WO2019128821A1 - 一种机器人多自由度夹持器 - Google Patents

一种机器人多自由度夹持器 Download PDF

Info

Publication number
WO2019128821A1
WO2019128821A1 PCT/CN2018/122219 CN2018122219W WO2019128821A1 WO 2019128821 A1 WO2019128821 A1 WO 2019128821A1 CN 2018122219 W CN2018122219 W CN 2018122219W WO 2019128821 A1 WO2019128821 A1 WO 2019128821A1
Authority
WO
WIPO (PCT)
Prior art keywords
jaw
pneumatic
finger
gripper
stroke
Prior art date
Application number
PCT/CN2018/122219
Other languages
English (en)
French (fr)
Inventor
刘金国
刘云军
Original Assignee
中国科学院沈阳自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院沈阳自动化研究所 filed Critical 中国科学院沈阳自动化研究所
Priority to US16/957,720 priority Critical patent/US11458638B2/en
Publication of WO2019128821A1 publication Critical patent/WO2019128821A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0009Gripping heads and other end effectors comprising multi-articulated fingers, e.g. resembling a human hand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0033Gripping heads and other end effectors with gripping surfaces having special shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0004Gripping heads and other end effectors with provision for adjusting the gripped object in the hand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0052Gripping heads and other end effectors multiple gripper units or multiple end effectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • B25J15/086Gripping heads and other end effectors having finger members with means for synchronizing the movements of the fingers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • B25J15/10Gripping heads and other end effectors having finger members with three or more finger members
    • B25J15/103Gripping heads and other end effectors having finger members with three or more finger members for gripping the object in three contact points
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G5/00Ground equipment for vehicles, e.g. starting towers, fuelling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/64Systems for coupling or separating cosmonautic vehicles or parts thereof, e.g. docking arrangements
    • B64G1/646Docking or rendezvous systems

