis (4-hydroxyphenyl) propane, 2,4-bis (4-hydroxyphenyl) (3-chloro-4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) Propane, mixtures thereof, and the like, but are not limited thereto.
  • examples of the above diphenols include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane, 1,1- -Hydroxyphenyl) cyclohexane, and specifically 2,2-bis (4-hydroxyphenyl) propane, also referred to as bisphenol-A, can be used.
  • the carbonate precursor is at least one selected from the group consisting of dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate, diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate , Carbonyl chloride (phosgene), diphosgene, triphosgene, carbonyl bromide, bishaloformate, and the like. These may be used alone or in combination of two or more.
  • the polycarbonate resin may be used in the form of a branched chain. For example, about 0.05 to about 2 mol% of a trifunctional or higher polyfunctional compound, for example, 3 Or by adding a compound having a phenol group or more.
  • the polycarbonate resin may be used in the form of a homopolycarbonate resin, a copolycarbonate resin or a blend thereof.
  • the polycarbonate resin may be partially or wholly substituted with an aromatic polyester-carbonate resin obtained by polymerization reaction in the presence of an ester precursor such as a bifunctional carboxylic acid.
  • the polycarbonate resin has a weight average molecular weight (Mw) of from about 10,000 to about 200,000 g / mol, as measured using GPC-MALS (GPC) WITH MULTI-ANGLE LIGHT SCATTERING DETECTION (MALS) Can be, for example, from about 15,000 to about 80,000 g / mol, and a (Mark-Houwink constant) value can be from about 0.4 to about 0.7, such as from about 0.5 to about 0.6, .
  • Mw weight average molecular weight
  • MALS MULTI-ANGLE LIGHT SCATTERING DETECTION
  • a (Mark-Houwink constant) value can be from about 0.4 to about 0.7, such as from about 0.5 to about 0.6, .
  • the flame retardancy, transparency and the like of the thermoplastic resin composition may be excellent in the above range.
  • the modified aromatic vinyl copolymer resin of the present invention is capable of reducing the decomposition of the polycarbonate resin even under high temperature and high humidity conditions and improving the flame retardancy and the like of the thermoplastic resin composition and is a resin composition comprising an aromatic vinyl monomer and glycidyl ) Acrylate. ≪ / RTI >
  • (Meth) acrylic means “acrylic” and “methacrylic” are both possible unless otherwise specified herein.
  • (meth) acrylate means that both "acrylate” and “methacrylate” are possible.
  • the modified aromatic vinyl-based copolymer resin may be produced by a conventional polymerization method known in the field of polymer production, for example, by bulk polymerization, emulsion polymerization, suspension polymerization or the like. For example, And then adding the polymerization initiator and polymerizing it.
  • the polymerization initiator is a radical polymerization initiator
  • the polymerization may be a suspension polymerization in consideration of refractive index and the like, and the suspension polymerization may be carried out in the presence of a suspension stabilizer and a chain transfer agent. That is, a radical polymerization initiator and a chain transfer agent are added to the monomer to prepare a reaction mixture, and the resulting reaction mixture is added to an aqueous solution in which the suspension stabilizer is dissolved to prepare a copolymer resin (suspension polymerization). In the polymerization, the polymerization temperature and the polymerization time can be appropriately controlled.
  • the polymerization temperature may be from about 65 to about 125 ⁇ , such as from about 70 to about 120 ⁇ , and the polymerization time may be from 2 to 8 hours.
  • the modified aromatic vinyl-based copolymer resin can be obtained through cooling, washing, dehydration and drying processes.
  • the aromatic vinyl monomer is selected from the group consisting of styrene,? -Methylstyrene,? -Methylstyrene, p-methylstyrene, pt-butylstyrene, ethylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, Vinyl naphthalene, and the like. These may be used alone or in combination of two or more.
  • the content of the aromatic vinyl-based monomer may be about 60 to about 90 wt%, such as about 70 to about 85 wt%, based on 100 wt% of the monomer mixture, and the glycidyl (meth) acrylate May be from about 10 to about 40 weight percent, for example from about 15 to about 30 weight percent, of 100 weight percent of the monomer mixture.
  • the flame retardancy and the like of the thermoplastic resin composition may be excellent in the above range.
  • the modified aromatic vinyl copolymer resin has a weight average molecular weight (Mw), as measured by gel permeation chromatography (GPC), of from about 20,000 to about 40,000 g / mol, such as from about 25,000 to about 35,000 g / mol.
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • the modified aromatic vinyl-based copolymer resin may be included in an amount of about 0.01 to about 2 parts by weight, for example, about 0.1 to about 1 part by weight, based on about 100 parts by weight of the polycarbonate resin.
  • the flame retardancy and drop-preventing characteristics of the thermoplastic resin composition may be lowered.
  • the transparency and the like of the thermoplastic resin composition may be lowered.
  • the aliphatic sulfonic acid metal salt according to one embodiment of the present invention is capable of reducing the decomposition of the polycarbonate resin during processing and improving the flame retardancy, thermal stability, rigidity and the like of the thermoplastic resin composition, and can be represented by the following formula .
  • M is lithium (Li), sodium (Na), or potassium (K), and n is an integer of 1 to 10 carbon atoms.
  • metal salt of the aliphatic sulfonic acid examples include, for example, metal salts of perfluoromethane sulfonic acid, metal salts of perfluoroethanesulfonic acid, metal salts of perfluoropropanesulfonic acid, metal salts of perfluorobutanesulfonic acid, metal salts of perfluoropentanesulfonic acid, Metal salts of perfluorohexanesulfonic acid, metal salts of perfluoroheptanesulfonic acid, metal salts of perfluorooctanesulfonic acid, and the like. These may be used alone or in combination of two or more.
  • Suitable metals to be used in the metal salt of the perfluoroalkanesulfonic acid include metal (alkali metal) of group I such as sodium and potassium, group II metal (alkaline earth metal), copper and aluminum, Alkali metal is preferred.
  • metal (alkali metal) of group I such as sodium and potassium
  • group II metal alkaline earth metal
  • copper and aluminum Alkali metal is preferred.
  • the potassium salt of perfluorobutanesulfonic acid and the potassium salt of perfluoropentanesulfonic acid are particularly preferred.
  • the aliphatic sulfonic acid metal salt may have an average particle size of from about 100 to about 400 microns, for example, from about 150 to about 350 microns.
  • the flame retardancy, thermal stability, rigidity and the like of the thermoplastic resin composition can be excellent in the above range, and the roughness of the surface of the molded article can be reduced because the particles cohere with each other.
