WO2019128155A1 - 沉井施工结构及其施工方法 - Google Patents

沉井施工结构及其施工方法 Download PDF

Info

Publication number
WO2019128155A1
WO2019128155A1 PCT/CN2018/092434 CN2018092434W WO2019128155A1 WO 2019128155 A1 WO2019128155 A1 WO 2019128155A1 CN 2018092434 W CN2018092434 W CN 2018092434W WO 2019128155 A1 WO2019128155 A1 WO 2019128155A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
column
steel pipe
jack
sinking
Prior art date
Application number
PCT/CN2018/092434
Other languages
English (en)
French (fr)
Inventor
龙莉波
余佳骏
戚健文
Original Assignee
上海建工二建集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海建工二建集团有限公司 filed Critical 上海建工二建集团有限公司
Priority to JP2020517258A priority Critical patent/JP6830748B2/ja
Priority to CH01548/19A priority patent/CH715226B1/de
Publication of WO2019128155A1 publication Critical patent/WO2019128155A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/02Foundation pits
    • E02D17/04Bordering surfacing or stiffening the sides of foundation pits
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D23/00Caissons; Construction or placing of caissons
    • E02D23/08Lowering or sinking caissons
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/10Deep foundations
    • E02D27/12Pile foundations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/28Placing of hollow pipes or mould pipes by means arranged inside the piles or pipes