Definitions

  • the present invention relates to a holder, and more particularly to a robot multi-degree of freedom holder.
  • Propellant filling is an important part of the rocket launch.
  • the world's major aerospace powers have been paying close attention to the automatic docking and disassembly technology of propellant filling pipe joints.
  • the docking and disengagement of the pipe joint connector is not only a high risk link in the filling, but also the primary problem to be solved in the automation of the filling process.
  • cleaning, connecting, dismantling and transporting various propellant pipes, propellant filling pipes and propellant tanks has become an extremely dangerous task, which is extremely liable to cause casualties.
  • an object of the present invention is to provide a robot multi-degree of freedom gripper.
  • the multi-degree-of-freedom gripper adopts a human hand-operated configuration design, can realize automatic docking of the spring-return type quick joint, has a unique appearance, novel structure, simple control and strong work reliability.
  • the invention comprises a gripper finger A, a pneumatic gripper A, a short stroke biaxial cylinder, a gripper support frame, a bottom plate, a long stroke biaxial cylinder, a pneumatic gripper B, a pneumatic gripper C, a gripper finger B and a gripper finger C, wherein the jaw support frame is mounted on the bottom plate, the short stroke double shaft cylinder is mounted on the jaw support frame, and the output end is connected to the pneumatic jaw A, the jaw finger A and the pneumatic jaw A
  • the output ends are connected;
  • the long-stroke twin-shaft cylinder is mounted on the bottom plate and is located below the short-stroke twin-shaft cylinder, and the output end of the long-stroke twin-shaft cylinder is connected to the pneumatic jaw B, the jaw finger B is connected to the output end of the pneumatic gripper B;
  • the pneumatic gripper C is mounted on the gripper support frame between the pneumatic gripper A and the pneumatic gripper B, the gripper finger C and the pneumatic gripper
  • both sides of the clamping end of the finger A of the jaw form an opening having a diamond shape as a whole for clamping the prism
  • Each side of the clamping end of the jaw finger C is a semi-circular opening, and both sides of the clamping end form an overall circular opening for clamping the cylinder;
  • the gripper finger A, the pneumatic gripper A, the gripper finger B, and the pneumatic gripper B are respectively located on both sides of the gripper finger C and the pneumatic gripper C;
  • the pneumatic gripper A is connected to the output end of the short stroke biaxial cylinder through the jaw fixing plate A, one end of the jaw fixing plate A is connected with the pneumatic gripper A, and the other end is connected with the short stroke twin shaft cylinder
  • the output end is connected;
  • the pneumatic jaw B is connected to the output end of the long-stroke double-shaft cylinder through the jaw fixing plate B, one end of the clamping plate B is connected to the pneumatic jaw B, and the other end is
  • the output end of the long-stroke double-shaft cylinder is connected;
  • the shape structure of the jaw fixing plate A and the jaw fixing plate B are the same, and the shape is a rectangular parallelepiped structure, and the middle is opened for reducing the self-weight and increasing the ratio of the bearing capacity to the weight.
  • the axial centerline of the two-axis of the short-stroke twin-shaft cylinder and the axial centerline of the two-axis of the long-stroke twin-shaft cylinder are respectively collinearly projected on the bottom plate;
  • the two sides of the longitudinal direction of the jaw support frame are fixed on the bottom plate, and the short-stroke double-axis cylinder is fixed on the upper surface of the rear end of the clamp support frame, and the front end of the clamp support frame extends upward to form a mounting plate.
  • the pneumatic jaw C is fixed to a side of the mounting plate facing the pneumatic jaw B;