  • the aliphatic sulfonic acid metal salt may be included in an amount of about 0.01 to about 1 part by weight, for example about 0.05 to about 0.5 part by weight, based on about 100 parts by weight of the polycarbonate resin.
  • the amount of the aliphatic sulfonic acid metal salt is less than about 0.01 part by weight based on about 100 parts by weight of the polycarbonate resin, the flame retardancy and the like of the thermoplastic resin composition may be lowered.
  • the content is more than about 1 part by weight, The transparency is lowered and there is a fear that the polycarbonate resin is decomposed.
  • the modified aromatic vinyl copolymer resin (B) and the aliphatic sulfonic acid metal salt (C) may be contained in a weight ratio (B: C) of about 1: about 1: about 3: about 1.
  • the flame retardancy, transparency and the like of the thermoplastic resin composition may be more excellent in the above range.
  • the fluorinated olefin-based resin forms a fibrous network in the resin composition when the thermoplastic resin composition is extruded, decreases the melt viscosity of the thermoplastic resin composition upon burning, increases the shrinkage ratio Polyvinylidene fluoride, tetrafluoroethylene / vinylidene fluoride copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, ethylene / tetraethylene / tetrafluoroethylene copolymer, Fluoroethylene copolymer, combinations thereof, and the like, but are not limited thereto.
  • polytetrafluoroethylene (trade name: Teflon) or the like can be used.
  • the fluorinated olefinic resin may be prepared using known polymerization methods and may be prepared in an aqueous medium containing, for example, a free radical-forming catalyst such as sodium, potassium, ammonium peroxydisulfate, have.
  • a free radical-forming catalyst such as sodium, potassium, ammonium peroxydisulfate
  • the fluorinated olefin-based resin may be used in an emulsion state or a powder state.
  • the fluorinated olefin-based resin in the emulsion state is excellent in dispersibility, but the production process is complicated. Therefore, it is preferable to use the fluorinated olefin-based resin in powder form so long as it can be appropriately dispersed in the whole resin composition even in the powder state.
  • the fluorinated olefinic resin is included in the amount of about 0.01 to about 2 parts by weight, for example about 0.1 to about 1 part by weight, specifically about 0.1 to about 0.6 part by weight, relative to about 100 parts by weight of the polycarbonate resin If the content of the fluorinated olefin-based resin is less than about 0.01 part by weight based on about 100 parts by weight of the polycarbonate resin, the flame retardancy and drop-preventing characteristics of the thermoplastic resin composition may be deteriorated. The transparency and the like of the thermoplastic resin composition may be deteriorated.
  • the aliphatic sulfonic acid metal salt (C) and the fluorinated olefinic resin (D) may be contained in a weight ratio (C: D) of about 1: about 2 to about 1: about 4.
  • the transparency and flame retardancy of the thermoplastic resin composition may be more excellent in the above range.
  • thermoplastic resin composition according to one embodiment of the present invention may further contain conventional additives as required.
  • additives include, but are not limited to, fillers, antioxidants, lubricants, release agents, nucleating agents, antistatic agents, stabilizers, pigments, dyes, and mixtures thereof.
  • the content thereof may be about 0.01 to about 20 parts by weight based on about 100 parts by weight of the polycarbonate resin, but is not limited thereto.
  • thermoplastic resin composition according to one embodiment of the present invention is prepared by mixing the above components and melt-extruding at a temperature of about 200 to about 280 ⁇ , for example, about 220 to about 250 ⁇ , using a conventional twin-screw extruder. .
  • thermoplastic resin composition may have a flame retardancy of V-0 or more of a 1.0 mm thick specimen measured by the UL-94 vertical test method.
  • the thermoplastic resin composition may have a permeability of at least about 80%, such as from about 80.5 to about 95%, of a 1.0 mm thick specimen measured according to ASTM D1003.
  • the molded article according to the present invention is formed from the thermoplastic resin composition.
  • the thermoplastic resin composition may be produced in the form of pellets, and the produced pellets may be manufactured into various molded products through various molding methods such as injection molding, extrusion molding, vacuum molding, and casting molding. Such molding methods are well known to those of ordinary skill in the art to which the present invention pertains.
  • the molded article is excellent in flame retardancy, transparency, physical properties, and the like, and thus is useful as an interior / exterior material for an electric / electronic product, an automobile interior / exterior material, and a building exterior material.
  • Bisphenol-A type polycarbonate resin (weight average molecular weight: 30,000 g / mol, a value: 0.57) was used.
  • (B1) A copolymer (trade name: Addico 9302, weight average molecular weight: 32,000 g / mol) of 80% by weight of styrene and 20% by weight of glycidyl methacrylate was used.
  • (B2) A copolymer (trade name: HF-5661, weight average molecular weight: 163,000 g / mol) of 76% by weight of styrene and 24% by weight of acrylonitrile was used.
  • Polytetrafluoroethylene (manufacturer: MRC, product name: A-3750) was used.
  • the components were mixed in a tumbler mixer for 10 minutes and then added to a twin screw type extruder having an L / D of 36 and a diameter of 45 mm according to the composition and content of the following Table 1, The mixture was melted and extruded at a stirring speed of 250 rpm to prepare a thermoplastic resin composition in the form of a chip.
  • the prepared chip was dried at 100 ° C. for 5 hours or more and then injection molded into a screw extruder (LG Cable, product name: LGH-140N) at 240 to 300 ° C. to prepare a specimen.
  • the properties of the prepared specimens were evaluated by the following methods, and the results are shown in Table 1 below.
  • Example Comparative Example One 2 3 4 One 2 3 4 5 6 7 (A) (parts by weight) 100 100 100 100 100 100 100 100 100 100 100 100 100 (B1) (parts by weight) 0.1 0.2 0.2 0.4 - 0.2 - 0.2 3 0.2 0.2 (B2) (parts by weight) - - - - 0.2 - - - - - (C1) (parts by weight) 0.1 0.15 0.15 0.15 0.15 - 0.15 - 0.15 1.5 0.15 (C2) (parts by weight) - - - - - 0.15 - - - - - (D) (parts by weight) 0.3 0.3 0.5 0.5 0.3 0.3 0.5 0.3 0.3 0.3 0.3 0.2 2.1 Flame retardancy (1.0 mm) V-0 V-0 V-0 V-0 V-1 V-2 V-0 V-2 V-2 V-1 V-0 Permeability (%) 83.2 82.9 81.2 80.7 84.0 83.5 69.5 84.2 81.9 50.7 6
  • thermoplastic resin composition according to the present invention is excellent in flame retardance and transparency.
  • Comparative Example 6 in which an excess amount of the aliphatic sulfonic acid metal salt was used, flame retardancy and transparency were found to be lowered. The transparency and the like were greatly lowered in the case of Comparative Example 7, which was used in an excessive amount.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명의 열가소성 수지 조성물은 폴리카보네이트 수지 약 100 중량부; 변성 방향족 비닐계 공중합체 수지 약 0.01 내지 약 2 중량부; 지방족 술폰산 금속염 약 0.01 내지 약 1 중량부; 및 불소화 올레핀계 수지 약 0.01 내지 약 2 중량부;를 포함하며, 상기 변성 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체 및 글리시딜 (메타)아크릴레이트를 포함하는 단량체 혼합물의 중합체인 것을 특징으로 한다. 상기 열가소성 수지 조성물은 난연성, 투명성 등이 우수하다.