Definitions

  • the invention relates to a sinking construction structure and a construction method thereof.
  • Sinking is a construction process for building deep foundations and underground structures.
  • an open reinforced concrete shaft is first made in the ground or in the foundation pit. After it reaches the specified strength, it is stratified and excavated in the well body. With the reduction of excavation and soil surface, the sinking well body borrows With the help of self-weight or other measures, overcome the frictional resistance and the reaction between the blade and the wall, and continue to sink until the design elevation is in place, and then the back cover.
  • the advantage of the sinking construction process is that it can be used in deep underground construction (up to 50 meters) under underground conditions and has less impact on the surrounding environment; it can be constructed in complex areas with geological and hydrological conditions; construction does not require complicated Machine equipment; compared with large excavation, can reduce the amount of earthwork excavated, transported and backfilled.
  • Its shortcomings are many construction procedures, high technical requirements, and difficult quality control.
  • the correction of the sinking process is one of the keys to the construction of the caisson. If the correction is not timely in the sinking process, the sinking well will be in place. Can't be corrected later.
  • the object of the present invention is to provide a sinking construction structure and a construction method thereof, which can solve the problems of low verticality control precision, tilting, easy to cause sinking of the soft soil layer and complicated operation platform setting in the sinking sinking project.
  • the present invention provides a sinking construction structure, including:
  • a steel pipe column is connected to a top end of each of the pouring piles, and a bottom end of each steel pipe column is connected to a top end of a corresponding pouring pile, and the steel pipe column extends from the foundation pit to be excavated to the ground;
  • a pipe joint is connected to the top of each jack
  • the sinking well is sleeved outside the space enclosed by the steel pipe column, and the inner wall of the caisson is disposed with a steel bull leg at an interval corresponding to the axial direction of the pipe joint column, and the inner wall of the sinking well is
  • the steel pipe columns are adjacent to each other, and the steel bull legs are erected on the pipe joint columns.
  • the steel structure platform comprises a platform ring beam and a transverse steel beam, wherein the platform ring beam connects all the steel pipe columns together, and the transverse steel beam is connected to the platform ring beam interior .
  • the steel bracing is connected between the lower bottom surface of the steel structure platform and the steel pipe column.
  • the steel structure platform is a hollow structure, and the steel structure platform is provided with a crane, and the base pit under the steel structure platform is provided with a grab excavation device.
  • the jack is a two-way jack.
  • the steel ox leg is an L-shaped structure formed by connecting the first surface and the second surface, the first surface is connected to the inner wall of the caisson, and the second surface is erected on The pipe joint is on the column.
  • a horizontal restraining member one end of the horizontal constraining member being perpendicularly connected to the first surface, the horizontal constraining member being perpendicular to the tubular strut, the horizontal constraining member The other end is abutted against the side wall of the pipe section.
  • the method further includes:
  • a controller coupled to the jack, displacement, and force sensor.
  • a construction method for a sinking well comprising:
  • a plurality of cast-in-place piles are symmetrically arranged at the bottom of the foundation pit to be excavated, and a steel pipe column is connected at the top end of each of the cast-in-place piles, wherein the bottom end of each steel pipe column is connected with the top end of the corresponding cast-in-place pile, and the steel pipe column is connected
  • the foundation pit to be excavated extends to the ground;
  • a jack is placed at the top of each steel pipe column
  • the steel cattle legs are arranged at intervals corresponding to the axial direction of the pipe joint column on the inner wall of the caisson;
  • the sinking hole is sleeved outside the space enclosed by the steel pipe column, and the inner wall of the caisson is adjacent to the steel pipe column, and the steel ox leg is erected on the pipe joint column.
  • a plurality of cast-in-place piles are symmetrically arranged at the bottom of the foundation pit to be excavated, and the steel pipe columns are connected at the top end of each of the piles, including:
  • the hydraulic sag system is used to control the concrete column into the concrete cage to the second design elevation.
  • a steel structure platform connecting all the steel pipe columns including:
  • a transverse steel beam is connected inside the platform ring beam.
  • the method after installing the steel structure platform connecting all the steel pipe columns, the method includes:
  • a steel bracing is connected between the lower bottom surface of the steel structure platform and the steel pipe column.
  • a steel structure platform connecting all the steel pipe columns including:
  • a grab excavation device is passed through the hollow structure to a foundation pit under the steel structure platform by a crane.
  • the jack is a two-way jack.
  • the steel bull legs are disposed at intervals along the axial direction of the inner wall of the caisson corresponding to the pipe joints, including:
  • An L-shaped steel bullet connected by a first side and a second side;
  • Locating the steel ox leg on the pipe section column comprising:
  • the second surface is erected on the pipe section column.
  • the method before the second surface is mounted on the pipe column, the method further includes:
  • the method further includes:
  • the other end of the horizontal restraining member is vertically opposed to the side wall of the tubular string.
  • the method further includes:
  • Displacement and force sensors are placed on each jack;
  • the controller obtains the displacement of each pipe joint column through the displacement sensor. If the displacement is inconsistent, the controller controls the jack to adjust the height of the pipe joint column according to the force on the two-way jack collected by the force sensor.
  • the present invention provides a one-column (steel pipe column) for the problems of low verticality control precision, tilting, easy to produce a soft soil layer, and complicated operation platform.
  • a pile (casting pile) guiding type controlled caisson construction structure the steel column is inserted into the pouring column to form a "one column and one pile" arranged on the inner side of the caisson as a vertical bearing member, and a column is connected with a steel structure platform.
  • a pipe joint column is connected through the top of each two-way jack, and the steel cow leg is erected on the pipe joint column as an important guiding member in the sinking process of the sinking hole.
  • the steel pipe When the sinking hole is required to sink, the steel pipe can be The soil in the foundation pit in the space enclosed by the column is continuously excavated, and the lowermost steel ox leg A erected on the pipe joint column is removed, and then the sinking well can sink to the steel ox leg A by its own gravity.
  • the upper steel ox leg B is erected on the column of the pipe section, and the lowermost steel ox leg erected on the pipe section column can be continuously removed, so that the sinking hole continuously relies on its own gravity drop.
  • the height of the pipe joint column of the jack can be adjusted to ensure that the vertical state of the sinking well is always maintained, thereby effectively controlling the verticality during the sinking process. With stability, it is convenient to construct and reduce construction risks and save costs.
  • FIG. 1 is a schematic view showing a construction structure of a sinking well according to an embodiment of the present invention
  • FIG. 2 is a plan view showing a construction structure of a sinking well according to an embodiment of the present invention
  • Figure 3 is a schematic view showing the connection of a steel bull's leg according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing the connection of a pouring pile and a steel pipe column according to an embodiment of the present invention
  • FIG. 5 is a schematic view showing a first working condition of a sinking construction method according to an embodiment of the present invention
  • FIG. 6 is a schematic view showing a second working condition of a sinking construction method according to an embodiment of the present invention.
  • Fig. 7 is a schematic view showing the third working condition of the sinking construction method according to an embodiment of the present invention.
  • the present invention provides a sinking construction structure, including:
  • a steel pipe column 2 is connected to the top end of each of the pouring piles 1 , and the bottom end of each steel pipe column 2 is connected to the top end of the corresponding pouring pile 1 , and the steel pipe column 2 extends from the foundation pit to be excavated to the ground 3 ;
  • each steel pipe column 2 a jack 5 disposed at the top of each steel pipe column 2;
  • each steel pipe column 2 and the corresponding jack 5 can be connected to the gasket by anchor bolts;
  • each jack 5 is connected with a pipe column 6;
  • the pipe post 6 and the corresponding jack 5 may be connected by a flange 13;
  • the sinking well 7 is disposed outside the space enclosed by the steel pipe column 2, and the inner wall of the caking well 7 is provided with a steel bull leg 8 at intervals corresponding to the axial direction of the pipe joint column 6.
  • the inner wall of the sinkhole 7 is adjacent to the steel pipe column 2, and the steel ox leg 8 is erected on the pipe joint column 6.
  • a plurality of screw holes can be drilled in each design elevation of the inner wall of the caisson, and the bolts 12 and the screw holes are matched to facilitate fixing the steel bull legs 8;
  • the present invention provides a one-column (steel pipe column) pile (infusion) for the problem that the verticality control precision is low, the inclination, the soft soil layer is easy to produce a sinking, and the operation platform is complicated to set up in the sinking sinking project.
  • Pillar-oriented controllable caisson construction structure the steel column is inserted into the perfusion column to form a "one column and one pile" arranged on the inner side of the caisson as a vertical bearing member, and the steel structure platform is used to connect one column and one pile into a whole, which is beneficial to Sinking sinking stability.
