WO2019131644A1 - アルミナ焼結体の前駆体、アルミナ焼結体の製造方法、砥粒の製造方法及びアルミナ焼結体 - Google Patents

アルミナ焼結体の前駆体、アルミナ焼結体の製造方法、砥粒の製造方法及びアルミナ焼結体 Download PDF

Info

Publication number
WO2019131644A1
WO2019131644A1 PCT/JP2018/047595 JP2018047595W WO2019131644A1 WO 2019131644 A1 WO2019131644 A1 WO 2019131644A1 JP 2018047595 W JP2018047595 W JP 2018047595W WO 2019131644 A1 WO2019131644 A1 WO 2019131644A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
alumina sintered
precursor
mass
alumina
Prior art date
Application number
PCT/JP2018/047595
Other languages
English (en)
French (fr)
Inventor
壮 宮石
悟史 飯生
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2019562035A priority Critical patent/JP6877586B2/ja
Priority to KR1020207013918A priority patent/KR102363114B1/ko
Priority to CN201880074716.2A priority patent/CN111356668A/zh
Priority to US16/768,231 priority patent/US11667574B2/en
Priority to EP18896983.6A priority patent/EP3733629A4/en
Publication of WO2019131644A1 publication Critical patent/WO2019131644A1/ja
Priority to US18/130,985 priority patent/US20230339815A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/1115Minute sintered entities, e.g. sintered abrasive grains or shaped particles such as platelets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • C09K3/1418Abrasive particles per se obtained by division of a mass agglomerated by sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3265Mn2O3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • C04B2235/3291Silver oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/408Noble metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to a precursor of an alumina sintered body, a method of manufacturing an alumina sintered body, a method of manufacturing an abrasive grain, and an alumina sintered body.
  • Alumina sintered bodies are used in various industrial fields, taking advantage of features such as high hardness, high strength, high heat resistance, high wear resistance, and high chemical resistance.
  • it is used as an abrasive that is a raw material of heavy grinding wheels in the steel industry.
  • the grinding ratio of the wheels affects the "hardness” and "fracture toughness" of the abrasive grains used in the wheel Be done. It is considered that the following relationship exists between "grinding ratio and hardness” and “grinding ratio and fracture toughness”. (1) The grinding ratio increases because the amount of grinding increases as the hardness of the abrasive grains increases. (2) As the fracture toughness increases, the amount of abrasive wear decreases and the grinding ratio increases.
  • the molecular part in the grinding ratio equation is influenced by the amount of grinding, and the denominator part is influenced by the amount of wear.
  • the hardness and the fracture toughness be high.
  • Non-Patent Document 1 by adding yttria to an alumina raw material, particle growth can be suppressed, and mechanical properties such as bending strength, hardness, fracture toughness value, etc. of the obtained alumina sintered body can be improved. It is described.
  • Non-Patent Document 2 describes that yttrium can be segregated at alumina grain boundaries in an alumina sintered body obtained by adding yttria to an alumina raw material, and creep can be suppressed.
  • An object of the present invention is to provide a method for producing an alumina sintered body using a precursor.
  • the present inventors selected a precursor of an alumina sintered body from the group consisting of aluminum, yttrium, iron, zinc, cobalt, manganese, copper, niobium, antimony, tungsten, silver and gallium. Containing at least one metal to be added in a predetermined quantitative relationship, and containing alumina as ⁇ -alumina makes it possible to obtain an alumina sintered body having excellent mechanical properties and at a lower temperature. It has been found that it is easy to connect, and the present invention has been completed.
  • the gist configuration of the present invention is as follows.
  • a precursor of an alumina sintered body containing aluminum, yttrium, and at least one metal selected from the group consisting of iron, zinc, cobalt, manganese, copper, niobium, antimony, tungsten, silver and gallium Being a body
  • the content of the aluminum is 98.0 mass% or more in terms of oxide (Al 2 O 3 ) in 100 mass% of the precursor of the alumina sintered body
  • the content of the yttrium is 0.01 to 1.35 parts by mass in terms of oxide (Y 2 O 3 ) with respect to 100 parts by mass of the content of aluminum in terms of the oxide
  • the total content of metals selected from the above group is 0.02 to 1.55 parts by mass in terms of oxide with respect to 100 parts by mass of the content of aluminum in terms of the oxide
  • the step (I) of obtaining a precursor of the alumina sintered body comprises a compound containing ⁇ -alumina, yttrium, iron, zinc, cobalt, manganese, copper, niobium, antimony, tungsten, silver and gallium
  • the manufacturing method of the alumina sintered compact as described in said [4] including the process of mixing with the at least 1 compound containing 1 type of metals selected from the group consisting of.
  • [6] The method for producing an alumina sintered body according to the above [4] or [5], wherein the compound containing yttrium is yttrium acetate tetrahydrate.
  • An alumina sintered body comprising aluminum, yttrium, and at least one metal selected from the group consisting of iron, zinc, cobalt, manganese, copper, niobium, antimony, tungsten, silver and gallium.
  • the content of the aluminum is 98.0 mass% or more in terms of oxide (Al 2 O 3 ) in 100 mass% of the alumina sintered body,
  • the content of the yttrium is 0.01 to 1.35 parts by mass in terms of oxide (Y 2 O 3 ) with respect to 100 parts by mass of the content of aluminum in terms of the oxide,
  • the total content of metals selected from the above group is 0.02 to 1.55 parts by mass in terms of oxide with respect to 100 parts by mass of the content of aluminum in terms of the oxide,
  • a precursor of an alumina sintered body which can be easily sintered at a lower temperature than the conventional alumina raw material mixture containing yttrium, and which is a dense and sintered alumina excellent in mechanical characteristics, and the precursor
  • the manufacturing method of the alumina sinter which used the body can be provided.
  • the precursor of the alumina sintered body according to the present invention the method for producing the alumina sintered body using the precursor, the method for producing the abrasive grains and the embodiment of the alumina sintered body will be described in detail below, but the present invention It is not limited to the following embodiment.
  • the precursor of the alumina sintered body according to the present embodiment is at least one metal selected from the group consisting of aluminum, yttrium, iron, zinc, cobalt, manganese, copper, niobium, antimony, tungsten, silver and gallium.
  • the content of the aluminum is 98.0 mass% or more in terms of oxide (Al 2 O 3 ) in 100 mass% of the precursor of the alumina sintered body, and the content of the yttrium Is 0.01 to 1.35 parts by mass in terms of oxide (Y 2 O 3 ) with respect to 100 parts by mass of the content of aluminum in terms of oxide, and the total content of metals selected from the above group
  • the amount is 0.02 to 1.55 parts by mass in terms of oxide with respect to 100 parts by mass of the content of aluminum in terms of oxide, and it is particularly preferable to contain the aluminum as ⁇ -alumina. To be a reward.
  • the precursor of the alumina sintered body of the present invention is easier to sinter at a lower temperature than the conventional alumina raw material mixture containing yttrium, and a dense and sintered alumina sintered body having excellent mechanical properties can be obtained.
  • Such an alumina sintered body precursor of the present invention is particularly suitable for obtaining an alumina sintered body having high hardness and excellent fracture toughness.
  • the precursor of the alumina sintered body (hereinafter, sometimes simply referred to as "precursor”) refers to a raw material mixture before heat treatment.
  • an alumina sintered compact (Hereinafter, it may only be mentioned a "sintered compact.”) Points out the sintered compact which heat-processed and sintered the precursor.
  • the precursor of this embodiment contains aluminum (Al) as ⁇ -alumina.
  • the content of Al is 98.0 mass% or more, preferably 98.5 mass% or more, and 99.0 mass% or more in terms of oxide (Al 2 O 3 ) in 100 mass% of the precursor. It is more preferable that By setting it as the said range, the sintered compact which maintained moderate hardness is obtained.
  • the content of Al decreases, the purity of alumina in the alumina sintered body decreases.
  • the hardness of the sintered body decreases.
  • the upper limit of the content of Al is not particularly limited as long as it is adjusted in relation to the additive component such as yttrium, but may be 99.97% by mass, for example.
  • the mass of the precursor does not include a binder resin such as polyvinyl alcohol and a solvent such as water, which are used in forming the precursor.
  • the precursor of the present embodiment contains yttrium (Y).
  • the content of Y is 0.01 to 1.35 parts by mass in terms of oxide (Y 2 O 3 ) with respect to 100 parts by mass of the content of aluminum in terms of Al 2 O 3 . If the content of Y is 0.01 parts by mass or more, the mechanical properties of the sintered body are improved by the addition effect of Y. When the content of Y is 1.35 parts by mass or less, the relative density of the sintered body is improved. Further, from the viewpoint of obtaining a sintered body having a more precise and excellent mechanical property, the content of Y is preferably 0.03 to 1.10 parts by mass, and 0.05 to 1.00 parts by mass.
  • the precursor of the present embodiment preferably contains the above yttrium as at least one of yttrium acetate tetrahydrate and yttrium oxide, and more preferably as yttrium acetate tetrahydrate.
  • the precursor of this embodiment includes iron (Fe), zinc (Zn), cobalt (Co), manganese (Mn), copper (Cu), niobium (Nb), antimony (Sb), tungsten (W), silver ( And at least one metal selected from the group consisting of Ag) and gallium (Ga) (hereinafter, sometimes collectively referred to as “co-additive component such as Fe”).
  • the co-additive component such as Fe preferably contains at least one selected from the group consisting of Fe, Zn, Co, Mn, Cu, Nb, Ag and Ga.
  • At least one metal selected from the group consisting of Fe, Zn, Co, Mn, Cu, Ag and Ga is preferable, and it is composed of Fe, Zn and Cu More preferred is at least one metal selected from the group, and it is even more preferred to include Fe.
  • the co-additive components such as Fe may be used singly or in combination of two or more, but it is more preferable to use one alone.
  • the total content of metals selected from the group consisting of Fe, Zn, Co, Mn, Cu, Nb, Sb, W, Ag and Ga is 100 parts by mass of the content of aluminum in terms of Al 2 O 3 , Oxide (Fe 2 O 3 , ZnO, Co 2 O 3 , Mn 2 O 3 , CuO, Nb 2 O 5 , Sb 2 O 3 , WO 3 , Ag 2 O and Ga 2 O 3 ) in the range of 0.02 to It is 1.55 parts by mass.
  • the total content of co-additive components such as Fe is 0.02 parts by mass or more, it becomes a precursor that is easy to sinter even if it contains Y.
  • the total content of co-additive components such as Fe is 1.55 parts by mass or less, the purity of alumina can be maintained high in the sintered body. Furthermore, from the viewpoint of obtaining a sintered body having a higher density and superior mechanical properties, the total content of co-added components such as Fe is preferably 0.03 to 1.20 parts by mass, 0.05 It is more preferable that the amount is 1.00 parts by mass. In addition, when co-additive components, such as Fe, are 1 type of components, the total content of co-additive components, such as Fe, is content of this 1 type of component. Moreover, it is preferable that a precursor contains each of coadditive components, such as said Fe, as an oxide of each metal.
  • the precursor of this embodiment may further contain components other than the above in the range which does not prevent the effect of this invention. Specifically, the following components may be mentioned.
  • the precursor of the present embodiment may contain silicon (Si), and the content of Si is 0 to 5 in terms of oxide (SiO 2 ) with respect to 100 parts by mass of aluminum content in terms of Al 2 O 3. It is preferable that it is 0.12 mass part. By setting the content of Si to 0.12 parts by mass or less in terms of SiO 2 , a dense sintered body can be obtained.
  • the precursor preferably does not substantially contain Si, but when the purity of the material used as the raw material is relatively low, the content of Si is Al 2 in consideration of Si that is unavoidably mixed.
  • the amount may be 0.001 parts by mass or more, more preferably 0.07 parts by mass or less, still more preferably 0.05 parts by mass or less, per 100 parts by mass of aluminum in terms of O 3. Is 0.03 parts by mass or less.
  • the precursor of this embodiment further contains sodium (Na).
  • Na sodium
  • the content of Na is preferably 0.05 to 1.0 parts by mass in terms of oxide (Na 2 O), with respect to 100 parts by mass of the content of aluminum in terms of Al 2 O 3 , and 0.08 It is more preferably in the range of about 0.70 parts by mass to about 0.10 to 0.70 parts by mass. When the content of Na is in the above range, a denser sintered body can be obtained.
  • the precursor of this embodiment may contain other components other than the above, as long as the effects of the present invention are not impaired.
  • other components include magnesium (Mg), calcium (Ca), potassium (K), titanium (Ti) and the like.
  • the content of each of the other components is preferably 0.20 parts by mass or less, more preferably 0.2 parts by mass or less, in terms of the oxide of each component, with respect to 100 parts by mass of aluminum content in terms of Al 2 O 3. It is 0.10 parts by mass or less, more preferably 0.05 parts by mass or less, and still more preferably 0.03 parts by mass or less.
  • the total content of the other components is preferably 0.20 parts by mass or less in total amount in terms of oxide of each component with respect to 100 parts by mass of aluminum content in terms of Al 2 O 3. And 0.10 parts by mass or less.
  • the method for producing the precursor according to this embodiment is not particularly limited, but includes step (1): mixing the raw materials, and step (2): forming the raw material mixture obtained in step (1) May be included.
  • Step (1) Step of Mixing Raw Materials
  • known materials can be widely used as long as they can be sources of each component contained in the precursor.
  • Examples of such a material include a compound containing at least one of metals contained in a precursor. These materials can be used in combination of 2 or more types as needed.
  • examples of the material serving as a source of Al include compounds containing Al such as oxides, hydroxides, nitrides, fluorides, and chlorides of Al. These compounds may be hydrates. In addition, two or more of these compounds may be used in combination.
  • aluminum oxide Al 2 O 3, alumina
  • ⁇ -alumina refers to aluminum oxide having an ⁇ crystallization rate of 90% or more.
  • the ⁇ crystallization rate of aluminum oxide as such ⁇ -alumina is preferably 90% or more, more preferably 95% or more, and still more preferably 98% or more.
  • the said (alpha) crystallization rate be the value measured on the evaluation conditions described in the present Example.
  • the alumina raw material powder is preferably of high purity, and for example, alumina purified by the Bayer method can be used.
  • the amount of alumina in the alumina raw material powder is preferably 90% by mass or more, more preferably 95% by mass or more, still more preferably 99% by mass or more, and still more preferably 99.5% by mass or more.
  • examples of components other than alumina which is the main component include, for example, Fe 2 O 3 , SiO 2 , Na 2 O, CaO, MgO, TiO 2 and K 2 O. Therefore, when using alumina raw material powder with low purity, such alumina raw material powder can unavoidably be a source of components other than Al described later.
  • Y a material to be a source of Y
  • compounds containing Y such as oxides, hydroxides, halides, nitrides, carbonates, acetates, nitrates and sulfates of Y
  • These compounds may be hydrates.
  • two or more of these compounds may be used in combination.
  • yttrium acetate tetrahydrate and yttrium oxide are preferable.
  • yttrium acetate is more preferable in that it is water-soluble, can be dissolved in water, added to the raw material mixture, and can be uniformly dispersed in the precursor.
  • Yttrium acetate is also preferable in that it is inexpensive.
  • At least one metal selected from the group consisting of Fe, Zn, Co, Mn, Cu, Nb, Sb, W, Ag and Ga for example, at least one selected from the above group Included are compounds containing certain metals. Such compounds include oxides, hydroxides, halides, nitrides, carbonates, acetates, nitrates and sulfates of one or more metals selected from the above group, or oxides of composite metals containing one or more of them. Etc. These compounds may be hydrates. In addition, two or more of these compounds may be used in combination. Among them, a compound containing one kind of metal selected from the above group is preferable, and in particular, an oxide of the metal is more preferable.
  • Examples of the material serving as a source of Si include silicon oxide and compounds containing Si such as various silicates. Two or more of these compounds may be used in combination. Among them, the above-mentioned silicon oxide is preferable. As silicon oxide, fumed silica, silicic acid, water glass and the like can be mentioned.
  • Examples of the source material of Na include Na-containing compounds such as oxides, hydroxides, halides, nitrides, carbonates, acetates, nitrates and sulfates of Na. These compounds may be hydrates. In addition, two or more of these compounds may be used in combination. Among them, sodium hydroxide or sodium hydrogen carbonate is preferred, and sodium hydroxide is more preferred.
  • one material may be a source of two or more components.
  • examples of such materials include composite metal oxides containing two or more metals such as Y 3 Al 5 O 12 and Y 3 Fe 5 O 12 , and materials with low purity such as the above-mentioned alumina raw powder.
  • Be what is necessary is just to adjust a compounding quantity so that content of each component may be adjusted as the whole precursor, when one material becomes a supply source of 2 or more types of components.
  • the step of mixing the raw material is carried out in the following manner: aluminum oxide, compound containing yttrium, iron, zinc, cobalt, manganese, copper, niobium, It is preferable to be the step of mixing with at least one compound containing one metal selected from the group consisting of antimony, tungsten, silver and gallium.
  • the Al source, the Y source, and the source of the co-additive component such as Fe can be separately compounded as individual compounds, so that the composition adjustment and sintering can be performed. Sex control is easier.
  • the form of these raw materials include powders, metal powders, slurries, aqueous solutions and the like, which can be appropriately selected according to the workability and dispersibility.
  • the cumulative volume 50% diameter (d 50 ) of each raw material is preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less, from the viewpoint of obtaining a homogeneous mixed powder.
  • the cumulative volume area 50% diameter (d 50 ) of various powders can be measured by a laser diffraction method.
  • the raw materials have been weighed in advance by a predetermined amount in accordance with the blending ratio of each material.