  • a weight reducing slot and a guiding slot for guiding the movement of the pneumatic jaw B are respectively disposed on the bottom plate.
  • the invention adopts a configuration design which is human-handed and has a novel and unique structure.
  • the finger of the gripper of the invention adopts a semicircular shape and a diamond shape design, and has strong speciality, and the clamping is stable and reliable.
  • the middle jaw of the invention is fixed, which reduces one degree of freedom, is easy to control, and has high docking precision.
  • the jaw support frame and the bottom plate structure of the invention are partially hollowed out, the weight is small, and the structure is light.
  • the invention has five degrees of freedom, which enables clamping and automatic docking of quick joints.
  • Figure 1 is a schematic view of the overall structure of the present invention
  • Figure 2 is a front elevational view of the structure of the present invention.
  • Figure 3 is a right side view of the structure of the present invention.
  • Figure 4 is a plan view of the structure of the present invention.
  • Figure 5 is a schematic structural view of a jaw fixing plate of the present invention.
  • Figure 6 is a schematic structural view of a jaw supporting frame of the present invention.
  • Figure 7 is a schematic structural view of a bottom plate of the present invention.
  • Figure 8 is a schematic diagram of an automated docking process of the present invention.
  • Figure 9 is a second schematic diagram of the automated docking process of the present invention.
  • 1 is the jaw finger A
  • 2 is the pneumatic jaw A
  • 3 is the jaw fixing plate A
  • 4 is the short stroke double shaft cylinder
  • 5 is the jaw support frame
  • 6 is the bottom plate
  • 7 is the long stroke double shaft cylinder
  • 8 is the jaw fixing plate B
  • 9 is the pneumatic jaw B
  • 10 is the pneumatic jaw C
  • 11 is the jaw finger B
  • 12 is the jaw finger C
  • 13 is the quick joint male joint
  • 16 is a weight reducing slot
  • 17 is a guiding slot
  • 18 is a mounting plate.
  • the present invention includes a gripper finger A1, a pneumatic gripper A2, a gripper fixing plate A3, a short stroke biaxial cylinder 4, a gripper support frame 5, a bottom plate 6, and a long stroke biaxial cylinder 7, a jaw fixing plate B8, a pneumatic jaw B9, a pneumatic jaw C10, a jaw finger B11, and a jaw finger B12, wherein the jaw support frame 5 is mounted on the bottom plate 6, and the short stroke biaxial cylinder 4 is mounted on the jaw
  • the pneumatic jaw A2 is connected to the output end of the short-stroke double-shaft cylinder 4 through the jaw fixing plate A3, one end of the jaw fixing plate A3 is connected to the pneumatic jaw A2 by bolts, and the other end is bolted and short.
  • the output end of the stroke twin-shaft cylinder 4 is connected; the jaw finger A1 is connected to the output end of the pneumatic jaw A2.
  • the long stroke twin-shaft cylinder 7 is mounted on the bottom plate 6 and below the short-stroke twin-shaft cylinder 4, and the pneumatic jaw B9 is connected to the output end of the long-stroke twin-shaft cylinder 7 via the jaw fixing plate B8, the jaw fixing plate One end of the B7 is connected to the pneumatic jaw B9 by bolts, and the other end is connected to the output end of the long-stroke double-shaft cylinder 7 by bolts; the jaw finger B11 is connected to the output end of the pneumatic jaw B9.
  • the pneumatic jaw C10 is mounted on the jaw support 5 between the pneumatic jaw A2 and the pneumatic jaw B9, and the jaw finger C12 is coupled to the output of the pneumatic jaw C10.
  • Both sides of the grip end of the jaw finger A1 are designed as a diamond-shaped opening for gripping the prism target.
  • Each side of the gripping end of the jaw finger C12 is designed as a semi-circular opening, the sides of which form an integrally circular opening for gripping the cylindrical structure.
  • the gripper finger A1 and the gripper finger C12 have strong specificity, and the clamping is stable and reliable.