  • a pipe joint column is connected through the top of each two-way jack, and the steel cow leg is erected on the pipe joint column as an important guiding member in the sinking process of the sinking hole.
  • the steel pipe can be The soil in the foundation pit in the space enclosed by the column is continuously excavated, and the lowermost steel ox leg A erected on the pipe joint column is removed, and then the sinking well can sink to the steel ox leg A by its own gravity.
  • the upper steel ox leg B is erected on the column of the pipe section, and the lowermost steel ox leg erected on the pipe section column can be continuously removed, so that the sinking hole continuously relies on its own gravity drop.
  • the height of the pipe joint column of the jack can be adjusted to ensure that the vertical state of the sinking well is always maintained, thereby effectively controlling the verticality during the sinking process. With stability, it is convenient to construct and reduce construction risks and save costs.
  • the steel structure platform includes a platform ring beam and a transverse steel beam, wherein the platform ring beam connects all the steel pipe columns together, the transverse steel A beam is coupled to the interior of the platform ring beam.
  • the steel structure platform consists of a platform ring beam and a transverse steel beam, and full strength is used to ensure its strength.
  • a steel bracing 11 is connected between a lower bottom surface of the steel structure platform and the steel pipe column to further ensure connection strength.
  • the steel structure platform is a hollow structure
  • the steel structure platform 4 is provided with a crane 9
  • the foundation pit under the steel structure platform is provided with a grip Bucket excavation equipment.
  • the steel structure platform 4 can be used as the basis of large-scale equipment, and can be used for loading crane 9, grab earth excavation equipment, hanging construction materials, etc., to facilitate on-site construction, effectively improve work efficiency and construction quality, in order to achieve cost savings, Reduce construction risks and control quality.
  • a crane can be erected on a steel structure platform, and then the grab excavation equipment can be hoisted into the foundation pit under the steel structure platform through the hollow space on the steel structure platform for excavation, and then the crane hangs the soil from the foundation pit to the ground. Take it away.
  • the jack is a two-way jack to achieve flexible adjustment of the height of the pipe joint column.
  • the steel ox leg 8 is an L-shaped structure formed by connecting a first surface and a second surface, the first surface and the sinking surface.
  • the inner wall of the well 7 is connected, and the second side is mounted on the pipe column 6.
  • a sinking construction structure further includes: a horizontal restraining member 10, one end of which is vertically connected to the first surface, and the horizontal restraining member 10 The other end of the horizontal restraining member abuts against the side wall of the pipe post.
  • a controller coupled to the jack, displacement, and force sensor.
  • displacement and force sensors can be arranged on the two-way jack 5, the displacement and force of the pipe joint column 6 can be collected, and the controller can be configured to control the multi-jack telescopic form to achieve the purpose of intelligently and accurately controlling the sinking of the sinking hole, and control
  • the displacement of each tube section is obtained by the displacement sensor. If the displacement is inconsistent, according to the force on the two-way jack collected by the force sensor, the jack is adjusted to adjust the height of the tube column, and the intelligent precision control is realized.
  • the invention also provides another method of sinking construction, including.
  • step S1 a plurality of pouring piles 1 are symmetrically arranged at the bottom of the foundation pit to be excavated, and a steel pipe column 2 is connected at the top end of each of the pouring piles 1, wherein the bottom end of each steel pipe column 2 corresponds to The top end of the pouring pile 1 is connected, the steel pipe column 2 extends from the foundation pit to be excavated to the ground 3;
  • step S2 the foundation pit is excavated to a designated elevation, and a steel structure platform 4 connecting all the steel pipe columns 2 is installed, and the steel structure platform 4 is perpendicular to the steel pipe column;
  • step S3 a jack 5 is placed at the top of each steel pipe column;
  • each steel pipe column and the corresponding jack can be connected to the gasket by anchor bolts;
  • step S4 at the top of each jack 5 is connected to the pipe section 6;
  • the pipe joint 6 and the corresponding jack 5 can be connected by a flange 13;
  • step S5 in the inner wall of the caking well 7 in the axial direction corresponding to the position of the pipe column 6 is spaced apart from the steel cattle legs 8;
  • step S6 the caisson 7 is sleeved outside the space enclosed by the steel pipe column 2, and the inner wall of the caisson 2 is adjacent to the steel pipe column 2, and the steel is The ox leg 8 is mounted on the pipe column 6 .
  • the present invention provides a one-column (steel pipe column) pile (infusion) for the problem that the verticality control precision is low, the inclination, the soft soil layer is easy to produce a sinking, and the operation platform is complicated to set up in the sinking sinking project.
  • Pillar-oriented controllable caisson construction structure the steel column is inserted into the perfusion column to form a "one column and one pile" arranged on the inner side of the caisson as a vertical bearing member, and the steel structure platform is used to connect one column and one pile into a whole, which is beneficial to Sinking sinking stability.
  • a pipe joint column is connected through the top of each two-way jack, and the steel cow leg is erected on the pipe joint column as an important guiding member in the sinking process of the sinking hole.
  • the steel pipe can be The soil in the foundation pit in the space enclosed by the column is continuously excavated, and the lowermost steel ox leg A erected on the pipe joint column is removed, and then the sinking well can sink to the steel ox leg A by its own gravity.
  • the upper steel ox leg B is erected on the column of the pipe section, and the lowermost steel ox leg erected on the pipe section column can be continuously removed, so that the sinking hole continuously relies on its own gravity drop.
  • the height of the pipe joint column of the jack can be adjusted to ensure that the vertical state of the sinking well is always maintained, thereby effectively controlling the verticality during the sinking process. With stability, it is convenient to construct and reduce construction risks and save costs.
  • step S1 a plurality of cast-in-place piles are symmetrically arranged at the bottom of the foundation pit to be excavated, and the steel pipe columns are connected at the top end of each of the piles, including:
  • the HDC high-precision hydraulic drooping system is used to control the insertion of the steel pipe column into the concrete cage to the second design elevation.
  • step S2 a steel structure platform connecting all the steel pipe columns is installed, including:
  • a transverse steel beam is connected inside the platform ring beam.
  • the steel structure platform consists of a platform ring beam and a transverse steel beam, and full strength is used to ensure its strength.
  • step S2 after installing the steel structure platform connecting all the steel pipe columns, the method includes:
  • the steel bracing 11 is connected between the lower bottom surface of the steel structure platform and the steel pipe column to further ensure the joint strength.
  • step S2 a steel structure platform connecting all the steel pipe columns is installed, including:
  • a grab excavation device is passed through the hollow structure to a foundation pit under the steel structure platform by a crane.
  • the steel structure platform can be used as the basis of large-scale equipment, which can be used to load cranes, grab excavation equipment, lifting construction materials, etc., to facilitate on-site construction, effectively improve work efficiency and construction quality, in order to achieve cost savings and reduce construction.
  • large-scale equipment which can be used to load cranes, grab excavation equipment, lifting construction materials, etc., to facilitate on-site construction, effectively improve work efficiency and construction quality, in order to achieve cost savings and reduce construction.
  • the purpose of risk and quality control For example, a crane can be erected on a steel structure platform, and then the grab excavation equipment can be hoisted into the foundation pit under the steel structure platform through the hollow space on the steel structure platform for excavation, and then the crane hangs the soil from the foundation pit to the ground. Take it away.
  • the jack is a two-way jack.
  • step S5 the steel bull legs are disposed at intervals corresponding to the axial direction of the pipe joints in the inner wall of the caisson, including:
  • An L-shaped structural steel leg 8 joined by a first side and a second side;
  • Step S6 the steel cattle legs are erected on the pipe joint column, including:
  • the second surface is erected on the pipe column 6 .
  • the method further includes:
  • the method further includes:
  • the other end of the horizontal restraining member 10 is vertically opposed to the side wall of the pipe post 6.
  • the method further includes:
  • Displacement and force sensors are placed on each jack;
  • the controller obtains the displacement of each pipe joint column through the displacement sensor. If the displacement is inconsistent, the controller controls the jack to adjust the height of the pipe joint column according to the force on the two-way jack collected by the force sensor.
  • displacement and force sensors can be arranged on the two-way jack, the displacement and force of the pipe joint column can be collected, and the controller can be configured to control the multi-jack telescopic form to achieve the purpose of intelligently and accurately controlling the sinking of the sinking hole, and the controller passes
  • the displacement sensor acquires the displacement of each column of the pipe. If the displacement is inconsistent, according to the force on the two-way jack collected by the force sensor, the jack is adjusted to adjust the height of the pipe column, and the intelligent precision control is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Piles And Underground Anchors (AREA)
  • Foundations (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