  • the weighing can be performed by a known method, and the blending ratio of each material may be appropriately adjusted according to the composition of the precursor.
  • the mixing method is not particularly limited, and can be performed using a known mixing method, for example, a container rotation type, mechanical stirring type, fluid stirring type, non-stirring type, high speed shear, impact type, etc. It can be mixed. Specifically, a kneader, a blender or the like is preferably used.
  • the raw material mixture when mixing the raw materials, if necessary, water, formic acid, methanol, ethanol, 1-propanol, 2-propanol, 2-propanol, 1-butanol, acetic acid, dimethyl sulfoxide, N, N-dimethylformamide, acetonitrile, acetone
  • a medium such as tetrahydrofuran may be used, and in this case, the raw material mixture may be dried after the mixing process, and may be milled after the drying if necessary.
  • the particle diameter of the raw material mixture thus obtained is preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less in terms of cumulative 50% diameter (d 50 ).
  • the cumulative mass 50% diameter (d 50 ) of the raw material mixture can be measured by a laser diffraction method.
  • the raw material mixture thus obtained is the precursor of the alumina sintered body of the present invention.
  • Step (2) Step of Forming the Raw Material Mixture Obtained in Step (1) Further, if necessary, the step of molding the raw material mixture obtained in the above step (1) may be included.
  • the raw material mixture obtained by mixing the said raw material is shape
  • the shape of the alumina molded body is not particularly limited, and examples thereof include a cylindrical shape with a diameter of 0.5 to 5 mm and a length of 1 to 10 mm, a pyramid shape, a star shape, a triangle shape, and an indefinite shape.
  • molding method which shape
  • a water-soluble binder such as polyvinyl alcohol (PVA) or methyl cellulose may be added to the raw material mixture.
  • the alumina compact obtained in this way is also one aspect of the precursor of the alumina sintered body of the present invention.
  • ⁇ Method for producing alumina sintered body> an example of the suitable manufacturing method of the alumina sintered compact using the precursor of this embodiment is demonstrated.
  • This step (I) is the same as the method of producing the precursor described above. That is, an example thereof may include the step of mixing the raw material in the step (1): and the step of molding the raw material mixture obtained in the step (2): the step (1).
  • the precursor is sintered (heat treatment) to sinter Process.
  • the firing can be performed by a known method, and for example, a hot press method, an atmospheric pressure firing method, a gas pressure firing method, a microwave heating and firing method, and the like can be used.
  • the firing temperature may be, for example, 1300 to 1700 ° C.
  • the firing temperature is, for example, 1575 ° C. or less
  • the firing temperature is preferably 1300 to 1575 ° C., more preferably 1300 to 1550 ° C., and still more preferably 1400 to 1550 ° C. from the viewpoint of obtaining a dense sintered body while suppressing crystal grain growth. C., more preferably 1450 to 1550.degree.
  • the firing time may be appropriately adjusted according to the firing temperature etc., and is, for example, 15 minutes to 4 hours, preferably 15 minutes to 3 hours, more preferably 15 minutes to 2 hours.
  • the firing atmosphere may be appropriately adjusted as necessary, and can be, for example, an oxidizing atmosphere such as an air atmosphere.
  • the precursor before baking is shape
  • the molding method is as described in step (2) of the method for producing a precursor described above.
  • the alumina sintered body obtained by the manufacturing method of the present embodiment is dense and excellent in mechanical strength.
  • the relative density of such an alumina sintered body is preferably 95% or more, more preferably 97% or more, and still more preferably 98% or more.
  • the crystal grain size is preferably 0.5 to 2.5 ⁇ m, more preferably 0.7 to 2.0 ⁇ m.
  • the Vickers hardness is preferably 18.5 GPa or more, more preferably 19.0 GPa or more.
  • Fracture toughness is preferably 3.0 MPa ⁇ m 1/2 or more, more preferably 3.5 MPa ⁇ m 1/2 or more.
  • the above-mentioned relative density, crystal grain diameter, Vickers hardness and fracture toughness value are all values measured under the evaluation conditions of this example.
  • Such an alumina sintered body has high hardness and excellent fracture toughness, and is used, for example, for tools for grinding, cutting, polishing and the like of abrasives, cutting materials, abrasives and the like, and for heavy grinding in the steel industry. It is suitable as an abrasive grain of a grindstone.
  • the alumina sintered body of the present embodiment comprises aluminum, yttrium, and at least one metal selected from the group consisting of iron, zinc, cobalt, manganese, copper, niobium, antimony, tungsten, silver and gallium.
  • the content of the aluminum is 98.0 mass% or more in terms of oxide (Al 2 O 3 ) in 100 mass% of the alumina sintered body,
  • the content of the yttrium is 0.01 to 1.35 parts by mass in terms of oxide (Y 2 O 3 ) with respect to 100 parts by mass of the content of aluminum in terms of the oxide,
  • the total content of metals selected from the above group is 0.02 to 1.55 parts by mass in terms of oxide with respect to 100 parts by mass of the content of aluminum in terms of the oxide,
  • the relative density is 95.0% or more.
  • the alumina sintered body of the present embodiment is preferably obtained by the method for producing an alumina sintered body of the present embodiment described above. According to the manufacturing method, high relative density can be efficiently realized even at a baking temperature (for example, 1300 to 1575 ° C.) lower than that of the conventional method, and the manufacturing cost can be significantly reduced.
  • a baking temperature for example, 1300 to 1575 ° C.
  • the preferable aspect of the alumina sintered compact of this embodiment is the same as that of what is obtained by the manufacturing method of the alumina sintered compact of the above-mentioned this embodiment.
  • the abrasive grain of this embodiment is comprised by the alumina sintered compact obtained by the manufacturing method of the alumina sintered compact of this embodiment. That is, an example of the suitable manufacturing method of the abrasive grain of this embodiment is performed by the manufacturing method of the alumina sintered compact of this embodiment.
  • the grindstone of the present embodiment has a base metal and a layer of abrasive grains of the present embodiment on the working surface of the base metal. Resin bonding, vitrified bonding, metal bonding, electrodeposition, etc. may be mentioned as a method of fixing the abrasive grains to the working surface in the grinding wheel of the present embodiment. Moreover, as a material of a base metal, steel, stainless steel alloy, aluminum alloy etc. are mentioned.
  • Resin bond has good sharpness but low durability.
  • the vitrified bond has good sharpness and good wear resistance, but internal stress is generated in the abrasive grains, and the abrasive grains are easily broken or chipped.
  • Electrodeposition has a high degree of freedom in shape and good sharpness. In view of the above, in the grinding stone, the method of fixing the abrasive grains is selected according to the application.
  • the grinding wheel of the present invention is obtained.
  • the shape of the grindstone of the present invention is not particularly limited, and may be appropriately selected from the shape of a straight type, a cup type or the like according to the use of the grindstone.
  • Example 1 Alumina raw material powder (content of aluminum oxide (Al 2 O 3 ): 99.75% by mass, ⁇ crystallization ratio of aluminum oxide: 99% or more, d 50 : 0.62 ⁇ m) 1,000 g of iron oxide (Kanto) Chemical Co., Ltd., d 50 : 0.52 ⁇ m) 2.5 g of granular polyvinyl alcohol (Kuraray Co., Ltd., Model No. PVA-205), 3.4 g of table-top kneader (Panalyzer Co., Ltd., Irie Chamber of Commerce, Inc. Mix for 10 minutes using ").
  • yttrium (III) acetate tetrahydrate in which 2.5 g of yttrium (III) acetate tetrahydrate (manufactured by Kanto Chemical Co., Ltd.) is dissolved in 300 g of distilled water, is prepared, and the aqueous solution is added to the above mixture.
  • the mixture was kneaded for 30 minutes to prepare an alumina sintered body precursor.
  • Table 1 shows the blending composition based on the above-mentioned charged composition.
  • composition confirmation was beforehand performed by the fluorescent X ray elemental analysis.
  • a scanning fluorescent X-ray analyzer "ZSX Primus” manufactured by Rigaku Corporation was used as a measuring instrument of fluorescent X-ray elemental analysis. Measurement samples were prepared by a powder press method using pressed pellets, and were quantitatively analyzed by the fundamental parameter method (FP method).
  • FP method fundamental parameter method
  • d 50 of the alumina raw material powder and iron oxide was measured using a Microtrac particle size distribution measuring apparatus ("Microtrac (registered trademark) HRA", manufactured by Nikkiso Co., Ltd.).
  • ⁇ crystallization ratio I 68.1 / (I 68.1 + I 67.2 ) ⁇ 100 (%) (1)
  • Comparative example 1 In Comparative Example 1, only the alumina raw material powder to which the aqueous solution of iron oxide and yttrium (III) acetate tetrahydrate was not added was used as the precursor of the alumina sintered body.
  • Comparative example 2 In Comparative Example 2, a precursor of an alumina sintered body was obtained in the same manner as in Example 1 except that iron oxide was not added.
  • Comparative example 3 a precursor of an alumina sintered body was obtained in the same manner as in Example 1 except that the aqueous solution of yttrium (III) acetate tetrahydrate was not added.
  • Comparative example 4 a precursor of an alumina sintered body was obtained by the same method as Example 1 except that the blending amount of iron oxide was changed so as to obtain the blending composition shown in Table 1.
  • alumina sintered body is produced by the following method using the precursor of the alumina sintered body according to Example 1 and Comparative Examples 1 to 4, and the following test (evaluation) is performed on the alumina sintered body. Did.
  • a precursor of an alumina sintered body was formed using an extrusion molding machine to prepare an alumina formed body. Thereafter, the compact is sintered in an electric furnace (air atmosphere) at a firing temperature shown in Table 1 for 1 hour to sinter it, thereby forming an alumina sintered body ( ⁇ 1.6 mm, cylindrical 3.5 mm in length) Got).
  • [3] Crystal particle diameter The obtained alumina sintered body was cut, the cut surface was mirror finished, and thermal etching was performed at a temperature 100 ° C. lower than the firing temperature for 5 minutes.
  • the sample was observed using a scanning electron microscope (manufactured by JEOL Ltd., model name “JSM-6510V”), and a cross-sectional photograph of 5000 ⁇ was taken at five arbitrary points.
  • image analysis is performed using image analysis software (Moontech Co., Ltd., software name "Mac-View ver. 4"), and about 500 crystal particles arbitrarily selected from five cross-sectional photographs
  • Fracture Toughness Fracture Toughness JIS R 1607 2015 Determined by the IF method (indentation indentation method) based on the room temperature fracture toughness test method for fine ceramics.
  • IF method indentation indentation method
  • model name “DVK-1” measurement is the condition of maximum load 49 N, indenter driving speed 50 ⁇ m / sec, indenter driving time 15 sec.
  • the same procedure was carried out for 10 alumina sintered bodies arbitrarily selected for each sample.
  • the calculation formula is as follows.
  • K IC 0.026 ⁇ E 1/2 ⁇ P 1/2 ⁇ a / c 3/2
  • K IC Fracture toughness value (MPa ⁇ m 1/2 )
  • E Young's modulus
  • P Maximum load
  • N Indentation dimension
  • c Size of crack
  • E the value of alumina (3.9 ⁇ 10 11 Pa) was used.
  • the amount by which the cut material in the said Formula (A) was shaved, and the abrasion loss of the alumina sintered compact were calculated
  • the friction wear test of the alumina sintered body was conducted using a pin-on-disk type friction and wear tester. In the friction and wear test, the produced alumina sintered body ( ⁇ 1.6 mm, cylindrical 3.5 mm long) is pressed against a rotating disk-like work material, the peripheral speed of the work material is 10 m / min, and the pressing load It carried out by 50N and grinding time 3 minutes.
  • the work material has a diameter of 160 mm and a thickness of 10 mm, and the arithmetic average roughness Ra of the friction surface in contact with the test body is 3.2.
  • S45C which is a carbon steel specified in JIS G 4051: 2016 (carbon steel for machine structure) was used without tempering such as quenching.
  • the wear weight was calculated for the material after the test.
  • the wear weight of the work material (disk body) was calculated by the following formula (i) from the cross-sectional area of the wear mark and the wear site diameter, and the work material density.
  • rho is a work material density (g / cm ⁇ 3 >)
  • r is a test body abrasion part diameter (mm)
  • A is abrasion mark cross-sectional area (mm ⁇ 2 >).
  • the cross-sectional area of the wear mark and the measurement of the wear site diameter were performed using a digital microscope (manufactured by Keyence Corporation, model: VHX-6000).
  • the wear site diameter was measured as the diameter of a circle passing through the width center of the wear mark.
  • the abrasive density was measured by the in-liquid weighing method defined in JIS Z8807: 2012 as the apparent specific gravity of the work material.
  • the wear volume (mm 3 ) was calculated, and the wear volume was converted from the density of the alumina sintered body to the weight to calculate the wear amount of the alumina sintered body.
  • the abrasion length is the difference between the lengths of the alumina sintered bodies before and after the test.
  • the length (mm) and diameter (mm) of the alumina sintered body were measured by a digital microscope (same as above). Moreover, the density of the alumina sintered body was measured by the in-liquid weighing method defined in JIS Z 8807: 2012 as an apparent specific gravity of the alumina sintered body.
  • Example 1 As shown in Table 1, in Example 1, it was confirmed that a dense, sintered alumina body excellent in mechanical strength can be obtained by containing a predetermined amount of yttrium and iron, in particular, in the precursor. . Since the alumina sintered body of Example 1 has a high grinding ratio measured by the method in this example, it is expected that a high grinding ratio can be realized even when actually used as a grindstone.
  • Comparative Example 1 since the precursor does not contain yttrium and iron, it was confirmed that the mechanical strength is particularly low as compared with Example 1.
  • Comparative Example 2 in which the precursor contains only yttrium, sintering is prevented by the addition of yttrium, and at the same firing temperature, the sintered body obtained compared to the precursor of Comparative Example 1 not containing yttrium. It was confirmed that the relative density of In the case of such a precursor of Comparative Example 2, it was confirmed that it is necessary to raise the firing temperature in order to obtain a dense alumina sintered body.
  • Comparative Example 3 is a precursor which does not contain yttrium and to which only iron is added, but good sinterability at a lower temperature such as the precursor of Example 1 containing yttrium and iron in a predetermined amount Also, no improvement in the mechanical strength of the obtained alumina sintered body was confirmed. Moreover, since the alumina sintered body of Comparative Example 3 is significantly inferior to the alumina sintered body of Example 1 in the grinding ratio measured by the method in this example, sufficient grinding is possible even when used as a grindstone It is expected that no ratio can be obtained.
  • the content of aluminum in the precursor is less than 98% by mass in terms of aluminum oxide, and the content of iron
  • Vickers hardness is particularly reduced in the obtained alumina sintered body, and sufficient mechanical strength is obtained. It was confirmed that there was not.
  • the alumina sintered body of Comparative Example 4 as described above is significantly inferior to the alumina sintered body of Example 1 in terms of the grinding ratio measured by the method in the present example, even if it is used as a grindstone It is expected that a sufficient grinding ratio can not be obtained.
  • Example 5 (Examples 2 to 9 and Comparative Example 5)
  • alumina was sintered in the same manner as in Example 1 except that the compounding amount of yttrium (III) acetate tetrahydrate was changed to obtain the compounding composition shown in Table 2.
  • the body precursor was obtained.
  • Example 10 to 19 a precursor of an alumina sintered body was obtained in the same manner as in Example 1 except that the blending amount of iron oxide was changed so as to obtain the blending composition shown in Table 2.
  • Example 20 to 22 In Examples 20 to 22, 1.25 g of iron oxide and a predetermined amount of fumed silica (manufactured by Nippon Aerosil Co., Ltd.) weighed to achieve the composition shown in Table 2 were blended with 1000 g of alumina raw material powder, Further, 3.4 g of granular polyvinyl alcohol was added and mixed for 10 minutes using a table-type kneader.
  • an aqueous solution of yttrium (III) acetate tetrahydrate in which 2.5 g of yttrium (III) acetate tetrahydrate is dissolved in 300 g of distilled water, is prepared, and the aqueous solution is added into the above mixture and kneaded for 30 minutes. And a precursor of an alumina sintered body were obtained.
  • Example 23 to 25 In Examples 23 to 25, 2.5 g of iron oxide and a predetermined amount of sodium hydroxide (manufactured by Kanto Chemical Co., Inc.) weighed to achieve the composition shown in Table 2 were blended with 1000 g of alumina raw material powder, Further, 3.4 g of granular polyvinyl alcohol was added and mixed for 10 minutes using a table-type kneader.
  • an aqueous solution of yttrium (III) acetate tetrahydrate in which 2.5 g of yttrium (III) acetate tetrahydrate is dissolved in 300 g of distilled water, is prepared, and the aqueous solution is added into the above mixture and kneaded for 30 minutes. And a precursor of an alumina sintered body were obtained.
  • Example 1 is the same data as Example 1 described in Table 1. Furthermore, Comparative Example 2 is the same as the data at a firing temperature of 1550 ° C. in Comparative Example 2 described in Table 1.
  • Examples 26 to 34 are the same as Example 16 except that instead of iron oxide, a predetermined amount of a compound containing a predetermined metal described below is blended so that the blending ratio of metal oxide conversion shown in Table 3 can be obtained.
  • a precursor of an alumina sintered body was obtained by the method of As a compound containing a predetermined metal, in Example 26, zinc oxide (manufactured by Kanto Chemical Co., Ltd.), in Example 27, cobalt oxide (manufactured by Kanto Chemical Co., Ltd.), and in Example 28, manganese oxide (Kanto Chemical Co., Ltd.) Made of copper oxide (made by Kanto Chemical Co., Ltd.) in Example 29, niobium oxide (made by Kanto Chemical Co., Ltd.) in Example 30, and antimony oxide (made by Kanto Chemical Co., Ltd.) in Example 31.
  • Example 32 tungsten oxide (manufactured by Kanto Chemical Co., Ltd.) was used, in Example 33, silver oxide (manufactured by Kanto Chemical Co., Ltd.) was used, and in Example 34, gallium oxide (manufactured by Kanto Chemical Co., Ltd.) was used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