Description

열가소성 수지 조성물 및 이로부터 형성된 성형품
본 발명은 열가소성 수지 조성물 및 이로부터 형성된 성형품에 관한 것이다. 보다 구체적으로 본 발명은 난연성, 투명성 등이 우수한 열가소성 수지 조성물 및 이로부터 형성된 성형품에 관한 것이다.
폴리카보네이트 수지는 기계적 강도, 내열성, 투명성 등이 우수하여, 사무 자동화(office automation) 기기, 전기/전자 제품, 건축 자재 등의 다양한 분야에 사용된다. 이 중, 전기/전자 제품의 투명 외장재 등으로 사용되기 위해서는 높은 난연성, 투명성, 기계적 물성 등이 요구된다. 특히, 조명용으로 사용되는 확산용 폴리카보네이트 소재는 높은 난연도와 함께 높은 투과율이 요구된다.
폴리카보네이트 수지를 포함하는 열가소성 수지 조성물이 우수한 난연성, 강성 등을 구현하기 위해서는 폴리카보네이트 수지 외에 적하방지제, 충진제 등의 첨가제를 적용하여야 하나, 첨가제를 과량 사용 시, 열가소성 수지 조성물의 투명성, 가공성 등이 저하될 우려가 있다.
따라서, 난연성, 투명성, 이들의 물성 발란스 등이 모두 우수한 열가소성 수지 조성물의 개발이 요구되고 있다.
본 발명의 배경기술은 대한민국 공개특허 10-2014-0095465호 등에 개시되어 있다.
본 발명의 목적은 난연성, 투명성 등이 우수한 열가소성 수지 조성물을 제공하기 위한 것이다.
본 발명의 다른 목적은 상기 열가소성 수지 조성물로부터 형성된 성형품을 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
1. 본 발명의 한 관점은 열가소성 수지 조성물에 관한 것이다. 상기 열가소성 수지 조성물은 폴리카보네이트 수지 약 100 중량부; 변성 방향족 비닐계 공중합체 수지 약 0.01 내지 약 2 중량부; 지방족 술폰산 금속염 약 0.01 내지 약 1 중량부; 및 불소화 올레핀계 수지 약 0.01 내지 약 2 중량부;를 포함하며, 상기 변성 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체 및 글리시딜 (메타)아크릴레이트를 포함하는 단량체 혼합물의 중합체인 것을 특징으로 한다.
2. 상기 1 구체예에서, 상기 폴리카보네이트 수지는 중량평균분자량(Mw)이 약 10,000 내지 약 200,000 g/mol일 수 있다.
3. 상기 1 또는 2 구체예에서, 상기 폴리카보네이트 수지는 분지쇄가 있는 폴리카보네이트 수지일 수 있다.
4. 상기 1 내지 3 구체예에서, 상기 변성 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체 약 60 내지 약 90 중량% 및 상기 글리시딜 (메타)아크릴레이트 약 10 내지 약 40 중량%를 포함하는 단량체 혼합물의 중합체일 수 있다.
5. 상기 1 내지 4 구체예에서, 상기 변성 방향족 비닐계 공중합체 수지는 중량평균분자량(Mw)이 약 20,000 내지 약 40,000 g/mol일 수 있다.
6. 상기 1 내지 5 구체예에서, 상기 지방족 술폰산 금속염은 하기 화학식 1로 표시될 수 있다:
[화학식 1]
Figure PCTKR2018016838-appb-I000001
상기 화학식 1에서, M은 리튬(Li), 나트륨(Na) 또는 칼륨(K)이고, n은 탄소수 1 내지 10의 정수이다.
7. 상기 1 내지 6 구체예에서, 상기 변성 방향족 비닐계 공중합체 수지 및 상기 지방족 술폰산 금속염의 중량비는 약 1 : 약 1 내지 약 3 : 약 1일 수 있다.
8. 상기 1 내지 7 구체예에서, 상기 지방족 술폰산 금속염 및 상기 불소화 올레핀계 수지의 중량비는 약 1 : 약 2 내지 약 1 : 약 4일 수 있다.
9. 상기 1 내지 8 구체예에서, 상기 열가소성 수지 조성물은 UL-94 vertical test 방법으로 측정한 1.0 mm 두께 시편의 난연도가 V-0 이상일 수 있다.
10. 상기 1 내지 9 구체예에서, 상기 열가소성 수지 조성물은 ASTM D1003에 따라 측정한 1.0 mm 두께 시편의 투과도가 약 80% 이상일 수 있다.
11. 본 발명의 다른 관점은 상기 1 내지 10 중 어느 하나에 따른 열가소성 수지 조성물로부터 형성된 성형품에 관한 것이다.
본 발명은 난연성, 투명성 등이 우수한 열가소성 수지 조성물 및 이로부터 형성된 성형품을 제공하는 발명의 효과를 갖는다.
이하, 본 발명을 상세히 설명하면, 다음과 같다.
본 발명에 따른 열가소성 수지 조성물은 (A) 폴리카보네이트 수지; (B) 변성 방향족 비닐계 공중합체 수지; (C) 지방족 술폰산 금속염; 및 (D) 불소화 올레핀계 수지;를 포함한다.
본 명세서에서, 수치범위를 나타내는 "a 내지 b"는 "≥a 이고 ≤b"으로 정의한다.
(A) 폴리카보네이트 수지
본 발명의 일 구체예에 따른 폴리카보네이트 수지로는 통상의 열가소성 폴리카보네이트 수지를 제한 없이 사용할 수 있다. 예를 들면, 하나 이상의 디페놀류(방향족 디히드록시 화합물)를 포스겐, 할로겐 포르메이트, 탄산 디에스테르 등의 카보네이트 전구체와 반응시킴으로써 제조되는 방향족 폴리카보네이트 수지를 사용할 수 있다.
구체예에서, 상기 디페놀류로는 4,4'-비페놀, 2,2-비스(4-히드록시페닐)프로판, 2,4-비스(4-히드록시페닐)-2-메틸부탄, 1,1-비스(4-히드록시페닐)시클로헥산, 2,2-비스(3-클로로-4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판, 이들의 혼합물 등을 예시할 수 있으나, 이에 제한되지 않는다. 예를 들면, 상기 디페놀류로서, 2,2-비스(4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판, 1,1-비스(4-히드록시페닐)시클로헥산 등을 사용할 수 있고, 구체적으로, 비스페놀-A 라고도 불리는 2,2-비스(4-히드록시페닐)프로판을 사용할 수 있다.