一种沉井施工结构,包括:基坑底部对称设置的多根灌注桩(1);每根灌注桩(1)的顶端连接有钢管柱(2),每根钢管柱(2)的底端与对应的灌注桩(1)的顶端连接;连接所有钢管柱(2)的钢结构平台(4),钢结构平台(4)与钢管柱(2)垂直;设置于每个钢管柱(2)顶端的千斤顶(5);每个千斤顶(5)的顶部连接有管节柱(6);沉井(7),沉井(7)套设于钢管柱(2)所围成的空间外,沉井(7)的内壁沿轴向间隔设置有钢牛腿(8),钢牛腿(8)架设于管节柱(6)上。还提供了一种沉井施工方法。利用灌注桩(1)、钢管柱(2)和钢牛腿(8)构成沉井(7)下降时的导向构件,通过千斤顶(5)对的管节柱(6)高度进行调节,从而保证沉井(7)下降的过程中始终保持垂直状态。

Description

沉井施工结构及其施工方法 技术领域
本发明涉及一种沉井施工结构及其施工方法。
背景技术
沉井是修筑深基础和地下构筑物的一种施工工艺。施工时先在地面或基坑内制作开口的钢筋混凝土井身,待其达到规定强度后,在井身内部分层挖土运出,随着挖土和土面的降低,沉井井身藉其自重或在其他措施协助下克服与土壁间的摩阻力和刃脚反力,不断下沉,直至设计标高就位,然后进行封底。
沉井施工工艺的优点是:可在场地狭窄情况下施工较深(可达50余米)的地下工程,且对周围环境影响较小;可在地质、水文条件复杂地区施工;施工不需复杂的机具设备;与大开挖相比,可减少挖、运和回填的土方量。其存在缺点是施工工序较多、技术要求高、质量控制难,其中沉井下沉过程中的纠偏是沉井施工的关键之一,若在沉井下沉过程中不及时纠偏会导致沉井就位后无法纠正。
发明内容
本发明的目的在于提供一种沉井施工结构及其施工方法,能够解决沉井下沉工程中垂直度控制精度低、倾斜、遇特软土层易产生突沉、操作平台搭设复杂的问题。
为解决上述问题,本发明提供一种沉井施工结构,包括:
在待开挖的基坑底部对称设置的多根灌注桩;
每根灌注桩的顶端连接有钢管柱,每根钢管柱的底端与对应的灌注桩的顶端连接,所述钢管柱由所述待开挖的基坑延伸至地面;
连接所有钢管柱的钢结构平台,所述钢结构平台与所述钢管柱垂直;
设置于每个钢管柱的顶端的千斤顶;
每个千斤顶的顶部连接有管节柱;
沉井,所述沉井套设于所述钢管柱所围成的空间外,所述沉井的内壁沿轴向对应管节柱的位置间隔设置有钢牛腿,所述沉井的内壁与所述钢管柱相邻,所述钢牛腿架设于所述管节柱上。
进一步的,在上述结构中,所述钢结构平台包括平台圈梁与横向钢梁,其中,所述平台圈梁将所有钢管柱连接在一起,所述横向钢梁连接于所述平台圈梁内部。
进一步的,在上述结构中,所述钢结构平台的下底面与所述钢管柱之间连接有钢斜撑。
进一步的,在上述结构中,所述钢结构平台为镂空结构,所述钢结构平台上设置有吊车,所述钢结构平台下的基坑内设置有抓斗挖土设备。
进一步的,在上述结构中,所述千斤顶为双向千斤顶。
进一步的,在上述结构中,所述钢牛腿为由第一面和第二面连接成的L型结构,所述第一面与所述沉井的内壁连接,所述第二面架设于所述管节柱上。
进一步的,在上述结构中,还包括:水平约束构件,所述水平约束构件的一端与所述第一面垂直连接,所述水平约束构件与所述管节柱垂直,所述水平约束构件的另一端抵在所述管节柱的侧壁上。
进一步的,在上述结构中,还包括:
设置于每个千斤顶上的位移和受力传感器;
与所述千斤顶、位移和受力传感器连接的控制器。
根据本发明的另一面,提供一种沉井其施工方法,包括:
在待开挖的基坑底部对称设置多根灌注桩,在每根灌注桩的顶端连接钢管柱,其中,每根钢管柱的底端与对应的灌注桩的顶端连接,所述钢管柱由所述待开挖的基坑延伸至地面;
开挖基坑至指定标高,安装连接所有钢管柱的钢结构平台,所述钢结构平台与所述钢管柱垂直;
在每个钢管柱的顶端设置千斤顶;
在每个千斤顶的顶部连接管节柱;
在沉井的内壁沿轴向对应管节柱的位置间隔设置钢牛腿;
将所述沉井套设于所述钢管柱所围成的空间外,所述沉井的内壁与所述钢管柱相邻,将所述钢牛腿架设于所述管节柱上。
进一步的,在上述方法中,在待开挖的基坑底部对称设置多根灌注桩,在每根灌注桩的顶端连接钢管柱,包括:
在基坑底部打好桩孔后放入灌注桩的钢筋笼;
在所述灌注桩的钢筋笼内灌注混凝土至第一设计标高;
采用液压调垂系统控制钢管柱插入钢筋笼中的混凝土至第二设计标高。
进一步的,在上述方法中,安装连接所有钢管柱的钢结构平台,包括:
通过平台圈梁将所有钢管柱连接在一起;
在所述平台圈梁内部连接横向钢梁。
进一步的,在上述方法中,安装连接所有钢管柱的钢结构平台之后,包括:
在所述钢结构平台的下底面与所述钢管柱之间连接钢斜撑。
进一步的,在上述方法中,安装连接所有钢管柱的钢结构平台,包括:
安装连接所有钢管柱的镂空结构的钢结构平台;
在所述钢结构平台上设置吊车;
通过吊车将抓斗挖土设备穿过所述镂空结构至所述钢结构平台下的基坑内。
进一步的,在上述方法中,所述千斤顶为双向千斤顶。
进一步的,在上述方法中,在所述沉井的内壁沿轴向对应管节柱的位置间隔设置钢牛腿,包括:
由第一面和第二面连接成的L型结构的钢牛腿;
将所述第一面与所述沉井的内壁连接;
将所述钢牛腿架设于所述管节柱上,包括:
将所述第二面架设于所述管节柱上。
进一步的,在上述方法中,将所述第二面架设于所述管节柱上之前,还 包括:
将水平约束构件的一端与所述第一面垂直连接;
将所述第二面架设于所述管节柱上之后,还包括:
将所述水平约束构件的另一端垂直抵在所述管节柱的侧壁上。
进一步的,在上述方法中,将所述钢牛腿架设于所述管节柱上之后,还包括:
在每个千斤顶上设置位移和受力传感器;
将所述千斤顶、位移和受力传感器与控制器连接;
控制器通过位移传感器获取各管节柱的位移,若位移不一致,控制器根据受力传感器采集的双向千斤顶上的受力,控制千斤顶对管节柱高度进行调节。
与现有技术相比,本发明针对沉井下沉工程中垂直度控制精度低、倾斜、遇特软土层易产生突沉、操作平台搭设复杂等问题,提供了一种一柱(钢管柱)一桩(灌注桩)导向式可控沉井施工结构,以钢立柱插入灌注柱形成“一柱一桩”布置在沉井内侧作为竖向承载构件,用钢结构平台把一柱一桩连成整体,有利于沉井下沉稳定性。通过每个双向千斤的顶部连接有管节柱,所述钢牛腿架设于所述管节柱上,作为沉井下沉过程中的重要导向构件,当需要沉井下沉时,可以将所述钢管柱所围成的空间内的基坑内的土不断挖除,同时拆除架设于所述管节柱上的最下部的钢牛腿A,然后沉井可以依靠自身的重力下沉至钢牛腿A上部的钢牛腿B架设于所述管节柱上的位置,后续可以通过不断拆除架设于所述管节柱上的最下部的钢牛腿,实现沉井的不断依靠自身的重力下降。另外,在沉井下降的过程中,如果发生倾斜,可以通过千斤顶对的管节柱高度进行调节,从而保证沉井下降的过程中始终保持垂直状态,从而有效控制沉井下降过程中的垂直度与稳定性,方便施工并降低施工风险,节约成本。
附图说明
图1是本发明一实施例的沉井施工结构的示意图;
图2是本发明一实施例的沉井施工结构的平面图;
图3是本发明一实施例的钢牛腿的连接示意图;
图4是本发明一实施例的灌注桩和钢管柱的连接示意图;
图5是本发明一实施例的沉井施工方法的第一工况示意图;
图6是本发明一实施例的沉井施工方法的第二工况示意图;
图7是本发明一实施例的沉井施工方法的第三工况示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1~4所示,本发明提供一种沉井施工结构,包括:
在待开挖的基坑底部对称设置的多根灌注桩1;
每根灌注桩1的顶端连接有钢管柱2,每根钢管柱2的底端与对应的灌注桩1的顶端连接,所述钢管柱2由所述待开挖的基坑延伸至地面3;
连接所有钢管柱2的钢结构平台4,所述钢结构平台4与所述钢管柱2垂直;
设置于每个钢管柱2的顶端的千斤顶5;
在此,每个钢管柱2的顶端与对应的千斤顶5可以通过锚固螺栓与垫片连接;
每个千斤顶5的顶部连接有管节柱6;
在此,如图3所示,所述管节柱6与对应的千斤顶5可以通过法兰13连接;
沉井7,所述沉井7套设于所述钢管柱2所围成的空间外,所述沉井7的内壁沿轴向对应管节柱6的位置间隔设置有钢牛腿8,所述沉井7的内壁与所述钢管柱2相邻,所述钢牛腿8架设于所述管节柱6上。
具体的,如图3所示,可以于沉井的内壁各设计标高处钻多个螺杆孔洞,通过螺栓12和螺杆孔洞的配合,便于固定钢牛腿8;
在此,本发明针对沉井下沉工程中垂直度控制精度低、倾斜、遇特软土 层易产生突沉、操作平台搭设复杂等问题,提供了一种一柱(钢管柱)一桩(灌注桩)导向式可控沉井施工结构,以钢立柱插入灌注柱形成“一柱一桩”布置在沉井内侧作为竖向承载构件,用钢结构平台把一柱一桩连成整体,有利于沉井下沉稳定性。通过每个双向千斤的顶部连接有管节柱,所述钢牛腿架设于所述管节柱上,作为沉井下沉过程中的重要导向构件,当需要沉井下沉时,可以将所述钢管柱所围成的空间内的基坑内的土不断挖除,同时拆除架设于所述管节柱上的最下部的钢牛腿A,然后沉井可以依靠自身的重力下沉至钢牛腿A上部的钢牛腿B架设于所述管节柱上的位置,后续可以通过不断拆除架设于所述管节柱上的最下部的钢牛腿,实现沉井的不断依靠自身的重力下降。另外,在沉井下降的过程中,如果发生倾斜,可以通过千斤顶对的管节柱高度进行调节,从而保证沉井下降的过程中始终保持垂直状态,从而有效控制沉井下降过程中的垂直度与稳定性,方便施工并降低施工风险,节约成本。
如图2所示,本发明一实施例的沉井施工结构,所述钢结构平台包括平台圈梁与横向钢梁,其中,所述平台圈梁将所有钢管柱连接在一起,所述横向钢梁连接于所述平台圈梁内部。
在此,钢结构平台由平台圈梁与横向钢梁组成,采用满焊保证其强度。
如图1所示,本发明一实施例的沉井施工结构,所述钢结构平台的下底面与所述钢管柱之间连接有钢斜撑11,以进一步保证连接强度。
如图1所示,本发明一实施例的沉井施工结构,所述钢结构平台为镂空结构,所述钢结构平台4上设置有吊车9,所述钢结构平台下的基坑内设置有抓斗挖土设备。
在此,钢结构平台4可作为大型设备的基础,可以用来装吊车9、抓斗挖土设备、吊施工用材料等,便于现场施工,有效提高工作效率和施工质量,以达到节约成本、降低施工风险及控制质量的目的。例如,可以在钢结构平台上架设吊车,然后通过钢结构平台上的镂空空隙将抓斗挖土设备吊放到钢结构平台下基坑内进行挖土,然后由吊车将土从基坑内吊到地面运走。
本发明一实施例的沉井施工结构,所述千斤顶为双向千斤顶,以实现灵 活调节管节柱的高度。
如图1和3所示,本发明一实施例的沉井施工结构,所述钢牛腿8为由第一面和第二面连接成的L型结构,所述第一面与所述沉井7的内壁连接,所述第二面架设于所述管节柱6上。
如图1和3所示,本发明一实施例的沉井施工结构,还包括:水平约束构件10,所述水平约束构件10的一端与所述第一面垂直连接,所述水平约束构件10与所述管节柱6垂直,所述水平约束构件的另一端抵在所述管节柱的侧壁上。
本发明一实施例的沉井施工结构,还包括:
设置于每个千斤顶5上的位移和受力传感器;
与所述千斤顶、位移和受力传感器连接的控制器。