アルミニウムと、イットリウムと、鉄、亜鉛、コバルト、マンガン、銅、ニオブ、アンチモン、タングステン、銀及びガリウムからなる群から選択される少なくとも1種の金属と、を含むアルミナ焼結体の前駆体であって、前記アルミニウムの含有量が、前記アルミナ焼結体の前駆体100質量%中に、酸化物(Al2O3)換算で98.0質量%以上であり、前記イットリウムの含有量が、前記酸化物換算のアルミニウムの含有量100質量部に対して、酸化物(Y2O3)換算で0.01~1.35質量部であり、前記群から選択される金属の合計含有量が、前記酸化物換算のアルミニウムの含有量100質量部に対して、酸化物換算で0.02~1.55質量部であり、前記アルミニウムをαアルミナとして含む、アルミナ焼結体の前駆体。

Description

アルミナ焼結体の前駆体、アルミナ焼結体の製造方法、砥粒の製造方法及びアルミナ焼結体
 本発明は、アルミナ焼結体の前駆体、アルミナ焼結体の製造方法、砥粒の製造方法及びアルミナ焼結体に関する。
 アルミナ焼結体は、高硬度、高強度、高耐熱性、高耐摩耗性及び高耐薬品性等に優れるという特徴を生かして様々な産業分野で使用されている。特に、鉄鋼産業における重研削砥石の原料である砥粒として使用されている。
 また、最近では、従来よりもさらに「研削比」が大きい重研削砥石が市場で求められてきている。ここで、「研削比」とは砥石の性能を示す指標であり、下記式(A)によって示される。研削比が大きいほど、砥石の性能は良いといえる。
 研削比=被削材が削られた量(研削量)/砥石の摩耗量  ・・・(A)
 一般的に、少ない砥石で多くの被削材を削ることができれば性能が良いと判断されるが、砥石の研削比はその砥石に使用される砥粒の「硬度」と「破壊靭性」に影響される。「研削比と硬度」、及び「研削比と破壊靱性」の間には、次のような関係があると考えられている。
(1)砥粒の硬度が高くなると研削量が増えるため研削比は大きくなる。
(2)破壊靱性が高くなると砥粒の摩耗量が少なくなるため研削比は大きくなる。
 上記(1)及び(2)の関係を考慮すれば、研削比の式における分子部分は研削量によって影響され、分母部分は摩耗量によって影響される。砥石の研削比を向上させるためには硬度及び破壊靱性がともに高いことが理想的である。
 ところで、従来の重研削砥石用の砥粒としては、アルミナ原料を焼結させた砥粒等が知られている。特に、非特許文献1及び2では、アルミナ焼結体の硬度、強度及び靱性等の向上に関する検討が行われている。
 例えば、非特許文献1には、アルミナ原料にイットリアを添加することにより、粒子成長が抑制され、得られるアルミナ焼結体の曲げ強さ、硬さ、破壊靭性値等の機械特性を向上し得ることが記載されている。
 また、非特許文献2には、アルミナ原料にイットリアを添加することにより、得られるアルミナ焼結体において、アルミナ粒界にイットリウムが偏析し、クリープを抑制できることが記載されている。
 しかしながら、上記のようなイットリアを添加したアルミナ焼結体の場合、イットリアの添加により焼結が妨げられ、緻密な焼結体を得ることが難しく、緻密な焼結体を得るためには高い温度での熱処理が必要であった。そのため、このようなアルミナ焼結体の製造においては、生産コストが増大する問題があった。
愛知県瀬戸窯業技術センター報告28号、22~24ページ 「イットリア添加アルミナセラミックスの特性」 Materials Transactions, Vol.45, No.7 (2004)、2078~2082ページ
 そこで本発明は、従来のイットリウムを含むアルミナ原料混合物に比べてより低温で焼結し易く、緻密で機械的特性に優れたアルミナ焼結体を得ることができるアルミナ焼結体の前駆体及び該前駆体を用いたアルミナ焼結体の製造方法を提供することを目的とする。
 本発明者らは、鋭意検討した結果、アルミナ焼結体の前駆体が、アルミニウムと、イットリウムと、鉄、亜鉛、コバルト、マンガン、銅、ニオブ、アンチモン、タングステン、銀及びガリウムからなる群から選択される少なくとも1種の金属とを、所定の量的関係で含有し、アルミナがαアルミナとして含まれていることにより、機械的特性に優れたアルミナ焼結体が得られると共に、より低温で焼結し易くなることを見出し、本発明を完成させるに至った。
 すなわち、本発明の要旨構成は、以下のとおりである。
 [1] アルミニウムと、イットリウムと、鉄、亜鉛、コバルト、マンガン、銅、ニオブ、アンチモン、タングステン、銀及びガリウムからなる群から選択される少なくとも1種の金属と、を含むアルミナ焼結体の前駆体であって、
 前記アルミニウムの含有量が、前記アルミナ焼結体の前駆体100質量%中に、酸化物(Al)換算で98.0質量%以上であり、
 前記イットリウムの含有量が、前記酸化物換算のアルミニウムの含有量100質量部に対して、酸化物(Y)換算で0.01~1.35質量部であり、
 前記群から選択される金属の合計含有量が、前記酸化物換算のアルミニウムの含有量100質量部に対して、酸化物換算で0.02~1.55質量部であり、
 前記アルミニウムをαアルミナとして含む、アルミナ焼結体の前駆体。
 [2] 前記イットリウムを酢酸イットリウム四水和物として含む、上記[1]に記載のアルミナ焼結体の前駆体。
 [3] 砥粒を構成するアルミナ焼結体を得るために用いられる、上記[1]又は[2]に記載のアルミナ焼結体の前駆体。
 [4] 上記[1]~[3]のいずれか1項に記載のアルミナ焼結体の前駆体を得る工程(I)と、
 前記アルミナ焼結体の前駆体を焼成し、アルミナ焼結体を得る工程(II)と、を有する、アルミナ焼結体の製造方法。
 [5] 前記アルミナ焼結体の前駆体を得る工程(I)が、α-アルミナと、イットリウムを含む化合物と、鉄、亜鉛、コバルト、マンガン、銅、ニオブ、アンチモン、タングステン、銀及びガリウムからなる群から選択される1種の金属を含む少なくとも一つの化合物とを混合する工程を含む、上記[4]に記載のアルミナ焼結体の製造方法。
 [6] 前記イットリウムを含む化合物が、酢酸イットリウム四水和物である、上記[4]又は[5]に記載のアルミナ焼結体の製造方法。
 [7] 前記アルミナ焼結体の前駆体の焼成温度が、1300~1575℃である、上記[4]~[6]のいずれか1項に記載のアルミナ焼結体の製造方法。
 [8] 前記アルミナ焼結体の相対密度が、95.0%以上である、上記[4]~[7]のいずれか1項に記載のアルミナ焼結体の製造方法。
 [9] 上記[4]~[8]のいずれか1項に記載のアルミナ焼結体の製造方法により行われる、砥粒の製造方法。
 [10] アルミニウムと、イットリウムと、鉄、亜鉛、コバルト、マンガン、銅、ニオブ、アンチモン、タングステン、銀及びガリウムからなる群から選択される少なくとも1種の金属と、を含むアルミナ焼結体であって、
 前記アルミニウムの含有量が、前記アルミナ焼結体100質量%中に、酸化物(Al)換算で98.0質量%以上であり、
 前記イットリウムの含有量が、前記酸化物換算のアルミニウムの含有量100質量部に対して、酸化物(Y)換算で0.01~1.35質量部であり、
 前記群から選択される金属の合計含有量が、前記酸化物換算のアルミニウムの含有量100質量部に対して、酸化物換算で0.02~1.55質量部であり、
相対密度が95.0%以上であるアルミナ焼結体。
 本発明によれば、従来のイットリウムを含むアルミナ原料混合物に比べてより低温で焼結し易く、緻密で機械的特性に優れたアルミナ焼結体が得られるアルミナ焼結体の前駆体及び該前駆体を用いたアルミナ焼結体の製造方法を提供することができる。
 本発明に従うアルミナ焼結体の前駆体、前駆体を用いたアルミナ焼結体の製造方法、砥粒の製造方法及びアルミナ焼結体の実施形態について、以下で詳細に説明するが、本発明は下記の実施形態に限定されるものではない。
<アルミナ焼結体の前駆体>
 本実施形態のアルミナ焼結体の前駆体は、アルミニウムと、イットリウムと、鉄、亜鉛、コバルト、マンガン、銅、ニオブ、アンチモン、タングステン、銀及びガリウムからなる群から選択される少なくとも1種の金属と、を含み、前記アルミニウムの含有量が、前記アルミナ焼結体の前駆体100質量%中に、酸化物(Al)換算で98.0質量%以上であり、前記イットリウムの含有量が、前記酸化物換算のアルミニウムの含有量100質量部に対して、酸化物(Y)換算で0.01~1.35質量部であり、前記群から選択される金属の合計含有量が、前記酸化物換算のアルミニウムの含有量100質量部に対して、酸化物換算で0.02~1.55質量部であり、前記アルミニウムをαアルミナとして含むことを特徴とする。
 本発明のアルミナ焼結体の前駆体は、従来のイットリウムを含むアルミナ原料混合物に比べてより低温で焼結し易く、緻密で機械的特性に優れたアルミナ焼結体が得られる。このような本発明のアルミナ焼結体の前駆体は、特に、高硬度で優れた破壊靭性を有するアルミナ焼結体を得るために好適である。
 ここで、アルミナ焼結体の前駆体(以下、単に「前駆体」ということがある。)とは、熱処理前の原料混合物を指す。また、アルミナ焼結体(以下、単に「焼結体」ということがある。)とは、前駆体を熱処理して焼結した焼結体を指す。
 本実施形態の前駆体は、アルミニウム(Al)を、αアルミナとして含む。Alの含有量は、前駆体100質量%中に酸化物(Al)換算で98.0質量%以上であり、98.5質量%以上であることが好ましく、99.0質量%以上であることがより好ましい。上記範囲とすることにより、適度な硬度を維持した焼結体が得られる。Alの含有量が低下すると、アルミナ焼結体におけるアルミナの純度が下がる。一般に、アルミナ焼結体におけるアルミナの純度が下がると、焼結体の硬度が低下することが知られている。なお、Alの含有量の上限は、イットリウム等の添加成分との関係で調整すればよく、特に限定されないが、例えば99.97質量%としてもよい。なお、前駆体の質量には、前駆体を成形する際に用いるポリビニルアルコール等のバインダー樹脂や水等の溶媒は含まれない。
 本実施形態の前駆体は、イットリウム(Y)を含む。Yの含有量は、Al換算のアルミニウムの含有量100質量部に対して、酸化物(Y)換算で0.01~1.35質量部である。Yの含有量が0.01質量部以上であれば、Yの添加効果により、焼結体において機械的特性が向上する。またYの含有量が1.35質量部以下であれば、焼結体の相対密度が向上する。また、より緻密で機械的特性に優れた焼結体を得る観点からは、Yの含有量は、0.03~1.10質量部であることが好ましく、0.05~1.00質量部であることがより好ましい。なお、本実施形態の前駆体は、上記イットリウムを酢酸イットリウム四水和物及び酸化イットリウムの少なくとも一方として含むことが好ましく、特に酢酸イットリウム四水和物として含むことがより好ましい。
 本実施形態の前駆体は、鉄(Fe)、亜鉛(Zn)、コバルト(Co)、マンガン(Mn)、銅(Cu)、ニオブ(Nb)、アンチモン(Sb)、タングステン(W)、銀(Ag)及びガリウム(Ga)からなる群から選択される少なくとも1種の金属(以下、総称して「Fe等の共添加成分」ということがある。)を含む。中でも、Fe等の共添加成分としては、Fe、Zn、Co、Mn、Cu、Nb、Ag及びGaからなる群から選択される少なくとも1種を含むことが好ましい。また、焼結体の相対密度を向上させる観点からは、Fe、Zn、Co、Mn、Cu、Ag及びGaからなる群から選択される少なくとも1種の金属が好ましく、Fe、Zn及びCuからなる群から選択される少なくとも1種の金属がより好ましく、Feを含むことが更に好ましい。なお、Fe等の共添加成分は、1種を単独で用いても、2種以上を混合して用いてもよいが、1種を単独で用いることがより好ましい。
 Fe、Zn、Co、Mn、Cu、Nb、Sb、W、Ag及びGaからなる群から選択される金属の合計含有量は、Al換算のアルミニウムの含有量100質量部に対して、酸化物(Fe、ZnO、Co、Mn、CuO、Nb、Sb、WO、AgO及びGa)換算で0.02~1.55質量部である。特に、Fe等の共添加成分の合計含有量が0.02質量部以上であれば、Yを含んでいても、焼結しやすい前駆体となる。そのため、このような前駆体によれば、熱処理温度を高める必要がなく、緻密で機械的特性に優れた焼結体が得られる。またFe等の共添加成分の合計含有量が1.55質量部以下であれば、焼結体においてアルミナの純度を高く維持できる。さらに、より緻密で機械的特性に優れた焼結体を得る観点からは、Fe等の共添加成分の合計含有量は、0.03~1.20質量部であることが好ましく、0.05~1.00質量部であることがより好ましい。なお、Fe等の共添加成分が1種の成分である場合、Fe等の共添加成分の合計含有量は、該1種の成分の含有量である。また、前駆体は、上記Fe等の共添加成分のそれぞれを、各金属の酸化物として含むことが好ましい。