  • the gripper finger A1, the pneumatic gripper A2 and the gripper finger B11, and the pneumatic gripper B8 are respectively located on both sides of the gripper finger C12 and the pneumatic gripper C10, and the gripper finger A1 and the pneumatic gripper A2 pass the short stroke biaxial cylinder 4
  • the drive reciprocates on the jaw support frame 5, and the jaw finger B11 and the pneumatic jaw B9 reciprocate on the bottom plate 6 by the driving of the long stroke double-shaft cylinder 7.
  • the jaw fixing plate A3 and the jaw fixing plate B8 have the same shape and structure, and have a rectangular parallelepiped structure with elliptical holes 15 in the middle for reducing the self-weight and increasing the ratio of the bearing capacity to the weight.
  • both sides of the longitudinal direction of the jaw support frame 5 are fixed to the bottom plate 6, and the short-stroke double-shaft cylinder 4 is fixed to the upper surface of the rear end of the jaw support frame 5, and the jaw support frame 5 is The front end extends upwardly to form a mounting plate 18, and the pneumatic jaw C10 is fixed to the side of the mounting plate 18 facing the pneumatic jaw B9. Holes and grooves of different sizes and shapes are respectively opened on the upper surface and the side surface of the jaw support frame 5 for reducing the weight of the pipe and the arrangement of the air pipe lines.
  • the bottom plate 6 is respectively provided with a weight reducing slot 16 and a guiding slot 17 for guiding the movement of the pneumatic jaw B9.
  • the bottom plate 6 has a small weight and a light structure, and is used for fixing and supporting the long-stroke double-shaft cylinder 7 And the jaw support frame 5.
  • the axial centerline of the twin-axis of the short-stroke twin-shaft cylinder 4 of the present invention and the axial centerline of the twin-axis of the long-stroke twin-shaft cylinder 7 are respectively collinearly projected on the bottom plate 6.
  • the working principle of the invention is:
  • the invention has five degrees of freedom, respectively, clamping of the gripper finger A1, the gripper finger B11, the gripper finger C12, and the movement of the pneumatic gripper A2 and the gripper finger A1 by the short stroke biaxial cylinder 4, and the long stroke double
  • the shaft cylinder 7 drives the movement of the pneumatic jaw B9 and the jaw finger B11.
  • the jaw finger A1 and the jaw finger C12 simultaneously hold the spring return type quick connector female head 14, and the jaw finger B11 holds the spring return type quick joint male head 13.
  • the short-stroke double-shaft cylinder 4 works, and the pneumatic jaw A2 is extended by the jaw fixing plate A3 to reach the set distance, so that the spring-return type quick connector female 14 is unlocked, as shown in FIG. Then, the long-stroke double-shaft cylinder 7 is operated, and the pneumatic jaw B9 is pulled by the jaw fixing plate B8, so that the spring-return type quick connector male 13 is smoothly inserted into the quick connector female 14, as shown in FIG.
  • the short-stroke double-shaft cylinder 4 is pulled back to the initial position, and is respectively driven by the pneumatic jaw A2, the pneumatic jaw B9, and the pneumatic jaw C10, and the jaw finger A1, the jaw finger B11 and the jaw finger C12 are released. Complete the automatic docking of the spring-return type quick connector.
  • the invention realizes the automatic docking of the spring return type quick joint by pneumatically driving the telescopic expansion of the long and short stroke twin-shaft cylinders and the opening and closing of the pneumatic jaws.
  • the invention adopts the configuration design of the human hand operation, can automatically connect the spring return type quick joint, has a unique appearance, novel structure, simple control and high work reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种机器人多自由度夹持器,夹爪支撑架(5)安装在底板(6)上,短行程双轴气缸(4)安装在夹爪支撑架(5)上,输出端与气动夹爪A(2)连接,夹爪手指A(1)与气动夹爪A(2)的输出端相连;长行程双轴气缸(7)安装在底板(6)上,长行程双轴气缸(7)的输出端与气动夹爪B(9)连接,夹爪手指B(11)与气动夹爪B(9)的输出端相连;气动夹爪C(10)安装在夹爪支撑架(5)上,位于气动夹爪A(2)与气动夹爪B(9)之间,夹爪手指C(12)与气动夹爪C(10)的输出端相连;夹爪手指A(1)与气动夹爪A(2)通过短行程双轴气缸(4)的驱动在夹爪支撑架(5)上往复运动,夹爪手指B(11)与气动夹爪B(9)通过长行程双轴气缸(7)的驱动在底板(6)上往复运动。该机器人多自由度夹持器采用仿人手操作的构型设计,能够使弹簧复位型快速接头自动对接,外观独特,结构新颖,控制简单,工作可靠性高。