在此,可以在双向千斤顶5上设置位移和受力传感器,采集管节柱6的位移和受力,配置控制器,以控制多个千斤顶伸缩的形式达到智能精准控制沉井下沉的目的,控制器通过位移传感器获取各管节柱的位移,若位移不一致,根据受力传感器采集的双向千斤顶上的受力,控制千斤顶对管节柱高度进行调节,实现的智能精准控制。
本发明还提供另一种沉井施工方法,包括。
如图5所示,步骤S1,在待开挖的基坑底部对称设置多根灌注桩1,在每根灌注桩1的顶端连接钢管柱2,其中,每根钢管柱2的底端与对应的灌注桩1的顶端连接,所述钢管柱2由所述待开挖的基坑延伸至地面3;
如图6所示,步骤S2,开挖基坑至指定标高,安装连接所有钢管柱2的钢结构平台4,所述钢结构平台4与所述钢管柱垂直;
如图7所示,步骤S3,在每个钢管柱的顶端设置千斤顶5;
在此,每个钢管柱的顶端与对应的千斤顶可以通过锚固螺栓与垫片连接;
如图7所示,步骤S4,在每个千斤顶5的顶部连接管节柱6;
在此,所述管节柱6与对应的千斤顶5可以通过法兰13连接;
如图7所示,步骤S5,在沉井7的内壁沿轴向对应管节柱6的位置间隔设置钢牛腿8;
如图7所示,步骤S6,将所述沉井7套设于所述钢管柱2所围成的空间外,所述沉井2的内壁与所述钢管柱2相邻,将所述钢牛腿8架设于所述管节柱6上。
在此,本发明针对沉井下沉工程中垂直度控制精度低、倾斜、遇特软土层易产生突沉、操作平台搭设复杂等问题,提供了一种一柱(钢管柱)一桩(灌注桩)导向式可控沉井施工结构,以钢立柱插入灌注柱形成“一柱一桩”布置在沉井内侧作为竖向承载构件,用钢结构平台把一柱一桩连成整体,有利于沉井下沉稳定性。通过每个双向千斤的顶部连接有管节柱,所述钢牛腿架设于所述管节柱上,作为沉井下沉过程中的重要导向构件,当需要沉井下沉时,可以将所述钢管柱所围成的空间内的基坑内的土不断挖除,同时拆除架设于所述管节柱上的最下部的钢牛腿A,然后沉井可以依靠自身的重力下沉至钢牛腿A上部的钢牛腿B架设于所述管节柱上的位置,后续可以通过不断拆除架设于所述管节柱上的最下部的钢牛腿,实现沉井的不断依靠自身的重力下降。另外,在沉井下降的过程中,如果发生倾斜,可以通过千斤顶对的管节柱高度进行调节,从而保证沉井下降的过程中始终保持垂直状态,从而有效控制沉井下降过程中的垂直度与稳定性,方便施工并降低施工风险,节约成本。
本发明一实施例的沉井施工方法中,步骤S1,在待开挖的基坑底部对称设置多根灌注桩,在每根灌注桩的顶端连接钢管柱,包括:
如图5所示,在基坑底部打好桩孔后放入灌注桩的钢筋笼;
在灌注桩的钢筋笼内灌注混凝土至第一设计标高;
采用HDC高精度液压调垂系统控制钢管柱插入钢筋笼中的混凝土至第二设计标高。
本发明一实施例的沉井施工方法中,步骤S2,安装连接所有钢管柱的钢结构平台,包括:
通过平台圈梁将所有钢管柱连接在一起;
在所述平台圈梁内部连接横向钢梁。
在此,钢结构平台由平台圈梁与横向钢梁组成,采用满焊保证其强度。
本发明一实施例的沉井施工方法中,本发明一实施例的沉井施工方法中,步骤S2,安装连接所有钢管柱的钢结构平台之后,包括:
如图6所示,在所述钢结构平台的下底面与所述钢管柱之间连接钢斜撑11,以进一步保证连接强度。
本发明一实施例的沉井施工方法中,步骤S2,安装连接所有钢管柱的钢结构平台,包括:
安装连接所有钢管柱的镂空结构的钢结构平台;
在所述钢结构平台上设置吊车;
通过吊车将抓斗挖土设备穿过所述镂空结构至所述钢结构平台下的基坑内。
在此,钢结构平台可作为大型设备的基础,可以用来装吊车、抓斗挖土设备、吊施工用材料等,便于现场施工,有效提高工作效率和施工质量,以达到节约成本、降低施工风险及控制质量的目的。例如,可以在钢结构平台上架设吊车,然后通过钢结构平台上的镂空空隙将抓斗挖土设备吊放到钢结构平台下基坑内进行挖土,然后由吊车将土从基坑内吊到地面运走。
本发明一实施例的沉井施工方法中,所述千斤顶为双向千斤顶。
如图7所示,本发明一实施例的沉井施工方法中,步骤S5,在所述沉井的内壁沿轴向对应管节柱的位置间隔设置钢牛腿,包括:
由第一面和第二面连接成的L型结构的钢牛腿8;
将所述第一面与所述沉井7的内壁连接;
步骤S6,将所述钢牛腿架设于所述管节柱上,包括:
将所述第二面架设于所述管节柱6上。
如图7所示,本发明一实施例的沉井施工方法中,将所述第二面架设于所述管节柱上之前,还包括:
将水平约束构件10的一端与所述第一面垂直连接;
将所述第二面架设于所述管节柱6上之后,还包括:
将所述水平约束构件10的另一端垂直抵在所述管节柱6的侧壁上。
本发明一实施例的沉井施工方法中,将所述钢牛腿架设于所述管节柱上之后,还包括:
在每个千斤顶上设置位移和受力传感器;
将所述千斤顶、位移和受力传感器与控制器连接;
控制器通过位移传感器获取各管节柱的位移,若位移不一致,控制器根据受力传感器采集的双向千斤顶上的受力,控制千斤顶对管节柱高度进行调节。
在此,可以在双向千斤顶上设置位移和受力传感器,采集管节柱的位移和受力,配置控制器,以控制多个千斤顶伸缩的形式达到智能精准控制沉井下沉的目的,控制器通过位移传感器获取各管节柱的位移,若位移不一致,根据受力传感器采集的双向千斤顶上的受力,控制千斤顶对管节柱高度进行调节,实现的智能精准控制。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
显然,本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包括这些改动和变型在内。