 また、本実施形態の前駆体は、本発明の効果を妨げない範囲で、上記以外の成分をさらに含んでもよい。具体的には以下のような成分が挙げられる。
 本実施形態の前駆体は、ケイ素(Si)を含んでもよく、Siの含有量は、Al換算のアルミニウムの含有量100質量部に対して、酸化物(SiO)換算で0~0.12質量部であることが好ましい。Siの含有量を、SiO換算で0.12質量部以下とすることにより、緻密な焼結体が得られる。なお、前駆体は、実質的にSiを含まないことが好ましいが、原料に用いる材料の純度が比較的低い場合に、不可避的に混入するSiを考慮して、Siの含有量は、Al換算のアルミニウムの含有量100質量部に対して、0.001質量部以上としてもよく、0.07質量部以下がより好ましく、更に好ましくは0.05質量部以下であり、より更に好ましくは0.03質量部以下である。
 また、本実施形態の前駆体は、ナトリウム(Na)をさらに含むことが好ましい。これにより焼結性をさらに向上できる。Naの含有量は、Al換算のアルミニウムの含有量100質量部に対して、酸化物(NaO)換算で0.05~1.0質量部であることが好ましく、0.08~0.70質量部であることがより好ましく、0.10~0.70質量部であることが更に好ましい。Naの含有量が上記範囲であることにより、より緻密な焼結体が得られる。
 本実施形態の前駆体は、本発明の効果を妨げない範囲で、上記以外のその他の成分を含んでいてもよい。その他の成分としては、例えば、マグネシウム(Mg)、カルシウム(Ca)、カリウム(K)、チタン(Ti)等が挙げられる。その他の成分の各含有量は、Al換算のアルミニウムの含有量100質量部に対して、各成分の酸化物換算で、それぞれ0.20質量部以下であることが好ましく、より好ましくは0.10質量部以下であり、さらに好ましくは0.05質量部以下であり、一層好ましくは0.03質量部以下である。また、その他の成分の合計含有量は、Al換算のアルミニウムの含有量100質量部に対して、各成分の酸化物換算の合計量で、0.20質量部以下であることが好ましく、0.10質量部以下であることがより好ましい。
<アルミナ焼結体の前駆体の製造方法>
 以下、本実施形態のアルミナ焼結体の前駆体の好適な製造方法の一例について説明する。
 本実施形態に係る前駆体の製造方法は、特に限定されないが、工程(1):原料を混合する工程を含み、さらに工程(2):工程(1)で得られた原料混合物を成形する工程を含んでもよい。
 工程(1):原料を混合する工程
 原料としては、前駆体に含まれる各成分の供給源となるものであれば、公知の材料を広く用いることができる。このような材料としては、前駆体に含まれる金属のうち少なくとも1種を含む化合物等が挙げられる。これらの材料は、必要に応じて2種以上を組み合わせて用いることができる。
 具体的には、Alの供給源となる材料としては、例えば、Alの酸化物、水酸化物、窒化物、フッ化物及び塩化物等のAlを含む化合物が挙げられる。これらの化合物は水和物であってもよい。また、これらの化合物を2種以上組み合わせて用いてもよい。中でも、酸化アルミニウム(Al、アルミナ)を主成分とするアルミナ原料粉末を用いることがより好ましい。さらに、酸化アルミニウムとしては、α-アルミナが好ましい。ここで、α-アルミナとしては、α結晶化率が90%以上の酸化アルミニウムを指す。このようなα-アルミナとしての酸化アルミニウムのα結晶化率は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。なお、上記α結晶化率は、本実施例に記載された評価条件の下で測定された値とする。
 アルミナ原料粉末は、高純度のものが好ましく、例えばバイヤー法で精製したアルミナを用いることができる。アルミナ原料粉末中のアルミナ量は、好ましくは90質量%以上であり、より好ましくは95質量%以上であり、さらに好ましくは99質量%以上であり、一層好ましくは99.5質量%以上である。このようなアルミナ原料粉末において、主成分であるアルミナ以外の成分としては、例えば、Fe、SiO、NaO、CaO、MgO、TiO及びKO等が挙げられる。したがって、純度の低いアルミナ原料粉末を用いる場合、このようなアルミナ原料粉末は、不可避的に、後述するAl以外の成分の供給源にもなり得る。
 また、Yの供給源となる材料としては、例えば、Yの酸化物、水酸化物、ハロゲン化物、窒化物、炭酸塩、酢酸塩、硝酸塩及び硫酸塩等のYを含む化合物が挙げられる。これらの化合物は水和物であってもよい。また、これらの化合物を2種以上組み合わせて用いてもよい。中でも、酢酸イットリウム四水和物及び酸化イットリウムが好適である。特に、酢酸イットリウムは、水溶性であり、水に溶解させて原料混合物に添加することができ、前駆体に均一に分散させることができる点でより好ましい。また、酢酸イットリウムは、安価である点で好ましい。
 Fe、Zn、Co、Mn、Cu、Nb、Sb、W、Ag及びGaからなる群から選択される少なくとも1種の金属の供給源となる材料としては、例えば、上記群から選択される少なくとも1種の金属を含む化合物が挙げられる。このような化合物としては、上記群から選択される1種の金属、又は1種以上を含む複合金属の酸化物、水酸化物、ハロゲン化物、窒化物、炭酸塩、酢酸塩、硝酸塩及び硫酸塩等が挙げられる。これらの化合物は水和物であってもよい。また、これらの化合物を2種以上組み合わせて用いてもよい。中でも、上記群から選択される1種の金属を含む化合物が好適であり、特に該金属の酸化物がより好適である。
 Siの供給源となる材料としては、例えば、酸化ケイ素や、各種ケイ酸塩等のSiを含む化合物が挙げられる。これらの化合物を2種以上組み合わせて用いてもよい。中でも、上記酸化ケイ素が好適である。酸化ケイ素としては、ヒュームドシリカ、ケイ酸及び水ガラス等が挙げられる。
 Naの供給源となる材料としては、例えば、Naの酸化物、水酸化物、ハロゲン化物、窒化物、炭酸塩、酢酸塩、硝酸塩及び硫酸塩等のNaを含む化合物が挙げられる。これらの化合物は水和物であってもよい。また、これらの化合物を2種以上組み合わせて用いてもよい。中でも、水酸化ナトリウム又は炭酸水素ナトリウムが好適であり、水酸化ナトリウムがより好適である。
 また、一つの材料が、2種以上の成分の供給源となってもよい。このような材料としては、YAl12及びYFe12等の2種以上の金属を含む複合金属酸化物や、上述のアルミナ原料粉末のような純度が低い材料等が挙げられる。なお、一つの材料が、2種以上の成分の供給源となる場合、前駆体全体として各成分の含有量が調整されるように、配合量を調整すればよい。
 そのため、配合量の調整及び焼結性の制御のし易さ等の観点から、原料を混合する工程は、酸化アルミニウムと、イットリウムを含む化合物と、鉄、亜鉛、コバルト、マンガン、銅、ニオブ、アンチモン、タングステン、銀及びガリウムからなる群から選択される1種の金属を含む少なくとも一つの化合物と、を混合する工程であることが好ましい。このような工程とすることにより、Alの供給源と、Yの供給源と、Fe等の共添加成分の供給源とを、それぞれ個別の化合物として分けて配合できるため、組成の調整及び焼結性の制御が容易になる。
 これらの原料の形態としては、粉末、金属粉末、スラリー、水溶液等が挙げられ、作業性や分散性のよさに応じて適宜選択することができる。例えば、粉末状の原料を用いる場合、均質混合粉末を得る観点から、各種原料の累積体積50%径(d50)は、それぞれ3μm以下であることが好ましく、1μm以下であることがより好ましい。ここで、各種粉末の累積体積積50%径(d50)は、レーザー回折法により測定することができる。
 また、原料を混合する工程において、原料は、各材料の配合割合に応じて予め所定量秤量されていることが好ましい。ここで、秤量は、公知の方法により行うことができ、各材料の配合割合は、前駆体の組成に準じて、適宜調整すればよい。
 また、混合方法は、特に限定されず、公知の混合方式を用いて行うことができ、例えば、容器回転式、機械撹拌式、流動撹拌式、無撹拌式、高速せん断・衝撃式等の方式で混合することができる。具体的には、ニーダー、ブレンダー等が好適に用いられる。
 また、原料を混合する際には、必要に応じて水や、ギ酸、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、酢酸、ジメチルスルホキシド、N,N-ジメチルホルムアミド、アセトニトリル、アセトン、テトラヒドロフラン等の媒体を使用してもよく、この場合、混合処理後に原料混合物を乾燥させ、必要に応じて乾燥後に粉砕処理してもよい。このようにして得られた原料混合物の粒径は、累積質量50%径(d50)にて、3μm以下であることが好ましく、より好ましくは1μm以下である。原料混合物の累積質量50%径(d50)は、レーザー回折法により測定することができる。
 このようにして得られた原料混合物が、本発明のアルミナ焼結体の前駆体である。
 工程(2):工程(1)で得られた原料混合物を成形する工程
 また、さらに必要に応じて、上記工程(1)で得られた原料混合物を成形する工程を含んでもよい。
 本工程では、上記原料を混合して得られた原料混合物を任意の形状に成形して、アルミナ成形体を得る。
 アルミナ成形体の形状としては、特に限定されないが、例えば、φ0.5~5mm、長さ1~10mmの円柱状や、ピラミッド形状、星形形状、三角形状、不定形状等が挙げられる。
 また、原料混合物を成形する成形方法としては、例えば、金型プレス、冷間静水圧プレス、鋳込成形、射出成形、押出し成形、シート成形等が挙げられる。原料混合物には、必要に応じてポリビニルアルコール(PVA)、メチルセルロース等の水溶性のバインダーが添加されていてもよい。
 こうして得られたアルミナ成形体もまた、本発明のアルミナ焼結体の前駆体の一態様である。
<アルミナ焼結体の製造方法>
 次に、本実施形態の前駆体を用いたアルミナ焼結体の好適な製造方法の一例について説明する。
 本実施形態のアルミナ焼結体の製造方法は、好ましくは、工程(I):アルミナ焼結体の前駆体を得る工程と、工程(II):工程(I)で得られたアルミナ焼結体の前駆体を焼成する工程と、を有する。
 工程(I):アルミナ焼結体の前駆体を得る工程
 本工程(I)は、上述の前駆体の製造方法のとおりである。すなわち、その一例は、工程(1):原料を混合する工程を含み、さらに工程(2):工程(1)で得られた原料混合物を成形する工程を含んでもよい。
 工程(II):工程(I)で得られたアルミナ焼結体の前駆体を焼成し、アルミナ焼結体を得る工程
 本工程(II)は、前駆体を焼成(熱処理)することで焼結させる工程である。焼成は、公知の方法により行うことができ、例えば、ホットプレス法、常圧焼成法、ガス加圧焼成法、マイクロ波加熱焼成法等を用いることができる。
 焼成温度は、例えば1300~1700℃とすることができるが、本実施形態に係る前駆体は、従来のイットリウムを含む原料混合物に比べて焼結しやすいため、焼成温度を、例えば1575℃以下、さらには1550℃以下としても、緻密で、機械強度に優れた焼結体が得られる。特に、結晶粒成長を抑制しながら緻密な焼結体を得る観点からは、焼成温度は1300~1575℃であることが好ましく、より好ましくは1300~1550℃であり、さらに好ましくは1400~1550℃であり、一層好ましくは1450~1550℃である。
 焼成時間は、焼成温度等に応じて適宜調整すれば良く、例えば15分~4時間、好ましくは15分~3時間、より好ましくは15分~2時間である。
 また、焼成雰囲気は、必要に応じて適宜調整すればよく、例えば大気雰囲気等の酸化性雰囲気とすることができる。
 また、焼成前の前駆体は、予め成形されていることが好ましい。成形方法は、上述の前駆体の製造方法の工程(2)のとおりである。
 本実施形態の製造方法により得られたアルミナ焼結体は、緻密で、機械的強度に優れている。このようなアルミナ焼結体の相対密度は、好ましくは95%以上、より好ましく97%以上、さらに好ましくは98%以上である。また、結晶粒子径は、好ましくは0.5~2.5μm、より好ましくは0.7~2.0μmである。また、ビッカース硬さは、好ましくは18.5GPa以上、より好ましくは19.0GPa以上である。破壊靭性値は、好ましくは3.0MPa・m1/2以上、より好ましくは3.5MPa・m1/2以上である。なお、上記相対密度、結晶粒子径、ビッカース硬さ及び破壊靭性値は、いずれも本実施例の評価条件の下で測定された値とする。