구체예에서, 상기 카보네이트 전구체로는 디메틸카보네이트, 디에틸카보네이트, 디부틸카보네이트, 디시클로헥실카보네이트, 디페닐카보네이트, 디토릴카보네이트, 비스(클로로페닐)카보네이트, m-크레실카보네이트, 디나프틸카보네이트, 카보닐클로라이드(포스겐), 디포스겐, 트리포스겐, 카보닐브로마이드, 비스할로포르메이트 등을 예시할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.
상기 폴리카보네이트 수지는 분지쇄가 있는 것이 사용될 수 있으며, 예를 들면, 중합에 사용되는 디페놀류 전체에 대하여, 약 0.05 내지 약 2 몰%의 3가 또는 그 이상의 다관능 화합물, 예를 들면, 3가 또는 그 이상의 페놀기를 가진 화합물을 첨가하여 제조할 수도 있다. 상기 폴리카보네이트 수지는 호모 폴리카보네이트 수지, 코폴리카보네이트 수지 또는 이들의 블렌드 형태로 사용할 수 있다. 또한, 상기 폴리카보네이트 수지는 에스테르 전구체(precursor), 예컨대 2관능 카르복실산의 존재 하에서 중합 반응시켜 얻어진 방향족 폴리에스테르-카보네이트 수지로 일부 또는 전량 대체하는 것도 가능하다.
구체예에서 상기 폴리카보네이트 수지는 GPC-MALS(GEL PERMEATION CHROMATOGRAPHY (GPC) WITH MULTI-ANGLE LIGHT SCATTERING DETECTION (MALS))를 사용하여 측정한 중량평균분자량(Mw)이 약 10,000 내지 약 200,000 g/mol, 예를 들면, 약 15,000 내지 약 80,000 g/mol일 수 있고, a(Mark-Houwink constant) 값이 약 0.4 내지 약 0.7, 예를 들면 약 0.5 내지 약 0.6인 분지쇄가 있는 폴리카보네이트 수지일 수 있다. 상기 범위에서 열가소성 수지 조성물의 난연성, 투명성 등이 우수할 수 있다.
(B) 변성 방향족 비닐계 공중합체 수지
본 발명의 변성 방향족 비닐계 공중합체 수지는 고온 고습 조건 하에서도 폴리카보네이트 수지의 분해를 저감할 수 있고, 열가소성 수지 조성물의 난연성 등을 향상시킬 수 있는 것으로서, 방향족 비닐계 단량체 및 글리시딜 (메타)아크릴레이트를 포함하는 단량체 혼합물의 중합체이다.
본 명세서에서 특별한 언급이 없는 한, "(메타)아크릴"는 "아크릴" 및 "메타크릴" 둘 다 가능함을 의미한다. 예를 들면, "(메타)아크릴레이트"는 "아크릴레이트"와 "메타크릴레이트" 둘 다 가능함을 의미한다.
구체예에서, 상기 변성 방향족 비닐계 공중합체 수지는 중합체 제조 분야에 알려진 통상의 중합방법, 예를 들면, 괴상 중합, 유화 중합, 현탁 중합 등에 의해 제조될 수 있으며, 예를 들면, 상기 단량체 혼합물에 중합개시제를 투입하여 중합하는 단계를 포함하는 제조방법을 통하여 제조될 수 있다.
구체예에서, 상기 중합개시제는 라디칼 중합개시제이고, 상기 중합은 굴절률 등을 고려하여 현탁 중합일 수 있고, 상기 현탁 중합은 현탁안정제 및 연쇄이동제 존재 하에 수행될 수 있다. 즉, 상기 단량체에 라디칼 중합개시제 및 연쇄이동제를 투입하여 반응 혼합액을 제조하고, 제조된 반응 혼합액을 현탁안정제가 용해된 수용액에 투입하여, 공중합체 수지를 제조(현탁 중합)할 수 있다. 또한, 상기 중합 시, 중합 온도와 중합 시간은 적절하게 조절할 수 있다. 중합 온도는 약 65 내지 약 125℃, 예를 들면 약 70 내지 약 120℃일 수 있고, 중합 시간은 2 내지 8시간일 수 있다. 상기 중합이 완료된 후에는 냉각, 세척, 탈수, 건조 공정을 거쳐 변성 방향족 비닐계 공중합체 수지를 얻을 수 있다.
구체예에서, 상기 방향족 비닐계 단량체는 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다.
구체예에서, 상기 방향족 비닐계 단량체의 함량은 상기 단량체 혼합물 100 중량% 중 약 60 내지 약 90 중량%, 예를 들면 약 70 내지 약 85 중량%일 수 있고, 상기 글리시딜 (메타)아크릴레이트의 함량은 상기 단량체 혼합물 100 중량% 중 약 10 내지 약 40 중량%, 예를 들면 약 15 내지 약 30 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 난연성 등이 우수할 수 있다.
구체예에서, 상기 변성 방향족 비닐계 공중합체 수지는 겔 투과 크로마토그라피(gel permeation chromatography: GPC)로 측정한 중량평균분자량(Mw)이 약 20,000 내지 약 40,000 g/mol, 예를 들면 약 25,000 내지 약 35,000 g/mol일 수 있다. 상기 범위에서 열가소성 수지 조성물의 난연성 등이 우수할 수 있고, 고온 고습 조건 하에서도 폴리카보네이트 수지의 분해를 저감할 수 있다.
구체예에서, 상기 변성 방향족 비닐계 공중합체 수지는 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 0.01 내지 약 2 중량부, 예를 들면 약 0.1 내지 약 1 중량부로 포함될 수 있다. 상기 변성 방향족 비닐계 공중합체 수지의 함량이 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 0.01 중량부 미만일 경우, 열가소성 수지 조성물의 난연성, 적하 방지 특성 등이 저하될 우려가 있고, 약 2 중량부를 초과할 경우, 열가소성 수지 조성물의 투명성 등이 저하될 우려가 있다.