Claims (17)

  1. 一种沉井施工结构,其特征在于,包括:
    在待开挖的基坑底部对称设置的多根灌注桩;
    每根灌注桩的顶端连接有钢管柱,每根钢管柱的底端与对应的灌注桩的顶端连接,所述钢管柱由所述待开挖的基坑延伸至地面;
    连接所有钢管柱的钢结构平台,所述钢结构平台与所述钢管柱垂直;
    设置于每个钢管柱的顶端的千斤顶;
    每个千斤顶的顶部连接有管节柱;
    沉井,所述沉井套设于所述钢管柱所围成的空间外,所述沉井的内壁沿轴向对应管节柱的位置间隔设置有钢牛腿,所述沉井的内壁与所述钢管柱相邻,所述钢牛腿架设于所述管节柱上。
  2. 如权利要求1所述的沉井施工结构,其特征在于,所述钢结构平台包括平台圈梁与横向钢梁,其中,所述平台圈梁将所有钢管柱连接在一起,所述横向钢梁连接于所述平台圈梁内部。
  3. 如权利要求1所述的沉井施工结构,其特征在于,所述钢结构平台的下底面与所述钢管柱之间连接有钢斜撑。
  4. 如权利要求1所述的沉井施工结构,其特征在于,所述钢结构平台为镂空结构,所述钢结构平台上设置有吊车,所述钢结构平台下的基坑内设置有抓斗挖土设备。
  5. 如权利要求1所述的沉井施工结构,其特征在于,所述千斤顶为双向千斤顶。
  6. 如权利要求1所述的沉井施工结构,其特征在于,所述钢牛腿为由第一面和第二面连接成的L型结构,所述第一面与所述沉井的内壁连接,所述第二面架设于所述管节柱上。
  7. 如权利要求6所述的沉井施工结构,其特征在于,还包括:水平约束构件,所述水平约束构件的一端与所述第一面垂直连接,所述水平约束构件与所述管节柱垂直,所述水平约束构件的另一端抵在所述管节柱的侧壁上。
  8. 如权利要求1所述的沉井施工结构,其特征在于,还包括:
    设置于每个千斤顶上的位移和受力传感器;
    与所述千斤顶、位移和受力传感器连接的控制器。
  9. 一种沉井施工方法,其特征在于,包括:
    在待开挖的基坑底部对称设置多根灌注桩,在每根灌注桩的顶端连接钢管柱,其中,每根钢管柱的底端与对应的灌注桩的顶端连接,所述钢管柱由所述待开挖的基坑延伸至地面;
    开挖基坑至指定标高,安装连接所有钢管柱的钢结构平台,所述钢结构平台与所述钢管柱垂直;
    在每个钢管柱的顶端设置千斤顶;
    在每个千斤顶的顶部连接管节柱;
    在沉井的内壁沿轴向对应管节柱的位置间隔设置钢牛腿;
    将所述沉井套设于所述钢管柱所围成的空间外,所述沉井的内壁与所述钢管柱相邻,将所述钢牛腿架设于所述管节柱上。
  10. 如权利要求9所述的沉井施工方法,其特征在于,在待开挖的基坑底部对称设置多根灌注桩,在每根灌注桩的顶端连接钢管柱,包括:
    在基坑底部打好桩孔后放入灌注桩的钢筋笼;
    在所述灌注桩的钢筋笼内灌注混凝土至第一设计标高;
    采用液压调垂系统控制钢管柱插入钢筋笼中的混凝土至第二设计标高。
  11. 如权利要求9所述的沉井施工方法,其特征在于,安装连接所有钢管柱的钢结构平台,包括:
    通过平台圈梁将所有钢管柱连接在一起;
    在所述平台圈梁内部连接横向钢梁。
  12. 如权利要求9所述的沉井施工方法,其特征在于,安装连接所有钢管柱的钢结构平台之后,包括:
    在所述钢结构平台的下底面与所述钢管柱之间连接钢斜撑。
  13. 如权利要求9所述的沉井施工方法,其特征在于,安装连接所有钢管柱的钢结构平台,包括:
    安装连接所有钢管柱的镂空结构的钢结构平台;
    在所述钢结构平台上设置吊车;
    通过吊车将抓斗挖土设备穿过所述镂空结构至所述钢结构平台下的基坑内。
  14. 如权利要求9所述的沉井施工方法,其特征在于,所述千斤顶为双向千斤顶。
  15. 如权利要求9所述的沉井施工方法,其特征在于,在所述沉井的内壁沿轴向对应管节柱的位置间隔设置钢牛腿,包括:
    由第一面和第二面连接成的L型结构的钢牛腿;
    将所述第一面与所述沉井的内壁连接;
    将所述钢牛腿架设于所述管节柱上,包括:
    将所述第二面架设于所述管节柱上。
  16. 如权利要求15所述的沉井施工方法,其特征在于,将所述第二面架设于所述管节柱上之前,还包括:
    将水平约束构件的一端与所述第一面垂直连接;
    将所述第二面架设于所述管节柱上之后,还包括:
    将所述水平约束构件的另一端垂直抵在所述管节柱的侧壁上。
  17. 如权利要求9所述的沉井施工方法,其特征在于,将所述钢牛腿架设于所述管节柱上之后,还包括:
    在每个千斤顶上设置位移和受力传感器;
    将所述千斤顶、位移和受力传感器与控制器连接;
    控制器通过位移传感器获取各管节柱的位移,若位移不一致,控制器根据受力传感器采集的双向千斤顶上的受力,控制千斤顶对管节柱高度进行调节。
PCT/CN2018/092434 2017-12-29 2018-06-22 沉井施工结构及其施工方法 WO2019128155A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020517258A JP6830748B2 (ja) 2017-12-29 2018-06-22 オープンケーソン施工構造及びその施工方法
CH01548/19A CH715226B1 (de) 2017-12-29 2018-06-22 Offene Senkkastenkonstruktionsstruktur und -Verfahren.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711468686.7A CN108086340B (zh) 2017-12-29 2017-12-29 沉井施工结构及其施工方法
CN201711468686.7 2017-12-29

Publications (1)

Publication Number Publication Date
WO2019128155A1 true WO2019128155A1 (zh) 2019-07-04

Family

ID=62179868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092434 WO2019128155A1 (zh) 2017-12-29 2018-06-22 沉井施工结构及其施工方法

Country Status (4)