 このようなアルミナ焼結体は、高硬度で優れた破壊靭性を有しており、例えば研削材、切削材、研磨材等の研削・切削・研磨等の工具、さらには鉄鋼産業における重研削用砥石の砥粒として好適である。
<アルミナ焼結体>
 本実施形態のアルミナ焼結体は、アルミニウムと、イットリウムと、鉄、亜鉛、コバルト、マンガン、銅、ニオブ、アンチモン、タングステン、銀及びガリウムからなる群から選択される少なくとも1種の金属と、を含み、
 前記アルミニウムの含有量が、前記アルミナ焼結体100質量%中に、酸化物(Al)換算で98.0質量%以上であり、
 前記イットリウムの含有量が、前記酸化物換算のアルミニウムの含有量100質量部に対して、酸化物(Y)換算で0.01~1.35質量部であり、
 前記群から選択される金属の合計含有量が、前記酸化物換算のアルミニウムの含有量100質量部に対して、酸化物換算で0.02~1.55質量部であり、
 相対密度が、95.0%以上である。
 本実施形態のアルミナ焼結体は、好ましくは上述の本実施形態のアルミナ焼結体の製造方法により得られるものである。該製造方法によれば、従来よりも低い焼成温度(例えば、1300~1575℃)でも、高い相対密度を効率的に実現することができ、生産コストを大幅に削減することができる。
 なお、本実施形態のアルミナ焼結体の好ましい態様は、上述の本実施形態のアルミナ焼結体の製造方法により得られるものと同様である。
<砥粒>
 本実施形態の砥粒は、本実施形態のアルミナ焼結体の製造方法により得られるアルミナ焼結体により構成されることが好ましい。
 すなわち、本実施形態の砥粒の好適な製造方法の一例は、本実施形態のアルミナ焼結体の製造方法によって行われる。
<砥石>
 本実施形態の砥石は、台金と、該台金の作用面に本実施形態の砥粒の層とを有してなる。
 本実施形態の砥石における砥粒の作用面への固定方法としては、レジンボンド、ビトリファイドボンド、メタルボンド、電着等が挙げられる。
 また、台金の材質としては、スチール、ステンレス合金、アルミニウム合金等が挙げられる。
 レジンボンドは、切れ味は良好であるが、耐久性が低い。ビトリファイドボンドは、切れ味がよく、耐摩耗性も良好であるが、砥粒に内部応力が発生し、砥粒が割れたり、欠けたりしやすくなる。電着は、形状の自由度が大きく、切れ味も良好である。
 以上に鑑み、砥石においては、その用途に応じて砥粒の固定方法が選択される。
 具体的には、例えばレジンボンド砥石の場合、フェノール樹脂、ポリイミド樹脂等の結合剤の粉末と砥粒とを混合し、又は、結合剤を砥粒にコーティングし、金型に充填してプレス成形する方法(i)、あるいは、エポキシ樹脂、不飽和ポリエステル樹脂等の液状の結合剤と砥粒を混合し、型に流し込んで硬化させる方法(ii)により、台金の作用面に砥粒層を固定することで、本発明の砥石が得られる。
 本発明の砥石の形状については特に制限はなく、砥石の用途に応じて、ストレート型やカップ型等の形状から適宜選択すればよい。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念及び特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。
(実施例1)
 アルミナ原料粉末(酸化アルミニウム(Al)の含有量:99.75質量%、酸化アルミニウムのα結晶化率:99%以上、d50:0.62μm)1,000gに、酸化鉄(関東化学株式会社製、d50:0.52μm)2.5g及び顆粒状のポリビニルアルコール(クラレ株式会社製、型番PVA-205)3.4gを、卓上型ニーダー(株式会社入江商会製「PNV-5」)を用いて10分間混合した。その後、蒸留水300gに2.5gの酢酸イットリウム(III)四水和物(関東化学株式会社製)を溶かした酢酸イットリウム(III)四水和物水溶液を調製し、該水溶液を上記混合物中に加えて、30分間混練し、アルミナ焼結体の前駆体を作製した。表1に上記仕込み組成に基づく、配合組成を示す。
 なお、上記アルミナ原料粉末については、蛍光X線元素分析法により予め組成確認を行った。蛍光X線元素分析の測定機器としては、株式会社リガク製の走査型蛍光X線分析装置「ZSX Primus」を用いた。プレス成形したペレットを用いる粉末プレス法で測定試料を調製し、ファンダメンタルパラメータ法(FP法)により定量分析した。
 また、アルミナ焼結体の前駆体の組成についても、アルミナ原料粉末の場合と同様に、上記走査型蛍光X線分析装置によるFP法により定量分析を行って、仕込み組成と一致していることを確認した。
 また、アルミナ原料粉末及び酸化鉄のd50は、マイクロトラック粒度分布測定装置(「マイクロトラック(登録商標)HRA」、日機装株式会社製)を用いて測定した。
 また、アルミナ原料粉末中の酸化アルミニウムのα結晶化率は、粉末X線回折装置(Panalytical社製、機種名「X'pert PRO」)を用い、特性X線:CuKα線、管電圧40kV、管電流40mAの条件にて得た回折スペクトルから、アルミナα相(300)に由来する2θ=68.1°のピーク高さ(I68.1)と、δ相、θ相、χ相、γ相、θ相およびε相に由来する2θ=67.2°のピーク高さ(I67.2)とから、下記式(1)により算出した。
 α結晶化率=I68.1/(I68.1+I67.2)×100(%)  ・・・(1)
(比較例1)
 比較例1では、酸化鉄及び酢酸イットリウム(III)四水和物水溶液を添加していない、アルミナ原料粉末のみをアルミナ焼結体の前駆体とした。
(比較例2)
 比較例2では、酸化鉄を添加しなかった以外は、実施例1と同様の方法でアルミナ焼結体の前駆体を得た。
(比較例3)
 比較例3では、酢酸イットリウム(III)四水和物水溶液を添加しなかった以外は、実施例1と同様の方法でアルミナ焼結体の前駆体を得た。
(比較例4)
 比較例4では、表1に示す配合組成となるように酸化鉄の配合量を変更した以外は、実施例1と同様の方法でアルミナ焼結体の前駆体を得た。
[評価I]
 実施例1及び比較例1~4に係るアルミナ焼結体の前駆体を用いて、以下の方法でアルミナ焼結体を作製し、該アルミナ焼結体に対し、以下のような試験(評価)を行った。
[1]アルミナ焼結体の作製
 アルミナ焼結体の前駆体を押出成形機を用いて成形し、アルミナ成形体を作製した。その後、この成形体を、電気炉(大気雰囲気)にて、表1に示す焼成温度で1時間保持し焼結させることにより、アルミナ焼結体(φ1.6mm、長さ3.5mmの円柱状)を得た。
[2]相対密度
 相対密度はJIS Z 8807:2012の液中ひょう量法で測定したみかけ密度を、真密度で除して求めた。この際、添加した化合物等は全て酸化物の状態で存在していると仮定し、その上で、真密度が、アルミナは3.95、酸化イットリウムは5.01、酸化鉄は5.24、酸化ケイ素は2.20、酸化ナトリウムは2.27、酸化マグネシウムは3.65、酸化カルシウムは3.34、酸化亜鉛は5.61、酸化コバルトは6.11、酸化マンガンは5.03、酸化銅は6.31、酸化ニオブは4.47、酸化アンチモンは5.20、酸化タングステンは7.16、酸化銀は7.14、酸化ガリウムは6.44であるとして、算出した。
[3]結晶粒子径
 得られたアルミナ焼結体を切断し、該切断面を鏡面仕上げし、焼成温度よりも100℃低い温度で5分間、サーマルエッチングした。そのサンプルを、走査型電子顕微鏡(日本電子株式会社製、機種名「JSM-6510V」)を用いて観察し、任意の点5箇所で5000倍の断面写真を撮影した。各断面写真について、画像解析ソフト(株式会社マウンテック製、ソフト名「Mac-View ver.4」)を用いて画像解析を行い、5枚の断面写真から、任意に選択した500個の結晶粒子について体積球相当径を測定し、得られた測定値(N=500)を平均して、その平均値を結晶粒子径とした。
[4]ビッカース硬度
 装置としては、株式会社アカシ(現、株式会社ミツトヨ)製、機種名「MVK-VL、Hardness Tester」を用いた。測定は、荷重0.98N、圧子の打ち込み時間10秒の条件で行い、試料毎に任意に選択したアルミナ焼結体15個について同様に行った。さらに、得られた測定値(N=15)を平均して、その平均値をビッカース硬度とした。
[5]破壊靭性値
 破壊靭性値JIS R 1607:2015 ファインセラミックスの室温破壊靭性試験方法に基づき、IF法(圧子圧入法)によって求めた。装置としては、松沢精機株式会社(現、株式会社松沢)製、機種名「DVK-1」を用い、測定は、最大荷重49N、圧子の打ち込み速度50μm/sec、圧子の打ち込み時間15秒の条件で行い、試料毎に任意に選択したアルミナ焼結体10個について同様に行った。さらに、得られた測定値(N=10)を平均して、その平均値を破壊靱性値とした。計算式は以下の通りである。
IC =0.026×E1/2×P1/2×a/c3/2
 KIC : 破壊靱性値(MPa・m1/2
 E  : ヤング率(Pa)
 P  : 最大荷重(N)
 a  : 圧痕寸法(m)
 c  : クラックの寸法(m)
 なお、本発明において上記ヤング率Eは、アルミナの値(3.9×1011Pa)を用いた。
[6]研削比
 研削比は、通常、アルミナ焼結体からなる砥粒を樹脂で固めた砥石について摩擦摩耗試験を行って、砥石の摩耗量を算出し、下記式(A)により算出するのが一般的である。
 研削比=被削材が削られた量(研削量)/砥石の摩耗量  ・・・(A)
 しかしながら、本実施例では、砥石に替えてアルミナ焼結体を用いて摩擦摩耗試験を行い、アルミナ焼結体の摩耗量を算出し、上記式(A)中の砥石の摩耗量として、アルミナ焼結体の摩耗量を使用して研削比を算出した。なお、上記式(A)中の被削材が削られた量と、アルミナ焼結体の摩耗量は、以下の方法で求めた。
 まず、ピンオンディスク型摩擦摩耗試験機を用いて、アルミナ焼結体の摩擦摩耗試験を行った。
 摩擦摩耗試験は、回転する円盤状の被削材に、作製したアルミナ焼結体(φ1.6mm、長さ3.5mmの円柱状)を押付け、被削材の周速度10m/分、押付け荷重50N、研削時間3分で行った。被削材は、φ160mm、厚さ10mmで、試験体と接触する摩擦面の算術平均粗さRaは3.2であり、JISG4051:2016(機械構造用炭素鋼鋼材)に定める炭素鋼であるS45Cを、焼入れ等の調質をせず使用した。
 次に、試験後の被削材について、摩耗重量を算出した。被削材(ディスク体)の摩耗重量は、摩耗痕の断面積及び摩耗部位直径、並びに被削材密度から下記式(i)により算出した。
 被削材摩耗量=πρrA  ・・・(i)
 上記式(i)中、ρは被削材密度(g/cm)、rは試験体摩耗部位直径(mm)、Aは摩耗痕断面積(mm)である。
 なお、摩耗痕の断面積及び摩耗部位直径の測定は、デジタルマイクロスコープ(株式会社キーエンス製、型式:VHX-6000)を用いて行った。また、摩耗部位直径は、摩耗痕の幅中心を通る円の直径として測定した。研削材密度は、被削材の見かけ比重として、JIS Z8807:2012に定められた液中ひょう量法で測定した。
 さらに、試験後のアルミナ焼結体については、摩耗体積(mm)を算出し、該摩耗体積をアルミナ焼結体の密度から重量に換算して、アルミナ焼結体の摩耗量を算出した。アルミナ焼結体の摩耗体積は、試験前後における摩耗長さとアルミナ焼結体の直径から下記式(ii)により算出した。
 アルミナ焼結体の摩耗体積=摩耗長さ×(アルミナ焼結体の直径/2)π ・・・(ii)
 なお、摩耗長さは、試験前と試験後のアルミナ焼結体の長さの差である。アルミナ焼結体の長さ(mm)及び直径(mm)は、デジタルマイクロスコープ(同上)により測定した。
 また、アルミナ焼結体の密度は、アルミナ焼結体の見かけ比重として、JIS Z8807:2012に定められた液中ひょう量法で測定した。
 算出した被削材の摩耗重量を「被削材が削られた量」とし、アルミナ焼結体の摩耗重量を「砥石の摩耗量」として、上記式(A)により研削比を算出した。測定は、試料毎に任意に選択したアルミナ焼結体3個について同様に行った。さらに、試料毎に得られた測定値(N=3)を平均して、その平均値をそれぞれの試料の研削比とした。
 なお、研削比の測定は、実施例1、比較例3及び比較例4の焼結体についてのみ行った。
 