(C) 지방족 술폰산 금속염
본 발명의 일 구체예에 따른 지방족 술폰산 금속염은 가공 시, 폴리카보네이트 수지를 분해를 저감하고, 열가소성 수지 조성물의 난연성, 열안정성, 강성 등을 향상시킬 수 있는 것으로서, 하기 화학식 1로 표시될 수 있다.
[화학식 1]
Figure PCTKR2018016838-appb-I000002
상기 화학식 1에서, M은 리튬(Li), 나트륨(Na) 또는 칼륨(K)이고, n은 탄소수 1 내지 10의 정수이다.
구체예에서, 상기 지방족 술폰산 금속염으로는 퍼플루오로메탄술폰산의 금속염, 퍼플루오로에탄술폰산의 금속염, 퍼플루오로프로판술폰산의 금속염, 퍼플루오로부탄술폰산의 금속염, 퍼플루오로펜탄술폰산의 금속염, 퍼플루오로헥산술폰산의 금속염, 퍼플루오로헵탄술폰산의 금속염, 퍼플루오로옥탄술폰산의 금속염 등을 예시할 수 있다. 이들은 1종 또는 그 이상을 병용하여 사용하여도 좋다. 또한, 상기 퍼플루오로알칸술폰산의 금속염에 사용되는 적당한 금속으로서는 나트륨, 칼륨 등의 I족의 금속(알칼리 금속), II족의 금속(알칼리 토금속), 동, 알루미늄 등을 들 수 있고, 특히, 알칼리 금속이 바람직하다. 이들 중에서도 특히 퍼플루오로부탄술폰산의 칼륨염과 퍼플루오로펜탄술폰산의 칼륨염이 바람직하다.
구체예에서, 상기 지방족 술폰산 금속염은 평균 입경이 약 100 내지 약 400 ㎛, 예를 들면 약 150 내지 약 350 ㎛일 수 있다. 상기 범위에서 열가소성 수지 조성물의 난연성, 열안정성, 강성 등이 우수할 수 있으며, 입자가 서로 응집하여 성형품의 표면이 거칠어지는 것을 저감할 수 있다.
구체예에서, 상기 지방족 술폰산 금속염은 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 0.01 내지 약 1 중량부, 예를 들면 약 0.05 내지 약 0.5 중량부로 포함될 수 있다. 상기 지방족 술폰산 금속염의 함량이 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 0.01 중량부 미만일 경우, 열가소성 수지 조성물의 난연성 등이 저하될 우려가 있고, 약 1 중량부를 초과할 경우, 열가소성 수지 조성물의 투명성이 저하되고, 폴리카보네이트 수지의 분해를 유발할 우려가 있다.
구체예에서, 상기 변성 방향족 비닐계 공중합체 수지(B) 및 상기 지방족 술폰산 금속염(C)은 약 1 : 약 1 내지 약 3 : 약 1의 중량비(B:C)로 포함될 수 있다. 상기 범위에서 열가소성 수지 조성물의 난연성, 투명성 등이 더 우수할 수 있다.
(D) 불소화 올레핀계 수지
본 발명의 일 구체예에 따른 불소화 올레핀계 수지는 열가소성 수지 조성물의 압출 시, 수지 조성물 내에서 섬유상 망상(fibrillar network)을 형성하고, 연소 시에 열가소성 수지 조성물의 용융 점도를 저하시키고, 수축율을 증가시켜 적하 현상을 방지할 수 있는 것으로서, 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드, 테트라플루오로에틸렌/비닐리덴플루오로라이드 공중합체, 테트라플루오로에틸렌/헥사플루오로프로필렌 공중합체, 에틸렌/테트라플루오로에틸렌 공중합체, 이들의 조합 등을 예시할 수 있으나, 이에 제한되지 않는다. 예를 들면, 폴리테트라플루오로에틸렌(상품명: 테플론) 등을 사용할 수 있다.
구체예에서, 상기 불소화 올레핀계 수지는 공지의 중합방법을 이용하여 제조될 수 있으며, 예를 들면, 나트륨, 칼륨, 암모늄 퍼옥시디설페이트 등의 자유 라디칼 형성 촉매가 들어있는 수성 매질 내에서 제조될 수 있다.
구체예에서, 상기 불소화 올레핀계 수지는 에멀젼(emulsion) 상태 또는 분말(powder) 상태로 사용될 수 있다. 에멀전 상태의 불소화 올레핀계 수지는 분산성이 우수하지만 제조공정이 복잡하므로, 분말 상태라 하더라도 전체 수지 조성물 내에 적절히 분산될 수 있으면, 분말 상태로 사용하는 것이 바람직하다.
구체예에서, 상기 불소화 올레핀계 수지는 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 0.01 내지 약 2 중량부, 예를 들면 약 0.1 내지 약 1 중량부, 구체적으로 약 0.1 내지 약 0.6 중량부로 포함될 수 있다 상기 불소화 올레핀계 수지의 함량이 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 0.01 중량부 미만일 경우, 열가소성 수지 조성물의 난연성, 적하 방지 특성 등이 저하될 우려가 있고, 약 2 중량부를 초과할 경우, 열가소성 수지 조성물의 투명성 등이 저하될 우려가 있다.
구체예에서, 상기 지방족 술폰산 금속염(C) 및 상기 불소화 올레핀계 수지(D)은 약 1 : 약 2 내지 약 1 : 약 4의 중량비(C:D)로 포함될 수 있다. 상기 범위에서 열가소성 수지 조성물의 투명성, 난연성 등이 더 우수할 수 있다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 필요에 따라, 통상적인 첨가제를 더욱 포함할 수 있다. 상기 첨가제로는 충진제, 산화 방지제, 활제, 이형제, 핵제, 대전방지제, 안정제, 안료, 염료, 이들의 혼합물 등을 예시할 수 있으나, 이에 제한되지 않는다. 상기 첨가제 사용 시, 그 함량은 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 0.01 내지 약 20 중량부일 수 있으나, 이에 제한되지 않는다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 상기 구성 성분을 혼합하고, 통상의 이축 압출기를 사용하여, 약 200 내지 약 280℃, 예를 들면 약 220 내지 약 250℃에서 용융 압출한 펠렛 형태일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 UL-94 vertical test 방법으로 측정한 1.0 mm 두께 시편의 난연도가 V-0 이상일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 ASTM D1003에 따라 측정한 1.0 mm 두께 시편의 투과도가 약 80% 이상, 예를 들면 약 80.5 내지 약 95%일 수 있다.