Description

一种机器人多自由度夹持器 技术领域
本发明涉及夹持器,具体地说是一种机器人多自由度夹持器。
背景技术
推进剂加注是火箭发射前的重要环节,世界各航天强国对推进剂加注管路接头的自动对接和拆卸技术研究一直非常关注。管路接头连接器的对接与脱离既是加注中的高危险环节,又是实现加注过程自动化需解决的首要问题。运载火箭的推进剂的加泄工作中,连接、拆除、运送各种推进剂管道和推进剂加注管、推进剂储罐的清洗工作成为一项极为危险的工作,极易造成人员伤亡。因此研究一种自动加注机器人技术有助于缩短发射前的准备时间、减少工作量及降低勤务人员误操作产生紧急情况的风险;提高火箭和操作人员的安全性;提高系统的可靠性和安全性;对减轻操作人员的劳动强度有着重要意义。
与此同时,目前在空调行业的生产线上,每天都要进行管路的耐压气密测试、抽真空、冷媒灌注、商检运转测试等工序。而现有的管路快速接头与液压阀、气压阀的联接都是通过员工手动对接,耗费了较多的人力。同时由于人工操作时间长,工作效率较低,甚至出现工件等人或人等工件的时间浪费现象。
发明内容
针对上述问题,本发明的目的在于提供一种机器人多自由度夹持器。该多自由度夹持器采用仿人手操作的构型设计,能够对弹簧复位型快速接头实现自动化对接,外观独特,结构新颖,控制简单,工作可靠性强。
本发明的目的是通过以下技术方案来实现的:
本发明包括夹爪手指A、气动夹爪A、短行程双轴气缸、夹爪支撑架、底板、长行程双轴气缸、气动夹爪B、气动夹爪C、夹爪手指B及夹爪手指C,其中夹爪支撑架安装在底板上,所述短行程双轴气缸安装在该夹爪支撑架上,输出端与所述气动夹爪A连接,所述夹爪手指A与气动夹爪A的输出端相连;所述长行程双轴气缸安装在底板上、并位于短行程双轴气缸的下方,该长行程双轴气缸的输出端与所述气动夹爪B连接,所述夹爪手指B与气动夹爪B的输出端相连;所述气动夹爪C安装在夹爪支撑架上,位于所述气动夹爪A与气动夹爪B之间,所述夹爪手指C与气动夹爪C的输出端相连;所述夹爪手指A与气动夹爪A通过短行程双轴气缸的驱动在夹爪支撑架上往复运动,所述夹爪手指B与气动夹爪B通过长行程双轴气缸的驱动在底板上往复运动;所述夹爪手指A及夹爪手指C夹持快速接头母接头,所述夹爪手指B夹持快速接头公接头,通过所述长、短行程双轴气缸的带动实现该快速接头公接头与快速接头母接头的对接;
其中:所述夹爪手指A夹持端的两侧形成整体为菱形的、用于夹持棱柱体的开口;
所述夹爪手指C夹持端的每侧均为半圆形开口,该夹持端的两侧形成整体为圆形的、用于夹持圆柱体的开口;
所述夹爪手指A、气动夹爪A与夹爪手指B、气动夹爪B分别位于夹爪手指C、气动夹爪C的两侧;
所述气动夹爪A通过夹爪固定板A与短行程双轴气缸的输出端相连,该夹爪固定板A的一端与所述气动夹爪A连接,另一端与所述短行程双轴气缸的输出端连接;所述气动夹爪B通过夹爪固定板B与长行程双轴气缸的输出端相连,该夹爪固定板B的一端与所述气动夹爪B连接,另一端与所述长行程双轴气缸的输出端连接;所述夹爪固定板A与夹爪固定板B的形状结构均相同,形状为长方体结构,中间均开有用于减轻自重、提高承载力与重量之比的椭圆形孔;
所述短行程双轴气缸双轴的轴向中心线与长行程双轴气缸双轴的轴向中心线在底板上的投影分别共线;
所述夹爪支撑架长度方向的两侧固接在底板上,所述短行程双轴气缸固接于夹爪支撑架后端的上表面上,该夹爪支撑架的前端向上延伸、形成安装板,所述气动夹爪C固接于该安装板朝向气动夹爪B的一侧;
所述底板上分别开设有减重槽孔及用于引导气动夹爪B移动的导向槽。
本发明的优点与积极效果为:
1.本发明采用仿人手操作的构型设计,结构新颖独特。
2.本发明夹爪手指采用半圆形和菱形设计,专用性较强,夹持稳定可靠。
3.本发明中间夹爪固定,减少了一个自由度,易于控制,对接精度高。
4.本发明夹爪支撑架及底板结构局部挖空,重量较小,结构轻巧。
5.本发明共有五个自由度,可以实现快速接头的夹持和自动对接。
附图说明
图1为本发明的整体结构示意图;
图2为本发明的结构主视图;
图3为本发明的结构右视图;
图4为本发明的结构俯视图;
图5为本发明夹爪固定板的结构示意图;