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1では、前駆体が、特にイットリウム及び鉄を所定量含有することにより、緻密で、機械的強度に優れたアルミナ焼結体が得られることが確認された。このような実施例1のアルミナ焼結体は、本実施例における方法で測定した研削比が高いことから、実際に砥石として用いた場合にも、高い研削比を実現できることが予想される。
 これに対し、比較例1では、前駆体がイットリウム及び鉄を含有しないため、実施例1に比べて、特に機械的強度が低いことが確認された。
 一方、前駆体がイットリウムのみを含有する比較例2では、イットリウムの添加により、焼結が妨げられ、同じ焼成温度では、イットリウムを含まない比較例1の前駆体に比べて、得られる焼結体の相対密度が著しく低下することが確認された。
 このような比較例2の前駆体の場合には、緻密なアルミナ焼結体を得るために、焼成温度を高める必要があることが確認された。
 また、比較例3は、イットリウムを含まず、鉄のみを添加した前駆体であるが、イットリウム及び鉄を所定量含有する実施例1の前駆体のような、より低温での良好な焼結性や、得られるアルミナ焼結体の機械的強度の向上は、確認されなかった。また、比較例3のアルミナ焼結体は、本実施例における方法で測定した研削比が実施例1のアルミナ焼結体に比べて大きく劣っていることから、砥石として使用しても十分な研削比が得られないことが予想される。
 また、比較例4の前駆体のように、イットリウム及び鉄を両方含有する場合であっても、該前駆体中のアルミニウムの含有量が酸化アルミニウム換算で98質量%を下回り、また鉄の含有量が、酸化アルミニウムの含有量100質量部に対して、酸化鉄換算で1.55質量部を上回ると、得られるアルミナ焼結体において、特にビッカース硬度が低下し、十分な機械的強度が得られないことが確認された。また、このような比較例4のアルミナ焼結体は、本実施例における方法で測定した研削比が実施例1のアルミナ焼結体に比べて大きく劣っていることから、砥石として使用しても、十分な研削比が得られないことが予想される。
(実施例2~9及び比較例5)
 実施例2~9及び比較例5では、表2に示す配合組成となるように酢酸イットリウム(III)四水和物の配合量を変更した以外は、実施例1と同様の方法でアルミナ焼結体の前駆体を得た。
(実施例10~19)
 実施例10~19では、表2に示す配合組成となるように酸化鉄の配合量を変更した以外は、実施例1と同様の方法でアルミナ焼結体の前駆体を得た。
(実施例20~22)
 実施例20~22では、アルミナ原料粉末1000gに対し、酸化鉄1.25gと、表2に示す配合組成となるように秤量した所定量のヒュームドシリカ(日本アエロジル株式会社製)を配合し、更に顆粒状のポリビニルアルコール3.4gを加えて、卓上型ニーダーを用いて10分間混合した。その後、蒸留水300gに2.5gの酢酸イットリウム(III)四水和物を溶かした酢酸イットリウム(III)四水和物水溶液を調製し、該水溶液を上記混合物中に加えて、30分間混練し、アルミナ焼結体の前駆体を得た。
(実施例23~25)
 実施例23~25では、アルミナ原料粉末1000gに対し、酸化鉄2.5gと、表2に示す配合組成となるように秤量した所定量の水酸化ナトリウム(関東化学株式会社製)を配合し、更に顆粒状のポリビニルアルコール3.4gを加えて、卓上型ニーダーを用いて10分間混合した。その後、蒸留水300gに2.5gの酢酸イットリウム(III)四水和物を溶かした酢酸イットリウム(III)四水和物水溶液を調製し、該水溶液を上記混合物中に加えて、30分間混練し、アルミナ焼結体の前駆体を得た。
[評価II]
 実施例2~25及び比較例5に係るアルミナ焼結体の前駆体を用いて、上記[評価I]に記載の方法により、アルミナ焼結体を作製し、相対密度を求めた。
 この評価では、1550℃で1時間焼成し、このときの相対密度の合格レベルは97.0%以上とした。結果を表2に示す。
 なお、表2において、実施例1は、表1に記載の実施例1と同じデータである。さらに、比較例2は、表1に記載の比較例2のうち、焼成温度1550℃のときのデータと同じである。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、アルミナ焼結体の前駆体に含まれる、イットリウム及び鉄の含有量が、所定の範囲内に制御されている場合には、イットリウム及び鉄の共添加効果が得られる。その結果、熱処理温度を高めることなく、緻密なアルミナ焼結体が得られる(実施例1~25)。一方、イットリウムと鉄を共添加した場合であっても、イットリウムが過剰すぎると、焼結が妨げられ、緻密なアルミナ焼結体を得ることが困難になる(比較例5)。
(実施例26~34)
 実施例26~34では、表3に示す金属酸化物換算の配合割合になるように、酸化鉄に替えて、以下の所定の金属を含む化合物を所定量配合した以外は、実施例16と同様の方法でアルミナ焼結体の前駆体を得た。
 所定の金属を含む化合物としては、実施例26では酸化亜鉛(関東化学株式会社製)を、実施例27では酸化コバルト(関東化学株式会社製)を、実施例28では酸化マンガン(関東化学株式会社製)を、実施例29では酸化銅(関東化学株式会社製)を、実施例30では酸化ニオブ(関東化学株式会社製)を、実施例31では酸化アンチモン(関東化学株式会社製)を、実施例32では酸化タングステン(関東化学株式会社製)を、実施例33では酸化銀(関東化学株式会社製)を、実施例34では酸化ガリウム(関東化学株式会社製)を、それぞれ用いた。
[評価III]
 実施例26~34に係るアルミナ焼結体の前駆体を用いて、上記[評価I]に記載の方法により、アルミナ焼結体を作製し、相対密度を求めた。
 この評価では、1550℃で1時間焼成し、このときの相対密度の合格レベルは97.0%以上とした。結果を表3に示す。
 なお、表3に記載の実施例16は、表2に記載の実施例16と同じデータである。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、鉄に替えて、亜鉛、コバルト、マンガン、銅、ニオブ、アンチモン、タングステン、銀及びガリウムからなる群から選択される1種の金属を、イットリウムと共に共添加した場合にも、低温で緻密な焼結体が得られること確認された(実施例26~34)。