본 발명에 따른 성형품은 상기 열가소성 수지 조성물로부터 형성된다. 상기 열가소성 수지 조성물은 펠렛 형태로 제조될 수 있으며, 제조된 펠렛은 사출성형, 압출성형, 진공성형, 캐스팅성형 등의 다양한 성형방법을 통해 다양한 성형품(제품)으로 제조될 수 있다. 이러한 성형방법은 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의해 잘 알려져 있다. 상기 성형품은 난연성, 투명성, 이들의 물성 발란스 등이 우수하므로, 전기/전자 제품의 내/외장재, 자동차 내/외장재, 건축용 외장재 등으로 유용하다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
실시예
하기 실시예 및 비교예에서 사용된 각 성분의 사양은 다음과 같다:
(A) 폴리카보네이트 수지
비스페놀-A형 폴리카보네이트 수지(중량평균분자량: 30,000 g/mol, a값: 0.57)를 사용하였다.
(B) 변성 방향족 비닐계 공중합체 수지
(B1) 스티렌 80 중량% 및 글리시딜 메타크릴레이트 20 중량%의 공중합체(제조사: Synergy material, 제품명: Addico 9302, 중량평균분자량: 32,000 g/mol)를 사용하였다.
(B2) 스티렌 76 중량% 및 아크릴로니트릴 24 중량%의 공중합체(제조사: 롯데첨단소재, 제품명: HF-5661, 중량평균분자량: 163,000 g/mol)를 사용하였다.
(C) 지방족 술폰산 금속염
(C1) KFBS(Potassium Perfluorobutane sulfonate, 제조사: 3M)을 사용하였다.
(C2) 디페닐 술폰-3-술폰산의 칼륨염(potassium diphenyl sulfone-3-sulfonate, 제조사: SEAL SANDS CHEMICALS, 제품명: KSS)를 사용 하였다.
(D) 불소화 올레핀계 수지
폴리테트라플루오로에틸렌(제조사: MRC, 제품명: A-3750)을 사용하였다.
실시예 1 내지 4 및 비교예 1 내지 7
하기 표 1의 조성 및 함량에 따라, 상기 구성 성분을 텀블러 믹서로 10분 동안 혼합한 후, L/D=36, 직경 45 mm인 이축(twin screw type) 압출기에 첨가하고, 240 내지 300℃ 및 교반 속도 250 rpm 조건에서 용융 및 압출하여 칩(chip) 형태의 열가소성 수지 조성물을 제조하였다. 제조된 칩은 100℃에서 5시간 이상 건조한 후, 240 내지 300℃에서 스크류식 사출기(제조사: LG전선, 제품명: LGH-140N)로 사출 성형하여 시편을 제조하였다. 제조된 시편에 대하여 하기의 방법으로 물성을 평가하고, 그 결과를 하기 표 1에 나타내었다.
물성 측정 방법
(1) 난연도 평가: UL94 vertical test 방법으로 두께 1.0 mm의 시편의 난연도를 측정하였다.
(2) 투과도(단위: %): ASTM D1003에 의거하여, 미놀타 3600D CIE Lab. 색차계로 1.0 mm 두께의 시편의 투과도를 측정하였다.
실시예 비교예
1 2 3 4 1 2 3 4 5 6 7
(A) (중량부) 100 100 100 100 100 100 100 100 100 100 100
(B1) (중량부) 0.1 0.2 0.2 0.4 - 0.2 - 0.2 3 0.2 0.2
(B2) (중량부) - - - - 0.2 - - - - - -
(C1) (중량부) 0.1 0.15 0.15 0.15 0.15 - 0.15 - 0.15 1.5 0.15
(C2) (중량부) - - - - - 0.15 - - - - -
(D) (중량부) 0.3 0.3 0.5 0.5 0.3 0.3 0.5 0.3 0.3 0.3 2.1
난연도(1.0 mm) V-0 V-0 V-0 V-0 V-1 V-2 V-0 V-2 V-2 V-1 V-0
투과도 (%) 83.2 82.9 81.2 80.7 84.0 83.5 69.5 84.2 81.9 50.7 69.5
상기 결과로부터, 본 발명에 따른 열가소성 수지 조성물은 난연성, 투명성 등이 우수함을 알 수 있다.
반면, 본 발명의 변성 방향족 비닐계 수지 (B1) 대신에 SAN 수지(B2)를 사용한 비교예 1의 경우, 난연성 등이 저하됨을 알 수 있고, 본 발명의 지방족 술폰산 금속염 (C1) 대신에 방향족 술폰산 금속염 (C2)를 사용한 비교예 2의 경우, 난연성 등이 저하됨을 알 수 있다. 변성 방향족 비닐계 수지를 사용하지 않은 비교예 3의 경우, 투명성이 크게 저하됨을 알 수 있고, 지방족 술폰산 금속염을 사용하지 않은 비교예 4의 경우, 난연성이 크게 저하됨을 알 수 있다. 변성 방향족 비닐계 수지를 과량 사용한 비교예 5의 경우, 난연성이 크게 저하됨을 알 수 있고, 지방족 술폰산 금속염을 과량 사용한 비교예 6의 경우, 난연성, 투명성 등이 저하됨을 알 수 있으며, 불소화 올레핀계 수지를 과량 사용한 비교예 7의 경우, 투명성 등이 크게 저하됨을 알 수 있다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (11)