图6为本发明夹爪支撑架的结构示意图;
图7为本发明底板的结构示意图;
图8为本发明自动化对接过程示意图之一;
图9为本发明自动化对接过程示意图之二;
其中:1为夹爪手指A,2为气动夹爪A,3为夹爪固定板A,4为短行程双 轴气缸,5为夹爪支撑架,6为底板,7为长行程双轴气缸,8为夹爪固定板B,9为气动夹爪B,10为气动夹爪C,11为夹爪手指B,12为夹爪手指C,13为快速接头公接头,14为快速接头母接头,15为椭圆形孔,16为减重槽孔,17为导向槽,18为安装板。
具体实施方式
下面结合附图对本发明作进一步详述。
如图1~4所示,本发明包括夹爪手指A1、气动夹爪A2、夹爪固定板A3、短行程双轴气缸4、夹爪支撑架5、底板6、长行程双轴气缸7、夹爪固定板B8、气动夹爪B9、气动夹爪C10、夹爪手指B11、及夹爪手指B12,其中夹爪支撑架5安装在底板6上,短行程双轴气缸4安装在该夹爪支撑架5上,气动夹爪A2通过夹爪固定板A3与短行程双轴气缸4的输出端相连,该夹爪固定板A3的一端通过螺栓与气动夹爪A2连接,另一端通过螺栓与短行程双轴气缸4的输出端连接;夹爪手指A1与气动夹爪A2的输出端相连。长行程双轴气缸7安装在底板6上、并位于短行程双轴气缸4的下方,气动夹爪B9通过夹爪固定板B8与长行程双轴气缸7的输出端相连,该夹爪固定板B7的一端通过螺栓与气动夹爪B9连接,另一端通过螺栓与长行程双轴气缸7的输出端连接;夹爪手指B11与气动夹爪B9的输出端相连。气动夹爪C10安装在夹爪支撑架5上,位于气动夹爪A2与气动夹爪B9之间,夹爪手指C12与气动夹爪C10的输出端相连。夹爪手指A1夹持端的两侧设计成整体为菱形的开口,用于夹持棱柱体目标。夹爪手指C12夹持端的每侧设计成半圆形开口,该夹持端的两侧形成整体为圆形的开口,用于夹持圆柱体结构。夹爪手指A1和夹爪手指C12专用性较强,夹持稳定可靠。夹爪手指A1、气动夹爪A2与夹爪手指B11、气动夹爪B8分别位于夹爪手指C12、气动夹爪C10的两侧,夹爪手指A1与气动夹爪A2通过短行程双轴气缸4的驱动在夹爪支撑架5上往复运动,夹爪手指B11与气动夹爪B9通过长行程双轴气缸7的驱动在底板6上往复运动。
如图5所示,夹爪固定板A3与夹爪固定板B8的形状结构均相同,形状为长方体结构,中间均开有椭圆形孔15,用于减轻自重,提高承载力与重量之比。
如图6所示,夹爪支撑架5长度方向的两侧固接在底板6上,短行程双轴气缸4固接于夹爪支撑架5后端的上表面上,该夹爪支撑架5的前端向上延伸、形成安装板18,气动夹爪C10固接于该安装板18朝向气动夹爪B9的一侧。在夹爪支撑架5的上表面和侧面分别开有不同大小和形状的孔、槽,用于减轻自身重量和气管线路的布置。
如图7所示,底板6上分别开设有减重槽孔16及用于引导气动夹爪B9移动的导向槽17,该底板6重量小,结构轻巧,用于固定支撑长行程双轴气缸7和夹爪支撑架5。
本发明短行程双轴气缸4双轴的轴向中心线与长行程双轴气缸7双轴的轴向中心线在底板6上的投影分别共线。
本发明的工作原理为:
本发明共有五个自由度,分别为夹爪手指A1、夹爪手指B11、夹爪手指C12的夹持以及短行程双轴气缸4带动气动夹爪A2和夹爪手指A1的移动、长行程双轴气缸7带动气动夹爪B9和夹爪手指B11的移动。
夹爪手指A1和夹爪手指C12同时夹持弹簧复位型快速接头母头14,夹爪手指B11夹持弹簧复位型快速接头公头13。短行程双轴气缸4工作,通过夹爪固定板A3推动气动夹爪A2伸长到达设定距离,使得弹簧复位型快速接头母头14解锁,如图8所示。然后,长行程双轴气缸7工作,通过夹爪固定板B8拉动气动夹爪B9,使得弹簧复位型快速接头公头13平稳地插入到快速接头母头14当中,如图9所示。最后,回拉短行程双轴气缸4到达初始位置,并通过气动夹爪A2、气动夹爪B9、气动夹爪C10分别驱动,松开夹爪手指A1、夹爪手指B11和夹爪手指C12,完成弹簧复位型快速接头的自动化对接。
本发明通过气压驱动长、短行程双轴气缸的伸缩及气动夹爪的开合,实现弹簧复位型快速接头的自动化对接。本发明采用仿人手操作的构型设计,能够使弹簧复位型快速接头自动对接,外观独特,结构新颖,控制简单,工作可靠性高。