Claims (10)

  1.  アルミニウムと、イットリウムと、鉄、亜鉛、コバルト、マンガン、銅、ニオブ、アンチモン、タングステン、銀及びガリウムからなる群から選択される少なくとも1種の金属と、を含むアルミナ焼結体の前駆体であって、
     前記アルミニウムの含有量が、前記アルミナ焼結体の前駆体100質量%中に、酸化物(Al)換算で98.0質量%以上であり、
     前記イットリウムの含有量が、前記酸化物換算のアルミニウムの含有量100質量部に対して、酸化物(Y)換算で0.01~1.35質量部であり、
     前記群から選択される金属の合計含有量が、前記酸化物換算のアルミニウムの含有量100質量部に対して、酸化物換算で0.02~1.55質量部であり、
     前記アルミニウムをαアルミナとして含む、アルミナ焼結体の前駆体。
  2.  前記イットリウムを酢酸イットリウム四水和物として含む、請求項1に記載のアルミナ焼結体の前駆体。
  3.  砥粒を構成するアルミナ焼結体を得るために用いられる、請求項1又は2に記載のアルミナ焼結体の前駆体。
  4.  請求項1~3のいずれか1項に記載のアルミナ焼結体の前駆体を得る工程(I)と、
     前記アルミナ焼結体の前駆体を焼成し、アルミナ焼結体を得る工程(II)と、を有する、アルミナ焼結体の製造方法。
  5.  前記アルミナ焼結体の前駆体を得る工程(I)が、α-アルミナと、イットリウムを含む化合物と、鉄、亜鉛、コバルト、マンガン、銅、ニオブ、アンチモン、タングステン、銀及びガリウムからなる群から選択される1種の金属を含む少なくとも一つの化合物とを混合する工程を含む、請求項4に記載のアルミナ焼結体の製造方法。
  6.  前記イットリウムを含む化合物が、酢酸イットリウム四水和物である、請求項4又は5に記載のアルミナ焼結体の製造方法。
  7.  前記アルミナ焼結体の前駆体の焼成温度が、1300~1575℃である、請求項4~6のいずれか1項に記載のアルミナ焼結体の製造方法。
  8.  前記アルミナ焼結体の相対密度が、95.0%以上である、請求項4~7のいずれか1項に記載のアルミナ焼結体の製造方法。
  9.  請求項4~8のいずれか1項に記載のアルミナ焼結体の製造方法により行われる、砥粒の製造方法。
  10.  アルミニウムと、イットリウムと、鉄、亜鉛、コバルト、マンガン、銅、ニオブ、アンチモン、タングステン、銀及びガリウムからなる群から選択される少なくとも1種の金属と、を含むアルミナ焼結体であって、
     前記アルミニウムの含有量が、前記アルミナ焼結体100質量%中に、酸化物(Al)換算で98.0質量%以上であり、
     前記イットリウムの含有量が、前記酸化物換算のアルミニウムの含有量100質量部に対して、酸化物(Y)換算で0.01~1.35質量部であり、
     前記群から選択される金属の合計含有量が、前記酸化物換算のアルミニウムの含有量100質量部に対して、酸化物換算で0.02~1.55質量部であり、
    相対密度が95.0%以上であるアルミナ焼結体。
     