  1. 폴리카보네이트 수지 약 100 중량부;
    변성 방향족 비닐계 공중합체 수지 약 0.01 내지 약 2 중량부;
    지방족 술폰산 금속염 약 0.01 내지 약 1 중량부; 및
    불소화 올레핀계 수지 약 0.01 내지 약 2 중량부;를 포함하며,
    상기 변성 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체 및 글리시딜 (메타)아크릴레이트를 포함하는 단량체 혼합물의 중합체인 것을 특징으로 하는 열가소성 수지 조성물.
  2. 제1항에 있어서, 상기 폴리카보네이트 수지는 중량평균분자량(Mw)이 약 10,000 내지 약 200,000 g/mol인 것을 특징으로 하는 열가소성 수지 조성물.
  3. 제1항에 있어서, 상기 폴리카보네이트 수지는 분지쇄가 있는 폴리카보네이트 수지인 것을 특징으로 하는 열가소성 수지 조성물.
  4. 제1항에 있어서, 상기 변성 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체 약 60 내지 약 90 중량% 및 상기 글리시딜 (메타)아크릴레이트 약 10 내지 약 40 중량%를 포함하는 단량체 혼합물의 중합체인 것을 특징으로 하는 열가소성 수지 조성물.
  5. 제1항에 있어서, 상기 변성 방향족 비닐계 공중합체 수지는 중량평균분자량(Mw)이 약 20,000 내지 약 40,000 g/mol인 것을 특징으로 하는 열가소성 수지 조성물.
  6. 제1항에 있어서, 상기 지방족 술폰산 금속염은 하기 화학식 1로 표시되는 것을 특징으로 하는 열가소성 수지 조성물:
    [화학식 1]
    Figure PCTKR2018016838-appb-I000003
    상기 화학식 1에서, M은 리튬(Li), 나트륨(Na) 또는 칼륨(K)이고, n은 탄소수 1 내지 10의 정수이다.
  7. 제1항에 있어서, 상기 변성 방향족 비닐계 공중합체 수지 및 상기 지방족 술폰산 금속염의 중량비는 약 1 : 약 1 내지 약 3 : 약 1인 것을 특징으로 하는 열가소성 수지 조성물.
  8. 제1항에 있어서, 상기 지방족 술폰산 금속염 및 상기 불소화 올레핀계 수지의 중량비는 약 1 : 약 2 내지 약 1 : 약 4인 것을 특징으로 하는 열가소성 수지 조성물.
  9. 제1항에 있어서, 상기 열가소성 수지 조성물은 UL-94 vertical test 방법으로 측정한 1.0 mm 두께 시편의 난연도가 V-0 이상인 것을 특징으로 하는 열가소성 수지 조성물.
  10. 제1항에 있어서, 상기 열가소성 수지 조성물은 ASTM D1003에 따라 측정한 1.0 mm 두께 시편의 투과도가 약 80% 이상인 것을 특징으로 하는 열가소성 수지 조성물.
  11. 제1항 내지 제10항 중 어느 한 항에 따른 열가소성 수지 조성물로부터 형성되는 것을 특징으로 하는 성형품.
PCT/KR2018/016838 2017-12-28 2018-12-28 열가소성 수지 조성물 및 이로부터 형성된 성형품 WO2019132574A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/767,354 US11352492B2 (en) 2017-12-28 2018-12-28 Thermoplastic polycarbonate resin composition and molded product formed therefrom
CN201880081125.8A CN111527149B (zh) 2017-12-28 2018-12-28 热塑性树脂组合物和由其形成的模制产品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0182616 2017-12-28
KR1020170182616A KR102007099B1 (ko) 2017-12-28 2017-12-28 열가소성 수지 조성물 및 이로부터 형성된 성형품