Claims (9)

  1. 一种机器人多自由度夹持器,其特征在于:包括夹爪手指A(1)、气动夹爪A(2)、短行程双轴气缸(4)、夹爪支撑架(5)、底板(6)、长行程双轴气缸(7)、气动夹爪B(9)、气动夹爪C(10)、夹爪手指B(11)及夹爪手指C(12),其中夹爪支撑架(5)安装在底板(6)上,所述短行程双轴气缸(4)安装在该夹爪支撑架(5)上,输出端与所述气动夹爪A(2)连接,所述夹爪手指A(1)与气动夹爪A(2)的输出端相连;所述长行程双轴气缸(7)安装在底板(6)上、并位于短行程双轴气缸(4)的下方,该长行程双轴气缸(7)的输出端与所述气动夹爪B(9)连接,所述夹爪手指B(11)与气动夹爪B(9)的输出端相连;所述气动夹爪C(10)安装在夹爪支撑架(5)上,位于所述气动夹爪A(2)与气动夹爪B(9)之间,所述夹爪手指C(12)与气动夹爪C(10)的输出端相连;所述夹爪手指A(1)与气动夹爪A(2)通过短行程双轴气缸(4)的驱动在夹爪支撑架(5)上往复运动,所述夹爪手指B(11)与气动夹爪B(9)通过长行程双轴气缸(7)的驱动在底板(6)上往复运动;所述夹爪手指A(1)及夹爪手指C(12)夹持快速接头母接头(14),所述夹爪手指B(11)夹持快速接头公接头(13),通过所述长、短行程双轴气缸(7、4)的带动实现该快速接头公接头(13)与快速接头母接头(14)的对接。
  2. 根据权利要求1所述的机器人多自由度夹持器,其特征在于:所述夹爪手指A(1)夹持端的两侧形成整体为菱形的、用于夹持棱柱体的开口。
  3. 根据权利要求1所述的机器人多自由度夹持器,其特征在于:所述夹爪手指C(12)夹持端的每侧均为半圆形开口,该夹持端的两侧形成整体为圆形的、用于夹持圆柱体的开口。
  4. 根据权利要求1所述的机器人多自由度夹持器,其特征在于:所述夹爪手指A(1)、气动夹爪A(2)与夹爪手指B(11)、气动夹爪B(8)分别位于夹爪手指C(12)、气动夹爪C(10)的两侧。
  5. 根据权利要求1所述的机器人多自由度夹持器,其特征在于:所述气动夹爪A(2)通过夹爪固定板A(3)与短行程双轴气缸(4)的输出端相连,该夹爪固定板A(3)的一端与所述气动夹爪A(2)连接,另一端与所述短行程双轴气缸(4)的输出端连接;所述气动夹爪B(9)通过夹爪固定板B(8)与长行程双轴气缸(7)的输出端相连,该夹爪固定板B(7)的一端与所述气动夹爪B(9)连接,另一端与所述长行程双轴气缸(7)的输出端连接。
  6. 根据权利要求5所述的机器人多自由度夹持器,其特征在于:所述夹爪固定板A(3)与夹爪固定板B(8)的形状结构均相同,形状为长方体结构,中间均开有用于减轻自重、提高承载力与重量之比的椭圆形孔(15)。
  7. 根据权利要求1所述的机器人多自由度夹持器,其特征在于:所述短行 程双轴气缸(4)双轴的轴向中心线与长行程双轴气缸(7)双轴的轴向中心线在底板(6)上的投影分别共线。
  8. 根据权利要求1所述的机器人多自由度夹持器,其特征在于:所述夹爪支撑架(5)长度方向的两侧固接在底板(6)上,所述短行程双轴气缸(4)固接于夹爪支撑架(5)后端的上表面上,该夹爪支撑架(5)的前端向上延伸、形成安装板(18),所述气动夹爪C(10)固接于该安装板(18)朝向气动夹爪B(9)的一侧。
  9. 根据权利要求1所述的机器人多自由度夹持器,其特征在于:所述底板(6)上分别开设有减重槽孔(16)及用于引导气动夹爪B(9)移动的导向槽(17)。
PCT/CN2018/122219 2017-12-25 2018-12-20 一种机器人多自由度夹持器 WO2019128821A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/957,720 US11458638B2 (en) 2017-12-25 2018-12-20 Robot multi-degree-of-freedom clamper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711422333.3 2017-12-25
CN201711422333.3A CN108000543B (zh) 2017-12-25 2017-12-25 一种机器人多自由度夹持器

Publications (1)

Publication Number Publication Date
WO2019128821A1 true WO2019128821A1 (zh) 2019-07-04

Family

ID=62061088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122219 WO2019128821A1 (zh) 2017-12-25 2018-12-20 一种机器人多自由度夹持器

Country Status (3)

Country Link
US (1) US11458638B2 (zh)
CN (1) CN108000543B (zh)
WO (1) WO2019128821A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108000543B (zh) * 2017-12-25 2019-05-21 中国科学院沈阳自动化研究所 一种机器人多自由度夹持器
CN109896049B (zh) * 2018-11-22 2021-06-18 北京航天发射技术研究所 一种直角坐标柔性非接触式连接器自动对接装置及方法
CN109632190B (zh) * 2019-01-30 2021-08-10 上海大学 一种用于空调压缩机密封性检测的多功能夹具
CN114951940B (zh) * 2022-05-30 2023-11-07 无锡三得力自动化科技有限公司 蜂鸣器自动焊线机用理线机构
FR3138339A1 (fr) * 2022-08-01 2024-02-02 Elwedys Outil de Connexion Robotisé