PCT/JP2018/047595 2017-12-27 2018-12-25 アルミナ焼結体の前駆体、アルミナ焼結体の製造方法、砥粒の製造方法及びアルミナ焼結体 WO2019131644A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019562035A JP6877586B2 (ja) 2017-12-27 2018-12-25 アルミナ焼結体の前駆体、アルミナ焼結体の製造方法、砥粒の製造方法及びアルミナ焼結体
KR1020207013918A KR102363114B1 (ko) 2017-12-27 2018-12-25 알루미나 소결체의 전구체, 알루미나 소결체의 제조 방법, 숫돌 입자의 제조 방법 및 알루미나 소결체
CN201880074716.2A CN111356668A (zh) 2017-12-27 2018-12-25 氧化铝烧结体的前体、氧化铝烧结体的制造方法、磨粒的制造方法和氧化铝烧结体
US16/768,231 US11667574B2 (en) 2017-12-27 2018-12-25 Precursor of alumina sintered body, method for producing alumina sintered body, method for producing abrasive grains, and alumina sintered body
EP18896983.6A EP3733629A4 (en) 2017-12-27 2018-12-25 ALUMINA SINTERED BODY PRECURSOR, ALUMINA SINTERED BODY PRODUCTION PROCESS, ABRASIVE GRAIN PRODUCTION PROCESS AND ALUMINA SINTERED BODY
US18/130,985 US20230339815A1 (en) 2017-12-27 2023-04-05 Precursor of alumina sintered body, method for producing alumina sintered body, method for producing abrasive grains, and alumina sintered body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-251271 2017-12-27
JP2017251271 2017-12-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/768,231 A-371-Of-International US11667574B2 (en) 2017-12-27 2018-12-25 Precursor of alumina sintered body, method for producing alumina sintered body, method for producing abrasive grains, and alumina sintered body
US18/130,985 Continuation US20230339815A1 (en) 2017-12-27 2023-04-05 Precursor of alumina sintered body, method for producing alumina sintered body, method for producing abrasive grains, and alumina sintered body

Publications (1)

Publication Number Publication Date
WO2019131644A1 true WO2019131644A1 (ja) 2019-07-04

Family

ID=67067387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047595 WO2019131644A1 (ja) 2017-12-27 2018-12-25 アルミナ焼結体の前駆体、アルミナ焼結体の製造方法、砥粒の製造方法及びアルミナ焼結体

Country Status (7)

Country Link
US (2) US11667574B2 (ja)
EP (1) EP3733629A4 (ja)
JP (1) JP6877586B2 (ja)
KR (1) KR102363114B1 (ja)
CN (1) CN111356668A (ja)
TW (1) TWI697466B (ja)
WO (1) WO2019131644A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102370459B1 (ko) * 2017-08-01 2022-03-04 가부시키가이샤 페로텍 머티리얼 테크놀로지즈 알루미나 소결체 및 그 제조 방법과, 반도체 제조 장치용 부품

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231462A (ja) * 1984-01-19 1985-11-18 ノ−トン カンパニ− 研摩材料および製法
JPS62190279A (ja) * 1985-12-30 1987-08-20 ミネソタ マイニング アンド マニユフアクチユアリング カンパニ− セラミック砥粒、その製造方法及び被覆研摩シート
JPH0420586A (ja) * 1990-05-15 1992-01-24 Showa Denko Kk アルミナ質焼結砥粒の製造方法
JPH10504348A (ja) * 1994-11-17 1998-04-28 サン−ゴバン/ノートン インダストリアル セラミックス コーポレイション 改変ゾルゲルアルミナ
US5893935A (en) * 1997-01-09 1999-04-13 Minnesota Mining And Manufacturing Company Method for making abrasive grain using impregnation, and abrasive articles

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939885B1 (ja) * 1968-08-19 1974-10-29
US3900542A (en) * 1973-04-26 1975-08-19 Little Inc A Process for sintering finely divided particulates and resulting ceramic products
US5383945A (en) 1984-01-19 1995-01-24 Norton Company Abrasive material and method
JPS61191562A (ja) 1985-02-19 1986-08-26 三井鉱山株式会社 アルミナ系耐摩耗性材料
ATE92543T1 (de) 1989-06-10 1993-08-15 Starck H C Gmbh Co Kg Verfahren zur herstellung gesinterter mikrokristalliner alpha-al2o3-koerper sowie deren verwendung.
US5690707A (en) * 1992-12-23 1997-11-25 Minnesota Mining & Manufacturing Company Abrasive grain comprising manganese oxide
ATE167225T1 (de) 1993-04-30 1998-06-15 Hermes Schleifmittel Gmbh & Co Keramisches korundschleifmittel
JP3287149B2 (ja) 1994-02-14 2002-05-27 松下電器産業株式会社 アルミナ質のセラミックス
JP3472419B2 (ja) 1996-10-29 2003-12-02 京セラ株式会社 着色アルミナ質焼結体及びその製造方法
JP2003277132A (ja) 2002-03-22 2003-10-02 Ngk Spark Plug Co Ltd アルミナ基焼結体並びにそれを用いたセラミックヒータ及びガスセンサ素子
US7056853B2 (en) 2003-02-05 2006-06-06 Matsushita Electric Industrial Co., Ltd. Oxide ceramic material, ceramic substrate employing the same, ceramic laminate device, and power amplifier module
CN100503507C (zh) * 2003-04-02 2009-06-24 珠海粤科京华电子陶瓷有限公司 低温烧结的99氧化铝陶瓷及其制造方法和用途
JP2006151775A (ja) 2004-12-01 2006-06-15 Matsushita Electric Ind Co Ltd 低温焼成酸化物セラミック材料の製造方法、低温焼成酸化物セラミック材料、低温焼成酸化物セラミック電子部品及びその製造方法
CN100509692C (zh) 2007-09-04 2009-07-08 桂林工学院 一种钨刚玉陶瓷材料及低温烧结方法
CN101343176B (zh) * 2008-08-15 2011-07-27 苏州创元投资发展(集团)有限公司 一种自补强亚微米晶氧化铝陶瓷的制备方法
KR102070215B1 (ko) 2015-09-16 2020-01-29 다이니치 세이카 고교 가부시키가이샤 알루미나계 열 전도성 산화물 및 그의 제조 방법
CN107285746B (zh) 2016-04-12 2020-07-07 深圳光峰科技股份有限公司 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231462A (ja) * 1984-01-19 1985-11-18 ノ−トン カンパニ− 研摩材料および製法
JPS62190279A (ja) * 1985-12-30 1987-08-20 ミネソタ マイニング アンド マニユフアクチユアリング カンパニ− セラミック砥粒、その製造方法及び被覆研摩シート
JPH0420586A (ja) * 1990-05-15 1992-01-24 Showa Denko Kk アルミナ質焼結砥粒の製造方法
JPH10504348A (ja) * 1994-11-17 1998-04-28 サン−ゴバン/ノートン インダストリアル セラミックス コーポレイション 改変ゾルゲルアルミナ
US5893935A (en) * 1997-01-09 1999-04-13 Minnesota Mining And Manufacturing Company Method for making abrasive grain using impregnation, and abrasive articles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Characteristics of Yttria-Added Alumina Ceramics", REPORTS OF SETO CERAMIC RESEARCH INSTITUTE, AICHI PREFECTURAL GOVERNMENT, pages 22 - 24
MATERIALS TRANSACTIONS, vol. 45, no. 7, 2004, pages 2078 - 2082

Also Published As

Publication number Publication date
JPWO2019131644A1 (ja) 2020-07-27
TWI697466B (zh) 2020-07-01
CN111356668A (zh) 2020-06-30
US20230339815A1 (en) 2023-10-26
KR20200072511A (ko) 2020-06-22
TW201930233A (zh) 2019-08-01
KR102363114B1 (ko) 2022-02-15
JP6877586B2 (ja) 2021-05-26
EP3733629A4 (en) 2021-09-15
US11667574B2 (en) 2023-06-06
EP3733629A1 (en) 2020-11-04
US20200308056A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
TWI465319B (zh) Alumina sintered, abrasive, and abrasive
WO2012060213A1 (ja) アルミナ質焼結体の製造方法、アルミナ質焼結体、砥粒、及び砥石
US20230339815A1 (en) Precursor of alumina sintered body, method for producing alumina sintered body, method for producing abrasive grains, and alumina sintered body
WO2018117161A1 (ja) 配向AlN焼結体及びその製法
JP5292130B2 (ja) スパッタリングターゲット
KR20120008427A (ko) 질화규소기 복합 세라믹스 및 그 제조방법
TWI689484B (zh) 氧化鋁燒結體、研磨粒,及研磨石
WO2018117162A1 (ja) 透明AlN焼結体及びその製法
JP2010095393A (ja) 耐食性に優れたセラミックス製熱処理用部材およびその製造方法
JP5116246B2 (ja) セラミック製刃物およびその製造方法
JP2014009119A (ja) アルミナ質焼結体及びその製造方法
JP6367122B2 (ja) アルミナ焼結体、砥粒、砥石、研磨布、及びアルミナ焼結体の製造方法
JP5312523B2 (ja) セラミック製刃物およびその製造方法
JP5673945B2 (ja) 窒化ケイ素系セラミックスの製造方法
JP4189723B2 (ja) 高精度光学ガラスレンズの熱間プレス成形に用いるのに適したタングステン基焼結合金金型
JP2020045268A (ja) 焼結体、スパッタリングターゲットおよび、焼結体の製造方法
JP2002275556A (ja) 金属−セラミックス複合材料
JP2006193353A (ja) アルミナ焼結体、切削インサートおよび切削工具
JP2020099981A (ja) 砥粒を含む研削砥石の研削性の評価方法
JP2005239469A (ja) アルミナ・ジルコニア系セラミックス及びその製法
JP2005240063A (ja) 光学ガラスレンズの熱間プレス成形金型として用いるのに適した細粒組織を有する高硬度タングステン系焼結材料
JP5435704B2 (ja) 樹脂−セラミックス複合材料およびその製造方法
JPWO2020158882A1 (ja) セラミックス焼結体及びその製造方法、並びにノズル部材
JP2002338365A (ja) 窒化アルミニウム系複合粉末及びその製造方法
JP2004026633A (ja) 炭化硼素−二硼化クロム焼結体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562035

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207013918

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018896983

Country of ref document: EP

Effective date: 20200727