Publications (1)

Publication Number Publication Date
WO2019132574A1 true WO2019132574A1 (ko) 2019-07-04

Family

ID=67067972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016838 WO2019132574A1 (ko) 2017-12-28 2018-12-28 열가소성 수지 조성물 및 이로부터 형성된 성형품

Country Status (4)

Country Link
US (1) US11352492B2 (ko)
KR (1) KR102007099B1 (ko)
CN (1) CN111527149B (ko)
WO (1) WO2019132574A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11352492B2 (en) 2017-12-28 2022-06-07 Lotte Chemical Corporation Thermoplastic polycarbonate resin composition and molded product formed therefrom

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090118739A (ko) * 2008-05-14 2009-11-18 제일모직주식회사 난연성이 우수한 폴리카보네이트 수지 조성물
KR20120002991A (ko) * 2009-09-14 2012-01-09 미쓰비시 엔지니어링-플라스틱스 코포레이션 폴리카보네이트 수지 조성물 및 성형체
KR20160057606A (ko) * 2014-11-14 2016-05-24 롯데케미칼 주식회사 고유동 및 고충격강도를 갖는 난연 열가소성 수지 조성물
KR20170079625A (ko) * 2015-12-30 2017-07-10 롯데첨단소재(주) 열가소성 수지 조성물 및 이를 포함하는 성형품

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002530458A (ja) * 1998-11-13 2002-09-17 バイエル アクチェンゲゼルシャフト 塩素と臭素を含まない難燃性ポリカ−ボネ−ト成形組成物
KR101397729B1 (ko) * 2006-08-01 2014-05-20 테이진 카세이 가부시키가이샤 수지 조성물
KR20080061813A (ko) * 2006-12-28 2008-07-03 제일모직주식회사 폴리카보네이트계 열가소성 수지 조성물
JP5371973B2 (ja) * 2008-05-26 2013-12-18 帝人株式会社 難燃性ポリカーボネート樹脂組成物
JP5379667B2 (ja) * 2009-12-18 2013-12-25 三菱レイヨン株式会社 熱可塑性樹脂組成物及び成形体
KR101930118B1 (ko) * 2011-09-28 2018-12-17 코베스트로 도이칠란드 아게 유리 섬유를 포함하는 폴리카르보네이트
EP2764075A1 (en) 2011-10-08 2014-08-13 SABIC Innovative Plastics IP B.V. Plastic flame housing and method of making the same
JP6346077B2 (ja) * 2014-12-01 2018-06-20 帝人株式会社 光拡散性を有する帯電防止性ポリカーボネート樹脂組成物
CN105907074B (zh) * 2016-07-05 2018-02-09 上海日之升科技有限公司 金属颜料预处理方法、金属颜料及采用金属颜料的pc材料
CN111225955A (zh) * 2017-10-16 2020-06-02 科思创德国股份有限公司 具有低双酚a含量的耐火的聚碳酸酯-丙烯酸酯-橡胶-组合物
KR102007099B1 (ko) 2017-12-28 2019-08-02 롯데첨단소재(주) 열가소성 수지 조성물 및 이로부터 형성된 성형품

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090118739A (ko) * 2008-05-14 2009-11-18 제일모직주식회사 난연성이 우수한 폴리카보네이트 수지 조성물
KR20120002991A (ko) * 2009-09-14 2012-01-09 미쓰비시 엔지니어링-플라스틱스 코포레이션 폴리카보네이트 수지 조성물 및 성형체
KR20160057606A (ko) * 2014-11-14 2016-05-24 롯데케미칼 주식회사 고유동 및 고충격강도를 갖는 난연 열가소성 수지 조성물
KR20170079625A (ko) * 2015-12-30 2017-07-10 롯데첨단소재(주) 열가소성 수지 조성물 및 이를 포함하는 성형품

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11352492B2 (en) 2017-12-28 2022-06-07 Lotte Chemical Corporation Thermoplastic polycarbonate resin composition and molded product formed therefrom

Also Published As

Publication number Publication date
US11352492B2 (en) 2022-06-07
CN111527149B (zh) 2023-01-13
CN111527149A (zh) 2020-08-11
KR102007099B1 (ko) 2019-08-02
US20200385572A1 (en) 2020-12-10
KR20190080256A (ko) 2019-07-08

Similar Documents

Publication Publication Date Title
US6730720B2 (en) Method for reducing haze in a fire resistant polycarbonate composition
KR100962389B1 (ko) 난연성이 우수한 폴리카보네이트 수지 조성물
WO2014092412A1 (ko) 내광성 및 난연성이 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
WO2018117424A2 (ko) 전기적 특성이 우수한 열가소성 수지 조성물 및 이를 이용하여 제조된 성형품
WO2012091307A2 (ko) 난연성 열가소성 수지 조성물
US20020177643A1 (en) Flame-retardant polycarbonate molding compounds with anti-electrostatic properties
KR101950062B1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
KR100425984B1 (ko) 내충격성이우수한난연성을갖는폴리카보네이트계열가소성수지조성물
KR101256262B1 (ko) 난연성 열가소성 수지 조성물 및 이를 이용한 성형품
WO2019132574A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2018110824A1 (ko) 전기적 특성이 우수한 열가소성 수지 조성물 및 이를 이용하여 제조된 성형품
KR20030055443A (ko) 난연성 열가소성 수지조성물
KR101240320B1 (ko) 투명성과 난연성이 우수한 폴리카보네이트 수지 조성물
JPH09111109A (ja) 難燃性ポリカーボネート樹脂組成物
JP2000053854A (ja) 難燃性ポリカーボネート樹脂組成物
WO2019107919A1 (ko) 수지 조성물 및 이로부터 제조된 성형품
TWI404763B (zh) 抗刮聚碳酸酯樹脂組成物及成形物件
WO2014104847A1 (ko) 광투과성 및 난연성이 우수한 폴리카보네이트 수지 조성물
KR20000041992A (ko) 난연성을 갖는 폴리카보네이트계 열가소성 수지 조성물
EP0714932A2 (en) Flame proof polycarbonate composition
KR100211180B1 (ko) 난연성을 갖는 열가소성 폴리카보네이트계 수지 조성물
KR100340998B1 (ko) 난연성 열가소성 수지 조성물
KR100989908B1 (ko) 저광택 난연성 폴리카보네이트 수지 조성물 및 이를 이용한성형품
WO2022182013A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2021107487A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895091

Country of ref document: EP

Kind code of ref document: A1