Country Link
JP (1) JP6830748B2 (zh)
CN (1) CN108086340B (zh)
CH (1) CH715226B1 (zh)
WO (1) WO2019128155A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113309130A (zh) * 2021-07-01 2021-08-27 中建地下空间有限公司 一种沉井可控下沉施工方法
CN113585315A (zh) * 2021-08-26 2021-11-02 宁波市政工程建设集团股份有限公司 一种下沉摩阻力可调节沉井
CN115404890A (zh) * 2022-10-08 2022-11-29 山东黄河河务局工程建设中心 一种沉井的施工方法
CN115492144A (zh) * 2022-09-15 2022-12-20 中国一冶集团有限公司 沙洲区域顶管沉井施工方法
CN115538812A (zh) * 2022-12-01 2022-12-30 北京市第三建筑工程有限公司 一种分段吊装新增柱并增设临时牛腿的托梁插柱改造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108086340B (zh) * 2017-12-29 2020-02-14 上海建工二建集团有限公司 沉井施工结构及其施工方法
CN108867678B (zh) * 2018-07-26 2024-04-09 中建空列(北京)科技有限公司 一种空铁沉井系统
CN109252533B (zh) * 2018-09-17 2022-01-25 中国一冶集团有限公司 沉井下沉控制系统及其施工方法
CN108999205A (zh) * 2018-09-28 2018-12-14 北京首钢建设集团有限公司 一种基础开槽护壁使用矩形钢板圈的施工方法
CN109826218A (zh) * 2019-03-25 2019-05-31 中国十七冶集团有限公司 一种沉井终沉阶段液压顶升纠偏系统
CN110747876A (zh) * 2019-09-11 2020-02-04 中铁上海工程局集团有限公司 一种用于沉井施工下沉的辅助装置及其操作方法
CN114373286B (zh) * 2021-11-30 2023-12-05 成都倍特建筑安装工程有限公司 一种基坑位移自动报警装置
CN114457993B (zh) * 2021-12-14 2023-07-04 深圳中铁二局工程有限公司 一种用于沉井施工的整体可移动式操作平台
CN115075278B (zh) * 2022-06-22 2023-09-15 中交第二航务工程局有限公司 一种水中超大沉井台阶渐进式取土下沉施工系统与方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184127A (ja) * 1984-03-02 1985-09-19 Nippon Zenisupaipu Kk プレキヤストコンクリ−ト多層ケ−ソン
JP2008231810A (ja) * 2007-03-22 2008-10-02 Ps Mitsubishi Construction Co Ltd 地下構造物の施工法
CN101503879A (zh) * 2009-03-10 2009-08-12 中国第一冶金建设有限责任公司 防止沉井倾斜的预控方法
CN102900090A (zh) * 2011-07-29 2013-01-30 邹宗煊 一种防涌水防地面下沉不倾斜干作业沉井及其施工方法
CN108086340A (zh) * 2017-12-29 2018-05-29 上海建工二建集团有限公司 沉井施工结构及其施工方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0468123A (ja) * 1990-07-09 1992-03-03 Shimizu Corp ケーソン基礎工法
JPH06341154A (ja) * 1993-06-01 1994-12-13 Toda Constr Co Ltd 地下躯体構築工法
JPH08291529A (ja) * 1995-04-20 1996-11-05 Taisei Corp 地下階の施工方法
JP2003138584A (ja) * 2001-11-06 2003-05-14 Shimizu Corp 地下躯体の施工方法
CN107100183B (zh) * 2017-04-19 2019-08-16 张士普 沉井建筑工法
CN107142955A (zh) * 2017-06-12 2017-09-08 上海市机械施工集团有限公司 一种沉井施工方法
CN207828995U (zh) * 2017-12-29 2018-09-07 上海建工二建集团有限公司 沉井施工结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184127A (ja) * 1984-03-02 1985-09-19 Nippon Zenisupaipu Kk プレキヤストコンクリ−ト多層ケ−ソン
JP2008231810A (ja) * 2007-03-22 2008-10-02 Ps Mitsubishi Construction Co Ltd 地下構造物の施工法
CN101503879A (zh) * 2009-03-10 2009-08-12 中国第一冶金建设有限责任公司 防止沉井倾斜的预控方法
CN102900090A (zh) * 2011-07-29 2013-01-30 邹宗煊 一种防涌水防地面下沉不倾斜干作业沉井及其施工方法
CN108086340A (zh) * 2017-12-29 2018-05-29 上海建工二建集团有限公司 沉井施工结构及其施工方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113309130A (zh) * 2021-07-01 2021-08-27 中建地下空间有限公司 一种沉井可控下沉施工方法
CN113309130B (zh) * 2021-07-01 2024-05-24 中建地下空间有限公司 一种沉井可控下沉施工方法
CN113585315A (zh) * 2021-08-26 2021-11-02 宁波市政工程建设集团股份有限公司 一种下沉摩阻力可调节沉井
CN113585315B (zh) * 2021-08-26 2022-10-21 宁波市政工程建设集团股份有限公司 一种下沉摩阻力可调节沉井
CN115492144A (zh) * 2022-09-15 2022-12-20 中国一冶集团有限公司 沙洲区域顶管沉井施工方法
CN115492144B (zh) * 2022-09-15 2023-08-29 中国一冶集团有限公司 沙洲区域顶管沉井施工方法
CN115404890A (zh) * 2022-10-08 2022-11-29 山东黄河河务局工程建设中心 一种沉井的施工方法
CN115538812A (zh) * 2022-12-01 2022-12-30 北京市第三建筑工程有限公司 一种分段吊装新增柱并增设临时牛腿的托梁插柱改造方法

Also Published As

Publication number Publication date
CH715226B1 (de) 2021-05-14
CN108086340B (zh) 2020-02-14
JP2020522635A (ja) 2020-07-30
CN108086340A (zh) 2018-05-29
JP6830748B2 (ja) 2021-02-17

Similar Documents

Publication Publication Date Title
WO2019128155A1 (zh) 沉井施工结构及其施工方法
CN107299643B (zh) 一种基坑内钢格构柱复合式塔吊基础结构及施工方法
CN101824919B (zh) 钢管柱在富水软弱地层中深孔水下的安装定位方法
CN105951747B (zh) 一种逆作法预埋格构柱的施工方法
CN106759477A (zh) 一种盖挖逆作法钢管柱定位施工方法
CN110206493A (zh) 一种全套管全回转钻孔灌注桩施工工艺
CN109024651B (zh) 一种钢管混凝土混合桩基及施工方法
CN111962504A (zh) 一种盖挖逆作永久钢管柱的施工方法
CN211773659U (zh) 钢管支撑柱兼做结构柱的固定调垂防上浮装置
CN105672314A (zh) 一种半逆作法钢管立柱桩施工方法
CN105155602A (zh) 一种多支点地基加固综合纠倾方法
CN105178368A (zh) 微型桩桩孔取土建筑物纠倾法
CN107642041A (zh) 超大直径空心群桩锚碇
CN108755706A (zh) 可移动基坑内支撑系统及基坑施工方法
CN114673153A (zh) 复杂地层超长大直径桩基护筒结构的施工方法
CN103485347A (zh) 一种建筑基坑支护用斜桩及其施工方法
CN207828995U (zh) 沉井施工结构
CN202969333U (zh) 钢桁架嵌岩码头结构
CN111962506A (zh) 一种准直桩结构及施工方法
CN107975040A (zh) 圆形顶管工作坑深基坑支护技术施工方法
CN107642040A (zh) 超大直径空心群桩锚碇的施工方法碇
CN209368877U (zh) 逆作法钢管柱与钢筋笼活动式连接装置
CN206477240U (zh) 一种用于深水裸岩河床的栈桥桩基
CN105274984A (zh) 一种双重套管全回转施工立柱桩方法
CN214116620U (zh) 一种用于永久双钢管柱精确定位的可调节支架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896713

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020517258

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 10201900001548

Country of ref document: CH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896713

Country of ref document: EP

Kind code of ref document: A1