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU839987A1 (ru) * 1979-10-18 1981-06-23 Научно-Исследовательский И Опытно- Конструкторский Институт Автомати-Зации Черной Металлургии Захватное устройство дл сло КиРпичЕй
US5957517A (en) * 1998-11-17 1999-09-28 Chen; Yu-Fu Structure clamp device for the clinching and conveyance of unusually shaped objects
CN205009218U (zh) * 2015-10-12 2016-02-03 济南时代试金试验机有限公司 一种试样气动夹紧装置
CN206588968U (zh) * 2017-01-25 2017-10-27 广州隆深机械有限公司 一种注塑取件夹具
CN108000543A (zh) * 2017-12-25 2018-05-08 中国科学院沈阳自动化研究所 一种机器人多自由度夹持器
CN207710805U (zh) * 2017-12-25 2018-08-10 中国科学院沈阳自动化研究所 机器人多自由度夹持器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4699414A (en) * 1986-04-21 1987-10-13 The United States Of America As Represented By The Secretary Of The Air Force Multi use gripper for industrial robot
JP3097806B2 (ja) * 1994-10-07 2000-10-10 矢崎総業株式会社 端子挿入装置
JP3129936B2 (ja) * 1995-06-12 2001-01-31 矢崎総業株式会社 グロメット止水方法及びグロメット止水用治具
KR101134965B1 (ko) * 2009-12-04 2012-04-09 기아자동차주식회사 테일게이트용 그리퍼
EP2730367A4 (en) * 2011-07-07 2015-06-03 Yaskawa Denki Seisakusho Kk END EFFECTOR AND ROBOT

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU839987A1 (ru) * 1979-10-18 1981-06-23 Научно-Исследовательский И Опытно- Конструкторский Институт Автомати-Зации Черной Металлургии Захватное устройство дл сло КиРпичЕй
US5957517A (en) * 1998-11-17 1999-09-28 Chen; Yu-Fu Structure clamp device for the clinching and conveyance of unusually shaped objects
CN205009218U (zh) * 2015-10-12 2016-02-03 济南时代试金试验机有限公司 一种试样气动夹紧装置
CN206588968U (zh) * 2017-01-25 2017-10-27 广州隆深机械有限公司 一种注塑取件夹具
CN108000543A (zh) * 2017-12-25 2018-05-08 中国科学院沈阳自动化研究所 一种机器人多自由度夹持器
CN207710805U (zh) * 2017-12-25 2018-08-10 中国科学院沈阳自动化研究所 机器人多自由度夹持器

Also Published As

Publication number Publication date
US20210060796A1 (en) 2021-03-04
US11458638B2 (en) 2022-10-04
CN108000543A (zh) 2018-05-08
CN108000543B (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2019128821A1 (zh) 一种机器人多自由度夹持器
CN104344077B (zh) 深水复杂环境下大口径管道沟槽式连接器安装作业机器人
CN212736047U (zh) 一种适于抓取不同形状工件的机械手
CN106695857A (zh) 一种机器人夹具通用接口装置
US20080003092A1 (en) Rotary union connection
CN207710805U (zh) 机器人多自由度夹持器
CN110587641A (zh) 一种抓取不同直径工件的柔性化机械爪
CN212502534U (zh) 组装系统
CN110757486A (zh) 一种锻造机器人双头两爪欠秩夹具
CN201913646U (zh) 一种工业机器人与工具间自动切换的装置
CN109304632B (zh) 夹持装置
CN214215973U (zh) 一种可攀爬光滑管道的人工智能机器人
CN213532662U (zh) 一种基于图像识别气动调节自动定位的快速机械吸盘装置
CN110216707B (zh) 一种机器人定位夹爪
TWM551105U (zh) 具氣壓裝置之刀桿式氣壓夾爪
CN114311011A (zh) 一种汽车焊装生产线的机器人抓具
CN210678740U (zh) 一种抓取不同直径工件的柔性化机械爪
CN209052078U (zh) 一种四边定位夹具
CN209380764U (zh) 玻璃管搬运机械手
CN206383156U (zh) 工业机器人快换夹具
CN102444634A (zh) 用于工件夹持的气动控制系统
CN111003495A (zh) 一种快换抓手
CN215146397U (zh) 一种离心风机叶轮拆卸装置
CN221247652U (zh) 一种用于螺栓桶箍的快速拆装装置
CN218698047U (zh) 一种管道阀组制作工装装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897557

Country of ref document: EP

Kind code of ref document: A1